Anticancer activities of bovine and human lactoferricin-derived peptides.
Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J
2017-02-01
Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.
Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G
2016-11-01
Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-01-01
Background Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic α-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic α-helical domains, and tested these for antiviral and antibacterial activity. Results Of the nineteen new peptides tested, seven showed some anti-infective activity, with two of these being derived from two apolipoproteins not previously used to derive anti-infective sequences. Apolipoprotein J (151-170) - based on a predicted amphipathic alpha-helical domain from apolipoprotein J - had measurable anti-HSV1 activity, as did apolipoprotein B (3359-3367) dp (apoBdp), the latter being derived from the LDL receptor binding domain B of apolipoprotein B. The more active peptide - apoBdp - showed similarity to the previously reported apoE derived anti-infective peptide, and further modification of the apoBdp sequence to align the charge distribution more closely to that of apoEdp or to introduce aromatic residues resulted in increased breadth and potency of activity. The most active peptide of this type showed similar potent anti-HIV activity, comparable to that we previously reported for the apoE derived peptide apoEdpL-W. Conclusions These data suggest that further antimicrobial peptides may be obtained using human apolipoprotein sequences, selecting regions with either amphipathic α-helical structure, or those linked to receptor-binding regions. The finding that an amphipathic α-helical region of apolipoprotein J has antiviral activity comparable with that for the previously reported apolipoprotein AI derived peptide 18A, suggests that full-length apolipoprotein J may also have such activity, as has been reported for full-length apolipoprotein AI. Although the strength of the anti-infective activity of the sequences identified was limited, this could be increased substantially by developing related mutant peptides. Indeed the apolipoprotein B-derived peptide mutants uncovered by the present study may have utility as HIV therapeutics or microbicides. PMID:20298574
Marine Fish Proteins and Peptides for Cosmeceuticals: A Review
Venkatesan, Jayachandran; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk
2017-01-01
Marine fish provide a rich source of bioactive compounds such as proteins and peptides. The bioactive proteins and peptides derived from marine fish have gained enormous interest in nutraceutical, pharmaceutical, and cosmeceutical industries due to their broad spectrum of bioactivities, including antioxidant, antimicrobial, and anti-aging activities. Recently, the development of cosmeceuticals using marine fish-derived proteins and peptides obtained from chemical or enzymatical hydrolysis of fish processing by-products has increased rapidly owing to their activities in antioxidation and tissue regeneration. Marine fish-derived collagen has been utilized for the development of cosmeceutical products due to its abilities in skin repair and tissue regeneration. Marine fish-derived peptides have also been utilized for various cosmeceutical applications due to their antioxidant, antimicrobial, and matrix metalloproteinase inhibitory activities. In addition, marine fish-derived proteins and hydrolysates demonstrated efficient anti-photoaging activity. The present review highlights and presents an overview of the current status of the isolation and applications of marine fish-derived proteins and peptides. This review also demonstrates that marine fish-derived proteins and peptides have high potential for biocompatible and effective cosmeceuticals. PMID:28524092
Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar
2015-11-01
Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.
Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.
McClean, Stephen; Beggs, Louise B; Welch, Robert W
2014-03-01
This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
The presence of food-derived collagen peptides in human body-structure and biological activity.
Sato, Kenji
2017-12-13
It has been demonstrated that the ingestion of some protein hydrolysates exerts health-promoting effects. For understanding the underlying mechanisms responsible for these effects, the identification of bioactive peptides in the target organ is crucial. For this purpose, in vitro activity-guided fractionation for peptides in the protein hydrolysate has been performed. However, the peptides in the hydrolysate may be further degraded during digestion. The concentration of the active peptides, which were identified by in vitro activity-guided fractionation, in human blood is frequently very low (nanomolar levels). In contrast, micromolar levels of food-derived collagen peptides are present in human blood. Pro-Hyp, one of the major food-derived collagen peptides, enhances the growth of fibroblasts and synthesis of hyaluronic acid. These observations partially explain the beneficial effects of collagen hydrolysate ingestion on the enhancement of wound healing and improvement in the skin condition. The recent advancement involving liquid chromatography and mass spectrometry coupled with a pre-column derivatization technique has enabled the identification of food-derived peptides at nanomolar levels in the body post-ingestion of protein hydrolysates. Thus, this technique can be used for the identification of bioactive food-derived peptides in the body.
Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.
Sato, Kenji
2018-03-28
Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.
Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46.
Li, Rui-Fang; Lu, Zhi-Fang; Sun, Ya-Nan; Chen, Shi-Hua; Yi, Yan-Jie; Zhang, Hui-Ru; Yang, Shuo-Ye; Yu, Guang-Hai; Huang, Liang; Li, Chao-Nan
2016-09-01
Chromogranin A (CGA)-N46, a derived peptide of human chromogranin A, has antifungal activity. To further research the active domain of CGA-N46, a series of derivatives were designed by successively deleting amino acid from both terminus of CGA-N46, and the amino acid sequence of each derivative was analyzed by bioinformatic software. Based on the predicted physicochemical properties of the peptides, including half-life time in mammalian reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo), instability index, aliphatic index and grand average of hydropathicity (GRAVY), the secondary structure, net charge, the distribution of hydrophobic residues and hydrophilic residues, the final derivatives CGA-N15, CGA-N16, CGA-N12 and CGA-N8 were synthesized by solid-phase peptide synthesis. The results of bioinformatic analysis showed that CGA-N46 and its derivatives were α-helix, neutral or weak positive charge, hydrophilic, and CGA-N12 and CGA-N8 were more stable than the other derivatives. The results of circular dichroism confirmed that CGA-N46 and its derived peptides displayed α-helical structure in an aqueous solution and 30 mM sodium dodecylsulfate, but α-helical contents decreased in hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-N12 and CGA-N8 had higher antifungal activities than their mother peptide CGA-N46. Among of the derived peptides, CGA-N12 showed the least hemolytic activity. In conclusion, we have successfully identified the active domain of CGA-N46 with strong antifungal activity and weak hemolytic activity, which provides the possibility to develop a new class of antibiotics.
Wojtkowiak, Diana; Piechowicz, Janina; Grzenkowicz-Wydra, Jolanta; Wosiński, Stanisław; Dominiak, Marzena; Hadzik, Jakub; Frydrychowski, Andrzej F
2016-01-01
Studies conducted on human cell culture models have demonstrated that collagen-derived peptides can exert a beneficial effect in medicine. However, all these studies were conducted using animal collagen samples, most often originating from bovine or porcine skin. Currently attempts are being made to replace animal collagen with fish collagen. The aim of the study was to compare the effect of silver carp skin-derived peptide extract on the transcriptional activities of human VEGF and hsp70.1 gene promoters inserted into the plasmids with secreted alkaline phosphatase as a reporter gene. Changes in the activity of the promoters were investigated using a HEK293FT cell line transfected with pVEGF-SEAP or pHsp70-SEAP. The cells were cultured in dishes containing peptides separated using reverse-phase high performance liquid chromatography. The study demonstrated that the silver carp skin-derived peptide extract exerts both an inhibitory effect on the VEGF gene promoter and activating effect on the hsp70.1 gene promoter. Higher biological activity was recorded in the case of a freshly prepared peptide extract compared to one stored at 4°C for three months. The silver carp skin-derived collagen peptides influence VEGF and hsp70.1 gene promoters' transcriptional activity.
Lactoferricin B-derived peptides with inhibitory effects on ECE-dependent vasoconstriction.
Fernández-Musoles, Ricardo; López-Díez, José Javier; Torregrosa, Germán; Vallés, Salvador; Alborch, Enrique; Manzanares, Paloma; Salom, Juan B
2010-10-01
Endothelin-converting enzyme (ECE), a key peptidase in the endothelin (ET) system, cleaves inactive big ET-1 to produce active ET-1, which binds to ET(A) receptors to exert its vasoconstrictor and pressor effects. ECE inhibition could be beneficial in the treatment of hypertension. In this study, a set of eight lactoferricin B (LfcinB)-derived peptides, previously characterized in our laboratory as angiotensin-converting enzyme (ACE) inhibitory peptides, was examined for their inhibitory effects on ECE. In vitro inhibitory effects on ECE activity were assessed using both the synthetic fluorogenic peptide substrate V (FPS V) and the natural substrate big ET-1. To study vasoactive effects, an ex vivo functional assay was developed using isolated rabbit carotid artery segments. With FPS V, only four LfcinB-derived peptides induced inhibition of ECE activity, whereas the eight peptides showed ECE inhibitory effects with big ET-1 as substrate. Regarding the ex vivo assays, six LfcinB-derived peptides showed inhibition of big ET-1-induced, ECE-dependent vasoconstriction. A positive correlation between the inhibitory effects of LfcinB-derived peptides on ECE activity when using big ET-1 and the inhibitory effects on ECE-dependent vasoconstriction was shown. ECE-independent vasoconstriction induced by ET-1 was not affected, thus discarding effects of LfcinB-derived peptides on ET(A) receptors or intracellular signal transduction mechanisms. In conclusion, a combined in vitro and ex vivo method to assess the effects of potentially antihypertensive peptides on the ET system has been developed and applied to show the inhibitory effects on ECE-dependent vasoconstriction of six LfcinB-derived peptides, five of which were dual vasopeptidase (ACE/ECE) inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.
Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou
2018-03-28
In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.
Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides
Veldhuizen, Edwin J. A.; Schneider, Viktoria A. F.; Agustiandari, Herfita; van Dijk, Albert; Tjeerdsma-van Bokhoven, Johanna L. M.; Bikker, Floris J.; Haagsman, Henk P.
2014-01-01
The porcine cathelicidin PR-39 is a host defence peptide that plays a pivotal role in the innate immune defence of the pig against infections. Besides direct antimicrobial activity, it is involved in immunomodulation, wound healing and several other biological processes. In this study, the antimicrobial- and immunomodulatory activity of PR-39, and N- and C-terminal derivatives of PR-39 were tested. PR-39 exhibited an unexpected broad antimicrobial spectrum including several Gram positive strains such as Bacillus globigii and Enterococcus faecalis. Of organisms tested, only Staphylococcus aureus was insensitive to PR-39. Truncation of PR-39 down to 15 (N-terminal) amino acids did not lead to major loss of activity, while peptides corresponding to the C-terminal part of PR-39 were hampered in their antimicrobial activity. However, shorter peptides were all much more sensitive to inhibition by salt. Active peptides induced ATP leakage and loss of membrane potential in Bacillus globigii and Escherichia coli, indicating a lytic mechanism of action for these peptides. Finally, only the mature peptide was able to induce IL-8 production in porcine macrophages, but some shorter peptides also had an effect on TNF-α production showing differential regulation of cytokine induction by PR-39 derived peptides. None of the active peptides showed high cytotoxicity highlighting the potential of these peptides for use as an alternative to antibiotics. PMID:24755622
Demberg, Lilian M; Winkler, Jana; Wilde, Caroline; Simon, Kay-Uwe; Schön, Julia; Rothemund, Sven; Schöneberg, Torsten; Prömel, Simone; Liebscher, Ines
2017-03-17
Members of the adhesion G protein-coupled receptor (aGPCR) family carry an agonistic sequence within their large ectodomains. Peptides derived from this region, called the Stachel sequence, can activate the respective receptor. As the conserved core region of the Stachel sequence is highly similar between aGPCRs, the agonist specificity of Stachel sequence-derived peptides was tested between family members using cell culture-based second messenger assays. Stachel peptides derived from aGPCRs of subfamily VI (GPR110/ADGRF1, GPR116/ADGRF5) and subfamily VIII (GPR64/ADGRG2, GPR126/ADGRG6) are able to activate more than one member of the respective subfamily supporting their evolutionary relationship and defining them as pharmacological receptor subtypes. Extended functional analyses of the Stachel sequences and derived peptides revealed agonist promiscuity, not only within, but also between aGPCR subfamilies. For example, the Stachel -derived peptide of GPR110 (subfamily VI) can activate GPR64 and GPR126 (both subfamily VIII). Our results indicate that key residues in the Stachel sequence are very similar between aGPCRs allowing for agonist promiscuity of several Stachel -derived peptides. Therefore, aGPCRs appear to be pharmacologically more closely related than previously thought. Our findings have direct implications for many aGPCR studies, as potential functional overlap has to be considered for in vitro and in vivo studies. However, it also offers the possibility of a broader use of more potent peptides when the original Stachel sequence is less effective. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Identification of multifunctional peptides from human milk.
Mandal, Santi M; Bharti, Rashmi; Porto, William F; Gauri, Samiran S; Mandal, Mahitosh; Franco, Octavio L; Ghosh, Ananta K
2014-06-01
Pharmaceutical industries have renewed interest in screening multifunctional bioactive peptides as a marketable product in health care applications. In this context, several animal and plant peptides with potential bioactivity have been reported. Milk proteins and peptides have received much attention as a source of health-enhancing components to be incorporated into nutraceuticals and functional foods. By using this source, 24 peptides have been fractionated and purified from human milk using RP-HPLC. Multifunctional roles including antimicrobial, antioxidant and growth stimulating activity have been evaluated in all 24 fractions. Nevertheless, only four fractions show multiple combined activities among them. Using a proteomic approach, two of these four peptides have been identified as lactoferrin derived peptide and kappa casein short chain peptide. Lactoferrin derived peptide (f8) is arginine-rich and kappa casein derived (f12) peptide is proline-rich. Both peptides (f8 and f12) showed antimicrobial activities against both Gram-positive and Gram-negative bacteria. Fraction 8 (f8) exhibits growth stimulating activity in 3T3 cell line and f12 shows higher free radical scavenging activity in comparison to other fractions. Finally, both peptides were in silico evaluated and some insights into their mechanism of action were provided. Thus, results indicate that these identified peptides have multiple biological activities which are valuable for the quick development of the neonate and may be considered as potential biotechnological products for nutraceutical industry. Copyright © 2014 Elsevier Inc. All rights reserved.
Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo
2015-07-07
Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents.
Huertas Méndez, Nataly De Jesús; Vargas Casanova, Yerly; Gómez Chimbi, Anyelith Katherine; Hernández, Edith; Leal Castro, Aura Lucia; Melo Diaz, Javier Mauricio; Rivera Monroy, Zuly Jenny; García Castañeda, Javier Eduardo
2017-03-12
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B-containing non-natural amino acids and the RWQWR motif were synthesized, purified, and characterized using RP-HPLC, MALDI-TOF mass spectrometry, and circular dichroism. The antibacterial activity of peptides against Escherichia coli ATCC 11775, Stenotrophomonas maltophilia ATCC 13636, and Salmonella enteritidis ATCC 13076 was evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The synthetic bovine lactoferricin exhibited antibacterial activity against E. coli ATCC 11775 and S. enteritidis ATCC 13076. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strain. The monomeric, cyclic, tetrameric, and palindromic peptides containing the RWQWR motif exhibited high and specific activity against E. coli ATCC 11775. The results suggest that short peptides derived from lactoferricin B could be considered as potential candidates for the development of antibacterial agents against infections caused by E. coli .
Rana, Niki; Cultrara, Christopher; Phillips, Mariana; Sabatino, David
2017-09-01
In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK) 2 -AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK) 2 -AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK) 2 -AK. Copyright © 2017 Elsevier Ltd. All rights reserved.
Falkenberg, Shollie M.; Briggs, Robert E.; Tatum, Fred M.; Sacco, Randy E.
2017-01-01
Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2–5 μM), all four peptides effectively killed most H. somni isolates at higher concentrations (10–30 μM) as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides) were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates. PMID:28827826
Dassanayake, Rohana P; Falkenberg, Shollie M; Briggs, Robert E; Tatum, Fred M; Sacco, Randy E
2017-01-01
Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2-5 μM), all four peptides effectively killed most H. somni isolates at higher concentrations (10-30 μM) as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides) were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates.
Ciociola, Tecla; Pertinhez, Thelma A; Giovati, Laura; Sperindè, Martina; Magliani, Walter; Ferrari, Elena; Gatti, Rita; D'Adda, Tiziana; Spisni, Alberto; Conti, Stefania; Polonelli, Luciano
2016-04-01
Synthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Li, Xinlei; Liu, Yongqing; Haas, Thomas A
2014-12-01
We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation. Copyright © 2014 Elsevier Inc. All rights reserved.
Nam, Bo-Hye; Moon, Ji-Young; Park, Eun-Hee; Kim, Young-Ok; Kim, Dong-Gyun; Kong, Hee Jeong; Kim, Woo-Jin; Jee, Young Ju; An, Cheul Min; Park, Nam Gyu; Seo, Jung-Kil
2014-10-17
We describe the antimicrobial function of peptides derived from the C-terminus of the olive flounder LBP BPI precursor protein. The investigated peptides, namely, ofLBP1N, ofLBP2A, ofLBP4N, ofLBP5A, and ofLBP6A, formed α-helical structures, showing significant antimicrobial activity against several Gram-negative bacteria, Gram-positive bacteria, and the yeast Candida albicans, but very limited hemolytic activities. The biological activities of these five analogs were evaluated against biomembranes or artificial membranes for the development of candidate therapeutic agents. Gel retardation studies revealed that peptides bound to DNA and inhibited migration on an agarose gel. In addition, we demonstrated that ofLBP6A inhibited polymerase chain reaction. These results suggested that the ofLBP-derived peptide bactericidal mechanism may be related to the interaction with intracellular components such as DNA or polymerase.
Wakabayashi, Hiroyuki; Matsumoto, Hiroshi; Hashimoto, Koichi; Teraguchi, Susumu; Takase, Mitsunori; Hayasawa, Hirotoshi
1999-01-01
N-acylated or d enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B. PMID:10223949
Wakabayashi, H; Matsumoto, H; Hashimoto, K; Teraguchi, S; Takase, M; Hayasawa, H
1999-05-01
N-acylated or D enantiomer peptide derivatives based on the sequence RRWQWRMKK in lactoferricin B demonstrated antimicrobial activities greater than those of lactoferricin B against bacteria and fungi. The most potent peptide, conjugated with an 11-carbon-chain acyl group, showed two to eight times lower MIC than lactoferricin B.
Marine-Derived Bioactive Peptides for Biomedical Sectors: A Review.
Ruiz-Ruiz, Federico; Mancera-Andrade, Elena I; Iqbal, Hafiz M N
2017-01-01
Marine-based resources such as algae and other marine by-products have been recognized as rich sources of structurally diverse bioactive peptides. Evidently, their structural characteristics including unique amino acid residues are responsible for their biological activity. Several of the above-mentioned marine-origin species show multi-functional bioactivities that are useful for a new discovery and/or reinvention of biologically active ingredients, nutraceuticals and/or pharmaceuticals. Therefore, in recent years, marine-derived bioactive peptides have gained a considerable attention with high-value biomedical and/or pharmaceutical potentials. Furthermore, a wider spectrum of bioactive peptides can be produced through proteolytic-assisted hydrolysis of various marine resources under controlled physicochemical (pH and temperature of the reaction media) environment. Owing to their numerous health-related beneficial effects and therapeutic potential in the treatment and/or prevention of many diseases, such marine-derived bioactive peptides exhibit a wider spectrum of biological activities such as anti-cancerous, anti-proliferative, anti-coagulant, antibacterial, antifungal, and anti-tumor activities among many others. Based on emerging evidence of marine-derived peptide mining, the above-mentioned marine resources contain noteworthy levels of high-value protein. The present review article mainly summarizes the marine-derived bioactive peptides and emphasizing their potential applications in biomedical and/or pharmaceutical sectors of the modern world. In conclusion, recent literature has provided evidence that marine-derived bioactive peptides play a critical role in human health along with many possibilities of designing new functional nutraceuticals and/or pharmaceuticals to clarify potent mechanisms of action for a wider spectrum of diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bioactive peptides derived from human milk proteins--mechanisms of action.
Wada, Yasuaki; Lönnerdal, Bo
2014-05-01
Human milk contains a multitude of bioactive proteins with very diverse functions, which are beneficial for the rapidly growing neonate. The large variety of bioactivities is accomplished by the combination of bioactive proteins per se and gastrointestinal release of bioactive peptides derived from them. The bioactivities exerted by these peptides include enhancement of mineral absorption, immunomodulation, opioid, antihypertensive and antimicrobial activities. Notably, several of the activities are not attributed to the parental proteins, but exclusively to released bioactive peptides. This article reviews studies on bioactive peptides derived from major human milk proteins, such as caseins, α-lactalbumin and lactoferrin, during gastrointestinal digestion. Studies of bovine milk counterparts are also cited as a comparison. Copyright © 2014. Published by Elsevier Inc.
Antidepressant-like effect of food-derived pyroglutamyl peptides in mice.
Yamamoto, Yukako; Mizushige, Takafumi; Mori, Yukiha; Shimmura, Yuki; Fukutomi, Ruuta; Kanamoto, Ryuhei; Ohinata, Kousaku
2015-06-01
The N-terminal glutamine residue, exposed by enzymatic cleavage of precursor proteins, is known to be modified to a pyroglutamyl residue with a cyclic structure in not only endogenous but also food-derived peptides. We investigated the effects of wheat-derived pyroglutamyl peptides on emotional behaviors. Pyroglutamyl leucine (pyroGlu-Leu, pEL) and pyroglutamyl glutaminyl leucine (pyroGlu-Gln-Leu, pEQL) exhibited antidepressant-like activity in the tail suspension and forced swim tests in mice. pEQL exhibited more potent antidepressant-like activity than pEL after i.p. and i.c.v. administration. pEQL exhibited antidepressant-like activity at a lower dose than Gln-Gln-Leu, suggesting that pyroglutamyl peptide had more potent activity. To examine whether pyroglutamyl peptides increased hippocampus neurogenesis, associated with the effects of antidepressants, we measured 5-bromo-2'-deoxyuridine (BrdU) incorporation. pEL and pEQL increased BrdU-positive cells in the dentate gyrus of the hippocampus. Intriguingly, pEL did not increase hippocampal mRNA and protein expression of brain-derived neurotrophic factor (BDNF), which is a factor associated with both neuropoietic and antidepressive effects. Thus, pyroglutamyl peptides may enhance hippocampal neurogenesis via a pathway independent of BDNF. We also confirmed that pEL and pEQL were produced in the subtilisin digest of major wheat proteins, glutenin and gliadin, after heat treatment. pEL and pEQL are the first peptides derived from wheat proteins to be shown to exhibit an antidepressant-like activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aguilar-Toalá, J E; Santiago-López, L; Peres, C M; Peres, C; Garcia, H S; Vallejo-Cordoba, B; González-Córdova, A F; Hernández-Mendoza, A
2017-01-01
Milk-derived bioactive peptides with a single activity (e.g., antioxidant, immunomodulatory, or antimicrobial) have been previously well documented; however, few studies describe multifunctional bioactive peptides, which may be preferred over single-activity peptides, as they can simultaneously trigger, modulate, or inhibit multiple physiological pathways. Hence, the aim of this study was to assess the anti-inflammatory, antihemolytic, antioxidant, antimutagenic, and antimicrobial activities of crude extracts (CE) and peptide fractions (<3 and 3-10 kDa) obtained from fermented milks with specific Lactobacillus plantarum strains. Overall, CE showed higher activity than both peptide fractions (<3 and 3-10 kDa) in most of the activities assessed. Furthermore, activity of <3 kDa was generally higher, or at least equal, to the 3 to 10 kDa peptide fractions. In particular, L. plantarum 55 crude extract or their fractions showed the higher anti-inflammatory (723.68-1,759.43μg/mL of diclofenac sodium equivalents), antihemolytic (36.65-74.45% of inhibition), and antioxidant activity [282.8-362.3µmol of Trolox (Sigma-Aldrich, St. Louis, MO) equivalents]. These results provide valuable evidence of multifunctional role of peptides derived of fermented milk by the action of specific L. plantarum strains. Thus, they may be considered for the development of biotechnological products to be used to reduce the risk of disease or to enhance a certain physiological function. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Junior, Eduardo F C; Guimarães, Carlos F R C; Franco, Lucas L; Alves, Ricardo J; Kato, Kelly C; Martins, Helen R; de Souza Filho, José D; Bemquerer, Marcelo P; Munhoz, Victor H O; Resende, Jarbas M; Verly, Rodrigo M
2017-08-01
This work proposes a strategy that uses solid-phase peptide synthesis associated with copper(I)-catalyzed azide alkyne cycloaddition reaction to promote the glycosylation of an antimicrobial peptide (HSP1) containing a carboxyamidated C-terminus (HSP1-NH 2 ). Two glycotriazole-peptides, namely [p-Glc-trz-G 1 ]HSP1-NH 2 and [p-GlcNAc-trz-G 1 ]HSP1-NH 2 , were prepared using per-O-acetylated azide derivatives of glucose and N-acetylglucosamine in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) and sodium ascorbate as a reducing agent. In order to investigate the synergistic action of the carbohydrate motif linked to the triazole-peptide structure, a triazole derivative [trz-G 1 ]HSP1-NH 2 was also prepared. A set of biophysical approaches such as DLS, Zeta Potential, SPR and carboxyfluorescein leakage from phospholipid vesicles confirmed higher membrane disruption and lytic activities as well as stronger peptide-LUVs interactions for the glycotriazole-peptides when compared to HSP1-NH 2 and to its triazole derivative, which is in accordance with the performed biological assays: whereas HSP1-NH 2 presents relatively low and [trz-G 1 ]HSP1-NH 2 just moderate fungicidal activity, the glycotriazole-peptides are significantly more effective antifungal agents. In addition, the glycotriazole-peptides and the triazole derivative present strong inhibition effects on ergosterol biosynthesis in Candida albicans, when compared to HSP1-NH 2 alone. In conclusion, the increased fungicidal activity of the glycotriazole-peptides seems to be the result of (A) more pronounced membrane-disruptive properties, which is related to the presence of a saccharide ring, together with (B) the inhibition of ergosterol biosynthesis, which seems to be related to the presence of both the monosaccharide and the triazole rings.
Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon
2005-02-09
Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.
Liu, Yufang; Eichler, Jutta; Pischetsrieder, Monika
2015-11-01
Milk provides a wide range of bioactive substances, such as antimicrobial peptides and proteins. Our study aimed to identify novel antimicrobial peptides naturally present in milk. The components of an endogenous bovine milk peptide database were virtually screened for charge, amphipathy, and predicted secondary structure. Thus, 23 of 248 screened peptides were identified as candidates for antimicrobial effects. After commercial synthesis, their antimicrobial activities were determined against Escherichia coli NEB5α, E. coli ATCC25922, and Bacillus subtilis ATCC6051. In the tested concentration range (<2 mM), bacteriostatic activity of 14 peptides was detected including nine peptides inhibiting both Gram-positive and Gram-negative bacteria. The most effective fragment was TKLTEEEKNRLNFLKKISQRYQKFΑLPQYLK corresponding to αS2 -casein151-181 , with minimum inhibitory concentration (MIC) of 4.0 μM against B. subtilis ATCC6051, and minimum inhibitory concentrations of 16.2 μM against both E. coli strains. Circular dichroism spectroscopy revealed conformational changes of most active peptides in a membrane-mimic environment, transitioning from an unordered to α-helical structure. Screening of food peptide databases by prediction tools is an efficient method to identify novel antimicrobial food-derived peptides. Milk-derived antimicrobial peptides may have potential use as functional food ingredients and help to understand the molecular mechanisms of anti-infective milk effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.
2015-01-01
Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2 Ahx 2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317
León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J
2015-01-01
Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.
2012-01-01
Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics. PMID:22947243
Nadal, Anna; Montero, Maria; Company, Nuri; Badosa, Esther; Messeguer, Joaquima; Montesinos, Laura; Montesinos, Emilio; Pla, Maria
2012-09-04
The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted repeats, have adequate agronomic performance and resistant phenotypes as a result of a complex equilibrium between bp100der toxicity to plant cells, antimicrobial activity and transgene-derived plant stress response. It is likely that these results can be extended to other peptides with similar characteristics.
Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel
2008-06-01
A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.
Scala, Maria Carmina; Sala, Marina; Pietrantoni, Agostina; Spensiero, Antonia; Di Micco, Simone; Agamennone, Mariangela; Bertamino, Alessia; Novellino, Ettore; Bifulco, Giuseppe; Gomez-Monterrey, Isabel M; Superti, Fabiana; Campiglia, Pietro
2017-09-06
Bovine lactoferrin is a biglobular multifunctional iron binding glycoprotein that plays an important role in innate immunity against infections. We have previously demonstrated that selected peptides from bovine lactoferrin C-lobe are able to prevent both Influenza virus hemagglutination and cell infection. To deeper investigate the ability of lactoferrin derived peptides to inhibit Influenza virus infection, in this study we identified new bovine lactoferrin C-lobe derived sequences and corresponding synthetic peptides were synthesized and assayed to check their ability to prevent viral hemagglutination and infection. We identified three tetrapeptides endowed with broad anti-Influenza activity and able to inhibit viral infection in a concentration range femto- to picomolar. Our data indicate that these peptides may constitute a non-toxic tool for potential applications as anti-Influenza therapeutics.
Park, Yoo Jung; Lee, Ha Young; Jung, Young Su; Park, Joon Seong; Hwang, Jae Sam; Bae, Yoe-Sik
2015-01-01
In this study, we report that one of the antimicrobial peptides scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates actin polymerization and the subsequent chemotactic migration of macrophages through the activation of ERK and protein kinase B (Akt) activity. The scolopendrasin VII-induced chemotactic migration of macrophages is inhibited by the formyl peptide receptor 1 (FPR1) antagonist cyclosporine H. We also found that scolopendrasin VII stimulate the chemotactic migration of FPR1-transfected RBL-2H3 cells, but not that of vector-transfected cells; moreover, scolopendrasin VII directly binds to FPR1. Our findings therefore suggest that the antimicrobial peptide scolopendrasin VII, derived from Scolopendra subspinipes mutilans, stimulates macrophages, resulting in chemotactic migration via FPR1 signaling, and the peptide can be useful in the study of FPR1-related biological responses. [BMB Reports 2015; 48(8): 479-484] PMID:26129676
Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis
USDA-ARS?s Scientific Manuscript database
Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...
Vargas Casanova, Yerly; Rodríguez Guerra, Jorge Antonio; Umaña Pérez, Yadi Adriana; Leal Castro, Aura Lucía; Almanzar Reina, Giovanni; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny
2017-09-29
Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.
Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides.
Lukasova, Vera; Buzgo, Matej; Sovkova, Vera; Dankova, Jana; Rampichova, Michala; Amler, Evzen
2017-08-01
Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs). pMSCs were cultured on electrospun polycaprolactone nanofibrous scaffolds with different concentrations of the bioactive peptides without addition of any osteogenic supplement. Analysis of pMSCs cultures included measurement of the metabolic activity and proliferation, immunofluorescence staining and also qPCR. Results showed no detrimental effect of the bioactive peptides to cultured pMSCs. Based on qPCR analysis, the bioactive peptides are specific for osteogenic differentiation with no detectable expression of collagen II. Our results further indicate that peptide derived from BMP-2 protein promoted the expression of mRNA for osteocalcin (OCN) and collagen I significantly compared to control groups and also supported deposition of OCN as observed by immunostaining method. The data suggest that bioactive peptide with an amino acid sequence of KIPKASSVPTELSAISTLYL derived from BMP-2 protein was the most potent for triggering osteogenic differentiation of pMSCs. © 2017 John Wiley & Sons Ltd.
Duarte Neto, José Manoel Wanderley; Maciel, Jackeline da Costa; Campos, Júlia Furtado; Carvalho Junior, Luiz Bezerra de; Marques, Daniela Araújo Viana; Lima, Carolina de Albuquerque; Porto, Ana Lúcia Figueiredo
2017-08-09
This work reports an optimization of protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles for antioxidant peptides' obtainment derived from bovine casein. Immobilization process was optimized using a full two-level factorial design (2 4 ) followed by a response surface methodology. Using the derivative, casein was hydrolyzed uncovering its peptides that were sequenced and had antioxidant properties tested through (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) (ABTS) radical scavenging and hydrogen peroxide scavenging assays. Optimal conditions for immobilization were 2 hr of immobilization, offered protein amount of 200 µg/mL, immobilization pH of 6.3 and 7.3 hr of activation. Derivative keeps over 74% of its original activity after reused five times. Free and immobilized enzyme casein hydrolysates presented similar peptide mass fingerprints, and prevalent peptides could be sequenced. Hydrolysates presented more than 2.5× higher ROS scavenging activity than nonhydrolyzed casein, which validates the immobilized protease capacity to develop casein-derived natural ingredients with potential for functional foods.
Tanaka, Kenjiro; Shimizu, Takahiro; Yanagita, Toshihiko; Nemoto, Takayuki; Nakamura, Kumiko; Taniuchi, Keisuke; Dimitriadis, Fotios; Yokotani, Kunihiko; Saito, Motoaki
2014-01-01
Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow. © 2013 The British Pharmacological Society.
Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M.
Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was definedmore » as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view and broadens the therapeutic potential and application of kyotorphin peptides.« less
Treating autoimmune disorders with venom-derived peptides.
Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang
2017-09-01
The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides
van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.
2016-01-01
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845
Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.
van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L M; de Zoete, Marcel R; Bikker, Floris J; Haagsman, Henk P
2016-01-01
Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.
Antihypertensive properties of lactoferricin B-derived peptides.
Ruiz-Giménez, Pedro; Ibáñez, Aida; Salom, Juan B; Marcos, Jose F; López-Díez, Jose Javier; Vallés, Salvador; Torregrosa, Germán; Alborch, Enrique; Manzanares, Paloma
2010-06-09
A set of eight lactoferricin B (LfcinB)-derived peptides was examined for inhibitory effects on angiotensin I-converting enzyme (ACE) activity and ACE-dependent vasoconstriction, and their hypotensive effect in spontaneously hypertensive rats (SHR). Peptides were derived from different elongations both at the C-terminal and N-terminal ends of the representative peptide LfcinB(20-25), which is known as the LfcinB antimicrobial core. All of the eight LfcinB-derived peptides showed in vitro inhibitory effects on ACE activity with different IC(50) values. Moreover, seven of them showed ex vivo inhibitory effects on ACE-dependent vasoconstriction. No clear correlation between in vitro and ex vivo inhibitory effects was found. Only LfcinB(20-25) and one of its fragments, F1, generated after a simulated gastrointestinal digestion, showed significant antihypertensive effects in SHR after oral administration. Remarkably, F1 did not show any effect on ACE-dependent vasoconstriction in contrast to the inhibitory effect showed by LfcinB(20-25). In conclusion, two LfcinB-derived peptides lower blood pressure and exhibit potential as orally effective antihypertensive compounds, yet a complete elucidation of the mechanism(s) involved deserves further ongoing research.
Multimerized CHR-derived peptides as HIV-1 fusion inhibitors.
Nomura, Wataru; Hashimoto, Chie; Suzuki, Takaharu; Ohashi, Nami; Fujino, Masayuki; Murakami, Tsutomu; Yamamoto, Naoki; Tamamura, Hirokazu
2013-08-01
To date, several HIV-1 fusion inhibitors based on the carboxy-terminal leucine/isoleucine heptad repeat (CHR) region of an HIV-1 envelope protein gp41 have been discovered. We have shown that a synthetic peptide mimetic of a trimer form of the CHR-derived peptide C34 has potent inhibitory activity against the HIV-1 fusion mechanism, compared to a monomer C34 peptide. The present study revealed that a dimeric form of C34 is evidently structurally critical for fusion inhibitors, and that the activity of multimerized CHR-derived peptides in fusion inhibition is affected by the properties of the unit peptides C34, SC34EK, and T20. The fluorescence-based study suggested that the N36-interactive sites of the C34 trimer, including hydrophobic residues, are exposed outside the trimer and that trimerization of C34 caused a remarkable increase in fusion inhibitory activity. The present results could be useful in the design of fusion inhibitors against viral infections which proceed via membrane fusion with host cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Inhibition of pressure-activated cancer cell adhesion by FAK-derived peptides
Zeng, Bixi; Devadoss, Dinesh; Wang, Shouye; Vomhof-DeKrey, Emilie E.; Kuhn, Leslie A.; Basson, Marc D.
2017-01-01
Forces within the surgical milieu or circulation activate cancer cell adhesion and potentiate metastasis through signaling requiring FAK-Akt1 interaction. Impeding FAK-Akt1 interaction might inhibit perioperative tumor dissemination, facilitating curative cancer surgery without global FAK or AKT inhibitor toxicity. Serial truncation and structurally designed mutants of FAK identified a seven amino acid, short helical structure within FAK that effectively competes with Akt1-FAK interaction. Adenoviral overexpression of this FAK-derived peptide inhibited pressure-induced FAK phosphorylation and AKT-FAK coimmunoprecipitation in human SW620 colon cancer cells briefly exposed to 15mmHg increased pressure, consistent with laparoscopic or post-surgical pressures. Adenoviral FAK-derived peptide expression prevented pressure-activation of SW620 adhesion not only to collagen-I-coated plates but also to murine surgical wounds. A scrambled peptide did not. Finally, we modeled operative shedding of tumor cells before irrigation and closure by transient cancer cell adhesion to murine surgical wounds before irrigation and closure. Thirty minute preincubation of SW620 cells at 15mmHg increased pressure impaired subsequent tumor free survival in mice exposed to cells expressing the scrambled peptide. The FAK-derived sequence prevented this. These results suggest that blocking FAK-Akt1 interaction may prevent perioperative tumor dissemination and that analogs or mimics of this 7 amino acid FAK-derived peptide could impair metastasis. PMID:29228673
Bardelli, A; Longati, P; Williams, T A; Benvenuti, S; Comoglio, P M
1999-10-08
Interaction of the hepatocyte growth factor (HGF) with its receptor, the Met tyrosine kinase, results in invasive growth, a genetic program essential to embryonic development and implicated in tumor metastasis. Met-mediated invasive growth requires autophosphorylation of the receptor on tyrosines located in the kinase activation loop (Tyr(1234)-Tyr(1235)) and in the carboxyl-terminal tail (Tyr(1349)-Tyr(1356)). We report that peptides derived from the Met receptor tail, but not from the activation loop, bind the receptor and inhibit the kinase activity in vitro. Cell delivery of the tail receptor peptide impairs HGF-dependent Met phosphorylation and downstream signaling. In normal and transformed epithelial cells, the tail receptor peptide inhibits HGF-mediated invasive growth, as measured by cell migration, invasiveness, and branched morphogenesis. The Met tail peptide inhibits the closely related Ron receptor but does not significantly affect the epidermal growth factor, platelet-derived growth factor, or vascular endothelial growth factor receptor activities. These experiments show that carboxyl-terminal sequences impair the catalytic properties of the Met receptor, thus suggesting that in the resting state the nonphosphorylated tail acts as an intramolecular modulator. Furthermore, they provide a strategy to selectively target the MET proto-oncogene by using small, cell-permeable, peptide derivatives.
Mechanisms of Nanoparticle Mediated siRNA Transfection by Melittin-Derived Peptides
Hou, Kirk K.; Pan, Hua; Ratner, Lee; Schlesinger, Paul H.; Wickline, Samuel A.
2014-01-01
Traditional peptide-mediated siRNA transfection via peptide transduction domains exhibits limited cytoplasmic delivery of siRNA due to endosomal entrapment. This work overcomes these limitations with the use of membrane-destabilizing peptides derived from melittin for the knockdown of NFkB signaling in a model of adult T-Cell leukemia/lymphoma. While the mechanism of siRNA delivery into the cytoplasmic compartment by peptide transduction domains has not been well studied, our analysis of melittin derivatives indicates that concurrent nanocomplex disassembly and peptide-mediated endosomolysis are crucial to siRNA transfection. Importantly, in the case of the most active derivative, p5RHH, this process is initiated by acidic pH, indicating that endosomal acidification after macropinocytosis can trigger siRNA release into the cytoplasm. These data provide general principles regarding nanocomplex response to endocytosis which may guide the development of peptide/siRNA nanocomplex-based transfection. PMID:24053333
Marine Peptides and Their Anti-Infective Activities
Kang, Hee Kyoung; Seo, Chang Ho; Park, Yoonkyung
2015-01-01
Marine bioresources are a valuable source of bioactive compounds with industrial and nutraceutical potential. Numerous clinical trials evaluating novel chemotherapeutic agents derived from marine sources have revealed novel mechanisms of action. Recently, marine-derived bioactive peptides have attracted attention owing to their numerous beneficial effects. Moreover, several studies have reported that marine peptides exhibit various anti-infective activities, such as antimicrobial, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, and antiviral activities. In the last several decades, studies of marine plants, animals, and microbes have revealed tremendous number of structurally diverse and bioactive secondary metabolites. However, the treatments available for many infectious diseases caused by bacteria, fungi, and viruses are limited. Thus, the identification of novel antimicrobial peptides should be continued, and all possible strategies should be explored. In this review, we will present the structures and anti-infective activity of peptides isolated from marine sources (sponges, algae, bacteria, fungi and fish) from 2006 to the present. PMID:25603351
Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama
2017-01-01
Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741
O'Connor, Stephen; Szwej, Emilia; Nikodinovic-Runic, Jasmina; O'Connor, Aisling; Byrne, Annette T; Devocelle, Marc; O'Donovan, Norma; Gallagher, William M; Babu, Ramesh; Kenny, Shane T; Zinn, Manfred; Zulian, Qun Ren; O'Connor, Kevin E
2013-04-01
The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antimicrobial Peptides of Meat Origin - An In silico and In vitro Analysis.
Keska, Paulina; Stadnik, Joanna
2017-01-01
The aim of this study was to evaluate the antimicrobial activity of meat protein-derived peptides against selected Gram-positive and Gram-negative bacteria. The in silico and in vitro approach was combined to determine the potency of antimicrobial peptides derived from pig (Sus scrofa) and cow (Bos taurus) proteins. The in silico studies consisted of an analysis of the amino acid composition of peptides obtained from the CAMPR database, their molecular weight and other physicochemical properties (isoelectric point, molar extinction coefficient, instability index, aliphatic index, hydropathy index and net charge). The degree of similarity was estimated between the antimicrobial peptide sequences derived from the slaughtered animals and the main meat proteins. Antimicrobial activity of peptides isolated from dry-cured meat products was analysed (in vitro) against two strains of pathogenic bacteria using the disc diffusion method. There was no evidence of growthinhibitory properties of peptides isolated from dry-cured meat products against Escherichia coli K12 ATCC 10798 and Staphylococcus aureus ATCC 25923. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
2004-01-01
Antibacterial peptide acylation, which mimics the structure of the natural lipopeptide polymyxin B, increases antimicrobial and endotoxin-neutralizing activities. The interaction of the lactoferricin-derived peptide LF11 and its N-terminally acylated analogue, lauryl-LF11, with different chemotypes of bacterial lipopolysaccharide (LPS Re, Ra and smooth S form) was investigated by biophysical means and was related to the peptides' biological activities. Both peptides exhibit high antibacterial activity against the three strains of Salmonella enterica differing in the LPS chemotype. Lauryl-LF11 has one order of magnitude higher activity against Re-type, but activity against Ra- and S-type bacteria is comparable with that of LF11. The alkyl derivative peptide lauryl-LF11 shows a much stronger inhibition of the LPS-induced cytokine induction in human mononuclear cells than LF11. Although peptide–LPS interaction is essentially of electrostatic nature, the lauryl-modified peptide displays a strong hydrophobic component. Such a feature might then explain the fact that saturation of the peptide binding takes place at a much lower peptide/LPS ratio for LF11 than for lauryl-LF11, and that an overcompensation of the negative LPS backbone charges is observed for lauryl-LF11. The influence of LF11 on the gel-to-liquid-crystalline phase-transition of LPS is negligible for LPS Re, but clearly fluidizing for LPS Ra. In contrast, lauryl-LF11 causes a cholesterol-like effect in the two chemotypes, fluidizing in the gel and rigidifying of the hydrocarbon chains in the liquid-crystalline phase. Both peptides convert the mixed unilamellar/non-lamellar aggregate structure of lipid A, the ‘endotoxic principle’ of LPS, into a multilamellar one. These data contribute to the understanding of the mechanisms of the peptide-mediated neutralization of endotoxin and effect of lipid modification of peptides. PMID:15344905
Güell, Imma; Cabrefiga, Jordi; Badosa, Esther; Ferre, Rafael; Talleda, Montserrat; Bardají, Eduard; Planas, Marta; Feliu, Lidia; Montesinos, Emilio
2011-01-01
A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH2), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH2) and BP145 (KKLFKKILKYL-NH2), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear. PMID:21335383
A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone
Pruitt, Rory N.; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R.; Ronald, Pamela C.
2018-01-01
Summary The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides.Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides.Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence.These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. PMID:28556915
Identification and screening of potent antimicrobial peptides in arthropod genomes.
Duwadi, Deepesh; Shrestha, Anishma; Yilma, Binyam; Kozlovski, Itamar; Sa-Eed, Munaya; Dahal, Nikesh; Jukosky, James
2018-05-01
Using tBLASTn and BLASTp searches, we queried recently sequenced arthropod genomes and expressed sequence tags (ESTs) using a database of known arthropod cecropins, defensins, and attacins. We identified and synthesized 6 potential AMPs and screened them for antimicrobial activity. Using radial diffusion assays and microtiter antimicrobial assays, we assessed the in vitro antimicrobial effects of these peptides against several human pathogens including Gram-positive and Gram-negative bacteria and fungi. We also conducted hemolysis assays to examine the cytotoxicity of these peptides to mammalian cells. Four of the six peptides identified showed antimicrobial effects in these assays. We also created truncated versions of these four peptides to assay their antimicrobial activity. Two cecropins derived from the monarch butterfly genome (Danaus plexippus), DAN1 and DAN2, showed minimum inhibitory concentrations (MICs) in the range of 2-16 μg/ml when screened against Gram-negative bacteria. HOLO1 and LOUDEF1, two defensin-like peptides derived from red flour beetle (Tribolium castaneum) and human body louse (Pediculus humanus humanus), respectively, exhibited MICs in the range of 13-25 μg/ml against Gram-positive bacteria. Furthermore, HOLO1 showed an MIC less than 5 μg/ml against the fungal species Candida albicans. These peptides exhibited no hemolytic activity at concentrations up to 200 μg/ml. The truncated peptides derived from DAN2 and HOLO1 showed very little antimicrobial activity. Our experiments show that the peptides DAN1, DAN2, HOLO1, and LOUDEF1 showed potent antimicrobial activity in vitro against common human pathogens, did not lyse mammalian red blood cells, and indicates their potential as templates for novel therapeutic agents against microbial infection. Copyright © 2018 Elsevier Inc. All rights reserved.
Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin.
Yin, C; Wong, J H; Ng, T B
2014-01-01
Lactoferricin and lactoferrampin, peptides derived from the whey protein lactoferrin, are antimicrobial agents with a promising prospect and are currently one of the research focuses. In this review, a basic introduction including location and solution structures of these two peptides is given. Their biological activities encompassing antiviral, antibacterial, antifungal and anti-inflammatory activities with possible mechanisms are mentioned. In terms of modification studies, research about identification of their active derivatives and crucial amino acid residues is also discussed. Various attempts at modification of lactoferricin and lactoferrampin such as introducing big hydrophobic side-chains; employing special amino acids for synthesis; N-acetylization, amidation, cyclization and peptide chimera are summarized. The studies on lactoferricin-lactoferrampin chimera are discussed in detail. Future prospects of lactoferricin and lactoferrampin are covered.
Condamine, Eric; Courchay, Karine; Rego, Jean-Claude Do; Leprince, Jérôme; Mayer, Catherine; Davoust, Daniel; Costentin, Jean; Vaudry, Hubert
2010-05-01
Peptide E (a 25-amino acid peptide derived from proenkephalin A) and beta-endorphin (a 31-amino acid peptide derived from proopiomelanocortin) bind with high affinity to opioid receptors and share structural similarities but induce analgesic effects of very different intensity. Indeed, whereas they possess the same N-terminus Met-enkephalin message sequence linked to a helix by a flexible spacer and a C-terminal part in random coil conformation, in contrast with peptide E, beta-endorphin produces a profound analgesia. To determine the key structural elements explaining this very divergent opioid activity, we have compared the structural and pharmacological characteristics of several chimeric peptides derived from peptide E and beta-endorphin. Structures were obtained under the same experimental conditions using circular dichroism, computational estimation of helical content and/or nuclear magnetic resonance spectroscopy (NMR) and NMR-restrained molecular modeling. The hot-plate and writhing tests were used in mice to evaluate the antinociceptive effects of the peptides. Our results indicate that neither the length nor the physicochemical profile of the spacer plays a fundamental role in analgesia. On the other hand, while the functional importance of the helix cannot be excluded, the last 5 residues in the C-terminal part seem to be crucial for the expression or absence of the analgesic activity of these peptides. These data raise the question of the true function of peptides E in opioidergic systems. Copyright (c) 2010 Elsevier Inc. All rights reserved.
BioPepDB: an integrated data platform for food-derived bioactive peptides.
Li, Qilin; Zhang, Chao; Chen, Hongjun; Xue, Jitong; Guo, Xiaolei; Liang, Ming; Chen, Ming
2018-03-12
Food-derived bioactive peptides play critical roles in regulating most biological processes and have considerable biological, medical and industrial importance. However, a large number of active peptides data, including sequence, function, source, commercial product information, references and other information are poorly integrated. BioPepDB is a searchable database of food-derived bioactive peptides and their related articles, including more than four thousand bioactive peptide entries. Moreover, BioPepDB provides modules of prediction and hydrolysis-simulation for discovering novel peptides. It can serve as a reference database to investigate the function of different bioactive peptides. BioPepDB is available at http://bis.zju.edu.cn/biopepdbr/ . The web page utilises Apache, PHP5 and MySQL to provide the user interface for accessing the database and predict novel peptides. The database itself is operated on a specialised server.
Lacroix, Isabelle M E; Li-Chan, Eunice C Y
2015-07-01
The enzyme dipeptidyl-peptidase IV (DPP-IV) is recognized to be a promising target for the management of type 2 diabetes. Over the last decade, numerous synthetic molecules and more recently, peptides from dietary proteins, have been reported to be able to inhibit DPP-IV activity. Most studies that have investigated the in vitro effect of these inhibitors have used porcine or human DPP-IV. Although structurally alike, it is unclear whether these two species display similar inhibition patterns. Therefore, the objective of this study was to compare the effects of protein-derived peptides on the activity of porcine and recombinant human DPP-IV. The two species showed different inhibition susceptibility to 43 of the 62 peptide sequences investigated. While 37 protein-derived peptides were more effective at inhibiting the porcine DPP-IV, only six caused a stronger inhibition of the activity of the human enzyme. Although the peptides WR, IPIQY and WCKDDQNPHS were found to be among the most potent inhibitors of both species, the inhibitory effect was greater on the porcine enzyme than on human DPP-IV (αKi or Ki=11.5, 13.4, 13.3 μM and 31.4, 28.2, 75.0 μM for porcine and human DPP-IV, respectively). Investigation into the mode of action of the most effective inhibitory peptides revealed that both species were inhibited in a similar manner by short fragments (≤5 amino acid residues), but that some of the longer peptides acted differently on the enzymes. This study shows that porcine DPP-IV is generally inhibited with greater potency by protein-derived peptides than is the human enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.
Porotto, Matteo; Rockx, Barry; Yokoyama, Christine C; Talekar, Aparna; Devito, Ilaria; Palermo, Laura M; Liu, Jie; Cortese, Riccardo; Lu, Min; Feldmann, Heinz; Pessi, Antonello; Moscona, Anne
2010-10-28
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.
Xu, G; Xiong, W; Hu, Q; Zuo, P; Shao, B; Lan, F; Lu, X; Xu, Y; Xiong, S
2010-10-01
To investigate the bactericidal activity of lactoferrin-derived peptides and a new LF-derived peptides chimera (LFchimera) against P. aeruginosa and the influence on virulence factors of P. aeruginosa. Lactoferricin (LFcin) and lactoferrampin (LFampin) are highly bioactive peptides isolated from the N-terminal region of lactoferrin (LF) by pepsin digestion. In this study, we designed LFchimera containing LFcin amino acids 17-30 and LFampin amino acids 268-284. Pseudomonas aeruginosa cells were incubated in medium with peptides at different concentrations, and then the assays of viability, pyocyanin, elastase activity and biofilm formation of P. aeruginosa were performed. We found that the concentration-dependent antibactericidal activity and down-regulating pyocyanin, elastase and biofilm formation of LFchimera were significantly stronger than those of LF, LFcin, LFampin or LFcin plus LFampin. Our results indicated that LF, LFcin, LFampin and LFchimera were potential candidates to combat P. aeruginosa, and LFchimera was the most effective in them. The new LFchimera has better activity against P. aeruginosa than LF, LFcin and LFampin and may be a promising new compound for treatment of P. aeruginosa infection. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.
Structure-function characterization and optimization of a plant-derived antibacterial peptide.
Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas
2005-09-01
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Structure-Function Characterization and Optimization of a Plant-Derived Antibacterial Peptide
Suarez, Mougli; Haenni, Marisa; Canarelli, Stéphane; Fisch, Florian; Chodanowski, Pierre; Servis, Catherine; Michielin, Olivier; Freitag, Ruth; Moreillon, Philippe; Mermod, Nicolas
2005-01-01
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop. PMID:16127062
Milk derived bioactive peptides and their impact on human health - A review.
Mohanty, D P; Mohapatra, S; Misra, S; Sahu, P S
2016-09-01
Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.
Sheets, Anthony R; Demidova-Rice, Tatiana N; Shi, Lei; Ronfard, Vincent; Grover, Komel V; Herman, Ira M
2016-01-01
Debridement, the removal of diseased, nonviable tissue, is critical for clinicians to readily assess wound status and prepare the wound bed for advanced therapeutics or downstream active healing. Removing necrotic slough and eschar through surgical or mechanical methods is less specific and may be painful for patients. Enzymatic debridement agents, such as Clostridial collagenase, selectively and painlessly degrade devitalized tissue. In addition to its debriding activities, highly-purified Clostridial collagenase actively promotes healing, and our past studies reveal that extracellular matrices digested with this enzyme yield peptides that activate cellular migratory, proliferative and angiogenic responses to injury in vitro, and promote wound closure in vivo. Intriguingly, while collagenase Santyl® ointment, a sterile preparation containing Clostridial collagenases and other non-specific proteases, is a well-accepted enzymatic debridement agent, its role as an active healing entity has never been established. Based on our previous studies of pure Clostridial collagenase, we now ask whether the mixture of enzymes contained within Santyl® produces matrix-derived peptides that promote cellular injury responses in vitro and stimulate wound closure in vivo. Here, we identify novel collagen fragments, along with collagen-associated peptides derived from thrombospondin-1, multimerin-1, fibronectin, TGFβ-induced protein ig-h3 and tenascin-C, generated from Santyl® collagenase-digested human dermal capillary endothelial and fibroblastic matrices, which increase cell proliferation and angiogenic remodeling in vitro by 50-100% over controls. Using an established model of impaired healing, we further demonstrate a specific dose of collagenase from Santyl® ointment, as well as the newly-identified and chemically-synthesized ECM-derived peptides significantly increase wound re-epithelialization by 60-100% over saline-treated controls. These results not only confirm and extend our earlier studies using purified collagenase- and matrix-derived peptides to stimulate healing in vitro and in vivo, but these Santyl®-generated, matrix-derived peptides may also represent exciting new opportunities for creating advanced wound healing therapies that are enabled by enzymatic debridement and potentially go beyond debridement.
