Science.gov

Sample records for active permafrost layer

  1. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  2. Microbial diversity in European alpine permafrost and active layers.

    PubMed

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world.

  3. Different determinants of soil carbon decomposition between active and permafrost layers: evidence from alpine permafrost on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Chen, L.; Qin, S.; Ding, J.; Yang, G.; Li, F.

    2015-12-01

    The fate of permafrost carbon is of great concern among global change community due to its potential positive feedback to climate warming. However, the determinants of soil carbon decomposition between active layer and permafrost layers remain poorly understood. This incubation study was designed to test the following two hypotheses: 1) low carbon quantity and microbial abundances in permafrost soils limit decomposition rates compared with active layer soils; 2) carbon losses from active layer are more controlled by environmental factors, whereas those from permafrost depth are primarily determined by the microbial condition. We collected five active layer and permafrost soils from alpine grasslands on the Tibetan Plateau and compared the carbon dioxide (CO2) emissions at -5 and 5 °C in a 80-days aerobic incubation. The availability of organic carbon and microbial abundances (fungi, bacteria, and actinomycete) within permafrost soils were significantly lower than active layer soils, which, together with the environmental data supports the reduced cumulative CO2 emissions in permafrost depth. However, the decomposability of SOC from permafrost was similar or even higher than surface soils. The carbon loss not only depended on SOC quantity and microbial abundance, but also nitrogen availability and soil pH. Nevertheless, the controls on carbon emissions between active and permafrost layers were significantly different. Cumulative CO2 emission from active layers was best predicted by soil moisture, and carbon emission from permafrost depths was highly associated with fungal-PLFAs. Taken together, these results demonstrate that different controls on carbon emission between active layer and permafrost soils. These differences highlight the importance of distinguishing permafrost depth in Earth System Models when predicting the responses of deep soil carbon to environmental change.

  4. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-10-01

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.

  5. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau.

    PubMed

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-10-05

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2-C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2-C release from the active layer, whereas soil microbial abundance is more directly associated with CO2-C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment.

  6. Bioavailable Carbon and the Relative Degradation State of Organic Matter in Active Layer and Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.

    2015-12-01

    The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons

  7. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  8. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau

    PubMed Central

    Chen, Leiyi; Liang, Junyi; Qin, Shuqi; Liu, Li; Fang, Kai; Xu, Yunping; Ding, Jinzhi; Li, Fei; Luo, Yiqi; Yang, Yuanhe

    2016-01-01

    The sign and magnitude of permafrost carbon (C)-climate feedback are highly uncertain due to the limited understanding of the decomposability of thawing permafrost and relevant mechanistic controls over C release. Here, by combining aerobic incubation with biomarker analysis and a three-pool model, we reveal that C quality (represented by a higher amount of fast cycling C but a lower amount of recalcitrant C compounds) and normalized CO2–C release in permafrost deposits were similar or even higher than those in the active layer, demonstrating a high vulnerability of C in Tibetan upland permafrost. We also illustrate that C quality exerts the most control over CO2–C release from the active layer, whereas soil microbial abundance is more directly associated with CO2–C release after permafrost thaw. Taken together, our findings highlight the importance of incorporating microbial properties into Earth System Models when predicting permafrost C dynamics under a changing environment. PMID:27703168

  9. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    SciTech Connect

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  10. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  11. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  12. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  13. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  14. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  15. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    NASA Astrophysics Data System (ADS)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  16. Comparative Metagenomic Analysis Of Microbial Communities From Active Layer And Permafrost After Short-Term Thaw

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Chauhan, A.; Saarunya, G.; Murphy, J.; Williams, D.; Layton, A. C.; Pfiffner, S. M.; Stackhouse, B. T.; Sanders, R.; Lau, C. M.; myneni, S.; Phelps, T. J.; Fountain, A. G.; Onstott, T. C.

    2012-12-01

    .Permafrost areas occupy 20-25% of the Earth and extend of 1 km depths. The total number of prokaryotes and their biomass in cold regions are estimated to be 1 x 1030 cells and 140 x1015 g of C, respectively. Thus these environments serve as a reservoir of microbial and biogeochemical activity, which is likely to increase upon thawing. We are currently performing long-term thawing experiments at 4o C on 18, geochemically well-characterized, 1 meter long, intact cores consisting of active-layer (0-70 cm depth) and permafrost, collected from a 7 meter diameter ice-wedge polygon located at the McGill Arctic Research Station on Axel Heiberg Island, Nunavut, Canada. The organic carbon content of these cores averages ~1% at depth but increases to 5.4% in the top 10 cm. The cores were subdivided into four treatment groups: saturated cores (thawed while receiving artificial rain), drained cores (being thawed under natural hydrological conditions), dark cores (thawed under natural hydrological conditions with no light input) and control cores (maintain permafrost table at 70 cm depth). Over the course of 10 weeks the cores were progressively thawed from -4oC to 4oC from the top down to simulate spring thaw conditions in the Arctic. The temperatures at 5 cm, 35 cm, 65 cm, and below the permafrost table in the core were recorded continuously. Pore water and gas samples from 4 depths in each core were collected every two weeks and analyzed for pH, anions, cations, H2, CH4, CO, O2, N2, CO2 and δ13C of CO2. Headspace gas samples were collected weekly and analyzed for the same gases as the pore gases. Sediment sub-samples from the 4 depths were collected and total community genomic DNA (gDNA) was isolated using FastDNA SPIN kit followed by Qiagen column purification. The average yield of gDNA was ~3.5 μg/g of soil for the upper 5 cm active layers and decreased to ~1.5 μg/g of soil in the permafrost. The bacterial 16S copy numbers estimated by real-time quantitative PCR

  17. Influence of increasing active-layer depth and continued permafrost degradation on carbon, water and energy fluxes over two forested permafrost landscapes in the Taiga Plains, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Baltzer, J.; Chasmer, L. E.; Detto, M.; Marsh, P.; Quinton, W. L.

    2012-12-01

    Recent research suggests an increase in active-layer depth (ALD) in the continuous permafrost zone and degradation of the discontinuous permafrost zone into seasonally frozen. Increasing ALD and continued permafrost degradation will have far-reaching consequences for northern ecosystems including altered regional hydrology and the exposure of additional soil organic carbon (C) to microbial decomposition. These changes might cause positive or negative net feedbacks to the climate system by altering important land surface properties and/or by releasing stored soil organic C to the atmosphere as CO2 and/or CH4. Knowledge gaps exist regarding the links between increasing ALD and/or permafrost degradation, regional hydrology, vegetation composition and structure, land surface properties, and CO2 and CH4 sink-source strengths. The goal of our interdisciplinary project is to shed light on these links by providing a mechanistic understanding of permafrost-thawing consequences for hydrological, ecophysiological and biogeochemical processes at two forested permafrost landscapes in the Taiga Plains, NWT, Canada: Scotty Creek and Havikpak Creek in the discontinuous and in the continuous permafrost zones, respectively (Fig.). The sites will be equipped with identical sets of instrumentation (start: 2013), to measure landscape-scale net exchanges of CO2, CH4, water and energy with the eddy covariance technique. These measurements will be complemented by repeated surveys of surface and frost table topography and vegetation, by land cover-type specific fluxes of CO2 and CH4 measured with a static chamber technique, and by remote sensing-based footprint analysis. With this research we will address the following questions: What is the net effect of permafrost thawing-induced biophysical and biogeochemical feedbacks to the climate system? How do these two different types of feedback differ between the discontinuous and continuous permafrost zones? Is the decrease (increase) in net CO

  18. Seismic Spatial Autocorrelation as a Technique to Track Changes in the Permafrost Active Layer

    NASA Astrophysics Data System (ADS)

    Abbott, R. E.

    2013-12-01

    We present preliminary results from an effort to continuously track freezing and thawing of the permafrost active layer using a small-aperture seismic array. The 7-element array of three-component posthole seismometers is installed on permafrost at Poker Flat Research Range, near Fairbanks, Alaska. The array is configured in two three-station circles with 75 and 25 meter radii that share a common center station. This configuration is designed to resolve omnidirectional, high-frequency seismic microtremor (i.e. ambient noise). Microtremor is continuously monitored and the data are processed using the spatial autocorrelation (SPAC) method. The resulting SPAC coefficients are then inverted for shear-wave velocity structure versus depth. Thawed active-layer soils have a much slower seismic velocity than frozen soils, allowing us to track the depth and intensity of thawing. Persistent monitoring on a permanent array would allow for a way to investigate year-to-year changes without costly site visits. Results from the seismic array will compared to, and correlated with, other measurement techniques, such as physical probing and remote sensing methods. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation

    NASA Astrophysics Data System (ADS)

    Beer, C.; Fedorov, A. N.; Torgovkin, Y.

    2013-09-01

    Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. The gridded datasets can be accessed at the PANGAEA repository (doi:10.1594/PANGAEA.808240). Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.

  20. Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models.

    PubMed

    Chaves, D A; Lyra, G B; Francelino, M R; Silva, Ldb; Thomazini, A; Schaefer, Cegr

    2017-04-15

    Permafrost and active layer studies are important to understand and predict regional climate changes. The objectives of this work were: i) to characterize the soil thermal regime (active layer thickness and permafrost formation) and its interannual variability and ii) to evaluate the influence of different climate variability modes to the observed soil thermal regime in a patterned ground soil in Maritime Antarctica. The study was carried out at Keller Peninsula, King George Island, Maritime Antarctica. Six soil temperatures probes were installed at different depths (10, 30 and 80cm) in the polygon center (Tc) and border (Tb) of a patterned ground soil. We applied cross-correlation analysis and standardized series were related to the Antarctic Oscillation Index (AAO). The estimated active layer thickness was approximately 0.75cm in the polygon border and 0.64cm in the center, indicating the presence of permafrost (within 80cm). Results indicate that summer and winter temperatures are becoming colder and warmer, respectively. Considering similar active layer thickness, the polygon border presented greater thawing days, resulting in greater vulnerability to warming, cooling faster than the center, due to its lower volumetric heat capacity (Cs). Cross-correlation analysis indicated statistically significant delay of 1day (at 10cm depth) in the polygon center, and 5days (at 80cm depth) for the thermal response between atmosphere and soil. Air temperature showed a delay of 5months with the climate variability models. The influence of southern winds from high latitudes, in the south facing slopes, favored freeze in the upper soil layers, and also contributed to keep permafrost closer to the surface. The observed cooling trend is linked to the regional climate variability modes influenced by atmospheric circulation, although longer monitoring period is required to reach a more precise scenario.

  1. Forecast of Permafrost Distribution, Temperature and Active Layer Thickness for Arctic National Parks of Alaska through 2100

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Romanovsky, V. E.; Marchenko, S. S.; Swanson, D. K.

    2015-12-01

    Though permafrost distribution, temperature and active layer thickness at high spatial resolution are needed to better model the ecosystem dynamics and biogeochemical processes including emission of greenhouse gases at regional and local scale, no such high-resolution permafrost map products existed for Arctic national parks of Alaska until recently. This was due to the lack of information about ecosystem properties such as soil and vegetation characteristics at high spatial resolution. In recent years, the National Park Service (NPS) has carried out several projects mapping ecotype and soil in the Arctic parks from Landsat satellite data at 28.5 m spatial resolution. We used these detailed ecotype and soil maps along with downscaled climate forcing from the IPCC and Climatic Research Unit, University of East Anglia (UK) to model near-surface permafrost distribution, temperature and active layer thickness at decadal time scale from the present through 2100 at 28.5 m resolution for the five Arctic national parks in Alaska: Gates of the Arctic National Park and Preserve, Noatak National Preserve, Kobuk Valley National Park, Cape Krusenstern National Monument, and Bering Land Bridge National Preserve. Our results suggest the near-surface permafrost distribution, i.e. permafrost immediately below the active layer, will likely decrease from the current 99% of the total park area (five parks combined) to 89% by 2050 and 36% by 2100. The near-surface permafrost will likely continue to exist in the northern half of the Gates of the Arctic and Kobuk Valley parks, and in majority of the Noatak preserves by 2100, though its temperature will be up to 5 °C warmer than the present at certain places. Taliks will likely occupy the ground below the active layer in rest of the park areas. These products fill an essential knowledge and data gap and complement research of other Arctic disciplines such as ecosystem modeling, hydrology and soil biogeochemistry. Also, these products

  2. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  3. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  4. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  5. Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Wu, Qingbai; Zhang, Zhongqiong; Gao, Siru; Ma, Wei

    2016-08-01

    Climate warming and engineering activities have various impacts on the thermal regime of permafrost in alpine ecosystems of the Qinghai-Tibet Plateau. Using recent observations of permafrost thermal regimes along the Qinghai-Tibet highway and railway, the changes of such regimes beneath embankments constructed in alpine meadows and steppes are studied. The results show that alpine meadows on the Qinghai-Tibet Plateau can have a controlling role among engineering construction effects on permafrost beneath embankments. As before railway construction, the artificial permafrost table (APT) beneath embankments is not only affected by climate change and engineering activities but is also controlled by alpine ecosystems. However, the change rate of APT is not dependent on ecosystem type, which is predominantly affected by climate change and engineering activities. Instead, the rate is mainly related to cooling effects of railway ballast and heat absorption effects of asphalt pavement. No large difference between alpine and steppe can be identified regarding the variation of soil temperature beneath embankments, but this difference is readily identified in the variation of mean annual soil temperature with depth. The vegetation layer in alpine meadows has an insulation role among engineering activity effects on permafrost beneath embankments, but this insulation gradually disappears because the layer decays and compresses over time. On the whole, this layer is advantageous for alleviating permafrost temperature rise in the short term, but its effect gradually weakens in the long term.

  6. Permafrost vulnerability and active layer thickness increases over the high northern latitudes inferred from satellite remote sensing and process model assessments

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Kim, Youngwook

    2016-04-01

    Permafrost extent (PE) and active layer thickness (ALT) are important for assessing high northern latitude (HNL) ecological and hydrological processes, and potential land-atmosphere carbon and climate feedbacks. We developed a new approach to infer PE from satellite microwave remote sensing of daily landscape freeze-thaw (FT) status. Our results document, for the first time, the use of satellite microwave FT observations for monitoring permafrost extent and condition. The FT observations define near-surface thermal status used to determine permafrost extent and stability over a 30-year (1980-2009) satellite record. The PE results showed similar performance against independent inventory and process model (CHANGE) estimates, but with larger differences over heterogeneous permafrost subzones. A consistent decline in the ensemble mean of permafrost areas (-0.33 million km2 decade-1; p < 0.05) coincides with regional warming (0.4 °C decade-1; p < 0.01), while more than 40% (9.6 million km2) of permafrost areas are vulnerable to degradation based on the 30-year PE record. ALT estimates determined from satellite (MODIS) and ERA-Interim temperatures, and CHANGE simulations, compared favorably with independent field observations and indicate deepening ALT trends consistent with widespread permafrost degradation under recent climate change. The integration of remote sensing and modeling of permafrost and active layer conditions developed from this study may facilitate regular and effective regional monitoring of these parameters, and expand applications of remote sensing for examining permafrost-related feedbacks and consequences for biogeochemical and hydrological cycling in the Arctic.

  7. Modeling Active Layer Depth Over Permafrost for the Arctic Drainage Basin and the Comparison to Measurements at CALM Field Sites

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2002-12-01

    A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25~km~x~25~km resolution NSIDC EASE-Grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. In addition, we parameterize a spatially and vertically variable peat layer and modify soil bulk density and thermal conductivity accordingly. Climatological soil moisture content is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3~layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54~model nodes ranging from a thickness of 10~cm near the surface to 1~m at 15~m depth. Initial temperatures are chosen according to the grid cell's IPA permafrost classification on EASE grid. Active layer depths, simulated for the summers of 1999 and 2000, compare well to maximal thaw depths measured at about 60 Circumarctic Active Layer Monitoring Network (CALM) field sites. A remaining RMS-error between modeled and measured values is attributed mainly to scale discrepancies (100~m~x~100~m vs. 25~km~x~25~km) based on differences in the fields of air temperature, snow height, and soil bulk density. For the whole pan-Arctic land mass and the time period 1980 through 2001, this study shows the regionally highly variable active layer depth, frozen ground depth, lengths of freezing and thawing periods, and the day of year when the maxima are reached.

  8. Changes on permafrost and active layer characteristics after the tundra fire in summer 2002 in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Harada, K.; Fukuda, M.; Narita, K.

    2006-12-01

    Thermal, water and electrical conditions of permafrost after the tundra fire occurred in summer 2002 were studied in Seward Peninsula, southwest Alaska, in order to evaluate the effect of tundra fire on the arctic permafrost terrains. Field observations were made in summer 2005 and 2006. Four sites were established where the slope direction and surface disturbance condition are different; south- or north-facing, and burned or unburned. At each site ground temperature, water content, thermal conductivity and EC were measured by pit survey, and the seasonal thawed depth measurements were also conducted by using the steel rod from the ground surface. Transient electromagnetic soundings for deeper part and 1D and 2D DC resistivity soundings for shallow part were carried out in the four sites. We compared these field data among the four sites, highlighting in significant differences between burned and unburned sites. Burned sites have deeper thawing depths, and it may correspond with the thin organic soil in the burned sites. Due to the removal of litter and organic soil by the fire, thermal and hydrological regimes of active layer have drastically changed in the burned sites.

  9. Snow control on active layer and permafrost in steep alpine rock walls (Aiguille du Midi, 3842 m a.s.l, Mont Blanc massif)

    NASA Astrophysics Data System (ADS)

    Magnin, Florence; Westermann, Sebastian; Pogliotti, Paolo; Ravanel, Ludovic; Deline, Philip

    2016-04-01

    Permafrost degradation through the thickening of the active layer and the rising temperature at depth is a crucial process of rock wall stability. The ongoing increase in rock falls observed during hot periods in mid-latitude mountain ranges is regarded as a result of permafrost degradation. However, the short-term thermal dynamics of alpine rock walls are misunderstood since they result of complex processes related to the interaction of local climate variables, heterogeneous snow cover and heat transfers. As a consequence steady-state and long-term changes that can be approached with simpler process mainly related to air temperature, solar radiations and heat conduction were the most common dynamics to be studied so far. The effect of snow on the bedrock surface temperature is increasingly investigated and has already been demonstrated to be an essential factor of permafrost distribution. Nevertheless, its effect on the year-to-year changes of the active layer thickness and of the permafrost temperature in steep alpine bedrock has not been investigated yet, partly due to the lack of appropriate data. We explore the role of snow accumulations on the active layer and permafrost thermal regime of steep rock walls of a high-elevated site, the Aiguille du Midi (AdM, 3842 m a.s.l, Mont Blanc massif, Western European Alps) by mean of a multi-methods approach. We first analyse six years of temperature records in three 10-m-deep boreholes. Then we describe the snow accumulation patterns on two rock faces by means of automatically processed camera records. Finally, sensitivity analyses of the active layer thickness and permafrost temperature towards timing and magnitude of snow accumulations are performed using the numerical permafrost model CryoGrid 3. The energy balance module is forced with local meteorological measurements on the AdM S face and validated with surface temperature measurements at the weather station location. The heat conduction scheme is calibrated with

  10. The relationship between species and functional diversity for permafrost and active layer Arctic microorganisms: implications for decomposition in response to warming

    NASA Astrophysics Data System (ADS)

    Ernakovich, J. G.; Wallenstein, M. D.

    2012-12-01

    For higher organisms, decades of research has examined the relationship between species diversity and ecosystem function. In contrast, we know little about this relationship in bacterial communities. Recently, molecular techniques have been used to explore the impact of microbial community composition on ecosystem function, but results have been mixed when the response variable is an ecosystem flux rate, such as CO2 production. Despite the ambiguity of the link between ecosystem flux rate and microbial community composition, it is becoming clear that different consortia of bacterial taxa utilize different substrates. Thus, the relative rate at which various constituents of soil organic matter are decomposed may be affected by the particular taxa that are present and active. In permafrost soils, there is an added layer of complexity, because the community may composed of microorganisms selected for survival of extreme cold rather than those suited to decompose available carbon. Understanding the relationship between the species and functional diversity of the permafrost microbial community will inform our predictions of the fate of permafrost carbon as it thaws under a warmer climate. Permafrost and seasonally thawed ("active layer") soils were collected from Sagwon Hills, Alaska in August of 2009. The functional diversity of microbial communities was explored using Ecolog plates (Biolog, Inc) incubated at 1°C, 10°C, and 20°C. Bacterial species diversity was investigated with 454 pyrosequencing of the 16S rRNA. The functional diversity of the permafrost microbial community was temperature dependent with diversity increasing with temperature (p<0.001), whereas the active layer utilized similar numbers of substrates at all temperatures. At 1°C, the permafrost community was only able to utilize 1.6 + 0.11 substrates on average, but the active layer was able to utilize an order of magnitude more substrates (21.3 + 0.33). Initial analysis of the 454 pyrosequencing

  11. Implications of Fine-Scale Geochemical Depth Trends in the Active Layer of a Continuous Permafrost Landscape near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Heikoop, J. M.; Throckmorton, H.; Wilson, C. J.; Wullschleger, S. D.

    2014-12-01

    As part of the US DOE, Office of Science, Next Generation Ecosystem Experiment-Arctic project, we have been using environmental tracers (naturally occurring stable isotopes and geochemical species) to understand hydrological and geochemical processes within polygonal ground in a continuous permafrost area in the Arctic coastal plain. The study site is characterized by a thin zone of active layer development (typically <50 cm). This condition makes it difficult to understand development of geochemical gradients between the near surface and the frost line because traditional sampling using pumping causes mixing which can obscure depth gradients. We have applied a passive approach by using a series of diffusion cells that are installed at different depths within the active zone. The cells are filled with deionized water and over time, they equilibrate with the adjacent active layer water chemistry (ions diffuse into the cell, but the water in the cell does not exchange). Using this approach we have collected a series of fine resolution depth profiles within saturated zones in the active layer. Results over the last three years often show well-developed and sometimes substantial geochemical gradients for multiple analytes. Such gradients imply minimal vertical mixing within the active zone. Reductions in permeability with depth and lack of strong hydrological gradients likely limit vertical mixing. We also noted that the strength of the depth gradients varies across the landscape reflecting differences related to microtopography and drainage conditions. These results suggest that there are likely to be substantial fine-scale depth variations in biogeochemical processes such as methane and carbon dioxide production. Hydrological models should also reflect limited mixing with depth.

  12. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  13. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest

    PubMed Central

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-01-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629

  14. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    PubMed

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle.

  15. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    PubMed Central

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  16. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    PubMed

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  17. Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route

    PubMed Central

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099

  18. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    NASA Astrophysics Data System (ADS)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  19. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    SciTech Connect

    Johnson, Kristopher D; Harden, Jennifer; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew

    2013-01-01

    Permafrost is tightly coupled to the organic layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between PF, OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow v. deep organic layers. Permafrost probability sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. As temperature warmed, sandy soils varied little in PF or OLT, but PF in loamy and sandy soils decreased substantially. The change in OLT was more heterogeneous across soil types in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened as temperature warmed. Furthermore, the rate of thickening with warming for OLTd soils was on average almost 4 times greater than the rate of thinning for OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  20. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    USGS Publications Warehouse

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  1. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    SciTech Connect

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  2. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGES

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; ...

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  3. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  4. The Influence of Vegetation Canopy Structure on Active Layer Thaw Within the Sub-Arctic Discontinuous Permafrost Zone

    NASA Astrophysics Data System (ADS)

    Chasmer, L.; Quinton, W.; Hopkinson, C.; Petrone, R.; Whittington, P.

    2009-05-01

    Much of the sub-arctic discontinuous permafrost zone is dominated by a range in peatland ecosystems, each with their own characteristic soil frost dynamics. Soil thaw within the discontinuous permafrost zones of the Canadian sub-arctic is driven by the surface energy balance. The following study examines the influence of canopy structure on frost table (FT) depth and rates of thaw by: 1. relating measurements of FT depth to canopy structure using airborne scanning light detection and ranging (lidar) and hemispherical photographs taken below vegetated canopies; and 2. quantifying the spatial influences of canopy structural characteristics on the radiation balance (direct and diffuse incident radiation) within raised peat plateaus, connected bogs, fens, and isolated bogs. The results of this study indicate that peat plateaus, being characterised by greater vegetation fractional cover, typically have shallower FT depths (r2 = 0.5, p = 0.03) than locations with lower biomass. Further, average ground surface elevation and canopy height are related to rates of FT thaw (r2 = 0.73, p < 0.01; and r2 = 0.22, p = 0.2, respectively). Within the larger basin, variability in the spatial extent of vegetation biomass has an important influence on cumulative direct and diffuse radiation incident on the ground surface, especially in areas where peat plateaus are adjacent to open fens, connected bogs, and isolated bogs. This indicates that rates of thaw at the edges of peat plateaus and areas surrounding isolated bogs will be exacerbated by increased incident radiation and less shadowing by the canopy, leading to the conversion of peat plateaus to fens or bogs. This hypothesis is tested by comparing the change in peat plateau area coverage in 2000 and 2008 using classified IKONOS imagery (2000) and airborne lidar (2008).

  5. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    NASA Technical Reports Server (NTRS)

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  6. On the connection of permafrost and debris flow activity in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  7. GlobPermafrost - how space supports understanding of permafrost?

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin

    2016-04-01

    The GlobPermafrost project (2016-2019) develops, validates and implements information products to support the research communities and related international organisations like IPA and CliC in their work on understanding permafrost better by integration of EO data. Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution in various wavelengths. Prototype cases will cover different aspects of permafrost by integrating in situ measurements of subsurface permafrost properties (active layer depth, active layer and permafrost temperatures, organic layer thickness, liquid water content in the active layer and permafrost), surface properties (vegetation cover, snow depth)and modelling to provide a better understanding of permafrost today. The techniques will extend point source process and permafrost monitoring to a broader spatial domain, to support permafrost distribution modelling and mapping techniques implemented in a GIS framework and will complement active layer and thermal observing networks. Initial user requirements have been gathered at the DUE-IPA-GTNP-CliC workshop in Frascati in February 2014, which have been further consolidated within the Permafrost community during 2014 in request of the WMO Polar Space Task Group. A subset of these requirements will be demonstrated within GlobPermafrost and assessed by user organisations: -Circumpolar permafrost extend -Permafrost dedicated land cover class prototype -Local investigations around long term monitoring sites -Regional transects for "hot spot" identification -Mountain permafrost areas The initial observation scenario is presented, discussing challenges in methods as well as data availability.

  8. Permafrost

    USGS Publications Warehouse

    Ray, Louis L.

    1993-01-01

    In 1577, on his second voyage to the New World in search of the Northwest Passage, Sir Martin Frobisher reported finding ground in the far north that was frozen to depths of "four or five fathoms, even in summer," and that the frozen condition "so combineth the stones together that scarcely instruments with great force can unknit them." This permanently frozen ground, now termed permafrost, underlies perhaps a fifth of the Earth's land surface. It occurs in Antarctica but is most extensive in the Northern Hemisphere. In the lands surrounding the Arctic Ocean, its maximum thickness has been reported in thousands of feet as much as 5,000 feet in Siberia and 2,000 feet in northern Alaska.

  9. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic.

    PubMed

    Steven, Blaire; Pollard, Wayne H; Greer, Charles W; Whyte, Lyle G

    2008-12-01

    Culture-dependent and culture-independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1-(14)C] acetic acid and [2-(14)C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (-15 degrees C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.

  10. Metabolic activity of permafrost bacteria below the freezing point

    NASA Technical Reports Server (NTRS)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  11. Metabolic Activity of Permafrost Bacteria below the Freezing Point

    PubMed Central

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and −20°C on the basis of incorporation of 14C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5°C) to 20 days (−10°C) to ca. 160 days (−20°C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature. PMID:10919774

  12. Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes.

    PubMed

    Barbier, Béatrice A; Dziduch, Isabel; Liebner, Susanne; Ganzert, Lars; Lantuit, Hugues; Pollard, Wayne; Wagner, Dirk

    2012-11-01

    In Arctic wet tundra, microbial controls on organic matter decomposition are likely to be altered as a result of climatic disruption. Here, we present a study on the activity, diversity and vertical distribution of methane-cycling microbial communities in the active layer of wet polygonal tundra on Herschel Island. We recorded potential methane production rates from 5 to 40 nmol h(-1) g(-1) wet soil at 10 °C and significantly higher methane oxidation rates reaching values of 6-10 μmol h(-1) g(-1) wet soil. Terminal restriction fragment length polymorphism (T-RFLP) and cloning analyses of mcrA and pmoA genes demonstrated that both communities were stratified along the active layer vertical profile. Similar to other wet Arctic tundra, the methanogenic community hosted hydrogenotrophic (Methanobacterium) as well as acetoclastic (Methanosarcina and Methanosaeta) members. A pronounced shift toward a dominance of acetoclastic methanogens was observed in deeper soil layers. In contrast to related circum-Arctic studies, the methane-oxidizing (methanotrophic) community on Herschel Island was dominated by members of the type II group (Methylocystis, Methylosinus, and a cluster related to Methylocapsa). The present study represents the first on methane-cycling communities in the Canadian Western Arctic, thus advancing our understanding of these communities in a changing Arctic.

  13. Cryostratigraphy and Main Physical Properties of Active Layer Soils and Upper Horizon of Permafrost at the Barrow Environmental Observatory Research Site.

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Liljedahl, A.; Romanovsky, V. E.; Cable, W.

    2014-12-01

    Complete understanding of the results of geophysical survey, microbiological and biogeochemical analyzes of soil cores in the Arctic environment impossible without detail description of the frozen soil and its physical properties determination. Cryostratigraphyc features i.e. total ice content and forms of ice patterns reflects the important processes such as water migration due to freezing in frozen active layer soils and history of sedimentation and freezing in underlying perennially frozen deposits. That plays significant role in biogeochemical processes that take place in the Arctic ecosystem. Current research was based on description and analyzing of 8 cores taken during 2012 and 2013 coring campaigne had been done at the Barrow Environmental Observatory research site. Cores were taken from different types of polygons and analyzed on lithological composition, soil density, ice content and thermal conductivity. Volumetric ice content within the active layer composed by organic soil consists of 70 to 80% and within silt one - less than 60%. Ice content of underlying syncryogenic perennial frozen deposits is about 70%. No clear evidences of soil moisture redistribution due to freezing of active layer were noticed in the cores composed by the organic soil. Organic soil does not have any clear cryogenic structures. Ice usually fills the pores and follows the plants fibers. Mineral soil has recticulated cryogenic structure (ice forms grid like patterns with vertically oriented cells) with some thin (up to 2 cm thick) layers of soil particles and aggregates suspended in ice. Thermal conductivity of frozen samples varies in the range from 1.5 to 2.8 W/(m*°K). It has a positive correlation with soil density and negative with gravimetric ice content (see figure below). Mineral soils have a higher bulk density and average thermal conductivity in the range 2.15 W/(m*°K), organic soils have a lower density and average thermal conductivity about 2 W/(m*°K). Samples

  14. Achieving the NOAA Arctic Action Plan: The Missing Permafrost Element - Permafrost Forecasting Listening Session Results

    NASA Astrophysics Data System (ADS)

    Buxbaum, T. M.; Thoman, R.; Romanovsky, V. E.

    2015-12-01

    Permafrost is ground at or below freezing for at least two consecutive years. It currently occupies 80% of Alaska. Permafrost temperature and active layer thickness (ALT) are key climatic variables for monitoring permafrost conditions. Active layer thickness is the depth that the top layer of ground above the permafrost thaws each summer season and permafrost temperature is the temperature of the frozen permafrost under this active layer. Knowing permafrost conditions is key for those individuals working and living in Alaska and the Arctic. The results of climate models predict vast changes and potential permafrost degradation across Alaska and the Arctic. NOAA is working to implement its 2014 Arctic Action Plan and permafrost forecasting is a missing piece of this plan. The Alaska Center for Climate Assessment and Policy (ACCAP), using our webinar software and our diverse network of statewide stakeholder contacts, hosted a listening session to bring together a select group of key stakeholders. During this listening session the National Weather Service (NWS) and key permafrost researchers explained what is possible in the realm of permafrost forecasting and participants had the opportunity to discuss and share with the group (NWS, researchers, other stakeholders) what is needed for usable permafrost forecasting. This listening session aimed to answer the questions: Is permafrost forecasting needed? If so, what spatial scale is needed by stakeholders? What temporal scales do stakeholders need/want? Are there key times (winter, fall freeze-up, etc.) or locations (North Slope, key oil development areas, etc.) where forecasting would be most applicable and useful? Are there other considerations or priority needs we haven't thought of regarding permafrost forecasting? This presentation will present the results of that listening session.

  15. Climatological conditions of enhanced Arctic storm activity in relation to permafrost degradation in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Nakamura, T.; PARK, H.; Fedorov, A. N.

    2015-12-01

    The last decade (2000-2010) was the warmest on record at high northern latitudes. Surface air temperature anomalies and associated sea level pressure fields in Arctic exhibited different spatial patterns at the beginning of the 21st century than they did throughout the majority of the 20th century. In eastern Siberia, the abrupt soil warming within upper permafrost layer and deepening active layer thickness has observed in response to increasing in soil moisture under wet hydro-climatic conditions during the warming period of 2000s. According to climatological analyses, the large positive anomalies of both rainfall and snow accumulation in eastern Siberia are caused by strengthened cyclonic pattern in these years which induce more water vapor advection. These anomalies are more enhanced than those before 1990s and continuously appear after 2004. Long-term simulation of permafrost temperature and active layer thickness using a sophisticated land surface model (CHANGE) was carried out. The correlations between precipitation in late summer and soil temperature showed that the most regions exhibited either negative or not significant correlations between precipitation and soil temperature during the past period (1961-1980), whereas positive correlations were observed during the recent period (1991-2009). A region of significantly positive correlation was observed along the Siberian coast and in eastern Siberia and could have corresponded with areas of increased storm activity. The soil warming is thus due to not only increasing in snow accumulation which is well-known relationship by previous studies but also increasing in rainfall in late summer which furthermore accelerates the warming due to changes in hydro-thermal properties within the active layer. The precipitation increase in the last decade led to deepening active layer accompanying with remarkable increase in soil moisture. The perennially waterlogged conditions had exacerbated the boreal forest habitat; that

  16. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    NASA Astrophysics Data System (ADS)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  17. Strength and Timing of the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Schaefer, K. M.; Bruhwiler, L.; Barrett, A. P.

    2010-12-01

    We present projections of permafrost status and an estimate of the strength, timing, and uncertainty of the Permafrost Carbon Feedback. The thaw of any portion of the vast reservoir of carbon currently frozen in permafrost will increase atmospheric CO2 concentrations and amplify surface warming to initiate a positive, Permafrost Carbon Feedback (PCF) on climate. We use International Panel on Climate Change scenarios as input to the SiBCASA land surface model to make projections to 2200 for continuous and discontinuous permafrost north of 45° latitude. By 2200, we predict a 2.5% reduction in permafrost area and an average of 19-28 cm increase in active layer thickness. By 2200, the PCF strength in terms of cumulative permafrost carbon flux to the atmosphere flux is 58±19 Gt C, or ~3.5% of the total stock of frozen carbon. This is equivalent to an increase in atmospheric CO2 concentration of 26±9 ppm. The PCF is dominated by permafrost degradation in discontinuous permafrost along the southern margins of the permafrost domain. Permafrost responds slowly to climate change and the release of permafrost carbon to the atmosphere will continue for hundreds of years after atmospheric warming stops. The PCF is irreversible and strong compared to other global sources and sinks of atmospheric CO2. The PCF is strong enough to warrant inclusion in all projections of future climate and in international strategies to reduce fossil fuel emissions.

  18. Assessing hazard risk, cost of adaptation and traditional land use activities in the context of permafrost thaw in communities in Yukon and the Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Benkert, B.; Perrin, A.; Calmels, F.

    2015-12-01

    Together with its partners, the Northern Climate ExChange (NCE, part of the Yukon Research Centre at Yukon College) has been mapping permafrost-related hazard risk in northern communities since 2010. By integrating geoscience and climate project data, we have developed a series of community-scale hazard risk maps. The maps depict hazard risk in stoplight colours for easy interpretation, and support community-based, future-focused adaptation planning. Communities, First Nations, consultants and local regulatory agencies have used the hazard risk maps to site small-scale infrastructure projects, guide land planning processes, and assess suitability of land development applications. However, we know that assessing risk is only one step in integrating the implications of permafrost degradation in societal responses to environmental change. To build on our permafrost hazard risk maps, we are integrating economic principles and traditional land use elements. To assess economic implications of adaptation to permafrost change, we are working with geotechnical engineers to identify adaptation options (e.g., modified building techniques, permafrost thaw mitigation approaches) that suit the risks captured by our existing hazard risk maps. We layer this with an economic analysis of the costs associated with identified adaptation options, providing end-users with a more comprehensive basis upon which to make decisions related to infrastructure. NCE researchers have also integrated traditional land use activities in assessments of permafrost thaw risk, in a project led by Jean Marie River First Nation in the Northwest Territories. Here, the implications of permafrost degradation on food security and land use priorities were assessed by layering key game and gathering areas on permafrost thaw vulnerability maps. Results indicated that close to one quarter of big and small game habitats, and close to twenty percent of key furbearer and gathering areas within the First Nation

  19. Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard, TSP NORWAY

    NASA Astrophysics Data System (ADS)

    Christiansen, H.; Berthling, I.; Blikra, L.; Dehls, J.; Etzelmuller, B.; Farbrot, H.; Humlum, O.; Isaksen, K.; Juliussen, H.; Lauknes, T.; Midttomme, K.; Rønning, J.

    2007-12-01

    The Norwegian funded IPY project 'Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard', (TSP NORWAY) is part of the TSP cluster. The main goal of TSP NORWAY is to measure and model the permafrost distribution in Norway and Svalbard, focussing on its thermal state, thickness and associated periglacial processes, including increased knowledge of the mountain permafrost distribution related to geohazard studies on rockslides. TSP NORWAY will contribute to IPY by providing a spatially distributed set of observations on the present status of permafrost temperatures and active layer thicknesses, and periglacial processes in Svalbard and Norway. Special focus is given to empirical and numerical modelling of permafrost distribution and thermal ground heat fluxes to address future climate variability on permafrost distribution and associated geomorphic activity. Permafrost distribution in the North Atlantic area is strongly climatically controlled, mainly by the North Atlantic Drift, providing much less permafrost than in any other high latitude terrestrial region on the Northern Hemisphere. Hopefully a first Nordic permafrost map will be based on Nordic permafrost collaboration during IPY. The TSP NORWAY project has established two permafrost observatories with intensive permafrost and periglacial monitoring sites in maritime and continental areas. One in Troms, northern Norway, which will be part of the north Scandinavian Permafrost Observatory extending into northernmost Sweden and Finland, and the Svalbard Nordenskiöld Land Permafrost Observatory also with both maritime and continental sites. The first Norwegian permafrost database, NORPERM, with all permafrost data from Norway and Svalbard, collected before and during IPY, has been established at the Norwegian Geological Survey. NORPERM shall contribute data as requested in the IPY data protocol and the TSP cluster to the international Global Terrestrial Network on

  20. Effects of temperature on biological activity of permafrost microorganisms.

    PubMed

    Kalyonova, L F; Novikova, M A; Subbotin, A M; Bazhin, A S

    2015-04-01

    The number and viability of microorganism specimens Bacillus spp. isolated from permafrost soil remained unchanged after incubation at temperatures of -16-37°C. Experiments on F1 CBA/Black-6 mice showed that incubation of bacteria at -5°C for 72 h promotes a decrease in their toxicity and an increase in their immunostimulating effect.

  1. Hydrothermal regimes of the dry active layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Mamoru; Zhang, Yinsheng; Kadota, Tsutomu; Ohata, Tetsuo

    2006-04-01

    Evaporation and condensation in the soil column clearly influence year-round nonconductive heat transfer dynamics in the dry active layer underlying semiarid permafrost regions. We deduced this from heat flux components quantified using state-of-the-art micrometeorological data sets obtained in dry and moist summers and in winters with various snow cover depths. Vapor moves easily through large pores, some of which connect to the atmosphere, allowing (1) considerable active layer warming driven by pipe-like snowmelt infiltration, and (2) direct vapor linkage between atmosphere and deeper soils. Because of strong adhesive forces, water in the dry active layer evaporates with great difficulty. The fraction of latent heat to total soil heat storage ranged from 26 to 45% in dry and moist summers, respectively. These values are not negligible, despite being smaller than those of arctic wet active layer, in which only freezing and thawing were considered.

  2. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    SciTech Connect

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  3. Hydrogeology, chemical and microbial activity measurement through deep permafrost.

    PubMed

    Stotler, Randy L; Frape, Shaun K; Freifeld, Barry M; Holden, Brian; Onstott, Tullis C; Ruskeeniemi, Timo; Chan, Eric

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ(18) O values ∼5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH(4) was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH(4) is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  4. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  5. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2015-06-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon stock will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under newly formed thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrams of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42 to 141 Pg-C and 157 to 313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates only consider fluxes from newly thawed permafrost, not from soils already part of the seasonally thawed active layer under pre-industrial climate. Our simulated CH4 fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest CH4 emission rates of about 50 Tg-CH4 per year around the middle of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is taken into account. CH4 release from newly thawed carbon in wetland

  6. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, T.; Grosse, G.; Strauss, J.; Schirrmeister, L.; Morgenstern, A.; Schaphoff, S.; Meinshausen, M.; Boike, J.

    2014-12-01

    High-latitude soils store vast amounts of perennially frozen and therefore inert organic matter. With rising global temperatures and consequent permafrost degradation, a part of this carbon store will become available for microbial decay and eventual release to the atmosphere. We have developed a simplified, two-dimensional multi-pool model to estimate the strength and timing of future carbon dioxide (CO2) and methane (CH4) fluxes from newly thawed permafrost carbon (i.e. carbon thawed when temperatures rise above pre-industrial levels). We have especially simulated carbon release from deep deposits in Yedoma regions by describing abrupt thaw under thermokarst lakes. The computational efficiency of our model allowed us to run large, multi-centennial ensembles under various scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Under moderate warming of the representative concentration pathway (RCP) 2.6 scenario, cumulated CO2 fluxes from newly thawed permafrost carbon amount to 20 to 58 petagrammes of carbon (Pg-C) (68% range) by the year 2100 and reach 40 to 98 Pg-C in 2300. The much larger permafrost degradation under strong warming (RCP8.5) results in cumulated CO2 release of 42-141 and 157-313 Pg-C (68% ranges) in the years 2100 and 2300, respectively. Our estimates do only consider fluxes from newly thawed permafrost but not from soils already part of the seasonally thawed active layer under preindustrial climate. Our simulated methane fluxes contribute a few percent to total permafrost carbon release yet they can cause up to 40% of total permafrost-affected radiative forcing in the 21st century (upper 68% range). We infer largest methane emission rates of about 50 Tg-CH4 year-1 around the mid of the 21st century when simulated thermokarst lake extent is at its maximum and when abrupt thaw under thermokarst lakes is accounted for. CH4 release from newly thawed carbon in wetland-affected deposits is only

  7. Probiotic Activity of a Bacterial Strain Isolated from Ancient Permafrost Against Salmonella Infection in Mice.

    PubMed

    Fursova, O; Potapov, V; Brouchkov, A; Pogorelko, G; Griva, G; Fursova, N; Ignatov, S

    2012-09-01

    Bacillus cereus strain F, collected from relict permafrost located in Siberia, was analyzed for probiotic activity in the mouse Salmonella enterica model. Viable bacterial cells were found in frozen soils taken at Mammoth Mountain in Yakutia from a depth below the level of seasonal thawing. Geological data indicated the absence of a thawing within millions of years of deposited soils, which helped to ensure the ancient origin of our sample. According to DNA analysis, bacterial cells collected from the relict permafrost appeared to be B. cereus strain F. The morphology of these bacteria was analyzed using atomic force microscopy. B. cereus strain F was assessed as a nonpathogenic bacterium by evaluation of its pathogenicity. A S. enterica model is described in mice after per oral inoculation and serves as a model for the human carrier state. Using this model, probiotic activity by the bacterial strain isolated from the ancient permafrost has been shown against Salmonella infection in mice.

  8. Comparative Activity and Functional Ecology of Permafrost Soils and Lithic Niches in a Hyper-Arid Polar Desert

    NASA Technical Reports Server (NTRS)

    Goordial, J.; Davila, A.; Greer, C. W.; Cannam, R.; DiRuggiero, J.; McKay, C. P.; Whyte, L. G.

    2016-01-01

    This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities. The results underlie two different habitability conditions in the same location under extreme cold and dryness: the permafrost habitat where viable microbial life and activity is questionable, and the cryptoendolithic habitat which contains organisms capable of growth under the extreme conditions of the Antarctic Dry Valleys.

  9. Surface towed electromagnetic system for mapping of subsea Arctic permafrost

    NASA Astrophysics Data System (ADS)

    Sherman, Dallas; Kannberg, Peter; Constable, Steven

    2017-02-01

    Sea level has risen globally since the late Pleistocene, resulting in permafrost-bearing coastal zones in the Arctic being submerged and subjected to temperature induced degradation. Knowing the extent of permafrost and how it changes over time is important for climate change predictions and for planning engineering activities in the Arctic environment. We developed a controlled source electromagnetic (CSEM) method to obtain information on the depth, thickness, and lateral extent of marine permafrost. To operate in shallow water we used a surface towed electric dipole-dipole CSEM system suitable for deployment from small boats. This system was used to map permafrost on the Arctic shelf offshore Prudhoe Bay, Alaska. Our results show significant lateral variability in the presence of permafrost, with the thickest layers associated with a large river outflow where freshwater influx seems to have a preserving effect on relict subsea permafrost.

  10. Permafrost and periglacial research in Antarctica: New results and perspectives

    NASA Astrophysics Data System (ADS)

    Guglielmin, Mauro; Vieira, Gonçalo

    2014-11-01

    In the last two years the research within the Antarctic Permafrost, Periglacial Environments and Soils (ANTPAS) Expert Group of the Scientific Committee on Antarctic Research (SCAR) and Working Group of the International Permafrost Association (IPA) provided new results on the dynamics of periglacial environments both in Maritime and Continental Antarctica. In continental Antarctica despite the absence of air warming, in the last 15 years an active layer thickening and acceleration of permafrost degradation erosional phenomena were reported, these being mainly related to the increase of solar radiation. On the other hand, in Maritime Antarctica, with a dramatic air warming, permafrost degradation has been observed, but the role of snow cover on the ground energy balance and consequently on permafrost and active layer has been underlined. Moreover, many contributions on the knowledge on the characteristics of the Antarctic soils were carried out in several areas along a wide latitudinal range.

  11. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert.

    PubMed

    Goordial, Jacqueline; Davila, Alfonso; Greer, Charles W; Cannam, Rebecca; DiRuggiero, Jocelyne; McKay, Christopher P; Whyte, Lyle G

    2017-02-01

    Permafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks among the driest and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic community. We used metagenomic sequencing and activity assays to examine the functional capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the most extreme regions in the Dry Valleys. We found metagenomic evidence that cryptoendolithic microorganisms are adapted to the harsh environment and capable of metabolic activity at in situ temperatures, possessing a suite of stress response and nutrient cycling genes to fix carbon under the fluctuating conditions that the sandstone rock would experience during the summer months. We additionally identified genes involved in microbial competition and cooperation within the cryptoendolithic habitat. In contrast, permafrost soils have a lower richness of stress response genes, and instead the metagenome is enriched in genes involved with dormancy and sporulation. The permafrost soils also have a large presence of phage genes and genes involved in the recycling of cellular material. Our results underlie two different habitability conditions under extreme cold and dryness: the permafrost soil which is enriched in traits which emphasize survival and dormancy, rather than growth and activity; and the cryptoendolithic environment that selects for organisms capable of growth under extremely oligotrophic, arid and cold conditions. This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities.

  12. The role of organic soil layer on the fate of Siberian larch forest and near-surface permafrost under changing climate: A simulation study

    NASA Astrophysics Data System (ADS)

    SATO, H.; Iwahana, G.; Ohta, T.

    2013-12-01

    Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates

  13. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia.

    PubMed

    Vonk, J E; Sánchez-García, L; van Dongen, B E; Alling, V; Kosmach, D; Charkin, A; Semiletov, I P; Dudarev, O V; Shakhova, N; Roos, P; Eglinton, T I; Andersson, A; Gustafsson, O

    2012-09-06

    The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world’s largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.

  14. Environmental Consequences of Urbanization in Permafrost Areas

    NASA Astrophysics Data System (ADS)

    Khilimonyuk, D.; Brouchkov, A.

    2010-03-01

    Introduction Most of northern cities are anthropo-natural systems with domination of anthropogenic components. The environmental framework of the permafrost zone is very insignificant, with green belts being represented by small parks and public gardens. Modern northern cities of Russia represent territories with dense and compact residential buildings having simple configuration to reduce heat loss under severe climatic conditions. In earlier settlements such buildings alternate quite often with private one-storey houses. The typical modern and old cities were investigated for study of its environmental impact. Purpose The goal of this presentation is analysis of main environmental problems in permafrost areas of Northern Russian territories using data of city infrastructure and permafrost and environmental processes monitoring for old and new developing cities. Results It was found that primary anthropogenic changes of cities' environments are following: soil devastation, change of surface water and groundwater, stationary and dynamic loads, pollution, change of thermal state of soils, accumulation of occupation layer, waste dumping. It is practically impossible to preserve natural permafrost conditions. Therefore we can observe in all cities of the permafrost zone degradation or, more rarely, aggradation of permafrost grounds depending on natural and permafrost conditions, construction principles, density and age of constructions, development of the territory and many other factors. The degree of change in various natural components of various permafrost zones varies, depending on the initial natural conditions in which economic activity is carried out, its type and duration. This entails various ecologic situations ranging from normal to crisis or disaster. Conclusion Significant changes of geocryological and an ecological situation are marked only at dense modern multi-storey building city territories. In these cases there is a degradation of permafrost soils

  15. Local influences of geothermal anomalies on permafrost distribution in an active volcanic island (Deception Island, Antarctica)

    NASA Astrophysics Data System (ADS)

    Goyanes, G.; Vieira, G.; Caselli, A.; Cardoso, M.; Marmy, A.; Santos, F.; Bernardo, I.; Hauck, C.

    2014-11-01

    This study aims at understanding the spatial distribution and characteristics of the frozen and unfrozen terrain in an alluvial fan on Deception Island, which is an active strato-volcano located in the Bransfield Strait (South Shetland Islands) with recent eruptions in 1967, 1969 and 1970. The alluvial fan is dominated by debris-flow, run-off and rock fall processes and permafrost occurs in several parts in the vicinity of anomalous geothermal heat flux. The aim is to assess the ways volcanic activity controls permafrost development and associated geomorphic dynamics using shallow subsurface, surface and air temperature measurements as well as thaw depth and electrical resistivity tomography (ERT) surveys. Results show a temperature increase with depth in the lower part of the fan reaching 13 °C at 0.80 m depth, without the presence of permafrost. The shallow borehole located at this site showed a stable thermal stratification all year-round, with only the upper 0.20 m reacting to meteorological forcing. In the upper part of the alluvial fan and debris cones, c. 100 m from the coast, frozen ground is present at c. 0.70 m depth. There, the shallow borehole shows a good coupling with air temperatures and the thermal regime favours the presence of permafrost. ERT shows the lowest resistivity values in the lower part of the alluvial fan and a highly resistivity zone in the upper sector of the fan and in the debris cones. These large variations in resistivity mark the presence of a saline water wedge from the sea into the fan, reaching frozen ground conditions about 100 m inland. It can be shown that the volcano-hydrothermal activity only inhibits frost development very locally, with frozen ground conditions occurring about 100 m away.

  16. Permafrost and the International Polar Year

    NASA Astrophysics Data System (ADS)

    Brown, J.; Boelhouwers, J.; Rachold, V.; Christiansen, H. H.

    2005-12-01

    Three permafrost projects are in the planning stages for 2007-2008 IPY. (1) The Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost (TSP) will obtain a "snapshot" of permafrost temperatures in existing and new boreholes throughout both hemispheres. The project is a field campaign of the existing Global Terrestrial Network on Permafrost (GTN-P) that also includes the Circumpolar Active Layer Monitoring (CALM) project. (2) The Antarctic and sub-Antarctic Permafrost, Periglacial and Soil Environments project (ANTPAS) is aimed at integrating existing and new data on the distribution, thickness, age, history and physical and geochemical properties of permafrost, soils and the active-layer on the Antarctic continent and sub-Antarctic islands. A monitoring network, a regional subset of GTN-P and consisting of borehole temperatures, active-layer thickness, and periglacial and soil observations, will be established along selected environmental gradients. (3) The Arctic Circum-Polar Coastal Observatory Network (ACCO-Net) proposes to investigate approximately 20 key coastal sites including deltas and estuaries of major Siberian and North American rivers at which physical, ecological, biochemical and socio-economic changes will be observed. Both educational outreach and data management activities are key elements in the three projects and will contribute to the overall IPY goals and its legacy. Our Permafrost Legacy is to create the basis for a new generation of researcher and the "snapshot" of existing conditions as a baseline for future change assessment. The Joint Committee of the IPY has approved the three projects that include approximately 150 individuals from the 25- member International Permafrost Association (IPA). The IPA is coordinating these projects in cooperation with the International Union of Geological Sciences (IUGS), the Scientific Committee for Antarctic Research (SCAR), the Land-Ocean Interactions in the Coastal Zone (LOICZ

  17. The microbial ecology of permafrost.

    PubMed

    Jansson, Janet K; Taş, Neslihan

    2014-06-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost features and between sites. Some microorganisms are even active at subzero temperatures in permafrost. An emerging concern is the impact of climate change and the possibility of subsequent permafrost thaw promoting microbial activity in permafrost, resulting in increased potential for greenhouse-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles.

  18. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China.

    PubMed

    Yin, Guoan; Niu, Fujun; Lin, Zhanju; Luo, Jing; Liu, Minghao

    2017-03-01

    Beiluhe basin is underlain by warm and ice-rich permafrost, and covered by vegetation and soils characteristic of the Qinghai-Tibet Plateau. A field monitoring network was established to investigate permafrost conditions and to assess potential impacts of local factors and climate change. This paper describes the spatial variations in permafrost conditions from instrumented boreholes, controlling environmental factors, and recent thermal evolution of permafrost in the basin. The study area was divided into 10 ecotypes using satellite imagery based classification. The field investigations and cluster analysis of ground temperatures indicated that permafrost underlies most of the ground in swamp meadow, undisturbed alpine meadow, degrading alpine meadow, and desert alpine grassland, but is absent in other cover types. Permafrost-ecotope relations examined over a 2-year (2014-2016) period indicated that: (i) ground surface temperatures varied largely among ecotopes; (ii) annual mean ground temperatures ranged from -1.5 to 0°C in permafrost, indicating sensitive permafrost conditions; (iii) active-layer thicknesses ranged from 1.4m to 3.4m; (iv) ground ice content at the top of permafrost is high, but the active-layer soil is relatively dry. Long-term climate warming has driven thermal changes to permafrost, but ground surface characteristics and soil moisture content strongly influence the ground thermal state. These factors control local-scale spatial variations in permafrost conditions. The warm permafrost in the basin is commonly in thermal disequilibrium, and is sensitive to future climate change. Active-layer thicknesses have increased by at least 42cm and the mean annual ground temperatures have increased by up to 0.2°C in the past 10years over the basin. A permafrost distribution map was produced based on ecotypes, suggesting that permafrost underlies 64% of the study region.

  19. Role of Fire in the Permanent Loss of Permafrost under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Shur, Y.; Jorgenson, M. T.

    2004-12-01

    Climate conditions can be described as favorable (1), neutral (2), or unfavorable (3) for permafrost stability. When climate is favorable to permafrost, it takes only a few years to turn the soil below the active layer to a perennially frozen state (way 1). Permafrost thickness will grow with time until it reaches the maximum set by the geothermal gradient. Under the cold temperatures in the continuous permafrost zone, permafrost formation occurs independent of ecological processes. With climate neutral to permafrost, permafrost formation can occur in special topographic situations, such as north facing slopes. More commonly, however, permafrost formation is a result of ecosystem development and its effect on reducing soil temperatures (way 2). Permafrost in the discontinuous permafrost zone is highly dependent on type of soil, vegetation, and soil moisture. Therefore, permafrost is a product of landscape evolution, not just a product of climate, and it takes to an ecosystem hundreds of years to develop conditions that are favorable to permafrost under appropriate topographic conditions. Permafrost initially formed under a favorable climate can also persist under neutral or unfavorable climates because of surface conditions created by ecosystem development. Permafrost forms a drainage barrier that increases soil moisture and peat accumulation under anaerobic conditions, and influences vegetation succession in a direction favorable to moss growth. Thus, mosses, peat, and soil saturation produce an important positive feedback to permafrost. As a result, permafrost that formed in a favorable climate, such as during the Little Ice Age, can remain relatively stable in a neutral climate as long as it protected by other ecological components. Removal of vegetation and soil by natural or human disturbance typically leads to permafrost degradation. After fire, the permafrost table decreases for hundreds of years and can be stabilized only if ecosystem development after fire

  20. Permafrost: An International Approach to 21th Century Challenges

    NASA Astrophysics Data System (ADS)

    Brown, J.

    2003-12-01

    Whereas glaciers are easily discernible to the human eye and satellites, permafrost terrains and their physical components are not easily detected from the surface without supplemental knowledge and measurements. In the Northern Hemisphere, approximately 17 million km2 of exposed land contains some extent of permafrost or ground that remains frozen for more than two years. The vast majority, or 11 million km2, of permafrost terrain has temperatures of 5° C or below, with perennially frozen ground underlying essentially all ground surfaces to considerable depths. Permafrost in the remaining regions, including mid-latitude mountains, is both warmer and is spatially variable (discontinuous). As climate warms the uppermost permafrost is subjected to increase thaw with resulting ground subsidence, accelerated erosion, and related biogeochemical modifications. The challenging questions to geocryologists, modelers and the public relate to the rate of change and the spatial variability of the projected thaw, particularly in the warmer zones where actual areal and subareal distribution of permafrost is poorly known. An international network of active layer measurements and borehole sites now exists under the Global Climate Observing System (GCOS), but requires additional sites for representative coverage. This Global Terrestrial Network for Permafrost (GTN-P) is coordinated by the 24-member, International Permafrost Association. At the Eighth International Conference on Permafrost (ICOP) in Zurich in July 2003, the IPA Council agreed on the scope of new activities for the next five years, many of which will be undertaken in cooperation with other international organizations (e.g. WCRP/CliC; ICSI, IASC, SCAR, IGU, IUGS). Examples of the activities of the IPA Working Groups are: 1. Antarctic Permafrost and Periglacial Environments (active layer processes, maps, database). 2. Coastal and Offshore Permafrost (sediment and organic transfers, subsea permafrost dynamics). 3

  1. Seasonal Variations of Stable Isotope Composition of River Flow in Permafrost Regions of Yenisei and Kolyma Rivers (Russia)

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Davydova, A.; Davydov, S. P.; Opel, T.; Shiklomanov, A. I.; Shiklomanov, N. I.; Streletskaya, I. D.; Tananaev, N.; Tokarev, I.

    2015-12-01

    Permafrost plays an important role in the hydrology of the northern regions. To investigate the role of climate change on permafrost degradation and hydrology, extensive field work was conducted in a series of small watersheds located in the discontinuous permafrost zone of the lower Yenisei River near Igarka, and in the continuous permafrost zone of the Kolyma River near Cherskii. Climatic, hydrologic and permafrost characteristics were monitored at both locations over a three year period and extended using historical data. Stable isotope composition of rain, snow, water from lakes and rivers, and various types of ground ice was used to determine various inputs and runoff pathways to a river flow in several watersheds. The study found that water flow of smaller creeks follows precipitation closely, while flow of larger rivers is affected by evaporation effects related to water storage in thermokarst lakes. Ground ice of the epigenetic permafrost near Igarka has a similar isotopic composition as that of Holocene permafrost and contemporary late summer precipitation. Ground ice of the syngenetic Pleistocene permafrost (Ice Complex) near Cherskii has a significantly lighter isotopic composition than pore water of the active and transient layers. Increases in air temperature resulted in thickening of the active-layer and melting of ice that reach the transient layer in continuous permafrost. In areas where the transient layer severely reduced as a result of intense forest fires and other landscape disturbances, ground ice from permafrost is also involved in hydrological processes. Progressive decrease in the seasonal freezing layer thickness and a lower permafrost table promoted more groundwater storage and redistribution of summer precipitation towards winter baseflow in discontinuous permafrost region. The major contribution of permafrost at both locations is not through the melting of ground ice, but through changes in soil properties affecting the water flow.

  2. Parameterization of Permafrost in the Canadian North

    NASA Astrophysics Data System (ADS)

    Verseghy, D. L.

    2012-12-01

    Permafrost is a phenomenon of growing interest in the science of global climate modelling. Global warming is projected to be amplified in northern high latitudes, with important implications for the future fate of currently frozen soils. This is of especial concern given the fact that the largest terrestrial store of organic carbon is located in permafrost, and is vulnerable to decomposition and release once thawing takes place. However, it has been shown that global climate models and earth system models display large differences in the extent of permafrost and the depth of the active layer that they simulate, even under current climate conditions. Results will be presented from an investigation into the interplay of different approaches to simulating the thermal and hydraulic regimes of permafrost areas. The model used for this purpose is "CLASS", the Canadian Land Surface Scheme, which is used operationally in the Canadian Earth System Model and Regional Climate Model. CLASS has been extensively tested in offline mode over single cell and regional domains in eastern and western Canada. Among the factors investigated will be soil discretization strategies, the treatment of snow cover and the role of wetlands. How the presence of permafrost is diagnosed, and the criteria for assessing the active layer depth, will be examined. Issues associated with the interpretation of data from the Canadian north, together with characteristic biases in the datasets, will be factored into the analysis.

  3. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  4. Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost.

    PubMed

    Amato, Pierre; Doyle, Shawn M; Battista, John R; Christner, Brent C

    2010-10-01

    The survival of microorganisms over extended time frames in frozen subsurface environments may be limited by chemical (i.e., via hydrolysis and oxidation) and ionizing radiation-induced damage to chromosomal DNA. In an effort to improve estimates for the survival of bacteria in icy terrestrial and extraterrestrial environments, we determined rates of macromolecular synthesis at temperatures down to -15°C in bacteria isolated from Siberian permafrost (Psychrobacter cryohalolentis K5 and P. arcticus 273-4) and the sensitivity of P. cryohalolentis to ionizing radiation. Based on experiments conducted over ≈400 days at -15°C, the rates of protein and DNA synthesis in P. cryohalolentis were <1 to 16 proteins cell(-1) d(-1) and 83 to 150 base pairs (bp) cell(-1) d(-1), respectively; P. arcticus synthesized DNA at rates of 20 to 1625 bp cell(-1) d(-1) at -15°C under the conditions tested. The dose of ionizing radiation at which 37% of the cells survive (D(37)) of frozen suspensions of P. cryohalolentis was 136 Gy, which was ∼2-fold higher (71 Gy) than identical samples exposed as liquid suspensions. Laboratory measurements of [(3)H]thymidine incorporation demonstrate the physiological potential for DNA metabolism at -15°C and suggest a sufficient activity is possible to offset chromosomal damage incurred in near-subsurface terrestrial and martian permafrost. Thus, our data imply that the longevity of microorganisms actively metabolizing within permafrost environments is not constrained by chromosomal DNA damage resulting from ionizing radiation or entropic degradation over geological time.

  5. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Thomas; Grosse, Guido; Strauss, Jens; Schirrmeister, Lutz; Morgenstern, Anne; Schaphoff, Sibyll; Meinshausen, Malte; Boike, Julia

    2015-04-01

    With rising global temperatures and consequent permafrost degradation a part of old carbon stored in high latitude soils will become available for microbial decay and eventual release to the atmosphere. To estimate the strength and timing of future carbon dioxide and methane fluxes from newly thawed permafrost carbon, we have developed a simplified, two-dimensional multi-pool model. As large amounts of soil organic matter are stored in depths below three meters, we have also simulated carbon release from deep deposits in Yedoma regions. For this purpose we have modelled abrupt thaw under thermokarst lakes which can unlock large amounts of soil carbon buried deep in the ground. The computational efficiency of our 2-D model allowed us to run large, multi-centennial ensembles of differing scenarios of future warming to express uncertainty inherent to simulations of the permafrost-carbon feedback. Our model simulations, which are constrained by multiple lines of recent observations, suggest cumulated CO2 fluxes from newly thawed permafrost until the year 2100 of 20-58 Pg-C under moderate warming (RCP2.6), and of 42-141Pg-C under strong warming (RCP8.5). Under intense thermokarst activity, our simulated methane fluxes proved substantial and caused up to 40 % of total permafrost-affected radiative forcing in the 21st century. By quantifying CH4 contributions from different pools and depth levels, we discuss the role of thermokarst dynamics in affecting future Arctic carbon release. The additional global warming through the release from newly thawed permafrost carbon proved only slightly dependent on the pathway of anthropogenic emission in our simulations and reached about 0.1°C by end of the century. The long-term, permafrost-affected global warming increased further in the 22nd and 23rd century, reaching a maximum of about 0.4°C in the year 2300.

  6. Distribution of Near-Surface Permafrost in Alaska: Estimates of Present and Future Conditions

    NASA Astrophysics Data System (ADS)

    Pastick, N.; Jorgenson, T.; Wylie, B. K.; Nield, S.; Johnson, K. D.; Finley, A.

    2014-12-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Further warming could lead to increasing ground temperatures, thickening active-layers, and accelerated thawing and degradation of permafrost. Despite permafrost's influence on ecosystem structure and functions, relatively little has been done to quantify permafrost properties across extremely large areas and at high resolutions. Detection and mapping of permafrost are difficult, however, because it is a subsurface condition of the ground, heterogeneous in nature, and largely exists in remote locations. Here we overcome complex interactions among surface and subsurface conditions to map permafrost through empirical modeling approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated high-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout most of Alaska. Our calibrated models were then used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  7. Prokaryotic Abundance and Activity in Permafrost of the Northern Victoria Land and Upper Victoria Valley (Antarctica).

    PubMed

    La Ferla, Rosabruna; Azzaro, Maurizio; Michaud, Luigi; Caruso, Gabriella; Lo Giudice, Angelina; Paranhos, Rodolfo; Cabral, Anderson S; Conte, Antonella; Cosenza, Alessandro; Maimone, Giovanna; Papale, Maria; Rappazzo, Alessandro Ciro; Guglielmin, Mauro

    2017-03-13

    Victoria Land permafrost harbours a potentially large pool of cold-affected microorganisms whose metabolic potential still remains underestimated. Three cores (BC-1, BC-2 and BC-3) drilled at different depths in Boulder Clay (Northern Victoria Land) and one sample (DY) collected from a core in the Dry Valleys (Upper Victoria Valley) were analysed to assess the prokaryotic abundance, viability, physiological profiles and potential metabolic rates. The cores drilled at Boulder Clay were a template of different ecological conditions (different temperature regime, ice content, exchanges with atmosphere and with liquid water) in the same small basin while the Dry Valleys site was very similar to BC-2 conditions but with a complete different geological history and ground ice type. Image analysis was adopted to determine cell abundance, size and shape as well as to quantify the potential viable and respiring cells by live/dead and 5-cyano-2,3-ditolyl-tetrazolium chloride staining, respectively. Subpopulation recognition by apparent nucleic acid contents was obtained by flow cytometry. Moreover, the physiological profiles at community level by Biolog-Ecoplate™ as well as the ectoenzymatic potential rates on proteinaceous (leucine-aminopeptidase) and glucidic (ß-glucosidase) organic matter and on organic phosphates (alkaline-phosphatase) by fluorogenic substrates were tested. The adopted methodological approach gave useful information regarding viability and metabolic performances of microbial community in permafrost. The occurrence of a multifaceted prokaryotic community in the Victoria Land permafrost and a large number of potentially viable and respiring cells (in the order of 10(4)-10(5)) were recognised. Subpopulations with a different apparent DNA content within the different samples were observed. The physiological profiles stressed various potential metabolic pathways among the samples and intense utilisation rates of polymeric carbon compounds and carbohydrates

  8. Soil Temperature Reemergence in Permafrost

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Schaefer, K.