Shi, Lei; Ronfard, Vincent; Grover, Komel V.; Herman, Ira M.
2016-01-01
Debridement, the removal of diseased, nonviable tissue, is critical for clinicians to readily assess wound status and prepare the wound bed for advanced therapeutics or downstream active healing. Removing necrotic slough and eschar through surgical or mechanical methods is less specific and may be painful for patients. Enzymatic debridement agents, such as Clostridial collagenase, selectively and painlessly degrade devitalized tissue. In addition to its debriding activities, highly-purified Clostridial collagenase actively promotes healing, and our past studies reveal that extracellular matrices digested with this enzyme yield peptides that activate cellular migratory, proliferative and angiogenic responses to injury in vitro, and promote wound closure in vivo. Intriguingly, while collagenase Santyl® ointment, a sterile preparation containing Clostridial collagenases and other non-specific proteases, is a well-accepted enzymatic debridement agent, its role as an active healing entity has never been established. Based on our previous studies of pure Clostridial collagenase, we now ask whether the mixture of enzymes contained within Santyl® produces matrix-derived peptides that promote cellular injury responses in vitro and stimulate wound closure in vivo. Here, we identify novel collagen fragments, along with collagen-associated peptides derived from thrombospondin-1, multimerin-1, fibronectin, TGFβ-induced protein ig-h3 and tenascin-C, generated from Santyl® collagenase-digested human dermal capillary endothelial and fibroblastic matrices, which increase cell proliferation and angiogenic remodeling in vitro by 50–100% over controls. Using an established model of impaired healing, we further demonstrate a specific dose of collagenase from Santyl® ointment, as well as the newly-identified and chemically-synthesized ECM-derived peptides significantly increase wound re-epithelialization by 60–100% over saline-treated controls. These results not only confirm and extend our earlier studies using purified collagenase- and matrix-derived peptides to stimulate healing in vitro and in vivo, but these Santyl®-generated, matrix-derived peptides may also represent exciting new opportunities for creating advanced wound healing therapies that are enabled by enzymatic debridement and potentially go beyond debridement. PMID:27459729
New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.
Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun
2017-05-05
Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.
Cardioprotective peptides from marine sources.
Harnedy, Padraigín A; FitzGerald, Richard J
2013-05-01
Elevated blood pressure or hypertension is one of the fastest growing health problems worldwide. Although the etiology of essential hypertension has a genetic component, dietary factors play an important role. With the high costs and adverse side-effects associated with synthetic antihypertensive drugs and the awareness of the link between diet and health there has been increased focus on identification of food components that may contribute to cardiovascular health. In recent years special interest has been paid to the cardioprotective activity of peptides derived from food proteins including marine proteins. These peptides are latent within the sequence of the parent protein and only become active when released by proteolytic digestion during gastrointestinal digestion or through food processing. Current data on antihypertensive activity of marine-derived protein hydrolysates/peptides in animal and human studies is reviewed herein. Furthermore, products containing protein hydrolysates/peptides from marine origin with antihypertensive effects are discussed.
An integrated vector system for cellular studies of phage display-derived peptides.
Voss, Stephan D; DeGrand, Alec M; Romeo, Giulio R; Cantley, Lewis C; Frangioni, John V
2002-09-15
Peptide phage display is a method by which large numbers of diverse peptides can be screened for binding to a target of interest. Even when successful, the rate-limiting step is usually validation of peptide bioactivity using living cells. In this paper, we describe an integrated system of vectors that expedites both the screening and the characterization processes. Library construction and screening is performed using an optimized type 3 phage display vector, mJ(1), which is shown to accept peptide libraries of at least 23 amino acids in length. Peptide coding sequences are shuttled from mJ(1) into one of three families of mammalian expression vectors for cell physiological studies. The vector pAL(1) expresses phage display-derived peptides as Gal4 DNA binding domain fusion proteins for transcriptional activation studies. The vectors pG(1), pG(1)N, and pG(1)C express phage display-derived peptides as green fluorescent protein fusions targeted to the entire cell, nucleus, or cytoplasm, respectively. The vector pAP(1) expresses phage display-derived peptides as fusions to secreted placental alkaline phosphatase. Such enzyme fusions can be used as highly sensitive affinity reagents for high-throughput assays and for cloning of peptide-binding cell surface receptors. Taken together, this system of vectors should facilitate the development of phage display-derived peptides into useful biomolecules.
Liang, Xiao; Nong, Xu-Hua; Huang, Zhong-Hui; Qi, Shu-Hua
2017-06-28
A new linear peptide simplicilliumtide I (1) and four new cyclic peptides simplicilliumtides J-M (2-5) together with known analogues verlamelins A and B (6 and 7) were isolated from the deep-sea-derived fungal strain Simplicillium obclavatum EIODSF 020. Their structures were elucidated by spectroscopic analysis, and their absolute configurations were further confirmed by chemical structural modification, Marfey's and Mosher's methods. Compounds 2, 6, and 7 showed significant antifungal activity toward Aspergillus versicolor and Curvularia australiensis and also had obvious antiviral activity toward HSV-1 with IC 50 values of 14.0, 16.7, and 15.6 μM, respectively. The structure-bioactivity relationship of this type of cyclic peptide was also discussed. This is the first time to discuss the effects of the lactone linkage and the substituent group of the fatty acid chain fragment on the bioactivity of this type of cyclic peptides. This is also the first time to report the antiviral activity of these cyclic peptides.
A viral peptide for intracellular delivery
NASA Astrophysics Data System (ADS)
Falanga, Annarita; Tarallo, Rossella; Cantisani, Marco; Della Pepa, Maria Elena; Galdiero, Massimiliano; Galdiero, Stefania
2012-10-01
Biological membranes represent a critical hindrance for administering active molecules which are often unable to reach their designated intracellular target sites. In order to overcome this barrier-like behavior not easily circumvented by many pharmacologically-active molecules, synthetic transporters have been exploited to promote cellular uptake. Linking or complexing therapeutic molecules to peptides that can translocate through the cellular membranes could enhance their internal delivery, and consequently, a higher amount of active compound would reach the site of action. Use of cell penetrating peptides (CPPs) is one of the most promising strategy to efficiently translocate macromolecules through the plasma membrane, and have attracted a lot of attention. New translocating peptides are continuously described and in the present review, we will focus on viral derived peptides, and in particular a peptide (gH625) derived from the herpes simplex virus type 1 (HSV-1) glycoprotein H (gH) that has proved to be a useful delivery vehicle due to its intrinsic properties of inducing membrane perturbation.
Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl
2011-06-17
To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.
Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl
2011-01-01
To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687
Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo
2014-12-01
α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.
Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo
2014-01-01
α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer. [BMB Reports 2014; 47(12): 691-696] PMID:24602611
Peptide fragments of a beta-defensin derivative with potent bactericidal activity.
Reynolds, Natalie L; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R
2010-05-01
Beta-defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine beta-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this beta-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide.
Peptide Fragments of a β-Defensin Derivative with Potent Bactericidal Activity ▿
Reynolds, Natalie L.; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R.
2010-01-01
β-Defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1CV has bactericidal activity similar to that of its parent peptide (murine β-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1CV is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this β-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide. PMID:20176896
Agyei, Dominic; Tsopmo, Apollinaire; Udenigwe, Chibuike C
2018-06-01
There are emerging advancements in the strategies used for the discovery and development of food-derived bioactive peptides because of their multiple food and health applications. Bioinformatics and peptidomics are two computational and analytical techniques that have the potential to speed up the development of bioactive peptides from bench to market. Structure-activity relationships observed in peptides form the basis for bioinformatics and in silico prediction of bioactive sequences encrypted in food proteins. Peptidomics, on the other hand, relies on "hyphenated" (liquid chromatography-mass spectrometry-based) techniques for the detection, profiling, and quantitation of peptides. Together, bioinformatics and peptidomics approaches provide a low-cost and effective means of predicting, profiling, and screening bioactive protein hydrolysates and peptides from food. This article discuses the basis, strengths, and limitations of bioinformatics and peptidomics approaches currently used for the discovery and analysis of food-derived bioactive peptides.
A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone.
Pruitt, Rory N; Joe, Anna; Zhang, Weiguo; Feng, Wei; Stewart, Valley; Schwessinger, Benjamin; Dinneny, José R; Ronald, Pamela C
2017-07-01
The biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces a sulfated peptide named RaxX, which shares similarity to peptides in the PSY (plant peptide containing sulfated tyrosine) family. We hypothesize that RaxX mimics the growth-stimulating activity of PSY peptides. Root length was measured in Arabidopsis and rice treated with synthetic RaxX peptides. We also used comparative genomic analyses and reactive oxygen species burst assays to evaluate the activity of RaxX and PSY peptides. Here we found that a synthetic sulfated RaxX derivative comprising 13 residues (RaxX13-sY), highly conserved between RaxX and PSY, induces root growth in Arabidopsis and rice in a manner similar to that triggered by PSY. We identified residues that are required for activation of immunity mediated by the rice XA21 receptor but that are not essential for root growth induced by PSY. Finally, we showed that a Xanthomonas strain lacking raxX is impaired in virulence. These findings suggest that RaxX serves as a molecular mimic of PSY peptides to facilitate Xoo infection and that XA21 has evolved the ability to recognize and respond specifically to the microbial form of the peptide. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis
Falkenberg, Shollie M.; Register, Karen B.; Samorodnitsky, Daniel; Nicholson, Eric M.; Reinhardt, Timothy A.
2018-01-01
Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobial activity against various bacterial pathogens, including several involved in bovine respiratory disease complex (BRDC) in cattle; however, such studies are yet to be performed with one important contributor to the BRDC, Mycoplasma bovis. Therefore, the goal of this study was to assess the antimicrobial activity of bovine NK-lysin-derived peptides on M. bovis. Thirty-mer synthetic peptides corresponding to the functional region helices 2 and 3 of bovine NK-lysins NK1, NK2A, NK2B, and NK2C were evaluated for killing activity on M. bovis isolates. Among four peptides, NK2A and NK2C showed the highest antimicrobial activity against the M. bovis isolates tested. All four NK-lysin peptides induced rapid plasma membrane depolarization in M. bovis at two concentrations tested. However, based on propidium iodide uptake, only NK2A and NK2C appeared capable of causing structural damage to M. bovis plasma membrane. Confocal microscopy, flow cytometry, and transmission electron microscopy further suggested NK-lysin-induced damage to the plasma membrane. Taken together, the findings in this study suggest that plasma membrane depolarization alone was insufficient to induce lethality, but disruption/permeabilization of the M. bovis plasma membrane was the cause of lethality. PMID:29771981
Shah, Syed Hussinien H; Kar, Rajiv K; Asmawi, Azren A; Rahman, Mohd Basyaruddin A; Murad, Abdul Munir A; Mahadi, Nor M; Basri, Mahiran; Rahman, Raja Noor Zaliha A; Salleh, Abu B; Chatterjee, Subhrangsu; Tejo, Bimo A; Bhunia, Anirban
2012-01-01
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
Asmawi, Azren A.; Rahman, Mohd Basyaruddin A.; Murad, Abdul Munir A.; Mahadi, Nor M.; Basri, Mahiran; Rahman, Raja Noor Zaliha A.; Salleh, Abu B.; Chatterjee, Subhrangsu; Tejo, Bimo A.; Bhunia, Anirban
2012-01-01
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities. PMID:23209600
New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade
Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun
2017-01-01
Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149
Masias, Emilse; Sanches, Paulo R S; Dupuy, Fernando G; Acuna, Leonardo; Bellomio, Augusto; Cilli, Eduardo; Saavedra, Lucila; Minahk, Carlos
2015-01-01
Two shorter peptides derived from enterocin CRL35, a 43-mer bacteriocin, were synthesized i.e. the N-terminal fragment spanning from residues 1 to 15, and a 28-mer fragment that represents the C-terminal of enterocin CRL35, the residues 16 to 43. The separate peptides showed no activity when combined. On one hand, the 28-mer peptide displayed an unpredicted antimicrobial activity. On the other, 15- mer peptide had no consistent anti-Listeria effect. The dissociation constants calculated from experimental data indicated that all peptides could bind at similar extent to the sensitive cells. However, transmembrane electrical potential was not dissipated to the same level by the different peptides; whereas the full-length and the C-terminal 28-mer fragment induced almost full dissipation, 15-mer fragment produced only a slow and incomplete effect. Furthermore, a different interaction of each peptide with membranes was demonstrated based on studies carried out with liposomes, which led us to conclude that activity was related to structure rather than to net positive charges. These results open up the possibility of designing new peptides based on the 28-mer fragment with enhanced activity, which would represent a promising approach for combating Listeria and other pathogens.
Nwachukwu, Ifeanyi D.; Girgih, Abraham T.; Malomo, Sunday A.; Onuh, John O.; Aluko, Rotimi E.
2014-01-01
Thermoase-digested flaxseed protein hydrolysate (FPH) samples and ultrafiltration membrane-separated peptide fractions were initially evaluated for in vitro inhibition of angiotensin I-converting enzyme (ACE) and renin activities. The two most active FPH samples and their corresponding peptide fractions were subsequently tested for in vivo antihypertensive activity in spontaneously hypertensive rats (SHR). The FPH produced with 3% thermoase digestion showed the highest ACE- and renin-inhibitory activities. Whereas membrane ultrafiltration resulted in significant (p < 0.05) increases in ACE inhibition by the <1 and 1–3 kDa peptides, only a marginal improvement in renin-inhibitory activity was observed for virtually all the samples after membrane ultrafiltration. The FPH samples and membrane fractions were also effective in lowering systolic blood pressure (SBP) in SHR with the largest effect occurring after oral administration (200 mg/kg body weight) of the 1–3 kDa peptide fraction of the 2.5% FPH and the 3–5 kDa fraction of the 3% FPH. Such potent SBP-lowering capacity indicates the potential of flaxseed protein-derived bioactive peptides as ingredients for the formulation of antihypertensive functional foods and nutraceuticals. PMID:25302619
Tu, Maolin; Liu, Hanxiong; Zhang, Ruyi; Chen, Hui; Mao, Fengjiao; Cheng, Shuzhen; Lu, Weihong; Du, Ming
2018-04-25
Casein hydrolysates exert various biological activities, and the responsible functional peptides are being identified from them continuously. In this study, the tryptic casein hydrolysate was fractionated by an ultrafiltration membrane (3 kDa), and the peptides were identified by capillary electrophoresis-quadrupole-time-of-flight-tandem mass spectrometry. Meanwhile, in silico methods were used to analyze the toxicity, solubility, stability, and affinity between the peptides and angiotensin-I-converting enzyme (ACE). Finally, a new angiotensin-I-converting enzyme inhibitory (ACEI) peptide, EKVNELSK, derived from α s1 -casein (fragment 35-42) was screened. The half maximal inhibitory concentration value of the peptide is 5.998 mM, which was determined by a high-performance liquid chromatography method. The Lineweaver-Burk plot indicated that this peptide is a mixed-type inhibitor against ACE. Moreover, Discovery Studio 2017 R2 software was adopted to perform molecular docking to propose the potential mechanisms underlying the ACEI activity of the peptide. These results indicated that EKVNELSK is a new ACEI peptide identified from casein hydrolysate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Porotto; B Rockx; C Yokoyama
2011-12-31
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viralmore » and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.« less
Installing amino acids and peptides on N-heterocycles under visible-light assistance
Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua
2016-01-01
Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014
Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.
Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma
2006-07-26
A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.
Nishimoto, Tetsuya; Mlakar, Logan; Takihara, Takahisa; Feghali-Bostwick, Carol
2015-10-01
Pulmonary fibrosis causes high morbidity and mortality in affected individuals. Recently, we showed that parenteral or intratracheal administration of a peptide derived from endostatin, called E4, prevents and ameliorates fibrosis using different models of dermal and pulmonary disease. No marketed orally delivered peptide drugs are currently available for progressive pulmonary fibrosis; however oral delivery of drugs is the preferred route for treating most chronic diseases. Thus, we investigated whether oral administration of E4 peptide exerted anti-fibrotic activity in a murine pulmonary fibrosis model. Bleomycin (1.2mU/g body weight) was intratracheally administrated to male 6-8-week-old C57BL/6J mice. E4 peptide (20, 10, 5, and 1 μg/mouse) or scrambled control peptide (20 μg/mouse) was orally administered on the same day as bleomycin. In some experiments, E4 peptide (10 and 5 μg/mouse) was orally administered three times on days 0, 3, and 6 post-bleomycin treatment. Lungs were harvested on day 21 for histological analysis and hydroxyproline assay. Histological analysis and hydroxyproline assay revealed that bleomycin successfully induced pulmonary fibrosis, and that 20 μg of oral E4 peptide ameliorated the fibrosis. The lower doses of E4 peptide (10, 5, and 1 μg) were insufficient to exert anti-fibrotic activity when given as a single dose. Multiple doses of E4 peptide efficiently exerted anti-fibrotic activity even at lower doses. E4 peptide shows oral bioavailability and exerts anti-fibrotic activity in a bleomycin-induced pulmonary fibrosis model. We suggest that E4 peptide is a novel oral drug for fibroproliferative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Nishimoto, Tetsuya; Mlakar, Logan; Takihara, Takahisa; Feghali-Bostwick, Carol
2016-01-01
Objective Pulmonary fibrosis causes high morbidity and mortality in affected individuals. Recently, we showed that parenteral or intratracheal administration of a peptide derived from endostatin, called E4, prevents and ameliorates fibrosis using different models of dermal and pulmonary disease. No marketed orally delivered peptide drugs are currently available for progressive pulmonary fibrosis; however oral delivery of drugs is the preferred route for treating most chronic diseases. Thus, we investigated whether oral administration of E4 peptide exerted anti-fibrotic activity in a murine pulmonary fibrosis model. Methods Bleomycin (1.2mU/g body weight) was intratracheally administrated to male 6–8-week-old C57BL/6J mice. E4 peptide (20, 10, 5, and 1 μg/mouse) or scrambled control peptide (20 μg/mouse) were orally administered on the same day as bleomycin. In some experiments, E4 peptide (10 and 5 μg/mouse) was orally administered three times on days 0, 3, and 6 post-bleomycin treatment. Lungs were harvested on day 21 for histological analysis and hydroxyproline assay. Results Histological analysis and hydroxyproline assay revealed that bleomycin successfully induced pulmonary fibrosis, and that 20μg of oral E4 peptide ameliorated the fibrosis. The lower doses of E4 peptide (10, 5, and 1 μg) were insufficient to exert anti-fibrotic activity when given as a single dose. Multiple doses of E4 peptide efficiently exerted anti-fibrotic activity even at lower doses. Conclusion E4 peptide shows oral bioavailability and exerts anti-fibrotic activity in a bleomycin-induced pulmonary fibrosis model. We suggest that E4 peptide is a novel oral drug for fibroproliferative disorders. PMID:26315492
A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products.
Liu, Rui; Xing, Lujuan; Fu, Qingquan; Zhou, Guang-Hong; Zhang, Wan-Gang
2016-09-20
Antioxidant peptides are gradually being accepted as food ingredients, supplemented in functional food and nutraceuticals, to positively regulate oxidative stress in the human body against lipid and protein oxidation. Meat muscle and meat by-products are rich sources of proteins and can be regarded as good materials for the production of bioactive peptides by use of enzymatic hydrolysis or direct solvent extraction. In recent years, there has been a growing number of studies conducted to characterize antioxidant peptides or hydrolysates derived from meat muscle and by-products as well as processed meat products, including dry-cured hams. Antioxidant peptides obtained from animal sources could exert not only nutritional value but also bioavailability to benefit human health. This paper reviews the antioxidant peptides or protein hydrolysates identified in muscle protein and by-products. We focus on the procedure for the generation of peptides with antioxidant capacity including the acquisition of crude peptides, the assessment of antioxidant activity, and the purification and identification of the active fraction. It remains critical to perform validation experiments with a cell model, animal model or clinical trial to eliminate safety concerns before final application in the food system. In addition, some of the common characteristics on structure-activity relationship are also reviewed based on the identified antioxidant peptides.
A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products
Liu, Rui; Xing, Lujuan; Fu, Qingquan; Zhou, Guang-hong; Zhang, Wan-gang
2016-01-01
Antioxidant peptides are gradually being accepted as food ingredients, supplemented in functional food and nutraceuticals, to positively regulate oxidative stress in the human body against lipid and protein oxidation. Meat muscle and meat by-products are rich sources of proteins and can be regarded as good materials for the production of bioactive peptides by use of enzymatic hydrolysis or direct solvent extraction. In recent years, there has been a growing number of studies conducted to characterize antioxidant peptides or hydrolysates derived from meat muscle and by-products as well as processed meat products, including dry-cured hams. Antioxidant peptides obtained from animal sources could exert not only nutritional value but also bioavailability to benefit human health. This paper reviews the antioxidant peptides or protein hydrolysates identified in muscle protein and by-products. We focus on the procedure for the generation of peptides with antioxidant capacity including the acquisition of crude peptides, the assessment of antioxidant activity, and the purification and identification of the active fraction. It remains critical to perform validation experiments with a cell model, animal model or clinical trial to eliminate safety concerns before final application in the food system. In addition, some of the common characteristics on structure-activity relationship are also reviewed based on the identified antioxidant peptides. PMID:27657142
Wilms, Dominik; Andrä, Jörg
2017-01-01
Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Xu, Yi; Zhao, Hui; Zheng, Ying; Gu, Qing; Ma, Jianxing
2010-01-01
Purpose To study the antiangiogenic activity of two small peptides (H-RN and H-FT) derived from the hepatocyte growth factor kringle 1 domain (HGF K1) using in vitro and in vivo assays. Methods RF/6A rhesus macaque choroid-retina endothelial cells were used for in vitro studies. The inhibiting effect of two peptides on a vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration, and endothelial cell tube formation were investigated. For in vivo assays, the antiangiogenic activity of H-RN and H-FT in the chick chorioallantoic membrane model (CAM) and a mice oxygen-induced retinopathy model (OIR) were studied. A recombinant mouse VEGF-neutralizing antibody, bevacizumab, and a scrambled peptide were used as two control groups in separate studies. Results H-RN effectively inhibited VEGF-stimulated RF/6A cell proliferation, migration, and tube formation on Matrigel™, while H-FT did not. H-RN was also able to inhibit angiogenesis when applied to the CAM, and had antineovascularization activity in the retinal neovascularization of a mouse OIR model when administrated as an intravitreous injection. The antiangiogenic activity of H-RN was not as strong as that of VEGF antibodies. The H-FT and scrambled peptide had no such activity. Conclusions H-RN, a new peptide derived from the HGF K1 domain, was shown to have antiangiogenic activity in vitro and in vivo. It may lead to new potential drug discoveries and the development of new treatments for pathological retinal angiogenesis. PMID:21031024
Longhi, C; Conte, M P; Ranaldi, S; Penta, M; Valenti, P; Tinari, A; Superti, F; Seganti, L
2005-01-01
Listeria monocytogenes, an intracellular facultative food-borne pathogen, was reported to induce apoptosis in vitro and in vivo in a variety of cell types with the exception of murine macrophages. These cells represent the predominant compartment of bacterial multiplication and die as a result of necrosis. In this study we showed that human non-activated and IFN-gamma-activated macrophagic-like (THP-1) cells infected with L. monocytogenes, mainly die by necrosis rather than by an apoptotic process. Two natural products derived from bovine milk, lactoferrin and its derivative peptide lactoferricin B, are capable of regulating the fate of infected human macrophages. Bovine lactoferrin treatment of macrophages protects them from L. monocytogenes-induced death whereas lactoferricin B, its derivative peptide, determines a shifting of the equilibrium from necrosis to apoptosis.
Central cell-derived peptides regulate early embryo patterning in flowering plants.
Costa, Liliana M; Marshall, Eleanor; Tesfaye, Mesfin; Silverstein, Kevin A T; Mori, Masashi; Umetsu, Yoshitaka; Otterbach, Sophie L; Papareddy, Ranjith; Dickinson, Hugh G; Boutiller, Kim; VandenBosch, Kathryn A; Ohki, Shinya; Gutierrez-Marcos, José F
2014-04-11
Plant embryogenesis initiates with the establishment of an apical-basal axis; however, the molecular mechanisms accompanying this early event remain unclear. Here, we show that a small cysteine-rich peptide family is required for formation of the zygotic basal cell lineage and proembryo patterning in Arabidopsis. EMBRYO SURROUNDING FACTOR 1 (ESF1) peptides accumulate before fertilization in central cell gametes and thereafter in embryo-surrounding endosperm cells. Biochemical and structural analyses revealed cleavage of ESF1 propeptides to form biologically active mature peptides. Further, these peptides act in a non-cell-autonomous manner and synergistically with the receptor-like kinase SHORT SUSPENSOR to promote suspensor elongation through the YODA mitogen-activated protein kinase pathway. Our findings demonstrate that the second female gamete and its sexually derived endosperm regulate early embryonic patterning in flowering plants.
Nongonierma, Alice B; FitzGerald, Richard J
2016-05-01
Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2-5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p<0.05, R(2) of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50=43.8±8.8μM) and IPM (IC50=69.5±8.7μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose. Copyright © 2016 Elsevier Inc. All rights reserved.
Song, Ruiwen; Li, Jing; Zhang, Jin; Wang, Lu; Tong, Li; Wang, Ping; Yang, Huan; Wei, Qun; Cai, Huaibin; Luo, Jing
2018-01-01
Calcineurin (CN) is involved in many physiological processes and interacts with multiple substrates. Most of the substrates contain similar motifs recognized by CN. Recent studies revealed a new CN substrate, transcription factor EB (TFEB), which is involved in autophagy. We showed that a 15-mer QSYLENPTSYHLQQS peptide from TFEB (TFEB-YLENP) bound to CN. When the TFEB-YLENP peptide was changed to YLAVP, its affinity for CN increased and it had stronger CN inhibitory activity. Molecular dynamics simulations revealed that the TFEB-YLENP peptide has the same docking sites in CN as the 15-mer DQYLAVPQHPYQWAK motif of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1-YLAVP). Moreover expression of the NFATc1-YLAVP peptide suppressed the TFEB activation in starved Hela cells. Our studies first identified a CN binding site in TFEB and compared the inhibitory capability of various peptides derived from CN substrates. The data uncovered a diversity in recognition sequences that underlies the CN signaling within the cell. Studies of CN-substrate interactions should lay the groundwork for developing selective CN peptide inhibitors that target CN-substrate interaction in vitro experiments. PMID:28890387
Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides.
Kasetty, Gopinath; Kalle, Martina; Mörgelin, Matthias; Brune, Jan C; Schmidtchen, Artur
2015-01-01
Biomaterials used during surgery and wound treatment are of increasing importance in modern medical care. In the present study we set out to evaluate the addition of thrombin-derived host defense peptides to human acellular dermis (hAD, i.e. epiflex(®)). Antimicrobial activity of the functionalized hAD was demonstrated using radial diffusion and viable count assays against Gram-negative Escherichia coli, Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Electron microscopy analyses showed that peptide-mediated bacterial killing led to reduced hAD degradation. Furthermore, peptide-functionalized hAD displayed endotoxin-binding activity in vitro, as evidenced by inhibition of NF-κB activation in human monocytic cells (THP-1 cells) and a reduction of pro-inflammatory cytokine production in whole blood in response to lipopolysaccharide stimulation. The dermal substitute retained its anti-endotoxic activity after washing, compatible with results showing that the hAD bound a significant amount of peptide. Furthermore, bacteria-induced contact activation was inhibited by peptide addition to the hAD. E. coli infected hAD, alone, or after treatment with the antiseptic substance polyhexamethylenebiguanide (PHMB), yielded NF-κB activation in THP-1 cells. The activation was abrogated by peptide addition. Thus, thrombin-derived HDPs should be of interest in the further development of new biomaterials with combined antimicrobial and anti-endotoxic functions for use in surgery and wound treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori
2016-01-01
Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Liu, Long; Wei, Yanan; Chang, Qing; Sun, Huaju; Chai, Kungang; Huang, Zuqiang; Zhao, Zhenxia; Zhao, Zhongxing
2017-12-27
A novel, moderately hydrophilic peptide (RYL) with high ACE-inhibitory activity was screened ultrafast via a concept of waste conversion using waste. This novel peptide was screened from silkworm pupa using an Fe-doped porous biocarbon (FL/Z-SE) derived from silkworm excrement. FL/Z-SE possessed magnetic properties and specific selection for peptides due to Fe's dual functions. The selected RYL, which has moderate hydrophilicity (LogP = -0.22), exhibited a comparatively high ACE-inhibitory activity (IC 50 = 3.31 ± 0.11 μM). The inhibitory kinetics and docking-simulation results show that, as a competitive ACE inhibitor, RYL formed five hydrogen bonds with the ACE residues in the S1 and S2 pockets. In this work, both the screening carbon material and the selected ACE-inhibitory peptide were derived from agricultural waste (silkworm excrement and pupa), which offers a new way of thinking about the development of advanced uses of the silkworm byproducts and wastes.
Potential Use of Food Protein-Derived Peptides in the Treatment of Inflammatory Diseases.
Santiago-Lopez, Lourdes; Gonzalez-Cordova, Aaron F; Hernandez-Mendoza, Adrian; Vallejo-Cordoba, Belinda
2017-01-01
In recent years, major developments in the field of inflammatory pathophysiology have clearly shown that arthritis, diabetes, intestinal bowel diseases, and obesity, which affect many people around the world, are essentially inflammatory in nature. Different anti-inflammatory drugs have been used to treat these conditions. Some people are able to take these drugs without difficulty, yet others experience negative side effects. Hence, the search for new, natural anti-inflammatory alternatives has rapidly increased in recent years. Evidence has shown that food protein-derived peptides may be one alternative for treating inflammatory diseases. Peptides are encrypted in food proteins, can be released under hydrolysis conditions, and do not cause adverse effects. Despite limited information on the mechanism of action of peptides, in vitro and animal model studies have demonstrated their potential anti-inflammatory activity. Several in vitro studies have demonstrated that peptides can inhibit different pathways of inflammation processes such as that of the nuclear factor kappalight- chain of activated B cells (NF-κB). They can also induce the production of nitric oxide synthase (iNOs) and c-Jun N-terminal kinases (JNK) as well as influence PepT1 and CaRS, the transporters of peptides to the gastrointestinal tract that are responsible for the absorption of dietary peptides in the intestine. However, contradictory evidence has been reported in clinical assays. Hence, in this review, we present the latest research on the anti-inflammatory activity of food protein-derived peptides and provide future perspectives on the use of peptides as potential natural sources of therapeutic treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Quiroga, Alejandra V; Aphalo, Paula; Nardo, Agustina E; Añón, María C
2017-08-30
Among the factors affecting the development of cardiovascular diseases, hypertension is one of the most important. Research done on amaranth proteins has demonstrated their hypotensive capacity in vivo and in vitro; nevertheless, the mechanism underlying this effect remains unclear. The aim of this study was to analyze in vitro the inhibition of peptides derived from an amaranth hydrolysate (AHH) on other RAS enzymes other than ACE. The chymase and renin activities were studied. AHH was not able to inhibit chymase activity, although a dose-response effect was found on renin activity (IC 50 0.6 mg/mL). To provide an approach to the renin inhibition mechanism, we analyzed AHH renin inhibition kinetics and performed a structural characterization of the peptides involved in the effect in terms of molecular size and hydrophobicity. Results suggest that amaranth peptides exhibit renin competitive inhibition behavior. Renin inhibition potency was directly related to peptide hydrophobicity. RP-HPLC separation of AHH and subsequent analysis of the peptide sequences showed 6 peptides belonging to 11S globulin (that can be grouped into 3 families) that would be responsible for renin inhibition. These results demonstrate that Amaranthus hypochondriacus seeds are an adequate source of peptides with renin inhibitory properties that could be used in functional food formulations.
Antimicrobial Effects of Helix D-derived Peptides of Human Antithrombin III*
Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K. V.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2014-01-01
Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix d-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. PMID:25202017
Antimicrobial effects of helix D-derived peptides of human antithrombin III.
Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K V; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2014-10-24
Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix D-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Moon, Ho-Jin; Nikapitiya, Chamilani; Lee, Hyun-Cheol; Park, Min-Eun; Kim, Jae-Hoon; Kim, Tae-Hwan; Yoon, Ji-Eun; Cho, Won-Kyung; Ma, Jin Yeul; Kim, Chul-Joong; Jung, Jae U; Lee, Jong-Soo
2017-07-07
The antiviral activities of synthesized Kα2-helix peptide, which was derived from the viral FLICE-like inhibitor protein (vFLIP) of Kaposi's sarcoma-associated herpesvirus (KSHV), against influenza A virus (IAV) were investigated in vitro and in vivo, and mechanisms of action were suggested. In addition to the robust autophagy activity of the Kα2-helix peptide, the present study showed that treatment with the Kα2 peptide fused with the TAT peptide significantly inhibited IAV replication and transmission. Moreover, TAT-Kα2 peptide protected the mice, that were challenged with lethal doses of highly pathogenic influenza A H5N1 or H1N1 viruses. Mechanistically, we found that TAT-Kα2 peptide destabilized the viral membranes, depending on their lipid composition of the viral envelop. In addition to IAV, the Kα2 peptide inhibited infections with enveloped viruses, such as Vesicular Stomatitis Virus (VSV) and Respiratory Syncytial Virus (RSV), without cytotoxicity. These results suggest that TAT-Kα2 peptide is a potential antiviral agent for controlling emerging or re-emerging enveloped viruses, particularly diverse subtypes of IAVs.
Hadavi, Mahvash; Hasannia, Sadegh; Faghihi, Shahab; Mashayekhi, Farhad; Homazadeh, Homayoun; Mostofi, Seyed Behrooz
2018-01-26
Zein nanoparticles as a carrier system for BMP6-derived peptide were prepared by liquid-liquid phase separation procedure and characterized with SEM, DLS, FTIR and thermogravimetric methods. After peptide encapsulation, nanoparticle size increased from 236.3 ± 92.2 nm to 379.4 ± 116.8 nm. The encapsulation efficiency of peptide was 72.6% and the release of peptide from Zein nanoparticles was partly sustained in trypsin containing phosphate buffered saline (pH 7.4) for up to 14 days. Peptide-loaded nanoparticles showed similar cell viability compared with blank ones. ALP activity of C2C12 cells treated with peptide-loaded nanoparticles (500 µg/mL) was evaluated 7, 14, 21 and 28 days after culture. In peptide-loaded nanoparticles, ALP activity was significantly higher (p < .05) compared with other groups at day 14. Alizarin Red S staining showed, C2C12 cells behind peptide-loaded nanoparticles had significantly (p < .05) higher calcium deposition at day 21. The results of RT-qPCR show that the BMP-6 peptide activated expression of RUNX2 as a transcription factor. In turn, RUNX2 regulates SPP1 and BGLAP gene expression, as osteogenic marker genes. The results confirm that the peptide-loaded Zein nanoparticles, as osteoinductive material, may be used to repair small area of bone defects, with low load bearing.
Jeannin, P; Pestel, J; Bossus, M; Lassalle, P; Tartar, A; Tonnel, A B
1993-01-01
The ability of four uncoupled synthetic peptides (p52-71, p117-133, p176-187, p188-199) derived from Der p I, a major allergen from the house dust mite Dermatophagoides pteronyssinus (Dpt) to stimulate Fc epsilon R+ cells from Dpt-sensitive patients was comparatively analysed. Each free peptide may specifically stimulate basophils (Fc epsilon RI+ cells) and platelets (Fc epsilon RII+ cells) from patients with significant levels of anti-Der p I IgE antibodies; p52-71 and p117-133 appear the best cell stimulation inducers. Both concentration-dependent biological activities of Der p I-peptide on Fc epsilon R+ cells are enhanced by coupling peptide to a carrier (as human serum albumin). Interestingly each Der p I-sensitive patient tested presents an individual pattern of response to peptide. Thus, from our results it appears that different Der p I sequences could be involved in the immune response to Der p I. PMID:7682161
Jeannin, P; Pestel, J; Bossus, M; Lassalle, P; Tartar, A; Tonnel, A B
1993-04-01
The ability of four uncoupled synthetic peptides (p52-71, p117-133, p176-187, p188-199) derived from Der p I, a major allergen from the house dust mite Dermatophagoides pteronyssinus (Dpt) to stimulate Fc epsilon R+ cells from Dpt-sensitive patients was comparatively analysed. Each free peptide may specifically stimulate basophils (Fc epsilon RI+ cells) and platelets (Fc epsilon RII+ cells) from patients with significant levels of anti-Der p I IgE antibodies; p52-71 and p117-133 appear the best cell stimulation inducers. Both concentration-dependent biological activities of Der p I-peptide on Fc epsilon R+ cells are enhanced by coupling peptide to a carrier (as human serum albumin). Interestingly each Der p I-sensitive patient tested presents an individual pattern of response to peptide. Thus, from our results it appears that different Der p I sequences could be involved in the immune response to Der p I.
Pestel, J; Defoort, J P; Gras-Masse, H; Afchain, D; Capron, A; Tartar, A; Ouaissi, A
1992-01-01
Some in vitro and in vivo biological activities of an octadecapeptide derived from an 85-kDa surface protein of Trypanosoma cruzi trypomastigote were studied. The peptide coupled to a carrier protein induced the proliferative response of lymph node cells from mice immunized with various antigens. Moreover, sera from mice immunized with the coupled peptide were found to contain antibodies against a number of self and nonself antigens: fibronectin, bovine serum albumin, myosin, tetanus toxoid, ovalbumin, keyhole limpet hemocyanin, and DNA. These results are discussed in the context of Chagas' disease immunopathology. PMID:1730508
Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J
2018-03-15
Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Malan, Melissa; Serem, June C; Bester, Megan J; Neitz, Albert W H; Gaspar, Anabella R M
2016-01-01
Antimicrobial peptides are small cationic peptides that possess a large spectrum of bioactivities, including antimicrobial, anti-inflammatory and antioxidant activities. Several antimicrobial peptides are known to inhibit lipopolysaccharide (LPS)-induced inflammation in vitro and to protect animals from sepsis. In this study, the cellular anti-inflammatory and anti-endotoxin activities of Os and Os-C, peptides derived from the carboxy-terminal of a tick defensin, were investigated. Both Os and Os-C were found to bind LPS in vitro, albeit to a lesser extent than polymyxin B and melittin, known endotoxin-binding peptides. Binding to LPS was found to reduce the bactericidal activity of Os and Os-C against Escherichia coli confirming the affinity of both peptides for LPS. At a concentration of 25 µM, the nitric oxide (NO) scavenging activity of Os was higher than glutathione, a known NO scavenger. In contrast, Os-C showed no scavenging activity. Os and Os-C inhibited LPS/IFN-γ induced NO and TNF-α production in RAW 264.7 cells in a concentration-dependent manner, with no cellular toxicity even at a concentration of 100 µM. Although inhibition of NO and TNF-α secretion was more pronounced for melittin and polymyxin B, significant cytotoxicity was observed at concentrations of 1.56 µM and 25 µM for melittin and polymyxin B, respectively. In addition, Os, Os-C and glutathione protected RAW 264.7 cells from oxidative damage at concentrations as low as 25 µM. This study identified that besides previously reported antibacterial activity of Os and Os-C, both peptides have in addition anti-inflammatory and anti-endotoxin properties. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Peptides of the Constant Region of Antibodies Display Fungicidal Activity
Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania
2012-01-01
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523
A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides.
Manikkam, V; Vasiljevic, T; Donkor, O N; Mathai, M L
2016-01-01
Bioactive peptides are food derived components, usually consisting of 3-20 amino acids, which are inactive when incorporated within their parent protein. Once liberated by enzymatic or chemical hydrolysis, during food processing and gastrointestinal transit, they can potentially provide an array of health benefits to the human body. Owing to an unprecedented increase in the worldwide incidence of obesity and hypertension, medical researchers are focusing on the hypotensive and anti-obesity properties of nutritionally derived bioactive peptides. The role of the renin-angiotensin system has long been established in the aetiology of metabolic diseases and hypertension. Targeting the renin-angiotensin system by inhibiting the activity of angiotensin-converting enzyme (ACE) and preventing the formation of angiotensin II can be a potential therapeutic approach to the treatment of hypertension and obesity. Fish-derived proteins and peptides can potentially be excellent sources of bioactive components, mainly as a source of ACE inhibitors. However, increased use of marine sources, poses an unsustainable burden on particular fish stocks, so, the underutilized fish species and by-products can be exploited for this purpose. This paper provides an overview of the techniques involved in the production, isolation, purification, and characterization of bioactive peptides from marine sources, as well as the evaluation of the ACE inhibitory (ACE-I) activity and bioavailability.
Prats-Ejarque, Guillem; Villalba, Clara; Albacar, Marcel; González-López, Juan J.; Torrent, Marc; Moussaoui, Mohammed
2016-01-01
Eradication of established biofilm communities of pathogenic Gram-negative species is one of the pending challenges for the development of new antimicrobial agents. In particular, Pseudomonas aeruginosa is one of the main dreaded nosocomial species, with a tendency to form organized microbial communities that offer an enhanced resistance to conventional antibiotics. We describe here an engineered antimicrobial peptide (AMP) which combines bactericidal activity with a high bacterial cell agglutination and lipopolysaccharide (LPS) affinity. The RN3(5-17P22-36) peptide is a 30-mer derived from the eosinophil cationic protein (ECP), a host defense RNase secreted by eosinophils upon infection, with a wide spectrum of antipathogen activity. The protein displays high biofilm eradication activity that is not dependent on its RNase catalytic activity, as evaluated by using an active site-defective mutant. On the other hand, the peptide encompasses both the LPS-binding and aggregation-prone regions from the parental protein, which provide the appropriate structural features for the peptide's attachment to the bacterial exopolysaccharide layer and further improved removal of established biofilms. Moreover, the peptide's high cationicity and amphipathicity promote the cell membrane destabilization action. The results are also compared side by side with other reported AMPs effective against either planktonic and/or biofilm forms of Pseudomonas aeruginosa strain PAO1. The ECP and its derived peptide are unique in combining high bactericidal potency and cell agglutination activity, achieving effective biofilm eradication at a low micromolar range. We conclude that the designed RN3(5-17P22-36) peptide is a promising lead candidate against Gram-negative biofilms. PMID:27527084
Li, Jun; Li, Qian; Li, Jingyun; Zhou, Bei
2014-09-02
Jellyfish (Rhopilema esculentum) was hydrolyzed using alcalase, and two peptides with angiotensin-I-converting enzyme (ACE) inhibitory and antioxidant activities were purified by ultrafiltration and consecutive chromatographic methods. The amino acid sequences of the two peptides were identified as VKP (342 Da) and VKCFR (651 Da) by electrospray ionization tandem mass spectrometry. The IC50 values of ACE inhibitory activities of the two peptides were 1.3 μM and 34.5 μM, respectively. Molecular docking results suggested that VKP and VKCFR bind to ACE through coordinating with the active site Zn(II) atom. Free radical scavenging activity and protection against hydrogen peroxide (H2O2)-induced rat cerebral microvascular endothelial cell (RCMEC) injury were used to evaluate the antioxidant activities of the two peptides. As the results clearly showed that the peptides increased the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-px) activities in RCMEC cells), it is proposed that the R. esculentum peptides exert significant antioxidant effects.
Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E
2018-01-01
Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.
Functional significance of bioactive peptides derived from soybean.
Singh, Brij Pal; Vij, Shilpa; Hati, Subrota
2014-04-01
Biologically active peptides play an important role in metabolic regulation and modulation. Several studies have shown that during gastrointestinal digestion, food processing and microbial proteolysis of various animals and plant proteins, small peptides can be released which possess biofunctional properties. These peptides are to prove potential health-enhancing nutraceutical for food and pharmaceutical applications. The beneficial health effects of bioactive peptides may be several like antihypertensive, antioxidative, antiobesity, immunomodulatory, antidiabetic, hypocholesterolemic and anticancer. Soybeans, one of the most abundant plant sources of dietary protein, contain 36-56% of protein. Recent studies showed that soy milk, an aqueous extract of soybean, and its fermented product have great biological properties and are a good source of bioactive peptides. This review focuses on bioactive peptides derived from soybean; we illustrate their production and biofunctional attributes. Copyright © 2014 Elsevier Inc. All rights reserved.
Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A
2015-07-01
The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.
Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58.
Vasilchenko, A S; Vasilchenko, A V; Pashkova, T M; Smirnova, M P; Kolodkin, N I; Manukhov, I V; Zavilgelsky, G B; Sizova, E A; Kartashova, O L; Simbirtsev, A S; Rogozhin, E A; Duskaev, G K; Sycheva, M V
2017-12-01
Natural peptides with antimicrobial activity are extremely diverse, and peptide synthesis technologies make it possible to significantly improve their properties for specific tasks. Here, we investigate the biological properties of the natural peptide indolicidin and the indolicidin-derived novel synthetic peptide In-58. In-58 was generated by replacing all tryptophan residues on phenylalanine in D-configuration; the α-amino group in the main chain also was modified by unsaturated fatty acid. Compared with indolicidin, In-58 is more bactericidal, more resistant to proteinase K, and less toxic to mammalian cells. Using molecular physics approaches, we characterized the action of In-58 on bacterial cells at the cellular level. Also, we have found that studied peptides damage bacterial membranes. Using the Escherichia coli luminescent biosensor strain MG1655 (pcolD'::lux), we investigated the action of indolicidin and In-58 at the subcellular level. At subinhibitory concentrations, indolicidin and In-58 induced an SOS response. Our data suggest that indolicidin damages the DNA, but bacterial membrane perturbation is its principal mode of action. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Interaction of MreB-derived antimicrobial peptides with membranes.
Saikia, Karabi; Chaudhary, Nitin
2018-03-25
Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides from the 9-residue long, N-terminal amphipathic helix of E. coli MreB protein. The peptides display broad-spectrum activity, killing not only Gram-positive and Gram-negative bacteria but opportunistic fungus, Candida albicans as well. These results proved that membrane-binding stretches of bacterial proteins could turn out to be self-harming when applied from outside. Here, we studied the membrane-binding and membrane-perturbing potential of these peptides. Steady-state tryptophan fluorescence studies with tryptophan extended peptides, WMreB 1-9 and its N-terminal acetylated analog, Ac-WMreB 1-9 show preferential binding to negatively-charged liposomes. Both the peptides cause permeabilization of E. coli inner and outer-membranes. Tryptophan-lacking peptides, though permeabilize the outer-membrane efficiently, little permeabilization of the inner-membrane is observed. These data attest membrane-destabilization as the mechanism of rapid bacterial killing. This study is expected to motivate the research in identifying microbes' self-sequences to combat them. Copyright © 2018 Elsevier Inc. All rights reserved.
Molhoek, E Margo; van Dijk, Albert; Veldhuizen, Edwin J A; Dijk-Knijnenburg, Helma; Mars-Groenendijk, Roos H; Boele, Linda C L; Kaman-van Zanten, Wendy E; Haagsman, Henk P; Bikker, Floris J
2010-09-01
Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards eukaryotic cells. In the present study, we report that C1-15 is active against bacteria such as Bacillus anthracis and Yersinia pestis that may potentially be used by bioterrorists. Substitution of single and multiple phenylalanine (Phe) residues to tryptophan (Trp) in C1-15 resulted in variants with improved antibacterial activity against B. anthracis and Y. pestis as well as decreased salt sensitivity. In addition, these peptides exhibited enhanced neutralisation of lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs). The antibacterial and LPS-neutralising activities of these C1-15-derived peptides are exerted at concentrations far below the concentrations that are toxic to human PBMCs. Taken together, we show that Phe-->Trp substitutions in C1-15 variants enhances the antibacterial and LPS-neutralising activities against pathogenic bacteria, including those that may potentially be used as biological warfare agents. Copyright (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.
Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio
2016-04-19
Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oñate-Garzón, José; Manrique-Moreno, Marcela; Trier, Steven; Leidy, Chad; Torres, Rodrigo; Patiño, Edwin
2017-03-01
Antimicrobial peptides are effector molecules of the innate immune system against invading pathogens. The cationic charge in their structures has a strong correlation with antimicrobial activity, being responsible for the initial electrostatic interaction between peptides and the anionic microbial surface. This paper contains evidence that charge modification in the neutral peptide Gm cecropin D-like (WT) improved the antimicrobial activity of the modified peptides. Two cationic peptides derived from WT sequence named as ΔM1 and ΔM2, with net charge of +5 and +9, respectively, showed at least an eightfold increase in their antimicrobial activity in comparison to WT. The mechanism of action of these peptides was investigated using small unilamellar vesicles (SUVs) as model membranes. To study permeabilization effects of the peptides on cell membranes, entrapped calcein liposomes were used and the results showed that all peptides induced calcein release from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) SUVs, whereas in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), POPC/POPG and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG SUVs, only ΔM1 and ΔM2 induced a notable permeabilization. In addition, interactions of these peptides with phospholipids at the level of the glycerol backbone and hydrophobic domain were studied through observed changes in generalized polarization and fluorescence anisotropy using probes such as Laurdan and DPH, respectively. The results suggest that peptides slightly ordered the bilayer structure at the level of glycerol backbone and on the hydrophobic core in 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) SUVs, whereas in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/DMPG SUVs, only ΔM1 and ΔM2 peptides increased the order of bilayers. Thus, peptides would be inducing clustering of phospholipids creating phospholipid domains with a higher phase transition temperature.
García, M C; Puchalska, P; Esteve, C; Marina, M L
2013-03-15
Despite less explored than foods from animal origin, plant derived foods also contain biologically active proteins and peptides. Bioactive peptides can be present as an independent entity in the food or, more frequently, can be in a latent state as part of the sequence of a protein. Release from that protein requires protein hydrolysis by enzymatic digestion, fermentation or autolysis. Different methodologies have been used to test proteins and peptides bioactivities. Fractionation, separation, and identification techniques have also been employed for the isolation and identification of bioactive proteins or peptides. In this work, proteins and peptides from plant derived foods exerting antihypertensive, antioxidant, hypocholesterolemic, antithrombotic, and immunostimulating capacities or ability to reduce food intake have been reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.
Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin
2012-08-01
Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.
Rincón-Cortés, Clara Andrea; Reyes-Montaño, Edgar Antonio; Vega-Castro, Nohora Angélica
2017-06-01
Scorpion venom contains peptides with neurotoxic action primarily active on ion channels in the nervous system of insects and mammals. They are also characterized as cytolytic and anticancer, biological characteristics that have not yet been reported for the Tityus macrochirus venom. To assess if the total T. macrochirus venom and the fraction of partially purified peptides decrease the viability of various tumor-derived cell lines. The scorpion venom was collected by electrical stimulation and, subsequently, subjected to chromatography, electrophoresis, and ultrafiltration with Amicon Ultra 0.5® membranes for the partial identification and purification of its peptides. The cytotoxic activity of the venom and the peptides fraction trials on tumor-derived cell lines were carried out by the MTT method. The T. macrochirus scorpion venom has peptides with molecular weights ranging between 3 and 10 kDa. They were partially purified using the ultrafiltration technique, and assessed by the RP-HPLC method. Cytotoxicity trials with the whole T. macrochirus venom showed a higher viability decrease on the PC3 cell line compared to the other cell lines assessed, while the partially purified peptides decreased the HeLa cell line viability. Peptides in the T. macrochirus scorpion venom showed cytotoxic activity on some tumorderived cell lines. We observed some degree of selectivity against other cell lines assessed.
Najafian, L; Babji, A S
2012-01-01
Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals. Copyright © 2011 Elsevier Inc. All rights reserved.
Derivation of a 3D pharmacophore model for the angiotensin-II site one receptor
NASA Astrophysics Data System (ADS)
Prendergast, Kristine; Adams, Kym; Greenlee, William J.; Nachbar, Robert B.; Patchett, Arthur A.; Underwood, Dennis J.
1994-10-01
A systematic search has been used to derive a hypothesis for the receptor-bound conformation of A-II antagonists at the AT1 receptor. The validity of the pharmacophore hypothesis has been tested using CoMFA, which included 50 diverse A-II antagonists, spanning four orders of magnitude in activity. The resulting cross-validated R2 of 0.64 (conventional R2 of 0.76) is indicative of a good predictive model of activity, and has been used to estimate potency for a variety of non-peptidyl antagonists. The structural model for the non-peptide has been compared with respect to the natural substrate, A-II, by generating peptide to non-peptide overlays.
Effects of lactoferrin derived peptides on simulants of biological warfare agents.
Sijbrandij, Tjitske; Ligtenberg, Antoon J; Nazmi, Kamran; Veerman, Enno C I; Bolscher, Jan G M; Bikker, Floris J
2017-01-01
Lactoferrin (LF) is an important immune protein in neutrophils and secretory fluids of mammals. Bovine LF (bLF) harbours two antimicrobial stretches, lactoferricin and lactoferampin, situated in close proximity in the N1 domain. To mimic these antimicrobial domain parts a chimeric peptide (LFchimera) has been constructed comprising parts of both stretches (LFcin17-30 and LFampin265-284). To investigate the potency of this construct to combat a set of Gram positive and Gram negative bacteria which are regarded as simulants for biological warfare agents, the effect on bacterial killing, membrane permeability and membrane polarity were determined in comparison to the constituent peptides and the native bLF. Furthermore we aimed to increase the antimicrobial potency of the bLF derived peptides by cationic amino acid substitutions. Overall, the bactericidal activity of the peptides could be related to membrane disturbing effects, i.e. membrane permeabilization and depolarization. Those effects were most prominent for the LFchimera. Arginine residues were found to be crucial for displaying antimicrobial activity, as lysine to arginine substitutions resulted in an increased antimicrobial activity, affecting mostly LFampin265-284 whereas arginine to lysine substitutions resulted in a decreased bactericidal activity, predominantly in case of LFcin17-30.