    2007-12-01

    Soil temperature reemergence is the disappearance and subsequent reappearance of near surface soil temperature anomalies, driven by soil freeze-thaw processes. Reemergence of past soil temperature anomalies is a new class of time-delayed, land-atmosphere feedbacks influencing surface fluxes of latent and sensible heat. Anomalous energy is stored, isolated from diffusion processes, as variations in latent heat of fusion. Schaefer et al. [2007] found that past soil temperature anomalies in seasonally frozen soils are stored as variations in the amount of ground ice and can reemerge at the surface after soil thaw in spring. Schaefer et al. [2007] also hypothesized that temperature anomalies in permafrost would be stored as variations in the active layer depth, reappearing after the soil column completely freezes in winter. Essentially, a warm summer produces a deeper active layer, which requires more energy to freeze in autumn, resulting in warmer soils in winter. Here, we explore this hypothesis using statistical analysis of long-term, in situ soil temperature measurements at 37 permafrost hydro-meteorological stations across Siberia. The observations span 30-40 years at depths of 2-320 cm. We also use a simple soil thermodynamic model with phase changes to explore the detailed thermodynamic processes driving temperature reemergence in permafrost.

  9. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    SciTech Connect

    Waldrop, Mark P.; Wickland, Kimberly P.; White III, R.; Berhe, Asmeret A.; Harden, Jennifer W.; Romanovsky, Vladimir E.

    2010-09-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5ºC were measured to calculate temperature response quotients (Q₁₀). The Q₁₀ was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q₁₀ values. CH₄ fluxes were correlated with methanogen abundance and the highest CH₄ production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region.

  10. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    USGS Publications Warehouse

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the

  11. The International Permafrost Association: current initiatives for cryospheric research

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Lewkowicz, Antoni G.; Christiansen, Hanne H.; Romanovsky, Vladimir E.; Lantuit, Hugues; Schrott, Lothar; Sergeev, Dimitry; Wei, Ma

    2015-04-01

    The International Permafrost Association (IPA), founded in 1983, has as its objectives to foster the dissemination of knowledge concerning permafrost and to promote cooperation among persons and national or international organizations engaged in scientific investigation and engineering work on permafrost. The IPA's primary responsibilities are convening International Permafrost Conferences, undertaking special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinating international field programs and networks. Membership is through adhering national or multinational organizations or as individuals in countries where no Adhering Body exists. The IPA is governed by its Executive Committee and a Council consisting of representatives from 26 Adhering Bodies having interests in some aspect of theoretical, basic and applied frozen ground research, including permafrost, seasonal frost, artificial freezing and periglacial phenomena. This presentation details the IPA core products, achievements and activities as well as current projects in cryospheric research. One of the most important core products is the circumpolar permafrost map. The IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA are the biannually competitively-funded Action Groups which work towards the production of well-defined products over a period of two years. Current IPA Action Groups are working on highly topical and interdisciplinary issues, such as the development of a regional Palaeo-map of Permafrost in Eurasia, the integration of multidisciplinary knowledge about the use of thermokarst and permafrost

  12. PNNL Researchers Collect Permafrost Cores in Alaska

    SciTech Connect

    2016-11-23

    Permafrost is ground that is frozen for two or more years. In the Arctic, discontinuous regions of this saturated admixture of soil and rock store a large fraction of the Earth’s carbon – about 1672 petagrams (1672 trillion kilograms). As temperatures increase in the Northern Hemisphere, a lot of that carbon may be released to the atmosphere, making permafrost an important factor to represent accurately in global climate models. At Pacific Northwest National Laboratory, a group led by James C. Stegen periodically extracts permafrost core samples from a site near Fairbanks, Alaska. Back at the lab in southeastern Washington State, they study the cores for levels of microbial activity, carbon fluxes, hydrologic patterns, and other factors that reveal the dynamics of this consequential layer of soil and rock.

  13. Feedbacks between tall shrubland development and active layer temperatures in northwest Siberian arctic tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Frost, G. V.; Walker, D. A.; Matyshak, G.

    2013-12-01

    Permafrost soils are a globally significant carbon store, but changes in permafrost thermal regime observed in recent decades across much of the Arctic suggest that permafrost carbon balance is likely to change with continued climate warming. Critical to changes in permafrost carbon balance in a warmer world, however, are feedbacks between changes in the composition and density of surface vegetation, and the thermal state of permafrost. Shrub expansion has been widely observed in the northwest Siberian Low Arctic, but the magnitude and direction of shrub-induced impacts to permafrost temperature and stability remain poorly understood. Here we evaluate changes to active layer properties and thermal regime that occur during tall shrubland development (shrubs > 1.5 m height) within a northwest Siberian landscape dominated by well-developed, small-scale patterned ground features (e.g., non-sorted circles). We measured the annual time-series of soil temperature at 5 cm and 20 cm depth, and the structural attributes of vegetation at patterned-ground microsites across four stages of tall shrubland development: low-growing tundra lacking erect shrubs, newly-developed shrublands, mature shrublands, and paludified shrublands. Mean summer soil temperatures declined with increasing shrub cover and moss thickness, but winter soil temperatures increased with shrub development. Shrubland development strongly attenuated cryoturbation, promoting the establishment of complete vegetation cover and the development of a continuous organic mat. Increased vegetation cover, in turn, led to further reduced cryoturbation and an aggrading permafrost table. These observations indicate that tall shrub expansion that is now occurring in patterned-ground landscapes of the northwest Siberian Arctic may buffer permafrost from atmospheric warming, and increase carbon storage in these systems at least in the short term.

  14. Methane in permafrost - Preliminary results from coring at Fairbanks, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    1993-01-01

    Permafrost has been suggested as a high-latitude source of methane (a greenhouse gas) during global warming. To begin to assess the magnitude of this source, we have examined the methane content of permafrost in samples from shallow cores (maximum depth, 9.5m) at three sites in Fairbanks, Alaska, where discontinuous permafrost is common. These cores sampled frozen loess, peat, and water (ice) below the active layer. Methane contents of permafrost range from <0.001 to 22.2mg/kg of sample. The highest methane content of 22.2mg/kg was found in association with peat at one site. Silty loess had high methane contents at each site of 6.56, 4.24, and 0.152mg/kg, respectively. Carbon isotopic compositions of the methane (??13C) ranged from -70.8 to -103.9 ???, and hydrogen isotopic compositions of the methane (??D) from -213 to -313 ???, indicating that the methane is microbial in origin. The methane concentrations were used in a one dimensional heat conduction model to predict the amount of methane that will be released from permafrost worldwide over the next 100 years, given two climate change scenarios. Our results indicate that at least 30 years will elapse before melting permafrost releases important amounts of methane; a maximum methane release rate will be about 25 to 30 Tg/yr, assuming that methane is generally distributed in shallow permafrost as observed in our samples.

  15. Interannual active layer thermal and dynamics evolution at the crater Lake CALM site, Deception Island (Antarctica).

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Vieira, Gonzalo; Ángel De Pablo, Miguel; Molina, Antonio; Abramov, Andrey

    2015-04-01

    Deception Island, is an active strato-volcano on South Shetland Archipelago of Antarctica (62° 55' 0″ S, 60° 37' 0″ W), is a cold region with harsh remote and hostile environmental conditions. The permafrost and active layer existence, and the cold climate conditions together with volcanic material with height water content inside made this region of the Earth a perfect site to study the active layer and permafrost evolution involved in the Circumpolar Active Layer South (CALM-S) program. The active layer is measured in late January or firs february (during the end of the thaw period) at the "Crater Lake" CALM site (62°58'06.7''; 60°40'44.8'') on Deception Island, Antarctica, at the period 2006 to 2014 we obtained a mean annual value of 29,7±2 cm. In this paper, we describe the spatial active layer thickness distribution and report the reduction on the mean thickness between February 2006 and 2014. Below the active layer, permafrost could be also reported (with a mean thickness of 4.5± 0.5 m.) based on the temperature data acquired by sensors installed at different depth inside the soil; three different shallow boreholes was drilled (1.0 m., 1.6 m., 4.5 m. in depth) and we have been registered its temperature gradient at the 2010 to 2013 period. Here we use all those data 1) to describe the thermal behavior of the permafrost at the CALM site, and 2) to describe its evolution (aggradation/degradation) along fourteen years of continuous measurements. We develop this study, to known the thermal behavior of the permafrost and the active layer related with the air/soil interaction being one of the most important factors the snow layer that was measured by the installation of termo-snowmeters with the complement of an automatic digital camera during the 2008 to 2014 period. On the other hand, the pyroclastics soil materials has a very high values of water content then the latent heat in the freezing/thawing process controls the active layer evolution and the

  16. Microbes in thawing permafrost: the unknown variable in the climate change equation

    SciTech Connect

    Graham, David E; Wallenstein, Matthew D; Vishnivetskaya, T.; Waldrop, Mark P.; Phelps, Tommy Joe; Pfiffner, Susan M.; Onstott, T. C.; Whyte, Lyle; Rivkina, Elizaveta; Gilichinsky, David A; Elias, Dwayne A; Mackelprang, Rachel; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Wagner, Dirk; Wullschleger, Stan D; Jansson, Janet

    2012-01-01

    Considering that 25% of Earth s terrestrial surface is underlain by permafrost (ground that has been continuously frozen for at least 2 years), our understanding of the diversity of microbial life in this extreme habitat is surprisingly limited. Taking into account the total mass of perennially frozen sediment (up to several hundred meters deep), permafrost contains a huge amount of buried, ancient organic carbon (Tarnocai et al., 2009). In addition, permafrost is warming rapidly in response to global climate change (Romanovsky et al., 2010), potentially leading to widespread thaw and a larger, seasonally thawed soil active layer. This concern has prompted the question: will permafrost thawing lead to the release of massive amounts of carbon dioxide (CO2) and methane (CH4) into the atmosphere? This question can only be answered by understanding how the microbes residing in permafrost will respond to thaw, through processes such as respiration, fermentation, methanogenesis and CH4 oxidation (Schuur et al., 2009). Predicting future carbon fluxes is complicated by the diversity of permafrost environments, ranging from high mountains, southern boreal forests, frozen peatlands and Pleistocene ice complexes (yedoma) up to several hundred meters deep, which vary widely in soil composition, soil organic matter (SOM) quality, hydrology and thermal regimes (Figure 1). Permafrost degradation can occur in many forms: thaw can progress downward from seasonally-thawed active layer soils in warming climates or laterally because of changes in surface or groundwater flow paths (Grosse et al., 2011). Permafrost degradation can sometimes lead to dramatic changes in ecosystem structure and function

  17. Monitoring Seasonal Changes in Permafrost Using Seismic Interferometry

    NASA Astrophysics Data System (ADS)

    James, S. R.; Knox, H. A.; Abbott, R. E.

    2015-12-01

    The effects of climate change in polar regions and their incorporation in global climate models has recently become an area of great interest. Permafrost holds entrapped greenhouse gases, e.g. CO2 and CH4, which are released to the atmosphere upon thawing, creating a positive feedback mechanism. Knowledge of seasonal changes in active layer thickness as well as long term degradation of permafrost is critical to the management of high latitude infrastructures, hazard mitigation, and increasing the accuracy of climate predictions. Methods for effectively imaging the spatial extent, depth, thickness, and discontinuous nature of permafrost over large areas are needed. Furthermore, continuous monitoring of permafrost over annual time scales would provide valuable insight into permafrost degradation. Seismic interferometry using ambient seismic noise has proven effective for recording velocity changes within the subsurface for a variety of applications, but has yet to be applied to permafrost studies. To this end, we deployed 7 Nanometrics Trillium posthole broadband seismometers within Poker Flat Research Range, located 30 miles north of Fairbanks, Alaska in a zone of discontinuous permafrost. Approximately 2 years worth of nearly continuous ambient noise data was collected. Using the python package MSNoise, relative changes in velocity were calculated. Results show high amounts of variability throughout the study period. General trends of negative relative velocity shifts can be seen between August and October followed by a positive relative velocity shift between November and February. Differences in relative velocity changes with both frequency and spatial location are also observed, suggesting this technique is sensitive to permafrost variation with depth and extent. Overall, short and long term changes in shallow subsurface velocity can be recovered using this method proposing seismic interferometry is a promising new technique for permafrost monitoring. Sandia

  18. Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Streletskiy, Dmitry A.; Tananaev, Nikita I.; Opel, Thomas; Shiklomanov, Nikolay I.; Nyland, Kelsey E.; Streletskaya, Irina D.; Tokarev, Igor'; Shiklomanov, Alexandr I.

    2015-09-01

    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months.

  19. Monitoring of Permafrost in the Hovsgol Mountain Region, Mongolia

    NASA Astrophysics Data System (ADS)

    Sharkhuu, A.; Natsagdorj, S.; Etzelmuller, B.; Heggem, E. S.; Nelson, F. E.; Shiklomanov, N.; Goulden, C.

    2005-12-01

    The Hovsgol Mountain Region is located between the coordinates of N 49°-52° and E 98°-102 ° in territory of Hovsgol Province, Mongolia. The territory is characterized by mountain permafrost, sporadic to continuous in its distribution, and occupies the southern fringe of the Siberian continuous permafrost zone. The main goal of permafrost monitoring in the region is to study recent degradation of permafrost under the influence of climate warming and human activities. Monitoring of permafrost is conducted within the framework of the Circumpolar Active Layer Monitoring (CALM) and the Global Terrestrial Network for Permafrost (GTN-P) programs. The main parameters being monitored are active layer depth and mean annual permafrost temperature at the level of the zero annual amplitude. Long-term CALM and GTN-P programs are based on ground temperature measurements in shallow to deep boreholes. Each borehole for monitoring is installed using instrumentation designed specifically to protect against air convection in them. Temperature measurements in the boreholes are made using identical thermo-resistors at corresponding depths, and carried out on the same dates each year. In addition, temperature dataloggers and thaw tubes are installed in most of the boreholes. At present, there are eight long-term (15-35 years) CALM and GTN-P active borehole sites. Boreholes are located in the Sharga valley (southwest), Burehkhan and Hovsgol phosphorite areas and Hatgal village (central part of the region) and in the Darhad depression. Initial results of the long term monitoring show that average rates of increase in active layer depth and mean annual permafrost temperature under influence of recent climate warming in the Hovsgol Mountain Region are 5-15 cm and 0.15-0.25°C per decade, respectively. The rate of permafrost degradation in bedrock is greater than in unconsolidated sediments, in ice-poor sediments more than ice-rich ones, and on north-facing slopes more than on south

  20. Monitoring of Surface Wetness from active microwave satellite data in permafrost regions

    NASA Astrophysics Data System (ADS)

    Bartsch, A.; Boike, J.; Sabel, D.; Wagner, W.

    2008-12-01

    Soil moisture content impacts land surface energy dynamics, regional runoff dynamics and vegetation productivity. Coarse to medium resolution data from active microwave instruments onboard satellites which are currently in space are able to provide such valuable information for operational use. Scatterometer (ERS, Metop ASCAT) can be applied on regional to global scale. ScanSAR systems are suitable for regional to continental monitoring and for the investigation of scaling issues. The original approach which was developed for scatterometer data (Wagner et al. 1999) has been transferred to ScanSAR data within the framework of the ESA Tiger innovator project SHARE (www.ipf.tuwien.ac.at/radar/share). Data from the ENVISAT ASAR instrument operating in Global Mode (1km resolution) have not only been used over the southern African subcontinent, but also over entire Australia and within other regional studies. Current research focuses on the validation and investigation of scaling issues of satellite derived surface wetness in permafrost environment. A comparison to soil moisture measurements has been carried out over the Lena- Delta, Russia. Measurements are from a site on Samoylov Island, which is characterized by polygonal tundra. Best aggreement of the 1km resolution satellit data was found for polygon centres, with a Pearson correlation of 0.72. Timeseries analyses from this and other sites in Siberia will be presented.

  1. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope

    NASA Astrophysics Data System (ADS)

    Nicolsky, D. J.; Romanovsky, V. E.; Panda, S. K.; Marchenko, S. S.; Muskett, R. R.

    2017-01-01

    Thawing and freezing of Arctic soils is affected by many factors, with air temperature, vegetation, snow accumulation, and soil physical properties and soil moisture among the most important. We enhance the Geophysical Institute Permafrost Laboratory model and develop several high spatial resolution scenarios of changes in permafrost characteristics in the Alaskan Arctic in response to observed and projected climate change. The ground thermal properties of surface vegetation and soil column are upscaled using the Ecosystems of Northern Alaska map and temperature data assimilation from the shallow boreholes across the Alaska North Slope. Soil temperature dynamics are simulated by solving the 1-D nonlinear heat equation with phase change, while the snow temperature and thickness are simulated by considering the snow accumulation, compaction, and melting processes. The model is verified by comparing with available active layer thickness at the Circumpolar Active Layer Monitoring sites, permafrost temperature, and snow depth records from existing permafrost observatories in the North Slope region.

  2. Application of 2-D geoelectrical resistivity tomography for mountain permafrost detection in sporadic permafrost environments: Experiences from Eastern Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2015-04-01

    , the 12 profiles are well distributed over the entire cirque. At this site permafrost was detected as up to 5 m thick lenses at SW-facing slopes and at 2740 m asl. Several permafrost lenses were found at a terminal moraine complex dating to the Little Ice Age (LIA) influenced by thermokarst at about 2635 m asl. At one profile a >8 m thick massive debris-covered glacier remnant (resistivity values >100.000 ohm.m) was identified. However, no large permafrost bodies have been found. Consequently, no clear transition zone between permafrost free to more discontinuous permafrost was detected at this cirque. Summarizing, neither at the Hochreichart site nor at the Kögele site a clear altitudinal lower limit of permafrost was detectable by ERT and MTD. At the first site only small patches of permafrost exist today mostly at coarse-grained sediment sites. At the latter site patches of permafrost can be found in LIA-terminal moraines and at higher parts of the cirque. The remnants of a former cirque glacier are well preserved under a thin veneer of debris which is, however, so far thinner than the active layer thickness. More continuous permafrost areas presumably only exist at north-facing areas above c.2800 m asl.

  3. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  4. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.

    PubMed

    Song, Changchun; Wang, Xianwei; Miao, Yuqing; Wang, Jiaoyue; Mao, Rong; Song, Yanyu

    2014-07-15

    The carbon (C) pool of permafrost peatland is very important for the global C cycle. Little is known about how permafrost thaw could influence C emissions in the Great Hing'an Mountains of China. Through aerobic and anaerobic incubation experiments, we studied the effects of permafrost thaw on CH4 and CO2 emissions. The rates of CH4 and CO2 emissions were measured at -10, 0 and 10°C. Although there were still C emissions below 0°C, rates of CH4 and CO2 emissions significantly increased with permafrost thaw under aerobic and anaerobic conditions. The C release under aerobic conditions was greater than under anaerobic conditions, suggesting that permafrost thaw and resulting soil environment change should be important influences on C emissions. However, CH4 stored in permafrost soils could affect accurate estimation of CH4 emissions from microbial degradation. Calculated Q10 values in the permafrost soils were significantly higher than values in active-layer soils under aerobic conditions. Our results highlight that permafrost soils have greater potential decomposability than soils of the active layer, and such carbon decomposition would be more responsive to the aerobic environment.

  5. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    NASA Astrophysics Data System (ADS)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  6. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    climate change. Extra maintenance activity is needed for existence infrastructure to stay operable. Engineers should run climate models under the most pessimistic scenarios when planning new infrastructure projects. That would allow reducing the potential shortcomings related to the permafrost thawing.

  7. Merging Field Measurements and High Resolution Modeling to Predict Possible Societal Impacts of Permafrost Degradation

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Nicolsky, D.; Marchenko, S. S.; Cable, W.; Panda, S. K.

    2015-12-01

    A general warming trend in permafrost temperatures has triggered permafrost degradation in Alaska, especially at locations influenced by human activities. Various phenomena related to permafrost degradation are already commonly observed, including increased rates of coastal and riverbank erosion, increased occurrences of retrogressive thaw slumps and active layer detachment slides, and the disappearance of tundra lakes. The combination of thawing permafrost and erosion is damaging local community infrastructure such as buildings, roads, airports, pipelines, water and sanitation facilities, and communication systems. The potential scale of direct ecological and economical damage due to degrading permafrost has just begun to be recognized. While the projected changes in permafrost are generally available on global and regional scales, these projections cannot be effectively employed to estimate the societal impacts because of their coarse resolution. Intrinsic problems with the classical "spatial grid" approach in spatially distributed modeling applications preclude the use of this modeling approach to solve the above stated problem. Two types of models can be used to study permafrost dynamics in this case. One approach is a site-specific application of the GIPL2.0 permafrost model and another is a very high (tens to hundred meter) resolution spatially distributed version of the same model. The results of properly organized field measurements are also needed to calibrate and validate these models for specific locations and areas of interest. We are currently developing a "landscape unit" approach that allows practically unlimited spatial resolution of the modeling products. Classification of the study area into particular "landscape units" should be performed in accordance with the main factors controlling the expression of climate on permafrost in the study area, typically things such as vegetation, hydrology, soil properties, topography, etc. In areas with little

  8. Geophysical Monitoring for Validation of Transient Permafrost Models (Invited)

    NASA Astrophysics Data System (ADS)

    Hauck, C.; Hilbich, C.; Marmy, A.; Scherler, M.

    2013-12-01

    Permafrost is a widespread phenomenon at high latitudes and high altitudes and describes the permanently frozen state of the subsurface in lithospheric material. In the context of climate change, both, new monitoring and modelling techniques are required to observe and predict potential permafrost changes, e.g. the warming and degradation which may lead to the liberation of carbon (Arctic) and the destabilisation of permafrost slopes (mountains). Mountain permafrost occurrences in the European Alps are characterised by temperatures only a few degrees below zero and are therefore particularly sensitive to projected climate changes in the 21st century. Traditional permafrost observation techniques are mainly based on thermal monitoring in vertical and horizontal dimension, but they provide only weak indications of physical properties such as ice or liquid water content. Geophysical techniques can be used to characterise permafrost occurrences and to monitor their changes as the physical properties of frozen and unfrozen ground measured by geophysical techniques are markedly different. In recent years, electromagnetic, seismic but especially electrical methods have been used to continuously monitor permafrost occurrences and to detect long-term changes within the active layer and regarding the ice content within the permafrost layer. On the other hand, coupled transient thermal/hydraulic models are used to predict the evolution of permafrost occurrences under different climate change scenarios. These models rely on suitable validation data for a certain observation period, which is usually restricted to data sets of ground temperature and active layer depth. Very important initialisation and validation data for permafrost models are, however, ground ice content and unfrozen water content in the active layer. In this contribution we will present a geophysical monitoring application to estimate ice and water content and their evolution in time at a permafrost station in

  9. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  10. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  11. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.

  12. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    PubMed Central

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151

  13. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    NASA Astrophysics Data System (ADS)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-02-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  14. Potential microbial contamination during sampling of permafrost soil assessed by tracers.

    PubMed

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S

    2017-02-23

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  15. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  16. Analysis of permafrost depths on Mars

    NASA Technical Reports Server (NTRS)

    Crescenti, G. H.

    1984-01-01

    The Martian surface thermal characteristics as they effect the thickness and distribution of the permafrost are discussed. Parameters such as temperature mean, maximum, and minimum, heat flow values, and damping depths are derived and applied to a model of the Martian cryosphere. A comparison is made between the permafrost layers of Earth and Mars.

  17. Geomorphological and geochemistry changes in permafrost after the 2002 tundra wildfire in Kougarok, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Iwahana, Go; Harada, Koichiro; Uchida, Masao; Tsuyuzaki, Shiro; Saito, Kazuyuki; Narita, Kenji; Kushida, Keiji; Hinzman, Larry D.

    2016-09-01

    Geomorphological and thermohydrological changes to tundra, caused by a wildfire in 2002 on the central Seward Peninsula of Alaska, were investigated as a case study for understanding the response from ice-rich permafrost terrain to surface disturbance. Frozen and unfrozen soil samples were collected at burned and unburned areas, and then water isotope geochemistry and cryostratigraphy of the active layer and near-surface permafrost were analyzed to investigate past hydrological and freeze/thaw conditions and how this information could be recorded within the permafrost. The development of thermokarst subsidence due to ice wedge melting after the fire was clear from analyses of historical submeter-resolution remote sensing imagery, long-term monitoring of thermohydrological conditions within the active layer, in situ surveys of microrelief, and geochemical signals recorded in the near-surface permafrost. The resulting polygonal relief coincided with depression lines along an underground ice wedge network, and cumulative subsidence to 2013 was estimated as at least 10.1 to 12.1 cm (0.9-1.1 cm/year 11 year average). Profiles of water geochemistry in the ground indicated mixing or replenishment of older permafrost water with newer meteoric water, as a consequence of the increase in active layer thickness due to wildfire or past thaw event. Our geocryological analysis of cores suggests that permafrost could be used to reconstruct the permafrost degradation history for the study site. Distinct hydrogen and oxygen isotopic compositions above the Global Meteoric Water Line were found for water from these sites where permafrost degradation with geomorphological change and prolonged surface inundation were suggested.

  18. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones.

    PubMed

    Olefeldt, David; Turetsky, Merritt R; Crill, Patrick M; McGuire, A David

    2013-02-01

    Methane (CH4 ) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil

  19. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

    USGS Publications Warehouse

    Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.; McGuire, A. David

    2013-01-01

    Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil

  20. Exploring active layer thaw depth and water content dynamics with multi-channel GPR

    NASA Astrophysics Data System (ADS)

    Wollschlaeger, U.; Gerhards, H.; Westermann, S.; Pan, X.; Boike, J.; Schiwek, P.; Yu, Q.; Roth, K.

    2011-12-01

    In permafrost landscapes, the active layer is the highly dynamic uppermost section of the ground where many important hydrological, biological and geomorphological processes take place. Active layer hydrological processes are controlled by many different factors like thaw depth, soil textural properties, vegetation, and snow cover. These may lead to complex runoff patterns that are difficult to estimate from point measurements in boreholes. New multi-channel GPR systems provide the opportunity to non-invasively estimate reflector depth and average volumetric water content of distinct soil layers over distances ranging from some ten meters up to a few kilometers. Due to the abrupt change in dielectric permittivity between frozen and unfrozen ground, multi-channel GPR is a valuable technique for mapping the depth of the frost table along with the volumetric water content of the active layer without the need of laborious drillings or frost probe measurements. Knowing both values, the total amount of water stored in the active layer can be determined which may be used as an estimate of its latent heat content. Time series of measurements allow spatial monitoring of the progression of the thawing front. Multi-channel GPR thus offers new opportunities for monitoring active layer hydrological processes. This presentation will provide a brief introduction of the multi-channel GPR evaluation technique and will present different applications from several permafrost sites.

  1. Advances in permafrost and periglacial research in Antarctica: A review

    NASA Astrophysics Data System (ADS)

    Guglielmin, Mauro

    2012-06-01

    Recently the research on permafrost, periglacial morphology and processes had a great stimulus especially from the International Polar Year. Permafrost areas of continental Antarctica with its extreme dry and cold environment can be considered an analog of extraterrestrial landscapes like those on Mars, but also preserve much paleoclimatic information of this crucial part of the global climatic system. On the other hand, maritime Antarctica is one of the areas of the world currently affected by the greatest air warming and provides a unique opportunity to understand the impacts of climate change on permafrost and its related ecosystems. Despite the significant recent progress, some gaps on permafrost distribution still remain as the network for permafrost and active layer monitoring needs further enlargement and better standardization. Ground ice, its age and stability over time need further investigation, as well as the role of living organisms on the weathering processes within the cryotic rocks, the landscape evolution of continental Antartica could be improved providing potential implications also for a better understanding and modeling of life and landscape evolution of other planets.

  2. Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock

    NASA Astrophysics Data System (ADS)

    Krautblatter, Michael; Draebing, Daniel

    2014-02-01

    permafrost in steep rock walls can cause hazardous rock creep and rock slope failure. Spatial and temporal patterns of permafrost degradation that operate at the scale of instability are complex and poorly understood. For the first time, we used P wave seismic refraction tomography (SRT) to monitor the degradation of permafrost in steep rock walls. A 2.5-D survey with five 80 m long parallel transects was installed across an unstable steep NE-SW facing crestline in the Matter Valley, Switzerland. P wave velocity was calibrated in the laboratory for water-saturated low-porosity paragneiss samples between 20°C and -5°C and increases significantly along and perpendicular to the cleavage by 0.55-0.66 km/s (10-13%) and 2.4-2.7 km/s (>100%), respectively, when freezing. Seismic refraction is, thus, technically feasible to detect permafrost in low-porosity rocks that constitute steep rock walls. Ray densities up to 100 and more delimit the boundary between unfrozen and frozen bedrock and facilitate accurate active layer positioning. SRT shows monthly (August and September 2006) and annual active layer dynamics (August 2006 and 2007) and reveals a contiguous permafrost body below the NE face with annual changes of active layer depth from 2 to 10 m. Large ice-filled fractures, lateral onfreezing of glacierets, and a persistent snow cornice cause previously unreported permafrost patterns close to the surface and along the crestline which correspond to active seasonal rock displacements up to several mm/a. SRT provides a geometrically highly resolved subsurface monitoring of active layer dynamics in steep permafrost rocks at the scale of instability.

  3. Application of a simple first-order, non-linear rainfall-runoff model in watersheds of varying permafrost coverage

    NASA Astrophysics Data System (ADS)

    Bolton, W. Robert; Hinzman, Larry

    2010-05-01

    The arctic and sub-arctic environments can be characterized as being in the zones continuous and discontinuous permafrost. Although the distribution of permafrost in these regions is site specific, it is the major control on many of the hydrologic processes including stream flow, soil moisture dynamics, and water storage processes. In areas underlain by permafrost, ice-rich soils a the permafrost table inhibit surface water percolation to the deep subsurface soils, resulting in an increased runoff generation during precipitation events (including snow melt), decreased baseflow between precipitation events, and relatively wetter soils compared to permafrost-free areas. Over the course of a summer season, the thawing of the active layer (the thin soil layer above the permafrost that seasonally freezes and thaws) increases the potential water holding capacity of the soil, resulting in a decreasing surface water contribution during precipitation events and a steadily increasing baseflow between precipitation events. The major challenge to hydrologic modeling in permafrost affected environments is accounting for the rapid spatial and temporal changes in the soil storage component with the thawing and freezing of the active layer and distribution of permafrost. Simulation of the storage storage component is further complicated as many of the variables that control the development of the active layer (and permafrost distribution) are not easily measurable beyond the point scale. Examples of these variables include soil material, soil moisture content, soil ice content, snow cover and depth, and surface temperature. Kirchner (2009) describes a method in which the total storage of a watershed can be derived directly from discharge measurements - the only hydrologic process that is easily measured at the watershed scale. Following the general procedure outlined by Kirchner, a simple rainfall-runoff model was developed and applied to basins of various scales and permafrost

  4. Permafrost and Climate Change in Nunavik and Nunatsiavut: Importance for Municipal and Transportation Infrastructures

    NASA Astrophysics Data System (ADS)

    Lemay, M.; Allard, M.

    2011-12-01

    Permafrost degradation is seriously affecting the natural environment. The landscape is changing through thermokarst that takes place mostly in the discontinuous permafrost zone and through increased active layer depth and more frequent slope processes in the continuous zone. Northern residents are affected as vegetation, water bodies and soil drainage are greatly modified, which has an impact on resources traditionally available for humans such as berries that are shaded in the understory of shrubs that expand in thermokarst hollows. The modern built environment is particularly affected. Essential transportation infrastructures are being studied and adaptive solutions are sought, applied and tested. To protect and optimize the major investments required for extensive housing and construction, the urban planning of communities calls upon better permafrost maps and prediction of permafrost behavior. Final permafrost degradation around 0°C appears to be in great part under the influence of unfrozen water contents and heat brought at the thawing interface by groundwater. This process is also effective in accelerating localized thawing under human infrastructures. Collection and organization of permafrost information in geographic information systems (GIS) allows the integration of essential knowledge and provide very useful tools for sharing information with stakeholders and communities, for establishing diagnostics of situations and for supporting multidisciplinary decision making for land use planning. The principal adaptive measures lie in adapting foundations types to mapped permafrost conditions to ensure a prolonged service life of buildings.

  5. ESA DUE Permafrost: Evaluation of remote sensing derived products using ground data from the Global Terrestrial Network of Permafrost (GTN-P)

    NASA Astrophysics Data System (ADS)

    Elger, K. K.; Heim, B.; Lantuit, H.; Boike, J.; Bartsch, A.; Paulik, C.; Duguay, C. R.; Hachem, S.; Soliman, A. S.

    2011-12-01

    The task of the ESA DUE Permafrost project is to build up an Earth observation service for high-latitudinal permafrost applications with extensive involvement of the permafrost research community. The DUE Permafrost products derived from remote sensing are land surface temperature (LST), surface soil moisture (SSM), surface frozen and thawed state (freeze/ thaw), terrain, land cover, and surface waters. Weekly and monthly averages for most of the DUE Permafrost products will be made available for the years 2007-2010. The DUE Permafrost products are provided for the circumpolar permafrost area (north of 55°N) with 25 km spatial resolution. In addition, regional products with higher spatial resolution (300-1000 m/ pixel) were developed for five case study regions. These regions are: (1) the Laptev Sea and Eastern Siberian Sea Region (RU, continuous very cold permafrost/ tundra), (2) the Yakutsk Region (RU, continuous cold permafrost/ taiga), (3) the Western Siberian transect including Yamal Peninsula and Ob Region (RU, continuous to discontinuous/ taiga-tundra), (4) the Alaska Highway Transect (US, continuous to discontinuous/ taiga-tundra), and (5) the Mackenzie Delta and Valley Transect (CA, continuous to discontinuous/ taiga-tundra). The challenge of the programme is to adapt remote sensing products that are well established and tested in agricultural low and mid-latitudinal areas for highly heterogeneous taiga/ tundra permafrost landscapes in arctic regions. Ground data is essential for the evaluation of DUE Permafrost products and is provided by user groups and global networks. A major part of the DUE Permafrost core user group is contributing to GTN-P, the Global Terrestrial Network of Permafrost. Its main programmes, the Circumpolar Active Layer Monitoring (CALM) and the Thermal State of Permafrost (TSP) have been thoroughly overhauled during the last International Polar Year (2007-2008). Their spatial coverage has been extended to provide a true circumpolar

  6. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange

    USGS Publications Warehouse

    Hayes, Daniel J.; Kicklighter, David W.; McGuire, Anthony; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.

  7. Drivers and Estimates of Terrain Suitability for Active Layer Detachment Slides and Retrogressive Thaw Slumps in the Brooks Range and Foothills of Northwest Alaska, USA

    NASA Astrophysics Data System (ADS)

    Balser, A.; Jones, J.

    2015-12-01

    Active layer detachment sliding and retrogressive thaw slumping are important modes of upland permafrost degradation and disturbance in permafrost regions, and have been linked with climate warming trends, ecosystem impacts, and permafrost carbon release. In the Brooks Range and foothills of northwest Alaska, these features are widespread, with distribution linked to multiple landscape properties. Inter-related and co-varying terrain properties, including surficial geology, topography, geomorphology, vegetation and hydrology, are generally considered key drivers of permafrost landscape characteristics and responses to climate perturbation. However, these inter-relationships as collective drivers of terrain suitability for active layer detachment and retrogressive thaw slump processes are poorly understood in this region. We empirically tested and refined a hypothetical model of terrain factors driving active layer detachment and retrogressive thaw slump terrain suitability, and used final model results to generate synoptic terrain suitability estimates across the study region. Spatial data for terrain properties were examined against locations of 2,492 observed active layer detachments and 805 observed retrogressive thaw slumps using structural equation modelling and integrated terrain unit analysis. Factors significant to achieving model fit were found to substantially hone and constrain region-wide terrain suitability estimates, suggesting that omission of relevant factors leads to broad overestimation of terrain suitability. Resulting probabilistic maps of terrain suitability, and a threshold-delineated mask of suitable terrain, were used to quantify and describe landscape settings typical of these features. 51% of the study region is estimated suitable terrain for retrogressive thaw slumps, compared with 35% for active layer detachment slides, while 29% of the study region is estimated suitable for both. Results improve current understanding of arctic landscape

  8. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  9. Epigenetic Salt Accumulation and Water Movement in the Active Layer of Central Yakutia in Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Lopez Caceres, M.; Brouchkov, A.; Nakayama, H.; Takakai, F.; Fedorov, A.; Fukuda, M.

    2005-12-01

    Observations of soil moisture and salt content were conducted from May to August at Neleger station in Eastern Siberia. Seasonal changes of salt and soil moisture distribution in the active layer of larch forest (undisturbed) and a thermokarst depression known as alas (disturbed) were studied. Electric conductivity (ECe) of the intact forest revealed higher concentrations that increased with depth from the soil surface into the active layer and the underlying permafrost, 1 mS cm-1 at 1.1m to 2.6 mS cm-1 at 160 cm depth in the permafrost. However, maximum value of 5.4 mS cm-1 at 0.6 m depth was found in the dry area of alas. The concentration of ions, especially Na+, Mg2+, Ca2+, SO42-as well as HCO3- in the upper layers of this long-term disturbed site indicates the upward movement of ions together with water. Higher concentration of solutes was found in profiles with deeper seasonal thawing. The accumulation of salts in alas occurs from spring through the growing season. The low concentration of salt in the surface soil layers appears to be linked to leaching of salts by rainfall. There are substantial differences between water content and electric conductivity of soil in forest and alas. Modern salinization of the active layer in alas is epigenetic, and it happens in summer as a result of spring water collection and high summer evaporation; the gradual salt accumulation in alas in comparison to forest is controlled by annual balance of water and salts in the active layer. Present climatic trends point to continuous permafrost degradation in eastern Siberia increasing the risk of surface salinization which has already contributed to change the landscape by hindering the growth of forests.

  10. Epigenetic salt accumulation and water movement in the active layer of central Yakutia in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Lopez, C. M. Larry; Brouchkov, A.; Nakayama, H.; Takakai, F.; Fedorov, A. N.; Fukuda, M.

    2007-01-01

    Observations of soil moisture and salt content were conducted from May to August at Neleger station in eastern Siberia. Seasonal changes of salt and soil moisture distribution in the active layer of larch forest (undisturbed) and a thermokarst depression known as an alas (disturbed) were studied. Electric conductivity ECe of the intact forest revealed higher concentrations that increased with depth from the soil surface into the active layer and the underlying permafrost: 1 mS cm-1 at 1.1 m, to 2.6 mS cm-1 at 160 cm depth in the permafrost. However, a maximum value of 5.4 mS cm-1 at 0.6 m depth was found in the dry area of the alas. The concentration of ions, especially Na+, Mg2+, Ca2+, SO42- and HCO3- in the upper layers of this long-term disturbed site, indicates the upward movement of ions together with water. A higher concentration of solutes was found in profiles with deeper seasonal thawing. The accumulation of salts in the alas occurs from spring through into the growing season. The low concentration of salt in the surface soil layers appears to be linked to leaching of salts by rainfall. There are substantial differences between water content and electric conductivity of soil in the forest and alas. Modern salinization of the active layer in the alas is epigenetic, and it happens in summer as a result of spring water collection and high summer evaporation; the gradual salt accumulation in the alas in comparison with the forest is controlled by the annual balance of water and salts in the active layer. Present climatic trends point to continuous permafrost degradation in eastern Siberia increasing the risk of surface salinization, which has already contributed to changing the landscape by hindering the growth of forest. Copyright

  11. A chronology of Late-Pleistocene permafrost events in southern New Jersey, eastern USA

    USGS Publications Warehouse

    French, H.M.; Demitroff, M.; Forman, S.L.; Newell, W.L.

    2007-01-01

    Frost fissures, filled with wind-abraded sand and mineral soil, and numerous small-scale non-diastrophic deformations, occur in the near-surface sediments of the Pine Barrens of southern New Jersey. The fissures are the result of thermal-contraction cracking and indicate the previous existence of either permafrost or seasonally-frozen ground. The deformations reflect thermokarst activity that occurred when permafrost degraded, icy layers melted and density-controlled mass displacements occurred in water-saturated sediments. Slopes and surficial materials of the area reflect these cold-climate conditions. Optically-stimulated luminescence permits construction of a tentative Late-Pleistocene permafrost chronology. This indicates Illinoian, Early-Wisconsinan and Late-Wisconsinan episodes of permafrost and/or deep seasonal frost and a Middle-Wisconsinan thermokarst event. Copyright ?? 2007 John Wiley & Sons, Ltd.

  12. Past permafrost on the Mid-Atlantic coastal plain, eastern United States

    USGS Publications Warehouse

    French, H.; Demitroff, M.; Newell, W.L.

    2009-01-01

    Sand-wedge casts, soil wedges and other non-diastrophic, post-depositional sedimentary structures suggest that Late-Pleistocene permafrost and deep seasonal frost on the Mid-Atlantic Coastal Plain extended at least as far south as southern Delaware, the Eastern Shore and southern Maryland. Heterogeneous cold-climate slope deposits mantle lower valley-side slopes in central Maryland. A widespread pre-existing fragipan is congruent with the inferred palaeo-permafrost table. The high bulk density of the fragipan was probably enhanced by either thaw consolidation when icy permafrost degraded at the active layer-permafrost interface or by liquefaction and compaction when deep seasonal frost thawed. ?? 2009 John Wiley & Sons, Ltd.

  13. Terrestrial Permafrost Models of Martian Habitats and Inhabitants

    NASA Astrophysics Data System (ADS)

    Gilichinsky, D.

    2011-12-01

    The terrestrial permafrost is the only rich depository of viable ancient microorganisms on Earth, and can be used as a bridge to possible Martian life forms and shallow subsurface habitats where the probability of finding life is highest. Since there is a place for water, the requisite condition for life, the analogous models are more or less realistic. If life ever existed on Mars, traces might have been preserved and could be found at depth within permafrost. The age of the terrestrial isolates corresponds to the longevity of the frozen state of the embedding strata, with the oldest known dating back to the late Pliocene in Arctic and late Miocene in Antarctica. Permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Such a difference in time scale would have a significant impact on the possibility of preserving life on Mars, which is why the longevity of life forms preserved within terrestrial permafrost can only be an approximate model for Mars. 1. A number of studies indicate that the Antarctic cryosphere began to develop on the Eocene-Oligocene boundary, after the isolation of the continent. Permafrost degradation is only possible if mean annual ground temperature, -28°C now, rise above freezing, i.e., a significant warming to above 25°C is required. There is no evidence of such sharp temperature increase, which indicates that the climate and geological history was favorable to persistence of pre-Pliocene permafrost. These oldest relics (~30Myr) are possibly to be found at high hypsometric levels of ice-free areas (Dry Valleys and nearby mountains). It is desirable to test the layers for the presence of viable cells. The limiting age, if one exists, within this ancient permafrost, where the viable organisms were no longer present, could be established as the limit for life preservation below 0oC. Positive results will extend the known temporal limits of life in permafrost. 2. Even in this case, the age of

  14. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  15. Pedogenesis and Permafrost Carbon Over the Eboling Ridge in Heihe River Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Mu, C.; Zhang, T.; Cao, B.; Wang, Q.; Peng, X.; Cheng, G.

    2013-12-01

    Based on field permafrost sampling and laboratory analysis, we found that the average storages of soil organic carbon (SOC), total nitrogen (TN) and soil inorganic carbon (SIC) in permafrost soils were much more than that in the active layer on the Eboling Mountain in the upper reach of Heihe River basin, northwestern China. The objective of this study is to better understand the main soil physicochemical parameters influencing C and N dynamics in permafrost regions of northwestern China. Specifically, we investigated the effect of pedogenesis, cryogenic structure and SIC on SOC, TN and water-soluble organic carbon (WSOC) in the permafrost regions. The preliminary results show that SIC is a significant factor influencing carbon flux between atmosphere and terrestrial ecosystem and the distribution patterns of SOC and N. There are high correlation between SIC, SOC and N in permafrost. SOC and SIC can interact with each other, their small change may radically alter the carbon balance. SIC as a major factor will be crucial for developing large scale models evaluating C and N dynamics. High contents of C and N combined with a low vertical variability in each horizon on the Eboling Mountain can be explained by longer duration of pedogenesis and the influence of permafrost. In permafrost regions, the vertical distribution of soil C and N is also influenced by soil cryogenic structure. The high content of WSOC in deep permafrost soils can be explained by the formation of the ground ice causes the WSOC enrichment followed moisture migration. The average WSOC content in permafrost soils was larger than that in the active layer, suggesting that the labile carbon in permafrost soils has higher quality. SIC can reflect the microbial activity indirectly, due to the good negative relationship between SIC, soil pH and C/N ratios in permafrost. Soil pH values were the important factor influencing the distribution of SIC in deep permafrost soils. SIC in permafrost soils was

  16. Permafrost controls on soil C storage and turnover in upland black spruce ecosystems of interior Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Harden, J. W.; Romanovsky, V. E.; Kanevskiy, M. Z.; Jorgenson, T.; Xu, X.; Ewing, S. A.; McGuire, D.; Shur, Y.

    2009-12-01

    Permafrost soils in northern latitudes have functioned as important reservoirs for organic carbon (OC) since the last glacial maximum. In particular, the formation of permafrost through syngenetic processes (e.g. aeolian loess deposition) allows for high rates of OC burial and stabilization. Recent warming at northern latitudes has resulted in warming and thawing of permafrost in many regions, which may mobilize OC stocks from deep soil reservoirs via decomposition, leaching or erosion. Furthermore, in the boreal region, increased wildfire frequency and severity may promote rapid permafrost thaw and soil OC loss from forested ecosystems. Release of OC stocks from permafrost as carbon dioxide or methane may function as a strong positive feedback to atmospheric warming. Here, we examine patterns of OC storage in active layer and permafrost soils across a fire chronosequence of upland black spruce stands near Hess Creek, interior Alaska. Our research objective was to evaluate how post-fire changes in organic horizon thickness and consequently, changes in active layer thickness, influence rates of OC turnover in deep mineral soil. We used a finite-difference numerical model (GIPL2) to simulate permafrost dynamics and a steady-state radiocarbon model to estimate carbon turnover. To calibrate the permafrost model, we monitored soil temperature, soil moisture, snow depth, and active layer thickness at four sites across the fire chronosequence. To evaluate soil carbon dynamics, we measured OC stocks and radiocarbon inventories from zero to two meters below the ground surface across the chronosequence. Preliminary results from field observations and model runs indicate that active layer thickness was closely linked to fire severity, as reflected by organic horizon thickness. Total carbon storage to two meters averaged 35 ± 6 kg m-2 across the chronosequence, with between 42 and 67 % of these stocks below the permafrost table. Radiocarbon ages of soil OC at two meters

  17. Climate Change, Degradation of Permafrost, and Hazards to Infrastructure in the Circumpolar Arctic.

    NASA Astrophysics Data System (ADS)

    Anisimov, O.

    2001-12-01

    Warming, thawing and disappearance of permafrost have accelerated in recent decades damaging engineered structures and raising public concerns. By the middle of the 21st century anthropogenic climate change may cause 2 to 3 C warming of the frozen ground, 10% to 16% reduction of the total permafrost area, 30% to 50% deepening of the active-layer thickness, and shifts between the permafrost zones due to cumulative effect of changing surface temperature, soil moisture, and vegetation. Such changes will have important implications for northern engineering and infrastructure built upon permafrost. The foundations supporting engineered structures are designed for the constant climatic conditions with construction-specific safety factor, which in the practice of the cold-region engineering varies typically from 5% to 60% with respect to the bearing capacity. In the zone of discontinuous permafrost a 2.0 C rise in air temperature may decrease the bearing capacity of frozen ground under buildings by more than a half. This may have important consequences for the infrastructure and particularly for residential buildings constructed in the permafrost zone between 1950 and 1990 in northern Russian cities Vorkuta, Yakytsk, Norylsk, and Magadan. Many of them are already weakened or damaged, which may in part be attributed to the effect of climate change. Susceptibility of permafrost to environmental hazards associated with thermokarst, ground settlement, and other destructive cryogenic processes may be crudely evaluated using the geocryological hazard index, which is the combination of the predicted for the future climate relative change in the active-layer thickness and the ground ice content. Predictive maps constructed for scenarios of climate change indicated that several population centers (Barrow, Inuvik), river terminals on the arctic coast of Russia (Salekhard, Igarka, Dudinka, Tiksi), and gas production complexes with associated infrastructure in northwest Siberia fall

  18. International Field School on Permafrost, Polar Urals, 2012

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the

  19. International Permafrost Field Courses in Siberia: the Synthesis of Research and Education

    NASA Astrophysics Data System (ADS)

    Ablyazina, D.; Boitsov, A.; Grebenets, V.; Kaverin, D.; Klene, A.; Kurchatova, A.; Pfeiffer, E. M.; Zschocke, A.; Shiklomanov, N.; Streletskiy, D.

    2009-04-01

    During summers of 2007 and 2008 a series of International University Courses on Permafrost (IUCP) were conducted in West Siberia, Russia. Courses were organized as part of the International Permafrost Association (IPA) International Polar Year activities. The North of West Siberia region was selected to represent diverse permafrost, climatic and landscape conditions. The courses were jointly organized by the Moscow State University (MSU) and the Tumen' Oil and Gas University (TOGU) with the help from German and U.S. institutions. The program attracted undergraduate and graduate students with diverse interests and backgrounds from Germany, Russia and the U.S. and involved instructors specializing in different aspects of permafrost research. Courses were designed to address three major topics of permafrost-related research: a) permafrost environments characteristic of the discontinuous and continuous zones; b) field instrumentation and techniques; c) permafrost engineering and problems of development in permafrost regions. Methodologically, courses consisted of systematic permafrost investigations at long-term monitoring sites and survey-type expeditions. Systematic, process-based investigations were conducted at a network of sites which constitute the TEPO established by TOGU in collaboration with the gas company NadymGasProm. The observation complex includes an array of 30-m deep boreholes equipped with automatic data collection systems and representing characteristic permafrost landscapes of West Siberia. Boreholes are complemented by sites for snow cover, vegetation, soil, ground ice, and geomorphologic investigations. As part of student research activities, four new Circumpolar Active Layer Monitoring (CALM) sites were established in proximity to boreholes for monitoring spatial distribution and long-term dynamic of the active layer. New sites represent diverse landscapes characteristic of the West Siberian previously underrepresented in the CALM network

  20. Spatio-temporal modeling of Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Apanasovich, T. V.; Streletskiy, D. A.; Shiklomanov, N. I.

    2015-12-01

    Arctic Regions are experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climate and environmental changes and plays an important role in the functioning of Arctic ecosystems, planning, and economic activities. Knowledge about spatio-temporal variability of ALT is crucial for environmental and engineering applications. The objective of this study is to provide the methodology to model and estimate spatio-temporal variation in the active layer thickness (ALT) at several sites located in the Circumpolar region spanning the Alaska North Slope, and to demonstrate its use in spatio-temporal interpolation as well as time-forward prediction. In our data analysis we estimate a parametric trend and examine residuals for the presence of spatial and temporal dependence. We propose models that provide a description of residual space-time variability in ALT. Formulations that take into account interaction among spatial and temporal components are also developed. Moreover, we compare our models to naive models in which residual spatio-temporal and temporal correlations are not considered. The predicted root mean squared and absolute errors are significantly reduced when our approach is employed. While the methodology is developed in the context of ALT, it can also be applied to model and predict other environmental variables which use similar spatio-temporal sampling designs.

  1. Deception island, Antarctica: a terrestrial analogue for the study and understanding of the martian permafrost and subsurface glaciers

    NASA Astrophysics Data System (ADS)

    Hernandez de Pablo, M. A.; Ramos, M.; Vieira, G.; Gilichinsky, D.; Gómez, F.; Molina, A.; Segovia, R.

    2009-04-01

    The existence of permafrost on Mars was widely studied since Viking era and its presence is fundamental in the understanding of the water-cycle, the geological history of Mars, and the evolution of the martian hydrosphere. Viking, MOC, THEMIS, HRSC and HiRISE images allowed increase our knowledge about the role of ice on the martian landscapes. Polygonal terrains, glacial-like features, "basketball terrain" or pingos are some of the landforms that reveal the existence of frozen ice near the surface and in the ground forming the martian permafrost on present, recent or ancient times. The field observations and analyses done by Phoenix mission seem to confirm the existence of the martian permafrost hypothesized by the analyses of the images acquired by the previous missions to Mars. Moreover, the recent interpretations of the (RADAR) sensor on board of MRO mission also revealed that the surface of Mars seems to cover an important volume of ice forming glaciers covered by different materials. Here we propose the study of the glaciers and permafrost of Deception Island (Antarctica) such as a terrestrial analogue of the glaciers and permafrost of Mars. This active volcanic island is an exceptional site to study the permafrost since the climatic conditions maintain the surface covered by the ice and snow during the main part of the year. This characteristic allows the existence of an important permafrost layer also during the summer, and permanent glaciers in the higher part of the island. In addition, Deception Island is an active volcano. Some of the glaciers are covered by the ash and tephra what made difficult to distinguish between the covered glacier and the permafrost. The eruptive volcanic materials could have similar characteristics than some martian regolith by lithology, granulometry and texture. In this way, the study of the permafrost and glaciers in Deception Island could help to understand the martian permafrost and glaciers at present. On the other hand

  2. Active layer dynamics in three sites with contrasted topography in the Byers Peninsula (Livingston Island, Antarctica)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Ruiz-Fernández, Jesús; Vieira, Gonçalo

    2015-04-01

    Topography exerts a key role on permafrost distribution in areas where mean annual temperatures are slightly negative. This is the case of low-altitude environments in Maritime Antarctica, namely in the South Shetland Islands, where permafrost is marginal to discontinuous until elevations of 20-40 m asl turning to continuous at higher areas. Consequently, the active layer dynamics is also strongly conditioned by the geomorphological setting. In January 2014 we installed three sites for monitoring the active layer dynamics across the Byers Peninsula (Livingston Island, South Shetland Islands) in different geomorphological environments at elevations between 60 and 100 m. The purpose was to examine the role of the topography and microclimatic conditions on the active layer dynamics. At each site a set of loggers was set up to monitor: air temperatures, snow thickness, ground temperatures until 80 cm together with the coupling atmosphere-ground temperatures. During the first year of monitoring the mean annual air temperatures show similar values in the three sites, in all cases slightly below freezing. The snowy conditions during this year in this archipelago have resulted in a late melting of snow, which has also conditioned the duration of frozen conditions in the uppermost soil layers. Topography has a strong influence on snow cover duration, which in turn affects frozen ground conditions. The Domo site is located in a higher position with respect to the central plateau of Byers; here, the wind is stronger and snow cover thinner, which has conditioned a longer thawing season than in the other two sites (Cerro Negro, Escondido). These two sites are located in topographically protected areas favouring snow accumulation. The longer persistence of snow conditions a longer duration of negative temperatures in the active layer of the permafrost. This research was financially supported by the HOLOANTAR project (Portuguese Science Foundation) and the AXA Research Fund.

  3. Improved simulation of the current state of high-latitude permafrost soils

    NASA Astrophysics Data System (ADS)

    Ekici, Altug; Beer, Christian; Hauck, Christian; Boike, Julia; Hagemann, Stefan; Blome, Tanja

    2013-04-01

    Changes in the high latitude environmental conditions have received much attention in recent years. Amplified atmospheric warming, increasing permafrost temperatures, deepening active layer thicknesses, accelerated melting of glaciers and changes in river runoff trends point to a wide scale alteration of the northern circum polar region climate system. These regions are underlain by 26 million km2 of permafrost soils where the organic matter is locked away in subzero conditions. Vast amounts of organic matter within these permafrost areas bring the threat of a prolonged climate forcing from the greenhouse gases that can be released from the thawed soils in case of permafrost degradation. The fate of the permafrost state and its effects on global biogeochemical cycles are not clear in model simulations due to complex feedback mechanisms and the lack of validation datasets. To clarify the future behavior of the permafrost regions under a changing climate, a new version of the JSBACH biogeochemical land surface model is developed to include cold regions specific processes and to better represent the physical conditions in permafrost areas. Improvements include: incorporating freeze/thaw processes, coupling thermal and hydrological calculations, defining a multi layer snow scheme and moss cover to provide the heat insulation for the soil. Multi scale validation of this process based land surface model is carried out and the model performance is elaborately presented. The comparisons with the observational datasets show that the new model version is able to capture the key processes in the permafrost regions. Site level tests demonstrate that the soil temperature profiles are accurately represented. On the global scale, a good match with the permafrost extent is observed. Comparisons with the active layer thickness (CALM) and deep soil temperature (borehole) datasets point to the robustness and some shortcomings of the model structure. Although the new model version can

  4. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring.

    PubMed

    Lamarche-Gagnon, Guillaume; Comery, Raven; Greer, Charles W; Whyte, Lyle G

    2015-01-01

    The lost hammer (LH) spring perennially discharges subzero hypersaline reducing brines through thick layers of permafrost and is the only known terrestrial methane seep in frozen settings on Earth. The present study aimed to identify active microbial communities that populate the sediments of the spring outlet, and verify whether such communities vary seasonally and spatially. Microcosm experiments revealed that the biological reduction of sulfur compounds (SR) with hydrogen (e.g., sulfate reduction) was potentially carried out under combined hypersaline and subzero conditions, down to -20 °C, the coldest temperature ever recorded for SR. Pyrosequencing analyses of both 16S rRNA (i.e., cDNA) and 16S rRNA genes (i.e., DNA) of sediments retrieved in late winter and summer indicated fairly stable bacterial and archaeal communities at the phylum level. Potentially active bacterial and archaeal communities were dominated by clades related to the T78 Chloroflexi group and Halobacteria species, respectively. The present study indicated that SR, hydrogenotrophy (possibly coupled to autotrophy), and short-chain alkane degradation (other than methane), most likely represent important, previously unaccounted for, metabolic processes carried out by LH microbial communities. Overall, the obtained findings provided additional evidence that the LH system hosts active communities of anaerobic, halophilic, and cryophilic microorganisms despite the extreme conditions in situ.

  5. The Rate of Permafrost Carbon Release Under Aerobic and Anaerobic Decomposition

    NASA Astrophysics Data System (ADS)

    Lee, H.; Vogel, J. G.; Schuur, E. A.; Inglett, K. S.

    2008-12-01

    One of the ecological consequences caused by increased temperature in northern ecosystems is permafrost thawing. When ice-rich permafrost thaws, the land surface may develop lakes but could also drain, depending on the soil ice content and topographic position. More than 50% of terrestrial soil carbon is stored in the permafrost region, which may be subjected to faster decomposition due to permafrost thaw. As a result of thaw effects on hydrology, soil organic matter from permafrost may be deposited in an oxic or an anoxic environment after permafrost thaw. We tested how the oxygen status and soil substrate quality affect CO2 and CH4 emissions from permafrost soil by conducting laboratory soil incubation experiment. We measured CO2 emissions from aerobic incubations, and CO2 and CH4 from anaerobic incubations. Soil C to N ratios and enzyme activities (glucosidase, phosphatase, and aminopeptidase) were also analyzed to compare the organic matter quality of permafrost soils from different sites. The mass of C lost after 108 days of aerobic soil incubation ranged 0.06-7.98 mg C gdw-1 for mineral soil layers and 2.21-18.56 mg C gdw-1 for organic soil layers. In the anaerobic incubations, C loss in the form of CO2 emissions was 0.04-4.87 mg C gdw-1 while CH4 emissions were 0.00-0.23 mg C gdw- 1. The total C loss was about 3 times lower for the anaerobic soil incubations compared to the aerobic incubations. The carbon loss from CO2 emissions in aerobic incubation showed a linear relationship with C:N (R2=0.58). Overall, rates of C loss were 4-57 times higher in organic soils than mineral soils, which indicated the importance of substrate quality in the decomposition of permafrost carbon. The initial soil enzyme activities were higher in organic soils as compared to mineral soils for all the enzymes tested. Aminopeptidase activity was linearly correlated with C to N ratio (R2=0.78) and both phosphatase and glucosidase were exponentially correlated with %C (R2

  6. Advancement toward coupling of the VAMPER permafrost model within the Earth system model iLOVECLIM (version 1.0): description and validation

    NASA Astrophysics Data System (ADS)

    Kitover, D. C.; van Balen, R.; Roche, D. M.; Vandenberghe, J.; Renssen, H.

    2015-05-01

    The VU Amsterdam Permafrost (VAMPER) permafrost model has been enhanced with snow thickness and active layer calculations in preparation for coupling within the iLOVECLIM Earth system model of intermediate complexity (EMIC). In addition, maps of basal heat flux and lithology were developed within ECBilt, the atmosphere component of iLOVECLIM, so that VAMPER may use spatially varying parameters of geothermal heat flux and porosity values. The enhanced VAMPER model is validated by comparing the simulated modern-day extent of permafrost thickness with observations. To perform the simulations, the VAMPER model is forced by iLOVECLIM land surface temperatures. Results show that the simulation which did not include the snow cover option overestimated the present permafrost extent. However, when the snow component is included, the simulated permafrost extent is reduced too much. In analyzing simulated permafrost depths, it was found that most of the modeled thickness values and subsurface temperatures fall within a reasonable range of the corresponding observed values. Discrepancies between simulated and observed permafrost depth distribution are due to lack of captured effects from features such as topography and organic soil layers. In addition, some discrepancy is also due to disequilibrium with the current climate, meaning that some observed permafrost is a result of colder states and therefore cannot be reproduced accurately with constant iLOVECLIM preindustrial forcings.

  7. Is Thawing Permafrost as a Result of Global Warming a Possible Significant Source of Degradable Carbon for Microbiota Residing In Situ and in Arctic Rivers?

    NASA Astrophysics Data System (ADS)

    Zhu, E. Y.; Coolen, M. J.

    2008-12-01

    Northern high-latitude ecosystems contain about half of the world's soil carbon, most of which is stored in permanently frozen soil (permafrost). Global warming through the 21st century is expected to induce permafrost thaw, which will increase microbial organic matter (OM) decomposition and release large amounts of the greenhouse gasses methane and carbon dioxide into the atmosphere. In addition, Arctic rivers are a globally important source of terrestrial organic carbon to the ocean and further permafrost melting will impact surface runoff, directly affecting groundwater storage and river discharge. Up to now, it remains largely unknown to what extent the ancient OM stored in newly thawing permafrost can be consumed by microbes in situ or by microbes residing in Arctic rivers which become exposed to newly discharged permafrost OM. In addition, we know little about which microbes are capable of degrading permafrost OM. During a field trip to the Toolik Lake Arctic Long Term Ecological Research (LTER) field station in northern Alaska in August 2008, we cored permafrost located near the Kuparuk River down to 110 cm below the active layer (i.e. the top layer which melts each summer) and analyzed the initial microbial enzymatic cleavage of particulate OM (POM) stored in permafrost. Alkaline phosphatase activity remained fairly constant throughout the permafrost and was only one order of magnitude lower than in the active layer. The latter enzyme cleaves organic phosphoesters into phosphate, which could cause eutrophication of lakes and rivers via ground water discharge. Similar results were found for β-glucosidase, which cleaves cellobiose into glucose. This process could fuel heterotrophic bacteria to produce carbon dioxide which, in return, could be converted to the stronger greenhouse gas methane by methanogenic archaea. Leucine aminopeptidase activities, on the other hand, were highest in the top Sphagnum root layer and quickly dropped to below detection limit

  8. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Fisher, J. P.; Estop-Aragones, C.; Thierry, A.; Hartley, I. P.; Murton, J.; Charman, D.; Williams, M.

    2014-12-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence also the extent that permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed multiple plots across 4 sites of contrasting vegetation and fire status, including a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may

  9. Icy Satellites: Perpetual Permafrost

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Moore, J. M.

    2003-12-01

    The ice-rich moons of the outer solar system are worlds of perpetual permafrost. By analogy to the terrestrial roles of silicates and water ice, surface materials of these worlds commonly consist of components that are respectively refractory and volatile at local environmental conditions. We consider the physical properties, volatile components, and geomorphological characteristics of outer planet satellite surfaces and shallow regoliths as analogs to permafrost environments. Near-surface temperatures of ~40 to 165 K preclude melting of water-ice, except where endogenic activity has increased surface temperatures locally. However, water and/or more volatile ices can be transported in the vapor phase, and can liquefy in the deeper subsurface. In the water-ice-poor regolith of Io, SO2 and possibly H2S are volatile ices that can be transported in the vapor phase and can liquefy at depth, resulting in degradation and local collapse of the ground surface. Sublimation degradation is especially evident in images of Callisto, where slow diffusive loss of CO2 is the likely erosive agent. On Neptune's large moon Triton, nitrogen plays the role of a permafrost volatile, near its melting temperature in a regolith of more refractory ices. Most large icy satellites probably have water-rich subsurface oceans, and it has been proposed that Europa's subsurface ocean might sustain life. Frigid surface temperatures and severe charged particle radiation preclude near-surface metabolism, but organisms could potentially survive within deeper regions and local upwelling plumes that approach the ice melting temperature.

  10. A story of the permafrost small-scale collapse at the deciduous shrub patches in the northeast Siberian tundra

    NASA Astrophysics Data System (ADS)

    Li, Bingxi; Heijmans, Monique; Sass-Klaassen, Ute; Berendse, Frank

    2014-05-01

    The recent climate change is believed to accelerate the permafrost degradation in the arctic tundra. It also, meanwhile, drove the greening of the arctic (the expansion of the deciduous shrubs). The switch of the vegetation type might largely affect the local permafrost dynamics. Previous research indicated that the cover of deciduous shrubs mitigates the local permafrost degradation. From our observations, the active layer of permafrost at the deciduous shrub patch is normally the thinnest during the growing season. However, at our northeast Siberian tundra research site we also observed the drowning of shrubs due to small-scale permafrost collapse which happened in the shrub patches. This phenomenon is still far from understood. In this study we tried to explore the reasons that triggered these events. We hypothesized that the shrub cover can no longer protect the permafrost if dying of the oldest deciduous shrubs starts. Without sufficient shrub protection, the small-scale collapse of permafrost happens. Thus, we expected that the oldest deciduous shrub (in our study is dwarf birch Betula nana) individuals existed at small-scale permafrost collapse sites and the more younger stems appeared at the margin, compared with those at the center of the patches. The lack of long-term monitoring record increased the difficulties of the study. To achieve this target, a dendrochoronolgical method was implemented in this study, helping us measuring the shrub ages precisely. From the results of the study, we concluded that the dynamics of these patches were more complicated than our original hypotheses. Although there were some evidence supporting our expectation, the other results were against that. The vegetation dynamics of the B. nana patch probably was not the main reason of the local small-scale permafrost collapse. It was further implied that the local permafrost dynamics probably play a vital role on the patch dynamics in turn.

  11. Permafrost and Railroad Construction on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Zhang, T.

    2004-12-01

    The Qinghai-Xizang railroad is under construction on "The Roof of the World" --- the Tibetan Plateau, to be completed in 2007. The railroad will cross 550 km of permafrost region over the Tibetan Plateau, 50% of which is high-temperature permafrost and 37% of which is ice-rich permafrost. Predicted climate warming over the Tibetan Plateau in the coming decades would accelerate permafrost degradation. Surface disturbance due to the railroad construction would further destabilize permafrost conditions and seriously damage the ecosystem in the permafrost region. Thawing of warm permafrost over the Tibetan Plateau becomes one of the key issues in the cross-Plateau railroad construction. In this presentation, we will discuss techniques used to prevent permafrost from thawing due both to the climate warming and the surface disturbance of engineering construction. Although several techniques have been used over the Tibetan Plateau, application of crushed rock layer to cool permafrost and maintain permafrost stability is very successful at current stage although further observations are needed. We will also further demonstrate the principles of using the crushed rock layer to maintain permafrost based on data from field investigation, laboratory experiments, and numerical simulations.

  12. Nonlinear thermal and moisture dynamics of high Arctic wetland polygons following permafrost disturbance

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.; Lévesque, E.

    2015-07-01

    Low-centre polygonal terrain developing within gentle sloping surfaces and lowlands in the high Arctic have a potential to retain snowmelt water in their bowl-shaped centre and as such are considered high latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies are rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. While intact polygons were characterized by a relative homogeneity (topography, snow cover, maximum active layer thaw depth, ground moisture content, vegetation cover), eroded polygons had a non-linear response for the same elements following their perturbation. The heterogeneous nature of disturbed terrains impacts active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture and vegetation dynamics, carbon storage and terrestrial green-house gas emissions.

  13. Response of Permafrost to Anthropogenic Land Surface Disturbance near Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Astley, B. N.; Douglas, T. A.; Campbell, S.; Snyder, C.; Goggin, E.; Saari, S.