Soliman, Wael; Wang, Liru; Bhattacharjee, Subir; Kaur, Kamaljit
2011-04-14
Class IIb bacteriocins are ribosomally synthesized antimicrobial peptides comprising two different peptides synergistically acting in equal amounts for optimal potency. In this study, we demonstrate for the first time potent (nanomolar) antimicrobial activity of a representative class IIb bacteriocin, plantaricin S (Pls), against four pathogenic gram-positive bacteria, including Listeria monocytogenes. The structure-activity relationships for Pls were studied using activity assays, circular dichroism (CD), and molecular dynamics (MD) simulations. The two Pls peptides and five Pls derived fragments were synthesized. The CD spectra of the Pls and selected fragments revealed helical conformations in aqueous 2,2,2-trifluoroethanol. The MD simulations showed that when the two Pls peptides are in antiparallel orientation, the helical regions interact and align, mediated by strong attraction between conserved GxxxG/AxxxA motifs. The results strongly correlate with the antimicrobial activity suggesting that helix-helix alignment of the two Pls peptides and interaction between the conserved motifs are crucial for interaction with the target cell membrane.
Bishop, Barney M; Juba, Melanie L; Russo, Paul S; Devine, Megan; Barksdale, Stephanie M; Scott, Shaylyn; Settlage, Robert; Michalak, Pawel; Gupta, Kajal; Vliet, Kent; Schnur, Joel M; van Hoek, Monique L
2017-04-07
Komodo dragons are the largest living lizards and are the apex predators in their environs. They endure numerous strains of pathogenic bacteria in their saliva and recover from wounds inflicted by other dragons, reflecting the inherent robustness of their innate immune defense. We have employed a custom bioprospecting approach combining partial de novo peptide sequencing with transcriptome assembly to identify cationic antimicrobial peptides from Komodo dragon plasma. Through these analyses, we identified 48 novel potential cationic antimicrobial peptides. All but one of the identified peptides were derived from histone proteins. The antimicrobial effectiveness of eight of these peptides was evaluated against Pseudomonas aeruginosa (ATCC 9027) and Staphylococcus aureus (ATCC 25923), with seven peptides exhibiting antimicrobial activity against both microbes and one only showing significant potency against P. aeruginosa. This study demonstrates the power and promise of our bioprospecting approach to cationic antimicrobial peptide discovery, and it reveals the presence of a plethora of novel histone-derived antimicrobial peptides in the plasma of the Komodo dragon. These findings may have broader implications regarding the role that intact histones and histone-derived peptides play in defending the host from infection. Data are available via ProteomeXChange with identifier PXD005043.
Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie
2016-01-01
Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122
Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.
Selheim, F; Holmsen, H; Vassbotn, F S
1999-08-15
We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.
Chakraborty, Tandra R; Tkalych, Oleg; Nanno, Daniela; Garcia, Angelo L; Devi, Lakshmi A; Salton, Stephen R J
2006-05-17
Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.
The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.
Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur
2013-01-01
Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.
The TFPI-2 Derived Peptide EDC34 Improves Outcome of Gram-Negative Sepsis
Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E.; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur
2013-01-01
Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections. PMID:24339780
Dziuba, Bartłomiej; Dziuba, Marta
2014-08-20
New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins.
Dziuba, Bartłomiej; Dziuba, Marta
2014-01-01
New peptides with potential antimicrobial activity, encrypted in milk protein sequences, were searched for with the use of bioinformatic tools. The major milk proteins were hydrolyzed in silico by 28 enzymes. The obtained peptides were characterized by the following parameters: molecular weight, isoelectric point, composition and number of amino acid residues, net charge at pH 7.0, aliphatic index, instability index, Boman index, and GRAVY index, and compared with those calculated for known 416 antimicrobial peptides including 59 antimicrobial peptides (AMPs) from milk proteins listed in the BIOPEP database. A simple analysis of physico-chemical properties and the values of biological activity indicators were insufficient to select potentially antimicrobial peptides released in silico from milk proteins by proteolytic enzymes. The final selection was made based on the results of multidimensional statistical analysis such as support vector machines (SVM), random forest (RF), artificial neural networks (ANN) and discriminant analysis (DA) available in the Collection of Anti-Microbial Peptides (CAMP database). Eleven new peptides with potential antimicrobial activity were selected from all peptides released during in silico proteolysis of milk proteins. PMID:25141106
Characterization and production of multifunctional cationic peptides derived from rice proteins.
Taniguchi, Masayuki; Ochiai, Akihito
2017-04-01
Food proteins have been identified as a source of bioactive peptides. These peptides are inactive within the sequence of the parent protein and must be released during gastrointestinal digestion, fermentation, or food processing. Of bioactive peptides, multifunctional cationic peptides are more useful than other peptides that have specific activity in promotion of health and/or the treatment of diseases. We have identified and characterized cationic peptides from rice enzymes and proteins that possess multiple functions, including antimicrobial, endotoxin-neutralizing, arginine gingipain-inhibitory, and/or angiogenic activities. In particular, we have elucidated the contribution of cationic amino acids (arginine and lysine) in the peptides to their bioactivities. Further, we have discussed the critical parameters, particularly proteinase preparations and fractionation or purification, in the enzymatic hydrolysis process for producing bioactive peptides from food proteins. Using an ampholyte-free isoelectric focusing (autofocusing) technique as a tool for fractionation, we successfully prepared fractions containing cationic peptides with multiple functions.
Development of Novel p16INK4a Mimetics as Anticancer Therapy
2015-10-01
peptide (or substituted peptide) or the crystal structure of the relevant sequence from p16INK4 ( PDB 1BI7) was used as the starting structure . Model...small peptides that interact with CDK4/6. The specific aims are as follows. (1) Determine structure -function relationships of overlapping peptides...Determine structure -function relationships of overlapping peptides derived from p16 INK4a that inhibit the activity of CDK4/6 and identify stabilized
Liu, Chunlei; Fang, Li; Min, Weihong; Liu, Jingsheng; Li, Hongmei
2018-04-15
The mechanism of action of food-derived angiotensin-I-converting enzyme (ACE) inhibitory peptides has not been completely elucidated. In the present study, ion-exchange chromatography, gel filtration chromatography, reverse phase-high performance liquid chromatography, and liquid chromatography-electrospray ionization-tandem mass (LC-ESI-MS/MS) were employed for purifying and identifying the ACE inhibitory peptides from hazelnut. To understand the mode of action of these peptides, ACE inhibition kinetics, in vitro and in vivo bioavailability assays, active site analysis, and interaction between the inhibitory peptides and ACE were investigated. The results identified novel ACE inhibitory peptides Ala-Val-Lys-Val-Leu (AVKVL), Tyr-Leu-Val-Arg (YLVR), and Thr-Leu-Val-Gly-Arg (TLVGR) with IC 50 values of 73.06, 15.42, and 249.3 μM, respectively. All peptides inhibited the ACE activity via a non-competitive mode. The binding free energies of AVKVL, YLVR, and TLVGR for ACE were -3.46, -6.48, and -7.37 kcal/mol, respectively. The strong inhibition of ACE by YLVR may be attributed to the formation of cation-pi interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants
Daskaya-Dikmen, Ceren; Yucetepe, Aysun; Karbancioglu-Guler, Funda; Daskaya, Hayrettin; Ozcelik, Beraat
2017-01-01
Hypertension is an important factor in cardiovascular diseases. Angiotensin-I-converting enzyme (ACE) inhibitors like synthetic drugs are widely used to control hypertension. ACE-inhibitory peptides from food origins could be a good alternative to synthetic drugs. A number of plant-based peptides have been investigated for their potential ACE inhibitor activities by using in vitro and in vivo assays. These plant-based peptides can be obtained by solvent extraction, enzymatic hydrolysis with or without novel food processing methods, and fermentation. ACE-inhibitory activities of peptides can be affected by their structural characteristics such as chain length, composition and sequence. ACE-inhibitory peptides should have gastrointestinal stability and reach the cardiovascular system to show their bioactivity. This paper reviews the current literature on plant-derived ACE-inhibitory peptides including their sources, production and structure, as well as their activity by in vitro and in vivo studies and their bioavailability. PMID:28333109
Woo, Eun-Rhan; Lee, Dong Gun; Chang, Young-Su; Park, Yoonkyung; Hahm, Kyung-Soo
2002-12-01
HP (2-20) (AKKVFKRLEKLFSKIQNDK) is the antibacterial sequence derived from N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1). It has a broad-spectrum microbicidal activity in vitro that is thought to be related to the membrane-disruptive properties of the peptide. Based on the putative membrane-targeted mode of action, we postulated that HP (2-20) might be possessed virus-cell fusion inhibitory activity. To develop the novel virus-cell fusion inhibitory peptides, several analogues with amino acid substitution were designed to increase or decrease only net hydrophobic region. In particular, substitution of Gln and Asp for hydrophobic amino acid, Trp at position 17 and 19 of HP (2-20) (Anal 3) caused a dramatic increase in virus-cell fusion inhibitory activity without hemolytic effect.
Perretti, Mauro; Chiang, Nan; La, Mylinh; Fierro, Iolanda M.; Marullo, Stefano; Getting, Stephen J; Solito, Egle; Serhan, Charles N.
2009-01-01
Aspirin (ASA) and dexamethasone (DEX) are widely used anti-inflammatory agents yet their mechanism(s) for blocking polymorphonuclear neutrophil (PMN) accumulation at sites of inflammation remains unclear. Here, we report that inhibition of PMN infiltration by ASA and DEX is a property shared by aspirin-triggered lipoxins (ATL) and the glucocorticoid-induced annexin 1 (ANXA1)-derived peptides that are both generated in vivo and act at the lipoxin A4 receptor (ALXR/FPRL1) to halt PMN diapedesis. These structurally diverse ligands specifically interact directly with recombinant human ALXR demonstrated by specific radioligand binding and function as well as immunoprecipitation of PMN receptors. In addition, the combination of both ATL and ANXA1-derived peptides limited PMN infiltration and reduced production of inflammatory mediators (that is, prostaglandins and chemokines) in vivo. Together, these results indicate functional redundancies in endogenous lipid and peptide anti-inflammatory circuits that are spatially and temporally separate, where both ATL and specific ANXA1-derived peptides act in concert at ALXR to downregulate PMN recruitment to inflammatory loci. PMID:12368905
Su, Shih-Ping; McArthur, Jason D; Andrew Aquilina, J
2010-07-01
Low molecular weight (LMW) peptides, derived from the breakdown of the major eye lens proteins, the crystallins, accumulate in the human lens with age. These LMW peptides are associated with age-related lens opacity and cataract, with some shown to inhibit the chaperone activity of alpha-crystallin. However, the mechanism(s) giving rise to the production of these peptides, as well as their distribution within the lens, are not well understood. In this study, we have mapped the distribution of these crystallin-derived peptides present in human lenses of different ages using matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Our data showed that most of these LMW peptides emerge in the lens at early middle-age, with peptides greater than 1778 Da in mass being confined to the water insoluble fractions, and to a lesser extent the water soluble fractions of older lenses. MALDI-IMS analyses showed that four peptides, derived from alphaA-, alphaB- and gammaS-crystallins, were confined to the lens nuclear fibre cells upon emergence during early middle-age, but were present in both the cortex and nucleus of old lenses. In contrast, another major peptide, derived from the C-terminal breakdown of betaA3-crystallin, was present in the cortical and nuclear regions of both young and old lenses. A comparison between age-matched cataractous and non-cataractous lenses showed no distinct differences in LMW peptide profiles, indicating that although cataract may be a potential consequence caused by the emergence of these peptides, it does not contribute directly to the peptide-generating process. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Jeong, Nari; Kim, Jin-Young; Park, Seong-Cheol; Lee, Jong-Kook; Gopal, Ramamourthy; Yoo, Suyeon; Son, Byoung Kwan; Hahm, Joon Soo; Park, Yoonkyung; Hahm, Kyung-Soo
2010-09-03
Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5xMIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria. Copyright 2010 Elsevier Inc. All rights reserved.
Rocha, Raissa Prado; Livonesi, Márcia Cristina; Fumagalli, Marcilio Jorge; Rodrigues, Naiara Ferreira; da Costa, Lauro César Felipe; Dos Santos, Michelle Cristina Silva Gomes; de Oliveira Rocha, Eliseu Soares; Kroon, Erna Geessien; Malaquias, Luiz Cosme Cotta; Coelho, Luiz Felipe Leomil
2014-08-08
Dengue is a major worldwide public health problem, especially in the tropical and subtropical regions of the world. Primary infection with a single Dengue virus (DENV) serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients experiencing a secondary infection with a different serotype progress to the severe form of the disease, called dengue hemorrhagic fever. In this study, the vaccine potential of three tetravalent and conserved synthetic peptides derived from DENV envelope domain I (named Pep01) and II (named Pep02 and Pep03) was evaluated. Human dengue IgM/IgG positive serum (n=16) showed reactivity against Pep01, Pep02 and Pep03 in different degrees. Mice immunization experiments showed that these peptides were able to induce a humoral response characterized by antibodies with low neutralizing activity. The spleen cells derived from mice immunized with the peptides showed a significant cytotoxic activity (only for Pep02 and Pep03), a high expression of IL-10 (P<0.01) and a reduced expression of TNF-α and IFN-gamma (P<0.001) compared to DENV-1 infected splenocytes. Thus these peptides, and specially the Pep03, can induce a humoral response characterized by antibodies with low neutralizing activities and probably a T cell response that could be beneficial to induce an effective immune response against all DENV serotypes and do not contributed to the immunopathogenesis. However, further studies in peptide sequence will be required to induce the production of neutralizing antibodies against all four DENV serotypes and also to improve immunogenicity of these peptides. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Bo; Wang, Jingnan; Ning, Shuqing; Yuan, Quan; Chen, Xiangning; Zhang, Yanyan; Fan, Junfeng
2018-01-15
This study confirmed the anti-fungal effect of trypsin-treated Bacillus subtilis culture (BC) (tryptic hydrolysate, TH) on mold growth on Kyoho grapes. We examined the anti-fungal activity of TH by identifying TH peptides and performing a computational docking analysis. TH was more potent than untreated BC in suppressing fungal growth on grapes. Specifically, TH maintained grape freshness by inhibiting respiration and rachis browning, maintaining firmness, and preventing weight loss. Thirty-six inhibitory peptides against β-1,3-glucan synthase (GS) were screened from 126 TH peptides identified through proteomic analysis. Among them, 13 peptides bound tightly to GS active pockets with lower binding energies than that of GppNHp. The most potent peptides, LFEIDEELNEK and FATSDLNDLYR, were synthesized, and further experiments showed that these peptides had a highly suppressive effect on GS activity and Aspergillus niger and Penicillium chrysogenum growth. Our results confirm that tryptic treatment is effective for improving the anti-fungal activity of BC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE.
Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Fan, Yue; Shiuan, David; Liu, Jingbo; Chen, Feng
2018-02-21
Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL -1 . In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.
de Breij, Anna; Chan, Heelam; van Dissel, Jaap T.; Drijfhout, Jan W.; Hiemstra, Pieter S.; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H.
2014-01-01
Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria. PMID:24841266
Vasilchenko, A S; Rogozhin, E A; Vasilchenko, A V; Kartashova, O L; Sycheva, M V
2016-12-01
To purify and characterize antimicrobial peptides derived from the acid extract of Gallus gallus blood cells. Two polypeptides (i.e. CHb-1 and CHb-2) with antibacterial activity were detected in the acidic extract of blood cells from chicken (G. gallus). The isolated peptides that possessed a potent antibacterial activity were purified using a two-step chromatography procedure that involved solid-phase extraction of a total protein/peptide extract followed by thin fractionation by reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses of the purified peptides were similar and were 4824·4 and 4825·2 Da, which have been measured by matrix-assisted laser desorption/ionization mass spectrometry (MALDI TOF MS). Their amino acid sequences were determined by Edman degradation and showed that the peptides were fully identical to the two fragments of G. gallus α-haemoglobin localized into different subunits (A and D respectively). The peptides were active in micromolar concentrations against Gram-negative Escherichia coli K12 TG1. Using the 1-N-phenylnaphthylamine, the FITC-dextran labelled probes and the live/dead staining allowed to show the hemocidin mode of action and estimate the pore size. In this study, for the first time, α-haemoglobin from chicken (G. gallus) has been investigated as a donor of the two high homologous native peptide fragments that possess potent antibacterial activity in vitro. These are membrane-active peptides and their mechanism of action against E. coli involves a toroidal pore formation. The obtained results expand the perception of the role of haemoglobin in a living system, describing it as a source of multifunction substances. Additionally, the data presented in this paper may contribute to the development of new, cost-effective, antimicrobial agents. © 2016 The Society for Applied Microbiology.
Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul
2015-01-01
Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.
The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions[OPEN
Tavormina, Patrizia; De Coninck, Barbara; Nikonorova, Natalia; De Smet, Ive; Cammue, Bruno P.A.
2015-01-01
Peptides fulfill a plethora of functions in plant growth, development, and stress responses. They act as key components of cell-to-cell communication, interfere with signaling and response pathways, or display antimicrobial activity. Strikingly, both the diversity and amount of plant peptides have been largely underestimated. Most characterized plant peptides to date acting as small signaling peptides or antimicrobial peptides are derived from nonfunctional precursor proteins. However, evidence is emerging on peptides derived from a functional protein, directly translated from small open reading frames (without the involvement of a precursor) or even encoded by primary transcripts of microRNAs. These novel types of peptides further add to the complexity of the plant peptidome, even though their number is still limited and functional characterization as well as translational evidence are often controversial. Here, we provide a comprehensive overview of the reported types of plant peptides, including their described functional and structural properties. We propose a novel, unifying peptide classification system to emphasize the enormous diversity in peptide synthesis and consequent complexity of the still expanding knowledge on the plant peptidome. PMID:26276833
Maize Bioactive Peptides against Cancer
NASA Astrophysics Data System (ADS)
Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio
2017-06-01
Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.
New Potent Membrane-Targeting Antibacterial Peptides from Viral Capsid Proteins
Dias, Susana A.; Freire, João M.; Pérez-Peinado, Clara; Domingues, Marco M.; Gaspar, Diana; Vale, Nuno; Gomes, Paula; Andreu, David; Henriques, Sónia T.; Castanho, Miguel A. R. B.; Veiga, Ana S.
2017-01-01
The increasing prevalence of multidrug-resistant bacteria urges the development of new antibacterial agents. With a broad spectrum activity, antimicrobial peptides have been considered potential antibacterial drug leads. Using bioinformatic tools we have previously shown that viral structural proteins are a rich source for new bioactive peptide sequences, namely antimicrobial and cell-penetrating peptides. Here, we test the efficacy and mechanism of action of the most promising peptides among those previously identified against both Gram-positive and Gram-negative bacteria. Two cell-penetrating peptides, vCPP 0769 and vCPP 2319, have high antibacterial activity against Staphylococcus aureus, MRSA, Escherichia coli, and Pseudomonas aeruginosa, being thus multifunctional. The antibacterial mechanism of action of the two most active viral protein-derived peptides, vAMP 059 and vCPP 2319, was studied in detail. Both peptides act on both Gram-positive S. aureus and Gram-negative P. aeruginosa, with bacterial cell death occurring within minutes. Also, these peptides cause bacterial membrane permeabilization and damage of the bacterial envelope of P. aeruginosa cells. Overall, the results show that structural viral proteins are an abundant source for membrane-active peptides sequences with strong antibacterial properties. PMID:28522994
Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E.; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo
2011-01-01
Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals. PMID:20956602
Sánchez-Gómez, Susana; Japelj, Bostjan; Jerala, Roman; Moriyón, Ignacio; Fernández Alonso, Mirian; Leiva, José; Blondelle, Sylvie E; Andrä, Jörg; Brandenburg, Klaus; Lohner, Karl; Martínez de Tejada, Guillermo
2011-01-01
Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearman's ρ = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals.
Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur
2011-06-01
Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.
Wu, Youjia; Wang, Lei; Zhou, Mei; Ma, Chengbang; Chen, Xiaole; Bai, Bing; Chen, Tianbao; Shaw, Chris
2011-06-01
Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating "shotgun" cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog - the Fujian large-headed frog, Limnonectes fujianensis - and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 μM) and are devoid of haemolytic activity at concentrations up to 160 μM. Thus the "shotgun" cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells
Du, Yichen; Esfandi, Ramak; Willmore, William G.; Tsopmo, Apollinaire
2016-01-01
The purpose of this study was to determine, for the first time, antioxidant activities of seven peptides (P1–P7) derived from hydrolysis of oat proteins in a cellular model. In the oxygen radical absorbance capacity (ORAC) assay, it was found that P2 had the highest radical scavenging activity (0.67 ± 0.02 µM Trolox equivalent (TE)/µM peptide) followed by P5, P3, P6, P4, P1, and P7 whose activities were between 0.14–0.61 µM TE/µM). In the hepatic HepG2 cells, none of the peptides was cytotoxic at 20–300 µM. In addition to having the highest ORAC value, P2 was also the most protective (29% increase in cell viability) against 2,2′-azobis(2-methylpropionamidine) dihydrochloride -induced oxidative stress. P1, P6, and P7 protected at a lesser extent, with an 8%–21% increase viability of cells. The protection of cells was attributed to several factors including reduced production of intracellular reactive oxygen species, increased cellular glutathione, and increased activities of three main endogenous antioxidant enzymes. PMID:27775607
Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G
2016-05-20
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract
Becknell, Brian; Eichler, Tad; Beceiro, Susana; Li, Birong; Easterling, Robert; Carpenter, Ashley R.; James, Cindy; McHugh, Kirk M.; Hains, David S.; Partida-Sanchez, Santiago; Spencer, John David
2014-01-01
Recent evidence suggests antimicrobial peptides protect the urinary tract from infection. Ribonuclease 7 (RNase 7), a member of the RNase A superfamily, is a potent epithelial-derived protein that maintains human urinary tract sterility. RNase 7 expression is restricted to primates, limiting evaluation of its antimicrobial activity in vivo. Here we identified Ribonuclease 6 (RNase 6) as the RNase A Superfamily member present in humans and mice that is most conserved at the amino acid level relative to RNase 7. Like RNase 7, recombinant human and murine RNase 6 has potent antimicrobial activity against uropathogens. Quantitative real-time PCR and immunoblot analysis indicate that RNase 6 mRNA and protein are up-regulated in the human and murine urinary tract during infection. Immunostaining located RNase 6 to resident and infiltrating monocytes, macrophages, and neutrophils. Uropathogenic E. coli induces RNase 6 peptide expression in human CD14+ monocytes and murine bone marrow derived macrophages. Thus, RNase 6 is an inducible, myeloid-derived protein with markedly different expression from the epithelial-derived RNase 7 but with equally potent antimicrobial activity. Our studies suggest RNase 6 serves as an evolutionarily conserved antimicrobial peptide that participates in the maintenance of urinary tract sterility. PMID:25075772
Mammalian peptide isomerase: platypus-type activity is present in mouse heart.
Koh, Jennifer M S; Chow, Stephanie J P; Crossett, Ben; Kuchel, Philip W
2010-06-01
Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D-isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N-terminus from the L- to the D-form, and vice versa. A reversed-phase high-performance liquid chromatography (RP-HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin-like peptide-2 (DLP-2) and DLP-4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man.
Tuftsin - Properties and Analogs.
Siebert, Agnieszka; Gensicka-Kowalewska, Monika; Cholewinski, Grzegorz; Dzierzbicka, Krystyna
2017-11-17
Immunomodulation is one of the significant therapeutic strategies. It includes both stimulation and suppression of the immune system by a variety of substances called immunomodulators, designed to regulate the immune response of the organism against infections of varying etiology. An example of such a substance is tuftsin (TKPA) 3 (Fig. (1)). In this paper were included tuftsin derivatives, which were described over the years, their together with biological activity and clinical potential. We reviewed a bibliographic database to gather all the important information about the tuftsin peptide. We have delineated the significant information on the activity of the tetrapeptide itself and its derivatives. Analogs were divided because of their anti-tumor, anti-inflammatory, antimicrobial and anti-viral activity. This paper describes eighty-six documents. Thirty-two of them concern on activity of tuftsin in the human organism. The remaining fifty-four describe peptide analogues and their properties, including eleven papers about the tuftsin-based peptides contained in the vaccines, nine papers representing anticancer activity of the tuftsin derivatives, twenty-six about antiinflammatory compounds, and five papers describing the antitumor activity of the tuftsin analogs. The findings of this review confirm the importance of the tuftsin and their derivatives. Most of these substances showed anti-tumor, anti-inflammatory or antibacterial activities. A large amount of the compounds may find use in vaccines. Tuftsin can also be used to prepare fusion proteins in the treatment of cancer and as carriers of many biologically active substances. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Lopez-Clavijo, Andrea F.; Duque-Daza, Carlos A.; Romero Canelon, Isolda; Barrow, Mark P.; Kilgour, David; Rabbani, Naila; Thornalley, Paul J.; O'Connor, Peter B.
2014-04-01
Glycation is a post-translational modification (PTM) that affects the physiological properties of peptides and proteins. In particular, during hyperglycaemia, glycation by α-dicarbonyl compounds generate α-dicarbonyl-derived glycation products also called α-dicarbonyl-derived advanced glycation end products. Glycation by the α-dicarbonyl compound known as glyoxal was studied in model peptides by MS/MS using a Fourier transform ion cyclotron resonance mass spectrometer. An unusual type of glyoxal-derived AGE with a mass addition of 21.98436 Da is reported in peptides containing combinations of two arginine-two lysine, and one arginine-three lysine amino acid residues. Electron capture dissociation and collisionally activated dissociation results supported that the unusual glyoxal-derived AGE is formed at the guanidino group of arginine, and a possible structure is proposed to illustrate the 21.9843 Da mass addition.
D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.
Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui
2017-10-01
With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Eckert, Ewelina; Zambrowicz, Aleksandra; Pokora, Marta; Setner, Bartosz; Dąbrowska, Anna; Szołtysik, Marek; Szewczuk, Zbigniew; Polanowski, Antoni; Trziszka, Tadeusz; Chrzanowska, Józefa
2014-10-14
In the present study angiotensin I-converting enzyme (ACE) inhibitory peptides were isolated from egg-yolk protein preparation (YP). Enzymatic hydrolysis conducted using unconventional enzyme from Cucurbita ficifolia (dose: 1000 U/mg of hydrolyzed YP (E/S (w/w)=1:7.52)) was employed to obtain protein hydrolysates. The 4-h hydrolysate exhibited a significant (IC₅₀=482.5 μg/mL) ACE inhibitory activity. Moreover, hydrolysate showed no cytotoxic activity on human and animal cell lines which makes it a very useful multifunctional method for peptide preparation. The compiled isolation procedure (ultrafiltration, size-exclusion chromatography and RP-HPLC) of bioactive peptides from YP hydrolysate resulted in obtaining peptides with the strong ACE inhibitory activity. One homogeneous and three heterogeneous peptide fractions were identified. The peptides were composed of 9-18 amino-acid residues, including mainly arginine and leucine at the N-terminal positions. To confirm the selected bioactive peptide sequences their analogs were chemically synthesized and tested. Peptide LAPSLPGKPKPD showed the strongest ACE inhibitory activity, with IC₅₀ value of 1.97 μmol/L. Peptides with specific biological activity can be used in pharmaceutical, cosmetic or food industries. Because of their potential role as physiological modulators, as well as theirhigh safety profile, they can be used as natural pharmacological compounds or functional food ingredients. The development of biotechnological solutions to obtain peptides with desired biological activity is already in progress. Studies in this area are focused on using unconventional highly specific enzymes and more efficient methods developed to conduct food process technologies. Natural peptides have many advantages. They are mainly toxicologically safe, have wide spectra of therapeutic actions, exhibit less side effects compared to synthetic drugs and are more efficiently absorbed in the intestinal tract. The complexity of operation of large scale technologies and high cost of purification techniques are limiting factors to the commercialization of food-derived bioactive peptides. Research on the isolation of bioactive peptides in order to reduce the processing time and costs is continuously developing. Bioactive peptides can also be released from protein by-products of the food industry, which reduce the substrate expense and production cost as well as provide the added advantage of an efficient waste disposal. Moreover, proteins as precursors of food-derived peptides are well-tolerated by the human body and therefore their application in drug development may reduce costs and duration of toxicological studies during research, development and clinical trials. Copyright © 2014 Elsevier B.V. All rights reserved.
Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin.
Falcao, Loeni L; Silva-Werneck, Joseilde O; Ramos, Alessandra de R; Martins, Natalia F; Bresso, Emmanuel; Rodrigues, Magali A; Bemquerer, Marcelo P; Marcellino, Lucilia H
2016-05-01
The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC=40μM and MIC=127μM, respectively), as well as for P. pastoris (MIC=20μM and MIC=127μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi. Copyright © 2016 Elsevier Inc. All rights reserved.
Yu, Huifeng; Tudor, Daniela; Alfsen, Annette; Labrosse, Beatrice; Clavel, François; Bomsel, Morgane
2008-01-01
The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor. PMID:18925934
The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells.
Huang, Hsiu-Chin; Lin, Hsuan; Huang, Min-Chuan
2017-03-01
Lactoferricin B (LfcinB), a peptide of bovine lactoferrin (LfB), exhibits multiple biological functions, including antimicrobial, antiviral, antioxidant and immunomodulatory activities. However, the role of LfcinB-related peptides in melanogenesis remains unclear. In this study, a set of five LfcinB-related peptides was examined. We found that LfB17‑34, an 18-mer LfcinB-derived peptide, increased melanogenesis in B16F10 melanoma cells without significantly affecting cell viability. LfB17‑34 increased in vitro tyrosinase activity and melanin content in a dose-dependent manner. The results of RT-qPCR and western blot analyses showed that LfB17‑34 increased the mRNA and protein expression of tyrosinase and tyrosinase-related protein 1 (Trp1). Moreover, LfB17‑34 inhibited the phosphorylation of MAPK/Erk, but not p38 and Akt, and constitutively active MEK was able to reverse the LfB17-34-enhanced pigmentation, melanin content, and tyrosinase activity, suggesting a role of Erk signaling in the process of LfB17‑34-mediated pigmentation. Taken together, these results suggest that LfB17‑34 induces melanogenesis in B16F10 cells primarily through increased tyrosinase expression and activity and that LfB17‑34 could be further developed for the treatment of hypopigmentation disorders.
The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells
Huang, Hsiu-Chin; Lin, Hsuan; Huang, Min-Chuan
2017-01-01
Lactoferricin B (LfcinB), a peptide of bovine lactoferrin (LfB), exhibits multiple biological functions, including antimicrobial, antiviral, antioxidant and immuno-modulatory activities. However, the role of LfcinB-related peptides in melanogenesis remains unclear. In this study, a set of five LfcinB-related peptides was examined. We found that LfB17-34, an 18-mer LfcinB-derived peptide, increased melanogenesis in B16F10 melanoma cells without significantly affecting cell viability. LfB17-34 increased in vitro tyrosinase activity and melanin content in a dose-dependent manner. The results of RT-qPCR and western blot analyses showed that LfB17-34 increased the mRNA and protein expression of tyrosinase and tyrosinase-related protein 1 (Trp1). Moreover, LfB17-34 inhibited the phosphorylation of MAPK/Erk, but not p38 and Akt, and constitutively active MEK was able to reverse the LfB17-34-enhanced pigmentation, melanin content, and tyrosinase activity, suggesting a role of Erk signaling in the process of LfB17-34-mediated pigmentation. Taken together, these results suggest that LfB17-34 induces melanogenesis in B16F10 cells primarily through increased tyrosinase expression and activity and that LfB17-34 could be further developed for the treatment of hypopigmentation disorders. PMID:28204812
Fricker, Lloyd D.
2010-01-01
Peptides are known to play many important physiological roles in signaling. A large number of peptides have been detected in mouse brain extracts using mass spectrometry-based peptidomics studies, and 850 peptides have been identified. Half of these peptides are derived from secretory pathway proteins and many are known bioactive neuropeptides which activate G protein-coupled receptors; these are termed “classical neuropeptides.” In addition, 427 peptides were identified that are derived from non-secretory pathway proteins; the majority are cystosolic, and the remainder are mitochondrial, nuclear, lysosomal, or membrane proteins. Many of these peptides represent the N- or C-terminus of the protein, rather than internal fragments, raising the possibility that they are formed by selective processing rather than protein degradation. In addition to consideration of the cleavage site required to generate the intracellular peptides, their potential functions are discussed. Several of the cytosolic peptides were previously found to interact with receptors and/or otherwise influence cellular activity; examples include hemophins, hemopressins, diazepam binding inhibitor, and hippocampal cholinergic neurostimulating peptide. The possibility that these peptides are secreted from cells and function in cell-cell signaling is discussed. If these intracellular peptides can be shown to be secreted in levels sufficient to produce a biological effect, they would appropriately be called “non-classical neuropeptides” by analogy with non-classical neurotransmitters such as nitric oxide and anandamide. It is also possible that intracellular peptides function as “microproteins” and modulate protein-protein interactions; evidence for this function is discussed, along with future directions that are needed to establish this and other possible functions for peptides. PMID:20428524
Soluble elastin peptides in cardiovascular homeostasis: Foe or ally.
Qin, Zhenyu
2015-05-01
Elastin peptides, also known as elastin-derived peptides or elastokines, are soluble polypeptides in blood and tissue. The blood levels of elastin peptides are usually low but can increase during cardiovascular diseases, such as atherosclerosis, aortic aneurysm and diabetes with vascular complications. Generally, elastin peptides are derived from the degradation of insoluble elastic polymers. The biological activities of elastin peptides are bidirectional, e.g., a pro-inflammatory effect on monocyte migration induction vs. a protective effect on vasodilation promotion. However, recent in vivo studies have demonstrated that elastin peptides promote the formation of atherosclerotic plaques in hypercholesterolemic mice and induce hyperglycemia and elevations in plasma lipid levels in fasted mice. More important, the detrimental effects induced by elastin peptides can be largely inhibited by genetic or pharmacological blockade of the elastin receptor complex or by neutralization of an antibody against elastin peptides. These studies indicate new therapeutic strategies for the treatment of cardiovascular diseases by targeting elastin peptide metabolism. Therefore, the goal of this review is to summarize current knowledge about elastin peptides relevant to cardiovascular pathologies to further delineate their potential application in cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Pereira, H. Anne; Tsyshevskaya-Hoover, Irina; Hinsley, Heather; Logan, Sreemathi; Nguyen, Melissa; Nguyen, Thuy-Trang; Pohl, Jan; Wozniak, Karen; Fidel, Paul L.
2009-01-01
The primary bactericidal domain of CAP37, a cationic antimicrobial protein with potent activity against Gram-negative organisms was previously shown to reside between amino acids 20 through 44 (NQGRHFCGGALIHARFVMTAASCFQ) of the native protein. In this study, we explored the efficacy of four synthetic CAP37 peptide analogs, based on this sequence, against various Candida species including fluconazole-sensitive and -resistant isolates of C. albicans. Three of the peptides demonstrated strong antifungal activity for C. albicans, including fluconazole-resistant isolates of C. albicans and were active against C. guilliermondii, C. tropicalis, C. pseudotropicalis, C. parapsilosis, and C. dubliniensis. The peptides were ineffective against C. glabrata, C. krusei, and Saccharomyces cerevisiae. For C. albicans isolates, the peptides had relatively greater activity against blastoconidia than hyphal forms, although strong antifungal activity was observed with pseudohyphal forms of the various Candida species tested. Kinetic studies demonstrated fungicidal rather than fungistatic activity. These findings indicate that synthetic peptides based on the antimicrobial domain of CAP37 also have activity against eukaryotic organisms suggesting a broader range of activity than originally demonstrated and show for the first time their potent fungicidal activity. PMID:19626550
Binkowski, Brock F; Miller, Russell A; Belshaw, Peter J
2005-07-01
We engineered a novel ligand-regulated peptide (LiRP) system where the binding activity of intracellular peptides is controlled by a cell-permeable small molecule. In the absence of ligand, peptides expressed as fusions in an FKBP-peptide-FRB-GST LiRP scaffold protein are free to interact with target proteins. In the presence of the ligand rapamycin, or the nonimmunosuppressive rapamycin derivative AP23102, the scaffold protein undergoes a conformational change that prevents the interaction of the peptide with the target protein. The modular design of the scaffold enables the creation of LiRPs through rational design or selection from combinatorial peptide libraries. Using these methods, we identified LiRPs that interact with three independent targets: retinoblastoma protein, c-Src, and the AMP-activated protein kinase. The LiRP system should provide a general method to temporally and spatially regulate protein function in cells and organisms.
Wang, Haili; Chen, Xi; Chen, Yanping; Sun, Lei; Li, Guodong; Zhai, Mingxia; Zhai, Wenjie; Kang, Qiaozhen; Gao, Yanfeng; Qi, Yuanming
2013-02-01
CyclinD1/CDK4 and cyclinD3/CDK4 complexes are key regulators of the cell progression and therefore constitute promising targets for the design of anticancer agents. In the present study, the key peptide motifs were selected from these two complexes. Chimeric peptides with these peptides conjugated to the protein transduction domain 4 (PTD4) were designed and synthesized. The chimeric peptides, PTD4-D1, PTD4-D3, PTD4-K4 exhibited significant anti-proliferation effects on cancer cell lines. These peptides could compete with the cyclinD/CDK4 complex and induce the G1/S phase arrest and apoptosis of cancer cells. In the tumor challenge experiment, these peptides showed potent antitumor effects with no significant side effects. Our results suggested that these peptides could be served as novel leading compounds with potent antitumor activity.
Nakamura, H; Iwamoto, M; Ogata, T; Washida, K; Sekine, K; Takase, M; Park, B J; Morikawa, T; Miyazaki, Y
2008-01-01
This study examined the influence of milk casein-derived peptides on cerebral activity after mental stress loading. In a crossover study, 16 male students were given a drink containing peptides (peptide group), or water (control group) before stress loading. The oxyhaemoglobin (HbO(2)) concentration in the prefrontal area of the brain and work efficiency were measured as indicators of cerebral activity and differences in these parameters were examined according to type A or type B personality. Type A behaviour was defined as: aggression-hostility, hard-driving-time-urgency and speed-power, whereas type B behaviour did not have these characteristics. Peptide intake resulted in a significant increase in both HbO(2) concentration and work efficiency, whilst a similar increase was not seen in the control group. When divided into type A or type B personality, the changes in HbO(2) concentration for the control group differed significantly in the right prefrontal area. Moreover, in type A subjects the HbO(2) concentration in the right prefrontal area following intake was significantly different between the peptide and control groups.
Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep
2016-10-26
Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.
Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep
2016-01-01
Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs. PMID:27792168
Bruni, Natascia; Capucchio, Maria Teresa; Biasibetti, Elena; Pessione, Enrica; Cirrincione, Simona; Giraudo, Leonardo; Corona, Antonio; Dosio, Franco
2016-06-11
Antimicrobial peptides (AMPs) represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf) is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1-11), lactoferricin (Lfcin) and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases).
Converting a Staphylococcus aureus toxin into effective cyclic pseudopeptide antibiotics.
Solecki, Olivia; Mosbah, Amor; Baudy Floc'h, Michèle; Felden, Brice
2015-03-19
Staphylococcus aureus produces peptide toxins that it uses to respond to environmental cues. We previously characterized PepA1, a peptide toxin from S. aureus, that induces lytic cell death of both bacterial and host cells. That led us to suggest that PepA1 has an antibacterial activity. Here, we demonstrate that exogenously provided PepA1 has activity against both Gram-positive and Gram-negative bacteria. We also see that PepA1 is significantly hemolytic, thus limiting its use as an antibacterial agent. To overcome these limitations, we converted PepA1 into nonhemolytic derivatives. Our most promising derivative is a cyclic heptapseudopeptide with inconsequential toxicity to human cells, enhanced stability in human sera, and sharp antibacterial activity. Mechanistically, linear and helical PepA1 derivatives form pores at the bacterial and erythrocyte surfaces, while the cyclic peptide induces bacterial envelope reorganization, with insignificant action on the erythrocytes. Our work demonstrates that bacterial toxins might be an attractive starting point for antibacterial drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ahn, Mija; Murugan, Ravichandran N; Jacob, Binu; Hyun, Jae-Kyung; Cheong, Chaejoon; Hwang, Eunha; Park, Hyo-Nam; Seo, Ji-Hyung; Srinivasrao, G; Lee, Kyung S; Shin, Song Yub; Bang, Jeong Kyu
2013-10-01
Here we report for the first time the synthesis of Histidine (His) derived lipo-amino acids having pendant lipid tails at N(τ)- and N(π)-positions on imidazole group of His and applied it into synthesis of lipo-peptides. The attachment of His-derived lipo-amino acid into the very short inactive cationic peptides endows potent antimicrobial activity against Gram-positive and Gram-negative bacteria without hemolytic activity. Furthermore, our designed His-derived lipo-peptidomimetics (HDLPs) consisting of two or three residues displayed strong anti-MRSA activity and protease stability as well as retained potent antimicrobial activity under high salt concentration. Our results demonstrate that the novel lipo-amino acid is highly flexible to synthesize and carry out the extensive structure-activity relationship (SAR) on lipo-antimicrobial peptidomimetics and represents a unique amenable platform for modifying parameters important for antimicrobial activity. Through this study, we proved that the discovery of His-derived lipo-amino acid and the corresponding HDLPs are an excellent candidate as a lead compound for the development of novel antimicrobial agents. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Meat and fermented meat products as a source of bioactive peptides.
Stadnik, Joanna; Kęska, Paulina
2015-01-01
Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.
Biological activity of Tat (47-58) peptide on human pathogenic fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hyun Jun; Park, Yoonkyung; Department of Biotechnology, Chosun University, 375 Seosuk-dong, Kwangju 501-750
2006-06-23
Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol;more » 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase.« less
Biological activity of Tat (47-58) peptide on human pathogenic fungi.
Jung, Hyun Jun; Park, Yoonkyung; Hahm, Kyung-Soo; Lee, Dong Gun
2006-06-23
Tat (47-58) peptide, a positively charged Arginine-rich peptide derived from HIV-1 regulatory protein Tat, is known for a peptidic delivery factor as a cell-penetrating peptide on mammalian cells. In this study, antifungal effect and its mode of action of Tat peptide were investigated on fungal cells. The results indicate that Tat peptide exhibits antifungal activity against pathogenic fungal cells without hemolytic effect on human erythrocytes. To understand the mechanism(s) of Tat peptide, the cellular distribution of the peptide was investigated. Tat peptide internalized in the fungal cells without any damage to cell membrane when examined using an artificial liposome (PC/cholesterol; 10:1, w/w). Moreover, flow cytometry analysis exhibited the uptake of Tat peptide by energy- and salt-independent pathway, and confocal scanning microscopy displayed that this peptide accumulated in the nucleus of fungal cells rapidly without any impediment by time or temperature, which generally influence on the viral infections. After penetration into the nuclear, the peptide affected the process of cell cycle of Candida albicans through the arrest at G1 phase.
Inhibition of trypanosomal cysteine proteinases by their propeptides.
Lalmanach, G; Lecaille, F; Chagas, J R; Authié, E; Scharfstein, J; Juliano, M A; Gauthier, F
1998-09-25
The ability of the prodomains of trypanosomal cysteine proteinases to inhibit their active form was studied using a set of 23 overlapping 15-mer peptides covering the whole prosequence of congopain, the major cysteine proteinase of Trypanosoma congolense. Three consecutive peptides with a common 5-mer sequence YHNGA were competitive inhibitors of congopain. A shorter synthetic peptide consisting of this 5-mer sequence flanked by two Ala residues (AYHNGAA) also inhibited purified congopain. No residue critical for inhibition was identified in this sequence, but a significant improvement in Ki value was obtained upon N-terminal elongation. Procongopain-derived peptides did not inhibit lysosomal cathepsins B and L but did inhibit native cruzipain (from Dm28c clone epimastigotes), the major cysteine proteinase of Trypanosoma cruzi, the proregion of which also contains the sequence YHNGA. The positioning of the YHNGA inhibitory sequence within the prosegment of trypanosomal proteinases is similar to that covering the active site in the prosegment of cysteine proteinases, the three-dimensional structure of which has been resolved. This strongly suggests that trypanosomal proteinases, despite their long C-terminal extension, have a prosegment that folds similarly to that in related mammal and plant cysteine proteinases, resulting in reverse binding within the active site. Such reverse binding could also occur for short procongopain-derived inhibitory peptides, based on their resistance to proteolysis and their ability to retain inhibitory activity after prolonged incubation. In contrast, homologous peptides in related cysteine proteinases did not inhibit trypanosomal proteinases and were rapidly cleaved by these enzymes.
Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K.; Karimi, Tahereh
2015-01-01
An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73–92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005–0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the total concentration. PMID:25051457
Xiong, Shengwen; Borrego, Pedro; Ding, Xiaohui; Zhu, Yuanmei; Martins, Andreia; Chong, Huihui
2016-01-01
ABSTRACT Human immunodeficiency virus type 2 (HIV-2) has already spread to different regions worldwide, and currently about 1 to 2 million people have been infected, calling for new antiviral agents that are effective on both HIV-1 and HIV-2 isolates. T20 (enfuvirtide), a 36-mer peptide derived from the C-terminal heptad repeat region (CHR) of gp41, is the only clinically approved HIV-1 fusion inhibitor, but it easily induces drug resistance and is not active on HIV-2. In this study, we first demonstrated that the M-T hook structure was also vital to enhancing the binding stability and inhibitory activity of diverse CHR-based peptide inhibitors. We then designed a novel short peptide (23-mer), termed 2P23, by introducing the M-T hook structure, HIV-2 sequences, and salt bridge-forming residues. Promisingly, 2P23 was a highly stable helical peptide with high binding to the surrogate targets derived from HIV-1, HIV-2, and simian immunodeficiency virus (SIV). Consistent with this, 2P23 exhibited potent activity in inhibiting diverse subtypes of HIV-1 isolates, T20-resistant HIV-1 mutants, and a panel of primary HIV-2 isolates, HIV-2 mutants, and SIV isolates. Therefore, we conclude that 2P23 has high potential to be further developed for clinical use, and it is also an ideal tool for exploring the mechanisms of HIV-1/2- and SIV-mediated membrane fusion. IMPORTANCE The peptide drug T20 is the only approved HIV-1 fusion inhibitor, but it is not active on HIV-2 isolates, which have currently infected 1 to 2 million people and continue to spread worldwide. Recent studies have demonstrated that the M-T hook structure can greatly enhance the binding and antiviral activities of gp41 CHR-derived inhibitors, especially for short peptides that are otherwise inactive. By combining the hook structure, HIV-2 sequence, and salt bridge-based strategies, the short peptide 2P23 has been successfully designed. 2P23 exhibits prominent advantages over many other peptide fusion inhibitors, including its potent and broad activity on HIV-1, HIV-2, and even SIV isolates, its stability as a helical, oligomeric peptide, and its high binding to diverse targets. The small size of 2P23 would benefit its synthesis and significantly reduce production cost. Therefore, 2P23 is an ideal candidate for further development, and it also provides a novel tool for studying HIV-1/2- and SIV-mediated cell fusion. PMID:27795437
Neuroprotective Role of a Brain-Enriched Tyrosine Phosphatase, STEP, in Focal Cerebral Ischemia
Deb, Ishani; Manhas, Namratta; Poddar, Ranjana; Rajagopal, Sathyanarayanan; Allan, Andrea M.; Lombroso, Paul J.; Rosenberg, Gary A.; Candelario-Jalil, Eduardo
2013-01-01
The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy. PMID:24198371
Small Peptides Derived from Penetratin as Antibacterial Agents.
Parravicini, Oscar; Somlai, Csaba; Andujar, Sebastián A; Garro, Adriana D; Lima, Beatriz; Tapia, Alejandro; Feresin, Gabriela; Perczel, Andras; Tóth, Gabor; Cascales, Javier López; Rodríguez, Ana M; Enriz, Ricardo D
2016-04-01
The synthesis, in vitro evaluation and conformational study of several small-size peptides acting as antibacterial agents are reported. Among the compounds evaluated, the peptides Arg-Gln-Ile-Lys-Ile-Trp-Arg-Arg-Met-Lys-Trp-Lys-Lys-NH2 , Arg-Gln-Ile-Lys-Ile-Arg-Arg-Met-Lys-Trp-Arg-NH2 , and Arg-Gln-Ile-Trp-Trp-Trp-Trp-Gln-Arg-NH2 exhibited significant antibacterial activity. These were found to be very active antibacterial compounds, considering their small molecular size. In order to better understand the antibacterial activity obtained for these peptides, an exhaustive conformational analysis was performed, using both theoretical calculations and experimental measurements. Molecular dynamics simulations using two different media (water and trifluoroethanol/water) were employed. The results of these theoretical calculations were corroborated by experimental circular dichroism measurements. A brief discussion on the possible mechanism of action of these peptides at molecular level is also presented. Some of the peptides reported here constitute very interesting structures to be used as starting compounds for the design of new small-size peptides possessing antibacterial activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferri, Maura; Graen-Heedfeld, Jürgen; Bretz, Karlheinz; Guillon, Fabien; Michelini, Elisa; Calabretta, Maria Maddalena; Lamborghini, Matteo; Gruarin, Nicolò; Roda, Aldo; Kraft, Axel
2017-01-01
Recently, the isolation of new health-related bioactive molecules derived from agro-food industrial by-products by means of environment-friendly extraction processes has become of particular interest. In the present study, a protein by-product from the rice starch industry was hydrolysed with five commercial proteolytic enzymes, avoiding the use of solvents or chemicals. The digestion processes were optimised, and the digestates were separated in fractions with four different molecular weight ranges by using a cross-flow membrane filtration technique. Total hydrolysates and fractions were tested in vitro for a wide range of biological activities. For the first time rice-derived peptides were assayed for anti-tyrosinase, anti-inflammatory, cytotoxicity and irritation capacities. Antioxidant and anti-hypertensive activities were also evaluated. Protamex, Alcalase and Neutrase treatments produced peptide fractions with valuable bioactivities without resulting cytotoxic or irritant. Highest levels of bioactivity were detected in Protamex-derived samples, followed by samples treated with Alcalase. Based on the present results, a future direct exploitation of isolated peptide fractions in the nutraceutical, functional food and cosmetic industrial fields may be foreseen. PMID:28125712
Vasilchenko, Alexey S; Dymova, Veronica V; Kartashova, Olga L; Sycheva, Maria V
2015-03-01
Classical microbiological approach and atomic force microscopy were used to evaluate the mechanisms of biological activity of antimicrobial peptides (AMPs) derived from platelets of farm animals. It is established that AMPs inhibit both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms. Differences revealed in the biological activity of AMP preparations obtained from the organisms of various species can be reduced to quantitative differences. While qualitative changes of bacterial cells were substantially similar, changes in the integrity of cell walls resulted in disintegration of the bacterial outer and/or cytoplasmic membranes.
Asari, Tomo; Takayama, Kentaro; Nakamura, Akari; Shimada, Takahiro; Taguchi, Akihiro; Hayashi, Yoshio
2017-01-12
Myostatin inhibition is one of the promising strategies for treating muscle atrophic disorders, including muscular dystrophy. It is well-known that the myostatin prodomain derived from the myostatin precursor acts as an inhibitor of mature myostatin. In our previous study, myostatin inhibitory minimum peptide 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) was discovered from the mouse myostatin prodomain. In the present study, alanine scanning of 1 demonstrated that the key amino acid residues for the effective inhibitory activity are rodent-specific Tyr and C-terminal aliphatic residues, in addition to N-terminal Trp residue. Subsequently, we designed five Pro-substituted peptides and examined the relationship between secondary structure and inhibitory activity. As a result, we found that Pro-substitutions of Ala or Gln residues around the center of 1 significantly decreased both α-helicity and inhibitory activity. These results suggested that an α-helical structure possessing hydrophobic faces formed around the C-terminus is important for inhibitory activity.
Solarte, Víctor A.; Rosas, Jaiver E.; Rivera, Zuly J.; Arango-Rodríguez, Martha L.; García, Javier E.; Vernot, Jean-Paul
2015-01-01
Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC. PMID:26609531
Identification and the molecular mechanism of a novel myosin-derived ACE inhibitory peptide.
Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Shiuan, David; Chen, Feng; Li, Jianrong; Liu, Jingbo
2018-01-24
The objective of this work was to identify a novel ACE inhibitory peptide from myosin using a number of in silico methods. Myosin was evaluated as a substrate for use in the generation of ACE inhibitory peptides using BIOPEP and ExPASy PeptideCutter. Then the ACE inhibitory activity prediction of peptides in silico was evaluated using the program peptide ranker, following the database search of known and unknown peptides using the program BIOPEP. In addition, the interaction mechanisms of the peptide and ACE were evaluated by DS. All of the tripeptides were predicted to be nontoxic. Results suggested that the tripeptide NCW exerted potent ACE inhibitory activity with an IC 50 value of 35.5 μM. Furthermore, the results suggested that the peptide NCW comes into contact with Zn 701, Tyr 523, His 383, Glu 384, Glu 411, and His 387. The potential molecular mechanism of the NCW/ACE interaction was investigated. Results confirmed that the higher inhibitory potency of NCW might be attributed to the formation of more hydrogen bonds with the ACE's active site. Therefore, the in silico method is effective to predict and identify novel ACE inhibitory peptides from protein hydrolysates.
Perspective of Use of Antiviral Peptides against Influenza Virus
Skalickova, Sylvie; Heger, Zbynek; Krejcova, Ludmila; Pekarik, Vladimir; Bastl, Karel; Janda, Jozef; Kostolansky, Frantisek; Vareckova, Eva; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene
2015-01-01
The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20th century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides. PMID:26492266
Antibody-independent identification of bovine milk-derived peptides in breast-milk.
Picariello, Gianluca; Addeo, Francesco; Ferranti, Pasquale; Nocerino, Rita; Paparo, Lorella; Passariello, Annalisa; Dallas, David C; Robinson, Randall C; Barile, Daniela; Canani, Roberto Berni
2016-08-10
Exclusively breast-fed infants can exhibit clear signs of IgE or non IgE-mediated cow's milk allergy. However, the definite characterization of dietary cow's milk proteins (CMP) that survive the maternal digestive tract to be absorbed into the bloodstream and secreted into breast milk remains missing. Herein, we aimed at assessing possible CMP-derived peptides in breast milk. Using high performance liquid chromatography (HPLC)-high resolution mass spectrometry (MS), we compared the peptide fraction of breast milk from 12 donors, among which 6 drank a cup of milk daily and 6 were on a strict dairy-free diet. We identified two bovine β-lactoglobulin (β-Lg, 2 out 6 samples) and one αs1-casein (1 out 6 samples) fragments in breast milk from mothers receiving a cup of bovine milk daily. These CMP-derived fragments, namely β-Lg (f42-54), (f42-57) and αs1-casein (f180-197), were absent in milk from mothers on dairy-free diet. In contrast, neither intact nor hydrolyzed β-Lg was detected by western blot and competitive ELISA in any breast milk sample. Eight additional bovine milk-derived peptides identified by software-assisted MS were most likely false positive. The results of this study demonstrate that CMP-derived peptides rather than intact CMP may sensitize or elicit allergic responses in the neonate through mother's milk. Immunologically active peptides from the maternal diet could be involved in priming the newborn's immune system, driving a tolerogenic response.
Chemopreventive role of food-derived proteins and peptides: A review.
Hernández-Ledesma, Blanca; Hsieh, Chia-Chien
2017-07-24
Cancer is one of the leading causes of mortality and disability worldwide. Although great advances in cancer treatments such as chemotherapy, surgery, and radiation are currently being achieved, their application is associated with numerous and expensive adverse side effects. Epidemiological evidence has demonstrated that the consumption of certain foods potentially prevents up to 35% of cancer cases. Bioactive components are ubiquitous in nature, also in dietary food, providing an essential link in health maintenance, promotion, and prevention of chronic diseases, such as cancer. Development of bioactive proteins and peptides is a current and innovative strategy for cancer prevention/cure. A growing body of anticancer protein and peptides from natural sources has shown the ability to reduce tumor progression through multiple mechanisms including apoptotic, antiproliferative, antiangiogenic, and immunomodulatory activities. This review is focused on proteins and peptides from different food sources including plants, milk, egg, and marine organisms in which chemopreventive properties have been demonstrated. Other aspects such as mechanism of action, bioavailability, and identification and characterization of food-derived peptides by advance separated technologies are also included. This review highlights the potential application of food-derived peptides as functional food ingredients and pharmaceutical candidates in the auxiliary therapy of cancer.
Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar
2014-10-01
Despite favorable advancements in therapy cancer is still not curative in many cases, which is often due to inadequate specificity for tumor cells. In this study derivatives of a short cationic peptide derived from the human host defense peptide lactoferricin were optimized in their selective toxicity towards cancer cells. We proved that the target of these peptides is the negatively charged membrane lipid phosphatidylserine (PS), specifically exposed on the surface of cancer cells. We have studied the membrane interaction of three peptides namely LF11-322, its N-acyl derivative 6-methyloctanoyl-LF11-322 and its retro repeat derivative R(etro)-DIM-P-LF11-322 with liposomes mimicking cancerous and non-cancerous cell membranes composed of PS and phosphatidylcholine (PC), respectively. Calorimetric and permeability studies showed that N-acylation and even more the repeat derivative of LF11-322 leads to strongly improved interaction with the cancer mimic PS, whereas only the N-acyl derivative also slightly affects PC. Tryptophan fluorescence of selective peptide R-DIM-P-LF11-322 revealed specific peptide penetration into the PS membrane interface and circular dichroism showed change of its secondary structure by increase of proportion of β-sheets just in the presence of the cancer mimic. Data correlated with in vitro studies with cell lines of human melanomas, their metastases and melanocytes, revealing R-DIM-P-LF11-322 to exhibit strongly increased specificity for cancer cells. This indicates the need of high affinity to the target PS, a minimum length and net positive charge, an adequate but moderate hydrophobicity, and capability of adoption of a defined structure exclusively in presence of the target membrane for high antitumor activity.
Tongaonkar, Prasad; Golji, Amir E.; Tran, Patti; Ouellette, André J.; Selsted, Michael E.
2012-01-01
The azurophilic granules of human neutrophils contain four α-defensins called human neutrophil peptides (HNPs 1–4). HNPs are tridisulfide-linked antimicrobial peptides involved in the intracellular killing of organisms phagocytosed by neutrophils. The peptides are produced as inactive precursors (proHNPs) which are processed to active microbicides by as yet unidentified convertases. ProHNP1 was expressed in E. coli and the affinity-purified propeptide isolated as two species, one containing mature HNP1 sequence with native disulfide linkages (“folded proHNP1”) and the other containing non-native disulfide linked proHNP1 conformers (misfolded proHNP1). Native HNP1, liberated by CNBr treatment of folded proHNP1, was microbicidal against Staphylococcus aureus, but the peptide derived from misfolded proHNP1 was inactive. We hypothesized that neutrophil elastase (NE), proteinase 3 (PR3) or cathepsin G (CG), serine proteases that co-localize with HNPs in azurophil granules, are proHNP1 activating convertases. Folded proHNP1 was converted to mature HNP1 by both NE and PR3, but CG generated an HNP1 variant with an N-terminal dipeptide extension. NE and PR3 cleaved folded proHNP1 to produce a peptide indistinguishable from native HNP1 purified from neutrophils, and the microbicidal activities of in vitro derived and natural HNP1 peptides were equivalent. In contrast, misfolded proHNP1 conformers were degraded extensively under the same conditions. Thus, NE and PR3 possess proHNP1 convertase activity that requires the presence of the native HNP1 disulfide motif for high fidelity activation of the precursor in vitro. PMID:22448222
Tongaonkar, Prasad; Golji, Amir E; Tran, Patti; Ouellette, André J; Selsted, Michael E
2012-01-01
The azurophilic granules of human neutrophils contain four α-defensins called human neutrophil peptides (HNPs 1-4). HNPs are tridisulfide-linked antimicrobial peptides involved in the intracellular killing of organisms phagocytosed by neutrophils. The peptides are produced as inactive precursors (proHNPs) which are processed to active microbicides by as yet unidentified convertases. ProHNP1 was expressed in E. coli and the affinity-purified propeptide isolated as two species, one containing mature HNP1 sequence with native disulfide linkages ("folded proHNP1") and the other containing non-native disulfide linked proHNP1 conformers (misfolded proHNP1). Native HNP1, liberated by CNBr treatment of folded proHNP1, was microbicidal against Staphylococcus aureus, but the peptide derived from misfolded proHNP1 was inactive. We hypothesized that neutrophil elastase (NE), proteinase 3 (PR3) or cathepsin G (CG), serine proteases that co-localize with HNPs in azurophil granules, are proHNP1 activating convertases. Folded proHNP1 was converted to mature HNP1 by both NE and PR3, but CG generated an HNP1 variant with an N-terminal dipeptide extension. NE and PR3 cleaved folded proHNP1 to produce a peptide indistinguishable from native HNP1 purified from neutrophils, and the microbicidal activities of in vitro derived and natural HNP1 peptides were equivalent. In contrast, misfolded proHNP1 conformers were degraded extensively under the same conditions. Thus, NE and PR3 possess proHNP1 convertase activity that requires the presence of the native HNP1 disulfide motif for high fidelity activation of the precursor in vitro.
Di Grazia, Antonio; Cappiello, Floriana; Cohen, Hadar; Casciaro, Bruno; Luca, Vincenzo; Pini, Alessandro; Di, Y Peter; Shai, Yechiel; Mangoni, Maria Luisa
2015-12-01
Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.
Lee, Yeji; Phat, Chanvorleak; Hong, Soon-Cheol
2017-09-01
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides. Copyright © 2017 Elsevier Inc. All rights reserved.
Kashibe, Masayoshi; Matsumoto, Kengo; Hori, Yuichiro
2017-01-01
Controlled release is one of the key technologies for medical innovation, and many stimulus-responsive nanocarriers have been developed to utilize this technology. Enzyme activity is one of the most useful stimuli, because many enzymes are specifically activated in diseased tissues. However, controlled release stimulated by enzyme activity has not been frequently reported. One of the reasons for this is the lack of versatility of carriers. Most of the reported stimulus-responsive systems involve a sophisticated design and a complicated process for the synthesis of stimulus-responsive nanocarrier components. The purpose of this study was to develop versatile controlled release systems triggered by various stimuli, including enzyme activity, without modifying the nanocarrier components. We developed two controlled release systems, both of which comprised a liposome as the nanocarrier and a membrane-damaging peptide, temporin L (TL), and its derivatives as the release-controllers. One system utilized branched peptides for proteases, and the other utilized phosphopeptides for phosphatases. In our systems, the target enzymes converted the non-membrane-damaging TL derivatives into membrane-damaging peptides and released the liposome inclusion. We demonstrated the use of our antimicrobial peptide-based controlled release systems for different enzymes and showed the promise of this technology as a novel theranostic tool. PMID:28451373
Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon
2014-01-15
Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Majumder, Kaustav; Wu, Jianping
2014-12-24
There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.
Majumder, Kaustav; Wu, Jianping
2014-01-01
There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides. PMID:25547491
Identification of the minimum peptide from mouse myostatin prodomain for human myostatin inhibition.
Takayama, Kentaro; Noguchi, Yuri; Aoki, Shin; Takayama, Shota; Yoshida, Momoko; Asari, Tomo; Yakushiji, Fumika; Nishimatsu, Shin-ichiro; Ohsawa, Yutaka; Itoh, Fumiko; Negishi, Yoichi; Sunada, Yoshihide; Hayashi, Yoshio
2015-02-12
Myostatin, an endogenous negative regulator of skeletal muscle mass, is a therapeutic target for muscle atrophic disorders. Here, we identified minimum peptides 2 and 7 to effectively inhibit myostatin activity, which consist of 24 and 23 amino acids, respectively, derived from mouse myostatin prodomain. These peptides, which had the propensity to form α-helix structure, interacted to myostatin with KD values of 30-36 nM. Moreover, peptide 2 significantly increased muscle mass in Duchenne muscular dystrophy model mice.
López-Abarrategui, Carlos; McBeth, Christine; Mandal, Santi M; Sun, Zhenyu J; Heffron, Gregory; Alba-Menéndez, Annia; Migliolo, Ludovico; Reyes-Acosta, Osvaldo; García-Villarino, Mónica; Nolasco, Diego O; Falcão, Rosana; Cherobim, Mariana D; Dias, Simoni C; Brandt, Wolfgang; Wessjohann, Ludger; Starnbach, Michael; Franco, Octavio L; Otero-González, Anselmo J
2015-08-01
Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability. © FASEB.
Bassan, Juliana Cristina; de Souza Bezerra, Thaís Milena; Peixoto, Guilherme; da Cruz, Clariana Zanutto Paulino; Galán, Julián Paul Martínez; Vaz, Aline Buda dos Santos; Garrido, Saulo Santesso; Filice, Marco; Monti, Rubens
2016-01-01
In this study, trypsin (Enzyme Comission 3.4.21.4) was immobilized in a low cost, lignocellulosic support (corn cob powder—CCP) with the goal of obtaining peptides with bioactive potential from cheese whey. The pretreated support was activated with glyoxyl groups, glutaraldehyde and IDA-glyoxyl. The immobilization yields of the derivatives were higher than 83%, and the retention of catalytic activity was higher than 74%. The trypsin-glyoxyl-CCP derivative was thermally stable at 65 °C, a value that was 1090-fold higher than that obtained with the free enzyme. The trypsin-IDA-glyoxyl-CCP and trypsin-glutaraldehyde-CCP derivatives had thermal stabilities that were 883- and five-fold higher, respectively, then those obtained with the free enzyme. In the batch experiments, trypsin-IDA-glyoxyl-CCP retained 91% of its activity and had a degree of hydrolysis of 12.49%, while the values for trypsin-glyoxyl-CCP were 87% and 15.46%, respectively. The stabilized derivative trypsin-glyoxyl-CCP was also tested in an upflow packed-bed reactor. The hydrodynamic characterization of this reactor was a plug flow pattern, and the kinetics of this system provided a relative activity of 3.04 ± 0.01 U·g−1 and an average degree of hydrolysis of 23%, which were suitable for the production of potentially bioactive peptides. PMID:28773482
Identification of peptides in functional Scamorza ovine milk cheese.
Albenzio, M; Santillo, A; Marino, R; Della Malva, A; Caroprese, M; Sevi, A
2015-12-01
Ovine bulk milk was used to produce Scamorza cheese with probiotics: either a mix of Bifidobacterium longum and Bifidobacterium lactis or Lactobacillus acidophilus as the probiotic strains. Peptides obtained from reverse phase-HPLC water-soluble extract of Scamorza cheeses were analyzed using a quadrupole time-of-flight liquid chromatography-mass spectrometry system. Identified fragments were derived from casein hydrolysis or probiotic bacterial enzymes; some of the fragments showed encrypted peptide sequences that shared structural homology with previously described bioactive peptides in ovine milk and dairy products. Bifidobacterium longum and B. lactis showed greater proteolytic potential both in terms of level of pH 4.6 water-soluble nitrogen extract and ability to generate peptides with potential biofunctionality. Fragments deriving from microbial enzymes may be regarded as tracing fragments useful for monitoring probiotic activity in functional Scamorza cheese. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wan, Yuantai; Ma, Chengbang; Zhou, Mei; Xi, Xinping; Li, Lei; Wu, Di; Wang, Lei; Lin, Chen; Lopez, Juan Chavez; Chen, Tianbao; Shaw, Chris
2015-01-01
Antimicrobial peptides from amphibian skin secretion display remarkable broad-spectrum antimicrobial activity and are thus promising for the discovery of new antibiotics. In this study, we report a novel peptide belonging to the phylloseptin family of antimicrobial peptides, from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea, which was named Phylloseptin-PBa. Degenerate primers complementary to putative signal peptide sites of frog skin peptide precursor-encoding cDNAs were designed to interrogate a skin secretion-derived cDNA library from this frog. Subsequently, the peptide was isolated and identified using reverse phase HPLC and MS/MS fragmentation. The synthetic replicate was demonstrated to have activity against S. aureus, E. coli and C. albicans at concentrations of 8, 128 and 8 mg/L, respectively. In addition, it exhibited anti-proliferative activity against the human cancer cell lines, H460, PC3 and U251MG, but was less active against a normal human cell line (HMEC). Furthermore, a haemolysis assay was performed to assess mammalian cell cytotoxicity of Phylloseptin-PBa. This peptide contained a large proportion of α-helical domain, which may explain its antimicrobial and anticancer activities. PMID:26633506
Wan, Yuantai; Ma, Chengbang; Zhou, Mei; Xi, Xinping; Li, Lei; Wu, Di; Wang, Lei; Lin, Chen; Lopez, Juan Chavez; Chen, Tianbao; Shaw, Chris
2015-12-01
Antimicrobial peptides from amphibian skin secretion display remarkable broad-spectrum antimicrobial activity and are thus promising for the discovery of new antibiotics. In this study, we report a novel peptide belonging to the phylloseptin family of antimicrobial peptides, from the skin secretion of the purple-sided leaf frog, Phyllomedusa baltea, which was named Phylloseptin-PBa. Degenerate primers complementary to putative signal peptide sites of frog skin peptide precursor-encoding cDNAs were designed to interrogate a skin secretion-derived cDNA library from this frog. Subsequently, the peptide was isolated and identified using reverse phase HPLC and MS/MS fragmentation. The synthetic replicate was demonstrated to have activity against S. aureus, E. coli and C. albicans at concentrations of 8, 128 and 8 mg/L, respectively. In addition, it exhibited anti-proliferative activity against the human cancer cell lines, H460, PC3 and U251MG, but was less active against a normal human cell line (HMEC). Furthermore, a haemolysis assay was performed to assess mammalian cell cytotoxicity of Phylloseptin-PBa. This peptide contained a large proportion of α-helical domain, which may explain its antimicrobial and anticancer activities.
Paharkova, Vladislava; Alvarez, Griselda; Nakamura, Hiromi; Cohen, Pinchas; Lee, Kuk-Wha
2015-09-15
Evidence for the putative mitochondrial origin of the Humanin (HN) peptide has been lacking, although its cytoprotective activity has been demonstrated in a variety of organismal and cellular systems. We sought to establish proof-of-principle for a mitochondria-derived peptide (MDP) in a rat-derived cellular system as the rat HN sequence is predicted to lack nuclear insertions of mitochondrial origin (NUMT). We found that the rat HN (Rattin; rHN) homologue is derived from the mitochondrial genome as evidenced by decreased production in Rho-0 cells, and that peptide translation occurs in the mitochondria as it is unaffected by cycloheximide. Rat HN localizes to the mitochondria in cellular subfractionation and immunohistochemical studies. Addition of a HN analogue to isolated mitochondria from rat INS-1 beta cells reduced hydrogen peroxide production by 55%. In summary, a locally bioactive peptide is derived and translated from an open reading frame (ORF) within rat mitochondrial DNA encoding 16S rRNA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Peptides and peptidomimetics in medicine, surgery and biotechnology.
Gentilucci, Luca; Tolomelli, Alessandra; Squassabia, Federico
2006-01-01
Despite the fact that they have been used for a century to treat several kinds of diseases, peptides and short proteins are now considered the new generation of biologically active tools. Indeed, recent findings suggest a wide range of novel applications in medicine, biotechnology, and surgery. The efficacy of native peptides has been greatly enhanced by introducing structural modifications in the original sequences, giving rise to the class of peptidomimetics. This review gives an overview of both classical applications and promising new categories of biologically active peptides and analogs. Besides the new entries in well known peptide families, such as antibiotic macrocyclic peptides, integrin inhibitors, as well as immunoactive, anticancer, neuromodulator, opioid, and hormone peptides, a number of novel applications have been recently reported. Outstanding examples include peptide-derived semi-synthetic vaccines, drug delivery systems, radiolabeled peptides, self-assembling peptides, which can serve as biomaterials in tissue engineering for creating cartilage, blood vessels, and other tissues, or as substrates for neurite outgrowth and synapse formation, immobilized peptides, and proteins. Finally, peptide-based biomaterials can find applications in bio-nanotechnology for bio-microchips, peptide nanorods and nanotubes, bio-sensors, bio-electronic devices, and peptide-metal wires.
Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review.
Liu, Ming; Wang, Yunpu; Liu, Yuhuan; Ruan, Roger
2016-11-01
There is an urgent treat of numerous chronic diseases including heart disease, stroke, cancer, chronic respiratory diseases and diabetes, which have a significant influence on the health of people worldwide. In addition to numerous preventive and therapeutic drug treatments, important advances have been achieved in the identification of bioactive peptides that may contribute to long-term health. Although bioactive peptides with various biological activities received unprecedented attention, as a new source of bioactive peptides, the significant role of bioactive peptides from traditional Chinese medicine and traditional Chinese food has not fully appreciated compared to other bioactive components. Hence, identification and bioactivity assessment of these peptides could benefit the pharmaceutical and food industry. Furthermore, the functional properties of bioactive peptides help to demystify drug properties and health benefits of traditional Chinese medicine and traditional Chinese food. This paper reviews the generation and biofunctional properties of various bioactive peptides derived from traditional Chinese medicine and traditional Chinese food. Mechanisms of digestion, bioavailability of bioactive peptides and interactions between traditional Chinese medicine and traditional Chinese food are also summarized in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Yifan; Han, Feifei; Xie, Yonggang; Wang, Yizhen
2011-12-01
Lactoferricin B (LfcinB), a 25 residue peptide derived from the N-terminal of bovine lactoferrin (bLF), causes depolarization of the cytoplasmic membrane in susceptible bacteria. Its mechanism of action, however, still needs to be elucidated. In the present study, synthetic LfcinB (without a disulfide bridge) and LfcinB (C-C; with a disulfide bridge) as well as three derivatives with 15-, 11- and 9-residue peptides were prepared to investigate their antimicrobial nature and mechanisms. The antimicrobial properties were measured via minimum inhibitory concentration (MIC) determinations, killing kinetics assays and synergy testing, and hemolytic activities were assessed by hemoglobin release. Finally, the morphology of peptide-treated bacteria was determined by atomic force microscopy (AFM). We found that there was no difference in MICs between LfcinB and LfcinB (C-C). Among the derivatives, only LfcinB15 maintained nearly the same level as LfcinB, in the MIC range of 16-128 μg/ml, and the MICs of LfcinB11 (64-256 μg/ml) were 4 times more than LfcinB, while LfcinB9 exhibited the lowest antimicrobial activity. When treated at MIC for 1 h, many blebs were formed and holes of various sizes appeared on the cell surface, but the cell still maintained its integrity. This suggested that LfcinB had a major permeability effect on the cytoplasmic membrane of both Gram-positive and Gram-negative bacteria, which also indicated it may be a possible intracellular target. Among the tested antibiotics, aureomycin increased the bactericidal activity of LfcinB against E. coli, S. aureus and P. aeruginosa, but neomycin did not have such an effect. We also found that the combination of cecropin A and LfcinB had synergistic effects against E. coli.
NASA Astrophysics Data System (ADS)
Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao
2017-06-01
The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.
Kimata, Hajime
2007-01-01
Dermcidin (DCD)-derived peptide is an antimicrobial peptide produced by the sweat glands. However, the levels of DCD-derived peptide in sweat were decreased in patients with atopic eczema (AE). The effect of viewing a humorous video on the levels of DCD-derived peptide was studied. Twenty patients with AE viewed an 87-min humorous video (Modern Times, featuring Charlie Chaplin). Just before and immediately after viewing, sweat was collected, and the levels of DCD-derived peptide and total protein in sweat were measured. Viewing a humorous video increased the levels of DCD-derived peptide without affecting the levels of total protein in sweat. Viewing a humorous video increased DCD-derived peptide in sweat of patients with AE, and thus, it may be helpful in the treatment of skin infection of AE.
Nongonierma, Alice B; FitzGerald, Richard J
2018-06-01
Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.
Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling
Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less
Chemical proteomics for target discovery of head-to-tail cyclized mini-proteins
NASA Astrophysics Data System (ADS)
Hellinger, Roland; Thell, Kathrin; Vasileva, Mina; Muhammad, Taj; Gunasekera, Sunithi; Kümmel, Daniel; Göransson, Ulf; Becker, Christian W.; Gruber, Christian W.
2017-10-01
Target deconvolution is one of the most challenging tasks in drug discovery, but a key step in drug development. In contrast to small molecules, there is a lack of validated and robust methodologies for target elucidation of peptides. In particular, it is difficult to apply these methods to cyclic and cysteine-stabilized peptides since they exhibit reduced amenability to chemical modification and affinity capture; however, such ribosomal synthesized and post-translationally modified peptide natural products are rich sources of promising drug candidates. For example, plant-derived circular peptides called cyclotides have recently attracted much attention due to their immunosuppressive effects and oral activity in the treatment of multiple sclerosis in mice, but their molecular target has hitherto not been reported. In this study a chemical proteomics approach using photo-affinity crosslinking was developed to determine a target of the circular peptide [T20K]kalata B1. Using this prototypic nature-derived peptide enabled the identification of a possible modulation of 14-3-3 proteins. This biochemical interaction was validated via competition pull down assays as well as a cellular reporter assay indicating an effect on 14-3-3-dependent transcriptional activity. As proof of concept, the presented approach may be applicable for target elucidation of various cyclic peptides and mini-proteins, in particular cyclotides, which represent a promising class of molecules in drug discovery and development.
Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo
2011-01-01
Background Soy protein and soy peptides have attracted considerable attention because of their potentially beneficial biological properties, including antihypertensive, anticarcinogenic, and hypolipidemic effects. Although soy protein isolate contains several bioactive peptides that have distinct physiological activities in lipid metabolism, it is not clear which peptide sequences are responsible for the triglyceride (TG)-lowering effects. In the present study, we investigated the effects of soy protein-derived peptides on lipid metabolism, especially TG metabolism, in HepG2 cells and obese Otsuka Long-Evans Tokushima fatty (OLETF) rats. Results In the first experiment, we found that soy crude peptide (SCP)-LD3, which was prepared by hydrolyze of soy protein isolate with endo-type protease, showed hypolipidemic effects in HepG2 cells and OLETF rats. In the second experiment, we found that hydrophilic fraction, separated from SCP-LD3 with hydrophobic synthetic absorbent, revealed lipid-lowering effects in HepG2 cells and OLETF rats. In the third experiment, we found that Fraction-C (Frc-C) peptides, fractionated from hydrophilic peptides by gel permeation chromatography-high performance liquid chromatography, significantly reduced TG synthesis and apolipoprotein B (apoB) secretion in HepG2 cells. In the fourth experiment, we found that the fraction with 0.1% trifluoroacetic acid, isolated from Frc-C peptides by octadecylsilyl column chromatography, showed hypolipidemic effects in HepG2 cells. In the final experiment, we found that 3 di-peptides, Lys-Ala, Val-Lys, and Ser-Tyr, reduced TG synthesis, and Ser-Tyr additionally reduced apoB secretion in HepG2 cells. Conclusion Novel active peptides with TG-lowering effects from soy protein have been isolated. PMID:21600040
Mocellin, Simone
2012-01-01
Peptides derived from tumor associated antigens can be utilized to elicit a therapeutically effective immune response against melanoma in experimental models. However, patient vaccination with peptides - although it is often followed by the induction of melanoma- specific T lymphocytes - is rarely associated with tumor response of clinical relevance. In this review I summarize the principles of peptide design as well as the results so far obtained in the clinical setting while treating cutaneous melanoma by means of this active immunotherapy strategy. I also discuss some immunological and methodological issues that might be helpful for the successful development of peptide-based vaccines.
Nature's Way to Make the Lantibiotics
ERIC Educational Resources Information Center
Relyea, Heather A.; van der Donk, Wilfred A.
2006-01-01
The biosynthesis and mode of action of a class of compounds called lantibiotics, a peptide with antibacterial activity against multi-drug resistant bacteria as well as food-borne pathogens like Listeria monocytogenes and Clostridium botulinum is described. These peptide-derived compounds are especially interesting because they could be used as…
Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis
USDA-ARS?s Scientific Manuscript database
Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response in various organisms, including cattle. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Collective results...
ERIC Educational Resources Information Center
Sandman, Curt A.; Hetrick, William; Taylor, Derek V.; Chicz-DeMet, Aleksandra
1997-01-01
This study investigated whether blood plasma levels of pro-opiomelanocortin-derived (POMC) peptides, beta-endorphin-like activity, adrenocorticotrophic hormone, and adrenal cortisol immediately after self injurious behavior (SIB) episodes predicted subsequent response to an opiate blocker in 10 patients with mental retardation. Results suggest…
The effect of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel and normal cell lines.
Alileche, Abdelkrim; Hampikian, Greg
2017-08-09
Nullomer peptides are the smallest sequences absent from databases of natural proteins. We first began compiling a list of absent 5-amino acid strings in 2006 (1). We report here the effects of Nullomer-derived peptides 9R, 9S1R and 124R on the NCI-60 panel, derived from human cancers of 9 organs (kidney, ovary, skin melanoma, lung, brain, lung, colon, prostate and the hematopoietic system), and four normal cell lines (endothelial HUVEC, skin fibroblasts BJ, colon epithelial FHC and normal prostate RWPE-1). NCI-60 cancer cell panel and four normal cell lines were cultured in vitro in RPMI1640 supplemented with 10% Hyclone fetal bovine serum and exposed for 48 h to 5 μM, 25 μM and 50 μM of peptides 9R, 9S1R and 124R. Viability was assessed by CCK-8 assay. For peptide ATP depletion effects, one cell line representing each organ in the NCI-60 panel, and four normal cell lines were exposed to 50 μM of peptides 9R, 9S1R and 124R for 3 h. The ATP content was assessed in whole cells, and their supernatants. Peptides 9S1R and 9R are respectively lethal to 95 and 81.6% of the 60 cancer cell lines tested. Control peptide 124R has no effect on the growth of these cells. Especially interesting the fact that peptides 9R and 9S1R are capable of killing drug-resistant and hormone-resistant cell lines, and even cancer stem cells. Peptides 9R and 9S1R have a broader activity spectrum than many cancer drugs in current use, can completely deplete cellular ATP within 3 h, and are less toxic to 3 of the 4 normal cell lines tested than they are to several cancers. Nullomer peptides 9R and 9S1R have a large broad lethal effect on cancer cell lines derived from nine organs represented in the NCI-60 panel. This broad activity crosses many of the categorical divisions used in the general classification of cancers: solid vs liquid cancers, drug sensitive vs drug resistant, hormone sensitive vs hormone resistant, cytokine sensitive vs cytokine non sensitive, slow growing vs rapid growing, differentiated vs dedifferentiated cancers. Furthermore peptides 9R and 9S1R are lethal to cancer stem cells and breast canrcinosarcoma.
Biologically Active and Antimicrobial Peptides from Plants
Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen
2015-01-01
Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307
Mendive-Tapia, Lorena; Bertran, Alexandra; García, Jesús; Acosta, Gerardo; Albericio, Fernando; Lavilla, Rodolfo
2016-09-05
A series of short tryptophan-phenylalanine peptides containing an iodo substituent on the phenyl ring was subjected to Pd-catalyzed CH activation reactions to give the corresponding aryl-indole coupled products. Two types of adducts were generated: cyclomonomer and cyclodimeric peptides; no evidence of oligo- or polymerization products was detected. Contrary to standard peptide macrocyclizations, the factors controlling the fate of the reaction are the number of amino acids between the aromatic residues and the regiochemistry of the parent iodo derivative, independent of both the concentration and the cyclization mode. The method is general and allows access to novel biaryl peptidic topologies, which have been fully characterized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bashir, Tahir; Patgaonkar, Mandar; Kumar, Selvaa C; Pasi, Achhelal; Reddy, Kudumula Venkata Rami
2015-01-01
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.
Bashir, Tahir; Patgaonkar, Mandar; Kumar C, Selvaa; Pasi, Achhelal; Reddy, Kudumula Venkata Rami
2015-01-01
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection. PMID:25915507
Lee, Dong Gun; Park, Yoonkyung; Kim, Hee Nam; Kim, Hyung Keun; Kim, Pyoung Il; Choi, Bo Hwa; Hahm, Kyung-Soo
2002-03-08
The antifungal activity and mechanism of HP (2-20), a peptide derived from the N-terminus sequence of Helicobacter pylori Ribosomal Protein L1 were investigated. HP (2--20) displayed a strong antifungal activity against various fungi, and the antifungal activity was inhibited by Ca(2+) and Mg(2+) ions. In order to investigate the antifungal mechanism(s) of HP (2-20), fluorescence activated flow cytometry was performed. As determined by propidium iodide staining, Candida albicans treated with HP (2-20) showed a higher fluorescence intensity than untreated cells and was similar to melittin-treated cells. The effect on fungal cell membranes was examined by investigating the change in membrane dynamics of C. albicans using 1,6-diphenyl-1,3,5-hexatriene as a membrane probe and by testing the membrane disrupting activity using liposome (PC/PS; 3:1, w/w) and by treating protoplasts of C. albicans with the peptide. The action of peptide against fungal cell membrane was further examined by the potassium-release test, and HP (2-20) was able to increase the amount of K(+) released from the cells. The result suggests that HP (2-20) may exert its antifungal activity by disrupting the structure of cell membrane via pore formation or directly interacts with the lipid bilayers in a salt-dependent manner.
Phillips, Mariana; Romeo, Francesca; Bitsaktsis, Constantine; Sabatino, David
2016-09-01
The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The immunostimulatory effects of IPs on the NK cells was assessed by the production of TNF-α alone as IFN-γ was undetectable. In a cell death assay, the IPs were found to be nontoxic, without any observable evidence of early or late stage apoptosis within the NK92-MI cells. Taking these findings together, this novel class of synthetic peptides may prove to be a promising lead in the development of a peptide-based immunotherapy approach, especially against B7H6 expressing tumors. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 658-672, 2016. © 2016 Wiley Periodicals, Inc.
Palmieri, Gianna; Balestrieri, Marco; Capuano, Federico; Proroga, Yolande T R; Pomilio, Francesco; Centorame, Patrizia; Riccio, Alessia; Marrone, Raffaele; Anastasio, Aniello
2018-08-20
Antimicrobial peptides have received great attention for their potential benefits to extend the shelf-life of food-products. Innate defense regulator peptide-1018 (IDR-1018) represents a promising candidate for such applications, due to its broad-spectrum antimicrobial activity, although food-isolated pathogens have been poorly investigated. Herein, we describe the design and the structural-functional characterization of a new 1018-derivative peptide named 1018-K6, in which the alanine in position 6 was replaced with a lysine. Spectroscopic analysis revealed a noticeable switch from β-sheet to helical conformations of 1018-K6 respect to IDR-1018, with a faster folding kinetic and increased structural stability. Moreover, 1018-K6 evidenced a significant antibiofilm/bactericidal efficiency specifically against Listeria monocytogenes isolates from food-products and food-processing environments, belonging to serotype 4b involved in the majority of human-listeriosis cases, with EC 50 values two- five-fold lower than those measured for IDR-1018. Therefore, a single amino-acid substitution in IDR-1018 sequence produced severe changes in peptide conformation and antimicrobial performances. Published by Elsevier B.V.
Bovine and human lactoferricin peptides: chimeras and new cyclic analogs.
Arias, Mauricio; McDonald, Lindsey J; Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J
2014-10-01
Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using "click chemistry" and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17-25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by "click chemistry" and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.
Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.
Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi
2012-06-01
Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.
Encrypted Antimicrobial Peptides from Plant Proteins.
Ramada, M H S; Brand, G D; Abrão, F Y; Oliveira, M; Filho, J L Cardozo; Galbieri, R; Gramacho, K P; Prates, M V; Bloch, C
2017-10-16
Examples of bioactive peptides derived from internal sequences of proteins are known for decades. The great majority of these findings appear to be fortuitous rather than the result of a deliberate and methodological-based enterprise. In the present work, we describe the identification and the biological activities of novel antimicrobial peptides unveiled as internal fragments of various plant proteins founded on our hypothesis-driven search strategy. All putative encrypted antimicrobial peptides were selected based upon their physicochemical properties that were iteratively selected by an in-house computer program named Kamal. The selected peptides were chemically synthesized and evaluated for their interaction with model membranes. Sixteen of these peptides showed antimicrobial activity against human and/or plant pathogens, some with a wide spectrum of activity presenting similar or superior inhibition efficacy when compared to classical antimicrobial peptides (AMPs). These original and previously unforeseen molecules constitute a broader and undisputable set of evidences produced by our group that illustrate how the intragenic concept is a workable reality and should be carefully explored not only for microbicidal agents but also for many other biological functions.
Baum, Florian; Fedorova, Maria; Ebner, Jennifer; Hoffmann, Ralf; Pischetsrieder, Monika
2013-12-06
Milk is an excellent source of bioactive peptides. However, the composition of the native milk peptidome has only been partially elucidated. The present study applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) directly or after prefractionation of the milk peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) or OFFGEL fractionation for the comprehensive analysis of the peptide profile of raw milk. The peptide sequences were determined by MALDI-TOF/TOF or nano-ultra-performance liquid chromatography-nanoelectrospray ionization-LTQ-Orbitrap-MS. Direct MALDI-TOF-MS analysis led to the assignment of 57 peptides. Prefractionation by both complementary methods led to the assignment of another 191 peptides. Most peptides originate from α(S1)-casein, followed by β-casein, and α(S2)-casein. κ-Casein and whey proteins seem to play only a minor role as peptide precursors. The formation of many, but not all, peptides could be explained by the activity of the endogenous peptidases, plasmin or cathepsin D, B, and G. Database searches revealed the presence of 22 peptides with established physiological function, including those with angiotensin-converting-enzyme (ACE) inhibitory, immunomodulating, or antimicrobial activity.
Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.
2010-01-01
Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081
Admassu, Habtamu; Gasmalla, Mohammed Abdalbasit A; Yang, Ruijin; Zhao, Wei
2018-01-01
Cardiovascular diseases and diabetes are the biggest causes of death globally. Therefore, prevention of these diseases is a focus of pharmaceuticals and functional food manufacturers. This review summarizes recent research trends and scientific knowledge in seaweed protein-derived peptides with particular emphasis on production, isolation and potential health impacts in prevention of hypertension, diabetes and oxidative stress. The current status and future prospects of bioactive peptides are also discussed. Bioactive peptides have strong potential for use in therapeutic drug and functional food formulation in health management strategy, especially cardiovascular disease and diabetes. Seaweeds can be used as sustainable protein sources in the production of these peptide-based drugs and functional foods for preventing such diseases. Many studies have reported that peptides showing angiotensin converting enzyme inhibition, antihypertensive, antioxidative and antidiabetics activities, have been successfully isolated from seaweed. However, further research is needed in large-scale production of these peptides, efficient isolation methods, interactions with functional foods and other pharmaceuticals, and their ease to digestion in in vivo studies and safety to validate the health benefits of these peptides. © 2017 Institute of Food Technologists®.
Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs
Nguyen, Leonard T.; Chau, Johnny K.; Perry, Nicole A.; de Boer, Leonie; Zaat, Sebastian A. J.; Vogel, Hans J.
2010-01-01
Background Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the “antimicrobial centre” of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library. Methodology/Principal Findings HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum. Conclusions/Significance Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications. PMID:20844765
Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S
2010-02-01
Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.
Harada, Kumiko; Michibata, Yayoi; Tsukamoto, Hirotake; Senju, Satoru; Tomita, Yusuke; Yuno, Akira; Hirayama, Masatoshi; Abu Sayem, Mohammad; Takeda, Naoki; Shibuya, Isao; Sogo, Shinji; Fujiki, Fumihiro; Sugiyama, Haruo; Eto, Masatoshi; Nishimura, Yasuharu
2013-01-01
Reports have shown that activation of tumor-specific CD4+ helper T (Th) cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05) transgenic mice (Tgm), since this HLA-DR allele is most frequent (13.6%) in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA)-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-Ed, where I-Ed α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-Ed has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC) followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191-213 peptide from a new TAA DEPDC1 overexpressed in bladder cancer induced strong Th-cell responses both in Tgm and in PBMCs from an HLA-DR4-positive donor. Thus, the HLA-DR4 Tgm combined with computer algorithm was useful for preliminary screening of candidate peptides for vaccination. PMID:24386437
New regioselective derivatives of sucrose with amino acid and acrylic groups.
Anders, Jan; Buczys, Rachel; Lampe, Elmar; Walter, Martin; Yaacoub, Emile; Buchholz, Klaus
2006-02-27
We report here a range of new sucrose derivatives obtained from '3-ketosucrose' in aqueous medium with few reaction steps. As an intermediate, 3-amino-3-deoxy-alpha-D-allopyranosyl beta-D-fructofuranoside (1) was obtained via the classical route of reductive amination with much improved yield and high stereoselectivity. Building blocks for polymerization were synthesized by introduction of acrylic-type side chains, for example, with methacrylic anhydride. Corresponding polymers were synthesized. Aminoacyl and peptide conjugates were obtained through conventional peptide synthesis with activated and protected amino acids. Deprotection yielded new glycoderivatives having an unconventional substitution pattern, namely 3-(aminoacylamino) allosaccharides. Both mono- and di-peptide conjugates of allosucrose have been synthesized.
Saavedra, Lucila; Minahk, Carlos; de Ruiz Holgado, Aída P.; Sesma, Fernando
2004-01-01
The enterocin CRL35 biosynthetic gene cluster was cloned and sequenced. The sequence was revealed to be highly identical to that of the mundticin KS gene cluster (S. Kawamoto, J. Shima, R. Sato, T. Eguchi, S. Ohmomo, J. Shibato, N. Horikoshi, K. Takeshita, and T. Sameshima, Appl. Environ. Microbiol. 68:3830-3840, 2002). Short synthetic peptides were designed based on the bacteriocin sequence and were evaluated in antimicrobial competitive assays. The peptide KYYGNGVSCNKKGCS produced an enhancement of enterocin CRL35 antimicrobial activity in a buffer system. PMID:15215149
Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans
Ansari, Juliana M.; Abraham, Nabil M.; Massaro, Jenna; Murphy, Kelsey; Smith-Carpenter, Jillian; Fikrig, Erol
2017-01-01
Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth. PMID:28392782
Yang, Lijun; Zhang, Litao; Yan, Lihong; Zheng, Haifeng; Lu, Peifen; Chen, Junjun; Dai, Jie; Sun, Haibiao; Xu, Yong; Yang, Tao
2017-08-01
To assess the stabilities of Arg-Gly-Asp-Trp-Arg (RGDWR, designated as RWR), a new patented antithrombotic small peptide, and its derivative with ω-aminocaprylic acid on its N-terminus (ωRWR). RWR in rat plasma was decreased by between 32 and 48% after 4 h incubation on ice, indicating its instability in plasma. In contrast, ωRWR in plasma remained at 96-107%. Concentration changes were within 6.2% for ωRWR after storage in various conditions. ωRWR is therefore stable in rat plasma, as well as under different storage methods. Furthermore, ω-aminocaprylic acid added onto the RWR peptide did not affect its antiplatelet aggregation activity. A novel small peptide, ωRWR, has been developed with a good stability for possible antithrombotic use.
Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong
2013-01-01
ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6–46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29+/CD44+/CD90+/CD105+/CD34−/CD45−, which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood. PMID:23672191
Kim, Seo Yoon; Son, Woo Sung; Park, Min Chul; Kim, Chul Min; Cha, Byung Hyun; Yoon, Kang Jun; Lee, Soo-Hong; Park, Sang Gyu
2013-10-01
ARS-Interacting Multi-functional Protein 1 (AIMP1) is a cytokine that is involved in the regulation of angiogenesis, immune activation, and fibroblast proliferation. In this study, fibroblast growth factor receptor 2 (FGFR2) was isolated as a binding partner of AIMP peptide (amino acids 6-46) in affinity purification using human bone marrow-derived mesenchymal stem cells (BMMSCs). AIMP1 peptide induced the proliferation of adult BMMSCs by activating Akt, inhibiting glycogen synthase kinase-3β, and thereby increasing the level of β-catenin. In addition, AIMP1 peptide induced the translocation of β-catenin to the nucleus and increased the transcription of c-myc and cyclin D1 by activating the β-catenin/T-cell factor (TCF) complex. By contrast, transfection of dominant negative TCF abolished the effect of AIMP1. The inhibition of Akt, using LY294002, abolished the accumulation and nuclear translocation of β-catenin induced by AIMP1, leading to a decrease in c-myc and cyclin D1 expression, which decreased the proliferation of BMMSCs. An intraperitoneal injection of AIMP1 peptide into C57/BL6 mice increased the colony formation of fibroblast-like cells. Fluorescence activated cell sorting analysis showed that the colony-forming cells were CD29(+)/CD44(+)/CD90(+)/CD105(+)/CD34(-)/CD45(-), which is characteristic of MSCs. In addition, the fibroblast-like cells differentiated into adipocytes, chondrocytes, and osteocytes. Taken together, these data suggest that AIMP1 peptide promotes the proliferation of BMMSCs by activating the β-catenin/TCF complex via FGFR2-mediated activation of Akt, which leads to an increase in MSCs in peripheral blood.
Reis, Pablo V M; Boff, Daiane; Verly, Rodrigo M; Melo-Braga, Marcella N; Cortés, María E; Santos, Daniel M; Pimenta, Adriano M de C; Amaral, Flávio A; Resende, Jarbas M; de Lima, Maria E
2018-01-01
The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1β cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.
Reis, Pablo V. M.; Boff, Daiane; Verly, Rodrigo M.; Melo-Braga, Marcella N.; Cortés, María E.; Santos, Daniel M.; Pimenta, Adriano M. de C.; Amaral, Flávio A.; Resende, Jarbas M.; de Lima, Maria E.
2018-01-01
The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1β cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria. PMID:29681894
Cadherin juxtamembrane region derived peptides inhibit TGFβ1 induced gene expression
Stavropoulos, Ilias; Golla, Kalyan; Moran, Niamh; Martin, Finian; Shields, Denis C
2014-01-01
Bioactive peptides in the juxtamembrane regions of proteins are involved in many signaling events. The juxtamembrane regions of cadherins were examined for the identification of bioactive regions. Several peptides spanning the cytoplasmic juxtamembrane regions of E- and N-cadherin were synthesized and assessed for the ability to influence TGFβ responses in epithelial cells at the gene expression and protein levels. Peptides from regions closer to the membrane appeared more potent inhibitors of TGFβ signaling, blocking Smad3 phosphorylation. Thus inhibiting nuclear translocation of phosphorylated Smad complexes and subsequent transcriptional activation of TGFβ signal propagating genes. The peptides demonstrated a peptide-specific potential to inhibit other TGFβ superfamily members, such as BMP4. PMID:25108297
Dębowski, Dawid; Łukajtis, Rafał; Łęgowska, Anna; Karna, Natalia; Pikuła, Michał; Wysocka, Magdalena; Maliszewska, Irena; Sieńczyk, Marcin; Lesner, Adam; Rolka, Krzysztof
2012-06-01
A series of linear and cyclic fragments and analogs of two peptides (OGTI and HV-BBI) isolated from skin secretions of frogs were synthesized by the solid-phase method. Their inhibitory activity against several serine proteinases: bovine β-trypsin, bovine α-chymotypsin, human leukocyte elastase and cathepsin G from human neutrophils, was investigated together with evaluation of their antimicrobial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive species isolated from patients (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus sp., Streptococcus sp.). The cytotoxicity of the selected peptides toward an immortal human skin fibroblast cell line was also determined. Three peptides: HV-BBI, its truncated fragment HV-BBI(3-18) and its analog [Phe(8)]HV-BBI can be considered as bifunctional compounds with inhibitory as well as antibacterial properties. OGTI, although it did not display trypsin inhibitory activity as previously reported in the literature, exerted antimicrobial activity toward S. epidermidis. In addition, under our experimental conditions, this peptide did not show cytotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
Umayaparvathi, S; Meenakshi, S; Vimalraj, V; Arumugam, M; Balasubramanian, T
2014-01-01
Protein derived from the oyster (Saccostrea cucullata) was hydrolyzed using protease from Bacillus cereus SU12 for isolation of antioxidant peptides. The oyster hydrolysate exhibited a strong antioxidant potential in DPPH (85.7±0.37%) followed by Hydrogen peroxide radical scavenging activity (81.6±0.3%), Hydroxyl radical-scavenging activity (79.32±0.6%), Reducing power assay (2.63±0.2 OD at 700nm). Due to the high antioxidant potential, hydrolysate was fractionated in Sephadex G-25 gel filtration chromatography. The active peptide fraction was further purified by UPLC-MS. Totally 7 antioxidant peptides were collected. Among 7 peptides (SCAP 1-7), 3 peptides (SCAP 1, 3 and 7) had highest scavenging ability on DPPH radicals. The amino acid sequence and molecular mass of purified antioxidant peptides (SCAP1, SCAP3 and SCAP7) were determined by Q-TOF ESI mass spectroscopy and structures of the peptides were Leu-Ala-Asn-Ala-Lys (MW=515.29Da), Pro-Ser-Leu-Val-Gly-Arg-Pro-Pro-Val-Gly-Lys-Leu-Thr-Leu (MW=1432.89Da) and Val-Lys-Val-Leu-Leu-Glu-His-Pro-Val-Leu (MW=1145.75Da), respectively. The unique amino acid composition and sequence in the peptides might play an important role in expression of their antioxidant activity. The results of this study suggest that oyster protein hydrolysate is good source of natural antioxidants.
Gao, Bin; Zhu, Shunyi
2018-01-01
Animal venoms are a mixture of peptides and proteins that serve two basic biological functions: predation and defense against both predators and microbes. Antimicrobial peptides (AMPs) are a common component extensively present in various scorpion venoms (herein abbreviated as svAMPs). However, their roles in predation and defense against predators and potential as drugs are poorly understood. Here, we report five new venom peptides with antimicrobial activity from two Mesobuthus scorpion species. These α-helical linear peptides displayed highly bactericidal activity toward all the Gram-positive bacteria used here but differential activity against Gram-negative bacteria and fungi. In addition to the antibiotic activity, these AMPs displayed lethality to houseflies and hemotoxin-like toxicity on mice by causing hemolysis, tissue damage and inducing inflammatory pain. Unlike AMPs from other origins, these venom-derived AMPs seem to be unsuitable as anti-infective drugs due to their high hemolysis and low serum stability. However, MeuTXKβ1, a known two-domain Mesobuthus AMP, is an exception since it exhibits high activity toward antibiotic resistant Staphylococci clinical isolates with low hemolysis and high serum stability. The findings that the classical AMPs play predatory and defensive roles indicate that the multifunctionality of scorpion venom components is an intrinsic feature likely evolved by natural selection from microbes, prey and predators of scorpions. This definitely provides an excellent system in which one can study how a protein adaptively evolves novel functions in a new environment. Meantimes, new strategies are needed to remove the toxicity of svAMPs on eukaryotic cells when they are used as leads for anti-infective drugs. PMID:29599756
Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates.
Otvos, Laszlo; Wade, John D; Lin, Feng; Condie, Barry A; Hanrieder, Joerg; Hoffmann, Ralf
2005-08-11
A significant number of Escherichia coli and Klebsiella pneumoniae bacterial strains in urinary tract infections are resistant to fluoroquinolones. Peptide antibiotics are viable alternatives although these are usually either toxic or insufficiently active. By applying multiple alignment and sequence optimization steps, we designed multifunctional proline-rich antibacterial peptides that maintained their DnaK-binding ability in bacteria and low toxicity in eukaryotes, but entered bacterial cells much more avidly than earlier peptide derivatives. The resulting chimeric and statistical analogues exhibited 8-32 microg/mL minimal inhibitory concentration efficacies in Muller-Hinton broth against a series of clinical pathogens. Significantly, the best peptide, compound 5, A3-APO, retained full antibacterial activity in the presence of mouse serum. Across a set of eight fluoroquinolone-resistant clinical isolates, peptide 5 was 4 times more potent than ciprofloxacin. On the basis of the in vitro efficacy, toxicity, and pharmacokinetics data, we estimate that peptide 5 will be suitable for treating infections in the 3-5 mg/kg dose range.
Ohnishi, Toshiyuki; Sakamoto, Kotaro; Asami-Odaka, Asano; Nakamura, Kimie; Shimizu, Ayako; Ito, Takashi; Asami, Taiji; Ohtaki, Tetsuya; Inooka, Hiroshi
2017-01-29
Tropomyosin receptor kinase B (TrkB) is a known receptor of brain-derived neurotrophic factor (BDNF). Because it plays a critical role in the regulation of neuronal development, maturation, survival, etc., TrkB is a good target for drugs against central nervous system diseases. In this study, we aimed to generate peptidic TrkB agonists by applying random peptide phage display technology. After the phage panning against recombinant Fc-fused TrkB (TrkB-Fc), agonistic phages were directly screened against TrkB-expressing HEK293 cells. Through subsequent screening of the first-hit BM17 peptide-derived focus library, we successfully obtained the BM17d99 peptide, which had no sequence similarity with BDNF but had TrkB-binding capacity. We then synthesized a dimeric BM17d99 analog peptide that could phosphorylate or activate TrkB by facilitating receptor homodimerization. Treatment of TrkB-expressing HEK293 cells with the dimeric BM17d99 analog peptide significantly induced the phosphorylation of TrkB, suggesting that homodimerization of TrkB was enhanced by the dimeric peptide. This report demonstrates that our approach is useful for the generation of artificial peptidic agonists of cell surface receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
Ab Initio Design of Potent Anti-MRSA Peptides based on Database Filtering Technology
Mishra, Biswajit; Wang, Guangshun
2012-01-01
To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed.1 This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g. amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database2 by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 minutes. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. A combination of our ab initio design with database screening3 led to yet another peptide with enhanced potency. Because of simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well. PMID:22803960
Ab initio design of potent anti-MRSA peptides based on database filtering technology.
Mishra, Biswajit; Wang, Guangshun
2012-08-01
To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed. This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when the most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g., amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 min. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. Our ab initio design combined with database screening led to yet another peptide with enhanced potency. Because of the simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well.
Kraft, Jennifer R.; Vance, Russell E.; Pohl, Jan; Martin, Amy M.; Raulet, David H.; Jensen, Peter E.
2000-01-01
The major histocompatibility complex class Ib protein, Qa-1b, serves as a ligand for murine CD94/NKG2A natural killer (NK) cell inhibitory receptors. The Qa-1b peptide-binding site is predominantly occupied by a single nonameric peptide, Qa-1 determinant modifier (Qdm), derived from the leader sequence of H-2D and L molecules. Five anchor residues were identified in this study by measuring the peptide-binding affinities of substituted Qdm peptides in experiments with purified recombinant Qa-1b. A candidate peptide-binding motif was determined by sequence analysis of peptides eluted from Qa-1 that had been folded in the presence of random peptide libraries or pools of Qdm derivatives randomized at specific anchor positions. The results indicate that Qa-1b can bind a diverse repertoire of peptides but that Qdm has an optimal primary structure for binding Qa-1b. Flow cytometry experiments with Qa-1b tetramers and NK target cell lysis assays demonstrated that CD94/NKG2A discriminates between Qa-1b complexes containing peptides with substitutions at nonanchor positions P4, P5, or P8. Our findings suggest that it may be difficult for viruses to generate decoy peptides that mimic Qdm and raise the possibility that competitive replacement of Qdm with other peptides may provide a novel mechanism for activation of NK cells. PMID:10974028
Blois, Anna; Holmsen, Holm; Martino, Guglielmo; Corti, Angelo; Metz-Boutigue, Marie-Hélène; Helle, Karen B
2006-03-15
Vasostatin-I (CgA1-76) is a naturally occurring and biologically active N-terminal peptide derived from chromogranin A (CgA), produced and secreted at high concentrations by neuroendocrine tissues and also from a range of neuroendocrine tumors. This study aims to examine the hypothesis that in the absence of classical protein receptors CgA1-76 may, like its two derived peptides CgA1-40 and CgA47-66, perturb the lipid microenvironment of other membrane receptors, as a basis for the largely inhibitory activities of these CgA peptides. The nature of the interactions between phospholipids and vasostatin-derived fragments was studied in the Langmuir film balance apparatus at 37 degrees C. The synthetic peptides CgA1-40 and CgA47-66 and a recombinant fragment (VS-I) containing vasostatin-I (Ser-Thr-Ala-CgA1-78) were compared for their effects on monolayers of phosphatidylcholine and phosphatidylethanolamine from pig brain and defined species of phosphatidylserine. Marked differences in surface pressure-area isotherms and phase-transition plateaus were apparent with the three classes of phospholipids on VS-I, CgA1-40 and CgA47-66 in physiological buffer or pure water. The results indicate that VS-I and CgA47-66 at 5-10 nM concentrations may engage in electrostatic as well as hydrophobic interactions with membrane-relevant phospholipids at physiological conditions, VS-I in particular enhancing the fluidity of saturated species of phosphatidylserine.
NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Mayuko; Liu Dongxiang; Kumar, Santosh
2005-09-30
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1,more » respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4.« less
López-Abarrategui, Carlos; McBeth, Christine; Mandal, Santi M.; Sun, Zhenyu J.; Heffron, Gregory; Alba-Menéndez, Annia; Migliolo, Ludovico; Reyes-Acosta, Osvaldo; García-Villarino, Mónica; Nolasco, Diego O.; Falcão, Rosana; Cherobim, Mariana D.; Dias, Simoni C.; Brandt, Wolfgang; Wessjohann, Ludger; Starnbach, Michael; Franco, Octavio L.; Otero-González, Anselmo J.
2015-01-01
Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability.—López-Abarrategui, C., McBeth, C., Mandal, S. M., Sun, Z. J., Heffron, G., Alba-Menéndez, A., Migliolo, L., Reyes-Acosta, O., García-Villarino, M., Nolasco, D. O., Falcão, R., Cherobim, M. D., Dias, S. C., Brandt, W., Wessjohann, L., Starnbach, M., Franco, O. L., Otero-González, A. J. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae). PMID:25921828
Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander
2015-12-01
We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Antimicrobial efficacy of granulysin-derived synthetic peptides in acne vulgaris.
Lim, Hee-Sun; Chun, Seung-Min; Soung, Min-Gyu; Kim, Jenny; Kim, Seong-Jin
2015-07-01
Antimicrobial peptides are considered as a potential alternative to antibiotic treatment in acne vulgaris because the development of a resistant strain of Propionibacterium acnes is problematic. Granulysin can be regarded as an ideal substance with which to treat acne because it has antimicrobial and anti-inflammatory effects. This study was performed to explore the effectiveness of granulysin-derived peptides (GDPs) in killing P. acnes in vitro under a standard microbiologic assay and to evaluate their potential use in a topical agent for the treatment of acne vulgaris. Twenty different peptides based on the known sequence of a GDP were synthesized and tested in vitro for antimicrobial activity. Thirty patients with facial acne vulgaris were instructed to apply a topical formulation containing synthetic GDP to acne lesions twice per day for 12 weeks. A newly synthesized peptide in which aspartic acid was substituted with arginine, and methionine was substituted with cysteine, showed the highest antimicrobial activity against P. acnes. Moreover, it was effective against both Gram-positive and Gram-negative bacteria in vitro. After treatment with the topical formulation containing 50 ppm of synthetic peptide for 12 weeks, a significant reduction in the number of pustules was observed, regardless of the increase in the number of comedones. In addition, a significant reduction in the clinical grade of acne based on the Korean Acne Grading System (KAGS) was evident. Synthesized GDP shows strong antimicrobial activity against P. acnes in vitro. The clinical improvement observed suggests a topical formulation containing the GDP has therapeutic potential for the improvement of inflammatory-type acne vulgaris by its antimicrobial activity. © 2015 The International Society of Dermatology.
Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong
2016-06-01
Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells.
Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia
2016-11-01
Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Rauhavirta, T; Qiao, S-W; Jiang, Z; Myrsky, E; Loponen, J; Korponay-Szabó, I R; Salovaara, H; Garcia-Horsman, J A; Venäläinen, J; Männistö, P T; Collighan, R; Mongeot, A; Griffin, M; Mäki, M; Kaukinen, K; Lindfors, K
2011-01-01
In coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31–43 and p57–68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated. PMID:21235541
Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity.
Ramírez-Carreto, Santos; Jiménez-Vargas, Juana María; Rivas-Santiago, Bruno; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto
2015-11-01
The antimicrobial potential of two new non-disulfide bound peptides, named VpAmp1.0 (LPFFLLSLIPSAISAIKKI, amidated) and VpAmp2.0 (FWGFLGKLAMKAVPSLIGGNKSSSK) is here reported. These are 19- and 25-aminoacid-long peptides with +2 and +4 net charges, respectively. Their sequences correspond to the predicted mature regions from longer precursors, putatively encoded by cDNAs derived from the venom glands of the Mexican scorpion Vaejovis punctatus. Both peptides were chemically synthesized and assayed against a variety of microorganisms, including pathogenic strains from clinical isolates and strains resistant to conventional antibiotics. Two shorter variants, named VpAmp1.1 (FFLLSLIPSAISAIKKI, amidated) and VpAmp2.1 (FWGFLGKLAMKAVPSLIGGNKK), were also synthesized and tested. The antimicrobial assays revealed that the four synthetic peptides effectively inhibit the growth of both Gram-positive (Staphylococcus aureus and Streptococcus agalactiaea) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria, with MICs in the range of 2.5-24.0 μM; yeasts (Candida albicans and Candida glabrata) with MICs of 3.1-50.0 μM; and two clinically isolated strains of Mycobacterium tuberculosis-including a multi-drug resistant one- with MICs in the range of 4.8-30.5 μM. A comparison between the activities of the original peptides and their derivatives gives insight into the structural/functional role of their distinctive residues. Copyright © 2015 Elsevier Inc. All rights reserved.
Norberg, Sarah; O'Connor, Paula M.; Stanton, Catherine; Ross, R. Paul; Hill, Colin; Fitzgerald, Gerald F.; Cotter, Paul D.
2011-01-01
Caseicin A (IKHQGLPQE) and caseicin B (VLNENLLR) are antimicrobial peptides generated through the bacterial fermentation of sodium caseinate, and on the basis of this and previous studies, they are active against many Gram-negative pathogens (Cronobacter sakazakii, Cronobacter muytjensii, Salmonella enterica serovar Typhimurium, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas fluorescens) as well as the Gram-positive organism Staphylococcus aureus. Here we describe further studies with the aim of establishing the importance of specific (charged and nonpolar aliphatic) residues within the caseicin peptides and the effects that they have on the bacteria listed above. In order to achieve our objective, we created four derivatives of each caseicin (A1 to A4 and B1 to B4) in which specific residues were altered, and results obtained with these derivatives were compared to wild-type caseicin activity. Although conversion of cationic residues to alanine in caseicins B1 (R8A change), A1 (K2A), A2 (H3A), and A3 (K2A-H3A) generally resulted in their activity against microbial targets being reduced or unaltered, C. sakazakii DPC6440 was unusual in that it displayed enhanced sensitivity to three peptides (caseicins A1, A3, and B2) in which positively charged residues had been eliminated. While the replacement of leucine with alanine in selected variants (B3 and B4) resulted in reduced activity against a number of strains of Cronobacter and, in some cases, S. Typhimurium, these changes enhanced the activities of these peptides against DPC6440 and a number of S. aureus strains. It is thus apparent that the importance of specific residues within the caseicin peptides is dependent on the strain being targeted. PMID:21296933
Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.
Noessner, Elfriede; Gastpar, Robert; Milani, Valeria; Brandl, Anna; Hutzler, Peter J S; Kuppner, Maria C; Roos, Miriam; Kremmer, Elisabeth; Asea, Alexzander; Calderwood, Stuart K; Issels, Rolf D
2002-11-15
Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.
Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki
2006-06-01
Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.
Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman
2016-11-01
Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016. © 2016 Wiley Periodicals, Inc.
M C Chung, Ezra; Dean, Scott N; Propst, Crystal N; Bishop, Barney M; van Hoek, Monique L
2017-01-01
Cationic antimicrobial peptides are multifunctional molecules that have a high potential as therapeutic agents. We have identified a histone H1-derived peptide from the Komodo dragon ( Varanus komodoensis) , called VK25. Using this peptide as inspiration, we designed a synthetic peptide called DRGN-1. We evaluated the antimicrobial and anti-biofilm activity of both peptides against Pseudomonas aeruginosa and Staphylococcus aureus . DRGN-1, more than VK25, exhibited potent antimicrobial and anti-biofilm activity, and permeabilized bacterial membranes. Wound healing was significantly enhanced by DRGN-1 in both uninfected and mixed biofilm ( Pseudomonas aeruginosa and Staphylococcus aureus )-infected murine wounds. In a scratch wound closure assay used to elucidate the wound healing mechanism, the peptide promoted the migration of HEKa keratinocyte cells, which was inhibited by mitomycin C (proliferation inhibitor) and AG1478 (epidermal growth factor receptor inhibitor). DRGN-1 also activated the EGFR-STAT1/3 pathway. Thus, DRGN-1 is a candidate for use as a topical wound treatment. Wound infections are a major concern; made increasingly complicated by the emerging, rapid spread of bacterial resistance. The novel synthetic peptide DRGN-1 (inspired by a peptide identified from Komodo dragon) exhibits pathogen-directed and host-directed activities in promoting the clearance and healing of polymicrobial ( Pseudomonas aeruginosa & Staphylococcus aureus ) biofilm infected wounds. The effectiveness of this peptide cannot be attributed solely to its ability to act upon the bacteria and disrupt the biofilm, but also reflects the peptide's ability to promsote keratinocyte migration. When applied in a murine model, infected wounds treated with DRGN-1 healed significantly faster than did untreated wounds, or wounds treated with other peptides. The host-directed mechanism of action was determined to be via the EGFR-STAT1/3 pathway. The pathogen-directed mechanism of action was determined to be via anti-biofilm activity and antibacterial activity through membrane permeabilization. This novel peptide may have potential as a future therapeutic for treating infected wounds.
Diet Bioactive Compounds: Implications for Oxidative Stress and Inflammation in the Vascular System.
Gabriele, Morena; Pucci, Laura
2017-11-16
Increasing evidence has demonstrated that dietary products and their active components are independently or jointly responsible for the apparent reduction of the cardiovascular diseases (CVDs) risk. Nowadays, there is a growing attention in the use of nutraceuticals as a new approach for the prevention and management of many diseases, as well as for controlling rising of chronic illnesses with minimal side effects. Food-derived peptides, as well as peptide-rich protein hydrolysates, represent new and valuable tools for the prevention of metabolic and cardiovascular diseases, acting as modulators of oxidative stress, inflammation, and overactivity of the renin-angiotensin system (RAS). This review summarizes the recently published data on antioxidant, anti-inflammatory, and vascular protective properties of nutraceuticals, notably on the effects of food-derived bioactive peptides and protein hydrolysates, paying particular attention to those derived from fermented foods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Jallouk, Andrew Philip
Melittin is a cytolytic peptide derived from honeybee venom which inserts into lipid membranes and oligomerizes to form membrane pores. While this peptide is an attractive candidate for treatment of cancers and infectious processes, its nonspecific cytotoxicity and hemolytic activity have limited its therapeutic applications. The goal of this dissertation was to enhance the specificity of melittin therapy through the use of perfluorocarbon nanoparticles to minimize nonspecific cytotoxicity and the development of melittin prodrugs which only exhibit cytolytic activity following activation by site-specific proteases. Although previous studies have characterized the biological effects of melittin-loaded nanoparticles following intravenous administration, we first investigated their use as topical agents for prevention of HIV infection. We found that incorporation of native melittin onto perfluorocarbon nanoparticles maintained antiviral activity while substantially reducing contact toxicity to sperm and vaginal epithelium. These results demonstrated the potential utility of melittin-loaded nanoparticles as a topical vaginal virucide. To further enhance melittin specificity, we developed melittin derivatives which could be activated by matrix metalloproteinase-9, a protease which is overexpressed in many tumors and which plays a critical role in cancer invasion and metastasis. We then characterized the interactions of these peptides with perfluorocarbon nanoparticles and demonstrated the safety and efficacy of intravenous prodrug-loaded nanoparticle therapy in a mouse model of melanoma. The versatility of this platform could facilitate development of personalized cancer therapies directed towards a patient's individual protease expression profile.
Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide
Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu
2014-01-01
Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076
de la Fuente-Núñez, César; Reffuveille, Fany; Mansour, Sarah C.; Reckseidler-Zenteno, Shauna L.; Hernández, Diego; Brackman, Gilles; Coenye, Tom; Hancock, Robert E.W.
2015-01-01
SUMMARY In many infections, bacteria form surface-associated communities known as biofilms that are substantially more resistant to antibiotics than their planktonic counterparts. Based on the design features of active anti-biofilm peptides, we made a series of related 12-amino acid L-, D- and retro-inverso derivatives. Specific D-enantiomeric peptides were the most potent at inhibiting biofilm development and eradicating pre-formed biofilms of seven species of wild-type and multiply antibiotic resistant Gram-negative pathogens. Moreover, these peptides showed strong synergy with conventional antibiotics, reducing the antibiotic concentrations required for complete biofilm inhibition by up to 64-fold. As shown previously for 1018, these D-amino acid peptides targeted the intracellular stringent response signal (p)ppGpp. The most potent peptides DJK-5 and DJK-6 protected invertebrates from lethal P. aeruginosa infections, and were considerably more active than a previously described L-amino acid peptide 1018. Thus, the protease resistant peptides produced here were more effective both in vitro and in vivo. PMID:25699603
An enhancer peptide for membrane-disrupting antimicrobial peptides
2010-01-01
Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058
Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis
NASA Astrophysics Data System (ADS)
Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.
2017-07-01
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Mendis, Eresha; Rajapakse, Niranjan; Byun, Hee-Guk; Kim, Se-Kwon
2005-09-09
Peptides derived from tryptic hydrolysate of jumbo squid (Dosidicus gigas) skin gelatin were assessed for their antioxidant properties in different in vitro assay systems. The hydrolysate itself exhibited a strong lipid peroxidation inhibition and it was much higher than that of natural antioxidant, alpha-tocopherol. In addition, it could scavenge highly active free radicals in oxidative systems, in the order of hydroxyl and carbon-centered radicals. Two representative peptides with comparatively higher antioxidant potency were purified and characterized as Phe-Asp-Ser-Gly-Pro-Ala-Gly-Val-Leu (880.18 Da) and Asn-Gly-Pro-Leu-Gln-Ala-Gly-Gln-Pro-Gly-Glu-Arg (1241.59 Da). Furthermore, viability of radical-mediated oxidation-induced human lung fibroblasts was enhanced following the treatment of two peptides. However it did not exhibit substantial ion chelation, and we presumed that the observed radical scavenging potency of these peptides play a vital role for their strong antioxidant activity. Based on our results we suggest that hydrophobic amino acids present in peptide sequences contributed greatly for observed antioxidant activities.
Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk.
Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin
2017-02-26
Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
Silva, Mariana Barros de Cerqueira E; Souza, Caio Alexandre da Cruz; Philadelpho, Biane Oliveira; Cunha, Mariana Mota Novais da; Batista, Fabiana Pacheco Reis; Silva, Jaff Ribeiro da; Druzian, Janice Izabel; Castilho, Marcelo Santos; Cilli, Eduardo Maffud; Ferreira, Ederlan S
2018-09-01
Previous studies have shown that cowpea protein positively interferes with cholesterol metabolism. In this study, we evaluated the ability of the fraction containing peptides of <3 kDa, as well as that of the Gln-Asp-Phe (QDF) peptide, derived from cowpea β-vignin protein, to inhibit HMG-CoA reductase activity. We established isolation and chromatography procedures to effectively obtain the protein with a purity above 95%. In silico predictions were performed to identify peptide sequences capable of interacting with HMG-CoA reductase. In vitro experiments showed that the fraction containing peptides of <3 kDa displayed inhibition of HMG-CoA reductase activity. The tripeptide QDF inhibits HMG-CoA reductase (IC 50 = 12.8 μM) in a dose-dependent manner. Furthermore, in silico studies revealed the binding profile of the QDF peptide and hinted at the molecular interactions that are responsible for its activity. Therefore, this study shows, for the first time, a peptide from cowpea β-vignin protein that inhibits HMG-CoA reductase and the chemical modifications that should be investigated to evaluate its binding profile. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kobbi, Sabrine; Nedjar, Naima; Chihib, Nourdine; Balti, Rafik; Chevalier, Mickael; Silvain, Amandine; Chaabouni, Semia; Dhulster, Pascal; Bougatef, Ali
2018-02-01
In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.
YOSHIMURA, MAYUKO; TADA, YOSHITAKA; OFUZI, KAZUYA; YAMAMOTO, MASAKAZU; NAKATSURA, TETSUYA
2014-01-01
Cancer immunotherapy is a promising new approach to cancer treatment. It has been demonstrated that a high number of tumor-specific cytotoxic T cells (CTLs) is associated with increased disease-specific survival in lung cancer patients. Identification of superior CTL epitopes from tumor antigens is essential for the development of immunotherapy for malignant tumors. The EML4-ALK fusion gene was recently identified in a subset of non-small cell lung cancers (NSCLCs). In this study we searched for HLA-A*02:01- and HLA-A*24:02-restricted epitopes derived from EML4-ALK by screening predicted EML4-ALK-derived candidate peptides for the induction of tumor-reactive CTLs. Nine EML4-ALK-derived peptides were selected by a computer algorithm based on a permissive HLA-A*02:01 or HLA-A*24:02 binding motif. One of the nine peptides induced peptide-specific CTLs from human peripheral blood mononuclear cells. We were able to generate a peptide-specific CTL clone. This CTL clone specifically recognized peptide-pulsed T2 cells and H2228 cells expressing HLA-A*02:01 and EML4-ALK that had been treated with IFN-γ 48 h prior to examination. CTL activity was inhibited by an anti-HLA-class I monoclonal antibody (W6/32), consistent with a class I-restricted mechanism of cytotoxicity. These results suggest that this peptide (RLSALESRV) is a novel HLA-A*02:01-restricted CTL epitope and that it may be a new target for antigen-specific immunotherapy against EML4-ALK-positive cancers. PMID:24842630
Platelet-Rich Plasma Peptides: Key for Regeneration
Sánchez-González, Dolores Javier; Méndez-Bolaina, Enrique; Trejo-Bahena, Nayeli Isabel
2012-01-01
Platelet-derived Growth Factors (GFs) are biologically active peptides that enhance tissue repair mechanisms such as angiogenesis, extracellular matrix remodeling, and cellular effects as stem cells recruitment, chemotaxis, cell proliferation, and differentiation. Platelet-rich plasma (PRP) is used in a variety of clinical applications, based on the premise that higher GF content should promote better healing. Platelet derivatives represent a promising therapeutic modality, offering opportunities for treatment of wounds, ulcers, soft-tissue injuries, and various other applications in cell therapy. PRP can be combined with cell-based therapies such as adipose-derived stem cells, regenerative cell therapy, and transfer factors therapy. This paper describes the biological background of the platelet-derived substances and their potential use in regenerative medicine. PMID:22518192
Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.
Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L
2015-08-01
In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. © International & American Associations for Dental Research 2015.
Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function.
Geng, Jie; Altman, John D; Krishnakumar, Sujatha; Raghavan, Malini
2018-05-09
When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8 + T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8 + T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8 + T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8 + T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8 + T cell activation, mediated by the binding of empty HLA-I to CD8. © 2018, Geng et al.
Couture, Leah A; Piao, Wenji; Ru, Lisa W; Vogel, Stefanie N; Toshchakov, Vladimir Y
2012-07-13
Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal) is an adapter protein that facilitates recruitment of MyD88 to TLR4 and TLR2 signaling complexes. We previously generated a library of cell-permeating TLR4 TIR-derived decoy peptides fused to the translocating segment of the Drosophila Antennapedia homeodomain and examined each peptide for the ability to inhibit TLR4 signaling (Toshchakov, V. Y., Szmacinski, H., Couture, L. A., Lakowicz, J. R., and Vogel, S. N. (2011) J. Immunol. 186, 4819-4827). We have now expanded this study to test TIRAP decoy peptides. Five TIRAP peptides, TR3 (for TIRAP region 3), TR5, TR6, TR9, and TR11, inhibited LPS-induced cytokine mRNA expression and MAPK activation. Inhibition was confirmed at the protein level; select peptides abolished the LPS-induced cytokine production measured in cell culture 24 h after a single treatment. Two of the TLR4 inhibitory peptides, TR3 and TR6, also inhibited cytokine production induced by a TLR2/TLR1 agonist, S-(2,3-bis(palmitoyloxy)-(2R,2S)-propyl)-N-palmitoyl-(R)-Cys-Ser-Lys(4)-OH; however, a higher peptide concentration was required to achieve comparable inhibition of TLR2 versus TLR4 signaling. Two TLR4 inhibitory peptides, TR5 and TR6, were examined for the ability to inhibit TLR4-driven cytokine induction in mice. Pretreatment with either peptide significantly reduced circulating TNF-α and IL-6 in mice following LPS injection. This study has identified novel TLR inhibitory peptides that block cellular signaling at low micromolar concentrations in vitro and in vivo. Comparison of TLR4 inhibition by TLR4 and TIRAP TIR-derived peptides supports the view that structurally diverse regions mediate functional interactions of TIR domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, R.; Ross, P.; Weinhouse, H.
1991-06-15
To comprehend the catalytic and regulatory mechanism of the cyclic diguanylic acid (c-di-GMP)-dependent cellulose synthase of Acetobacter xylinum and its relatedness to similar enzymes in other organisms, the structure of this enzyme was analyzed at the polypeptide level. The enzyme, purified 350-fold by enzyme-product entrapment, contains three major peptides (90, 67, and 54 kDa), which, based on direct photoaffinity and immunochemical labeling and amino acid sequence analysis, are constituents of the native cellulose synthase. Labeling of purified synthase with either ({sup 32}P)c-di-GMP or ({alpha}-{sup 32}P)UDP-glucose indicates that activator- and substrate-specific binding sites are most closely associated with the 67- andmore » 54-kDa peptides, respectively, whereas marginal photolabeling is detected in the 90-k-Da peptide. However, antibodies raised against a protein derived from the cellulose synthase structural gene (bcsB) specifically label all three peptides. The authors suggest that the structurally related 67- and 54-kDa peptides are fragments proteolytically derived from the 90-kDa peptide encoded by bcsB. The anti-cellulose synthase antibodies crossreact with a similar set of peptides derived from other cellulose-producing microorganisms and plants such as Agrobacterium tumefaciens, Rhizobium leguminosarum, mung bean, peas, barley, and cotton. The occurrence of such cellulose synthase-like structures in plant species suggests that a common enzymatic mechanism for cellulose biogenesis is employed throughout nature.« less
Sakamoto, Ken; Sato, Kohei; Shigenaga, Akira; Tsuji, Kohei; Tsuda, Shugo; Hibino, Hajime; Nishiuchi, Yuji; Otaka, Akira
2012-08-17
N-sulfanylethylanilide (SEAlide) peptides 1, obtainable using Fmoc-based solid-phase peptide synthesis (Fmoc SPPS), function as crypto-thioesters in native chemical ligation (NCL), yielding a wide variety of peptides/proteins. Their acylating potential with N-terminal cysteinyl peptides 2 can be tuned by the presence or absence of phosphate salts, leading to one-pot/multifragment ligation, operating under kinetically controlled conditions. SEAlide peptides have already been shown to be promising for use in protein synthesis; however, a widely applicable method for the synthesis of N-Fmoc amino acyl-N-sulfanylethylaniline linkers 4, required for the preparation of SEAlide peptides, is unavailable. The present study addresses the development of efficient condensation protocols of 20 naturally occurring amino acid derivatives to the N-sulfanylethylaniline linker 5. N-Fmoc amino acyl aniline linkers 4 of practical use in NCL chemistry, except in the case of the proline- or aspartic acid-containing linker, were successfully synthesized by coupling of POCl(3)- or SOCl(2)-activated Fmoc amino acid derivatives with sodium anilide species 6, without accompanying racemization and loss of side-chain protection. Furthermore, SEAlide peptides 7 possessing various C-terminal amino acids (Gly, His, Phe, Ala, Asn, Ser, Glu, and Val) were shown to be of practical use in NCL chemistry.
Puyal, Julien; Margue, Christiane; Michel, Sébastien; Kreis, Stephanie; Kulms, Dagmar; Barras, David; Nahimana, Aimable; Widmann, Christian
2016-01-01
Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment. PMID:27602963
Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S.
2011-01-01
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+ T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+ T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols. PMID:21367979
Ramaswami, Bala; Popescu, Iulia; Macedo, Camila; Luo, Chunqing; Shapiro, Ron; Metes, Diana; Chalasani, Geetha; Randhawa, Parmjeet S
2011-05-01
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4(+) T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4(+) T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.
Figueiredo, Carlos R; Matsuo, Alisson L; Massaoka, Mariana H; Polonelli, Luciano; Travassos, Luiz R
2014-09-01
Short synthetic peptides corresponding to sequences of complementarity-determining regions (CDRs) from different immunoglobulin families have been shown to induce antimicrobial, antiviral and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). Presently, we studied the in vitro and in vivo antitumor activity of synthetic peptides derived from conserved CDR sequences of different immunoglobulins against human tumor cell lines and murine B16F10-Nex2 melanoma aiming at the discovery of candidate molecules for cancer therapy. Four light- and heavy-chain CDR peptide sequences from different antibodies (C36-L1, HA9-H2, 1-H2 and Mg16-H2) showed cytotoxic activity against murine melanoma and a panel of human tumor cell lineages in vitro. Importantly, they also exerted anti-metastatic activity using a syngeneic melanoma model in mice. Other peptides (D07-H3, MN20v1, MS2-H3) were also protective against metastatic melanoma, without showing significant cytotoxicity against tumor cells in vitro. In this case, we suggest that these peptides may act as immune adjuvants in vivo. As observed, peptides induced nitric oxide production in bone-marrow macrophages showing that innate immune cells can also be modulated by these CDR peptides. The present screening supports the search in immunoglobulins of rather frequent CDR sequences that are endowed with specific antitumor properties and may be candidates to be developed as anti-cancer drugs. Copyright © 2014 Elsevier Inc. All rights reserved.
Wang, Cong; Tu, Maolin; Wu, Di; Chen, Hui; Chen, Cheng; Wang, Zhenyu; Jiang, Lianzhou
2018-04-11
In the present study, a novel angiotensin I-converting enzyme inhibitory (ACE inhibitory) peptide, EPNGLLLPQY, derived from walnut seed storage protein, fragment residues 80-89, was identified by ultra-high performance liquid chromatography electrospray ionization quadrupole time of flight mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) from walnut protein hydrolysate. The IC 50 value of the peptide was 233.178 μM, which was determined by the high performance liquid chromatography method by measuring the amount of hippuric acid (HA) generated from the ACE decomposition substrate (hippuryl-l-histidyl-l-leucine (HHL) to assess the ACE activity. Enzyme inhibitory kinetics of the peptide against ACE were also conducted, by which the inhibitory mechanism of ACE-inhibitory peptide was confirmed. Moreover, molecular docking was simulated by Discovery Studio 2017 R2 software to provide the potential mechanisms underlying the ACE-inhibitory activity of EPNGLLLPQY.
1992-01-01
T cell stimulation by the human immunodeficiency virus 1 gp160-derived peptide p18 presented by H-2Dd class I major histocompatibility complex molecules in a cell-free system was found to require proteolytic cleavage. This extracellular processing was mediated by peptidases present in fetal calf serum. In vitro processing of p18 resulted in a distinct reverse phase high performance liquid chromatography profile, from which a biologically active product was isolated and sequenced. This peptide processing can be specifically blocked by the angiotensin- 1 converting enzyme (ACE) inhibitor captopril, and can occur by exposing p18 to purified ACE. The ability of naturally occurring extracellular proteases to convert inactive peptides to T cell antigens has important implications for understanding cytotoxic T lymphocyte responses in vivo, and for rational peptide vaccine design. PMID:1316930
Kasetty, Gopinath; Alyafei, Saud; Smeds, Emanuel; Salo-Ahen, Outi M. H.; Hansson, Stefan R.; Egesten, Arne; Herwald, Heiko
2018-01-01
ABSTRACT Coagulation, complement, and innate immunity are tightly interwoven and form an alliance that can be traced back to early eukaryotic evolution. Here we employed an ecoimmunological approach using Tissue Factor Pathway Inhibitor (TFPI)-1-derived peptides from the different classes of vertebrates (i.e. fish, reptile, bird, and mammals) and tested whether they can boost killing of various human bacterial pathogens in plasma. We found signs of species-specific conservation and diversification during evolution in these peptides that significantly impact their antibacterial activity. Though all peptides tested executed bactericidal activity in mammalian plasma (with the exception of rodents), no killing was observed in plasma from birds, reptiles, and fish, pointing to a crucial role for the classical pathway of the complement system. We also observed an interference of these peptides with the human intrinsic pathway of coagulation though, unlike complement activation, this mechanism appears not to be evolutionary conserved. PMID:29473457
Development of a peptide substrate for detection of Sunn pest damage in wheat flour.
Hançerlioğulları, Begüm Zeynep; Köksel, Hamit; Dudak, Fahriye Ceyda
2018-05-07
Since the common protease substrates did not give satisfactory results for the determination of Sunn pest protease activity in damaged wheat, different peptide substrates derived from the repeat sequences of high molecular weight glutenin subunits were synthesized. Hydrolysis of peptides by pest protease was determined by HPLC. Among three peptides having the same consensus motifs, peptide1 (PGQGQQGYYPTSPQQ) showed the best catalytic efficiency. A novel assay was described for monitoring the enzymatic activity of protease extracted from damaged wheat flour. The selected peptide was labeled with a fluorophore (EDANS) and quencher (Dabcyl) to display fluorescence resonance energy transfer (FRET). The proteolytic activity was measured by the change in fluorescence intensity that occurred when the protease cleaved the peptide substrate. Furthermore, the developed assay was modified for rapid and easy detection of bug damage in flour. Flour samples were suspended in water and mixed with fluorescence peptide substrate. After centrifugation, the fluorescence intensities of the supernatants were determined which is proportional with the protease content of the flour. The total analysis time for the developed assay is estimated as 15 minutes. The developed assay permits a significant decrease in time and labor, offering sensitive detection of Sunn pest damage in wheat flour. This article is protected by copyright. All rights reserved.
Design of a potent antibiotic peptide based on the active region of human defensin 5.
Wang, Cheng; Shen, Mingqiang; Gohain, Neelakshi; Tolbert, William D; Chen, Fang; Zhang, Naixin; Yang, Ke; Wang, Aiping; Su, Yongping; Cheng, Tianmin; Zhao, Jinghong; Pazgier, Marzena; Wang, Junping
2015-04-09
Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.
Yu, Hui-Chun; Lu, Ming-Chi; Li, Chin; Huang, Hsien-Lu; Huang, Kuang-Yung; Liu, Su-Qin; Lai, Ning-Sheng; Huang, Hsien-Bin
2013-01-01
The development of suitable methods to deliver peptides specifically to the endoplasmic reticulum (ER) can provide some potential therapeutic applications of such peptides. Ankylosing spondylitis (AS) is strongly associated with the expression of human leukocytic antigen-B27 (HLA-B27). HLA-B27 heavy chain (HC) has a propensity to fold slowly resulting in the accumulation of misfolded HLA-B27 HC in the ER, triggering the unfolded protein response, and forming a homodimer, (B27-HC)2. Natural killer cells and T-helper 17 cells are then activated, contributing to the major pathogenic potentials of AS. The HLA-B27 HC is thus an important target, and delivery of an HLA-B27-binding peptide to the ER capable of promoting HLA-B27 HC folding is a potential mechanism for AS therapy. Here, we demonstrate that a His6-ubiquitin-tagged Tat-derived peptide (THU) can deliver an HLA-B27-binding peptide to the ER promoting HLA-B27 HC folding. The THU-HLA-B27-binding peptide fusion protein crossed the cell membrane to the cytosol through the Tat-derived peptide. The HLA-B27-binding peptide was specifically cleaved from THU by cytosolic ubiquitin C-terminal hydrolases and subsequently transported into the ER by the transporter associated with antigen processing. This approach has potential application in the development of peptide therapy for AS. PMID:24155957
Böttger, Roland; Hoffmann, Ralf; Knappe, Daniel
2017-01-01
Proteolytic degradation of peptide-based drugs is often considered as major weakness limiting systemic therapeutic applications. Therefore, huge efforts are typically devoted to stabilize sequences against proteases present in serum or plasma, obtained as supernatants after complete blood coagulation or centrifugation of blood supplemented with anticoagulants, respectively. Plasma and serum are reproducibly obtained from animals and humans allowing consistent for clinical analyses and research applications. However, the spectrum of active or activated proteases appears to vary depending on the activation of proteases and cofactors during coagulation (serum) or inhibition of such enzymes by anticoagulants (plasma), such as EDTA (metallo- and Ca2+-dependent proteases) and heparin (e.g. thrombin, factor Xa). Here, we studied the presumed effects on peptide degradation by taking blood via cardiac puncture of CD-1 mice using a syringe containing a peptide solution. Due to absence of coagulation activators (e.g. glass surfaces and damaged cells), visible blood clotting was prevented allowing to study peptide degradation for one hour. The remaining peptide was quantified and the degradation products were identified using mass spectrometry. When the degradation rates (half-life times) were compared to serum derived freshly from the same animal and commercial serum and plasma samples, peptides of three different families showed indeed considerably different stabilities. Generally, peptides were faster degraded in serum than in plasma, but surprisingly all peptides were more stable in fresh blood and the order of degradation rates among the peptides varied among the six different incubation experiments. This indicates, that proteolytic degradation of peptide-based therapeutics may often be misleading stimulating efforts to stabilize peptides at degradation sites relevant only in vitro, i.e., for serum or plasma stability assays, but of lower importance in vivo.
Jindal, Hassan Mahmood; Le, Cheng Foh; Mohd Yusof, Mohd Yasim; Velayuthan, Rukumani Devi; Lee, Vannajan Sanghiran; Zain, Sharifuddin Md; Isa, Diyana Mohd; Sekaran, Shamala Devi
2015-01-01
Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development. PMID:26046345
Huan, Jianya Y; Meza-Romero, Roberto; Mooney, Jeffery L; Chou, Yuan K; Edwards, David M; Rich, Cathleen; Link, Jason M; Vandenbark, Arthur A; Bourdette, Dennis N; Bächinger, Hans-Peter; Burrows, Gregory G
2012-01-01
Single-chain human recombinant T cell receptor ligands derived from the peptide binding/TCR recognition domain of human HLA-DR2b (DRA*0101/DRB1*1501) produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides have been described previously. While molecules with the native sequence retained biological activity, they formed higher order aggregates in solution. In this study, we used site-directed mutagenesis to modify the β-sheet platform of the DR2-derived RTLs, obtaining two variants that were monomeric in solution by replacing hydrophobic residues with polar (serine) or charged (aspartic acid) residues. Size exclusion chromatography and dynamic light scattering demonstrated that the modified RTLs were monomeric in solution, and structural characterization using circular dichroism demonstrated the highly ordered secondary structure of the RTLs. Peptide binding to the `empty' RTLs was quantified using biotinylated peptides, and functional studies showed that the modified RTLs containing covalently tethered peptides were able to inhibit antigen-specific T cell proliferation in vitro, as well as suppress experimental autoimmune encephalomyelitis in vivo. These studies demonstrated that RTLs encoding the Ag-binding/TCR recognition domain of MHC class II molecules are innately very robust structures, capable of retaining potent biological activity separate from the Ig-fold domains of the progenitor class II structure, with prevention of aggregation accomplished by modification of an exposed surface that was buried in the progenitor structure. PMID:22973070
Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair
Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe
2015-01-01
The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502
Inhibition of APOBEC3G activity impedes double-stranded DNA repair.
Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe
2016-01-01
The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storrs, Richard Wood
1992-08-01
Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis,more » syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storrs, R.W.
1992-08-01
Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal ofmore » cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.« less
Civra, Andrea; Giuffrida, Maria Gabriella; Donalisio, Manuela; Napolitano, Lorenzo; Takada, Yoshikazu; Coulson, Barbara S; Conti, Amedeo; Lembo, David
2015-05-08
Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A review of the design and modification of lactoferricins and their derivatives.
Hao, Ya; Yang, Na; Teng, Da; Wang, Xiumin; Mao, Ruoyu; Wang, Jianhua
2018-06-01
Lactoferricin (Lfcin), a multifunction short peptide with a length of 25 residues, is derived from the whey protein lactoferrin by acidic pepsin hydrolysis. It has potent nutritional enhancement, antimicrobial, anticancer, antiviral, antiparasitic, and anti-inflammatory activities. This review describes the research advantages of the above biological functions, with attention to the molecular design and modification of Lfcin. In this examination of design and modification studies, research on the identification of Lfcin active derivatives and crucial amino acid residues is also reviewed. Many strategies for Lfcin optimization have been studied in recent decades, but we mainly introduce chemical modification, cyclization, chimera and polymerization of this peptide. Modifications such as incorporation of D-amino acids, acetylation and/or amidation could effectively improve the activity and stability of these compounds. Due to their wide array of bio-functions and applications, Lfcins have great potential to be developed as biological agents with multiple functions involved with nutritional enhancement, as well as disease preventive and therapeutic effects.
Taylor, Karen; Clarke, David J; McCullough, Bryan; Chin, Wutharath; Seo, Emily; Yang, De; Oppenheim, Joost; Uhrin, Dusan; Govan, John R W; Campopiano, Dominic J; MacMillan, Derek; Barran, Perdita; Dorin, Julia R
2008-03-14
beta-Defensins are important in mammalian immunity displaying both antimicrobial and chemoattractant activities. Three canonical disulfide intramolecular bonds are believed to be dispensable for antimicrobial activity but essential for chemoattractant ability. However, here we show that HBD3 (human beta-defensin 3) alkylated with iodoactemide and devoid of any disulfide bonds is still a potent chemoattractant. Furthermore, when the canonical six cysteine residues are replaced with alanine, the peptide is no longer active as a chemoattractant. These findings are replicated by the murine ortholog Defb14. We restore the chemoattractant activity of Defb14 and HBD3 by introduction of a single cysteine in the fifth position (Cys V) of the beta-defensin six cysteine motif. In contrast, a peptide with a single cysteine at the first position (Cys I) is inactive. Moreover, a range of overlapping linear fragments of Defb14 do not act as chemoattractants, suggesting that the chemotactic activity of this peptide is not dependent solely on an epitope surrounding Cys V. Full-length peptides either with alkylated cysteine residues or with cysteine residues replaced with alanine are still strongly antimicrobial. Defb14 peptide fragments were also tested for antimicrobial activity, and peptides derived from the N-terminal region display potent antimicrobial activity. Thus, the chemoattractant and antimicrobial activities of beta-defensins can be separated, and both of these functions are independent of intramolecular disulfide bonds. These findings are important for further understanding of the mechanism of action of defensins and for therapeutic design.
Qureshi, T M; Vegarud, G E; Abrahamsen, R K; Skeie, S
2013-02-01
The angiotensin I-converting enzyme (ACE) inhibitory activity of Gamalost cheese, its pH 4.6-soluble fraction, and Norvegia cheese was monitored before and after digestion with human gastric and duodenal juices. Both Gamalost and Norvegia cheeses showed an increased ACE-inhibitory activity during gastrointestinal digestion. However, only Norvegia showed pronounced increased activity after duodenal digestion. More peptides were detected in digested Gamalost compared with digested Norvegia. Most of the peptides in Gamalost were derived from β-casein (CN), some originated from α(s1)-CN, and only a very few originated from α(s2)-CN and κ-CN. In general, the number of peptides increased during gastrointestinal digestion, whereas some peptides were further degraded and disappeared; however, surprisingly, a few peptides remained stable. The aromatic amino acids, such as Tyr, Phe, and Trp; the positively charged amino acids (Arg and Lys); and Leu increased after simulated gastrointestinal digestion of Gamalost and Norvegia. After in vitro gastrointestinal digestion, both Gamalost and Norvegia showed high ACE-inhibitory activity, which may contribute in lowering of mild hypertension. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jesús, Torres; Rogelio, López; Abraham, Cetina; Uriel, López; J- Daniel, García; Alfonso, Méndez-Tenorio; Lilia, Barrón Blanca
2012-01-01
There are very few antiviral drugs available to fight viral infections and the appearance of viral strains resistant to these antivirals is not a rare event. Hence, the design of new antiviral drugs is important. We describe the prediction of peptides with antiviral activity (AVP) derived from the viral glycoproteins involved in the entrance of herpes simplex (HSV) and influenza A viruses into their host cells. It is known, that during this event viral glycoproteins suffer several conformational changes due to protein-protein interactions, which lead to membrane fusion between the viral envelope and the cellular membrane. Our hypothesis is that AVPs can be derived from these viral glycoproteins, specifically from regions highly conserved in amino acid sequences, which at the same time have the physicochemical properties of being highly exposed (antigenic), hydrophilic, flexible, and charged, since these properties are important for protein-protein interactions. For that, we separately analyzed the HSV glycoprotein H and B, and influenza A viruses hemagglutinin (HA), using several bioinformatics tools. A set of multiple alignments was carried out, to find the most conserved regions in the amino acid sequences. Then, the physicochemical properties indicated above were analyzed. We predicted several peptides 12-20 amino acid length which by docking analysis were able to interact with the fusion viral glycoproteins and thus may prevent conformational changes in them, blocking the viral infection. Our strategy to design AVPs seems to be very promising since the peptides were synthetized and their antiviral activities have produced very encouraging results. PMID:23144542
Kunji, E R; Hagting, A; De Vries, C J; Juillard, V; Haandrikman, A J; Poolman, B; Konings, W N
1995-01-27
In the proteolytic pathway of Lactococcus lactis, milk proteins (caseins) are hydrolyzed extracellularly to oligopeptides by the proteinase (PrtP). The fate of these peptides, i.e. extracellular hydrolysis followed by amino acid uptake or transport followed by intracellular hydrolysis, has been addressed. Mutants have been constructed that lack a functional di-tripeptide transport system (DtpT) and/or oligopeptide transport system (Opp) but do express the P1-type proteinase (specific for hydrolysis of beta- and to a lesser extent kappa-casein). The wild type strain and the DtpT- mutant accumulate all beta-casein-derived amino acids in the presence of beta-casein as protein substrate and glucose as a source of metabolic energy. The amino acids are not accumulated significantly inside the cells by the Opp- and DtpT- Opp- mutants. When cells are incubated with a mixture of amino acids mimicking the composition of beta-casein, the amino acids are taken up to the same extent in all four strains. Analysis of the extracellular peptide fraction, formed by the action of PrtP on beta-casein, indicates that distinct peptides disappear only when the cells express an active Opp system. These and other experiments indicate that (i) oligopeptide transport is essential for the accumulation of all beta-casein-derived amino acids, (ii) the activity of the Opp system is sufficiently high to support high growth rates on beta-casein provided leucine and histidine are present as free amino acids, and (iii) extracellular peptidase activity is not present in L. lactis.
Evaluation of the Immunogenicity of a Potyvirus-Like Particle as an Adjuvant of a Synthetic Peptide.
Cárdenas-Vargas, Albertina; Elizondo-Quiroga, Darwin; Gutierrez-Ortega, Abel; Charles-Niño, Claudia; Pedroza-Roldán, César
2016-12-01
Improvement of current vaccines is highly necessary to increase immunogenicity levels and protection against several pathogens. Virus-like particles (VLPs) are promising approaches for vaccines because they emulate infectious virus structure, but lack any genetic material needed for replication. Plant viruses have emerged as a potential framework for VLP design, mainly because there is no preexisting immunity in mammals. In this study, we evaluated the scaffold of the papaya ringspot virus (PRSV) as a VLP adjuvant for a short synthetic peptide derived from the Hemagglutinin protein of AH1 N1 influenza virus-hemagglutinin (VLP-HA). Our results demonstrated that the adjuvant property of this VLP is highly similar to the trivalent influenza vaccine, showing comparable levels of IgG- and IgA-specific antibodies to HA-derived peptide in serum and feces of vaccinated mice, respectively. Furthermore, VLP-HA-immunized mice showed Th1-biased immune response as suggested by measuring IgG subclasses in comparison with the predominance of Th2-biased immune response in trivalent influenza vaccine dose-vaccinated mice. VLP-HA administration in mice induced comparable levels of activated CD4 + - and CD8 + -specific T lymphocytes for the HA-derived peptide. These results suggest the potential adjuvant capacity of the PRSV-VLP as a carrier for short synthetic peptides.
Porto, William F; Irazazabal, Luz; Alves, Eliane S F; Ribeiro, Suzana M; Matos, Carolina O; Pires, Állan S; Fensterseifer, Isabel C M; Miranda, Vivian J; Haney, Evan F; Humblot, Vincent; Torres, Marcelo D T; Hancock, Robert E W; Liao, Luciano M; Ladram, Ali; Lu, Timothy K; de la Fuente-Nunez, Cesar; Franco, Octavio L
2018-04-16
Plants are extensively used in traditional medicine, and several plant antimicrobial peptides have been described as potential alternatives to conventional antibiotics. However, after more than four decades of research no plant antimicrobial peptide is currently used for treating bacterial infections, due to their length, post-translational modifications or high dose requirement for a therapeutic effect . Here we report the design of antimicrobial peptides derived from a guava glycine-rich peptide using a genetic algorithm. This approach yields guavanin peptides, arginine-rich α-helical peptides that possess an unusual hydrophobic counterpart mainly composed of tyrosine residues. Guavanin 2 is characterized as a prototype peptide in terms of structure and activity. Nuclear magnetic resonance analysis indicates that the peptide adopts an α-helical structure in hydrophobic environments. Guavanin 2 is bactericidal at low concentrations, causing membrane disruption and triggering hyperpolarization. This computational approach for the exploration of natural products could be used to design effective peptide antibiotics.
Cyclic peptides as potential therapeutic agents for skin disorders.
Namjoshi, Sarika; Benson, Heather A E
2010-01-01
There is an increasing understanding of the role of peptides in normal skin function and skin disease. With this knowledge, there is significant interest in the application of peptides as therapeutics in skin disease or as cosmeceuticals to enhance skin appearance. In particular, antimicrobial peptides and those involved in inflammatory processes provide options for the development of new therapeutic directions in chronic skin conditions such as psoriasis and dermatitis. To exploit their potential, it is essential that these peptides are delivered to their site of action in active form and in sufficient quantity to provide the desired effect. Many polymers permeate the skin poorly and are vulnerable to enzymatic degradation. Synthesis of cyclic peptide derivatives can substantially alter the physicochemical characteristics of the peptide with the potential to improve its skin permeation. In addition, cyclization can stabilize the peptide structure and thereby increase its stability. This review describes the role of cyclic peptides in the skin, examples of current cyclic peptide therapeutic products, and the potential for cyclic peptides as dermatological therapeutics and cosmeceuticals.
Sangsawad, Papungkorn; Roytrakul, Sittiruk; Choowongkomon, Kiattawee; Kitts, David D; Chen, Xiu-Min; Meng, Guangtao; Li-Chan, Eunice C Y; Yongsawatdigul, Jirawat
2018-06-15
Korat-chicken breast and thigh were subjected to heating at 70, 100 or 121 °C for 30 min and simulated in vitro gastrointestinal digestion. At 70 or 100 °C heating, digests of breast possessed higher ACE inhibitory activity than those of thigh. The highest ACE inhibitory activity was found in the digest of breast cooked at 70 °C (B/H-70), whereas breast heated at 121 °C (B/H-121) exhibited the lowest. The 1-kDa permeate of the B/H-70 digest revealed higher permeability through colorectal adenocarcinoma monolayers and ACE inhibitory activity than did B/H-121. Among nine transported peptides, APP derived from myosin showed the highest ACE inhibition, with a non-competitive characteristic (K i 0.93 μM). Molecular docking showed that APP interacts with ACE via hydrogen bonds, electrostatic and van der Waals interactions. In conclusion, mild thermal treatment of chicken breast resulted in a higher amount of transported peptides, exerting higher ACE inhibitory activity, which could lead to potential health benefits. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rajasekaran, Ganesan; Kamalakannan, Radhakrishnan; Shin, Song Yub
2015-10-01
Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL. TL-1 and TL-4 showed a little increase in antimicrobial selectivity, while TL-2 and TL-3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti-inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor-α (TNF-α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti-inflammatory activity is as follows: TL-2 ≈ TL-3 ≈ TL-4 > TL-1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti-inflammatory activity. These results apparently suggest that the anti-inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti-inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram-negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Jakubczyk, Anna; Karaś, Monika; Baraniak, Barbara; Pietrzak, Marlena
2013-12-15
Pea seeds were fermented by Lactobacillus plantarum 299v in monoculture under different time and temperature conditions and the fermented products were digested in vitro under gastrointestinal conditions. After fermentation and digestion ACE inhibitory activity was determined. In all samples after fermentation no ACE inhibitory activity was noted. Potentially antihypertensive peptides were released during in vitro digestion. The highest DH (68.62%) were noted for control sample, although the lowest IC50 value (0.19 mg/ml) was determined for product after 7 days fermentation at 22 °C. The hydrolysate characterised by the highest ACE inhibitory activity was separated on Sephadex G10 and two peptides fractions were obtained. The highest ACE inhibitory activity (IC50=64.04 μg/ml) for the first fraction was noted. This fraction was separated by HPLC and identified by LC-MS/MS and the sequence of peptide derived from pea proteins was determined as KEDDEEEEQGEEE. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shmueli, Ron B.; Ohnaka, Masayuki; Miki, Akiko; Pandey, Niranjan B.; Silva, Raquel Lima e; Koskimaki, Jacob E.; Kim, Jayoung; Popel, Aleksander S.; Campochiaro, Peter A.; Green, Jordan J.
2013-01-01
Aberrant angiogenesis can cause or contribute to a number of diseases such as neovascular age-related macular degeneration (NVAMD). While current NVAMD treatments target angiogenesis, these treatments are not effective for all patients and also require frequent intravitreal injections. New agents and delivery systems to treat NVAMD could be beneficial to many patients. We have recently developed a serpin-derived peptide as an anti-angiogenic agent. Here, this peptide is investigated for activity in human retinal endothelial cells in vitro and for reducing angiogenesis in a laser-induced choroidal neovascularization mouse model of NVAMD in vivo. While frequent intravitreal injections can be tolerated clinically, reducing the number of injections can improve patient compliance, safety, and outcomes. To achieve this goal, and to maximize the in vivo activity of injected peptide, we have developed biodegradable polymers and controlled release particle formulations to extend anti-angiogenic therapy. To create these devices, the anionic peptides are first self-assembled into nanoparticles using a biodegradable cationic polymer and then as a second step, these nanoparticles are encapsulated into biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles. In situ, these particles show approximately zero-order, linear release of the anionic peptide over 200 days. These particles are made of safe, hydrolytically degradable polymers and have low endotoxin. Long-term in vivo experiments in the laser-induced neovascularization model for NVAMD show that these peptide-releasing particles decrease angiogenesis for at least fourteen weeks in vivo following a single particle dose and therefore are a promising treatment strategy for NVAMD. PMID:23849876
Tang, Xue; Wu, Qiuping; Le, Guowei; Wang, Jiao; Yin, Kaijian; Shi, Yonghui
2012-01-01
Wheat peptides, the biological active peptides derived from foods, has an array of biological actions, including antiobesity, antimicrobial, and angiotensin I-converting enzyme inhibitory effects in mammalian species. Recent studies showed that some wheat peptides may show the noteworthy antioxidant potency against the peroxidation of lipids or fatty acids, but the effect of oxidation on its antioxidant activities is unclear. In the present study, we demonstrate that heat and malandialdehyde (MDA)-oxidized wheat peptides lose its surface hydrophobicity and reducing power, and show a relatively lower free radical-scavenging activitiy in vitro. Those modifications also lead to gradual formation of aggregates in wheat peptides and induce more reactive oxygen species (ROS) production in vivo. These findings indicate that oxidation may influence the functional properties and directly alter the structure of wheat peptides, and lead to the loss of its antioxidant potency both in vitro and in vivo, thereby providing a novel explanation for some of the potential health risks proposed for oxidized food in human. © 2011 Institute of Food Technologists®
Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir; Bock, Elisabeth
2010-07-01
Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor.
A polyalanine peptide derived from polar fish with anti-infectious activities
NASA Astrophysics Data System (ADS)
Cardoso, Marlon H.; Ribeiro, Suzana M.; Nolasco, Diego O.; de La Fuente-Núñez, César; Felício, Mário R.; Gonçalves, Sónia; Matos, Carolina O.; Liao, Luciano M.; Santos, Nuno C.; Hancock, Robert E. W.; Franco, Octávio L.; Migliolo, Ludovico
2016-02-01
Due to the growing concern about antibiotic-resistant microbial infections, increasing support has been given to new drug discovery programs. A promising alternative to counter bacterial infections includes the antimicrobial peptides (AMPs), which have emerged as model molecules for rational design strategies. Here we focused on the study of Pa-MAP 1.9, a rationally designed AMP derived from the polar fish Pleuronectes americanus. Pa-MAP 1.9 was active against Gram-negative planktonic bacteria and biofilms, without being cytotoxic to mammalian cells. By using AFM, leakage assays, CD spectroscopy and in silico tools, we found that Pa-MAP 1.9 may be acting both on intracellular targets and on the bacterial surface, also being more efficient at interacting with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts α-helical conformations, than cholesterol-enriched LUVs mimicking mammalian cells. Thus, as bacteria present varied physiological features that favor antibiotic-resistance, Pa-MAP 1.9 could be a promising candidate in the development of tools against infections caused by pathogenic bacteria.
Hu, Xiaoyu; Tian, Yuan; Wang, Tiancheng; Zhang, Wenlong; Wang, Wei; Gao, Xuejiao; Qu, Shihui; Cao, Yongguo; Zhang, Naisheng
2015-10-05
It has been proved that TRAM-Derived Decoy peptides have anti-inflammatory properties. In this study, we synthesized a TRAM-Derived decoy peptide (TM6), belongs to TRAM TIR domain, of which sequence is "N"-RQIKIWFQNRRMKWK, KENFLRDTWCNFQFY-"C" and evaluated the effects of TM6 on lipopolysaccharide-induced mastitis in mice. In vivo, LPS-induced mice mastitis model was established by injection of LPS through the duct of mammary gland. TM6 was injected 1h before or after LPS treatment. In vitro, primary mouse mammary epithelial cells were used to investigate the effects of TM6 on LPS-induced inflammatory responses. The results showed that TM6 inhibited LPS-induced mammary gland histopathologic changes, MPO activity, and TNF-α, IL-1β and IL-6 production in mice. In vitro, TM6 significantly inhibited LPS-induced TNF-α and IL-6 production, as well as NF-κB and MAPKs activation. In conclusion, this study demonstrated that TM6 had protective effects on LPS-mastitis and may be a promising therapeutic reagent for mastitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.