    2011-12-01

    Permafrost near Fairbanks Alaska is relatively warm (measured between -1 and 0°C in this study), and is thus highly susceptible to thawing following surface disturbance by land clearing or fire. The surface moss layer and other vegetation are important insulators for near-surface permafrost in the summer months. The removal of this insulation causes the seasonally thawed (active layer) depth to increase and eventually results in formation of taliks (thawed ground below the seasonally frozen active layer). We have been investigating the response of permafrost seasonal thaw depths and rates in soils commonly found around Fairbanks, Alaska following anthropogenic disturbances such as trails, roads, and large clearings. This information is useful to predict the impact of future disturbances on the permafrost landscape and on local ecology and aids in modeling permafrost stability under land that has already been cleared of vegetation. We combined direct current resistivity, ground-penetrating radar (GPR), and borehole data to evaluate permafrost top-down thawing at multiple locations in the Fairbanks area: on Fort Wainwright north of the Chena River, south of the Chena River within Yukon Training Area (YTA), and at the Farmer's Loop Permafrost Research Site. These sites were cleared of vegetation in the past and were selected to represent time since disturbance. The trails north of the Chena River were cleared in 1994 and were surveyed with GPR in 1994-1995, the YTA site was cleared around 1965, and the Farmer's Loop site was cleared in 1946. These sites represent varying types of soil including alluvial soils (containing sandy gravel capped with sandy silt) on Fort Wainwright and thick loess at Farmer's Loop Road. The YTA site does not contain deep borings for detailed stratigraphic interpretation, but hand auguring confirmed this site also contains thick loess at the surface. Resistivity data were used to discern taliks from permafrost and were compared to the 1994

  14. The new database of the Global Terrestrial Network for Permafrost (GTN-P)

    NASA Astrophysics Data System (ADS)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-09-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63 % metadata completeness at active layer sites and 50 % metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73 % are shallower than 25 m and 27 % are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global

  15. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra

    NASA Astrophysics Data System (ADS)

    Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Biasi, C.; Marushchak, M.; Martikainen, P.

    2016-05-01

    The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil-geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer-upper permafrost-underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50-90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.

  16. Satellite based permafrost modeling in low land tundra landscapes

    NASA Astrophysics Data System (ADS)

    Langer, M.; Westermann, S.; Heikenfeld, M.; Boike, J.

    2012-12-01

    For most of the cryosphere components such as glaciers, ice sheets, sea ice, and snow satellite monitoring and change detection is well established since several decades. For permafrost, however, which represents the largest component of the Arctic cryosphere operational satellite monitoring schemes do not exist so far. Most of the processes which control the Arctic terrestrial ecosystems are related to the thermal state of permafrost and the freeze/thaw dynamics of the active layer. Hence, satellite based permafrost monitoring would be highly beneficial for the impact assessment of climate change in the Arctic. Permafrost monitoring could also be highly beneficial for the risk assessment of infrastructure in the Arctic such as roads, pipelines, and buildings which are directly affected by the thermal stability of permafrost. Increasing thaw depths and prolonged thaw periods can damage pipelines and interrupt the access to vast regions due to road damages. Sustained warming of permafrost can result in thermal erosion and landslides which threaten buildings and other infrastructural facilities. In this study we present a possible permafrost monitoring scheme based on a numerical heat flow model which is forced by multiple satellite products and initialized by weather reanalysis data. The used forcing and initialization dataset includes the land surface temperature (LST), the snow cover fraction (SCF), and the snow water equivalent (SWE). Previous studies demonstrated that MODIS LST products can deliver reasonable surface temperature measurements in tundra landscapes (Langer et al. 2010, Westermann et al. 2011). This study is based on the ten year record of the daily MOD11A1v5 and MYD11A1v5 land surface temperature products with a spatial resolution of 1km. The snow cover evolution is obtained from the daily GlobSnow SWE product with a spatial resolution of about 25km. In addition, the MODIS snow cover products MOD10A1v5 and MYD10v5 with a resolution of 1km are used

  17. The effect of vegetation type and fire on permafrost thaw: An empirical test of a process based model

    NASA Astrophysics Data System (ADS)

    Thierry, Aaron; Estop-Aragones, Cristian; Fisher, James; Hartley, Iain; Murton, Julian; Phoenix, Gareth; Street, Lorna; Williams, Mathew

    2015-04-01

    As conditions become more favourable for plant growth in the high latitudes, most models predict that these areas will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback could potentially substantially reduce the predicted global net uptake of carbon by terrestrial ecosystems, with major implications for the rate of climate change. However, large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. The role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in many models. But it is thought that they may play a key role in determining permafrost resilience. In order to test the importance of these ecological processes we use a new specially acquired dataset from sites in the Canadian arctic to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions which includes an insulating moss understory. We tested the sensitivity of modelled active layer depth to a series of factors linked to fire disturbance, which is common in boreal permafrost areas. We show how simulations of active layer depth (ALD) respond to removals of (i) vascular vegetation, (ii) moss cover, and (iii) organic soil layers. We compare model responses to observed patterns from Canada. We also describe the sensitivity of our modelled ALD to changes in temperature and precipitation. We found that four parameters controlled most of the sensitivity in the modelled ALD, linked to conductivity of organic soils and mosses.

  18. On Active Layer Environments and Processes in Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hansen, C. D.; Meiklejohn, I.; Nel, W.

    2012-12-01

    The current understanding of Antarctic permafrost is poor, particularly regarding its evolution, the current thermal characteristics, and relationships with pedogenesis, hydrology, geomorphic, dynamics, biotic activity and response to global changes. Results from borehole temperature measurements over a four-year period in Western Dronning Maud Land suggest that the active layer depth is dependent on the substrate, latitude, altitude and the volume of ground exposed; the latter alludes to the potential impact of surrounding ice on the ground thermal regime. The active layer depths at the monitoring sites, varied between 16 cm at Vesleskarvet, a small nunatak at 850 masl to 28 cm in granitic till at Jutulsessen (1 270 masl). The mean near surface (1.5 cm depth) ground temperatures from 2009 to 2012 in the region have a narrow range from -16.4°C at 850m to -17.5°C at 1270 masl. Permafrost temperatures for the same locations vary between -16.3°C and -18.3°C. While little variability exists between the mean temperatures at the study locations, each site is distinct and seasonal and shorter-term frost cycles have produced landforms that are characteristic of both permafrost and diurnal frost environments. One of the key aspects of investigation is the control that the active layer has on autochthonous blockfield development in the region. The, thus far, exploratory research is being used to understand controls on the landscape and the relationship between distribution and abundance of biota. Given the rapidly changing climates in the region, improving knowledge of what drives patterns of biodiversity at a local and regional scale is vital to assess consequences of environmental change.

  19. Thermal erosion of ice-wedge polygon terrains changes fluxes of energy and matter of permafrost geosystems

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.; Lamarque, L.

    2015-12-01

    Subsurface thermal erosion is triggered by convective heat transfers between flowing water and permafrost. Heat advection due to infiltration of run-off in the massive ice wedges and the ice-rich upper portion of permafrost creates sink holes and networks of interconnected tunnels in the permafrost. Mass movements such as collapse of tunnel's roof, retrogressive thaw-slumping and active layer detachment slides lead to the development of extensive gully networks in the landscape. These gullies drastically change the hydrology of ice-wedge polygon terrains and the fluxes of heat, water, sediment, nutrients and carbon within the geosystem. Exportation of sediments out of gullies are positive mechanical feed-back that keep channels active for decades. Along gully margins, drainage of disturbed polygons and ponds, slope drainage, soil consolidation, gully walls colonization by vegetation and wet to mesic plant succession change the thermal properties of the active layer and create negative feedback effects that stabilize active erosion processes and promote permafrost recovery in gully slopes and adjacent disturbed polygons. On Bylot Island (Nunavut), over 40 gullies were monitored to characterize gully geomorphology, thermal and mechanical processes of gully erosion, rates of gully erosion over time within different sedimentary deposits, total volume of eroded permafrost at the landscape scale and gully hydrology. We conducted field and laboratory experiments to quantify heat convection processes and speed of ice wedge ablation in order to derive empirical equations to develop model of permafrost thermal erosion. We used data, collected over 10 years, of geomorphological gully monitoring and regional climate scenarios to evaluate the potential response of ice-wedge polygon terrains to changes in snow, permafrost thermal regime and hydrological conditions over the coming decades and its implication for the short and long term dynamics of arctic permafrost geosystems.

  20. The Frozen Ground Data Center: New Data for the International Permafrost Community

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.; Zhang, T.

    2002-12-01

    Permafrost and seasonally frozen ground regions occupy about 24 percent and 60 percent, respectively, of the exposed land surface in the Northern Hemisphere. Data and information on frozen ground collected over many decades and in the future are critical for fundamental process understanding, environmental change detection and impact assessment, model validation, and engineering application in seasonal frost and permafrost regions. However, many of these data sets and information remain widely dispersed and relatively unavailable to the national and international science and engineering community, and some are in danger of being lost permanently. The International Permafrost Association (IPA) has long recognized the inherent and lasting value of data and information and has worked to prioritize and assess permafrost data requirements and to identify critical data sets for scientific and engineering purposes. At the Seventh International Conference on Permafrost in 1998 in Yellowknife, Canada, the first Circumpolar Active-Layer Permafrost System (CAPS) CD-ROM was published and delivered to the Conference delegates. To continue the IPA strategy for data and information management and to meet the requirements by cold regions science, engineering, and modeling community, the World Data Center (WDC) for Glaciology, Boulder in collaboration with the International Arctic Research Center (IARC) has initiated a new Frozen Ground Data Center (FGDC) as a key node in the IPA's Global Geocryological Data (GGD) system. The FGDC has expanded access to the 1998 CAPS data, is expanding data holdings, and is creating a new version of the CD to be distributed at the July 2003 IPA conference in Zurich. The FGDC has improved access to existing data through an online search and order system and availability in the Global Change Master Directory. The FGDC has also expanded and updated current holdings with global and regional permafrost, soil temperature, and soil classification maps in

  1. Permafrost knowledge to serve as foundation for Inuit community planning

    NASA Astrophysics Data System (ADS)

    Gibéryen, T.; Allard, M.

    2011-12-01

    With the recent announcement of Québec's provincial government's Plan Nord, Nunavik will see a 500 new houses sweep onto it's territory over the next 5 years. The local Inuit communities are confronted with the pressuring need to find suitable land to safely accommodate the new infrastructures in the long term. Additional to human and environmental constraints are those related to warming permafrost. Intensive studies on four Nunavik communities (Inukjuak, Puvirnituq, Akulivik, Kangirsuk) have allowed us to extensively consult local and regional authorities on their planning and management considerations. Recent and archived drilling data have been used to corroborate air photo interpretation, surficial geology and permafrost mapping. All collected information are integrated into aggregated maps that will eventually serve as community master plans. General recommendations on how to best manage and plan for community expansions on warming permafrost are made. Appropriate engineering techniques assuring long-term stable foundations are outlined and additionally mapped, taking into consideration the variable terrain conditions and simulated changes in permafrost temperature and active layer thickness according to climate change scenarios. The final purpose of our results is for them to support local and regional governments in their community planning process towards the best possible climate change adaptation strategies.

  2. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the v...

  3. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  4. Growth dynamics of black spruce (Picea mariana) in a rapidly thawing discontinuous permafrost peatland

    NASA Astrophysics Data System (ADS)

    Sniderhan, Anastasia E.; Baltzer, Jennifer L.

    2016-12-01

    High-latitude warming has led to radical changes in abiotic conditions influencing forest growth. In the North American boreal forest, widespread declines in forest productivity (particularly in western regions) and changing climate-growth relationships have been documented. Previous studies have proposed that this decline can be attributed to drought stress as increasing temperatures may cause evapotranspirative demand to exceed available moisture. We used tree ring studies to document growth dynamics of black spruce, one of the most dominant boreal tree species, in a boreal peatland experiencing rapid permafrost thaw. We specifically look at how changing permafrost conditions influence growth. Growth of black spruce at this site has declined steadily since the mid-1900s and exhibited a shift from positive responses to temperature pre-1970 to predominantly negative responses in recent decades, despite precipitation increasing over time at this site. Our results show that there is no apparent effect of landscape position or rate of lateral permafrost thaw on growth trends of black spruce, despite gradients in soil moisture and active layer thickness across the mosaic of wetlands and drier permafrost plateaus at this site. However, this does not imply no effect of permafrost thaw on growth; our results support growing evidence that vertical permafrost thaw (i.e., active layer thickening) is causing drought stress in these slow-growing, shallow-rooted trees. To our knowledge, this study is the first to investigate permafrost as a driver of within-site variability in growth-climate responses, and we provide insight into the widespread growth declines and divergence of climate-growth relationships in high-latitude forests.

  5. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    PubMed

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm(-3)) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  6. Carbon balance and greenhouse gas emissions of subarctic lowland palsa mires related to permafrost degradation.

    NASA Astrophysics Data System (ADS)

    Stiegler, Christian; Lindroth, Anders; Christensen, Torben R.; Johansson, Margareta

    2014-05-01

    The Torneträsk area in northern subarctic Sweden is particularly vulnerable to any further climate change since it is located on the 0-degree isotherm. Within the next decades a projected ongoing climate warming and increase in snow cover will most likely lead to the disappearance of lowland permafrost in this region, affecting greenhouse gas emissions, surface energy fluxes and vegetation cover. A previous study from the Torneträsk area has resulted in extensive data on the effects of permafrost degradation on surface energy balance. In this study we focus on the effects of different stages of permafrost degradation on carbon balance and emission of greenhouse gases. The study area covers several mires with similar local topographic conditions along an east-west oriented transect. Due to a strong climatic gradient, with maritime climate in the west and a more continental climate in the east, active layer thickness and permafrost temperatures generally increase from east to west while permafrost thickness decreases. In recent years permafrost has completely disappeared at the westernmost study site while at the other investigated locations the peat plateaus show varying stages of degradation. For our measurements we use both mobile and stationary energy balance and eddy covariance towers. Data has been collected during the growing season in 2013 by measuring flux densities of carbon dioxide and water vapour and all components of the surface energy budget, i.e. net radiation, turbulent fluxes of sensible and latent heat as well as ground heat fluxes. In addition, we measure active layer thickness and both soil moisture and soil temperature at various depths. In this study we aim to (A) investigate and better understand the effects of permafrost degradation on the CO2 dynamics in subarctic palsa mires, (B) assess variation in terrestrial CO2 and water vapour flux with changes in vegetation cover and soil moisture, (C) determine possible meteorological and

  7. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    USGS Publications Warehouse

    Briggs, Martin; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  8. Fate and effects of crude oil spilled on subarctic permafrost terrain in interior Alaska: Fifteen years later

    SciTech Connect

    Collins, C.M.; Racine, C.H.; Walsh, M.E.

    1993-08-01

    The effects of two large experimental oil spills conducted in the winter and summer of 1976 in the permafrost-underlain black spruce forest of interior Alaska were assessed 15 years after the spills. Effects on the permafrost, as determined from measurements of active layer thaw depths and of the total amount of ground subsidence, were far more pronounced on the winter spill because it had a larger area with oil on the surface. The winter spill also had a more drastic effect on the vegetation. Where the black, asphalt-like oil is present on the surface, black spruce mortality is 100% and there is very little live vegetation cover, except for cottongrass tussocks. Changes in oil chemistry vary with depth; surface samples show signs of microbiological degradation, whereas some subsurface samples taken just above the permafrost show no evidence of degradation and still contain volatiles. Black spruce forest, Crude oil, Oil spills, Terrestrial oil spills, Interior Alaska, Permafrost.

  9. Surface energy balance of subarctic lowland palsa mires related to permafrost degradation

    NASA Astrophysics Data System (ADS)

    Stiegler, C.; Lindroth, A.; Johansson, M.

    2013-12-01

    During the last decades, an accelerating trend in increasing active-layer thickness and rising permafrost temperatures has been observed in the Nordic area. One region, where permafrost is particularly vulnerable to any further climate change is the Torneträsk area in northern subarctic Sweden. Within the next decades a projected ongoing climate warming and increase in snow cover will most likely lead to the disappearance of lowland permafrost in this region, affecting surface vegetation cover, greenhouse gas emissions and surface energy balance. In this study we link first results of surface energy balance measurements from lowland palsa mires in the Torneträsk region to the current state of permafrost and the degradation of peat plateaus. The study area covers several mires with similar local topographic conditions along an east-west oriented transect. Due to a strong climatic gradient, with maritime climate in the west and a more continental climate in the east, active layer thickness and permafrost temperatures generally increase from east to west while permafrost thickness decreases. In the recent years permafrost has fully disappeared at our westernmost study site while at the other investigated locations the peat plateaus show varying stages of degradation. For our measurements of energy balance components we use both a mobile energy balance tower and a stationary eddy covariance tower. Data has been collected during the growing season in 2013 by measuring all components of the surface energy budget, i.e. net radiation, turbulent fluxes of sensible and latent heat as well as ground heat fluxes. In addition, we measure active layer thickness and both soil moisture and soil temperature at various depths. First results display that the turbulent fluxes of latent heat exceed the fluxes of sensible heat at all investigated sites. The difference is more pronounced at those mires where permafrost degradation is at an advanced stage and therefore more open water

  10. Assessment of permafrost conditions under Northern Quebec's airports: an integrative approach for the development of adaptation strategies to climate warming

    NASA Astrophysics Data System (ADS)

    L'Hérault, E.; Allard, M.; Doré, G.; Barrette, C.; Verreault, J.; Sarrazin, D.; Doyon, J.; Guimond, A.

    2011-12-01

    readings show that the active layer in the central part of the runways is in most case still contained in the embankment or within the prior-to-construction consolidated active layer. However, a residual thaw layer (talik) is now present at the toe of embankments where significant snow accumulations occurred. Thermal modeling indicates that water accumulation and seepage as well as snow accumulation along embankment shoulders are currently the dominant factors of permafrost degradation. In the future, centerlines of embankment built on ice rich permafrost will gradually settle as the climate warms up; therefore periodic reloading will be necessary. To counter permafrost degradation alongside runways and access roads, the proposed mitigation strategies focus on minimizing snow and water accumulation by making gentler slopes (1:6) and by improving the drainage system to avoid potential seepage through embankments.

  11. Assessing the Contributions of Thermokarst and Thermal Erosion in Permafrost Feedbacks to Climate

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.; McGuire, A. D.; Olefeldt, D.

    2015-12-01

    Most studies quantifying the effects of permafrost thaw on carbon cycling focus on gradual top-down thawing of permafrost. However, the thaw of ice-rich permafrost may trigger more abrupt changes via thermokarst and thermal erosion. While the slow gradual deepening of the seasonally thawed layer affects permafrost carbon at regional scales, thermokarst and thermal erosion can potentially affect large volumes of soil at local scales. These processes expose previously-frozen carbon to microbial processes but also alter hydrology. The fate of permafrost carbon in these situations depends on whether material is exposed to aerobic or anaerobic conditions, which will determine the overall rate of carbon mineralization as well as the balance between carbon dioxide and methane emissions. We are synthesizing process-level studies to parameterize a book-keeping model to track the effects of thermokarst disturbance on changes in carbon storage and in carbon dioxide and methane emissions. The goal of this modelling is to enable a comparison of changes in carbon storage and greenhouse gas exchanges between those resulting from deepened active layer versus those due to thermokarst and thermal erosion. The book-keeping model is based on state-and-transition conceptual models for generalized abrupt thaw trajectories in the northern permafrost region. Our initial results show that cumulative carbon release associated with wetland thermokarst are equivalent to up to 55% of estimated carbon emissions stemming from top-down thaw, suggesting that these localized, abrupt thaw processes are important to consider in assessments of permafrost feedbacks to climate.

  12. Feedbacks between climate, fire severity, and differential permafrost degradation in Alaskan black spruce forests - implications for carbon cycling

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Kane, E. S.; O'Donnell, J. A.; Christensen, N. L.; Mitchell, S. R.; Turetsky, M. R.; Hayes, D. J.; Hoy, E.; Barrett, K. M.; McGuire, A. D.; Yuan, F.

    2011-12-01

    Black spruce forests are the dominant forest cover type in the boreal region of Alaska and Canada In the northern portion of its range, permafrost is common to sites occupied by black spruce forest, which in turn, leads topromotes the accumulation of large reservoirs of organic carbon in mineral and organic soils. Another important trait of black spruce forests is the high occurrence of fire which is enhanced by the presence of flammable foliage, surface litter (duff), dead stems, aboreal lichens, and understory vegetation that is highly flammable during the dry conditions found during the summer fire season. In turn, fire plays an important role in carbon cycling in black spruce forests through direct burning of vegetation and organic soils, initiation of secondary succession, and alteration of the ambient environmental conditions, in particular, the permafrost and the soil thermal regimes, including permafrost stability. The spatial and temporal characteristics of permafrost (e.g. ice content and, seasonal deepening thawing of the active layer) not only control fire severity in terms of depth of burning of the active layer, but also the level of permafrost degradation that occurs in the post-fire environment. Fire severity, in combination with soil thermal properties (e.g. temperature, moisture, permafrost state), moisture and temperature conditions controlled by rates of permafrost warming and drying then controls the biological processes (plant succession and growth and heterotrophic respiration), thus regulating post-fire re-accumulation of carbon in biomass. In this paper, we will review research that investigates the interactions between fire and permafrost regimes that influence and how they influence carbon cycling in black spruce forests in interior Alaska.

  13. Metagenomics Reveals Microbial Community Composition And Function With Depth In Arctic Permafrost Cores

    NASA Astrophysics Data System (ADS)

    Jansson, J.; Tas, N.; Wu, Y.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Chakraborty, R.; Graham, D. E.; Wullschleger, S. D.

    2013-12-01

    The Arctic is one of the most climatically sensitive regions on Earth and current surveys show that permafrost degradation is widespread in arctic soils. Biogeochemical feedbacks of permafrost thaw are expected to be dominated by the release of currently stored carbon back into the atmosphere as CO2 and CH4. Understanding the dynamics of C release from permafrost requires assessment of microbial functions from different soil compartments. To this end, as part of the Next Generation Ecosystem Experiment in the Arctic, we collected two replicate permafrost cores (1m and 3m deep) from a transitional polygon near Barrow, AK. At this location, permafrost starts from 0.5m in depth and is characterized by variable ice content and higher pH than surface soils. Prior to sectioning, the cores were CT-scanned to determine the physical heterogeneity throughout the cores. In addition to detailed geochemical characterization, we used Illumina MiSeq technology to sequence 16SrRNA genes throughout the depths of the cores at 1 cm intervals. Selected depths were also chosen for metagenome sequencing of total DNA (including phylogenetic and functional genes) using the Illumina HiSeq platform. The 16S rRNA gene sequence data revealed that the microbial community composition and diversity changed dramatically with depth. The microbial diversity decreased sharply below the first few centimeters of the permafrost and then gradually increased in deeper layers. Based on the metagenome sequence data, the permafrost microbial communities were found to contain members with a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. The surface active layers had more representatives of Verrucomicrobia (potential methane oxidizers) whereas the deep permafrost layers were dominated by several different species of Actinobacteria. The latter are known to have a diverse metabolic capability and are able to adapt to stress by entering a dormant yet

  14. Permafrost-ice-sheet interactions during the Quaternary

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. We recently included a permafrost module in the Earth system model CLIMBER-2 to explore the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution during the Quaternary. The model has been shown to perform generally well at reproducing present-day permafrost extent and thickness. Modelled permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. In a previous study we showed that over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM. In transient model simulations of the "40 kyr world" of the early Pleistocene we show that when all continents are covered by a thick sediment layer the response of ice volume to the obliquity component of orbital forcing is enhanced while the response to precession is dampened. We therefore argue that permafrost could have played a role for ice sheet evolution when all continents were covered by a thick sediment layer, as was likely the case in the early Pleistocene before the sediment layer was gradually eroded by expanding ice sheets over parts of northern Canada and Scandinavia.

  15. Study of permafrost dynamics within the Northern Eurasia Region by a coupling between permafrost and water balance models

    NASA Astrophysics Data System (ADS)

    Nicolsky, D. J.; Romanovsky, V. E.; Rawlins, M. A.; Marchenko, S. S.

    2007-12-01

    Thawing and freezing of Arctic soils is affected by many factors, with air temperature, vegetation, snow accumulation, and soil moisture among the most significant. Here we describe the coupling of a Permafrost Model and the pan-Arctic Water Balance Model (PWBM), developed at the University of Alaska Fairbanks and the University of New Hampshire, respectively. Additionally, we present resultant simulated soil temperature and moisture dynamics, depth of seasonal freezing and thawing, river run-off and water storage across the Northern Eurasia Region. The coupled models simulate the snow/ground temperature with a 5-layer snow and 23-layer soil model. In the soil model the layers thicken with depth and span a 60 meter thick column. The PWBM has two soil storage zones; a root zone that gains water from infiltration and loses water via evapotranspiration and horizontal and vertical drainage, and a deep zone that gains water via root zone vertical drainage and loses water via horizontal drainage. Forcing data (i.e. air temperature, precipitation) are taken from ERA40. We validate our model simulations by comparing soil moisture and thermal profiles with observational data collected within the Northern Eurasia Region. The coupling captures thresholds and non-linear feedback processes induced by changes in hydrology and sub- surface temperature dynamics, and hence helps us to study the spatial and temporal variability of permafrost dynamics as well as potential future alterations to permafrost and the terrestrial arctic water cycle. Through explicit coupling of the Permafrost Model with the PWBM we are able to simulate the temporal and spatial variability in soil water/ice content, active layer thickness, and associated large-scale hydrology that are driven by contemporary and future climate variability and change.

  16. The International Permafrost Association: new structure and initiatives for cryospheric research

    NASA Astrophysics Data System (ADS)

    May, I.; Lewkowicz, A. G.; Christiansen, H.; Romanovsky, V. E.; Lantuit, H.; Schrott, L.; Sergeev, D.; Wei, M.

    2012-12-01

    within Global Climate Models and promote the study of the carbon cycle and other biogeochemical cycles in permafrost regions that contribute to atmospheric greenhouse gas concentrations. Within the discussion of climate change and the organic carbon stored in the frozen ground, the IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA is the new Standing Committee on Outreach and Education that is responsible for the development and implementation of new outreach products and projects on permafrost for schools, universities, and the general public. In all of these activities, the IPA emphasizes the involvement of young researchers (especially through the Permafrost Young Researchers Network) as well as its international partner organizations.

  17. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw.

    PubMed

    Coolen, Marco J L; van de Giessen, Jeroen; Zhu, Elizabeth Y; Wuchter, Cornelia

    2011-08-01

    Amplified Arctic warming could thaw 25% of the permafrost area by 2100, exposing vast amounts of currently fixed organic carbon to microbially mediated decomposition and release of greenhouse gasses through soil organic matter (SOM) respiration. We performed time-series incubation experiments with Holocene permafrost soils at 4°C for up to 11 days to determine changes in exoenzyme activities (EEAs) (i.e. phosphatase, β-glucosidase, aminopeptidase) as a measure for the bioavailability of SOM in response to permafrost thaw. We also profiled SSU rRNA transcripts to follow the qualitative and quantitative changes in viable prokaryotes and eukaryotes during incubation. EEA, amount of rRNA transcripts and microbial community structures differed substantially between the various soil intervals in response to thaw: after 11 days of incubation, the active layer became slightly depleted in C and P and harboured bacterial phyla indicative of more oligotrophic conditions (Acidobacteria). A fast response in phosphatase and β-glucosidase upon thaw, and a predominance of active copiotrophic Bacteroidetes, showed that the upper permafrost plate serves as storage of easily degradable carbon derived from the overlying thawed active layer during summer. EEA profiles and microbial community dynamics furthermore suggest that the deeper and older permafrost intervals mainly contain recalcitrant SOM, and that extracellular soil-bound exoenzymes play a role in the initial cleavage of biopolymers, which could kick-start microbial growth upon thaw. Basidiomycetous fungi and Candidate Subdivision OP5 bacteria were the first to respond in freshly thawed deeper permafrost intervals, and might play an important role in the decomposition of recalcitrant SOM to release more labile substrates to support the major bacterial phyla (β-Proteobacteria, Actinobacteria, Firmicutes), which predominated thereafter.

  18. The Influence of Seasonal Climatic Parameters on the Permafrost Thermal Regime in West Siberia

    NASA Astrophysics Data System (ADS)

    Popova, V. V.; Shmakin, A. B.

    2009-12-01

    Statistical correlations between seasonal air temperatures and snow depths and active layer depths and permafrost temperatures were analyzed for tundra (Marre-Salle) and northern taiga (Nadym) sites in Western Siberia. Interannual variations in active layer depth in the tundra zone correlated with the average air temperature of the current summer, and in peatland and humid tundra, also with summer temperatures of the preceding 1-2 years. In the northern taiga zone, the active layer depth related to current summer air temperature and to a lesser extent, to spring and/or winter air temperatures. Variations in summer permafrost temperatures at 5-10m depth were correlated with spring air temperatures in the current and preceding 1-2 years. The weather regime during the preceding 1-2 years, therefore, reinforced or weakened ground temperature variations in a given year. Overall, the most important factors influencing the permafrost regime were spring and summer air temperatures, and in one case snow depth. However, statistical links between meteorological and permafrost parameters varied between the tundra and northern taiga zones and among landscape types within each zone, emphasizing the importance of analyses at short temporal scales and for individual terrain units.

  19. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    SciTech Connect

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; Perkins, George B.; Feng, Xiahong; Graham, David E.; O'Malley, Daniel; Vesselinov, Velimir V.; Young, Jessica; Wullschleger, Stan D.; Wilson, Cathy J.

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.

  20. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes

    DOE PAGES

    Throckmorton, Heather M.; Newman, Brent D.; Heikoop, Jeffrey M.; ...

    2016-04-16

    Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro-geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measuredmore » in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze-out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze-out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. In conclusion, this research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process-based fine-scale and intermediate-scale hydrologic models.« less

  1. Diversity and distribution of archaea community along a stratigraphic permafrost profile from Qinghai-Tibetan Plateau, China.

    PubMed

    Wei, Shiping; Cui, Hongpeng; He, Hao; Hu, Fei; Su, Xin; Zhu, Youhai

    2014-01-01

    Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems.

  2. Active-layer thickness estimation from X-band SAR backscatter intensity

    NASA Astrophysics Data System (ADS)

    Widhalm, Barbara; Bartsch, Annett; Leibman, Marina; Khomutov, Artem

    2017-02-01

    The active layer above the permafrost, which seasonally thaws during summer, is an important parameter for monitoring the state of permafrost. Its thickness is typically measured locally, but a range of methods which utilize information from satellite data exist. Mostly, the normalized difference vegetation index (NDVI) obtained from optical satellite data is used as a proxy. The applicability has been demonstrated mostly for shallow depths of active-layer thickness (ALT) below approximately 70 cm. Some permafrost areas including central Yamal are, however, characterized by larger ALT. Surface properties including vegetation structure are also represented by microwave backscatter intensity. So far, the potential of such data for estimating ALT has not been explored. We therefore investigated the relationship between ALT and X-band synthetic aperture radar (SAR) backscatter of TerraSAR-X (averages for 10 × 10 m window) in order to examine the possibility of delineating ALT with continuous and larger spatial coverage in this area and compare it to the already-established method of using NDVI from Landsat (30 m). Our results show that the mutual dependency of ALT and TerraSAR-X backscatter on land cover types suggests a connection of both parameters. A range of 5 dB can be observed for an ALT range of 100 cm (40-140 cm), and an R2 of 0.66 has been determined over the calibration sites. An increase of ALT with increasing backscatter can be determined. The root mean square error (RMSE) over a comparably heterogeneous validation site with maximum ALT of > 150 cm is 20 cm. Deviations are larger for measurement locations with mixed vegetation types (especially partial coverage by cryptogam crust) with respect to the spatial resolution of the satellite data.

  3. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    SciTech Connect

    Bond-Lamberty, Benjamin; Smith, Ashly P.; Bailey, Vanessa L.

    2016-12-21

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is highly uncertain, but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e. directly above permafrost, in an Alaskan boreal forest. Gas emissions from thirty cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Carbon dioxide fluxes were strongly influenced by incubation chamber temperature, core water content, and percent soil nitrogen, and had a temperature sensitivity (i.e. Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Methane emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over six orders of magnitudes higher than that from CH4. These results suggest that deep active-layer soils may be much more sensitive to changes in moisture than to temperature, a critical factor as discontinuous permafrost melts in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.

  4. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Fisher, James; Estop Aragones, Cristian; Thierry, Aaron; Hartley, Iain; Murton, Julian; Charman, Dan; Williams, Mathew; Phoenix, Gareth

    2015-04-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence the extent to which permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed 60 plots across 4 sites of contrasting vegetation and fire status, encompassing a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may influence

  5. Permafrost and Hydrology in the High Latitudes of Eurasia

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Tananaev, N.; Tokarev, I.; Shiklomanov, A. I.

    2014-12-01

    Eurasia contributes three quarters of all terrestrial runoff to the Arctic Ocean and contains three out of four major Arctic rivers. River flow is an integrated characteristic reflecting numerous environmental characteristics and processes aggregated over large spatial domains. A significant increase in discharge during low-flow has been observed everywhere in the Eurasian pan-Arctic, while precipitation decreased over the same period. This increase was accompanied by a significant increase in air temperature. Over the permafrost regions climatic warming results in higher ground temperature, a deeper annual thaw propagation, degradation of the ice rich upper permafrost layers, and a longer thaw season. The thicker active layer has more ground water storage and regulating capacity for increased contribution to runoff during low flow periods. Melt water of the excess ground-ice near the permafrost surface also contribute to the increase in river runoff. The deeper active layer delays its freeze-up date in winter and this late active layer freeze-up and increased ground water storage result in greater contribution of subsurface water to the river system, especially in the winter season. Extensive fieldwork and analytical procedures were implemented to quantify the contribution of permafrost to river flow in small rivers of Siberia and to understand its relation to air temperature. The paper focuses on variability of various water inputs to a hydrological system across multiple scales in a series of watersheds located in the transition of tundra to forest landscapes in the Arctic. Stable isotopes of δ18O and D were used used to trace the inputs of various sources (ground ice, snow, precipitation, ground water) in a river flow. Mixing of these sources results in isotopic composition that varies throughout the year. Heavy content of δ18O and D was found during winter season and is attributed to ground water from permafrost taliks. Lighter values in spring are

  6. Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland

    NASA Astrophysics Data System (ADS)

    Godin, Etienne; Fortier, Daniel; Lévesque, Esther

    2016-03-01

    Low-center polygonal terrains with gentle sloping surfaces and lowlands in the high Arctic have a potential to retain water in the lower central portion of ice-wedge polygons and are considered high-latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies were rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. Intact polygons were characterized by a relative homogeneity in terms of topography, snow cover, maximum active layer thaw depth, ground moisture content and vegetation cover (where eroded polygons responded nonlinearly to perturbations, which resulted in differing conditions in the latter elements). The heterogeneous nature of disturbed terrains impacted active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture, vegetation dynamics and carbon storage.

  7. Current and Projected Changes in Permafrost and Societal Impacts of Permafrost Degradation (Invited)

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Marchenko, S. S.; Brubaker, M.

    2010-12-01

    Most of the permafrost observatories in Northern Hemisphere show substantial warming of permafrost during the last 20 to 30 years. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C at the depth of zero annual amplitude. Permafrost is already thawing in specific landscape settings within the southern part of the permafrost domain. Formation of new closed taliks and an increase in depth of pre-existing taliks has been observed in this area during the last 20 to 30 years. In the past, the thawing of permafrost and talik development was observed in the sporadic and less frequently in the discontinuous permafrost zones. However, very recent observations documented propagation of this process into continuous permafrost zone, especially in the Russian European North and in West Siberia. Projections of future changes in permafrost suggest that by the end of the 21st century, late-Holocene permafrost in the Northern Hemisphere may be actively thawing within the wide area of the presently discontinuous and continuous permafrost domain and some Late Pleistocene permafrost could start to thaw as well at some locations. In Alaska, the mean annual ground temperatures at 2 m depth could be above 0°C everywhere southward of latitude 66o except for small patches at high altitude in the Alaska Range and Wrangell Mountains and within the patches of ecosystem-protected permafrost. By the end of the 21st century, permafrost in Russia may be actively thawing at most locations within the Pechora River basin and within continental West Siberia. Warming and thawing of permafrost will continue to adversely affect northern communities. The phenomena related to permafrost degradation is already widely observed, including increased rates of shore line and river bank erosion, thermal slumps, and drying of tundra lakes. Some northern communities are experiencing food insecurity from the thawing of traditional underground food cellars. Others have seen

  8. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon

    USGS Publications Warehouse

    O’Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Santosh, Panda; Butler, Kenna; Baltensperger, Andrew P.

    2016-01-01

    Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.

  9. Permafrost degradation and associated ground settlement estimation under 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Guo, Donglin; Wang, Huijun

    2016-12-01

    Global warming of 2 °C above preindustrial levels has been considered to be the threshold that should not be exceeded by the global mean temperature to avoid dangerous interference with the climate system. However, this global mean target has different implications for different regions owing to the globally nonuniform climate change characteristics. Permafrost is sensitive to climate change; moreover, it is widely distributed in high-latitude and high-altitude regions where the greatest warming is predicted. Permafrost is expected to be severely affected by even the 2 °C global warming, which, in turn, affects other systems such as water resources, ecosystems, and infrastructures. Using air and soil temperature data from ten coupled model intercomparison project phase five models combined with observations of frozen ground, we investigated the permafrost thaw and associated ground settlement under 2 °C global warming. Results show that the climate models produced an ensemble mean permafrost area of 14.01 × 106 km2, which compares reasonably with the area of 13.89 × 106 km2 (north of 45°N) in the observations. The models predict that the soil temperature at 6 m depth will increase by 2.34-2.67 °C on area average relative to 1990-2000, and the increase intensifies with increasing latitude. The active layer thickness will also increase by 0.42-0.45 m, but dissimilar to soil temperature, the increase weakens with increasing latitude due to the distinctly cooler permafrost at higher latitudes. The permafrost extent will obviously retreat north and decrease by 24-26% and the ground settlement owing to permafrost thaw is estimated at 3.8-15 cm on area average. Possible uncertainties in this study may be mostly attributed to the less accurate ground ice content data and coarse horizontal resolution of the models.

  10. Quantifying the effect size of changing environmental controls on carbon release from permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Bader, M. K. F.; Schuur, E. A. G.; Bracho, R. G.; Capek, P.; De Baets, S. L.; Diakova, K.; Ernakovich, J. G.; Hartley, I. P.; Iversen, C. M.; Kane, E. S.; Knoblauch, C.; Lupascu, M.; Natali, S.; Norby, R. J.; O'Donnell, J. A.; Roy Chowdhury, T.; Santruckova, H.; Shaver, G. R.; Sloan, V. L.; Treat, C. C.; Waldrop, M. P.

    2014-12-01

    High-latitude surface air temperatures are rising twice as fast as the global mean, causing permafrost to thaw and thereby exposing large quantities of previously frozen organic carbon (C) to microbial decomposition. Increasing temperatures in high latitude ecosystems not only increase C emissions from previously frozen C in permafrost but also indirectly affect the C cycle through changes in regional and local hydrology. Warmer temperatures increase thawing of ice-rich permafrost, causing land surface subsidence where soils become waterlogged, anoxic conditions prevail and C is released in form of anaerobic CO2 and CH4. Although substrate quality, physical protection, and nutrient availability affect C decomposition, increasing temperatures and changes in surface and sub-surface hydrology are likely the dominant factors affecting the rate and form of C release from permafrost; however, their effect size on C release is poorly quantified. We have compiled a database of 24 incubation studies with soils from active layer and permafrost from across the entire permafrost zone to quantify a) the effect size of increasing temperatures and b) the changes from aerobic to anaerobic environmental soil conditions on C release. Results from two different meta-analyses show that a 10°C increase in temperature increased C release by a factor of two in boreal forest, peatland and tundra ecosystems. Under aerobic incubation conditions, soils released on average three times more C than under anaerobic conditions with large variation among the different ecosystems. While peatlands showed similar amounts of C release under aerobic and anaerobic soil conditions, tundra and boreal forest ecosystems released up to 8 times more C under anoxic conditions. This pan-arctic synthesis shows that boreal forest and tundra soils will have a larger impact on climate change when newly thawed permafrost C decomposes in an aerobic environment compared to an anaerobic environment even when

  11. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon

    NASA Astrophysics Data System (ADS)

    O'Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Panda, Santosh; Butler, Kenna D.; Baltensperger, Andrew P.

    2016-12-01

    Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.

  12. Legacy Effects of Warming on Permafrost Carbon Release

    NASA Astrophysics Data System (ADS)

    Blok, D.; Faucherre, S.; Banyasz, I.; Michelsen, A.; Elberling, B.

    2015-12-01

    Warming in arctic tundra may thaw currently frozen upper permafrost layers, potentially releasing organic carbon (C) that was preserved by cold conditions for hundreds or thousands of years. Apart from the direct control of temperature on permafrost carbon dioxide (CO2) production, warming may alter permafrost CO2 production rates through changes in either permafrost C quality or changes in microbial communities. We incubated exogenous permafrost cores in four different warming experiments in NE-Greenland. The experiments were located in both Salix- and Cassiope-dominated sub-sites and were established in 2004 (old site) and 2007 (new site). Permafrost cores were buried as "open incubators" (free vertical water flow) at both 5-10cm depth (shallow) and 15-20cm depth (deep) in both non-manipulated (control) and warmed plots (warmed) and incubated for 2 years in the field. After retrieval from the field, permafrost cores were kept undisturbed in a lab fridge for three months, after which sub-samples were incubated at 5°C in glass vials. Permafrost CO2 production rates were subsequently measured after one week, four weeks and three months incubation in the lab. We measured the legacy effects of in situ conditions, including experimental warming in the field, on permafrost respiration under controlled laboratory conditions. We assessed the effects of plot type, vegetation type, experiment age, and incubation depth on permafrost CO2 production rates. After 3 months incubation in the lab, we measured a positive effect of warming on permafrost CO2 production rates for shallow-incubated cores, but not for deep-incubated cores. Production rates of CO2 were significantly higher for cores incubated in the old site compared to the new site. Our results suggest that warming may not only directly stimulate permafrost C release, but also indirectly through the effects of infiltrating water, nutrients and microbes from near-surface soil layers.

  13. Organic carbon and fine sediment production potential from decaying permafrost in a small watershed, Sheldrake River, Eastern coastal region of Hudson Bay

    NASA Astrophysics Data System (ADS)

    Jolivel, M.; Allard, M.

    2010-12-01

    Recent evaluations indicate that large amounts of organic carbon and fine sediment can be released in fluvial and coastal systems because of permafrost degradation, with impacts on ecosystems. In order to estimate the organic carbon and fine sediment potential production from a river basin, we have made a spatiotemporal comparison between 1957 aerial photographs and a 2009 GeoEye satellite image. A gauging station was installed near the river mouth and measurements of the extent and volume of permafrost degradation were made in the watershed where permafrost degradation is very active. The Sheldrake river watershed is located on the eastern coast of Hudson Bay near the Inuit community of Umiujaq, in the discontinuous permafrost zone. The tree line passes across the watershed. Permafrost mounds (palsas, lithalsas) and plateaus are the most abundant permafrost landforms in this area. They developed principally in east-west oriented valleys, in postglacial marine silts of the Tyrrell Sea. Signs of degradation are numerous. Lithalsas and palsas (with peat cover) weather out and collapse. Thermokarst ponds are replacing permafrost mounds and sometimes, eroded clay and peat are remobilized in the drainage network. Moreover, several retrogressive landslides, mudflows and gully erosion are active along the Sheldrake river banks. The first step consisted in mapping the 80 km2 watershed area and representing surface deposits, drainage network and permafrost distribution (1957 and 2009). First results show that 40 to 70% of the 1957 permafrost has disappeared in 2009 in various sector of the watershed. The percentage of permafrost degradation is positively correlated with distance from the sea and the presence of a well-developed drainage network. The second step is to calculate an equation which will allow changing the missing permafrost surface between 1957 and 2009 into a volume. The equation will take into account the average depth of permafrost and active layer, the mean

  14. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  15. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  16. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.

    PubMed

    Treat, C C; Wollheim, W M; Varner, R K; Grandy, A S; Talbot, J; Frolking, S

    2014-08-01

    Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2 ) and methane (CH4 ) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at -5, -0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at -0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4 -C gC(-1) at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R(2) = 0.81) in SOC. Carbon emissions (CO2 -C + CH4 -C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.

  17. Impact of model developments on present and future simulations of permafrost in a global land-surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S. E.; Burke, E. J.; Essery, R. L. H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P. M.; Friedlingstein, P.

    2015-08-01

    There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km2 °C-1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C-1

  18. Climate Change and the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Schuur, E. A. G.; McGuire, A. D.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Koven, C. D.; Kuhry, P.; Lawrence, D. M.; Natali, S.; Olefeldt, D.; Romanovsky, V. E.; Schaedel, C.; Schaefer, K. M.; Turetsky, M. R.; Treat, C. C.; Vonk, J.

    2014-12-01

    historically important biospheric C sources, such as land use change, but that is only a fraction of current fossil fuel emissions. Permafrost C emissions are likely to be felt over decades to centuries as northern regions warm, making climate change happen even faster than we think based on projected emissions from human activities alone.

  19. Characterization And Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Elias, D. A.; Phelps, T. J.; Thornton, P. E.; Graham, D. E.

    2011-12-01

    Increased temperatures in high latitude regions are warming the surface and subsurface, resulting in thawing permafrost. At issue is the potential for increased greenhouse gas (GHG) generation and emission, caused by microbial degradation of vast stores of buried organic carbon. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation and emission, while refining the resolution of the Community Land Model (CLM4) by parameterizing depth-dependent GHG production processes, with respect to temperature and pH. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Core samples were obtained from a discontinuous permafrost site in Fairbanks, AK with a mean annual temperature of -3.3oC. Each core was sectioned into surface/near surface (0-0.8 m), active layer (annual thawing/freezing, 0.8m-1.6m .), and permafrost (1.6-2.2 m). Core sections were pulverized and used for sediment characterization as well as microcosm construction. Sediment characterization included water content (20-60%), pH (5.5-6.6), total N (0.05-0.25%) and C (0.4-4.1%), and total organic carbon (0.4-3.6%). Surface layer microcosms were constructed aerobically while the active and permafrost layers were constructed anaerobically. The microcosms, 20 g sediment with 38 ml headspace had either in-situ water levels (n=6) or 15 ml sterile water added (n=2) to saturate, and then incubated at -2oC, +3oC, or +5oC for 6 months. At monthly intervals, CO2 and CH4 were quantified by GC. At 6 months, microcosm samples and original core material were analyzed via 454 16S rDNA pyrosequencing to identify changes

  20. Permafrost and Periglacial Activity Distribution and Geothermal Anomalies in the Chachani and El Misti Volcanoes (Southern Peru)

    NASA Astrophysics Data System (ADS)

    Palacios, D.; Andrés, N.; Úbeda, J.; Alcalá, J.

    2009-04-01

    because it never existed. In the latter case, considering its altitude and the conditions in the extinct Chachani and Pichupichu volcanoes nearby, that no evidence is available could be due to the action of geothermal heat, as this is an active volcano. With this aim, three thermal stations were established on El Misti, at altitudes of 4780, 5438 and 5740 m, consisting of an air temperature sensor and a ground temperature sensor, installed at a depth of 20 cm. When possible, a third sensor was installed in the ground at a depth of 40 to 100 cm. Three stations were also installed on the Chachani volcano, at altitudes of 4871, 5013 and 5352 m, with the same orientation where possible, and with the same sensor types and positions. Data was collected during the period 2004-2008. Results obtained for the Chachani volcano during the four complete years for which data is available are fairly uniform, despite the occasional failure of some sensors. For the air temperature, the 0°C mean annual temperature (MAAT) isotherm is situated at around 5000 m altitude, and the -2°C isotherm, which we consider the limit of probable permafrost (Palacios et al. 2007), at around 5300 m. At 5352 m, permafrost was not detected at a depth of 40 cm, with 78 days above 0°C, although it may exist and may be detectable using a deeper probe. The daily temperature range is always very wide, with an average daily range of around 8°C and a maximum daily range of up to 20°C. The number of days where the temperature oscillates above and below 0°C (freeze-thaw cycles) is practically nil at an altitude of 4870 m (between 0 and 75 cycles/year), and maximum at 5013 m (around 200 cycles/year). It then decreases as the altitude increases, with fewer than 150 cycles/year at 5352 m. The data from the ground sensors shows that the mean annual temperatures from the ground thermometers (MAGTs) are slightly higher (2°C on average) than from the air thermometers, including those at a depth of 100 cm. In

  1. The presence of rapidly degrading permafrost plateaus in southcentral Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Baughman, Carson; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E

    2016-01-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0°C. In this study, we document the presence of residual permafrost plateaus on the western Kenai Peninsula lowlands of southcentral Alaska, a region with a MAAT of 1.5 ± 1°C (1981 to 2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (−0.04 to −0.08°C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but was as shallow as 0.53 m. Late winter surveys (drilling, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to >6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60%, with lateral feature degradation accounting for 85% of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing permafrost history in

  2. Assessment of Climate Driven Dynamics of Active Layer, Hydrological and Vegetation Status at the Qinghai-Tibet Plateau Using Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2014-12-01

    Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.

  3. Thermal state of permafrost in the Northern Yakutia: modern dynamics and spatial variability.

    NASA Astrophysics Data System (ADS)

    Kholodov, Alexander; Gilichinsky, David; Abramov, Andrey; Lupachev, Alexey; Davydov, Sergey; Romanovsky, Vladimir; Natali, Susan

    2013-04-01

    can be explained by the different surface heat transfer conditions in the various ecosystems. Due to lower thermal conductivity (0.6 - 0.8 W/(m*°K)) organic rich soils of active layer prevent propagation of summer heat into permafrost, while the sites with active layer mostly composed of mineral soil (thermal conductivity 1.2 - 1.5 W/(m*°K)) are characterized by higher permafrost temperature and higher temperature increasing rates. Thus conclusion about the higher resilience of permafrost within the ecosystems with high bioproductivity can be done. Following this conclusion we can assume, that climate induced increasing of bioproductivity can reduce the atmosphere warming impact on permafrost. Results of the observations are available for the broader scientific community and for the public at the Cooperative Arctic Data and Information Service (CADIS) data portal: www.aoncadis.ucar.edu and Geophysical Institute Permafrost Laboratory web site www.permafrostwatch.org. Current research was supported by the NSF (ARC-0520578, ARC-0632400 and ARC- 0856864) and collaborative RFFI-CRDF program (RUG1-2986-PU-10).

  4. In situ contribution of old CO2 and CH4 released from soils in burnt and collapsed permafrost in Canada

    NASA Astrophysics Data System (ADS)

    Estop Aragones, Cristian; Fisher, James; Cooper, Mark; Williams, Mathew; Thierry, Aaron; Phoenix, Gareth; Murton, Julian; Charman, Dan; Hartley, Iain

    2015-04-01

    Permafrost degradation is associated with an aggradation of the active layer thus exposing previously frozen soil carbon (C) to microbial activity. This may increase the generation of greenhouse gases and potentially increase rates of climate change. However, the rate of C release remains highly uncertain, not least because few in situ studies have measured the rate at which previously frozen C is released from the soil surface, post thaw. We quantified the contribution of this "old" C being released as CO2 and CH4 from permafrost degraded soils in sporadic and discontinuous permafrost in Yukon and Northwest Territories, Canada. Firstly, we studied the effect of fire on black spruce forests as the removal of vegetation, especially mosses, may play a key role on thaw depth. Secondly, we investigated the collapse of peatland plateau after permafrost thaw which resulted in the formation of wetlands. We combined radiocarbon measurements of respired CO2 and CH4 with a novel collar-design that either included or excluded respiration from deeper soil horizons. Our results from the first field campaign show that, while excluding deeper layers did reduce the average age of the C being released from the soil surface, more than 90% of the CO2 and CH4 came from contemporary sources, even after burn and permafrost plateau collapse. Furthermore, soil cores dated using 210Pb show that the rapid accumulation of sedge peat after plateau collapse may more than compensate for any C losses from depth. Additional incubation experiments quantified the effect of temperature on respiration rates and assessed the vulnerability of permafrost soil C. Our results from the Canadian boreal contrast strongly with findings from other geographical areas emphasising the complexities of predicting the impact of permafrost thaw on the carbon balance of northern ecosystems.

  5. Permafrost Meta-Omics and Climate Change

    SciTech Connect

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-29

    Permafrost (i.e., soil that has been frozen for at least 2 consecutive years) represents a habitat for microbial life at subzero temperatures (Gilichinsky et al. 2008). Approximately one quarter of the Earth’s surface is underlain by permafrost, which contains 25-50% of the total global soil carbon pool (Schuur et al. 2008, Tarnocai et al. 2009). This carbon is largely protected from microbial decomposition by reduced microbial activity in frozen conditions, but climate change is threatening to induce large-scale permafrost thaw thus exposing it to degradation. The resulting emissions of greenhouse gasses (GHGs) can produce a positive feedback loop and significantly amplify the effects of global warming. Increasing temperatures at high latitudes, changes in precipitation patterns, and frequent fire events have already initiated a widespread degradation of permafrost (Schuur et al. 2015).

  6. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  7. Estimation of Mercury Storage in Permafrost and Potential Release to the Environment by Thaw

    NASA Astrophysics Data System (ADS)

    Schuster, P. F.; Kamark, B. L.; Striegl, R. G.; Aiken, G.

    2011-12-01

    northern hemisphere suggest the potential range of THg sequestered in permafrost is 35,000 to 17 million metric tons. Using the mean THg value for all three cores and assuming an average 1 meter permafrost depth with a soil density of 0.75 g cm-3, we estimate sequestered THg to be about 1.5 million metric tons. The current estimate of annual natural and anthropogenic Hg inputs to the global atmospheric pool is about 7500 metric tons. These data suggest that permafrost contain a substantial reservoir of Hg. Efforts are under way to measure THg in up to seven more permafrost cores and associated active layers recently collected in interior Alaska to further refine the estimate of THg stocks in permafrost. In a warming northern climate, the pool of Hg currently residing in permafrost could become mobilized and undergo transformation reactions such as methylation, the main pathway by which Hg enters the food web as a toxic agent. Areas that are conducive to the methylation of Hg, typically wetlands and riparian zones, are often referred to as hot spots. If the northern climate continues to warm and permafrost continues to thaw there may be an increase in wetlands, riparian areas and sources of previously sequestered Hg that could lead to an increased number of hot spots in the northern regions of the world.

  8. Hydrology and pore water chemistry in a permafrost wetland, Ilulissat, Greenland

    NASA Astrophysics Data System (ADS)

    Jessen, Søren; Holmslykke, Hanne D.; Rasmussen, Kristine; Richardt, Niels; Holm, Peter E.

    2014-06-01

    Hydrological and geochemical processes controlling the pore water chemistry in a permafrost wetland, with loam overlain by sphagnum peat, were investigated. The vertical distributions of dissolved Cl, and of pore water δ18O, appeared unrelated to ion freeze-out and isotope ice-water fractionation processes, respectively, dismissing solute freeze-out as a main control on the water chemistry. However, concentrations of major ions, others than Cl, generally increased with depth into the active layer. A conceptual model for water and solute movement in the active layer was derived. The model indicates upward diffusive transport of elements, released in the loam layer by mineral weathering, to the peat layer, in which lateral advective transport dominates. Active layer pore water and water of melted core sections of permafrost were of Ca-Mg-HCO3 type (1:1:4 stoichiometry) and were subsaturated for calcite and dolomite. The results are consistent with an annual cycling of inorganic carbon species, Ca and Mg, via cryogenic carbonate precipitation during fall freeze-up and their redissolution following spring thaw. Similarly, elevated Fe2+ concentrations appear to be related to cryogenic siderite formation. Pore water in the active layer showed high partial pressures of CO2, indicating the feasibility of bubble ebullition as a greenhouse gas emission pathway from permafrost wetlands. Elevated concentrations of geogenic trace elements (Ni, Al, and As) were observed, and the controlling geochemical processes are discussed. The conceptual model for water and solute movement was applied to quantify the contribution of released trace elements to a downstream lake in the permafrost catchment.

  9. Does mountain permafrost in Mongolia control water availability?

    NASA Astrophysics Data System (ADS)

    Menzel, Lucas; Kopp, Benjamin; Munkhjargal, Munkhdavaa

    2016-04-01

    faster runoff responses during and after summer rainfall. As the active layer depth increases, the soil water storage capacity decreases, which may adversely impact forest regeneration. Therefore, permafrost and forest occurrence appears to be a self-regulating system that rapidly degrades after forest fire. How these processes affect water availability on a larger scale however remains a challenging research question in that region.

  10. Assessment of the permafrost changes in the 21st century and their impact on infrastructure in the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Nicolsky, D.; Romanovsky, V. E.; Panda, S. K.; Marchenko, S. S.; Muskett, R. R.

    2015-12-01

    Thawing and freezing of Arctic soils is affected by many factors, with air temperature, vegetation, snow accumulation, and soil moisture among the most significant. Here, we employ the permafrost module of the Alaska Integrated Ecosystem Model (AIEM) and establish several high spatial resolution (1km x 1km) and very high resolution (30m x 30m) scenarios of changes in permafrost characteristics in the Alaskan Arctic in response to projected climate change. Impact of these changes in permafrost on northern Alaskan ecosystems and infrastructure are assessed and regional maps of the possible impacts are developed. The GIPL-2 numerically simulates soil temperature dynamics and the depth of seasonal freezing and thawing by solving the 1-D non-linear heat equation with phase change. In this model the processes of soil freezing and thawing are occurring in accordance with the volumetric unfrozen water content curve and soil thermal properties. The snow temperature and thickness dynamics are simulated assuming the snow accumulation, compaction and phase change processes. We validate our model simulations by comparing with available active layer, permafrost temperature and snow depth records from existing permafrost observatories operated by USGS and the Geophysical Institute of UAF in the North Slope region. Properties of surface vegetation, soil type, layering and moisture content are up-scaled using the Ecosystems of Northern Alaska map (Jorgenson and Heiner, 2003).

  11. High morphogenic activity in the permafrost-affected rock walls of the Mont Blanc massif during the 2015 summer heat wave

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Magnin, Florence; Deline, Philip

    2016-04-01

    In order to test the geomorphological hypothesis on the link between permafrost degradation and rock wall destabilisation, we survey all the rockfalls that occur in the central part of the Mont-Blanc massif using a network of observers since 2007. 511 rockfalls (100 < V < 45,000 m3) have been documented, year 2015 included. Between 2007 and 2014, the average number of destabilizations was 44 (from 17 in 2014 with a cold summer to 72 in 2009 with a relatively hot summer). In 2015, 160 events were recorded i.e. 4 times more than the annual average of the previous years. That makes the year 2015 similar to 2003 that was characterized by its summer heatwave triggering 152 rockfalls in the area currently covered by the network of observers, as shown by the analysis of a SPOT-5 image. Observations of 2015 are discussed and crossed with a statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period, implemented on a 4-m-resolution DEM of the Mont Blanc massif, and temperature measurements in three 10-m-deep boreholes at the Aiguille du Midi (3842 m a.s.l.), where the summer 2015 active layers have been the thickest since the start of measurements in 2009 (e.g. 3.6 m in the NE face against 2.9 m in average during the previous years). Before 2015, 90 % of the inventoried rockfalls occurred in areas where MARST is in the range -5 to 1°C, whereas only 50 % of the whole rock wall area above 2000 m a.s.l. covers this temperature range. With an air 0°C isotherm which sometimes exceeded the summit of Mont Blanc (4809 m a.s.l.) during the 2015 Summer, conditions were particularly unfavorable for mountaineering. Numerous rescues were carried out to climbers technically blocked by uncommon conditions or injured by rockfalls. On the normal route to the summit of Mont Blanc, two administrative closures of the Goûter hut (3835 m a.s.l.) were necessary to prevent climbers from the huge risk of rockfalls in the access couloir, known for its rockfall

  12. A central database for the Global Terrestrial Network for Permafrost (GTN-P)

    NASA Astrophysics Data System (ADS)

    Elger, Kirsten; Lanckman, Jean-Pierre; Lantuit, Hugues; Karlsson, Ævar Karl; Johannsson, Halldór

    2013-04-01

    The Global Terrestrial Network for Permafrost (GTN-P) is the primary international observing network for permafrost sponsored by the Global Climate Observing System (GCOS) and the Global Terrestrial Observing System (GTOS), and managed by the International Permafrost Association (IPA). It monitors the Essential Climate Variable (ECV) permafrost that consists of permafrost temperature and active-layer thickness, with the long-term goal of obtaining a comprehensive view of the spatial structure, trends, and variability of changes in the active layer and permafrost. The network's two international monitoring components are (1) CALM (Circumpolar Active Layer Monitoring) and the (2) Thermal State of Permafrost (TSP), which is made of an extensive borehole-network covering all permafrost regions. Both programs have been thoroughly overhauled during the International Polar Year 2007-2008 and extended their coverage to provide a true circumpolar network stretching over both Hemispheres. GTN-P has gained considerable visibility in the science community in providing the baseline against which models are globally validated and incorporated in climate assessments. Yet it was until now operated on a voluntary basis, and is now being redesigned to meet the increasing expectations from the science community. To update the network's objectives and deliver the best possible products to the community, the IPA organized a workshop to define the user's needs and requirements for the production, archival, storage and dissemination of the permafrost data products it manages. From the beginning on, GNT-P data was "outfitted" with an open data policy with free data access via the World Wide Web. The existing data, however, is far from being homogeneous: is not yet optimized for databases, there is no framework for data reporting or archival and data documentation is incomplete. As a result, and despite the utmost relevance of permafrost in the Earth's climate system, the data has not been

  13. The Frozen Ground Data Center: A Continuing Task for the International Permafrost Community

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.; Zhang, T.; Barry, R. G.; Brown, J.

    2001-12-01

    Permafrost and seasonally frozen ground underlie about 24% and 60% of the surface of the Northern Hemisphere respectively. Data and information on frozen ground collected over many decades and in the future are critical for fundamental process understanding, environmental change detection, impact assessment, model validation, and engineering applications. However, many of these data sets and information remain widely dispersed and relatively unavailable to the science and engineering community, and some are in danger of being lost permanently. The International Permafrost Association (IPA) has long recognized the inherent and lasting value of data and information, and has developed a strategy for data and information management to meet the requirements of the cold regions science, engineering, and modeling community. NSIDC has played an active role in implementing this strategy by developing and distributing the first Circumpolar Active-Layer Permafrost System (CAPS) CD-ROM including the Global Geocryological Database (GGD). Now, NSIDC, in collaboration with the International Arctic Research Center (IARC), seeks to expand the CAPS data holdings, update the GGD, and improve frozen ground data access and utility through a new web-based "Frozen Ground Data Center." NSIDC plans to reformat several existing data sets and create value-added products such as gridded fields for model validation and analysis. We also plan to acquire and distribute certain key data sets, including data from: (1) the Global Terrestrial Network for Permafrost (GTN-P) and its Borehole and updated Circumpolar Active Layer Monitoring (CALM) components (Burgess et al 2000), (2) the Arctic Coastal Dynamics project, (3) the Cryosol database and maps, and (4) various permafrost maps and soil temperature time series for Russia and China. NSIDC seeks the help of the frozen ground research community through data contributions and suggestions on data acquisition, management and distribution. The IPA

  14. Resilience of Arctic Permafrost Carbon in Mackenzie River Basin: An Incubation Experiment to Observe Priming Potentials and Biodegradability of Arctic Permafrost Peatlands

    NASA Astrophysics Data System (ADS)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2015-12-01

    Arctic permafrost zones cover 25% of the Northern Hemisphere and hold 1672Pg of soil carbon (C) with 277Pg in Arctic permafrost peatlands, which is 1/3 of the CO2 in the atmosphere. This currently protected C is a potential source for increased emissions in a warmer climate. Longer growing seasons resulting in increased plant productivity above and below ground may create new labile C inputs with the potential to affect mineralization of previously stable SOM, known as the priming effect. This study examined the response of soil respiration to labile substrate addition in carbon-rich (42-48 %C) permafrost peatland soils along a N-S transect in the central Mackenzie River Basin (69.2-62.6°N). Active layer and near surface soils (surface Δ14C values > -140.0) were collected from four sites between -10.5 and -5.2 MAT. Soils were spiked with 0.5 mg D-glucose g-1soil, and incubated at 10°C for 23 days to determine potential, short term (i.e., apparent) priming effects. On average glucose addition increased respiration in all samples. One site showed priming evidence in active layer soils despite one-way ANOVA not illustrating statistically significant differences between control and treated final cumulative CO2. Apparent priming effects were seen in two near surface permafrost samples, however cumulative increases in CO2 were not identified as significant. When all results from all sites and depths were considered, the addition of glucose showed no significant effect on total CO2 production relative to controls (p=0.957), suggesting that these sites may be resilient to increased inputs in that little priming evidence was observed. To test the idea that the soils that showed priming effects are of poorer quality, we conducted an additional incubation experiment to explore the biodegradability of these permafrost peatland soils. Soils from these four sites were inoculated and incubated for 17 days. The two sites with observed priming showed the highest biodegradability

  15. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  16. A projection of permafrost degradation on the Tibetan Plateau during the 21st century

    NASA Astrophysics Data System (ADS)

    Guo, Donglin; Wang, Huijun; Li, Duo

    2012-03-01

    The current distribution and future change of permafrost on the Tibetan Plateau were examined using the Community Land Model version 4 (CLM4) with explicit treatment of frozen soil processes. When forced off-line with archived high-resolution data from The Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 nested within the Model for Interdisciplinary Research on Climate 3.2 HiRes, the CLM4 produced a near-surface permafrost area of 122.2 × 104 km2 for the Tibetan Plateau. This area compares reasonably with area estimates of 126.7 × 104 km2 for the Plateau frozen soil map. In response to the simulated strong Plateau warming (approximately 0.58°C per decade over the Tibetan Plateau for the period from 1980 to 2100 under the A1B greenhouse gas emissions scenario), the near-surface permafrost area is projected to decrease by approximately 39% by the mid-21st century and by approximately 81% by the end of the 21st century. The near-surface permafrost area exhibits a significant decreasing linear trend, with a rate of decrease of 9.9 × 104 km2 per decade. The simulated deep permafrost area remains longer than the near-surface permafrost for the same period. The active layer thickness of 0.5-1.5 m found in the present-day increases to approximately 1.5-2.0 m by the period of 2030-2050. This increase will continue and reach a level of 2.0-3.5 m by the period of 2080-2100. Surface runoff decreases but subsurface runoff increases, both relative to the difference between precipitation and evapotranspiration. This is related to the fact that the decrease in ground ice content, as caused by permafrost degradation, facilitates the percolation of more water to deeper soil layers, thus resulting in the reallocation of runoff. These results provide useful references for evaluating the level of permafrost degradation in response to climate warming on the Tibetan Plateau.

  17. An insolation activated dust layer on Mars

    NASA Astrophysics Data System (ADS)

    de Beule, Caroline; Wurm, Gerhard; Kelling, Thorben; Koester, Marc; Kocifaj, Miroslav

    2015-11-01

    The illuminated dusty surface of Mars acts like a gas pump. It is driven by thermal creep at low pressure within the soil. In the top soil layer this gas flow has to be sustained by a pressure gradient. This is equivalent to a lifting force on the dust grains. The top layer is therefore under tension which reduces the threshold wind speed for saltation. We carried out laboratory experiments to quantify the thickness of this activated layer. We use basalt with an average particle size of 67 μm. We find a depth of the active layer of 100-200 μm. Scaled to Mars the activation will reduce threshold wind speeds for saltation by about 10%.

  18. Impact of model developments on present and future simulations of permafrost in a global land-surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S. E.; Burke, E. J.; Essery, R. L. H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P. M.; Friedlingstein, P.