2016-01-01
Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119
Miller, L A; Cochrane, D E; Feldberg, R S; Carraway, R E
1998-06-01
Neurotensin (NT), a peptide found in brain and several peripheral tissues, is a potent stimulus for mast cell secretion and its actions are blocked by the specific NT receptor antagonist, SR 48692. Subsequent to stimulation, NT is rapidly degraded by mast cell carboxypeptidase A (CPA). In the experiments described here, we tested for the involvement of CPA activity in the activation of mast cell secretion by the peptide, NT. Mast cells were isolated from the peritoneal and pleural cavities of rats, purified over metrizamide gradients and incubated at 37 degrees C in Locke solution or Locke containing the appropriate inhibitors. For some experiments, media derived from mast cells stimulated by compound 48/80 were used as a source of mast cell CPA activity. Treatment of mast cells with the highly specific peptide inhibitor of CPA derived from potato (PCI) inhibited histamine release in response to NT and NT8-13 (the biologically active region of NT). This inhibition required some 20 min to develop and was only partially reversed by a 20-min wash period. PCI (10 microM) did not inhibit histamine release in response to NT1-12, bradykinin, compound 48/80, the calcium ionophore, A23187, or anti-IgE serum. PCI also inhibited mast cell CPA activity. SR 48692, a highly selective antagonist of the brain NT receptor and of NT-stimulated mast cell secretion, also inhibited mast cell CPA activity as well as bovine pancreatic CPA activity in a concentration-dependent manner. It is suggested that the mast cell binding site for NT and the active site for CPA may share similar characteristics. The results are discussed in terms of NT mechanism of action on the mast cell.
Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.
Sumi, Chandra Datta; Yang, Byung Wook; Yeo, In-Cheol; Hahm, Young Tae
2015-02-01
The rapid onset of resistance reduces the efficacy of most conventional antimicrobial drugs and is a general cause of concern for human well-being. Thus, there is great demand for a continuous supply of novel antibiotics to combat this problem. Bacteria-derived antimicrobial peptides (AMPs) have long been used as food preservatives; moreover, prior to the development of conventional antibiotics, these AMPs served as an efficient source of antibiotics. Recently, peptides produced by members of the genus Bacillus were shown to have a broad spectrum of antimicrobial activity against pathogenic microbes. Bacillus-derived AMPs can be synthesized both ribosomally and nonribosomally and can be classified according to peptide biosynthesis, structure, and molecular weight. The precise mechanism of action of these AMPs is not yet clear; however, one proposed mechanism is that these AMPs kill bacteria by forming channels in and (or) disrupting the bacterial cell wall. Bacillus-derived AMPs have potential in the pharmaceutical industry, as well as the food and agricultural sectors. Here, we focus on Bacillus-derived AMPs as a novel alternative approach to antibacterial drug development. We also provide an overview of the biosynthesis, mechanisms of action, applications, and effectiveness of different AMPs produced by members of the Bacillus genus, including several recently identified novel AMPs.
Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.
Arihara, K; Zhou, L; Ohata, M
Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.
Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides
Artan, Murat; Jeong, Dae-Eun; Lee, Dongyeop; Kim, Young-Il; Son, Heehwa G.; Husain, Zahabiya; Kim, Jinmahn; Altintas, Ozlem; Kim, Kyuhyung; Alcedo, Joy; Lee, Seung-Jae V.
2016-01-01
Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans’ life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs. PMID:27125673
Urquiza, Mauricio; Guevara, Tatiana; Rodriguez, Cristina; Melo-Cardenas, Johanna; Vanegas, Magnolia; Patarroyo, Manuel E
2012-06-01
Peptide 11389 from CD21-binding region of EBV-gp350/220 protein binds to PBMCs inducing IL-6 expression and inhibiting EBV-binding to PBMCs. In addition, anti-peptide 11389 antibodies recognize EBV-infected cells and inhibit both EBV infection and IL-6 production in PBMCs. We have postulated that native structure stabilization of peptide 11389 sequence can increase its biological activity. The strategy was to modify its sequence to restrict the number of structures that peptide 11389 could acquire in solution (decreasing peptide's configurational entropy) and to weaken the non-relevant intermolecular interactions (decreasing its hydrophobicity), preserving CD21-interacting residues and structure as displayed in the native protein. Thirteen analog peptides were designed and synthesized; most of them were monomers containing an intra-chain disulfide bridge. Analog peptides 34058, 34060, 34061, 34296, 34298, 34299 and 34300 inhibited EBV invasion of PBMCs. Peptides 34059, 34060, 34295 and 34297 induced IL-6 levels in PBMCs (EC50=3.4, 3.3, 0.5, 0.5 μM, respectively) at higher potency than peptide 11389 (EC50=5.8 μM). Peptides 34057, 34059, 34060, 34301 and 34302 interacted with anti-EBV antibodies with affinities from 3 to 50 times higher than peptide 11389. Most of analog peptides were highly immunogenic and elicited antibodies that cross-react with EBV. In conclusion, we have designed peptides displaying higher biological activity than peptide 11389.
Yoshikawa, Masaaki
2015-10-01
We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, Wenfei; Li, Bafang; Hou, Hu; Zhang, Hongwei; Zhao, Xue
2017-12-13
A calcium-chelating peptide is considered to have the ability to improve calcium absorption. In this study, Pacific cod skin gelatin hydrolysates treated with trypsin for 120 min exhibited higher calcium-chelating activity. Sequential chromatography, involving hydroxyapatite affinity chromatography and reversed phase high performance liquid chromatography, was used for the purification of calcium-chelating peptides. Two novel peptides with the typical characteristics of collagen were sequenced as GDKGESGEAGER and GEKGEGGHR based on LC-HRMS/MS, which showed a high affinity to calcium. Calcium-peptide complexation was further characterized by ESI-MS (MS and MS/MS) and FTIR spectroscopy. The results showed that the complexation of the two peptides with calcium was conducted mainly at the ratio of 1 : 1. The amino terminal group and the peptide bond of the peptide backbone as well as the amino group of the lysine side chain and the carboxylate of the glutamate side chain were the possible calcium binding sites for the two peptides. Meanwhile, several amino acid side chain groups, including the hydroxyl (Ser) and carboxylate (Asp) of GDKGESGEAGER and the imine (His) of GEKGEGGHR, were crucial in the complexation. The arginine residue in GEKGEGGHR also participated in the calcium coordination. Additionally, several active fragments with calcium-chelating activity were obtained using MS/MS spectra, including GDKGESGEAGE, GEAGER, GEK, EKG and KGE. This study suggests that gelatin-derived peptides have the potential to be used as a calcium-chelating ingredient to combat calcium deficiency.
Wang, Jingyu; Zhong, Wenjing; Lin, Dongguo; Xia, Fan; Wu, Wenjiao; Zhang, Heyuan; Lv, Lin; Liu, Shuwen; He, Jian
2015-10-01
The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents. © 2015 John Wiley & Sons A/S.
[A turning point in the knowledge of the structure-function-activity relations of elastin].
Alix, A J
2001-01-01
In this review are presented the last new results of our research group dealing with the molecular structures (atomic level) of tropoelastin, elastin and elastin derived peptides studied by using essentially methods of bioinformatics (theoretical predictions and molecular modelling) linked to experimental circular dichroism spectroscopic studies. We already had characterized both the local secondary structure and some parts of the tertiary structure of the tropoelastin and elastin molecules (human, bovine...), by using either theoretical predictions (local secondary structure, linear epitopes...) and/or experimental data (optical spectroscopic methods: Raman scattering, infrared absorption, circular dichroism). Except the cross-linking regions which are in helical conformations, the whole tropoelastin structure displays a lot of beta-reverse turns which usually belong to irregular structures in proteins. These turns play a key role in other regularly structures orientation (alpha-helix, beta-strand), thus they are very important in the native protein 3D architecture. It is particularly true for human tropoelastin, because its sequence is rich in glycines and prolines, and these residues are frequently met in beta-turns (a beta-turn is made of four consecutive residues which are stabilized by an hydrogen bond). Several types of beta-turns can be defined with the dihedral angles values phi and psi of the two central residues. Thus, by using a very recent updated set of propensities for the amino acid residues to belong to given types of reverse beta-turns (extracted from a reference set of known 3-D structures of globular proteins), we have determined, (by using our home made software COUDES), for all possible tetrapeptides of the human tropoelastin sequence, the distribution and the characterization of the possible type of turns. Thus, it is shown that the locations and/or the types of these reverse beta-turns reveal a regularity and are not all random. This confirms our hypothesis that intra-molecular elasticity of tropoelastin could be explained by the possibility of transitions between conformations involving short beta-strands and beta-turns. This result is of great interest in the construction (by using molecular biology) of elastic biomaterials derived from the elastin sequence (particularly, the elastin derived peptides corresponding to the sequence exon 21--(exon 24--exon 24...). Our study permit also to predict the conformations of specific elastin derived peptides which could have interesting biological activity. Peptides resulting from the degradation of elastin, the insoluble polymer of tropoelastin and responsible for the elasticity of vertebrate tissues, can induce biological effects and notably the regulation of matrix metalloproteinases (MMP-s) activity. Recently, it was proposed that some elastin derived hexapeptides resulting from circular permutations of VGVAPG (a three fold repetition sequence in exon 24 of human tropoelastin) possess MMP-1 production and activation regulation properties. This effect depends on the presence of the tropoelastin specific membraneous receptor 67 KDa EBP (Elastin Binding Protein). Our results obtained by using both circular dichroism spectroscopy and linear predictions confirmed the hypothesis of a structure dependent mechanism with a possibly occurring type VIII beta-turn on the first four residues of the GXXPG sequence consensus which is only present among all active peptides. Thus, we have performed extensive molecular dynamics studies, in both implicit and explicit solvent, on these active and inactive elastin derived hexapeptides. Using our own analysis method of pattern recognition of the types of the beta-reverse-turns followed during the molecular dynamics trajectory, we found that active and inactive peptides effectively form two well distinct conformational groups in which active peptides preferentially adopt conformation close to type VIII GXXP (beta-reverse-turn. The structural role of the C terminal G residue could also be explained. Additional molecular simulations on (VGVAPG)2 and (VGVAPG)3 show the formation of two or three GXXP tetrapeptides adopting a structure close to type VIII beta-reverse-turn, suggesting a local conformational preference for this motif. This observation of a specific structural single and/or repeated motif is in agreement with the circular dichroism spectra of the involved (VGVAPG)1, (VGVAPG)2 and (VGVAPG)3 peptides and then it can be proposed that their biological activities have to be linear. The final aim of this type of work is to understand more about the sequence/structure/function/activity relationships of those structured peptides in order to propose specific sequences (corresponding to specific structures) for best biological activity results.
Rivas-Santiago, Bruno; Rivas Santiago, Cesar E; Castañeda-Delgado, Julio E; León-Contreras, Juan C; Hancock, Robert E W; Hernandez-Pando, Rogelio
2013-02-01
Tuberculosis (TB) is a major worldwide health problem in part due to the lack of development of new treatments and the emergence of new strains such as multidrug-resistant (MDR) and extensively drug-resistant strains that are threatening and impairing the control of this disease. In this study, the efficacy of natural and synthetic cationic antimicrobial (host defence) peptides that have been shown often to possess broad-spectrum antimicrobial activity was tested. The natural antimicrobial peptides human LL-37 and mouse CRAMP as well as synthetic peptides E2, E6 and CP26 were tested for their activity against Mycobacterium tuberculosis both in in vitro and in vivo models. The peptides had moderate antimicrobial activities, with minimum inhibitory concentrations ranging from 2 μg/mL to 10 μg/mL. In a virulent model of M. tuberculosis lung infection, intratracheal therapeutic application of these peptides three times a week at doses of ca. 1mg/kg led to significant 3-10-fold reductions in lung bacilli after 28-30 days of treatment. The treatments worked both against the drug-sensitive H37Rv strain and a MDR strain. These results indicate that antimicrobial peptides might constitute a novel therapy against TB. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Yanaka, Saeko; Ueno, Takamasa; Shi, Yi; Qi, Jianxun; Gao, George F.; Tsumoto, Kouhei; Sugase, Kenji
2014-01-01
In immune-mediated control of pathogens, human leukocyte antigen (HLA) class I presents various antigenic peptides to CD8+ T-cells. Long-lived peptide presentation is important for efficient antigen-specific T-cell activation. Presentation time depends on the peptide sequence and the stability of the peptide-HLA complex (pHLA). However, the determinant of peptide-dependent pHLA stability remains elusive. Here, to reveal the pHLA stabilization mechanism, we examined the crystal structures of an HLA class I allomorph in complex with HIV-derived peptides and evaluated site-specific conformational fluctuations using NMR. Although the crystal structures of various pHLAs were almost identical independent of the peptides, fluctuation analyses identified a peptide-dependent minor state that would be more tightly packed toward the peptide. The minor population correlated well with the thermostability and cell surface presentation of pHLA, indicating that this newly identified minor state is important for stabilizing the pHLA and facilitating T-cell recognition. PMID:25028510
He, Miao; Zhang, Hainan; Li, Yuju; Wang, Guangshun; Tang, Beisha; Zhao, Jeffrey; Huang, Yunlong; Zheng, Jialin
2018-01-01
Zika virus (ZIKV) is a neurotrophic flavivirus that is able to infect pregnant women and cause fetal brain abnormalities. Although there is a significant effort in identifying anti-ZIKV strategies, currently no vaccines or specific therapies are available to treat ZIKV infection. Antimicrobial peptides, which are potent host defense molecules in nearly all forms of life, have been found to be effective against several types of viruses such as HIV-1 and influenza A. However, they have not been tested in ZIKV infection. To determine whether antimicrobial peptides have anti-ZIKV effects, we used nine peptides mostly derived from human and bovine cathelicidins. Two peptides, GF-17 and BMAP-18, were found to have strong anti-ZIKV activities and little toxicity at 10 µM in an African green monkey kidney cell line. We further tested GF-17 and BMAP-18 in human fetal astrocytes, a known susceptible cell type for ZIKV, and found that GF-17 and BMAP-18 effectively inhibited ZIKV regardless of whether peptides were added before or after ZIKV infection. Interestingly, inhibition of type-I interferon signaling resulted in higher levels of ZIKV infection as measured by viral RNA production and partially reversed GF-17-mediated viral inhibition. More importantly, pretreatment with GF-17 and BMAP-18 did not affect viral attachment but reduced viral RNA early in the infection course. Direct incubation with GF-17 for 1 to 4 h specifically reduced the number of infectious Zika virions in the inoculum. In conclusion, these findings suggest that cathelicidin-derived antimicrobial peptides inhibit ZIKV through direct inactivation of the virus and via the interferon pathway. Strategies that harness antimicrobial peptides might be useful in halting ZIKV infection.
Lopatniuk, Mariia; Myronovskyi, Maksym; Luzhetskyy, Andriy
2017-09-15
The incorporation of noncanonical amino acids (ncAAs) with different side chains into a peptide is a promising technique for changing the functional properties of that peptide. Of particular interest is the incorporation of ncAAs into peptide-derived natural products to optimize their biophysical properties for medical and industrial applications. Here, we present the first instance of ncAA incorporation into the natural product cinnamycin in streptomycetes using the orthogonal pyrrolysyl-tRNA synthetase/tRNA Pyl pair from Methanosarcina barkeri. This approach allows site-specific incorporation of ncAAs via the read-through of a stop codon by the suppressor tRNA Pyl , which can carry different pyrrolysine analogues. Five new deoxycinnamycin derivatives were obtained with three distinct pyrrolysine analogues incorporated into diverse positions of the antibiotic. The combination of partial hydrolysis and MS/MS fragmentation analysis was used to verify the exact position of the incorporation events. The introduction of ncAAs into different positions of the peptide had opposite effects on the peptide's biological activity.
Therapeutic peptides: new arsenal against drug resistant pathogens.
Mok, Wendy W K; Li, Yingfu
2014-01-01
Our incessant tug-of-war with multidrug resistant pathogenic bacteria has prompted researchers to explore novel methods of designing therapeutics in order to defend ourselves against infectious diseases. Combined advances in whole genome analysis, bioinformatics algorithms, and biochemical techniques have led to the discovery and subsequent characterization of an abundant array of functional small peptides in microorganisms and multicellular organisms. Typically classified as having 10 to 100 amino acids, many of these peptides have been found to have dual activities, executing important defensive and regulatory functions in their hosts. In higher organisms, such as mammals, plants, and fungi, host defense peptides have been shown to have immunomodulatory and antimicrobial properties. In microbes, certain growth-inhibiting peptides have been linked to the regulation of diverse cellular processes. Examples of these processes include quorum sensing, stress response, cell differentiation, biofilm formation, pathogenesis, and multidrug tolerance. In this review, we will present a comprehensive overview of the discovery, characteristics, and functions of host- and bacteria-derived peptides with antimicrobial activities. The advantages and possible shortcomings of using these peptides as antimicrobial agents and targets will also be discussed. We will further examine current efforts in engineering synthetic peptides to be used as therapeutics and/or drug delivery vehicles.
Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yazhou; Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing; Zhou, Yahui
Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and diskmore » diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. - Highlights: • PDC213 is an endogenous peptide presenting higher levels in preterm milk. • PDC213 showed obvious antimicrobial against S. aereus and Y. enterocolitica. • PDC213 can permeabilize bacterial membranes and cell walls to kill bacterias. • PDC213 is a novel type of antimicrobial peptides worthy further investigation.« less
Huang, Shih-Li; Jao, Chia-Ling; Ho, Kit-Pan; Hsu, Kuo-Chiang
2012-05-01
The in vitro DPP-IV inhibitory activity of isolated peptides from of tuna cooking juice hydrolyzed by Protease XXIII (PR) and orientase (OR) was determined. The results showed that the peptide fractions with the molecular weight over 1,422 Da possessed the greatest DPP-IV inhibitory activity. The amino acid sequences of the three peptides isolated from PR and OR hydrolysates were identified by MALDI-TOF/TOF MS/MS, and they were Pro-Gly-Val-Gly-Gly-Pro-Leu-Gly-Pro-Ile-Gly-Pro-Cys-Tyr-Glu (1412.7 Da), Cys-Ala-Tyr-Gln-Trp-Gln-Arg-Pro-Val-Asp-Arg-Ile-Arg (1690.8 Da) and Pro-Ala-Cys-Gly-Gly-Phe-Try-Ile-Ser-Gly-Arg-Pro-Gly (1304.6 Da), while they showed the dose-dependent inhibition effect of DPP-IV with IC(50) values of 116.1, 78.0 and 96.4 μM, respectively. In vitro simulated gastrointestinal digestion retained or even improved the DPP-IV inhibitory activities of the three peptides. The results suggest that tuna cooking juice would be a good precursor of DPP-IV inhibitor, and the DPP-IV inhibitory peptides can successfully passed through the digestive tract. Copyright © 2012 Elsevier Inc. All rights reserved.
Méndez-Enríquez, E; Medina-Tamayo, J; Soldevila, G; Fortoul, T I; Anton, B; Flores-Romo, L; García-Zepeda, E A
2014-05-01
Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Fernandez, A; Mery, J; Vandromme, M; Basset, M; Cavadore, J C; Lamb, N J
1991-08-01
In order to obtain a peptide retaining its biological activity following microinjection into living cells, we have modified a synthetic peptide [PKi(m)(6-24)], derived from the specific inhibitor protein of the cAMP-dependent protein kinase (A-kinase) in two ways: (1) substitution of the arginine at position 18 for a D-arginine; (2) blockade of the side chain on the C-terminal aspartic acid by a cyclohexyl ester group. In an in vitro assay, PKi(m) has retained a specific inhibitory activity against A-kinase as assessed against six other kinases, with similar efficiency to that of the unmodified PKi(5-24) peptide. Microinjection of PKi(m) into living fibroblasts reveals its capacity to prevent the changes in cell morphology and cytoskeleton induced by drugs which activate endogenous A-kinase, whereas the original PKi peptide failed to do so. This inhibition of A-kinase in vivo by PKi(m) lasts between 4 and 6 h after injection. In light of its effective half-life, this modified peptide opens a route for the use of biologically active peptides in vivo, an approach which has been hampered until now by the exceedingly short half-life of peptides inside living cells. By providing a direct means of inhibiting A-kinase activity for sufficiently long periods to observe effects on cellular functions in living cells, PKi(m) represents a powerful tool in studying the potential role of cAMP-dependent phosphorylation in vivo.
Functional and Selective Bacterial Interfaces Using Cross-Scaffold Gold Binding Peptides
NASA Astrophysics Data System (ADS)
Adams, Bryn L.; Hurley, Margaret M.; Jahnke, Justin P.; Stratis-Cullum, Dimitra N.
2015-11-01
We investigated the functional and selective activity of three phage-derived gold-binding peptides on the Escherichia coli ( E. coli) bacterial cell surface display scaffold (eCPX) for the first time. Gold-binding peptides, p3-Au12 (LKAHLPPSRLPS), p8#9 (VSGSSPDS), and Midas-2 (TGTSVLIATPYV), were compared side-by-side through experiment and simulation. All exhibited strong binding to an evaporated gold film, with approximately a 4-log difference in binding between each peptide and the control sample. The increased affinity for gold was also confirmed by direct visualization of samples using Scanning Electron Microscopy (SEM). Peptide dynamics in solution were performed to analyze innate structure, and all three were found to have a high degree of flexibility. Preferential binding to gold over silicon for all three peptides was demonstrated, with up to four orders of magnitude selectivity exhibited by p3-Au12. The selectivity was also clearly evident through SEM analysis of the boundary between the gold film and silicon substrate. Functional activity of bound E. coli cells was further demonstrated by stimulating filamentation and all three peptides were characterized as prolific relative to control samples. This work shows great promise towards functional and active bacterial-hybrid gold surfaces and the potential to enable the next generation living material interfaces.
Go, Hye-Jin; Kim, Chan-Hee; Oh, Hye Young; Park, Nam Gyu
2016-10-01
A bioactive peptide mimicking peptide-signaling molecules has been isolated from the skin extract of fish Channa argus which caused contraction of the apical muscle of a starfish Patiria pectinifera, a deuterostomian invertebrate. The primary structure of the isolated pentapeptide comprises amino acid sequence of H-Pro-Ala-Leu-Ala-Leu-OH (PALAL) with a molecular mass of 483.7 Da. Pharmacological activity of PALAL, dosage ranging from 10 -9 to 10 -5 M, revealed concentration-dependent contraction of the apical muscles of P. pectinifera and Asterias amurensis. However, PALAL was not active on the intestinal smooth muscle of the goldfish Carassius auratus and has presumably other physiological roles in fish skin. Investigation of structure-activity relationship using truncated and substituted analogs of PALAL demonstrated that H-Ala-Leu-Ala-Leu-OH was necessary and should be sufficient to constrict apical muscle of P. pectinifera. Furthermore, the second alanine residue was required to display the activity, and the fifth leucine residue was responsible for its potency. Comparison with PALAL's primary structure with those of other known bioactive peptides from fish and starfish revealed that PALAL does not have any significant homology. Consequently, PALAL is a bioactive peptide that elicits a muscle contraction in starfish, and the isolation of PALAL may lead to develop other bioactive peptides sharing its similar sequence and/or activity. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Pirtskhalava, Malak; Gabrielian, Andrei; Cruz, Phillip; Griggs, Hannah L.; Squires, R. Burke; Hurt, Darrell E.; Grigolava, Maia; Chubinidze, Mindia; Gogoladze, George; Vishnepolsky, Boris; Alekseev, Vsevolod; Rosenthal, Alex; Tartakovsky, Michael
2016-01-01
Antimicrobial peptides (AMPs) are anti-infectives that may represent a novel and untapped class of biotherapeutics. Increasing interest in AMPs means that new peptides (natural and synthetic) are discovered faster than ever before. We describe herein a new version of the Database of Antimicrobial Activity and Structure of Peptides (DBAASPv.2, which is freely accessible at http://dbaasp.org). This iteration of the database reports chemical structures and empirically-determined activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. Of these, the vast majority are monomeric, but nearly 200 of these peptides are found as homo- or heterodimers. More than 6100 of the peptides are linear, but about 515 are cyclic and more than 1300 have other intra-chain covalent bonds. More than half of the entries in the database were added after the resource was initially described, which reflects the recent sharp uptick of interest in AMPs. New features of DBAASPv.2 include: (i) user-friendly utilities and reporting functions, (ii) a ‘Ranking Search’ function to query the database by target species and return a ranked list of peptides with activity against that target and (iii) structural descriptions of the peptides derived from empirical data or calculated by molecular dynamics (MD) simulations. The three-dimensional structural data are critical components for understanding structure–activity relationships and for design of new antimicrobial drugs. We created more than 300 high-throughput MD simulations specifically for inclusion in DBAASP. The resulting structures are described in the database by novel trajectory analysis plots and movies. Another 200+ DBAASP entries have links to the Protein DataBank. All of the structures are easily visualized directly in the web browser. PMID:26578581
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himaya, S.W.A.; Dewapriya, Pradeep; Kim, Se-Kwon, E-mail: sknkim@pknu.ac.kr
Helicobacter pylori infection is one of the most critical causes of stomach cancer. The current study was conducted to explore the protective effects of an isolated active peptide H-P-6 (Pro-Gln-Pro-Lys-Val-Leu-Asp-Ser) from microbial hydrolysates of Chlamydomonas sp. against H. pylori-induced carcinogenesis. The peptide H-P-6 has effectively suppressed H. pylori-induced hyper-proliferation and migration of gastric epithelial cells (AGS). However, the peptide did not inhibit the viability of the bacteria or invasion into AGS cells. Therefore, the effect of the peptide on regulating H. pylori-induced molecular signaling was investigated. The results indicated that H. pylori activates the EGFR tyrosine kinase signaling and nuclearmore » translocation of the β-catenin. The EGFR activation has led to the up-regulation of PI3K/Akt signaling pathway. Moreover, the nuclear translocation levels of β-catenin were significantly increased as a result of Akt mediated down-regulation of GSK3/β protein levels in the cytoplasm. Both of these consequences have resulted in increased expression of cell survival and migration related genes such as c-Myc, cyclin-D, MMP-2 and matrilysin. Interestingly, the isolated peptide potently inhibited H. pylori-mediated EGFR activation and thereby down-regulated the subsequent P13K/Akt signaling leading to β-catenin nuclear translocation. The effect of the peptide was confirmed with the use of EGFR tyrosine kinase inhibitor AG1487 and molecular docking studies. Collectively this study identifies a potent peptide which regulates the H. pylori-induced hyper-proliferation and migration of AGS cells at molecular level. - Highlights: • Chlamydomonas sp. derived peptide H-P-6 inhibits H. pylori-induced pathogenesis. • H-P-6 suppresses H. pylori-induced hyper-proliferation and migration of AGS cells. • The peptide inhibits H. pylori-induced EGFR activation.« less
Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon
2010-03-30
Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-kappaB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-kappaB in MG-63 cells and MAPKs/NF-kappaB in SW-1353 cells.
Garay, Hilda; Espinosa, Luis Ariel; Perera, Yasser; Sánchez, Aniel; Diago, David; Perea, Silvio E; Besada, Vladimir; Reyes, Osvaldo; González, Luis Javier
2018-04-20
CIGB-300 is a first-in-class synthetic peptide-based drug of 25 amino acids currently undergoing clinical trials in cancer patients. It contains an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide through a beta-alanine spacer. CIGB-300 inhibits the CK2-mediated phosphorylation leading to apoptosis of tumor cells in vitro, and in vivo in cancer patients. Despite the clinical development of CIGB-300, the characterization of peptide-related impurities present in the active pharmaceutical ingredient has not been reported earlier. In the decision tree of ICHQ3A(R2) guidelines, the daily doses intake, the abundance, and the identity of the peptide-related species are pivotal nodes that define actions to be taken (reporting, identification, and qualification). For this, purity was first assessed by reverse-phase chromatography (>97%) and low-abundance impurities (≤0.27%) were collected and identified by mass spectrometry. Most of the impurities were generated during peptide synthesis, the spontaneous air oxidation of the reduced peptide, and the lyophilization step. The most abundant impurity, with no biological activity, was the full-length peptide containing Met 17 transformed into a sulfoxide residue. Interestingly, parallel and antiparallel dimers of CIGB-300 linked by 2 intermolecular disulfide bonds exhibited a higher antiproliferative activity than the CIGB-300 monomer. Likewise, very low abundance trimers and tetramers of CIGB-300 linked by disulfide bonds (≤0.01%) were also detected. Here we describe for the first time the presence of active dimeric species whose feasibility as novel CIGB-300 derived entities merits further investigation. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.
Sato, Kenji; Egashira, Yukari; Ono, Shin; Mochizuki, Satoshi; Shimmura, Yuki; Suzuki, Yoshio; Nagata, Megumi; Hashimoto, Kaori; Kiyono, Tamami; Park, Eun Young; Nakamura, Yasushi; Itabashi, Mariko; Sakata, Yuka; Furuta, Seigo; Sanada, Hiroo
2013-07-03
A hepatoprotective peptide, pyroglutamyl leucine (pyroGlu-Leu), was identified in wheat gluten hydrolysate through an in vivo activity-guided fractionation approach based on D-galactosamine-induced acute hepatitis in rats and fractionation of peptides with large-scale preparative ampholine-free isoelectric focusing. The active acidic fraction predominantly consisted of pyroglutamyl peptides and free pyroglutamic acid. Pyroglutamyl peptides were derivatized with phenyl isothiocyanate after removal of a pyroglutamyl residue by pyroglutamate aminopeptidase. The derivatives were purified by reversed-phase HPLC and subjected to sequence analysis. The active fraction contained pyroGlu-Ile, pyroGlu-Leu, pyroGlu-Gln, pyroGlu-Gln-Gln, and free pyroGlu. Ingestion of pyroGlu-Leu at 20 mg/kg body weight significantly decreased serum aspartate and alanine aminotransferases to approximately 30% and 20% of those values of the vehicle group, respectively, which were near the normal levels. Thirty minutes after ingestion of pyroGlu-Leu at 20 mg/kg, the concentration of pyroGlu-Leu in portal blood plasma increased to approximately 2 μM.
Yu, Min; He, Shudong; Tang, Mingming; Zhang, Zuoyong; Zhu, Yongsheng; Sun, Hanju
2018-03-15
Four peptide fractions PF1 (>5;kDa), PF2 (3-5;kDa), PF3 (1-3;kDa), PF4 (<1;kDa) were isolated from soybean hydrolysate using the ultrafiltration method. Then, d-xylose and l-cysteine were reacted with specific peptide solution at 120;°C for 2;h, and the molecular weight distribution (MWD), pH, colour, browning intensity, DPPH radical-scavenging activity, free amino acids and sensory characteristics of corresponding Maillard reaction products (MRPF1, MRPF2, MRPF3 and MRPF4) were evaluated, respectively. Peptides with low molecular weight showed higher contribution to the changes of pH, colour and browning intensity during Maillard reaction. The DPPH radical-scavenging activity of PF4 was significantly improved after Maillard reaction. Aroma volatiles and PLSR analysis suggested MRPF3 had the best sensory characteristics with higher contents of umami amino acids and lower of bitter amino acids, therefore it could be deduced that the umami and meaty characteristics were correlated with the peptides of 1-3;kDa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nagy, A; Szoke, B; Schally, A V
1993-01-01
A convenient synthetic method is described for the preparation of peptide-methotrexate (MTX) conjugates in which MTX is coupled selectively through the gamma-carboxyl group of its glutamic acid moiety to a free amino group in peptide analogs. The syntheses of a somatostatin analog-MTX conjugate (MTX-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) (AN-51) and two conjugates of analogs of luteinizing hormone-releasing hormone (LH-RH) with MTX [Glp-His-Trp-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-Gly-NH2] (AJ-04) and [Ac-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-NH-Et] AJ-51 are presented as examples. Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) was used in the synthesis for activation of 4-amino-4-deoxy-N10-methylpteroic acid, which reacted with the potassium salt of glutamic acid alpha-tert-butyl ester in dimethyl sulfoxide to form the suitably protected MTX derivative. This synthesis provides an example of the high suitability of BOP reagent for the salt-coupling method. The selectively protected MTX derivative was then coupled to the different peptide carriers and deprotected under relatively mild conditions by trifluoroacetic acid. The conjugates of MTX with hormonal analogs are suitable for targeting to various tumors that possess receptors for the peptide moieties. PMID:8101004
Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.
Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y
2017-09-01
Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius
Field, Des; Gaudin, Noémie; Lyons, Francy; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul
2015-01-01
Antibiotic resistance and the shortage of novel antimicrobials are among the biggest challenges facing society. One of the major factors contributing to resistance is the use of frontline clinical antibiotics in veterinary practice. In order to properly manage dwindling antibiotic resources, we must identify antimicrobials that are specifically targeted to veterinary applications. Nisin is a member of the lantibiotic family of antimicrobial peptides that exhibit potent antibacterial activity against many gram-positive bacteria, including human and animal pathogens such as Staphylococcus, Bacillus, Listeria, and Clostridium. Although not currently used in human medicine, nisin is already employed commercially as an anti-mastitis product in the veterinary field. Recently we have used bioengineering strategies to enhance the activity of nisin against several high profile targets, including multi-drug resistant clinical pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) and also against staphylococci and streptococci associated with bovine mastitis. However, newly emerging pathogens such as methicillin resistant Staphylococcus pseudintermedius (MRSP) pose a significant threat in terms of veterinary health and as a reservoir for antibiotic resistance determinants. In this study we created a nisin derivative with enhanced antimicrobial activity against S. pseudintermedius. In addition, the novel nisin derivative exhibits an enhanced ability to impair biofilm formation and to reduce the density of established biofilms. The activities of this peptide represent a significant improvement over that of the wild-type nisin peptide and merit further investigation with a view to their use to treat S. pseudintermedius infections. PMID:25789988
Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi
Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi
2016-01-01
In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799
Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium
Silva, Tânia; Moreira, Ana C.; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida
2017-01-01
ABSTRACT Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17–30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17–30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17–30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17–30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17–30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17–30 on macrophages, which may be useful under other conditions in which macrophage activation is needed. PMID:28875176
Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.
Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé
2017-01-01
Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17-30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17-30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.
Qiao, Xiaoqiang; Sun, Liangliang; Chen, Lingfan; Zhou, Yuan; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2011-03-15
Piperazine-based derivatives, including 1-(2-pyridyl)piperazine (2-PP), 1-(2-pyrimidyl)piperazine (2-PMP), 1-(4-pyridyl)piperazine (4-PP), and 1-(1-methyl-4-piperidinyl)piperazine (M-PP), were used for the derivatization of carboxyl groups on peptides with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 1-hydroxy-7-azabenzotriazole (HOAt) as coupling reagents, and trifluoroacetic acid (TFA) as activator. Taking synthetic peptides RVYVHPI (RI-7) and APGDRIYVHPF (AF-11) as samples, the yields of derivatized peptides by 2-PP, 2-PMP and 4-PP were higher than 94%. The effect of piperazine derivatives on the signals of tryptic digests of α-transferrin and bovine serum albumin (BSA) was investigated, and it was found that peptides derivatized by 2-PP and 2-PMP exhibited obviously improved ionization efficiency. Furthermore, comparison of identified peptides before and after derivatization showed that peptides with low molecular weight (MW) and high pI value were preferably detected after derivatization. In addition, after derivatization with 2-PP and 2-PMP, protein myelin basic protein S, 20 kDa protein, and histone H were confidently identified from the tryptic digests of two fractions of rat brain protein separated by reversed-phase high-performance liquid chromatography (HPLC), indicating the potential application of 2-PP and 2-PMP for the highly sensitive determination of peptides in comprehensive proteome analysis. Copyright © 2011 John Wiley & Sons, Ltd.
Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.
Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue
2015-08-01
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Peptide B12: emerging trends at the interface of inorganic chemistry, chemical biology and medicine.
Zelder, Felix; Zhou, Kai; Sonnay, Marjorie
2013-01-28
The sophisticated and efficient delivery of vitamin B(12) ("B(12)") into cells offers promise for B(12)-bioconjugates in medicinal diagnosis and therapy. It is therefore surprising that rather little attention is presently paid to an alternative strategy in drug design: the development of structurally perfect, but catalytically inactive semi-artificial B(12) surrogates. Vitamin B(12) cofactors catalyse important biological transformations and are indispensible for humans and most other forms of life. This strong metabolic dependency exhibits enormous medicinal opportunities. Inhibitors of B(12) dependent enzymes are potential suppressors of fast proliferating cancer cells. This perspective article focuses on the design and study of backbone modified B(12) derivatives, particularly on peptide B(12) derivatives. Peptide B(12) is a recently introduced class of biomimetic cobalamins bearing an artificial peptide backbone with adjustable coordination and redox-properties. Pioneering biological studies demonstrated reduced catalytic activity, combined with inhibitory potential that is encouraging for future efforts in turning natural cofactors into new anti-proliferative agents.
Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP
Malmsten, Martin; Kasetty, Gopinath; Pasupuleti, Mukesh; Alenfall, Jan; Schmidtchen, Artur
2011-01-01
Background Antimicrobial peptides (AMPs) are receiving increasing attention due to resistance development against conventional antibiotics. Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in an array of infections such as ocular infections, cystic fibrosis, wound and post-surgery infections, and sepsis. The goal of the study was to design novel AMPs against these pathogens. Methodology and Principal Findings Antibacterial activity was determined by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was evaluated by hemolysis and effects on human epithelial cells. Liposome and fluorescence studies provided mechanistic information. Protease sensitivity was evaluated after subjection to human leukocyte elastase, staphylococcal aureolysin and V8 proteinase, as well as P. aeruginosa elastase. Highly active peptides were evaluated in ex vivo skin infection models. C-terminal end-tagging by W and F amino acid residues increased antimicrobial potency of the peptide sequences GRRPRPRPRP and RRPRPRPRP, derived from proline arginine-rich and leucine-rich repeat protein (PRELP). The optimized peptides were antimicrobial against a range of Gram-positive S. aureus and Gram-negative P. aeruginosa clinical isolates, also in the presence of human plasma and blood. Simultaneously, they showed low toxicity against mammalian cells. Particularly W-tagged peptides displayed stability against P. aeruginosa elastase, and S. aureus V8 proteinase and aureolysin, and the peptide RRPRPRPRPWWWW-NH2 was effective against various “superbugs” including vancomycin-resistant enterococci, multi-drug resistant P. aeruginosa, and methicillin-resistant S. aureus, as well as demonstrated efficiency in an ex vivo skin wound model of S. aureus and P. aeruginosa infection. Conclusions/Significance Hydrophobic C-terminal end-tagging of the cationic sequence RRPRPRPRP generates highly selective AMPs with potent activity against multiresistant bacteria and efficiency in ex vivo wound infection models. A precise “tuning” of toxicity and proteolytic stability may be achieved by changing tag-length and adding W- or F-amino acid tags. PMID:21298015
Valés-Gómez, M; Reyburn, H T; Erskine, R A; López-Botet, M; Strominger, J L
1999-01-01
The lytic function of human natural killer (NK) cells is markedly influenced by recognition of class I major histocompatibility complex (MHC) molecules, a process mediated by several types of activating and inhibitory receptors expressed on the NK cell. One of the most important of these mechanisms of regulation is the recognition of the non-classical class I MHC molecule HLA-E, in complex with nonamer peptides derived from the signal sequences of certain class I MHC molecules, by heterodimers of the C-type lectin-like proteins CD94 and NKG2. Using soluble, recombinant HLA-E molecules assembled with peptides derived from different leader sequences and soluble CD94/NKG2-A and CD94/NKG2-C proteins, the binding of these receptor-ligand pairs has been analysed. We show first that these interactions have very fast association and dissociation rate constants, secondly, that the inhibitory CD94/NKG2-A receptor has a higher binding affinity for HLA-E than the activating CD94/NKG2-C receptor and, finally, that recognition of HLA-E by both CD94/NKG2-A and CD94/NKG2-C is peptide dependent. There appears to be a strong, direct correlation between the binding affinity of the peptide-HLA-E complexes for the CD94/NKG2 receptors and the triggering of a response by the NK cell. These data may help to understand the balance of signals that control cytotoxicity by NK cells. PMID:10428963
Bozdagi, Ozlem; Rich, Erin; Tronel, Sophie; Sadahiro, Masato; Patterson, Kamara; Shapiro, Matthew L; Alberini, Cristina M; Huntley, George W; Salton, Stephen R J
2008-09-24
VGF is a neurotrophin-inducible, activity-regulated gene product that is expressed in CNS and PNS neurons, in which it is processed into peptides and secreted. VGF synthesis is stimulated by BDNF, a critical regulator of hippocampal development and function, and two VGF C-terminal peptides increase synaptic activity in cultured hippocampal neurons. To assess VGF function in the hippocampus, we tested heterozygous and homozygous VGF knock-out mice in two different learning tasks, assessed long-term potentiation (LTP) and depression (LTD) in hippocampal slices from VGF mutant mice, and investigated how VGF C-terminal peptides modulate synaptic plasticity. Treatment of rat hippocampal slices with the VGF-derived peptide TLQP62 resulted in transient potentiation through a mechanism that was selectively blocked by the BDNF scavenger TrkB-Fc, the Trk tyrosine kinase inhibitor K252a (100 nm), and tPA STOP, an inhibitor of tissue plasminogen activator (tPA), an enzyme involved in pro-BDNF cleavage to BDNF, but was not blocked by the NMDA receptor antagonist APV, anti-p75(NTR) function-blocking antiserum, or previous tetanic stimulation. Although LTP was normal in slices from VGF knock-out mice, LTD could not be induced, and VGF mutant mice were impaired in hippocampal-dependent spatial learning and contextual fear conditioning tasks. Our studies indicate that the VGF C-terminal peptide TLQP62 modulates hippocampal synaptic transmission through a BDNF-dependent mechanism and that VGF deficiency in mice impacts synaptic plasticity and memory in addition to depressive behavior.
New insights into the bioactivity of peptides from probiotics.
Mandal, Santi M; Pati, Bikas R; Chakraborty, Ranadhir; Franco, Octavio L
2016-06-01
Probiotics are unique bacteria that offer several therapeutic benefits to human beings when administered in optimum amounts. Probiotics are able to produce antimicrobial substances, which stimulate the body's immune responses. Here, we review in detail the anti-infective peptides derived from probiotics and their potential immunomodulatory and anti-inflammatory activities, including a major role in cross-talk between probiotics and gut microbiota under adverse conditions. Insights from the engineered cell surface of probiotics may provide novel anti-infective therapy by heterologous expression of receptor peptides of bacterial toxins. It may be possible to use antigenic peptides from viral pathogens as live vaccines. Another possibility is to generate antiviral peptides that bind directly to virus particles, while some peptides exert anti-inflammatory and anticancer effects. Some extracellular polymeric substances might serve as anti-infective peptides. These avenues of treatment have remained largely unexplored to date, despite their potential in generating powerful anti-inflammatory and anti-infective products.
Anti-Candida Activity of a New Platinum Derivative
Watanabe, T.; Takano, M.; Ogasawara, A.; Mikami, T.; Kobayashi, T.; Watabe, M.; Matsumoto, T.
2000-01-01
A new platinum derivative of the form H[Pt(IV)(Hdigly)Cl2(OH)2] (Hdigly⩵glycylglycine) damaged the Candida albicans cell membrane and inhibited the growth of the cells. The cytotoxic activity of H[Pt(IV)(Hdigly)Cl2(OH)2] on mammalian cells was 10-fold lower than that of cis-diammine-dichloroplatinum (cisplatin). Substitution of platinum for peptides is effective for enhancement of antifungal activity and reduction of the toxicity to mammalian cells. PMID:10991871
Shmueli, Ron B; Ohnaka, Masayuki; Miki, Akiko; Pandey, Niranjan B; Lima e Silva, Raquel; Koskimaki, Jacob E; Kim, Jayoung; Popel, Aleksander S; Campochiaro, Peter A; Green, Jordan J
2013-10-01
Aberrant angiogenesis can cause or contribute to a number of diseases such as neovascular age-related macular degeneration (NVAMD). While current NVAMD treatments target angiogenesis, these treatments are not effective for all patients and also require frequent intravitreal injections. New agents and delivery systems to treat NVAMD could be beneficial to many patients. We have recently developed a serpin-derived peptide as an anti-angiogenic agent. Here, this peptide is investigated for activity in human retinal endothelial cells in vitro and for reducing angiogenesis in a laser-induced choroidal neovascularization mouse model of NVAMD in vivo. While frequent intravitreal injections can be tolerated clinically, reducing the number of injections can improve patient compliance, safety, and outcomes. To achieve this goal, and to maximize the in vivo activity of injected peptide, we have developed biodegradable polymers and controlled release particle formulations to extend anti-angiogenic therapy. To create these devices, the anionic peptides are first self-assembled into nanoparticles using a biodegradable cationic polymer and then as a second step, these nanoparticles are encapsulated into biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles. In situ, these particles show approximately zero-order, linear release of the anionic peptide over 200 days. These particles are made of safe, hydrolytically degradable polymers and have low endotoxin. Long-term in vivo experiments in the laser-induced neovascularization model for NVAMD show that these peptide-releasing particles decrease angiogenesis for at least fourteen weeks in vivo following a single particle dose and therefore are a promising treatment strategy for NVAMD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kuzmin, Alexander; Madjid, Nather; Terenius, Lars; Ogren, Sven Ove; Bakalkin, Georgy
2006-09-01
Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.
Han, Jing; Sun, Lidan; Huang, Xun; Li, Zheng; Zhang, Chenyu; Qian, Hai; Huang, Wenlong
2014-12-01
The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates. Four cysteine-modified GLP-1 analogues (1-4) were prepared using Gly8 -GLP-1(7-36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6-13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied. Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice. Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation. © 2014 The British Pharmacological Society.
Han, Jing; Sun, Lidan; Huang, Xun; Li, Zheng; Zhang, Chenyu; Qian, Hai; Huang, Wenlong
2014-01-01
Background and Purpose The short biological half-life limits the therapeutic use of glucagon-like peptide-1 (GLP-1) and chemical modification to improve the interaction of peptides with serum albumin represents an effective strategy to develop long-acting peptide analogues. Coumarin, a natural product, is known to bind tightly to plasma proteins and possesses many biological activities. Therefore, we designed and synthesized a series of coumarin-modified GLP-1 derivatives, hypothesizing that conjugation with coumarin would retain the therapeutic effects and prolong the biological half-life of the conjugates. Experimental Approach Four cysteine-modified GLP-1 analogues (1–4) were prepared using Gly8-GLP-1(7–36)-NH2 peptide as a starting point. These analogues were conjugated with two coumarin maleimides to yield eight compounds (conjugates 6–13) for testing. Activation of human GLP-1 receptors, stability to enzymic inactivation in plasma and binding to human albumin were assessed in vitro. In vivo, effects on oral glucose tolerance tests (OGTT) in rats and on blood glucose levels in db/db mice were studied. Key Results Most conjugates showed well preserved receptor activation efficacy, enhanced albumin-binding properties and improved in vitro plasma stability and conjugate 7 was selected to undergo further assessment. In rats, conjugate 7 had a longer circulating t1/2 than exendin-4 or liraglutide. A prolonged antidiabetic effect of conjugate 7 was observed after OGTT in rats and a prolonged hypoglycaemic effect in db/db mice. Conclusions and Implications Cysteine-specific coumarin conjugation with GLP-1 offers a useful approach to the development of long-acting incretin-based antidiabetic agents. Conjugate 7 is a promising long-lasting GLP-1 derivative deserving further investigation. PMID:25039358
Using genomics to identify novel antimicrobials.
Kim, W H; Lillehoj, H S; Gay, C G
2016-04-01
There is a critical need in animal agriculture to develop novel antimicrobials and alternative strategies that will help to reduce the use of antibiotics and address the challenges of antimicrobial resistance. High-throughput gene expression analysis is providing new tools that are enabling the discovery of host-derived antimicrobial peptides. Examples of gene-encoded natural antibiotics that have gained attention include antimicrobial peptides such as human granulysin and its multi-species homolog, namely NK-lysin, which provide a protective response against a broad range of microbes and are a principal component of innate immunity in vertebrates. Both granulysin and NK-lysin are localised in cytolytic granules in natural killer and cytotoxic T lymphocytes. Host-derived NK-lysins that were first described in mammals are also found in avian species, and they have been shown to have antimicrobial activities that could potentially be used to control important poultry pathogens. Morphological alterations observed following chicken NK-lysin binding to Eimeria sporozoites and Escherichia coli membranes indicate damage and disruption of cell membranes, suggesting that NK-lysin kills pathogenic protozoans and bacteria by direct interaction. Genotype analysis revealed that chicken NK-lysin peptides derived from certain alleles were more effective at killing pathogens than those derived from others, which could potentially affect susceptibility to diseases. Although the host-derived antimicrobial peptides described in this paper may not, by themselves, be able to replace the antibiotics currently used in animal production, their use as specific treatments based on their known mechanisms of action is showing promising results.
Daneshmand, Fatemeh; Zare-Zardini, Hadi; Ebrahimi, Leila
2013-01-01
Snakin-Z is a novel antimicrobial peptide (AMP) that is identified from the fruit of Zizyphus jujuba. This peptide is composed of 31 amino acids which is determined with the sequence of CARLNCVPKGTSGNTETCPCYASLHSCRKYG and molecular weight of 3318.82 Da. Snakin-Z is not identical to any AMP in the peptide database. According to this study, Snakin-Z potentially has antimicrobial property against bacteria and fungi. Minimal inhibitory concentration (MIC) value of this peptide is suitable for antimicrobial activity. We assessed that Snakin-Z could affect Phomopsis azadirachtae with the MIC value of 7.65 μg/mL and vice versa Staphylococcus aureus with the MIC value of 28.8 μg/mL. Interestingly, human red blood cells also showed good tolerance to the Snakin-Z. On the basis of this study, Snakin-Z can be an appropriate candidate for therapeutic applications in the future due to its antimicrobial property.
Isolation of prolyl endopeptidase inhibitory peptides from a sodium caseinate hydrolysate.
Hsieh, Cheng-Hong; Wang, Tzu-Yuan; Hung, Chuan-Chuan; Hsieh, You-Liang; Hsu, Kuo-Chiang
2016-01-01
Prolyl endopeptidase (PEP) has been associated with neurodegenerative disorders, and the PEP inhibitors can restore the memory loss caused by amnesic compounds. In this study, we investigated the PEP inhibitory activity of the enzymatic hydrolysates from various food protein sources, and isolated and identified the PEP inhibitory peptides. The hydrolysate obtained from sodium caseinate using bromelain (SC/BML) displayed the highest inhibitory activity of 86.8% at 5 mg mL(-1) in the present study, and its IC50 value against PEP was 0.77 mg mL(-1). The F-5 fraction by RP-HPLC (reversed-phase high performance liquid chromatography) from SC/BML showed the highest PEP inhibition rate of 88.4%, and 9 peptide sequences were identified. The synthetic peptides (1245.63-1787.94 Da) showed dose-dependent inhibition effects on PEP as competitive inhibitors with IC50 values between 29.8 and 650.5 μM. The results suggest that the peptides derived from sodium caseinate have the potential to be PEP inhibitors.
Vilcacundo, Rubén; Miralles, Beatriz; Carrillo, Wilman; Hernández-Ledesma, Blanca
2018-03-01
Because of the continuous and direct interaction between the digestive tract and foods, dietary compounds represent an interesting source of chemopreventive agents for gastrointestinal health. In this study, the influence of a standardized static in vitro gastrointestinal digestion model on the release of peptides with chemopreventive potential from quinoa protein was investigated. Gastroduodenal digests and fractions collected by ultrafiltration were evaluated for their in plate oxygen radical absorbance capacity and in vitro colon cancer cell viability inhibitory activity. Highest effects were observed in the digests obtained during the intestinal phase, with fraction containing peptides <5kDa as the main responsible for the antioxidant activity and peptides >5kDa showing the greatest anti-cancer effects. Seventeen potential bioactive peptides derived from quinoa proteins have been identified. These proteins might be utilized as new ingredients in the development of functional foods or nutraceuticals with the aim of reducing oxidative stress-associated diseases, including cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antimicrobial Peptides from Fish
Masso-Silva, Jorge A.; Diamond, Gill
2014-01-01
Antimicrobial peptides (AMPs) are found widely distributed through Nature, and participate in the innate host defense of each species. Fish are a great source of these peptides, as they express all of the major classes of AMPs, including defensins, cathelicidins, hepcidins, histone-derived peptides, and a fish-specific class of the cecropin family, called piscidins. As with other species, the fish peptides exhibit broad-spectrum antimicrobial activity, killing both fish and human pathogens. They are also immunomodulatory, and their genes are highly responsive to microbes and innate immuno-stimulatory molecules. Recent research has demonstrated that some of the unique properties of fish peptides, including their ability to act even in very high salt concentrations, make them good potential targets for development as therapeutic antimicrobials. Further, the stimulation of their gene expression by exogenous factors could be useful in preventing pathogenic microbes in aquaculture. PMID:24594555
Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions
Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.
2015-01-01
Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523
Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides.
Artan, Murat; Jeong, Dae-Eun; Lee, Dongyeop; Kim, Young-Il; Son, Heehwa G; Husain, Zahabiya; Kim, Jinmahn; Altintas, Ozlem; Kim, Kyuhyung; Alcedo, Joy; Lee, Seung-Jae V
2016-05-01
Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs. © 2016 Artan et al.; Published by Cold Spring Harbor Laboratory Press.