    2015-03-01

    There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth System Models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock, and a modification to the snow scheme. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. Comparing with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated, where by contrast with a poorly resolved soil, at least 50% of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14-19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost lost per degree of warming reduced from 1.5 million km2 °C-1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C-1 in the new model version. However, the near-surface permafrost area is still projected

  19. The impacts of permafrost thaw on land-atmosphere greenhouse gas exchange

    SciTech Connect

    Hayes, Daniel J; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry; Wullschleger, Stan

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon stored in previously frozen soil organic matter (SOM) would be a strong positive feedback to climate1. As the northern permafrost region experiences double the rate of warming as the rest of the Earth2, the vast amount of carbon in permafrost soils3 is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases (GHG). Here, we employ a process-based model simulation experiment to assess the net effect of this so-called permafrost carbon feedback (PCF) in recent decades. Results show a wide-spread increase in the depth to permafrost between 1990 and 2006, with simulated active layer thickness (ALT) capturing the mean and spatial variability of the observational data. Analysis of the simulation experiment provides an estimate of a 2.8 mm/yr increase in permafrost depth, which translates to 281 TgC/yr thawed from previously frozen SOM. Overall, we estimate a net GHG forcing of 534 MtCO2eq/yr directly tied to ALT dynamics, while accounting for CO2 (562 MtCO2eq/yr) and CH4 (52 MtCO2eq/yr) release as well as CO2 uptake by vegetation (-80 MtCO2eq/yr). This net forcing represents a significant factor in the estimated 640 MtCO2eq/yr pan-arctic GHG source4, and an additional 6.9% contribution on top of the combined 7792 MtCO2eq/yr fossil fuel emissions from the eight Arctic nations over this time period5.

  20. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.

  1. Permafrost response to climate change: Linking field observation with numerical simulation

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Rivière, A.; Quinton, W. L.; McKenzie, J. M.; Voss, C. I.

    2013-12-01

    The Scotty Creek basin (152 km2) is located in the Northwest Territories, Canada, within the peat-covered discontinuous permafrost zone with a high density of wetlands. The extensive peat layer (up to 3-4 m thick) is underlain by generally clay-rich glacial sediments. The landcover consists of peat plateaus underlain by permafrost, permafrost-free channel fens, and connected and isolated permafrost-free ombrotrophic flat bogs, occurring as a complex mosaic of patches. The runoff from peat plateaus drains into isolated bogs and a network of connected bogs and fens. During the course of field studies since 1999, stark changes have been observed on the permafrost plateaus, including a deepening of active layer, soil settlement and depression formation, and changes in the lateral and vertical extent of the unsaturated zone. In general, the area of permafrost plateaus is decreasing, and the areas of fens and bog areas are increasing. These changes affect water flow and induce changes in heat transport, which in turn affect the aforementioned changes in permafrost plateaus (i.e. feedback processes). The goal of this study is to understand the feedbacks and their effects on permafrost degradation by used of the field observations and numerical simulations. We use a modified version of the three-dimensional SUTRA model that can simulate groundwater flow and heat transport, including freeze-thaw processes. Numerical simulation of heat transport accounts for the effects of latent heat associated with freezing and thawing, and variable heat capacity, thermal conductivity, and permeability as a function of ice content. The model is used to simulate the plateau-fen-bog complex, where intensive field studies have generated a large amount of data. The SUTRA model does not simulate complex surface processes such as radiative and turbulent heat exchange, snow accumulation and melt, and canopy effects. We use an energy and water transfer model, Northern Ecosystem Soil Temperature

  2. Mobilization of stable organic carbon in thawing permafrost by fresh organic matter from recent vegetation

    NASA Astrophysics Data System (ADS)

    Knoblauch, C.; Beer, C.; Pfeiffer, E. M.

    2015-12-01

    Permafrost affected soils contain 1,300 Pg organic carbon which is about twice the amount of the global vegetation. Most of this carbon (C) is locked in the perennially frozen ground (permafrost) and only a minor part is stored in the seasonal surface thaw layer (active layer). Rising arctic temperatures will cause deeper active layer thaw and permafrost degradation, which liberates additional soil organic matter (SOM) for microbial mineralization. After thaw, old permafrost C will be mixed with fresh organic matter from plant residues, e.g. by cryoturbation or leaching. Recent incubation studies have increased our understanding on how fast permafrost SOM may be mineralized to the greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4). After initial maximum GHG production from labile SOM components (labile C pool) mineralization rates slow down since the remaining SOM is more recalcitrant (stable C pool). The current study investigates if this stabile C pool may be mobilized by fresh organic matter from recent vegetation ("priming effect"). Therefore, permafrost samples (14C ages 0.1 - 17 ka BP) from the Siberian tundra were spiked with a 13C-labeled sedge (Carex aquatilis) after the samples were pre-incubated for 4 years. The amount of C released from permafrost SOM was calculated from the δ13C-values of produced GHG using a mixing model. Under aerobic conditions, all samples showed an accelerated mineralization of SOM after the addition of C. aquatilis (positive priming). After 4 months, which is about one vegetation period, the measured CO2 production exceeded the estimated CO2 release without labile plant material by 60 ± 28%. Under anaerobic conditions, priming was more pronounced increasing CO2 production by 100 ± 67% and CH4 production by 33 ± 32%. The CO2/CH4 ratio increased from 0.9 before priming to 1.3 after priming. The total mineralization of SOM over 4 months was significantly higher under aerobic (14.2 ± 6.1 μmol CO2-C gdw-1) than under

  3. River mobility in a permafrost dominated floodplain

    NASA Astrophysics Data System (ADS)

    Rowland, J.; Wilson, C.; Brumby, S.; Pope, P.

    2009-04-01

    Along arctic coastlines, recent studies have attributed dramatic increases in the rates of shoreline erosion to global climate change and permafrost degradation. While across much of the arctic, changes in the size and number of lakes have been interpreted as the result of permafrost degradation altering surface water dynamics. The potential influence of climate change and permafrost thawing on the mobility and form of arctic rivers, however, has been relatively unexplored to date. In rivers located within permafrost, some to potentially most, of the cohesive bank strength may be derived from frozen materials. It is likely that, as permafrost thaws, river bank erosion may increase, in turn influencing both migration rates and channel planform. Using automated feature extraction software (GeniePro), we quantified the of the mobility of a 200 km reach of the Yukon River through the Yukon Flats region located just north of Fairbanks, Alaska, USA. The Yukon Flats is an area of comprised of both continuous and discontinuous permafrost. Based on both changes in lake distributions and wintertime river base flows, it has been suggested that permafrost in this area has been experiencing recent thawing. In this reach, the Yukon River transitions from a 2 km wide braided channel to a multi-thread meandering channel where individual threads are approximately 1 km wide and the floodplain preserves prior meander cutoffs and oxbow lakes. Preliminary results from thirty years of LANDSAT imagery shows a surprising stability of channel location (at the image resolution of 30m/pixel) given the channel form. Within the braid-belt there is localized relocation of channel threads and mid-channel islands, though along much of the reach, the change in the location of channels banks is close to the resolution of the imagery. At the most active bends, bank migration rates range from 0.007 to 0.02 channel widths per year. These rates are comparable to system wide average rates observed on

  4. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost

    NASA Astrophysics Data System (ADS)

    Toohey, R. C.; Herman-Mercer, N. M.; Schuster, P. F.; Mutter, E. A.; Koch, J. C.

    2016-12-01

    The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.

  5. Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost

    USGS Publications Warehouse

    Toohey, Ryan C; Herman-Mercer, Nicole M.; Schuster, Paul F.; Mutter, Edda A.; Koch, Joshua C.

    2016-01-01

    The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.

  6. Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuh, Carina; Frampton, Andrew; Hvidtfeldt Christiansen, Hanne

    2017-02-01

    High-resolution field data for the period 2000-2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments is considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control on ice distribution and circulation within the active layer through cryosuction and are subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects lead to differences in thaw progression rates, the resulting inter-annual variability in active layer thickness is not large. Field data analysis reveals that variations in summer degree days do not notably affect the active layer thaw depths; instead, a cumulative winter degree day index is found to more significantly control inter-annual active layer thickness variation at this site. A tendency of increasing winter temperatures is found to cause a general warming of the subsurface down to 10 m depth (0.05 to 0.26 °C yr-1, observed and modelled) including an increasing active layer thickness (0.8 cm yr-1, observed and 0.3 to 0.8 cm yr-1, modelled) during the 14-year study period.

  7. Threshold driven response of permafrost in Northern Eurasia to climate and environmental change: from conceptual model to quantitative assessment

    NASA Astrophysics Data System (ADS)

    Anisimov, Oleg; Kokorev, Vasiliy; Reneva, Svetlana; Shiklomanov, Nikolai

    2010-05-01

    thermal conductivity and leads to enhanced active-layer thickness, soil depression, and ponding. Above certain threshold the process becomes self-sustained ultimately leading to degradation of permafrost. Threshold mechanisms are intrinsically probabilistic, and new type of permafrost model has been developed to address them. Unlike conventional models, it takes into account the small-scale spatial variability of soil, snow, and biophysiographic parameters in the calculations of the statistical ensemble representing potential states of permafrost under the prescribed conditions. Such model was used to assess changes in permafrost in Northern Eurasia under current and projected for the future climatic conditions. Results indicate that 1-2° C warming will lead to large-scale degradation of the frozen ground in the southernmost zone of sporadic permafrost. In continuous and discontinuous zones patchy effects will be manifested in vegetation changes at individual locations and subsequent local retreat of permafrost. Under sustained warming such changes will affect larger areas ultimately changing the landscape while local biophysiographic factors, i.e. soil, topography, slope, etc., will still play important role. Warming by more than 2° C may lead to completely different vegetation patterns in the entire Arctic, with new biomes and taller and more productive spices replacing typical plant forms. Together with the direct warming effect it will make existence of near-surface permafrost virtually impossible in the modern sporadic and large part of the discontinuous zones, although at larger depths relict frozen ground will remain for centuries. Support for this research comes from the Russian foundation for basic research (project 09-05-13544), Otto-Schmidt polar research laboratory (project OSL-10-02), and NASA (project NNX08AP30G).

  8. Evolution of Permafrost on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Jin, H.; Zhao, L.; Wang, S.; Jin, R.

    2005-12-01

    less than 15to 20 m in thicknesses. During 1,000 to 500 aBP, permafrost in marginal areas had largely disappeared, and downward degradation reached to depth of 10 m as a result of several small-scale warming. Two positions of relict permafrost table were identified. The first of late Holocene warming is at depth of 8.35 m, the second of the Megathermal is at depth of 16 m. The LLP, MAATs and permafrost area were 200 to 300 m and 1.5 to 2.0 centigrade higher, and 20 to 30 per cent less, respectively. During the Little Ice Age (500 to 100 aBP), permafrost started to develop again, with increasing areal extent and thickness. A new layer of permafrost of about 10 m was formed by downward freezing of soils, connecting with the second layer relict permafrost table of late Holocene warming. The LLP should be 150 to 200 m lower, the MAATs 0.8 to 1.5 centigrade colder, and area of permafrost 10 per cent greater. Climatic warming have been apparent during the past century, especially during the past 40 a. Seasonal thaw penetration has increased by 25 to 60 cm. The MAGTs have risen by 0.1 to 0.4 centigrade. Permafrost has been shrinking towards the interior, with a reduction of permafrost area of 6 to 8 percent, and the LLP has risen by 40 to 80 m. Permafrost degradation in the periphery island permafrost zones is the most striking. The vertical degradation of permafrost has resulted in taliks of tens of centimeters to 3 m in thicknesses. The MAATs are projected to rise by 2.2 to 2.6 centigrade during the next 50 years, permafrost degradation would be accelerating.

  9. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  10. Water Track Control of Active Layer Thermal Properties and Ecosystem Structure in the Lake Hoare Basin, Taylor Valley, Antarctica: Water, Carbon, and the Future of the Dry Valleys

    NASA Astrophysics Data System (ADS)

    Levy, J.; Fountain, A. G.

    2011-12-01

    Water tracks are linear zones of high soil moisture that route shallow groundwater downslope in permafrost dominated soils. In the Arctic, they are major hydrogeological features that mediate sedimentation, solute transport, carbon cycling, and permafrost thermal properties. In Antarctica, water tracks are not well described, although our observations suggest that they occupy ~5% of the soil-covered land area of the McMurdo Dry Valleys (MDV). We present physical, hydrological, and geochemical evidence collected in Taylor Valley, McMurdo Dry Valleys, Antarctica, which suggests that previously unexplored water tracks provide structure to Antarctic soil ecosystems. Water tracks are some of the most salt-, nutrient-, and silica-rich waters in the MDV. As in the Arctic, water tracks are shown to significantly affect the distribution of soil moisture, heat, soil salinity, soil pH, soil carbon, and phosphate in permafrost affected soils. These results suggest that water tracks are ecological hotspots in Taylor Valley, providing long-range (km to multi-km) structure to Antarctic hillslope ecosystems through physical control on soil moisture and nutrient content. Also, monitoring of multi-year active layer thaw records illustrate a strong dependence of permafrost thermal properties and heating history/hysteresis on soil water content. Wet soils are found to be icy soils in the winter, but are also shown to be warm soils in the summer. As a result, deep active layer thawing is associated with wet soils. These results suggest that additions of soil moisture to MDV soils (through increased snowfall/snowmelt, glacier runoff, or ground ice melt) will result in a deepening of active layer thaw in the Dry Valleys, potentially resulting in rapid, landscape change.

  11. Microbial community response to permafrost thaw after wildfire in an Alaskan upland boreal forest

    NASA Astrophysics Data System (ADS)

    Tas, N.; Jorgenson, M. T.; Wang, S.; Berhe, A. A.; Wickland, K. P.; Waldrop, M. P.; Jansson, J. K.

    2012-12-01

    Fire is a major factor controlling the long-term dynamics of soil carbon in Alaskan boreal forests. Wildfire not only contributes to a significant global emission of greenhouse gasses but also can indirectly result in the deepening of the active layer and thawing of near-surface permafrost due to reductions in organic layer depth and increases in heat flux through soil. Although boreal ecosystems are fire-adapted, increased fire frequency and rising global temperatures may result in warmer soils and therefore increase the metabolic rates of decomposer microbes and result in accelerated permafrost decomposition and greenhouse gas fluxes. In addition to fire-mediated changes in soil and vegetation structure, changes in the soil microbial community structure are likely to have consequences for rates of soil carbon cycling. In this study we aimed to define the impact of fire on soil microbial communities in an upland black spruce forest and to assess microbial metabolic potential for soil respiration, methanogenesis, and nitrous oxide (N2O) flux. Soil samples from two fire impacted and three control (unburned) locations were collected near Nome Creek, AK, an upland moderately drained black spruce forest. This location was within the Boundary fire that burned between mid-June and the end of August 2004. Soil temperature measurements from before and after the fire showed that soils were warmer after the fire event and the permafrost thawed below 1m. At each sampling location, soil and permafrost samples were collected every 10 cm to a depth of 1 m. Besides biochemical characterization, CO2, CH4, N2O fluxes and potential activities of enzymes involved in extracellular decomposition of complex organic molecules (hemicellulose, chitin and lignin) were measured. The microbial community composition in the samples was determined by sequencing of 16S rRNA genes and microbial metabolic potential was assessed via sequencing of total genomic DNA (metagenomics) in selected active

  12. In Situ Contribution of Old Respired CO2 from Soils in Burnt and Collapsed Permafrost in Canada

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Fisher, J. P.; Cooper, M.; Thierry, A.; Williams, M. D.; Phoenix, G. K.; Murton, J.; Charman, D.; Hartley, I. P.

    2014-12-01

    Permafrost degradation is associated with an aggradation of the active layer thus exposing previously frozen soil carbon (C) to microbial activity. This may increase the generation of greenhouse gases and potentially increase rates of climate change. However, the rate of C release remains highly uncertain, not least because few in situ studies have measured the rate at which previously frozen C is released from the soil surface, post thaw. We quantified the contribution of this "old" C being released as CO2 from permafrost degraded soils in sporadic and discontinuous permafrost in Yukon and Northwest Territories, Canada. Firstly, we studied the effect of fire on black spruce forests as the removal of vegetation, especially mosses, may play a key role on thaw depth. Secondly, we investigated the collapse of peatland plateau after permafrost thaw which resulted in the formation of wetlands. We combined radiocarbon measurements of respired CO2 with a novel collar-design that either included or excluded CO2 released from deeper soil horizons. Our results show that, while excluding deeper layers did reduce the average age of the C being released from the soil surface, more than 90% of the CO2 came from contemporary sources, even after burnt and permafrost plateau collapse. Furthermore, soil cores dated using 210Pb show that the rapid accumulation of sedge peat after plateau collapse may more than compensate for any C losses from depth. Our results from the Canadian boreal contrast strongly with findings from other geographical areas emphasising the complexities of predicting the impact of permafrost thaw on the carbon balance of northern ecosystems.

  13. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment.

    PubMed

    Nowinski, Nicole S; Taneva, Lina; Trumbore, Susan E; Welker, Jeffrey M

    2010-07-01

    A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2-3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (Delta(14)C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO(2) efflux by partitioning respiration into autotrophic and heterotrophic components. Delta(14)C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO(2) sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45-55 cm thaw depth), while CO(2) from the ambient snow areas was approximately 100 years old (30-cm thaw depth). Heterotrophic respiration Delta(14)C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO(2) in the atmosphere.

  14. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  15. Permafrost carbon: Catalyst for deglaciation

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.

    2016-09-01

    The sources contributing to the deglacial rise in atmospheric CO2 concentrations are unclear. Climate model simulations suggest thawing permafrost soils were the initial source, highlighting the vulnerability of modern permafrost carbon stores.

  16. Preservation of cell structures in permafrost: a model for exobiology.

    PubMed

    Soina, V S; Vorobiova, E A; Zvyagintsev, D G; Gilichinsky, D A

    1995-03-01

    The present report is the first contribution toward a comprehensive fine-structural study of microbial cells from permafrost. Prokaryotes with a variety of cell wall types demonstrate high stability of cell structure after long-term cryopreservation in frozen soils and sediments of the Arctic. The surface capsular layers that were a salient feature of the cells both in situ and on nutrient media may be an adaptation to low temperature. To the extent that permafrost regions on Earth approximate Martian conditions, preservation of cell structure there can serve as the basis for predictions about preservation in Martian permafrost sediments.

  17. Methanogen community composition and rates of methane consumption in Canadian High Arctic permafrost soils.

    PubMed

    Allan, J; Ronholm, J; Mykytczuk, N C S; Greer, C W; Onstott, T C; Whyte, L G

    2014-04-01

    Increasing permafrost thaw, driven by climate change, has the potential to result in organic carbon stores being mineralized into carbon dioxide (CO2) and methane (CH4) through microbial activity. This study examines the effect of increasing temperature on community structure and metabolic activity of methanogens from the Canadian High Arctic, in an attempt to predict how warming will affect microbially controlled CH4 soil flux. In situ CO2 and CH4 flux, measured in 2010 and 2011 from ice-wedge polygons, indicate that these soil formations are a net source of CO2 emissions, but a CH4 sink. Permafrost and active layer soil samples were collected at the same sites and incubated under anaerobic conditions at warmer temperatures, with and without substrate amendment. Gas flux was measured regularly and indicated an increase in CH4 flux after extended incubation. Pyrosequencing was used to examine the effects of an extended thaw cycle on methanogen diversity and the results indicate that in situ methanogen diversity, based on the relative abundance of the 16S ribosomal ribonucleic acid (rRNA) gene associated with known methanogens, is higher in the permafrost than in the active layer. Methanogen diversity was also shown to increase in both the active layer and permafrost soil after an extended thaw. This study provides evidence that although High Arctic ice-wedge polygons are currently a sink for CH4, higher arctic temperatures and anaerobic conditions, a possible result of climate change, could result in this soil becoming a source for CH4 gas flux.

  18. Degradation of Dissolved Organic Carbon from Discontinuous Permafrost Due to Photolysis and Different Inoculants

    NASA Astrophysics Data System (ADS)

    Aukes, P.; Schiff, S. L.

    2013-12-01

    Northern areas with permafrost are very susceptible to a warming climate. Temperature increases can alter hydrologic flow paths, increase the depth and biogeochemistry of the active layer, and degrade and reduce the amount of remaining permafrost. Particularly, loss of permafrost will release large stores of previously unavailable frozen carbon to the environment. Dissolved organic carbon (DOC) plays many important roles that affect both ecosystem health and drinking water quality. Comprised of countless different molecules, DOC absorbs harmful ultra-violet (UV) radiation and controls thermal regimes of lakes, is an important energy and nutrient source for heterotrophic microbes, complexes with and transports heavy metals, and reacts during chlorination of drinking water to form carcinogenic disinfection by-products. Since the ultimate fate of DOC depends on its reactivity with the surrounding environment, the implications of DOC released from permafrost for ecosystems and drinking water quality will vary across the landscape. We used 90-day lab incubations to assess the differences in quality of DOC by observing the susceptibility for DOC to degrade among various discontinuous-permafrost sources. Specifically, UV-photolysis and two surface water inoculants (pond and creek water filtered to 2.0μm) were used to represent the dominant degradation pathways encountered within the environment. Samples were taken in July 2013 from three locations (pond, creek, and wetland porewater) in a region of discontinuous permafrost near Yellowknife, NWT, Canada. We observed changes to the composition and quality of DOC resulting from photolysis and degradation by two inoculants over 90 days, where DOC quality was determined by Liquid Chromatography - Organic Carbon Detection, DOC:DON, UV-absorbance, and changes to other constituents (DIC, δ13C-DIC, CO2). We hypothesize that UV-photolysis and microbial degradation will readily degrade easily accessible and reactive components of

  19. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  20. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  1. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  2. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE PAGES

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; ...

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  3. Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska

    USGS Publications Warehouse

    McConnell, Nicole A.; Turetsky, Merritt R.; McGuire, A. David; Kane, Evan S.; Waldrop, Mark P.; Harden, Jennifer W.

    2013-01-01

    Permafrost is common to many northern wetlands given the insulation of thick organic soil layers, although soil saturation in wetlands can lead to warmer soils and increased thaw depth. We analyzed five years of soil CO2 fluxes along a wetland gradient that varied in permafrost and soil moisture conditions. We predicted that communities with permafrost would have reduced ecosystem respiration (ER) but greater temperature sensitivity than communities without permafrost. These predictions were partially supported. The colder communities underlain by shallow permafrost had lower ecosystem respiration (ER) than communities with greater active layer thickness. However, the apparent Q10 of monthly averaged ER was similar in most of the vegetation communities except the rich fen, which had smaller Q10 values. Across the gradient there was a negative relationship between water table position and apparent Q10, showing that ER was more temperature sensitive under drier soil conditions. We explored whether root respiration could account for differences in ER between two adjacent communities (sedge marsh and rich fen), which corresponded to the highest and lowest ER, respectively. Despite differences in root respiration rates, roots contributed equally (~40%) to ER in both communities. Also, despite similar plant biomass, ER in the rich fen was positively related to root biomass, while ER in the sedge marsh appeared to be related more to vascular green area. Our results suggest that ER across this wetland gradient was temperature-limited, until conditions became so wet that respiration became oxygen-limited and influenced less by temperature. But even in sites with similar hydrology and thaw depth, ER varied significantly likely based on factors such as soil redox status and vegetation composition.

  4. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  5. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  6. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    DOE PAGES

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-21

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperaturesmore » and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have

  7. Spatial Correlation of Soil Organic Matter and Pedogenic Oxides in Permafrost-Affected Soils of Northern Siberia at the Profile Scale

    NASA Astrophysics Data System (ADS)

    Evgrafova, Alevtina; Haase, Ina; Guggenberger, Georg; Shibistova, Olga; Tananaev, Nikita; Mann, Brigitte; Sauheitl, Leopold; Spielvogel, Sandra

    2015-04-01

    The organic carbon (OC) and nitrogen (N) of permafrost-affected soils are highly vulnerable to warming brought on by climate change. Detailed research on the pedogenesis and soil properties of permafrost-affected soils plays a key role in characterizing and quantifying the terrestrial carbon and N cycles. This study was carried out in northern Siberia, at the Little Grawiika Creek catchment (67°28.933' N, 86°25.682' E) that is located on the eastern riverside of the Yenisei River, Krasnoyarsk Krai, Russian Federation. The aim of the study was to conduct research focused on the spatial distribution and relationship of OC and N in permafrost-affected soils that were divided into four groups based on the depth of permafrost table. 13 pits were opened to the depth of their respective permafrost table and the spatially referenced soil samples were collected, each within an 80 cm wide grid and 10 cm mesh size to obtain a high spatial resolution. In order to quantify the spatial distribution and spatial correlation of OC and N stocks in permafrost-affected soils at the profile scale, geostatistical approaches such as simple kriging, ordinary kriging, universal kriging and ordinary cokriging were applied and compared by cross validation. Spatial analysis of pH, content of pedogenic oxides, soil structure and vegetation data were used to determine their influence on the distribution of OC and N stocks at the profile scale. The quality of the OC and N distribution maps is enhanced considerably by cokriging as compared to distribution maps which use simple, ordinary or universal kriging approaches; this is demonstrated by distinctly lower root mean square errors. The nugget-to-sill ratio decreases with an increase in active layer depth, which confirms that vertical variability of soil OC and N stocks decreases with permafrost thaw. Moreover, the range of autocorrelation of OC and N stocks increases considerably with active layer depth.

  8. Carbon Pool of Permafrost in Kolyma-Indigirka Lowland

    NASA Astrophysics Data System (ADS)

    Shmelev, D.; Veremeeva, A.; Kraev, G.; Kholodov, A. L.; Rivkina, E.

    2014-12-01

    The original database of total carbon, bulk density and iciness and new Geological map were compiled for carbon pool permafrost estimating in Quaternary deposits of North East Yakutia. The database was based on original drilling data on the main Quaternary stratigraphic units of Kolyma-Indigirka Lowland (12 key sites, 120 boreholes, 1000 samples). New geological map was created according Landsat-7 Satellite Image (spatial resolution - 30 m), the State Geological map of Quaternary Deposits (2000) and our field investigation for last 30 years in studying region. Studying area was divided into 3 regions according stratigraphy: East of Yana-Indigirka Lowland, Chukochya and Alazeya Rivers basins, East of Kolyma Lowland. Estimating was compiled for upper 25 m thickness.4 main geomorphological levels were selected for calculation: yedoma (12,8% of total area), alasses (48%), river valley (20,9%) and coastal accumulative lowland (16,7%). Our studies shows, that distribution of yedoma was overestimated in 3,5 times by State Geological Map, mainly due to underestimating of allases (increasing area on 60%).According our assessment, inorganic carbon doesn't exceed 10% of total carbon in the studying area. Permafrost stratigraphic units contain 0.6-2.1% of TC, with the highest concentrations found in Cover Layer and Ice Complex (Yedoma). The biggest carbon pool is found in Olyor, which refers to the most widespread sediments studied and high carbon concentration (up to 18 kg*m-3). The TC pool of Yedoma was 1.5-2 times overestimated by previous studies due to less samples and underestimated iciness. The TC pool of Kolyma delta is 5-7 times overestimated because of higher total organic carbon values considered. Taking the morphology into account, the TC pool assessed is 23.4 ± 9.5 Gt at near 95 000 km2 area. Mean specific carbon content is around 9.9 kg*m-3 in Kolyma Lowland permafrost. The stratigraphic unit-based approach used to compile the database and its analysis provides

  9. Establishment of a Meso-network of Eddy Covariance Towers to Quantify Carbon, Water and Heat Fluxes Along a Permafrost and Climate Gradient in the Taiga Plains, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Helbig, M.; Detto, M.; Wischnewski, K.; Chasmer, L.; Marsh, P.; Quinton, W. L.

    2013-12-01

    Recent research suggests an increase in active-layer depth in the continuous permafrost zone and degradation of the sporadic and discontinuous permafrost zones into seasonally frozen ground. Increasing active-layer depth and continued permafrost degradation will have far-reaching consequences for northern ecosystems with net feedbacks of unknown magnitude and direction to the climate system by altered regional hydrology and topography, vegetation composition and structure, land surface properties, and carbon dioxide (CO2) and methane (CH4) sink-source strengths. Several important questions are currently unanswered: 1) What is the net effect of permafrost thawing-induced biophysical and biogeochemical feedbacks to the climate system? 2) How do these two different types of feedback differ between the sporadic, discontinuous and continuous permafrost zones? 3) Is the decrease (increase) in net CO2 (CH4) exchange measured over mostly tundra sites in the continuous permafrost zone generalizable to forested landscapes in the sporadic, discontinuous and continuous permafrost zones? To address these questions we initiated a meso-network of eddy covariance towers to quantify carbon (CO2, CH4), water and heat fluxes along a permafrost and climate gradient in the Taiga Plains, Northwest Territories, Canada including the following four sites from south to north (Fort Simpson - Norman Wells - Inuvik): Scotty Creek (boreal forest-peatland landscape with sporadic/discontinuous permafrost; fully operational since May 2013), Norman Wells (boreal forest with discontinuous/continuous permafrost; to be established in 2014), Havikpak Creek (boreal forest with continuous permafrost; partly operational since April 2013) and Trail Valley Creek (tundra with continuous permafrost; partly operational since April 2013). At all sites the eddy covariance measurements are or will be complemented by repeated surveys of surface and frost table topography and vegetation, by land cover-type specific

  10. Effect of the permafrost thawing on the organic carbon and microbial activity in thermokarst lakes of Western Siberia: important source of carbon dioxide in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shirokova, L. S.; Pokrovsky, O. S.; Kirpotin, S. N.; Dupre, B.

    2008-12-01

    Ongoing processes of the permafrost thawing in Western Siberia are likely to increase the surface of water reservoirs via forming so-called thermokarst lakes, mobilizing the organic carbon (OC) from the soil pool to the rivers and, finally, to the ocean, and thus modifying the fluxes of methane and CO2 to the atmosphere. In order to understand the mechanisms of carbon mobilization and biodegradation during permafrost thawing and to establish the link between the OC and microbial activity in forming thermokarstic lakes, we performed a comparative multidisciplinary study on the biogeochemistry of OC and metals in lakes located in the northern part of Western Siberia. About 10 lakes and small ponds of various size and age were sampled for dissolved and colloidal organic carbon and metals and total bacterial cell number. There is a systematic evolution of DOC, pH, trace elements and biological activity during successions of thermokarst lakes encountered in the present study. At the beginning of permafrost thawing at the scale of several meter size ponds, fast lixiviation of unaltered peat yields significant amount of OC, major and trace elements; the pH of these waters is between 3.5 and 4.0 and the conductivity is 20-30 μS. The intermediate stage of lake formation still preserve low pHs, high DOC and conductivity, even in relatively large, up to 1 km diameter but fast growing lakes. At these stages, there is no any productivity as phytoplankton cannot live in these acidic waters and bacterial mineralization intensity is around 0.3 mg C/L/day both in the surface and bottom horizons. Once the lake border is stabilized, there are no new "unaltered peat" sources and the biological processes start to consume the OC and nutrients. At this stage, there is still no production in the water column (< 0.01 mg C/L/day) but the bacterial mineralization intensity remains high, up to 0.3 mg C/L/day. At this final stage, the remaining part of the lake located in the centre of the

  11. Rapid Permafrost Carbon Degradation at the Land-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Tanski, G.

    2015-12-01

    Climate change has a strong impact on permafrost coasts in the Arctic. With increasing air and water temperatures, the ice-rich unlithified permafrost coasts will thaw and erode at a greater pace. Organic carbon that has been stored for thousands of years is mobilized and degrades on its way to the ocean. The objective of this study is to investigate to what extent permafrost carbon degrades after thawing before it enters the ocean in a retrogressive thaw slump. A slump located on Herschel Island (Yukon Territory, Canada) was sampled systematically along transects from the permafrost headwall to the coastline. Concentrations of particulate and dissolved organic carbon (POC and DOC) as well as its stable carbon isotopes (δ13C-POC and δ13C-DOC) were measured and compared in frozen deposits and in thawed sediments. Ammonium, nitrite and nitrate were also analyzed in order to identify and understand the carbon metabolization mechanisms taking place during slump activity. Our results show that major portions of permafrost carbon are metabolized right after thawing. Ammonium concentrations are highest in areas where thawed permafrost material directly accumulates. We suggest that before entering the nearshore zone permafrost organic carbon and nitrogen is subject to major degradation and metabolization. This makes permafrost coasts and retrogressive thaw slumps degradation hotspots at the land-ocean-interface.

  12. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-12-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  13. Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-07-01

    The Arctic is a water-rich region, with freshwater systems covering 16 % of the northern permafrost landscape. The thawing of this permafrost creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic and lotic systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas, vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying variables determine the degree to which permafrost thaw manifests as thermokarst, whether thermokarst leads to slumping or the formation of thermokarst lakes, and the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying variables determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted systems is also likely to change, with thaw-impacted lakes and streams having unique microbiological communities, and showing differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter and nutrient delivery. The degree to which thaw enables the delivery of

  14. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  15. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum

  16. Influence Of Clear-cutting On Thermal and hydrological Regime In The Active Layer Near Yakutsk, Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Kobayashi, Y.; Machimura, T.; Fedorov, A. N.; Fukuda, M.

    2004-12-01

    Thermal and hydrological conditions in the active layer were investigated simultaneously at a mature larch forest (control site) and a cutover, which experienced clear-cutting in November 2000 during the thawing periods from 2001 to 2003, near Yakutsk, Eastern Siberia. The two sites were located about 100m apart and the cutover was formerly a part of the control larch forest site. The aims were to clarify the characteristics of heat and water budget in the active layer, and to assess the influence of clear-cutting on permafrost and active layer conditions, based on field observations at both intact and clear-cut forest. Clear-cutting enhanced ground thawing and the difference in the active layer thickness between the forest and the cutover (1-year) was 14cm. The soil water content drastically decreased at the forest, while that at the cutover was retained in during the first thawing season after clear-cutting. Marked changes in the active layer conditions were limited only to the first thawing season. The difference in the maximum thaw depth did not expand significantly in the second thawing season despite the increased ground heat flux at the cutover site. Thermal and hydrological analyses of the active layer revealed that the storage of latent heat was a predominant component in the energy balance in the active layer. Thus, the soil moisture condition, especially spring ice content in the active layer, plays an important role in controlling the energy balance of the active layer. Further increases in the maximum thaw depth at the cutover site were inhibited by the thermal inertial effect of the larger amount of ice in the second spring after disturbance.

  17. Vulnerability of Permafrost Carbon Research Coordination Network

    NASA Astrophysics Data System (ADS)

    Schuur, E. A.; McGuire, A. D.; Canadell, J.; Harden, J. W.; Kuhry, P.; Romanovsky, V. E.; Turetsky, M. R.; Schädel, C.