Lee, Kyoung Jin; Shin, Seol Hwa; Lee, Jae Hee; Ju, Eun Jin; Park, Yun-Yong; Hwang, Jung Jin; Suh, Young-Ah; Hong, Seung-Mo; Jang, Se Jin; Lee, Jung Shin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung
2017-10-01
Designing nanocarriers with active targeting has been increasingly emphasized as for an ideal delivery mechanism of anti-cancer therapeutic agents, but the actualization has been constrained by lack of reliable strategy ultimately applicable. Here, we designed and verified a strategy to achieve active targeting nanomedicine that works in a living body, utilizing animal models bearing a patient's tumor tissue and subjected to the same treatments that would be used in the clinic. The concept for this strategy was that a novel peptide probe and its counterpart protein, which responded to a therapy, were identified, and then the inherent ability of the peptide to target the designated tumor protein was used for active targeting in vivo. An initial dose of ionizing radiation was locally delivered to the gastric cancer (GC) tumor of a patient-derived xenograft mouse model, and phage-displayed peptide library was intravenously injected. The peptides tightly bound to the tumor were recovered, and the counterpart protein was subsequently identified. Peptide-conjugated liposomal drug showed dramatically improved therapeutic efficacy and possibility of diagnostic imaging with radiation. These results strongly suggested the potential of our strategy to achieve in vivo functional active targeting and to be applied clinically for human cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhu, Yun; Su, Shan; Qin, Lili; Wang, Qian; Shi, Lei; Ma, Zhenxuan; Tang, Jianchao; Jiang, Shibo; Lu, Lu; Ye, Sheng; Zhang, Rongguang
2016-09-26
Peptides derived from the C-terminal heptad repeat (CHR) of HIV gp41 have been developed as effective fusion inhibitors against HIV-1, but facing the challenges of enhancing potency and stability. Here, we report a rationally designed novel HIV-1 fusion inhibitor derived from CHR-derived peptide (Trp628~Gln653, named CP), but with an innovative Ile-Asp-Leu tail (IDL) that dramatically increased the inhibitory activity by up to 100 folds. We also determined the crystal structures of artificial fusion peptides N36- and N43-L6-CP-IDL. Although the overall structures of both fusion peptides share the canonical six-helix bundle (6-HB) configuration, their IDL tails adopt two different conformations: a one-turn helix with the N36, and a hook-like structure with the longer N43. Structural comparison showed that the hook-like IDL tail possesses a larger interaction interface with NHR than the helical one. Further molecular dynamics simulations of the two 6-HBs and isolated CP-IDL peptides suggested that hook-like form of IDL tail can be stabilized by its binding to NHR trimer. Therefore, CP-IDL has potential for further development as a new HIV fusion inhibitor, and this strategy could be widely used in developing artificial fusion inhibitors against HIV and other enveloped viruses.
Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry
Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.
1971-01-01
Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904
Angelino, Elia; Reano, Simone; Bollo, Alessandro; Ferrara, Michele; De Feudis, Marilisa; Sustova, Hana; Agosti, Emanuela; Clerici, Sara; Prodam, Flavia; Tomasetto, Catherine-Laure; Graziani, Andrea; Filigheddu, Nicoletta
2018-05-30
Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration. To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl -/- mice upon CTX-induced injury. Although muscles from Ghrl -/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl -/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration. Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.
Alaybeyoglu, Begum; Uluocak, Bilge Gedik; Akbulut, Berna Sariyar; Ozkirimli, Elif
2017-05-01
Co-administration of beta-lactam antibiotics and beta-lactamase inhibitors has been a favored treatment strategy against beta-lactamase-mediated bacterial antibiotic resistance, but the emergence of beta-lactamases resistant to current inhibitors necessitates the discovery of novel non-beta-lactam inhibitors. Peptides derived from the Ala46-Tyr51 region of the beta-lactamase inhibitor protein are considered as potent inhibitors of beta-lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell-penetrating peptides could guide the design of beta-lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta-lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell-penetrating peptide pVEC, our approach involved the addition of the N-terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta-lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta-lactam antibiotic ampicillin, and the beta-lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N-terminus of the beta-lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N-terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.
Suyama, Keitaro; Taniguchi, Suguru; Tatsubo, Daiki; Maeda, Iori; Nose, Takeru
2016-04-01
Elastin, a core protein of the elastic fibers, exhibits the coacervation (temperature-dependent reversible association/dissociation) under physiological conditions. Because of this characteristic, elastin and elastin-derived peptides have been considered to be useful as base materials for developing various biomedical products, skin substitutes, synthetic vascular grafts, and drug delivery systems. Although elastin-derived polypeptide (Val-Pro-Gly-Val-Gly)n also has been known to demonstrate coacervation property, a sufficiently high (VPGVG)n repetition number (n>40) is required for coacervation. In the present study, a series of elastin-derived peptide (Phe-Pro-Gly-Val-Gly)5 dimers possessing high coacervation potential were newly developed. These novel dimeric peptides exhibited coacervation at significantly lower concentrations and temperatures than the commonly used elastin-derived peptide analogs; this result suggests that the coacervation ability of the peptides is enhanced by dimerization. Circular dichroism (CD) measurements indicate that the dimers undergo similar temperature-dependent and reversible conformational changes when coacervation occurs. The molecular dynamics calculation results reveal that the sheet-turn-sheet motif involving a type II β-turn-like structure commonly observed among the dimers and caused formation of globular conformation of them. These synthesized peptide dimers may be useful not only as model peptides for structural analysis of elastin and elastin-derived peptides, but also as base materials for developing various temperature-sensitive biomedical and industrial products. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Wu, Shifen; Nie, Yao; Zeng, Xian-Chun; Cao, Hanjun; Zhang, Lei; Zhou, Lingli; Yang, Ye; Luo, Xuesong; Liu, Yichen
2014-03-01
Three new cysteine-free venom peptides, which are referred to as Heterin-1, Heterin-2 and Spiniferin, respectively, were identified from the scorpion Heterometrus spinifer. Heterin-1, Heterin-2 and Spiniferin contain 43, 24 and 13 amino acid residues, respectively. Genomic analysis showed that the genomic organizations of the three peptides are consistent with those of the known Na(+), K(+) or Cl(-)-channel specific toxins from scorpions; this suggests that the genes of the cysteine-free and cysteine-rich peptides from scorpions were derived from a common ancestor. Antimicrobial assay demonstrated that Heterin-1 possesses potent activities against both Gram-positive and Gram-negative bacteria. Among the tested bacterial species, Heterin-1 is the most active against Bacillus megaterium and Micrococcus luteus with MICs of 4.0 μM and 4.0 μM, respectively. Heterin-2 is able to potently inhibit the growth of Gram-positive bacteria with MICs from 5.6 μM to 30.0 μM; however, it has weaker activities against the tested Gram-negative bacteria. It is interesting to see that deletion of the C-terminal random coiled tail (KKD) in Heterin-2 markedly changed the antimicrobial specificity and activity of the peptide. Spiniferin has very weak antimicrobial activities against both Gram-positive and Gram-negative bacteria. We found that introducing three net charges into the polar face of Spiniferin significantly increased its antimicrobial activity against the majority of the tested bacteria; however, in some instances, net charge on the polar face is not important for the antimicrobial activity of the peptide. These studies have expanded our understanding of the diversity, evolution and structure/function relationships of the cysteine-free peptides from scorpions. Copyright © 2013 Elsevier Inc. All rights reserved.
Rahnamaeian, Mohammad; Cytryńska, Małgorzata; Zdybicka-Barabas, Agnieszka; Vilcinskas, Andreas
2016-04-01
Long-chain proline-rich antimicrobial peptides such as bumblebee abaecin show minimal activity against Gram-negative bacteria despite binding efficiently to specific intracellular targets. We recently reported that bumblebee abaecin interacts with Escherichia coli DnaK but shows negligible antibacterial activity unless it is combined with sublethal doses of the pore-forming peptide hymenoptaecin. These two bumblebee peptides are co-expressed in vivo in response to a bacterial challenge. Here we investigated whether abaecin interacts similarly with pore-forming peptides from other organisms by replacing hymenoptaecin with sublethal concentrations of cecropin A (0.3 μM) or stomoxyn (0.05 μM). We found that abaecin increased the membrane permeabilization effects of both peptides, confirming that it can reduce the minimal inhibitory concentrations of pore-forming peptides from other species. We also used atomic force microscopy to show that 20 μM abaecin combined with sublethal concentrations of cecropin A or stomoxyn causes profound structural changes to the bacterial cell surface. Our data indicate that the potentiating functional interaction between abaecin and pore-forming peptides is not restricted to specific co-expressed peptides from the same species but is likely to be a general mechanism. Combination therapies based on diverse insect-derived peptides could therefore be used to tackle bacteria that are recalcitrant to current antibiotics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation.
von Hundelshausen, Philipp; Agten, Stijn M; Eckardt, Veit; Blanchet, Xavier; Schmitt, Martin M; Ippel, Hans; Neideck, Carlos; Bidzhekov, Kiril; Leberzammer, Julian; Wichapong, Kanin; Faussner, Alexander; Drechsler, Maik; Grommes, Jochen; van Geffen, Johanna P; Li, He; Ortega-Gomez, Almudena; Megens, Remco T A; Naumann, Ronald; Dijkgraaf, Ingrid; Nicolaes, Gerry A F; Döring, Yvonne; Soehnlein, Oliver; Lutgens, Esther; Heemskerk, Johan W M; Koenen, Rory R; Mayo, Kevin H; Hackeng, Tilman M; Weber, Christian
2017-04-05
Chemokines orchestrate leukocyte trafficking and function in health and disease. Heterophilic interactions between chemokines in a given microenvironment may amplify, inhibit, or modulate their activity; however, a systematic evaluation of the chemokine interactome has not been performed. We used immunoligand blotting and surface plasmon resonance to obtain a comprehensive map of chemokine-chemokine interactions and to confirm their specificity. Structure-function analyses revealed that chemokine activity can be enhanced by CC-type heterodimers but inhibited by CXC-type heterodimers. Functional synergism was achieved through receptor heteromerization induced by CCL5-CCL17 or receptor retention at the cell surface via auxiliary proteoglycan binding of CCL5-CXCL4. In contrast, inhibitory activity relied on conformational changes (in CXCL12), affecting receptor signaling. Obligate CC-type heterodimers showed high efficacy and potency and drove acute lung injury and atherosclerosis, processes abrogated by specific CCL5-derived peptide inhibitors or knock-in of an interaction-deficient CXCL4 variant. Atheroprotective effects of CCL17 deficiency were phenocopied by a CCL5-derived peptide disrupting CCL5-CCL17 heterodimers, whereas a CCL5 α-helix peptide mimicked inhibitory effects on CXCL12-driven platelet aggregation. Thus, formation of specific chemokine heterodimers differentially dictates functional activity and can be exploited for therapeutic targeting. Copyright © 2017, American Association for the Advancement of Science.
Szymula, Agnieszka; Rosenthal, Jacob; Szczerba, Barbara M; Bagavant, Harini; Fu, Shu Man; Deshmukh, Umesh S.
2014-01-01
This study was undertaken to test the hypothesis that Sjogren’s syndrome Antigen A (SSA)/Ro60-reactive T cells are activated by peptides originating from oral and gut bacteria. T cell hybridomas generated from HLA-DR3 transgenic mice recognized 3 regions on Ro60, with core epitopes mapped to amino acids 228-238, 246-256 and 371-381. BLAST analysis identified several mimicry peptides, originating from human oral, intestinal, skin and vaginal bacteria, as well as environmental bacteria. Amongst these, a peptide from the von Willebrand factor type A domain protein (vWFA) from the oral microbe Capnocytphaga ochracea was the most potent activator. Further, Ro60-reactive T cells were activated by recombinant vWFA protein and whole E. coli expressing this protein. These results demonstrate that peptides derived from normal human microbiota can activate Ro60-reactive T cells. Thus, immune responses to commensal microbiota and opportunistic pathogens should be explored as potential triggers for initiating autoimmunity in SLE and Sjögren’s syndrome. PMID:24576620
Recent Research in Antihypertensive Activity of Food Protein-derived Hydrolyzates and Peptides.
Saleh, Ahmed S M; Zhang, Qing; Shen, Qun
2016-01-01
Year to year obesity prevalence, reduced physical activities, bad habits/or stressful lifestyle, and other environmental and physiological impacts lead to increase in diseases such as coronary heart disease, stroke, cancer, diabetes, and hypertension worldwide. Hypertension is considered as one of the most common serious chronic diseases; however, discovery of medications with high efficacy and without side effects for treatment of patients remains a challenge for scientists. Recent trends in functional foods have evidenced that food bioactive proteins play a major role in the concepts of illness and curing; therefore, nutritionists, biomedical scientists, and food scientists are working together to develop improved systems for the discovery of peptides with increased potency and therapeutic benefits. This review presents a recent research carried out to date for the purpose of isolation and identification of bioactive hydrolyzates and peptides with angiotensin I converting enzyme inhibitory activity and antihypertensive effect from animal, marine, microbial, and plant food proteins. Effects of food processing and hydrolyzation conditions as well as some other impacts on formation, activity, and stability of these hydrolyzates and peptides are also presented.
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N; Torres, Jaume; Bhattacharjya, Surajit
2009-08-14
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like beta-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nM concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the beta-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate beta-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane.
Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N
2016-06-01
The search for alternative therapeutics is on the rise due to the extensive increase in bacterial resistance to various conventional antibiotics and side effects of conventional cancer therapies. Bioactive peptides released from natural sources such as dairy foods by lactic acid bacteria have received attention as a potential source of biotherapeutic peptides. However, liberation of peptides in yogurt depends on proteolytic activities of the cultures used. Thus, this research was conducted to establish generation of inhibitory peptides in yogurt against pathogenic bacteria and cancer cells during storage at 4°C for 28d. Water-soluble crude peptide extracts were prepared by high-speed centrifugation of plain and probiotic yogurts supplemented with or without pineapple peel powder (PPP). The inhibition zones against Escherichia coli and Staphylococcus aureus by PPP-fortified probiotic yogurt at 28d of storage were, respectively, 25.89 and 11.72mm in diameter, significantly higher than that of nonsupplemented control yogurts. Antiproliferative activity against HT29 colon cancer cells was also significantly higher in probiotic yogurt with PPP than in nonsupplemented probiotic yogurt. Overall, crude water-soluble peptide extracts of the probiotic yogurt with PPP possessed stronger inhibitory activities against bacteria and cancer cells than controls, and these activities were maintained during storage. However, activities were lowered substantially during in vitro gastrointestinal digestion. These findings support the possibility of utilizing dairy-derived bioactive peptides in the development of a superior alternative to the current generation of antibacterial and anticancer agents, as well as a functional ingredient in foods, nutraceuticals, and pharmaceuticals. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Gergel, J R; McNamara, D J; Dobrusin, E M; Zhu, G; Saltiel, A R; Miller, W T
1994-12-13
Photoaffinity labeling and site-directed mutagenesis have been used to identify amino acid residues of the phospholipase C gamma 1 (PLC gamma 1) N-terminal SH2 domain involved in recognition of the activated epidermal growth factor receptor (EGFR). The photoactive amino acid p-benzoylphenylalanine (Bpa) was incorporated into phosphotyrosine-containing peptides derived from EGFR autophosphorylation sites Tyr992 and Tyr1068. Irradiation of these labels in the presence of SH2 domains showed cross-linking which was time-dependent and specific; labeling was inhibited with non-Bpa-containing peptides from EGFR in molar excess. The phosphotyrosine residue on the peptides was important for SH2 recognition, as dephosphorylated peptides did not cross-link. Radiolabeled peptides were used to identify sites of cross-linking to the N-terminal SH2 of PLC gamma 1. Bpa peptide-SH2 complexes were digested with trypsin, and radioactive fragments were purified by HPLC and analyzed by Edman sequencing. These experiments showed Arg562 and an additional site in the alpha A-beta B region of the SH2 domain, most likely Glu587, to be labeled by the Tyr992-derived peptide. Similar analysis of the reaction with the Tyr1068-derived photoaffinity label identified Leu653 as the cross-linked site. Mutation of the neighboring residues of Glu587 decreased photo-cross-linking, emphasizing the importance of this region of the molecule for recognition. These results are consistent with evidence from the v-Src crystal structure and implicate the loop spanning residues Gln640-Ser654 of PLC gamma 1 in specific recognition of phosphopeptides.
Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar
2017-01-01
Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment. PMID:29069749
Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar
2017-09-22
Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC 50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment.
Synthetic chemerin-derived peptides suppress inflammation through ChemR23
Cash, Jenna L.; Hart, Rosie; Russ, Andreas; Dixon, John P.C.; Colledge, William H.; Doran, Joanne; Hendrick, Alan G.; Carlton, Mark B.L.; Greaves, David R.
2008-01-01
Chemerin is a chemotactic protein that binds to the G protein–coupled receptor, ChemR23. We demonstrate that murine chemerin possesses potent antiinflammatory properties that are absolutely dependent on proteolytic processing. A series of peptides was designed, and only those identical to specific C-terminal chemerin sequences exerted antiinflammatory effects at picomolar concentrations in vitro. One of these, chemerin15 (C15; A140-A154), inhibited macrophage (MΦ) activation to a similar extent as proteolyzed chemerin, but exhibited reduced activity as a MΦ chemoattractant. Intraperitoneal administration of C15 (0.32 ng/kg) to mice before zymosan challenge conferred significant protection against zymosan-induced peritonitis, suppressing neutrophil (63%) and monocyte (62%) recruitment with a concomitant reduction in proinflammatory mediator expression. Importantly, C15 was unable to ameliorate zymosan-induced peritonitis in ChemR23−/− mice, demonstrating that C15's antiinflammatory effects are entirely ChemR23 dependent. In addition, administration of neutralizing anti-chemerin antibody before zymosan challenge resulted in a significant exacerbation of peritoneal inflammation (up to 170%), suggesting an important endogenous antiinflammatory role for chemerin-derived species. Collectively, these results show that chemerin-derived peptides may represent a novel therapeutic strategy for the treatment of inflammatory diseases through ChemR23. PMID:18391062
Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria
2014-01-01
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.
Company, Nuri; Nadal, Anna; Ruiz, Cristina; Pla, Maria
2014-01-01
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes. PMID:25387106
Glover, N R; Tracey, A S
1999-04-20
The epidermal growth factor-derived (EGFR988) fluorophosphonate peptide, DADE(F2Pmp)L, is a potent (30 pM) inhibitor of the protein tyrosine phosphatase PTP1B. Nuclear magnetic resonance (NMR) transferred nuclear Overhauser effect (nOe) experiments have been used to determine the conformation of DADE(F2Pmp)L while bound in the active site of PTP1B. When bound, the peptide adopts an extended beta-strand conformation. Molecular modeling and molecular dynamics simulations allowed the elucidation of the sources of many of the interactions leading to binding of this inhibitor. Electrostatic, hydrophobic, and hydrogen-bonding interactions were all found to contribute significantly to its binding. However, despite the overall tight binding of this inhibitor, the N-terminal and adjacent residue of the peptide were virtually unrestrained in their motion. The major contributions to binding arose from hydrophobic interactions at the leucine and at the aromatic center, hydrogen bonding to the pro-R fluorine of the fluorophosphonomethyl group, and electrostatic interactions involving the carboxylate functionalities of the aspartate and glutamate residues. These latter two residues were found to form tight contacts with surface recognition elements (arginine and lysine) situated near the active-site cleft.
Antibacterial activity in bovine lactoferrin-derived peptides.
Hoek, K S; Milne, J M; Grieve, P A; Dionysius, D A; Smith, R
1997-01-01
Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified, one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf, one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond. These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ion-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC). They were characterized by N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination. Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques. This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 microM or less. Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC. Subfragment 1 (residues 1 to 10) was active against most of the test microorganisms at concentrations of 10 to 50 microM. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 microM. These antibacterial studies indicate that the activity of lactoferricin is mainly, but not wholly, due to its N-terminal region. PMID:8980754
Park, Yoonkyung; Park, Seong-Cheol; Park, Hae-Kyun; Shin, Song Yub; Kim, Yangmee; Hahm, Kyung-Soo
2007-01-01
HP (2-20) (AKKVFKRLEKLFSKIQNDK) is a 19-aa antimicrobial peptide derived from N-terminus of Helicobacter pylori Ribosomal protein L1 (RpL1). In the previous study, several analogs with amino acid substitutions were designed to increase or decrease only the net hydrophobicity. In particular, substitutions of Gln(16) and Asp(18) with Trp (Anal 3) for hydrophobic amino acid caused a dramatic increase in antibiotic activity without a hemolytic effect. HP-A3 is a potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and extended C-terminal regular alpha-helical region (residues 6-20). To obtain the short and potent alpha-helical antimicrobial peptide, we synthesized a N-terminal random coil deleted HP-A3 (A3-NT) and examined their antimicrobial activity and mechanism of action. The resulting 15mer peptide showed increased antibacterial and antifungal activity to 2- and 4-fold, respectively, without hemolysis. Confocal fluorescence microscopy studies showed that A3-NT was accumulated in the plasma membrane. Flow cytometric analysis revealed that A3-NT acted in salt- and energy-independent manner. Furthermore, A3-NT causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy. Circular dichroism (CD) analysis revealed that A3-NT showed higher alpha-helical contents than the HP-A3 peptide in 50% TFE solution. Therefore, the cell-lytic efficiency of HP-A3, which depended on the alpha-helical content of peptide, correlated linearly with their antimicrobial potency.
Rittling, S R; Wejse, P L; Yagiz, K; Warot, G A; Hui, T
2014-03-04
The integrin-binding protein osteopontin is strongly associated with tumour development, yet is an abundant dietary component as a constituent of human and bovine milk. Therefore, we tested the effect of orally administered osteopontin (o-OPN) on the development of subcutaneous tumours in mice. Bovine milk osteopontin was administered in drinking water to tumour-bearing immune-competent mice. Tumour growth, proliferation, necrosis, apoptosis and blood vessel size and number were measured. Expression of the α₉ integrin was determined. o-OPN suppressed tumour growth, increased the extent of necrosis, and induced formation of abnormally large blood vessels. Anti-OPN reactivity detected in the plasma of OPN-null mice fed OPN suggested that tumour-blocking peptides were absorbed during digestion, but the o-OPN effect was likely distinct from that of an RGD peptide. Expression of the α₉ integrin was detected on both tumour cells and blood vessels. Potential active peptides from the α₉ binding site of OPN were identified by mass spectrometry following in vitro digestion, and injection of these peptides suppressed tumour growth. These results suggest that peptides derived from o-OPN are absorbed and interfere with tumour growth and normal vessel development. o-OPN-derived peptides that target the α₉ integrin are likely involved.
NASA Astrophysics Data System (ADS)
Badgett, Majors J.; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications.
Badgett, Majors J; Boyes, Barry; Orlando, Ron
2017-05-01
Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications. Graphical Abstract ᅟ.
Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks
Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.
2003-01-01
Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539
Marine Peptides: Bioactivities and Applications
Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho
2015-01-01
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844
Antiviral Peptides Targeting the West Nile Virus Envelope Protein▿
Bai, Fengwei; Town, Terrence; Pradhan, Deepti; Cox, Jonathan; Ashish; Ledizet, Michel; Anderson, John F.; Flavell, Richard A.; Krueger, Joanna K.; Koski, Raymond A.; Fikrig, Erol
2007-01-01
West Nile virus (WNV) can cause fatal murine and human encephalitis. The viral envelope protein interacts with host cells. A murine brain cDNA phage display library was therefore probed with WNV envelope protein, resulting in the identification of several adherent peptides. Of these, peptide 1 prevented WNV infection in vitro with a 50% inhibition concentration of 67 μM and also inhibited infection of a related flavivirus, dengue virus. Peptide 9, a derivative of peptide 1, was a particularly potent inhibitor of WNV in vitro, with a 50% inhibition concentration of 2.6 μM. Moreover, mice challenged with WNV that had been incubated with peptide 9 had reduced viremia and fatality compared with control animals. Peptide 9 penetrated the murine blood-brain barrier and was found in the brain parenchyma, implying that it may have antiviral activity in the central nervous system. These short peptides serve as the basis for developing new therapeutics for West Nile encephalitis and, potentially, other flaviviruses. PMID:17151121
Teixeira, Luis Gustavo D; Malavolta, Luciana; Bersanetti, Patrícia A; Schreier, Shirley; Carmona, Adriana K; Nakaie, Clovis R
2015-01-01
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra.
Teixeira, Luis Gustavo D.; Malavolta, Luciana; Bersanetti, Patrícia A.; Schreier, Shirley; Carmona, Adriana K.; Nakaie, Clovis R.
2015-01-01
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra. PMID:26317625
Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.
2006-01-01
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.
Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less
Checco, James W.; Kreitler, Dale F.; Thomas, Nicole C.; ...
2015-03-30
Peptide-based agents derived from well-defined scaffolds offer an alternative to antibodies for selective and high-affinity recognition of large and topologically complex protein surfaces. In this paper, we describe a strategy for designing oligomers containing both α- and β-amino acid residues (“α/β-peptides”) that mimic several peptides derived from the three-helix bundle “Z-domain” scaffold. We show that α/β-peptides derived from a Z-domain peptide targeting vascular endothelial growth factor (VEGF) can structurally and functionally mimic the binding surface of the parent peptide while exhibiting significantly decreased susceptibility to proteolysis. The tightest VEGF-binding α/β-peptide inhibits the VEGF 165-induced proliferation of human umbilical vein endothelialmore » cells. We demonstrate the versatility of this strategy by showing how principles underlying VEGF signaling inhibitors can be rapidly extended to produce Z-domain–mimetic α/β-peptides that bind to two other protein partners, IgG and tumor necrosis factor-α. Because well-established selection techniques can identify high-affinity Z-domain derivatives from large DNA-encoded libraries, our findings should enable the design of biostable α/β-peptides that bind tightly and specifically to diverse targets of biomedical interest. Finally, such reagents would be useful for diagnostic and therapeutic applications.« less
Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.
Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J
1993-06-15
alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first, second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM).
Structure-activity analysis of synthetic alpha-thrombin-receptor-activating peptides.
Van Obberghen-Schilling, E; Rasmussen, U B; Vouret-Craviari, V; Lentes, K U; Pavirani, A; Pouysségur, J
1993-01-01
alpha-Thrombin stimulates G-protein-coupled effectors leading to secretion and aggregation in human platelets, and to a mitogenic response in CCL39 hamster fibroblasts. alpha-Thrombin receptors can be activated by synthetic peptides corresponding to the receptor sequence starting with serine-42, at the proposed cleavage site. We have previously determined that the agonist domain of receptor-activating peptides resides within the five N-terminal residues [Vouret-Craviari, Van Obberghen-Schilling, Rasmussen, Pavirani, Lecocq and Pouysségur (1992) Mol. Biol. Cell. 3, 95-102], although the 7-residue peptide (SFFLRNP) corresponding to the hamster alpha-thrombin receptor was 10 times more potent than the 5-residue peptide for activation of human platelets. In the present study we have analysed the role of individual amino acids in receptor activation by using a series of modified hexa- or hepta-peptides derived from the human alpha-thrombin-receptor sequence. Cellular events examined here include phospholipase C activation, adenylyl cyclase inhibition and DNA synthesis stimulation in non-transformed CCL39 fibroblasts and a tumorigenic variant of that line (A71 cells). Modification of the peptide sequence had similar functional consequence for each of the assays described, indicating that either a unique receptor or pharmacologically indistinguishable receptor subtypes activate distinct G-protein signalling pathways. Furthermore, we found that: (1) the N-terminal serine can be replaced by small or intermediately sized amino acids (+/- hydroxyl groups) without loss of activity. However, its replacement by an aromatic side-chain or omission of the N-terminal amino group severely reduces activity. (2) An aromatic side-chain on the penultimate N-terminal residue appears to play a critical role since phenylalanine in this position can be substituted by tyrosine without complete loss of activity whereas an alanine in its place is not tolerated. (3) Deletion of the first, second or third N-terminal residue leads to a loss of activity, suggesting that a defined spacing of more than one structural component may be important for ligand-receptor interaction. Finally, we did not observe an antagonistic effect of the inactive peptides on phospholipase C activation or DNA synthesis induced by alpha-thrombin (1 nM) or SFLLRNP (3 microM). PMID:7686363
Fiołka, M J; Grzywnowicz, K; Rzymowska, J; Lewtak, K; Szewczyk, R; Mendyk, E; Keller, R
2015-06-01
The characterization of the antitumour activity and chemical identification of the compounds obtained after the isolation of extracellular metabolites of bacteria Raoultella ornithinolytica. The fraction with anticancer activity against the HeLa cell line, T47D and TOV-112D was obtained from the supernatants of R. ornithinolytica culture using ion-exchange chromatography, and separated by Sephadex G-50 medium gel filtration into two subfractions. The obtained compounds were analysed using Fourier Transform-Infrared Spectroscopy, Raman spectroscopy and matrix-assisted laser desorption/ionization MS/MS spectrometry. The antitumour activity of the two subfractions was analysed using 5-bromo-2-deoxy-uridine kit. The subfraction with the highest activity against HeLa cells was identified as Tris-peptide complex. The amino acid sequence of the peptide from the complex was found to be TDAPSFSDIPN and molecular weight was estimated at 1430·6576 Da. Cytotoxic, cytopathic and apoptotic effects in HeLa cells treated with the active complex were observed; however, the cytotoxic effect against normal human skin fibroblasts was minimal. The Tris-peptide complex from R. ornithinolytica showed selective antitumour activity against the HeLa cell line. The Tris-peptide complex due to the high selectivity can be used in biomedicine, and its derivatives may contribute to the development of new anticancer compounds. © 2015 The Society for Applied Microbiology.
Guillemin, Yannis; Lopez, Jonathan; Gimenez, Diana; Fuertes, Gustavo; Valero, Juan Garcia; Blum, Loïc; Gonzalo, Philippe; Salgado, Jesùs; Girard-Egrot, Agnès; Aouacheria, Abdel
2010-01-01
Background The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. Methodology/Principal Findings Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. Conclusion/Significance BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains. PMID:20140092
Membrane curvature stress and antibacterial activity of lactoferricin derivatives.
Zweytick, Dagmar; Tumer, Sabine; Blondelle, Sylvie E; Lohner, Karl
2008-05-02
We have studied correlation of non-lamellar phase formation and antimicrobial activity of two cationic amphipathic peptides, termed VS1-13 and VS1-24 derived from a fragment (LF11) of human lactoferricin on Escherichia coli total lipid extracts. Compared to LF11, VS1-13 exhibits minor, but VS1-24 significantly higher antimicrobial activity. X-ray experiments demonstrated that only VS1-24 decreased the onset of cubic phase formation of dispersions of E. coli lipid extracts, significantly, down to physiological relevant temperatures. Cubic structures were identified to belong to the space groups Pn3m and Im3m. Formation of latter is enhanced in the presence of VS1-24. Additionally, the presence of this peptide caused membrane thinning in the fluid phase, which may promote cubic phase formation. VS1-24 containing a larger hydrophobic volume at the N-terminus than its less active counterpart VS1-13 seems to increase curvature stress in the bilayer and alter the behaviour of the membrane significantly enhancing disruption.
Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J
2016-02-01
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.
Designed β-Boomerang Antiendotoxic and Antimicrobial Peptides
Bhunia, Anirban; Mohanram, Harini; Domadia, Prerna N.; Torres, Jaume; Bhattacharjya, Surajit
2009-01-01
Lipopolysaccharide (LPS), an integral part of the outer membrane of Gram-negative bacteria, is involved in a variety of biological processes including inflammation, septic shock, and resistance to host-defense molecules. LPS also provides an environment for folding of outer membrane proteins. In this work, we describe the structure-activity correlation of a series of 12-residue peptides in LPS. NMR structures of the peptides derived in complex with LPS reveal boomerang-like β-strand conformations that are stabilized by intimate packing between the two aromatic residues located at the 4 and 9 positions. This structural feature renders these peptides with a high ability to neutralize endotoxicity, >80% at 10 nm concentration, of LPS. Replacements of these aromatic residues either with Ala or with Leu destabilizes the boomerang structure with the concomitant loss of antiendotoxic and antimicrobial activities. Furthermore, the aromatic packing stabilizing the β-boomerang structure in LPS is found to be maintained even in a truncated octapeptide, defining a structured LPS binding motif. The mode of action of the active designed peptides correlates well with their ability to perturb LPS micelle structures. Fourier transform infrared spectroscopy studies of the peptides delineate β-type conformations and immobilization of phosphate head groups of LPS. Trp fluorescence studies demonstrated selective interactions with LPS and the depth of insertion into the LPS bilayer. Our results demonstrate the requirement of LPS-specific structures of peptides for endotoxin neutralizations. In addition, we propose that structures of these peptides may be employed to design proteins for the outer membrane. PMID:19520860
Spitler, Lynn; Benjamini, E.; Young, Janis D.; Kaplan, Harvey; Fudenberg, H. H.
1970-01-01
The following peptides have previously been shown to bind specifically with antibodies to TMVP: (a) An eicosapeptide representing residues 93–112 of TMVP and having the sequence Ileu-Ileu-Glu-Val-Glu-AspNH2-GluNH2-Ala-AspNH2-Pro-Thr-Thr-Ala-Glu-Thr-Leu-Asp-Ala-Thr-Arg. (b) Its C-terminal decapeptide. (c) Its C-terminal pentapeptide. (d) N-octanoyl-C-terminal-tripeptide. (e) (Lys)4-C-terminal-pentapeptide. (f) (Lys)7 C-terminal-pentapeptide. The present communication deals with the investigation of several parameters of the immunological activity of the peptides. The results show that none of the peptides tested were immunogenic in guinea pigs, nor did they stimulate the incorporation of 14C-thymidine by spleen cells derived from TMVP-primed animals. Results also showed that all of the peptides tested could elicit specific delayed and immediate skin reactions in TMVP-sensitized guinea pigs, and furthermore, that the peptides could specifically inhibit the migration of peritoneal exudate cells derived from these animals. The elicitation of delayed skin reactions and the ability to inhibit migration of peritoneal exudate cells were independent of carrier specificity. PMID:5409944
Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.
Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A
2005-08-05
The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goeransson, Anna-Lena, E-mail: anngo@ifm.liu.se; Nilsson, K. Peter R., E-mail: petni@ifm.liu.se; Kagedal, Katarina, E-mail: katarina.kagedal@liu.se
2012-04-20
Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity,more » using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.« less
Di Grazia, Antonio; Cappiello, Floriana; Imanishi, Akiko; Mastrofrancesco, Arianna; Picardo, Mauro; Paus, Ralf; Mangoni, Maria Luisa
2015-01-01
One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers.
Purine derivatives with antituberculosis activity
NASA Astrophysics Data System (ADS)
Gruzdev, D. A.; Musiyak, V. V.; Levit, G. L.; Krasnov, V. P.; Charushin, V. N.
2018-06-01
The review summarizes the data published over the last 10–15 years concerning the key groups of purine derivatives with antituberculosis activity. The structures of purines containing heteroatoms (S, O, N), fragments of heterocycles, amino acids and peptides, in the 6-position, as well as of purine nucleosides are presented. The possible targets for the action of such compounds and structure–activity relationship are discussed. Particular attention is paid to the most active compounds, which are of considerable interest as a basis for the development of efficient antituberculosis drugs. The bibliography includes 99 references.
Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides.
Kern, Hanna B; Srinivasan, Selvi; Convertine, Anthony J; Hockenbery, David; Press, Oliver W; Stayton, Patrick S
2017-05-01
Peptides derived from the third Bcl-2 homology domain (BH3) renormalize apoptotic signaling by antagonizing prosurvival Bcl-2 family members. These potential peptide drugs exhibit therapeutic activities but are limited by barriers including short circulation half-lives and poor penetration into cells. A diblock polymeric micelle carrier for the BIM BH3 peptide was recently described that demonstrated antitumor activity in a B-cell lymphoma xenograft model [Berguig et al., Mol. Ther. 2015, 23, 907-917]. However, the disulfide linkage used to conjugate the BIM peptide was shown to have nonoptimal blood stability. Here we describe a peptide macromonomer composed of BIM capped with a four amino acid cathepsin B substrate (FKFL) that possesses high blood stability and is cleaved to release the drug inside of target cells. Employing RAFT polymerization, the peptide macromonomer was directly integrated into a multifunctional diblock copolymer tailored for peptide delivery. The first polymer block was made as a macro-chain transfer agent (CTA) and composed of a pH-responsive endosomolytic formulation of N,N-diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA). The second polymer block was a copolymer of the peptide and polyethylene glycol methacrylate (PEGMA). PEGMA monomers of two sizes were investigated (300 Da and 950 Da). Protein gel analysis, high performance liquid chromatography, and coupled mass spectrometry (MS) showed that incubation with cathepsin B specifically cleaved the FKFL linker and released active BIM peptide with PEGMA 300 but not with PEGMA 950 . MALDI-TOF MS showed that incubation of the peptide monomers alone in human serum resulted in partial cleavage at the FKFL linker after 12 h. However, formulation of the peptides into polymers protected against serum-mediated peptide degradation. Dynamic light scattering (DLS) demonstrated pH-dependent micelle disassembly (25 nm polymer micelles at pH 7.4 versus 6 nm unimers at pH 6.6), and a red blood cell lysis assay showed a corresponding increase in membrane destabilizing activity (<1% lysis at pH 7.4 versus 95% lysis at pH 6.6). The full carrier-drug system successfully induced apoptosis in SKOV3 ovarian cancer cells in a dose-dependent manner, in comparison to a control polymer containing a scrambled BIM peptide sequence. Mechanistic analysis verified target-dependent activation of caspase 3/7 activity (8.1-fold increase), and positive annexin V staining (72% increase). The increased blood stability of this enzyme-cleavable peptide polymer design, together with the direct polymerization approach that eliminated postsynthetic conjugation steps, suggests that this new carrier design could provide important benefits for intracellular peptide drug delivery.
Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio
2004-01-01
Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.
Cui, Xianwei; Li, Yun; Yang, Lei; You, Lianghui; Wang, Xing; Shi, Chunmei; Ji, Chenbo; Guo, Xirong
2016-01-01
Breastfeeding is associated with a lower incidence of obesity, diabetes, and cardiovascular disease later in life. While macrosomic infants have a higher risk of developing obesity and other metabolic disorders. Breast milk may contain special nutrients to meet the different growth needs of different infants. Whether mothers make breast milk different to meet the requirement of macrosomic infants is still unknown. Here, we conducted a comparison between mothers delivering macrosomic and non-macrosomic infants in colostrum endogenous peptides. More than 400 peptides, originating from at least 34 protein precursors, were identified by Liquid Chromatography/Mass Spectrometry (LC/MS). Out of these, 29 peptides found to be significant differently expressed (|fold change| ≥ 3, P < 0.01). Blastp analysis revealed 41 peptides may have established biological activities, which exhibit immunomodulating, antibacterial action, antioxidation, opioid agonist and antihypertensive activity. Furthermore, we found that peptide located at β-Casein 24-38 AA has antimicrobial effect against E. coli, Y. enterocolitica and S. aureus. While, κ-Casein 89-109 AA-derived peptide plays as a regulator of preadipocyte proliferation. The profile of endogenous peptides from macrosomic term infants is different from non-macrosomic terms. This different peptide expression potentially has specific physiological function to benefit macrosomic infants. Finally, we believe that our research is a meaningfull finding which may add to the understanding of milk peptide physiological action. PMID:27566575
Cui, Xianwei; Li, Yun; Yang, Lei; You, Lianghui; Wang, Xing; Shi, Chunmei; Ji, Chenbo; Guo, Xirong
2016-09-27
Breastfeeding is associated with a lower incidence of obesity, diabetes, and cardiovascular disease later in life. While macrosomic infants have a higher risk of developing obesity and other metabolic disorders. Breast milk may contain special nutrients to meet the different growth needs of different infants. Whether mothers make breast milk different to meet the requirement of macrosomic infants is still unknown. Here, we conducted a comparison between mothers delivering macrosomic and non-macrosomic infants in colostrum endogenous peptides. More than 400 peptides, originating from at least 34 protein precursors, were identified by Liquid Chromatography/Mass Spectrometry (LC/MS). Out of these, 29 peptides found to be significant differently expressed (|fold change| ≥ 3, P < 0.01). Blastp analysis revealed 41 peptides may have established biological activities, which exhibit immunomodulating, antibacterial action, antioxidation, opioid agonist and antihypertensive activity. Furthermore, we found that peptide located at β-Casein 24-38 AA has antimicrobial effect against E. coli, Y. enterocolitica and S. aureus. While, κ-Casein 89-109 AA-derived peptide plays as a regulator of preadipocyte proliferation. The profile of endogenous peptides from macrosomic term infants is different from non-macrosomic terms. This different peptide expression potentially has specific physiological function to benefit macrosomic infants. Finally, we believe that our research is a meaningfull finding which may add to the understanding of milk peptide physiological action.
Pal, Gargi; Srivastava, Sheela
2014-02-01
Plantaricin gene-specific primers were used to obtain plnE, -F, -J and -K structural gene amplicons from soil metagenome. These amplicons were cloned and expressed in pET32a (+) vector in Escherichia coli BL21 (DE3). PlnE, -F, -J and -K peptides were expressed as His-tagged-fusion proteins and were separated by Ni(2+) -chelating affinity chromatography. The peptides were released from the fusion by enterokinase cleavage and separated from the carrier thioredoxin. The cleaved peptides were further analysed for antimicrobial activity and found to be active against Listeria innocua NRRL B33314, Micrococcus luteus MTCC 106 and lactic acid bacteria, such as Enterococcus casseliflavus NRRL B3502, Lactococcus lactis lactis NRRL 1821, Lactobacillus curvatus NRRL B4562 and Lactobacillus plantarum NRRL B4496. E. coli has been successfully exploited as a host for heterologous expression with a significant yield of fused and cleaved peptides in the range of 8-12 and 1-1.5 mg/l of the culture, respectively. Heterologous expression, therefore, can be used to overcome the constraints of low yield often reported from a native strain.
Modulation of Neutrophil Apoptosis by Antimicrobial Peptides
Nagaoka, Isao; Suzuki, Kaori; Niyonsaba, François; Tamura, Hiroshi; Hirata, Michimasa
2012-01-01
Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. Human antimicrobial peptides, α-defensins (human neutrophil peptides, HNPs), human β-defensins (hBDs), and cathelicidin (LL-37) not only exhibit potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also function as immunomodulatory molecules by inducing cytokine and chemokine production, and inflammatory and immune cell activation. Neutrophil is a critical effector cell in host defense against microbial infection, and its lifespan is regulated by various pathogen- and host-derived substances. Here, we provided the evidence that HNP-1, hBD-3, and LL-37 cannot only destroy bacteria but also potently modulate (suppress) neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/-2, the downregulation of tBid (an proapoptotic protein) and upregulation of Bcl-xL (an antiapoptotic protein), and the inhibition of mitochondrial membrane potential change and caspase 3 activity, possibly via the actions on the distinct receptors, the P2Y6 nucleotide receptor, the chemokine receptor CCR6, and the low-affinity formyl-peptide receptor FPRL1/the nucleotide receptor P2X7, respectively. Suppression of neutrophil apoptosis results in the prolongation of their lifespan and may be advantageous for the host defense against bacterial invasion. PMID:23724322
Tanhaiean, Abass; Azghandi, Marjan; Razmyar, Jamshid; Mohammadi, Elyas; Sekhavati, Mohammad Hadi
2018-06-08
Over the last decades, poultry industry faced to the rapid emergence of multidrug-resistant bacteria as a global concern. Antimicrobial peptide (AMPs) known as potential antibiotic alternative and were considered as a new antimicrobial agent. Current methods of production and purification of AMPs have several limitations such as: costly, time-consuming and killing the producing host cells in recombinant form. In the present study, a chimeric peptide derived from camel lactoferrin was produced in Escherichia coli periplasmic space using a pET-based expression system and its antibacterial activity was determined on some avian pathogens in vitro. A carboxy-terminal polyhistidine tag was used for purification by Ni 2+ affinity chromatography with an average yield of 0.42 g/L. The His-tagged chimeric peptide showed different range of antimicrobial activity against clinically isolated avian pathogens with low chicken blood hemolysis activity and high serum stability. Overall, the results of this investigation showed the recombinant chimeric peptide was successfully expressed in pET-based expression system and could be considered as a proper alternative for some currently used antibiotics in poultry industry and drugs veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Akari, Shougo; Otsuka, Kazuki; Fujita, Motomichi; Itagaki, Keisuke; Takizawa, You-ichi; Orita, Hiroaki; Owaki, Toshiyuki; Taira, Jyunichi; Hayashi, Ryo; Kodama, Hiroaki; Fukai, Fumio
2016-01-01
The acquisition of drug resistance mediated by the interaction of tumor cells with the extracellular matrix (ECM), commonly referred to as cell adhesion-mediated drug resistance (CAM-DR), has been observed not only in hematopoietic tumor cells but also in solid tumor cells. We have previously demonstrated that a 22-mer peptide derived from fibronectin, FNIII14, can inhibit cell adhesion through the inactivation of β1 integrin; when coadministered with cytarabine, FNIII14 completely eradicates acute myelogenous leukemia by suppressing CAM-DR. In this study, we show that our FNIII14 peptide also enhances chemotherapy efficacy in solid tumors. Coadministration of FNIII14 synergistically enhances the cytotoxicity of doxorubicin and aclarubicin in mammary tumor and melanoma cells, respectively. The solid tumor cell chemosensitization induced by FNIII14 is dependent upon the upregulation and activation of the pro-apoptotic protein, Bim. Furthermore, the metastasis of tumor cells derived from ventrally transplanted mammary tumor grafts is suppressed by the coadministration of FNIII14 and doxorubicin. These results suggest that the coadministration of our FNIII14 peptide with chemotherapy could achieve efficient solid tumor eradication by increasing chemosensitivity and decreasing metastasis. The major causes of tumor recurrence are the existence of chemotherapy-resistant primary tumor cells and the establishment of secondary metastatic lesions. As such, coadministering FNIII14 with anti-cancer drugs could provide a promising new approach to improve the prognosis of patients with solid tumors. PMID:27622612
Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J; Höppener, Jo W M; Monasterio, Alberto; Casal, J Ignacio; Meloen, Rob H
2009-12-04
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH(2)) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (K(d) values in micromolar range) and the parental monoclonal antibodies (K(d) values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity.
Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J.; Höppener, Jo W. M.; Monasterio, Alberto; Casal, J. Ignacio; Meloen, Rob H.
2009-01-01
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH2) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (Kd values in micromolar range) and the parental monoclonal antibodies (Kd values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity. PMID:19808684
Huerta-Cantillo, Rocio; Comisso, Marina; Danesin, Roberta; Ghezzo, Francesca; Naso, Filippo; Gastaldello, Alessandra; Schittullo, Eleonora; Buratto, Edward; Spina, Michele; Gerosa, Gino; Dettin, Monica
2012-01-01
Scaffolds for tissue engineering must be designed to direct desired events such as cell attachment, growth, and differentiation. The incorporation of extracellular matrix-derived peptides into biomaterials has been proposed to mimic biochemical signals. In this study, three synthetic fragments of fibronectin, vitronectin, and stromal-derived factor-1 were investigated for the first time as potential adhesive sequences for cardiomyocytes (CMs) compared to smooth muscle cells. CMs are responsive to all peptides to differing degrees, demonstrating the existence of diverse adhesion mechanisms. The pretreatment of nontissue culture well surfaces with the (Arginine-Glycine-Aspartic Acid) RGD sequence anticipated the appearance of CMs' contractility compared to the control (fibronectin-coated well) and doubled the length of cell viability. Future prospects are the inclusion of these sequences into biomaterial formulation with the improvement in cell adhesion that could play an important role in cell retention during dynamic cell seeding. PMID:22011064
Pharmacological screening technologies for venom peptide discovery.
Prashanth, Jutty Rajan; Hasaballah, Nojod; Vetter, Irina
2017-12-01
Venomous animals occupy one of the most successful evolutionary niches and occur on nearly every continent. They deliver venoms via biting and stinging apparatuses with the aim to rapidly incapacitate prey and deter predators. This has led to the evolution of venom components that act at a number of biological targets - including ion channels, G-protein coupled receptors, transporters and enzymes - with exquisite selectivity and potency, making venom-derived components attractive pharmacological tool compounds and drug leads. In recent years, plate-based pharmacological screening approaches have been introduced to accelerate venom-derived drug discovery. A range of assays are amenable to this purpose, including high-throughput electrophysiology, fluorescence-based functional and binding assays. However, despite these technological advances, the traditional activity-guided fractionation approach is time-consuming and resource-intensive. The combination of screening techniques suitable for miniaturization with sequence-based discovery approaches - supported by advanced proteomics, mass spectrometry, chromatography as well as synthesis and expression techniques - promises to further improve venom peptide discovery. Here, we discuss practical aspects of establishing a pipeline for venom peptide drug discovery with a particular emphasis on pharmacology and pharmacological screening approaches. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.
Proteomic analysis of macrophage activated with salmonella lipopolysaccharide
USDA-ARS?s Scientific Manuscript database
Macrophages play pivotal role in immunity. They are activated by many pathogen derived molecules such as lipopolysaccharides (LPS) which trigger the production of various proteins and peptides that drive and resolve inflammation. There are numerous studies on the effect of LPS at the genome level bu...
Stiffening of flexible SUMO1 protein upon peptide-binding: Analysis with anisotropic network model.
Sarkar, Ranja
2018-01-01
SUMO (small ubiquitin-like modifier) proteins interact with a large number of target proteins via a key regulatory event called sumoylation that encompasses activation, conjugation and ligation of SUMO proteins through specific E1, E2, and E3-type enzymes respectively. Single-molecule atomic force microscopic (AFM) experiments performed to unravel bound SUMO1 along its NC termini direction reveal that E3-ligases (in the form of small peptides) increase mechanical stability (along the axis) of the flexible protein upon binding. The experimental results are expected to correlate with the intrinsic flexibility of bound SUMO1 protein in the native state i.e., the bound conformation of SUMO1 without the binding peptide. The native protein flexibility/stiffness can be measured as a spring constant by normal mode analysis. In the present study, protein normal modes are computed from the protein structural data (as input from protein databank) via a simple anisotropic network model (ANM). ANM is computationally inexpensive and hence, can be explored to investigate and compare the native conformational dynamics of unbound and bound (without the binding partner) structures, if the corresponding structural data (NMR/X-ray) are available. The paper illustrates that SUMO1 stiffens (native flexibility decreases) along the NC termini (end-to-end) direction of the protein upon binding to small peptides; however, the degree of stiffening is peptide sequence-specific. The theoretical results are demonstrated for NMR structures of unbound SUMO1 and that bound to two peptides having short amino acid motifs and of similar size, one being an M-IR2 peptide derived from RanBP2 protein and the other one derived from PIASX protein. The peptide derived from PIASX stiffens SUMO1 remarkably which is evident from an atomic-level normal mode analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
C de Campos Zani, Stepheny; Wu, Jianping; B Chan, Catherine
2018-04-28
Type 2 diabetes and obesity are two chronic conditions associated with the metabolic syndrome and their prevalences are increasing worldwide. The investigation of food protein-derived bioactive peptides that can improve the pathophysiology of diabetes or obesity while causing minimal side effects is desired. Egg and soy proteins generate bioactive peptides with multiple biological effects, exerting nutritional and physiological benefits. This review focuses on the anti-diabetic and anti-obesity effects of egg- and soy-derived peptides and hydrolysates in vivo and in vitro relevant to these conditions. Studies using the intact protein were considered only when comparing the results with the hydrolysate or peptides. In vivo evidence suggests that bioactive peptides from egg and soy can potentially be used to manage elements of glucose homeostasis in metabolic syndrome; however, the mechanisms of action on glucose and insulin metabolism, and the interaction between peptides and their molecular targets remain unclear. Optimizing the production of egg- and soy-derived peptides and standardizing the physiological models to study their effects on diabetes and obesity could help to clarify the effects of these bioactive peptides in metabolic syndrome-related conditions.
Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides.
Mangoni, Maria Luisa; Luca, Vincenzo; McDermott, Alison M
2015-09-01
Due to the growing emergence of resistance to commercially available antibiotics/antimycotics in virtually all clinical microbial pathogens, the discovery of alternative anti-infective agents, is greatly needed. Gene-encoded antimicrobial peptides (AMPs) hold promise as novel therapeutics. In particular, amphibian skin is one of the richest storehouses of AMPs, especially that of the genus Rana, with esculentins-1 being among the longest (46 amino acids) AMPs found in nature to date. Here, we report on the recently discovered in vitro and in vivo activities and mechanism of action of two derivatives of the N-terminal part of esculentin-1a and -1b peptides, primarily against two relevant opportunistic microorganisms causing a large number of life-threatening infections worldwide; i.e. the Gram-negative bacterium Pseudomonas aeruginosa and the yeast Candida albicans. Because of distinct advantages compared to several mammalian AMPs, the two selected frog skin AMP-derivatives represent attractive candidates for the development of new antimicrobial compounds with expanded properties, for both human and veterinary medicine. Copyright © 2015 Elsevier Inc. All rights reserved.
Pirtskhalava, Malak; Gabrielian, Andrei; Cruz, Phillip; Griggs, Hannah L; Squires, R Burke; Hurt, Darrell E; Grigolava, Maia; Chubinidze, Mindia; Gogoladze, George; Vishnepolsky, Boris; Alekseyev, Vsevolod; Rosenthal, Alex; Tartakovsky, Michael
2016-01-04
Antimicrobial peptides (AMPs) are anti-infectives that may represent a novel and untapped class of biotherapeutics. Increasing interest in AMPs means that new peptides (natural and synthetic) are discovered faster than ever before. We describe herein a new version of the Database of Antimicrobial Activity and Structure of Peptides (DBAASPv.2, which is freely accessible at http://dbaasp.org). This iteration of the database reports chemical structures and empirically-determined activities (MICs, IC50, etc.) against more than 4200 specific target microbes for more than 2000 ribosomal, 80 non-ribosomal and 5700 synthetic peptides. Of these, the vast majority are monomeric, but nearly 200 of these peptides are found as homo- or heterodimers. More than 6100 of the peptides are linear, but about 515 are cyclic and more than 1300 have other intra-chain covalent bonds. More than half of the entries in the database were added after the resource was initially described, which reflects the recent sharp uptick of interest in AMPs. New features of DBAASPv.2 include: (i) user-friendly utilities and reporting functions, (ii) a 'Ranking Search' function to query the database by target species and return a ranked list of peptides with activity against that target and (iii) structural descriptions of the peptides derived from empirical data or calculated by molecular dynamics (MD) simulations. The three-dimensional structural data are critical components for understanding structure-activity relationships and for design of new antimicrobial drugs. We created more than 300 high-throughput MD simulations specifically for inclusion in DBAASP. The resulting structures are described in the database by novel trajectory analysis plots and movies. Another 200+ DBAASP entries have links to the Protein DataBank. All of the structures are easily visualized directly in the web browser. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ahmed-Belkacem, Abdelhakim; Colliandre, Lionel; Ahnou, Nazim; Nevers, Quentin; Gelin, Muriel; Bessin, Yannick; Brillet, Rozenn; Cala, Olivier; Douguet, Dominique; Bourguet, William; Krimm, Isabelle; Pawlotsky, Jean-Michel; Guichou, Jean- François
2016-01-01
Cyclophilins are peptidyl-prolyl cis/trans isomerases (PPIase) that catalyse the interconversion of the peptide bond at proline residues. Several cyclophilins play a pivotal role in the life cycle of a number of viruses. The existing cyclophilin inhibitors, all derived from cyclosporine A or sanglifehrin A, have disadvantages, including their size, potential for side effects unrelated to cyclophilin inhibition and drug–drug interactions, unclear antiviral spectrum and manufacturing issues. Here we use a fragment-based drug discovery approach using nucleic magnetic resonance, X-ray crystallography and structure-based compound optimization to generate a new family of non-peptidic, small-molecule cyclophilin inhibitors with potent in vitro PPIase inhibitory activity and antiviral activity against hepatitis C virus, human immunodeficiency virus and coronaviruses. This family of compounds has the potential for broad-spectrum, high-barrier-to-resistance treatment of viral infections. PMID:27652979
Archetypal tryptophan-rich antimicrobial peptides: properties and applications.
Shagaghi, Nadin; Palombo, Enzo A; Clayton, Andrew H A; Bhave, Mrinal
2016-02-01
Drug-resistant microorganisms ('superbugs') present a serious challenge to the success of antimicrobial treatments. Subsequently, there is a crucial need for novel bio-control agents. Many antimicrobial peptides (AMPs) show a broad-spectrum activity against bacteria, fungi or viruses and are strong candidates to complement or substitute current antimicrobial agents. Some AMPs are also effective against protozoa or cancer cells. The tryptophan (Trp)-rich peptides (TRPs) are a subset of AMPs that display potent antimicrobial activity, credited to the unique biochemical properties of tryptophan that allow it to insert into biological membranes. Further, many Trp-rich AMPs cross bacterial membranes without compromising their integrity and act intracellularly, suggesting interactions with nucleic acids and enzymes. In this work, we overview some archetypal TRPs derived from natural sources, i.e., indolicidin, tritrpticin and lactoferricin, summarising their biochemical properties, structures, antimicrobial activities, mechanistic studies and potential applications.
Alexander, C; Tarzi, M; Larché, M; Kay, A B
2005-10-01
We previously showed that overlapping Fel d 1-derived T-cell peptides inhibited surrogate markers of allergy (i.e. early and late-phase skin reactions and T-cell function) in cat allergic subjects. The present pilot study was designed to determine whether this treatment affected clinically relevant outcome measurements such as the allergen-induced nasal and bronchial reactions, and asthma/rhinitis quality of life (QOL). Sixteen cat-allergic asthmatic subjects who gave a dual (early and late) asthmatic response (DAR) to inhaled cat allergen were randomly assigned to receive either Fel d 1 peptides (approximately 300 mug in increasing, divided doses) or placebo (8 active : 8 placebo). Twelve single early responders (SER) were also studied in an open fashion design. Allergen-induced bronchial and nasal measurements as well as the QOL was measured at baseline, 4-8 weeks (follow-up 1 (FU1)) and 3-4 months (FU2). In the active, but not placebo, group there were significant decreases in the late asthmatic reaction (LAR) to whole cat dander (P = 0.03) at FU2 but with no between group difference. There were also significant improvements in asthma quality of life (QOL) scores [asthma-activity limitation (P = 0.014); rhinitis-sleep (P = 0.024), non-nose/non-eye symptoms (P = 0.031), nasal problems (P = 0.015)]. In the open study Fel d 1 peptide treatment resulted in significant decreases in number of sneezes (P = 0.05), weight of nasal secretions (P = 0.04) and nasal blockage (P = 0.01) following allergen challenge. Multiple, short, overlapping Fel d 1 T-cell peptides have potential for inhibiting upper and lower airway outcome measurements in cat allergic patients. Larger, dose-ranging, studies are required before firm conclusions on clinical efficacy of peptide allergen therapy can be made.
Sedo, Aleksi; Duke-Cohan, Jonathan S; Balaziova, Eva; Sedova, Liliana R
2005-01-01
Several of the proinflammatory peptides involved in rheumatoid arthritis pathogenesis, including peptides induced downstream of tumor necrosis factor-α as well as the monocyte/T cell-attracting chemokines RANTES and stromal cell-derived factor (SDF)-1α and the neuropeptides vasoactive intestinal peptide (VIP) and substance P, have their biological half-lives controlled by dipeptidyl peptidase IV (DPPIV). Proteolysis by DPPIV regulates not only the half-life but also receptor preference and downstream signaling. In this article, we examine the role of DPPIV homologs, including CD26, the canonical DPPIV, and their substrates in the pathogenesis of rheumatoid arthritis. The differing specific activities of the DPPIV family members and their differential inhibitor response provide new insights into therapeutic design. PMID:16277701
Computer-based prediction of mitochondria-targeting peptides.
Martelli, Pier Luigi; Savojardo, Castrense; Fariselli, Piero; Tasco, Gianluca; Casadio, Rita
2015-01-01
Computational methods are invaluable when protein sequences, directly derived from genomic data, need functional and structural annotation. Subcellular localization is a feature necessary for understanding the protein role and the compartment where the mature protein is active and very difficult to characterize experimentally. Mitochondrial proteins encoded on the cytosolic ribosomes carry specific patterns in the precursor sequence from where it is possible to recognize a peptide targeting the protein to its final destination. Here we discuss to which extent it is feasible to develop computational methods for detecting mitochondrial targeting peptides in the precursor sequences and benchmark our and other methods on the human mitochondrial proteins endowed with experimentally characterized targeting peptides. Furthermore, we illustrate our newly implemented web server and its usage on the whole human proteome in order to infer mitochondrial targeting peptides, their cleavage sites, and whether the targeting peptide regions contain or not arginine-rich recurrent motifs. By this, we add some other 2,800 human proteins to the 124 ones already experimentally annotated with a mitochondrial targeting peptide.
López-Abarrategui, Carlos; Alba, Annia; Silva, Osmar N; Reyes-Acosta, Osvaldo; Vasconcelos, Ilka M; Oliveira, Jose T A; Migliolo, Ludovico; Costa, Maysa P; Costa, Carolina R; Silva, Maria R R; Garay, Hilda E; Dias, Simoni C; Franco, Octávio L; Otero-González, Anselmo J
2012-04-01
Antimicrobial peptides have been found in mollusks and other sea animals. In this report, a crude extract of the marine snail Cenchritis muricatus was evaluated against human pathogens responsible for multiple deleterious effects and diseases. A peptide of 1485.26 Da was purified by reversed-phase HPLC and functionally characterized. This trypsinized peptide was sequenced by MS/MS technology, and a sequence (SRSELIVHQR), named Cm-p1 was recovered, chemically synthesized and functionally characterized. This peptide demonstrated the capacity to prevent the development of yeasts and filamentous fungi. Otherwise, Cm-p1 displayed no toxic effects against mammalian cells. Molecular modeling analyses showed that this peptide possible forms a single hydrophilic α-helix and the probable cationic residue involved in antifungal activity action is proposed. The data reported here demonstrate the importance of sea animals peptide discovery for biotechnological tools development that could be useful in solving human health and agribusiness problems. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Elucidation of the Interaction Mechanism with Liposomes of gH625-Peptide Functionalized Dendrimers
Falanga, Annarita; Tarallo, Rossella; Carberry, Thomas; Galdiero, Massimiliano; Weck, Marcus; Galdiero, Stefania
2014-01-01
We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery. PMID:25423477
Carabali-Isajar, Mary Lilian; Ocampo, Marisol; Rodriguez, Deisy Carolina; Vanegas, Magnolia; Curtidor, Hernando; Patarroyo, Manuel Alfonso; Patarroyo, Manuel Elkin
2018-05-15
Mycobacterium tuberculosis is considered one of the most successful pathogens in the history of mankind, having caused 1.7 million deaths in 2016. The amount of resistant and extensively resistant strains has increased; BCG has been the only vaccine to be produced in more than 100 years though it is still unable to prevent the disease's most disseminated form in adults; pulmonary tuberculosis. The search is thus still on-going for candidate antigens for an antituberculosis vaccine. This paper reports the use of a logical and rational methodology for finding such antigens, this time as peptides derived from the Rv3587c membrane protein. Bioinformatics tools were used for predicting mycobacterial surface location and Rv3587c protein structure whilst circular dichroism was used for determining its peptides' secondary structure. Receptor-ligand assays identified 4 high activity binding peptides (HABPs) binding specifically to A549 alveolar epithelial cells and U937 monocyte-derived macrophages, covering the region between amino acids 116 and 193. Their capability for inhibiting Mtb H37Rv invasion was evaluated. The recognition of antibodies from individuals suffering active and latent tuberculosis and from healthy individuals was observed in HABPs capable of avoiding mycobacterial entry to host cells. The results showed that 8 HABPs inhibited such invasion, two of them being common for both cell lines: 39265 ( 155 VLAAYVYSLDNKRLWSNLDT 173 ) and 39266 ( 174 APSNETLVKTFSPGEQVTTY 192 ). Peptide 39265 was the least recognised by antibodies from the individuals' sera evaluated in each group. According to the model proposed by FIDIC regarding synthetic vaccine development, peptide 39265 has become a candidate antigen for an antituberculosis vaccine. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Xin; Zhang, Miansong; Shi, Yaping; Qiao, Ruojin; Tang, Wei; Sun, Zhenliang
2016-07-01
Angiotensin I converting enzyme (ACE) plays an important role in regulating blood pressure in the human body. ACE inhibitory peptides derived from food proteins could exert antihypertensive effects without side effects. Jellyfish (Rhopilema esculentum) is an important fishery resource suitable for production of ACE inhibitory peptides. The objective of this study was to optimize the hydrolysis conditions for production of protein hydrolysate from R. esculentum (RPH) with ACE inhibitory activity, and to isolate and identify the ACE inhibitory peptides from RPH. Rhopilema esculentum protein was hydrolyzed with Compound proteinase AQ to produce protein hydrolysate with ACE inhibitory activity, and the hydrolysis conditions were optimized using response surface methodology. The optimum parameters for producing peptides with the highest ACE inhibitory activity were as follows: hydrolysis time 3.90 h, hydrolysis temperature 58 °C, enzyme:substrate ratio 2.8% and pH 7.60. Under these conditions, the ACE inhibitory rate reached 32.21%. In addition, four novel ACE inhibitory peptides were isolated, and their amino acids sequences were identified as Val-Gly-Pro-Tyr, Phe-Thr-Tyr-Val-Pro-Gly, Phe-Thr-Tyr-Val-Pro-Gly-Ala and Phe-Gln-Ala-Val-Trp-Ala-Gly, respectively. The IC50 value of the purified peptides for ACE inhibitory activity was 8.40, 23.42, 21.15 and 19.11 µmol L(-1) . These results indicate that the protein hydrolysate prepared from R. esculentum might be a commercial competitive source of ACE inhibitory ingredients to be used in functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Yoshimura, Mayuko; Tada, Yoshitaka; Ofuzi, Kazuya; Yamamoto, Masakazu; Nakatsura, Tetsuya
2014-07-01
Cancer immunotherapy is a promising new approach to cancer treatment. It has been demonstrated that a high number of tumor-specific cytotoxic T cells (CTLs) is associated with increased disease-specific survival in lung cancer patients. Identification of superior CTL epitopes from tumor antigens is essential for the development of immunotherapy for malignant tumors. The EML4-ALK fusion gene was recently identified in a subset of non-small cell lung cancers (NSCLCs). In this study we searched for HLA-A 02:01- and HLA-A 24:02‑restricted epitopes derived from EML4-ALK by screening predicted EML4-ALK‑derived candidate peptides for the induction of tumor‑reactive CTLs. Nine EML4-ALK‑derived peptides were selected by a computer algorithm based on a permissive HLA-A 02:01 or HLA-A 24:02 binding motif. One of the nine peptides induced peptide-specific CTLs from human peripheral blood mononuclear cells. We were able to generate a peptide‑specific CTL clone. This CTL clone specifically recognized peptide‑pulsed T2 cells and H2228 cells expressing HLA-A 02:01 and EML4-ALK that had been treated with IFN-γ 48 h prior to examination. CTL activity was inhibited by an anti-HLA‑class I monoclonal antibody (W6/32), consistent with a class I-restricted mechanism of cytotoxicity. These results suggest that this peptide (RLSALESRV) is a novel HLA-A 02:01-restricted CTL epitope and that it may be a new target for antigen-specific immunotherapy against EML4‑ALK-positive cancers.
Kavanagh, Brian; Ko, Andrew; Venook, Alan; Margolin, Kim; Zeh, Herbert; Lotze, Michael; Schillinger, Brian; Liu, Weihong; Lu, Ying; Mitsky, Peggie; Schilling, Marta; Bercovici, Nadege; Loudovaris, Maureen; Guillermo, Roy; Lee, Sun Min; Bender, James; Mills, Bonnie; Fong, Lawrence
2007-10-01
Developing a process to generate dendritic cells (DCs) applicable for multicenter trials would facilitate cancer vaccine development. Moreover, targeting multiple antigens with such a vaccine strategy could enhance the efficacy of such a treatment approach. We performed a phase 1/2 clinical trial administering a DC-based vaccine targeting multiple tumor-associated antigens to patients with advanced colorectal cancer (CRC). A qualified manufacturing process was used to generate DC from blood monocytes using granulocyte macrophage colony-stimulating factor and IL-13, and matured for 6 hours with Klebsiella-derived cell wall fraction and interferon-gamma (IFN-gamma). DCs were also loaded with 6 HLA-A*0201 binding peptides derived from carcinoembryonic antigen (CEA), MAGE, and HER2/neu, as well as keyhole limpet hemocyanin protein and pan-DR epitope peptide. Four planned doses of 35x10(6) cells were administered intradermally every 3 weeks. Immune response was assessed by IFN-gamma enzyme-linked immunosorbent spot (ELISPOT). Matured DC possessed an activated phenotype and could prime T cells in vitro. In the trial, 21 HLA-A2+ patients were apheresed, 13 were treated with the vaccine, and 11 patients were evaluable. No significant treatment-related toxicity was reported. T-cell responses to a CEA-derived peptide were detected by ELISPOT in 3 patients. T cells induced to CEA possessed high avidity T-cell receptors. ELISPOT after in vitro restimulation detected responses to multiple peptides in 2 patients. All patients showed progressive disease. This pilot study in advanced CRC patients demonstrates DC-generated granulocyte macrophage colony-stimulating factor and IL-13 matured with Klebsiella-derived cell wall fraction and IFN-gamma can induce immune responses to multiple tumor-associated antigens in patients with advanced CRC.
Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura
2016-01-01
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625
Arévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates
2011-01-01
Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial. PMID:21292876
Chan, Judy Yuet-Wa; Zhou, Hefeng; Kwan, Yiu Wa; Chan, Shun Wan; Radis-Baptista, Gandhi; Lee, Simon Ming-Yuen
2017-11-01
Crotamine is defensin-like cationic peptide from rattlesnake venom that possesses anticancer, antimicrobial, and antifungal properties. Despite these promising biological activities, toxicity is a major concern associated with the development of venom-derived peptides as therapeutic agents. In the present study, we used zebrafish as a system model to evaluate the toxicity of rhodamine B-conjugated (RhoB) crotamine derivative. The lethal toxic concentration of RhoB-crotamine was as low as 4 μM, which effectively kill zebrafish larvae in less than 10 min. With non-lethal concentrations (<1 μM), crotamine caused malformation in zebrafish embryos, delayed or completely halted hatching, adversely affected embryonic developmental programming, decreased the cardiac functions, and attenuated the swimming distance of zebrafish. The RhoB-crotamine translocated across vitelline membrane and accumulated in zebrafish yolk sac. These results demonstrate the sensitive responsivity of zebrafish to trial crotamine analogues for the development of novel therapeutic peptides with improved safety, bioavailability, and efficacy profiles. © 2017 Wiley Periodicals, Inc.
Sathyan, Naveen; Philip, Rosamma; Chaithanya, E R; Anil Kumar, P R; Sanjeevan, V N; Singh, I S Bright
2013-01-01
Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates.
Sathyan, Naveen; Philip, Rosamma; Chaithanya, E. R.; Anil Kumar, P. R.; Sanjeevan, V. N.; Singh, I. S. Bright
2013-01-01
Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties and molecular structure of Harriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates. PMID:27398241
Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik; Gram, Lone
2013-11-01
Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of α-peptide/β-peptoid peptidomimetics and AMPs against Escherichia coli and Staphylococcus aureus in the presence of human blood-derived matrices and immune effectors. The minimum inhibitory concentration (MIC) of two peptidomimetics against E. coli decreased by up to one order of magnitude when determined in 50% blood plasma as compared to MHB media. The MIC of a membrane-active AMP, LL-I/3, also decreased, whereas two intracellularly acting AMPs were not potentiated by plasma. Blood serum had no effect on activity against E. coli and neither matrix had an effect on activity against S. aureus. Unexpectedly, physiological concentrations of human serum albumin did not influence activity. Plasma potentiation was not mediated by an LL-37 analogue, lysozyme or hydrogen peroxide; however, plasma potentiation of activity was abolished when the complement system was heat-inactivated. Time-course experiments indicated that potentiation was due to plasma-mediated effects on bacterial cells prior to activities of peptidomimetics. The unexpected enhancement of antibacterial activity of peptidomimetics and AMPs under physiological conditions significantly increases the therapeutic potential of these compounds. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Lammi, Carmen; Zanoni, Chiara; Aiello, Gilda; Arnoldi, Anna; Grazioso, Giovanni
2016-07-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently identified as a new useful target for hypercholesterolemia treatment. This work demonstrates that natural peptides, deriving from the hydrolysis of lupin protein and absorbable at intestinal level, are able to inhibit the protein-protein interaction between PCSK9 and the low density lipoprotein receptor (LDLR). In order to sort out the best potential inhibitors among these peptides, a refined in silico model of the PCSK9/LDLR interaction was developed. Docking, molecular dynamics (MD) simulations and peptide binding energy estimations, by MM-GBSA approach, permitted to select the two best candidates among tested peptides that were synthesized and evaluated for their inhibitory activity. The most active was P5 that induced a concentration dependent inhibition of the PCSK9-LDLR binding, with an IC50 value equal to 1.6 ± 0.33 μM. Tested at a 10 μM concentration, this peptide increased by 66 ± 21.4% the ability of HepG2 cells to take up LDL from the extracellular environment.
Demystifying O-GlcNAcylation: hints from peptide substrates.
Shi, Jie; Ruijtenbeek, Rob; Pieters, Roland J
2018-03-22
O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.
Mohan, Ketha V K; Rao, Shilpakala Sainath; Atreya, Chintamani D
2010-01-01
A single cost-effective pathogen inactivation approach would help to improve the safety of our nation's blood supply. Several methods and technologies are currently being studied to help reduce bacterial contamination of blood components. There is clearly need for simple and easy-to-use pathogen inactivation techniques specific to plasma, platelets (PLTs), and red blood cells. In this report, we introduce a novel proof of concept: using known therapeutic antimicrobial peptides (AMPs) as bactericidal agents for room temperature-stored PLT concentrates (PCs). Nine synthetic AMPs, four from PLT microbicidal protein-derived peptides (PD1-4) and five Arg-Trp (RW) repeat peptides containing one to five repeats, were tested for bactericidal activity in plasma and PC samples spiked with Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Bacillus cereus. A 3-log reduction of viable bacteria was considered as the bactericidal activity of a given peptide. In both plasma alone and PCs, RW3 peptide demonstrated bactericidal activity against S. aureus, S. epidermidis, E. coli, P. aeruginosa, and K. pneumoniae; PD4 and RW2 against P. aeruginosa; and RW4 against K. pneumoniae. The activity of each of these four peptides against the remaining bacterial species in the test panel resulted in less than a 3-log reduction in the number of viable bacteria and hence considered ineffective. These findings suggest a new approach to improving the safety of blood components, demonstrating the potential usefulness of screening therapeutic AMPs against selected bacteria to identify suitable bactericidal agents for stored plasma, PCs, and other blood products.
Development of novel DIF-1 derivatives that selectively suppress innate immune responses.
Nguyen, Van Hai; Kikuchi, Haruhisa; Kubohara, Yuzuru; Takahashi, Katsunori; Katou, Yasuhiro; Oshima, Yoshiteru
2015-08-01
The multiple pharmacological activities of differentiation-inducing factor-1 (DIF-1) of the cellular slime mold Dictyostelium discoideum led us to examine the use of DIF-1 as a 'drug template' to develop promising seed compounds for drug discovery. DIF-1 and its derivatives were synthesized and evaluated for their regulatory activities in innate immune responses. We found two new derivatives (4d and 5e) with highly selective inhibitory activities against production of the antimicrobial peptide attacin in Drosophila S2 cells and against production of interleukin-2 in Jurkat cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sato, Kohei; Kitakaze, Keisuke; Nakamura, Takahiro; Naruse, Naoto; Aihara, Keisuke; Shigenaga, Akira; Inokuma, Tsubasa; Tsuji, Daisuke; Itoh, Kohji; Otaka, Akira
2015-06-21
We describe a novel peptide ligation/desulfurization strategy using a β-mercapto-N-glycosylated asparagine derivative. The newly developed procedure was successfully applied to the total chemical synthesis of the GM2 ganglioside activator protein bearing a monosaccharide on the native glycosylation site.
Yang, Min; Haase, Claus; Viljanen, Johan; Xu, Bingze; Ge, Changrong; Kihlberg, Jan; Holmdahl, Rikard
2017-12-15
APCs are known to produce NADPH oxidase (NOX) 2 - derived reactive oxygen species; however, whether and how NOX2-mediated oxidation affects redox-sensitive immunogenic peptides remains elusive. In this study, we investigated a major immunogenic peptide in glucose-6-phosphate isomerase (G6PI), a potential autoantigen in rheumatoid arthritis, which can form internal disulfide bonds. Ag presentation assays showed that presentation of this G6PI peptide was more efficient in NOX2-deficient ( Ncf1 m1J/m1J mutant) mice, compared with wild-type controls. IFN-γ - inducible lysosomal thiol reductase (GILT), which facilitates disulfide bond-containing Ag processing, was found to be upregulated in macrophages from Ncf1 mutant mice. Ncf1 mutant mice exhibited more severe G6PI peptide-induced arthritis, which was accompanied by the increased GILT expression in macrophages and enhanced Ag-specific T cell responses. Our results show that NOX2-dependent processing of the redox-sensitive autoantigens by APCs modify T cell activity and development of autoimmune arthritis. Copyright © 2017 by The American Association of Immunologists, Inc.
A peptide derived from laminin-γ3 reversibly impairs spermatogenesis in rats
Su, Linlin; Mruk, Dolores D.; Lie, Pearl P.Y.; Silvestrini, Bruno; Cheng, C. Yan
2012-01-01
Cellular events that occur across the seminiferous epithelium of the mammalian testis during spermatogenesis are tightly coordinated by biologically active peptides released from laminin chains. Laminin-γ3 domain IV (Lam γ3 DIV) is released at the apical ectoplasmic specialization (ES) during spermiation and mediates restructuring of the blood-testis barrier (BTB), which facilitates the transit of preleptotene spermatocytes. Here we determine the biologically active domain in Lam γ3 DIV, which we designate F5-peptide, and show that overexpression of this domain, or the use of a synthetic F5-peptide, in Sertoli cells with an established functional BTB reversibly perturbs BTB integrity in vitro and in rat testis in vivo. This effect is mediated via changes in protein distribution at the Sertoli and Sertoli-germ cell-cell interface and by phosphorylation of focal adhesion kinase at Tyr407. The consequences are perturbed organization of actin filaments in Sertoli cells, disruption of the BTB and spermatid loss. The impairment of spermatogenesis suggests that this laminin peptide fragment may serve as a contraceptive in male rats. PMID:23149730
Hanoulle, Xavier; Melchior, Aurélie; Sibille, Nathalie; Parent, Benjamin; Denys, Agnès; Wieruszeski, Jean-Michel; Horvath, Dragos; Allain, Fabrice; Lippens, Guy; Landrieu, Isabelle
2007-11-23
The chemotaxis and integrin-mediated adhesion of T lymphocytes triggered by secreted cyclophilin B (CypB) depend on interactions with both cell surface heparan sulfate proteoglycans (HSPG) and the extracellular domain of the CD147 membrane receptor. Here, we use NMR spectroscopy to characterize the interaction of CypB with heparin-derived oligosaccharides. Chemical shift perturbation experiments allowed the precise definition of the heparan sulfate (HS) binding site of CypB. The N-terminal extremity of CypB, which contains a consensus sequence for heparin-binding proteins was modeled on the basis of our experimental NMR data. Because the HS binding site extends toward the CypB catalytic pocket, we measured its peptidyl-prolyl cis-trans isomerase (PPIase) activity in the absence or presence of a HS oligosaccharide toward a CD147-derived peptide. We report the first direct evidence that CypB is enzymatically active on CD147, as it is able to accelerate the cis/trans isomerization of the Asp(179)-Pro(180) bond in a CD147-derived peptide. However, HS binding has no significant influence on this PPIase activity. We thus conclude that the glycanic moiety of HSPG serves as anchor for CypB at the cell surface, and that the signal could be transduced by CypB via its PPIase activity toward CD147.
Toopcham, Tidarat; Mes, Jurriaan J; Wichers, Harry J; Roytrakul, Sittiruk; Yongsawatdigul, Jirawat
2017-04-01
The angiotensin I-converting enzyme (ACE) inhibitory activity of protein hydrolysates from tilapia muscle fractions, namely mince (M), washed mince (WM), and sarcoplasmic protein (SP), were investigated. Each fraction was hydrolyzed by Virgibacillus halodenitrificans SK1-3-7 proteinases for up to 24h. After 8h of hydrolysis, the M hydrolysate (48% degree of hydrolysis (DH)) showed the highest ACE inhibitory activity, with an IC 50 value of 0.54mg/ml, while the SP hydrolysate exhibited the lowest DH and ACE inhibition. In vitro gastrointestinal digestion reduced the ACE inhibitory activity of the M hydrolysate but enhanced its transport across Caco-2 cell monolayers. The transported peptides were found to contain 3-4 amino acid residues showing strong ACE inhibition. The novel ACE inhibitory peptide with the highest inhibition was found to be MCS, with an IC 50 value of 0.29μM. Therefore, tilapia mince hydrolyzed by V. halodenitrificans proteinases contained ACE inhibitory peptides that are potentially bioavailable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kotlinska, Jolanta H; Gibula-Bruzda, Ewa; Suder, Piotr; Wasielak, Magdalena; Bray, Lauriane; Raoof, Hana; Bodzon-Kulakowska, Anna; Silberring, Jerzy
2012-07-01
NPFF precursor, pro-NPFF(A) contains three known bioactive sequences: NPFF (FLFQPQRF-NH(2)), neuropeptide AF (NPAF; AGEGLSSPFWSLAAPQRF-NH(2)) and neuropeptide SF (NPSF; SLAAPQRF-NH(2)). The key-feature of these fragments is their common PQRF-amidated sequence at their C termini. Here, we evaluated the biological activity of two other sequences derived from the mouse NPFF(A) precursor, that does not have PQRF-amidated C-terminus. One peptide was residing between positions 85 and 99 in the mice pro-NPFF(A). This peptide was referred to as neuropeptide SA (NPSA; SAWGSWSKEQLNPQA), assigned due to its flanking amino acids. Another sequence used in the experiments was N-terminal fragment of NPSA, here referred to as neuropeptide SS (NPSS; SAWGSWS). These two peptides, classified as crypteins, were synthesized and tested in the hot-plate and tail immersion tests in mice for their pharmacological activity in morphine-induced antinociception. The effects of both crypteins were compared to NPFF. Our experiments indicated that both crypteins inhibited morphine antinociception and their effects were reversed by RF9, an antagonist of NPFF receptors. These data show that NPSA and NPSS possess NPFF-like anti-opioid activity in these behavioral tests. Copyright © 2012 Elsevier Inc. All rights reserved.
Huang, Meigui; Liu, Ping; Song, Shiqing; Zhang, Xiaoming; Hayat, Khizar; Xia, Shuqin; Jia, Chengsheng; Gu, Fenglin
2011-03-15
Light-coloured and savoury-tasting flavour enhancers are attractive to both consumers and food producers. The aim of this study was to investigate the colour-inhibiting effect of L-cysteine and thiamine during the Maillard reaction of soybean peptide and D-xylose. The correlation between volatile compounds and antioxidant activity of the corresponding products was also studied. Colour formation was markedly suppressed by cysteine. Compared with peptide/xylose (PX), the taste profile of Maillard reaction products (MRPs) derived from peptide/xylose/cysteine (PXC) and peptide/xylose/cysteine/thiamine (PXCT) was stronger, including umami, mouthfulness, continuity, meaty and overall acceptance. PXC and PXCT also exihibited distinctly higher antioxidant activity. Principal component analysis was applied to investigate the correlation between antioxidant activity and volatile compounds. Of 88 volatile compounds identified, 55 were significantly correlated with antioxidant activity by two principal components (accounting for 85.05% of the total variance). Effective colour control of the Maillard reaction by L-cysteine may allow the production of healthier (higher antioxidant activity) and tastier foods to satisfy consumers' and food producers' demands. Light-coloured products might be used as functional flavour enhancers in various food systems. Copyright © 2010 Society of Chemical Industry.
Kontani, Noriyasu; Omae, Ryo; Kagebayashi, Tomomi; Kaneko, Kentaro; Yamada, Yuko; Mizushige, Takafumi; Kanamoto, Ryuhei; Ohinata, Kousaku
2014-02-01
Recently, we found that dipeptide Arg-Phe (RF) had cholecystokinin (CCK)-dependent vasorelaxing activity. The RF sequence is often observed in the primary structure of natural food proteins. In the current study, we investigated enzymatic conditions for the release of RF-related peptides from rice glutelin, a major storage protein, using gastrointestinal proteases. RF-related peptides were then characterized. It was found that RF and Ile-His-Arg-Phe (IHRF) were released in the chymotrypsin digest of the partial structure of rice glutelin. We then focused on previously unidentified IHRF, corresponding to rice glutelin(155-158). IHRF had vasorelaxing activity in the mesenteric artery of spontaneous hypertensive rats (SHRs). Orally administered IHRF lowered systolic blood pressure in SHRs. The antihypertensive activity of IHRF was more potent and long-lasting than that of RF. IHRF-induced vasorelaxing activity was not blocked by inhibitors of nitric oxide synthase and cyclooxygenase, but by an antagonist for CCK₁ receptor. IHRF also had CCK-like suppressive activities in food intake and gastrointestinal transit. IHRF increased intracellular Ca²⁺ flux and CCK release in the enteroendocrine cell STC-1. IHRF, a novel CCK-dependent vasorelaxing peptide, decreases both blood pressure and food intake in rodents. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shigemura, Yasutaka; Suzuki, Asahi; Kurokawa, Mihoko; Sato, Yoshio; Sato, Kenji
2018-03-01
Daily ingestion of collagen hydrolysate for a long period improves skin and joint conditions. It has been speculated that the beneficial effects are exerted by food-derived hydroxyproline (Hyp) peptides, which are detected in human blood after single ingestions. In the present study, to investigate the effect of long-term ingestion of collagen hydrolysate on Hyp peptides profile in blood, the concentrations of Hyp-peptides in human blood before and after daily ingestion for a long period were examined. Hyp-peptides increased to a maximum level at 1 h after ingestion and reverted to their initial levels within 24 h during experimental period. Pro-Gly and Hyp-peptides such as Pro-Hyp-Gly, Pro-Hyp, Ile-Hyp, Leu-Hyp, Hyp-Gly, Glu-Hyp and Ala-Hyp were identified in the blood after ingestion of collagen hydrolysate at 4.5 g day -1 for 4 weeks. For the whole period, Pro-Hyp was the leading compound. The compositional rate of Hyp-Gly showed a tendency to increase, while that of Pro-Hyp tended to decrease after daily ingestion. The present results indicate that daily ingestion of collagen hydrolysate for a long period can change compositional rate of Hyp peptides in human blood. This fact suggests that long-term ingestion of collagen hydrolysate might change exo- or endo-type protease activity in the digestive tract, which may consequently promote beneficial effects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo
2009-10-01
Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.
Talamás-Rohana, P; Schlie-Guzmán, M A; Hernández-Ramírez, V I; Rosales-Encina, J L
1995-01-01
A 220-kDa surface protein (L220) with lectin activity from Entamoeba histolytica trophozoites has been characterized previously (J. L. Rosales-Encina, I. Meza, A. López-de-León, P. Talamás-Rohana, and M. Rojkind, J. Infect. Dis. 156:790-797, 1987). This molecule is involved in the adhesion process (I. Meza, F. Cázares, J. L. Rosales-Encina, P. Talamás-Rohana, and M. Rojkind, J. Infect. Dis. 156:798-805, 1987) and is very immunogenic. In this work, we studied both the humoral and the cellular immune responses to L220. We compared L220 with L220-derived components, such as a fusion peptide (M-11) and chemically obtained peptides (by treating the 220-kDa molecule with N-chlorosuccinimide-urea). Spleen cells from L220-immunized mice were unable to proliferate in vitro when stimulated with the protein. However, a proliferative response was obtained when mice were immunized with the L220-derived fusion peptide or the cleaved lectin. To find out if there was a correlation between the observed responses and TH1 or TH2 activation, we analyzed patterns of cytokine secretion (interleukin-2 [IL-2], IL-4, IL-10, and gamma interferon). Cells from mice immunized with peptides that induced cell proliferation (100, 80, and 47 kDa) with the peptides (P < 0.01) and with the intact molecule secreted IL-2 and gamma interferon, showing a TH1-subset pattern. Conversely, cells from mice immunized with the intact 220-kDa molecule secreted IL-4 and IL-10, typical of a TH2 subpopulation; however, antibodies from each group recognized the 220-kDa molecule as determined by Western blotting (immunoblotting). These results suggest that various epitopes in the 220-kDa molecule generate different response patterns, suppressing or activating T-cell responses. PMID:7558304
Yang, Nan; Li, Lei; Wu, Di; Gao, Yitian; Xi, Xinping; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris
2016-01-01
Phylloseptin (PS) peptides, derived from South American hylid frogs (subfamily Phyllomedusinae), have been found to have broad-spectrum antimicrobial activities and relatively low haemolytic activities. Although PS peptides have been identified from several well-known and widely-distributed species of the Phyllomedusinae, there remains merit in their study in additional, more obscure and specialised members of this taxon. Here, we report the discovery of two novel PS peptides, named PS-Du and PS-Co, which were respectively identified for the first time and isolated from the skin secretions of Phyllomedusa duellmani and Phyllomedusa coelestis. Their encoding cDNAs were cloned, from which it was possible to deduce the entire primary structures of their biosynthetic precursors. Reversed-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (MS/MS) analyses were employed to isolate and structurally-characterise respective encoded PS peptides from skin secretions. The peptides had molecular masses of 2049.7 Da (PS-Du) and 1972.8 Da (PS-Co). They shared typical N-terminal sequences and C-terminal amidation with other known phylloseptins. The two peptides exhibited growth inhibitory activity against E. coli (NCTC 10418), as a standard Gram-negative bacterium, S. aureus (NCTC 10788), as a standard Gram-positive bacterium and C. albicans (NCPF 1467), as a standard pathogenic yeast, all as planktonic cultures. Moreover, both peptides demonstrated the capability of eliminating S. aureus biofilm. PMID:27589802
Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides
Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.
2009-01-01
Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501
Yang, Yoosoo; Kong, Byoungjae; Jung, Younghoon; Park, Joon-Bum; Oh, Jung-Mi; Hwang, Jaesung; Cho, Jae Youl; Kweon, Dae-Hyuk
2018-01-01
Vesicle-associated V-soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and target membrane-associated T-SNAREs (syntaxin 4 and SNAP-23) assemble into a core trans -SNARE complex that mediates membrane fusion during mast cell degranulation. This complex plays pivotal roles at various stages of exocytosis from the initial priming step to fusion pore opening and expansion, finally resulting in the release of the vesicle contents. In this study, peptides with the sequences of various SNARE motifs were investigated for their potential inhibitory effects against SNARE complex formation and mast cell degranulation. The peptides with the sequences of the N-terminal regions of vesicle-associated membrane protein 2 (VAMP2) and VAMP8 were found to reduce mast cell degranulation by inhibiting SNARE complex formation. The fusion of protein transduction domains to the N-terminal of each peptide enabled the internalization of the fusion peptides into the cells equally as efficiently as cell permeabilization by streptolysin-O without any loss of their inhibitory activities. Distinct subsets of mast cell granules could be selectively regulated by the N-terminal-mimicking peptides derived from VAMP2 and VAMP8, and they effectively decreased the symptoms of atopic dermatitis in mouse models. These results suggest that the cell membrane fusion machinery may represent a therapeutic target for atopic dermatitis.
Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko
2014-04-01
A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
Lumican Peptides: Rational Design Targeting ALK5/TGFBRI
NASA Astrophysics Data System (ADS)
Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.
2017-02-01
Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.
Simon, E S; Papoulias, P G; Andrews, P C
2013-07-30
In protein studies that employ tandem mass spectrometry the manipulation of protonated peptide fragmentation through exclusive dissociation pathways may be preferred in some applications over the comprehensive amide backbone fragmentation that is typically observed. In this study, we characterized the selective cleavage of the side-chain Cζ-Nε bond of peptides with ortho-hydroxybenzyl-aminated lysine residues. Internal lysyl residues of representative peptides were derivatized via reductive amination with ortho-hydroxybenzaldehyde. The modified peptides were analyzed using collision-induced dissociation (CID) on an Orbitrap tandem mass spectrometer. Theoretical calculations using computational methods (density functional theory) were performed to investigate the potential dissociation mechanisms for the Cζ-Nε bond of the derivatized lysyl residue resulting in the formation of the observed product ions. Tandem mass spectra of the derivatized peptide ions exhibit product peaks corresponding to selective cleavage of the side-chain Cζ-Nε bond that links the derivative to lysine. The ortho-hydroxybenzyl derivative is released either as a neutral moiety [C7H6O1] or as a carbocation [C7H7O1](+) through competing pathways (retro-Michael versus Carbocation Elimination (CCE), respectively). The calculated transition state activation barriers indicate that the retro-Michael pathway is kinetically favored over CCE and both are favored over amide cleavage. The application of ortho-hydroxybenzyl amination is a promising peptide derivatization scheme for promoting selective dissociation pathways in the tandem mass spectrometry of protonated peptides. This can be implemented in the rational development of peptide reactive reagents for applications that may benefit from selective fragmentation paths (including crosslinking or MRM reagents). Copyright © 2013 John Wiley & Sons, Ltd.
Dhein, Stefan; Hagen, Anja; Jozwiak, Joanna; Dietze, Anna; Garbade, Jens; Barten, Markus; Kostelka, Martin; Mohr, Friedrich-Wilhelm
2010-03-01
Co-ordinated electrical activation of the heart is maintained by intercellular coupling of cardiomyocytes via gap junctional channels located in the intercalated disks. These channels consist of two hexameric hemichannels, docked to each other, provided by either of the adjacent cells. Thus, a complete gap junction channel is made from 12 protein subunits, the connexins. While 21 isoforms of connexins are presently known, cardiomyocytes typically are coupled by Cx43 (most abundant), Cx40 or Cx45. Some years ago, antiarrhythmic peptides were discovered and synthesised, which were shown to increase macroscopic gap junction conductance (electrical coupling) and enhance dye transfer (metabolic coupling). The lead substance of these peptides is AAP10 (H-Gly-Ala-Gly-Hyp-Pro-Tyr-CONH(2)), a peptide with a horseshoe-like spatial structure as became evident from two-dimensional nuclear magnetic resonance studies. A stable D: -amino-acid derivative of AAP10, rotigaptide, as well as a non-peptide analogue, gap-134, has been developed in recent years. Antiarrhythmic peptides act on Cx43 and Cx45 gap junctions but not on Cx40 channels. AAP10 has been shown to enhance intercellular communication in rat, rabbit and human cardiomyocytes. Antiarrhythmic peptides are effective against ventricular tachyarrhythmias, such as late ischaemic (type IB) ventricular fibrillation, CaCl(2) or aconitine-induced arrhythmia. Interestingly, the effect of antiarrhythmic peptides is higher in partially uncoupled cells and was shown to be related to maintained Cx43 phosphorylation, while arrhythmogenic conditions like ischaemia result in Cx43 dephosphorylation and intercellular decoupling. It is still a matter of debate whether these drugs also act against atrial fibrillation. The present review outlines the development of this group of peptides and derivatives, their mode of action and molecular mechanisms, and discusses their possible therapeutic potential.
Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki
2015-12-01
Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Protease-Resistant Peptide Ligands from a Knottin Scaffold Library
Getz, Jennifer A.; Rice, Jeffrey J.; Daugherty, Patrick S.
2011-01-01
Peptides within the knottin family have been shown to possess inherent stability, making them attractive scaffolds for the development of therapeutic and diagnostic agents. Given its remarkable stability to proteases, the cyclic peptide kalata B1 was employed as a scaffold to create a large knottin library displayed on the surface of E. coli. A library exceeding 109 variants was constructed by randomizing seven amino acids within a loop of the kalata B1 scaffold and screened using fluorescence-activated cell sorting to identify peptide ligands specific for the active site of human thrombin. Refolded thrombin binders exhibited high nanomolar affinities in solution, slow dissociation rates, and were able to inhibit thrombin’s enzymatic activity. Importantly, 80% of a knottin-based thrombin inhibitor remained intact after a two hour incubation both with trypsin and with chymotrypsin, demonstrating that modifying the kalata B1 sequence did not compromise its stability properties. In addition, the knottin variant mediated 20-fold enhanced affinity for thrombin, when compared to the same seven residue binding epitope constrained by a single disulfide bond. Our results indicate that peptide libraries derived from the kalata B1 scaffold can yield high affinity protein ligands that retain the remarkable protease resistance associated with the parent scaffold. More generally, this strategy may prove useful in the development of stable peptide ligands suitable for in vivo applications. PMID:21615106
Screening of bioactive peptides using an embryonic stem cell-based neurodifferentiation assay.
Xu, Ruodan; Feyeux, Maxime; Julien, Stéphanie; Nemes, Csilla; Albrechtsen, Morten; Dinnyés, Andras; Krause, Karl-Heinz
2014-05-01
Differentiation of pluripotent stem cells, PSCs, towards neural lineages has attracted significant attention, given the potential use of such cells for in vitro studies and for regenerative medicine. The present experiments were designed to identify bioactive peptides which direct PSC differentiation towards neural cells. Fifteen peptides were designed based on NCAM, FGFR, and growth factors sequences. The effect of peptides was screened using a mouse embryonic stem cell line expressing luciferase dual reporter construct driven by promoters for neural tubulin and for elongation factor 1. Cell number was estimated by measuring total cellular DNA. We identified five peptides which enhanced activities of both promoters without relevant changes in cell number. We selected the two most potent peptides for further analysis: the NCAM-derived mimetic FGLL and the synthetic NCAM ligand, Plannexin. Both compounds induced phenotypic neuronal differentiation, as evidenced by increased neurite outgrowth. In summary, we used a simple, but sensitive screening approach to identify the neurogenic peptides. These peptides will not only provide new clues concerning pathways of neurogenesis, but they may also be interesting biotechnology tools for in vitro generation of neurons.
Keller, Max; Kuhn, Kilian K; Einsiedel, Jürgen; Hübner, Harald; Biselli, Sabrina; Mollereau, Catherine; Wifling, David; Svobodová, Jaroslava; Bernhardt, Günther; Cabrele, Chiara; Vanderheyden, Patrick M L; Gmeiner, Peter; Buschauer, Armin
2016-03-10
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Cruz, Jenniffer; Rondon, Paola; Torres, Rodrigo; Urquiza, Mauricio; Guzman, Fanny; Alvarez, Claudio; Abengozar, Maria Angeles; Sierra, Daniel A; Rivas, Luis; Fernandez-Lafuente, Roberto; Ortiz, Claudia
2018-05-08
Antimicrobial peptides are on the first line of defense against pathogenic microorganisms of many living beings. These compounds are considered natural antibiotics that can overcome bacterial resistance to conventional antibiotics. Due to this characteristic, new peptides with improved properties are quite appealing for designing new strategies for fighting pathogenic bacteria Methods: Sixteen designed peptides were synthesized using Fmoc chemistry; five of them are new cationic antimicrobial peptides (CAMPs) designed using a genetic algorithm that optimizes the antibacterial activity based on selected physicochemical descriptors and 11 analog peptides derived from these five peptides were designed and constructed by single amino acid substitutions. These 16 peptides were structurally characterized and their biological activity was determined against Escherichia coli O157:H7 (E. coli O157:H7), and methicillin-resistant strains of Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) were determined Results: These 16 peptides were folded into an α-helix structure in membrane-mimicking environment. Among these 16 peptides, GIBIM-P5S9K (ATKKCGLFKILKGVGKI) showed the highest antimicrobial activity against E. coli O157:H7 (MIC=10µM), methicillin resistant Staphylococcus aureus (MRSA) (MIC=25µM) and Pseudomonas aeruginosa (MIC=10 µM). Peptide GIBIM-P5S9K caused permeabilization of the bacterial membrane at 25 µM as determined by the Sytox Green uptake assay and the labelling of these bacteria by using the fluoresceinated peptide. GIBIM-P5S9K seems to be specific for these bacteria because at 50 µM provoked lower than 40% of erythrocyte hemolysis. New CAMPs have been designed using a genetic algorithm based on selected physicochemical descriptors and single amino acid substitution. These CAMPs interacted quite specifically with the bacterial cell membrane, GIBIM-P5S9K exhibiting high antibacterial activity on Escherichia coli O157:H7, methicillin resistant strains of Staphylococcus aureus and P. aeruginosa. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
NASA Astrophysics Data System (ADS)
Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew
2014-06-01
We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.
Hu, Yongjun; Song, Feifeng; Jiang, Huidi; Nuñez, Gabriel; Smith, David E
2018-05-21
There is increasing evidence that proton-coupled oligopeptide transporters (POTs) can transport bacterially derived chemotactic peptides and therefore reside at the critical interface of innate immune responses and regulation. However, there is substantial contention regarding how these bacterial peptides access the cytosol to exert their effects and which POTs are involved in facilitating this process. Thus, the current study proposed to determine the (sub)cellular expression and functional activity of POTs in macrophages derived from mouse bone marrow and to evaluate the effect of specific POT deletion on the production of inflammatory cytokines in wild-type, Pept2 knockout and Pht1 knockout mice. We found that PEPT2 and PHT1 were highly expressed and functionally active in mouse macrophages, but PEPT1 was absent. The fluorescent imaging of muramyl dipeptide-rhodamine clearly demonstrated that PEPT2 was expressed on the plasma membrane of macrophages, whereas PHT1 was expressed on endosomal membranes. Moreover, both transporters could significantly influence the effect of bacterially derived peptide ligands on cytokine stimulation, as shown by the reduced responses in Pept2 knockout and Pht1 knockout mice as compared with wild-type animals. Taken as a whole, our results point to PEPT2 (at plasma membranes) and PHT1 (at endosomal membranes) working in concert to optimize the uptake of bacterial ligands into the cytosol of macrophages, thereby enhancing the production of proinflammatory cytokines. This new paradigm offers significant insight into potential drug development strategies along with transporter-targeted therapies for endocrine, inflammatory, and autoimmune diseases. Copyright © 2018 by The American Association of Immunologists, Inc.
Mendoza-Figueroa, J S; Kvarnheden, A; Méndez-Lozano, J; Rodríguez-Negrete, E-A; Arreguín-Espinosa de Los Monteros, R; Soriano-García, M
2018-02-01
Tomato yellow leaf curl virus (TYLCV; genus Begomovirus; family Geminiviridae) infects mainly plants of the family Solanaceae, and the infection induces curling and chlorosis of leaves, dwarfing of the whole plant, and reduced fruit production. Alternatives for direct control of TYLCV and other geminiviruses have been reported, for example, the use of esterified whey proteins, peptide aptamer libraries or artificial zinc finger proteins. The two latter alternatives affect directly the replication of TYLCV as well as of other geminiviruses because the replication structures and sequences are highly conserved within this virus family. Because peptides and proteins offer a potential solution for virus replication control, in this study we show the isolation, biochemical characterization and antiviral activity of a peptide derived from globulins of amaranth seeds (Amaranthus hypochondriacus) that binds to the replication origin sequence (OriRep) of TYLCV and affects viral replication with a consequent reduction of disease symptoms in Nicotiana benthamiana. Aromatic peptides obtained from papain digests of extracted globulins and albumins of amaranth were tested by intrinsic fluorescent titration and localized surface resonance plasmon to analyze their binding affinity to OriRep of TYLCV. The peptide AmPep1 (molecular weight 2.076 KDa) showed the highest affinity value (Kd = 1.8 nM) for OriRep. This peptide shares a high amino acid similarity with a part of an amaranth 11S globulin, and the strong affinity of AmPep1 could be explained by the presence of tryptophan and lysine facilitating interaction with the secondary structure of OriRep. In order to evaluate the effect of the peptide on in vitro DNA synthesis, rolling circle amplification (RCA) was performed using as template DNA from plants infected with TYLCV or another begomovirus, pepper huasteco yellow vein virus (PHYVV), and adding AmPep1 peptide at different concentrations. The results showed a decrease in DNA synthesis of both viruses at increasing concentrations of AmPep1. To further confirm the antiviral activity of the peptide in vivo, AmPep1 was infiltrated into leaves of N. benthamiana plants previously infected with TYLCV. Plants treated with AmPep1 showed a significant decrease in virus titer compared with untreated N. benthamiana plants as well as reduced symptom progression due to the effect of AmPep1 curtailing TYLCV replication in the plant. The peptide also showed antiviral activity in plants infected with PHYVV. This is the first report, in which a peptide is directly used for DNA virus control in plants, supplied as exogenous application and without generation of transgenic lines. Copyright © 2018 Elsevier Inc. All rights reserved.
Lacombe, C; Cifuentes-Diaz, C; Dunia, I; Auber-Thomay, M; Nicolas, P; Amiche, M
2000-09-01
The development of the dermal glands of the arboreal frog Phyllomedusa bicolor was investigated by immunocytochemistry and electron microscopy. The 3 types of glands (mucous, lipid and serous) differed in size and secretory activity. The mucous and serous glands were apparent in the tadpole skin, whereas the lipid glands developed later in ontogenesis. The peptide antibiotics dermaseptins and the D-amino acid-containing peptide opioids dermorphins and deltorphins are abundant in the skin secretions of P. bicolor. Although these peptides differ in their structure and activity they are derived from precursors that have very similar preproregions. We used an antibody to the common preproregion of preprodermaseptins and preprodeltorphins and immunofluorescence analysis to show that only the serous glands are specifically involved in the biosynthesis and secretion of dermaseptins and deltorphins. Scanning and transmission electron microscopy revealed that the serous glands of P bicolor have morphological features, especially the secretory granules, which differ from those of the glands in Xenopus laevis skin.
Maisetta, Giuseppantonio; Grassi, Lucia; Di Luca, Mariagrazia; Bombardelli, Silvia; Medici, Chiara; Brancatisano, Franca Lisa; Esin, Semih; Batoni, Giovanna
2016-08-01
In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2-4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis.
Dallas, David C.; Guerrero, Andrés; Khaldi, Nora; Borghese, Robyn; Bhandari, Aashish; Underwood, Mark A.; Lebrilla, Carlito B.; German, J. Bruce; Barile, Daniela
2014-01-01
In vitro digestion of isolated milk proteins results in milk peptides with a variety of actions. However, it remains unclear to what degree protein degradation occurs in vivo in the infant stomach and whether peptides previously annotated for bioactivity are released. This study combined nanospray LC separation with time-of-flight mass spectrometry, comprehensive structural libraries, and informatics to analyze milk from 3 human mothers and the gastric aspirates from their 4- to 12-d-old postpartum infants. Milk from the mothers contained almost 200 distinct peptides, demonstrating enzymatic degradation of milk proteins beginning either during lactation or between milk collection and feeding. In the gastric samples, 649 milk peptides were identified, demonstrating that digestion continues in the infant stomach. Most peptides in both the intact milk and gastric samples were derived from β-casein. The numbers of peptides from β-casein, lactoferrin, α-lactalbumin, lactadherin, κ-casein, serum albumin, bile salt–associated lipase, and xanthine dehydrogenase/oxidase were significantly higher in the gastric samples than in the milk samples (P < 0.05). A total of 603 peptides differed significantly in abundance between milk and gastric samples (P < 0.05). Most of the identified peptides have previously identified biologic activity. Gastric proteolysis occurs in the term infant in the first 2 wk of life, releasing biologically active milk peptides with immunomodulatory and antibacterial properties of clinical relevance to the proximal intestinal tract. Data are available via ProteomeXchange (identifier PXD000688). PMID:24699806
Dallas, David C; Guerrero, Andrés; Khaldi, Nora; Borghese, Robyn; Bhandari, Aashish; Underwood, Mark A; Lebrilla, Carlito B; German, J Bruce; Barile, Daniela
2014-06-01
In vitro digestion of isolated milk proteins results in milk peptides with a variety of actions. However, it remains unclear to what degree protein degradation occurs in vivo in the infant stomach and whether peptides previously annotated for bioactivity are released. This study combined nanospray LC separation with time-of-flight mass spectrometry, comprehensive structural libraries, and informatics to analyze milk from 3 human mothers and the gastric aspirates from their 4- to 12-d-old postpartum infants. Milk from the mothers contained almost 200 distinct peptides, demonstrating enzymatic degradation of milk proteins beginning either during lactation or between milk collection and feeding. In the gastric samples, 649 milk peptides were identified, demonstrating that digestion continues in the infant stomach. Most peptides in both the intact milk and gastric samples were derived from β-casein. The numbers of peptides from β-casein, lactoferrin, α-lactalbumin, lactadherin, κ-casein, serum albumin, bile salt-associated lipase, and xanthine dehydrogenase/oxidase were significantly higher in the gastric samples than in the milk samples (P < 0.05). A total of 603 peptides differed significantly in abundance between milk and gastric samples (P < 0.05). Most of the identified peptides have previously identified biologic activity. Gastric proteolysis occurs in the term infant in the first 2 wk of life, releasing biologically active milk peptides with immunomodulatory and antibacterial properties of clinical relevance to the proximal intestinal tract. Data are available via ProteomeXchange (identifier PXD000688). © 2014 American Society for Nutrition.