    2011-12-01

    Approximately 1700 Pg (billion tons) of soil carbon are stored in the northern circumpolar permafrost zone, more than twice as much carbon than currently contained in the atmosphere. Permafrost thaw, and the microbial decomposition of previously frozen organic carbon, is considered one of the most likely positive feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. Yet, the rate and form of release is highly uncertain but crucial for predicting the strength and timing of this carbon cycle feedback this century and beyond. Here we report on the formation of a new research coordination network (RCN) whose objective is to link biological C cycle research with well-developed networks in the physical sciences focused on the thermal state of permafrost. We found that published literature in the Science Citation Index identified with the search terms 'permafrost' and 'carbon' have increased dramatically in the last decade. Of total publications including those keywords, 86% were published since 2000, 65% since 2005, and 36% since 2008. Interconnection through this RCN is designed to produce new knowledge through research synthesis that can be used to quantify the role of permafrost carbon in driving climate change in the 21st century and beyond. An expert elicitation conducted as part of the RCN activities revealed that the total effect of carbon release from permafrost zone soils on climate is expected to be up to 30-46 Pg C over the next three decades, reaching 242-324 Pg C by 2100 and potentially up to 551-710 Pg C over the next several centuries under the strongest warming scenario presented to the group. These values, expressed in billions of tons of C in CO2 equivalents, combine the effect of C released both as CO2 and as CH4 by accounting for the greater heat-trapping capacity of CH4. Much of the actual C release by weight is expected to be in the form of CO2, with only about 3.5% of that in the form of CH4. However, the higher global warming

  18. 3D Numerical Simulation of the Geothermal Field of Permafrost at Salluit in Nunavik, Québec, in Response to Climate Warming. Research in Progress.

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Allard, M.; Gagnon, O.

    2002-12-01

    The village of Salluit is located in the continuous permafrost zone in Nunavik, Québec. This Inuit community of about 1100 people is characterized by a fast population growth. The village lies in the bottom of a restricted valley flanked by steep rock walls. Most village infrastructures are built on frozen saline and ice-rich marine silts creating problematic ground conditions for infrastructures construction. For satisfying the fast population growth, a housing program is in progress but the available terrain with proper ground conditions for stable foundation is scarce and little is known on the permafrost conditions in the valley. During the construction of the airport of Salluit, a thermistor cable has been permanently buried in a rock outcrop. Regular temperature measurements have been carried out from 1987 and 1994, and from 2001 until now. During the first measurement interval, the permafrost temperature decreased steadily from -8 to -8.5 °C at a depth of 8 m. According to Environment Canada, the climate in that region of Canada was slowly cooling. However, this trend was reversed around 1997-1998 and some important warming recently occurred. In August 2001, the temperature measurements showed an increase of about 1.9 °C at the same depth. Moreover, a major active layer detachment failure occurred in the valley uphill in 1998 forcing the moving of twenty houses recently built. This landslide was probably triggered by the climate warming. Proper assessment of available terrain for the village expansion is therefore a major concern for the Inuit community of Salluit. Following the request of the provincial government, a thorough study for mapping the permafrost conditions and assessing the impacts of climate warming on permafrost conditions has been undertaken in 2002. The surveys carried out included deep sampling of permafrost, seismic reflection and ground penetrating radar profiling, and surface mapping supported by a detailed photo interpretation. The

  19. Recent ecohydrological change in relation to permafrost degradation in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Fedorov, A. N.; Maximov, T. C.

    2010-12-01

    Recently, our continuous observations during the last decade revealed considerable evidence of abrupt land surface moistening and synchronized rapid soil warming within active layer and upper part of permafrost in the central Lena River basin in eastern Siberia. The present study focuses firstly on the linkage between atmospheric and land surface variations in eastern Siberia in terms of the hydrothermal variations within the surface layer of the permafrost and influence of storm track activity in Arctic during pre-winter and snow start season and moreover on the linkage between the permafrost degradation and ecohydrological change in this region. We utilized soil temperature, moisture and active layer thickness data from the observational network in the left and right banks of the Lena River in the Yakutsk area. Daily data of precipitation and snow depth and reanalysis dataset were used to analyze the large-scale atmospheric fields and determine storm-track activity. The peculiar feature of the warming is that the soil moisture correspondingly increases within the active layer observed at many sites in the Yakutsk area. This hydro-thermal change is primarily due to wetting climate conditions rather than atmospheric warming with abnormally large amounts of winter snow accumulation and summer precipitation in the central and southern part of the Lena River basin. The wetting conditions in eastern Siberia are likely due to enhancement of cyclonic anomaly over the Arctic Ocean and eastward propagation of storm activities in summer and early winter. Water vapor flux from Pacific side (Okhotsk sea) was enhanced in conjunction with the manifested precipitation over the eastern Siberia. As results, consecutive positive anomalies of winter snow accumulation and next summer precipitation which had seldom occurred in the second half of the last century in eastern Siberia effectively humidified land surface on the permafrost region after 2005 resulting abrupt soil warming in

  20. Bacterial production in subarctic peatland lakes enriched by thawing permafrost

    NASA Astrophysics Data System (ADS)

    Deshpande, Bethany N.; Crevecoeur, Sophie; Matveev, Alex; Vincent, Warwick F.

    2016-08-01

    Peatlands extend over vast areas of the northern landscape. Within some of these areas, lakes and ponds are changing in size as a result of permafrost thawing and erosion, resulting in mobilization of the carbon-rich peatland soils. Our aims in the present study were to characterize the particle, carbon and nutrient regime of a set of thermokarst (thaw) lakes and their adjacent peatland permafrost soils in a rapidly degrading landscape in subarctic Québec, Canada, and by way of fluorescence microscopy, flow cytometry, production measurements and an in situ enrichment experiment, determine the bacterial characteristics of these waters relative to other thaw lakes and rock-basin lakes in the region. The soil active layer in a degrading palsa (peatland permafrost mound) adjacent to one of the lakes contained an elevated carbon content (51 % of dry weight), high C : N ratios (17 : 1 by mass), and large stocks of other elements including N (3 % of dry weight), Fe (0.6 %), S (0.5 %), Ca (0.5 %) and P (0.05 %). Two permafrost cores were obtained to a depth of 2.77 m in the palsa, and computerized tomography scans of the cores confirmed that they contained high concentrations (> 80 %) of ice. Upon thawing, the cores released nitrate and dissolved organic carbon (from all core depths sampled), and soluble reactive phosphorus (from bottom depths), at concentrations well above those in the adjacent lake waters. The active layer soil showed a range of particle sizes with a peak at 229 µm, and this was similar to the distribution of particles in the upper permafrost cores. The particle spectrum for the lake water overlapped with those for the soil, but extended to larger (surface water) or finer (bottom water) particles. On average, more than 50 % of the bacterial cells and bacterial production was associated with particles > 3 µm. This relatively low contribution of free-living cells (operationally defined as the < 1 µm fraction) to bacterial production was a general

  1. Permafrost and Forest Degradation after Wet Climate Years in Eastern Siberian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Abe, K.; Ise, H.; Masuzawa, T.; Fedorov, A. N.

    2014-12-01

    Unusual precipitation increase during summer through winter had continued since 2004 in the central Lena river basin, eastern Siberia. The precipitation increase led to deepening active layer (permafrost thawing near the surface) accompanying with remarkable increase in soil moisture. The perennially waterlogged conditions had exacerbated the boreal forest habitat; that is, larch trees had widely withered and died in this region. The present study clarified spatial extent of permafrost and forest degradation due to the unexpected hydro-climate-driven damages. We have attempted to extract the degraded boreal forest based on satellite image analyses, along with expansion of the perennially waterlogged surface area. We used ALOS-PALSAR and AVNIR-2 images taken from 2006 to 2009. Classification of waterlogged area was performed by PALSAR images with supervised classification based on a microwave backscattering coefficient. Then, we compared the distribution of the waterlogged area between multi-years. Additional supervised classification of boreal forest change was conducted using AVNIR-2 images. Both classifications produced the multi-years change in degraded boreal forest at the intensive observational sites in both left and right bank of Lena River near Yakutsk. In the right bank area, most of alas lakes expanded and boreal forest on the periphery of lakes turned to waterlogged surface. In the left bank area, in contrast, waterlogged surface expanded at concaved terrain and along valleys in conjunction with forest degradation. Field survey supported that humidified and deepening active layer along slope and near alas lakes correspond with the gradient of forest degradation and enhanced thermokarst activity. Both of increasing precipitation and thawing ice in permafrost might cause the degradation. In brief, the method combining ALOS satellite images has possibility to detect permafrost and forest degradation caused by wet climate in boreal forest.

  2. Lakes in permafrost areas - inter- and intra-annual variations

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Widhalm, Barbara; Leibman, Marina; Khomutov, Artem

    2016-04-01

    Climate change is pronounced in the Arctic. Increasing temperatures above the global mean are expected for most of the region. This has an effect on soil temperature and thus the extent of permafrost. Lakes are a characteristic feature of lowland permafrost. Their changes as detected with satellite data are often interpreted as indicator for climate change. They are however in many cases connected to flood plains and thus undergo seasonal changes which are not confined to the period just after snowmelt. The Yamal peninsula is one of the areas from which changes have been reported (active layer thickness measurements for more than 20 years) and where it is expected that continuous permafrost will not be present anymore towards the end of this century. It has been already shown in the past that seasonal variations are common in several parts of the peninsula. These need to be considered for longterm studies based on lake monitoring. This requires high temporal resolution which can be only achieved with high resolution radar information (SAR which is cloud independent). The ENVISAT ASAR archive provided data for initial studies covering 2007 and 2008. This time series has been now extended with TerraSAR-X to 2015 for hotspots of variations and changes (shrinking versus emerging vegetation) verified by in-situ observations. The new data also provide better spatial detail (3 m compared to 75m). Inter and intra-annual variations have been quantified in space and time. The temporal pattern has been also analyzed with respect to snowmelt timing (obtained by satellite and ground temperature observations). Results are discussed with respect to previous inundation trend studies based on global coarse resolution (>25 km) datasets which depict significant changes on the peninsula.

  3. The impact of climate change on landslides in Southeastern of High-Latitude permafrost regions of China

    NASA Astrophysics Data System (ADS)

    Shan, Wei; Hu, Zhaoguang; Guo, Ying; Zhang, Chengcheng; Wang, Chuanjiao; Jiang, Hua; Liu, Yao; Xiao, Jitao

    2015-02-01

    Climate warming leads to permafrost degradation and permafrost melting phase transition, resulting in an increasing number of landslides. This study uses the road segments and road area at the intersection between Bei’an-Heihe Highway and the northwest section of the Lesser Khingan Range in north China as the study area. By means of geological survey combined with meteorological data, we analyzed the impact of climate change on landslide movement in the permafrost zone. Over a 60 year period, the average annual temperature of the study area has increased by 3.2 °C, and permafrost degradation is severe. Loose soil on the hillside surface provides appropriate conditions for the infiltration of atmospheric precipitation and snowmelt, and seepage from thawing permafrost. As it infiltrates downwards, water is blocked by the underlying permafrost or dense soil, and infiltrates along this barrier layer toward lower positions - forming a potential sliding zone. The representative Landslide in the study area was examined in detail. Displacement monitoring points were set up on the surface of the landslide mass, and at the trailing edge of the landslide mass. The data collected were used to investigate the relationship between landslide movement and pore water pressure at the tailing edge as well as the ground temperature. The results show that the landslide movement process changes with the season, showing a notable annual cyclical characteristic and seasonal activity. Landslide movement is characterized by low angles and intermittence. The time of slide occurrence and the slip rate show a corresponding relationship with the pore water pressure at the tailing edge of the landslide mass. The seepage of water from thawing into the landslide mass will influence the pore water pressure at the tailing edge of the landslide mass, and is the main cause of landslide movement.

  4. Environmental factors influencing trace house gas production in permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Walz, Josefine; Knoblauch, Christian; Böhme, Luisa; Pfeiffer, Eva-Maria

    2016-04-01

    The permafrost-carbon feedback has been identified as a major feedback mechanism to climate change. Soil organic matter (SOM) decomposition in the active layer and thawing permafrost is an important source of atmospheric carbon dioxide (CO2) and methane (CH4). Decomposability and potential CO2 and CH4 production are connected to the quality of SOM. SOM quality varies with vegetation composition, soil type, and soil depth. The regulating factors affecting SOM decomposition in permafrost landscapes are not well understood. Here, we incubated permafrost-affected soils from a polygonal tundra landscape in the Lena Delta, Northeast Siberia, to examine the influence of soil depth, oxygen availability, incubation temperature, and fresh organic matter addition on trace gas production. CO2 production was always highest in topsoil (0 - 10 cm). Subsoil (10 - 50 cm) and permafrost (50 - 90 cm) carbon did not differ significantly in their decomposability. Under anaerobic conditions, less SOM was decomposed than under aerobic conditions. However, in the absence of oxygen, CH4 can also be formed, which has a substantially higher warming potential than CO2. But, within the four-month incubation period (approximate period of thaw), methanogenesis played only a minor role with CH4 contributing 1-30% to the total anaerobic carbon release. Temperature and fresh organic matter addition had a positive effect on SOM decomposition. Across a temperature gradient (1, 4, 8°C) aerobic decomposition in topsoil was less sensitive to temperature than in subsoil or permafrost. The addition of labile plant organic matter (13C-labelled Carex aquatilis, a dominant species in the region) significantly increased overall CO2 production across different depths and temperatures. Partitioning the total amount of CO2 in samples amended with Carex material into SOM-derived CO2 and Carex-derived CO2, however, revealed that most of the additional CO2 could be assigned to the organic carbon from the amendment

  5. Design of foundations in permafrost

    NASA Astrophysics Data System (ADS)

    Shankle, K. R.

    The relatively recent growth in military and scientific facilities in polar regions and the industrial exploitation of Alaska and northern Canada, has necessitated a better understanding of the physical environment of cold regions. With this increased activity and occupation of cold regions also comes the need for better engineered structures. Foundations on permafrost, or perennially frozen ground, present special problems and demands in design and construction. Design of foundations in areas of seasonal frost where the material below the frost line remains unfrozen present certain problems. However, by taking structural loads to depths below the frost line, potential problems from heave and lateral thrust are generally removed. Permafrost itself is actually a fairly good material with high compressive strength. However, it does tend to creep under load, and cyclical freezing and thawing are of particular concern. Freezing and thawing have dramatic effects on the soil properties upon which the stability or a structure depends. The magnitude of these effects depend not only on the type of soil and its water content, but also on environmental factors such as weather, ground cover, snow, and the thermal properties of subsurface materials.

  6. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  7. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    PubMed Central

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming. PMID:27157964

  8. Effects of Temperature and Substrate Availability on Methanotrophy in Arctic Permafrost Landscapes

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, T.; Graham, D. E.; Wullschleger, S. D.

    2014-12-01

    Arctic permafrost ecosystems store ~ 50 % of global belowground carbon (C) and are a considerable source of atmospheric methane (CH4). Current estimates report that nearly 10 - 40 Tg yr-1 of CH4 is released from permafrost environments. In particular, topographic depressions on the landscape are predominantly anoxic and conducive to active methanogenesis. At the sediment-water interfaces of the water-saturated polygonal units, namely low- and flat-centered polygons, CH4 and oxygen gradients overlap and bacterial CH4 oxidation is an important process contributing to CH4 consumption. Methanotrophic bacteria represent the major terrestrial sinks for CH4 and can reduce CH4 emissions by ~70 %. Therefore, determining how the activity and abundance of methanotrophic communities respond to warming temperature conditions is critical to predicting effects of permafrost thaw and active layer warming on CH4 emissions. As ground temperature increases in the Arctic landscape, a major impact of permafrost thaw could be draining of the active layer with resultant subsidence leading to the formation of elevated and relatively oxic high-centered polygons. These changes can impact both methanogen and methanotroph communities and affect net CH4 fluxes. To understand the controls of temperature and substrate availability on CH4 oxidation, we examined process rates and temporal dynamics of methanotroph biomass in contrasting landscape gradients. We investigated the active layer and Cryoturbated permafrost organic soilsd from replicate soil cores collected from high-centered and flat-centered polygonal units in the Barrow Environmental Observatory, Barrow, AK. We used quantitative PCR to quantify methanogen (mcrA) and methanotroph (pmoA) population size by functional gene analysis. We present potential methane oxidation activity in response to three incubation temperatures (-2 oC, 4 oC, and 10 oC) that represent thaw-season ground temperatures. Our objectives were to estimate the rates

  9. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    NASA Astrophysics Data System (ADS)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  10. Habitability of Mars: hyperthermophiles in permafrost

    NASA Astrophysics Data System (ADS)

    Gilichinsky, David; Rivkina, Elizaveta; Vishnivetskaya, Tatiana; Felipe, Gomez; Mironov, Vasilii; Blamey, Jenny; Ramos, Miguel; Ángel de Pablo, Miguel; Castro, Miguel; Boehmwald, Freddy

    This is a first microbiological study of volcanic permafrost carried out on Kluchevskaya volcano group (Kamchatka Peninsula) and Deception Island (Antarctica). By culture-and culture-independent methods we showed the presence of viable hyper(thermophilic) microorganisms and their genes within volcanic permafrost. The optimal temperature for sulfide producing bacteria was 65, whereas acetogens and methanogens were able to produce acetate and methane at temperatures up to 75o C, while sulphur-reducers showed optimal growth at 85-92o C. Hy-per(thermophiles) were never found in permafrost outside the volcanic areas before. The only way they are to appear within a frozen material is a concurrent deposition during the eruption, together with products associated with volcano heated subsurface geothermal oases. The elo-quent evidence to the hypothesis is the presence among clones of the sequences affiliated with (hyper)thermophilic bacteria, both, aerobic and anaerobic, in the environmental DNA derived from ashes freshly deposited on snow in close proximity to volcano Shiveluch (Kamchatka) and aerobic bacteria incubated at 80o C from ashes freshly deposited on the top of Llaima Vol-cano glacier (Andes). Thus, in the areas of active volcanism the catastrophic geological events transports the life from the depths to the surface and this life from high-temperature ecological niches might survive in permafrost over a long period of time. The results obtained give insights for habitability of Mars. Terrestrial permafrost represents a possible ecosystem for Mars as an Earth-like cryogenic planet. But permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Because such difference in age, the longevity of life forms preserved within terrestrial permafrost may only serve as an approximate model for Mars. On the other hand, numerous ancient extinct volcanoes are known on Mars. Their past eruptions periodically burn-through the

  11. The state of permafrost surrounding "Gabriel de Castilla" Spanish Antarctic Station (Deception Island, Antarctica): Studying the possible degradation due to the infrastructures heating effect.

    NASA Astrophysics Data System (ADS)

    Recio, Cayetana; Ángel de Pablo, MIguel; Ramos, MIguel; Molina, Antonio

    2015-04-01

    Permafrost degradation is one of the effects of the global warming. Many studies reveal the increase of active layer and reduction on permafrost table thickness, also in Antarctica. However, these trends on permafrost can be accelerated by the human activities, as the heating produced by the Antarctic stations infrastructures when they are not properly isolated from the ground. In Deception island, South Shetland Archipelago, we started 3 years ago a monitoring program at the 26 years old "Gabriel de Castilla" Spanish Antarctic Station (SAS), It is focused on charactering the state of permafrost, since in the coastal scarps at tens of meters from the station an increase on erosion had been detected. Although the main cause of the erosion of this coastal volcanoclastic materials is the 2 meters thick icefield which forms during the winter in the inner sea of this volcanic island, we want to detect any possible contribution to the coastal erosion caused by the permafrost degradation related to the SAS presence. We present our preliminary analysis based on three years of continuous ground temperature data, monitored at a shallow borehole (70 cm deep) in the SAS edge, together with the active layer thickness measured around the station and their vicinities in two thawing seasons. We complete this study with the analysis of the continuous temperature data taken inside the SAS and the air and ground temperatures below the station, acquired during the last Antarctic Campaign (December 2014-February 2015). These preliminary results are fundamental 1) to discard any contribution from the SAS presence, and to help to improve its thermal isolation, 2) to help improve our knowledge about the thermal state of permafrost in the area, and 3) to help to understand the causes of the coastal erosion in the volcanic Deception Island.

  12. International Field School on Permafrost: Yenisei, Russian Federation - 2013

    NASA Astrophysics Data System (ADS)

    Nyland, K. E.; Streletskiy, D. A.; Grebenets, V. I.

    2013-12-01

    The International Field School on Permafrost was established in Russia as part of International Polar Year activities. The first course was offered in 2007 in Northwestern Siberia and attracted students from Russia, Germany, and the United States. Over the past seven years undergraduate and graduate students representing eight different countries in North America, Europe, and Asia have participated in the field school. This annual summer field course visits different regions of the Russian Arctic each year, but the three course foci remain consistent, which are to make in depth examinations of, 1) natural permafrost characteristics and conditions, 2) field techniques and applications, and 3) engineering practices and construction on permafrost. During these field courses students participate in excursions to local museums and exhibitions, meet with representatives from local administrations, mining and construction industries, and learn field techniques for complex permafrost investigations, including landscape and soil descriptions, temperature monitoring, active-layer measurements, cryostratigraphy, and more. During these courses students attend an evening lecture series by their professors and also give presentations on various regionally oriented topics of interest, such as the local geology, climate, or historical development of the region. This presentation will relate this summer's (July 2013) field course which took place in the Yenisei River region of central Siberia. The course took place along a bioclimatic transect from south to north along the Yenisei River and featured extended stays in the cities of Igarka and Noril'sk. This year's students (undergraduate, masters, and one PhD student) represented universities in the United States, Canada, and the Russian Federation. The organization of this course was accomplished through the cooperation of The George Washington University's Department of Geography and the Lomonosov Moscow State University

  13. Response of middle-taiga permafrost landscapes of Central Siberia to global warming in the late 20th and early 21st centuries

    NASA Astrophysics Data System (ADS)

    Medvedkov, Alexey A.

    2016-11-01

    In this paper, regional features of a climatogenic response of the middle-taiga permafrost landscapes of Central Siberia, as well as corresponding transformations of the exodynamic processes, are considered. Lithological-geomorphologic and landscape- geocryological data are analyzed with large amounts of actual data and results of monitoring surveys. Specific features of an ecotone localization of middle-taiga permafrost landscapes and their typical physiognomic characteristics are described. A comprehensive investigation of representative key sites makes it possible to discover the response of different types of permafrost landscapes to regional climate warming. A rapid increase in the active layer depth, slower creep, transformations of the moving kurums, intensive solifluction, and a local replacement of solifluction by landslides-earthflows are revealed within ecotone landscapes of the cryolithozone.

  14. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGES

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; ...

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  15. The GTN-P Data Management System: A central database for permafrost monitoring parameters of the Global Terrestrial Network for Permafrost (GTN-P) and beyond

    NASA Astrophysics Data System (ADS)

    Lanckman, Jean-Pierre; Elger, Kirsten; Karlsson, Ævar Karl; Johannsson, Halldór; Lantuit, Hugues

    2013-04-01

    Permafrost is a direct indicator of climate change and has been identified as Essential Climate Variable (ECV) by the global observing community. The monitoring of permafrost temperatures, active-layer thicknesses and other parameters has been performed for several decades already, but it was brought together within the Global Terrestrial Network for Permafrost (GTN-P) in the 1990's only, including the development of measurement protocols to provide standardized data. GTN-P is the primary international observing network for permafrost sponsored by the Global Climate Observing System (GCOS) and the Global Terrestrial Observing System (GTOS), and managed by the International Permafrost Association (IPA). All GTN-P data was outfitted with an "open data policy" with free data access via the World Wide Web. The existing data, however, is far from being homogeneous: it is not yet optimized for databases, there is no framework for data reporting or archival and data documentation is incomplete. As a result, and despite the utmost relevance of permafrost in the Earth's climate system, the data has not been used by as many researchers as intended by the initiators of the programs. While the monitoring of many other ECVs has been tackled by organized international networks (e.g. FLUXNET), there is still no central database for all permafrost-related parameters. The European Union project PAGE21 created opportunities to develop this central database for permafrost monitoring parameters of GTN-P during the duration of the project and beyond. The database aims to be the one location where the researcher can find data, metadata, and information of all relevant parameters for a specific site. Each component of the Data Management System (DMS), including parameters, data levels and metadata formats were developed in cooperation with the GTN-P and the IPA. The general framework of the GTN-P DMS is based on an object oriented model (OOM), open for as many parameters as possible, and

  16. Vulnerability of permafrost carbon research coordination network

    NASA Astrophysics Data System (ADS)

    Schädel, C.; Schuur, E. A. G.; McGuire, A. D.; Canadell, J. G.; Harden, J.; Kuhry, P.; Romanovsky, V. E.; Turetsky, M. R.

    2012-04-01

    Approximately 1700 Pg of soil carbon are stored in the northern circumpolar permafrost zone, more than twice as much carbon than currently contained in the atmosphere. Permafrost thaw, and the microbial decomposition of previously frozen organic carbon, is considered one of the most likely positive feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. Yet, the rate and form of release is highly uncertain but crucial for predicting the strength and timing of this carbon cycle feedback this century and beyond. Here we report on the first products of a new research coordination network (RCN) whose objective is to link biological C cycle research with well-developed networks in the physical sciences focused on the thermal state of permafrost. We found that published literature in the Science Citation Index identified with the search terms 'permafrost' and 'carbon' have increased dramatically in the last decade. Of total publications including those keywords, 86% were published since 2000, 65% since 2005, and 36% since 2008. The first RCN activity consisted of an expert elicitation that revealed the total effect of carbon release from permafrost zone soils in climate is expected to be up to 30-46 Pg C over the next three decades, reaching 242-324 Pg C by 2100 and potentially up to 551-710 Pg C over the next several centuries under the strongest warming scenario presented to the group. These values, expressed in billions of tons of C in CO2 equivalents, combine the effect of C released both as CO2 and as CH4 by accounting for the greater heat-trapping capacity of CH4. However, the higher global warming potential of CH4 means that almost half of the effect of future permafrost zone carbon emissions on climate forcing was expected by this group to be a result of CH4 emissions from wetlands, lakes, and other oxygen-limited environments where organic matter will be decomposing. These results demonstrate the vulnerability of organic C stored in near

  17. Massive remobilization of permafrost carbon during post-glacial warming

    PubMed Central

    Tesi, T.; Muschitiello, F.; Smittenberg, R. H.; Jakobsson, M.; Vonk, J. E.; Hill, P.; Andersson, A.; Kirchner, N.; Noormets, R.; Dudarev, O.; Semiletov, I.; Gustafsson, Ö

    2016-01-01

    Recent hypotheses, based on atmospheric records and models, suggest that permafrost carbon (PF-C) accumulated during the last glaciation may have been an important source for the atmospheric CO2 rise during post-glacial warming. However, direct physical indications for such PF-C release have so far been absent. Here we use the Laptev Sea (Arctic Ocean) as an archive to investigate PF-C destabilization during the last glacial–interglacial period. Our results show evidence for massive supply of PF-C from Siberian soils as a result of severe active layer deepening in response to the warming. Thawing of PF-C must also have brought about an enhanced organic matter respiration and, thus, these findings suggest that PF-C may indeed have been an important source of CO2 across the extensive permafrost domain. The results challenge current paradigms on the post-glacial CO2 rise and, at the same time, serve as a harbinger for possible consequences of the present-day warming of PF-C soils. PMID:27897191

  18. Massive remobilization of permafrost carbon during post-glacial warming

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Muschitiello, F.; Smittenberg, R. H.; Jakobsson, M.; Vonk, J. E.; Hill, P.; Andersson, A.; Kirchner, N.; Noormets, R.; Dudarev, O.; Semiletov, I.; Gustafsson, Ö.

    2016-11-01

    Recent hypotheses, based on atmospheric records and models, suggest that permafrost carbon (PF-C) accumulated during the last glaciation may have been an important source for the atmospheric CO2 rise during post-glacial warming. However, direct physical indications for such PF-C release have so far been absent. Here we use the Laptev Sea (Arctic Ocean) as an archive to investigate PF-C destabilization during the last glacial-interglacial period. Our results show evidence for massive supply of PF-C from Siberian soils as a result of severe active layer deepening in response to the warming. Thawing of PF-C must also have brought about an enhanced organic matter respiration and, thus, these findings suggest that PF-C may indeed have been an important source of CO2 across the extensive permafrost domain. The results challenge current paradigms on the post-glacial CO2 rise and, at the same time, serve as a harbinger for possible consequences of the present-day warming of PF-C soils.

  19. Stability of permafrost dominated coastal cliffs in the Arctic

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Azharul; Pollard, Wayne H.

    2016-03-01

    Block failure is considered to be an important component of coastal retreat in permafrost regions. A comprehensive model is developed to study the effects of thermoerosional niche and ice wedge morphology on the stability of permafrost dominated coastal cliff against block failure. The model is formulated by coupling slope stability analysis with a time dependent progression of thermoerosional niches and the morphology of the nearby ice wedges. Model computations are initially performed for failure conditions for a given cliff height, frozen soil strength, ice content, water pressure in the active layer, thermoerosional niche depth and ice wedge morphology. Under these conditions block failures are found to be predominantly overturning failures and are governed by the tensile strength of frozen soil, thermoerosional niche depth and ice wedge location and depth. The effects of ice wedges are then examined by analyzing failure conditions for ice wedges of different locations and depths. For a given cliff height, strength and thermoerosional niche, block failure may occur at a range of different combinations of ice wedge locations and depths. Two stability nomograms are developed through repeated model calculations for range of cliff heights and frozen soil tensile strength. These nomograms can be used to determine the critical combinations of thermoerosional niche depth, ice wedge distance and ice wedge depth that lead to block collapse of a cliff of known height and soil strength. Some analytical expressions are also derived to determine potential block failure criteria along Arctic coasts.

  20. Wavefield Inversion of Surface Waves for Delineating Seismic Structure in Saline Permafrost: A Case History from the Barrow Peninsula, AK

    NASA Astrophysics Data System (ADS)

    Dou, S.; Dreger, D. S.; Peterson, J.; Ulrich, C.; Dafflon, B.; Hubbard, S. S.; Ajo Franklin, J. B.

    2014-12-01

    Seismic investigations of permafrost are essential in cold-region applications including static corrections for seismic exploration and site characterization for infrastructure development. Surface-wave methods are advantageous because their applicability does not require regular velocity gradients. But distinct challenges also exist: The irregular velocity variations in permafrost, combined with the marked velocity contrasts between frozen and unfrozen ground, often yield complicated dispersion spectra in which higher-order and leaky modes are dominant. Owing to the difficulties in retrieving dispersion curves from such spectra, dispersion-curved-based inversion methods become inapplicable. Here we present a case study of using wavefield inversion of surface waves to infer the permafrost structure on the Barrow Peninsula of the Alaskan Arctic Coastal Plain. In May of 2014, we conducted an active multichannel surface-wave survey along a 4300-m (2.7-mi) NE-SW trending transect that extended from the coastal to the interior areas of the peninsula. We acquired surface-wave supergathers—each covering a distance of 147 meters—from four nearly equidistantly distributed subsections of the transect. The dispersion spectra show dominant higher-order and leaky modes, as well as inversely dispersive trends (i.e., phase velocities increase with increasing frequencies). Preliminary results reveal a "sandwich" velocity structure, in which a pronounced low-velocity layer (with S-wave velocity reductions up to ~45%-60%; tens of meters thick; overlain by 3-4 m of high-velocity strata) is embedded within high-velocity strata, and the low-velocity layer itself contains irregular velocity gradients. Considering the low ground temperatures of -10 °C to -8 °C, this low-velocity feature is likely to be an embedded saline layer that is only partially frozen due to freezing-point depression of dissolved salts. Because saline permafrost is particularly sensitive to thermal

  1. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  2. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  3. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  4. Thermal State Of Permafrost In Urban Environment Under Changing Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V. I.; Kerimov, A. G.; Kurchatova, A.; Andruschenko, F.; Gubanov, A.

    2015-12-01

    Risks and damage, caused by deformation of building and constructions in cryolithozone, are growing for decades. Worsening of cryo-ecological situation and loss of engineering-geocryological safety are induced by both technogenic influences on frozen basement and climate change. In such towns on permafrost as Vorkuta, Dixon more than 60% of objects are deformed, in Yakutsk, Igarka- nearly 40%, in Norilsk, Talnakh, Mirnij 35%, in old indigenous villages - approximately 100%; more than 80% ground dams with frozen cores are in poor condition. This situation is accompanied by activation of dangerous cryogenic processes. For example in growing seasonally-thaw layer is strengthening frost heave of pipeline foundation: only on Yamburg gas condensate field (Taz Peninsula) are damaged by frost heave and cut or completely replaced 3000 - 5000 foundations of gas pipelines. Intensity of negative effects strongly depends on regional geocryology, technogenic loads and climatic trends, and in Arctic we see a temperature rise - warming, which cause permafrost temperature rise and thaw). In built areas heat loads are more diverse: cold foundations (under the buildings with ventilated cellars or near termosyphons) are close to warm areas with technogenic beddings (mainly sandy), that accumulate heat, close to underground collectors for communications, growing thaw zones around, close to storages of snows, etc. Note that towns create specific microclimate with higher air temperature. So towns are powerful technogenic (basically, thermal) presses, placed on permafrost; in cooperation with climate changes (air temperature rise, increase of precipitation) they cause permafrost degradation. The analysis of dozens of urban thermal fields, formed in variable cryological and soil conditions, showed, that nearly 70% have warming trend, 20% - cooling and in 10% of cases the situation after construction is stable. Triggered by warming of climate changes of vegetation, depth and temperature of

  5. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    decomposition in the permafrost deposits during cryopegs' migration. From these horizons will be active methane emissions, including gas explosion in coastal areas and on the Arctic shelf. This mechanism of methane emissions is a significant geological hazard during the development of oil and gas fields in the Arctic. References. 1. Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2. Chuvilin E.M., Bukhanov B.A., Ekimova V.V. et al. Experimental modeling of interaction between salt solutions and frozen sediments containing gas hydrates. / The 8th International Conference on Gas Hydrates. Beijing, China, 2014. These researches were supported by grants RFBR № 13-05-12039 and RSF №16-17-00051.

  6. Estimating gas escape through taliks in relict submarine permafrost and methane hydrate deposits under natural climate variation

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2013-12-01

    Permafrost-associated methane hydrate deposits exist at shallow depths within the sediments of the Arctic continental shelves. This icy carbon reservoir is thought to be a relict of cold glacial periods, when sea levels are much lower, and shelf sediments are exposed to freezing air temperatures. During interglacials, rising sea levels flood the shelf, bringing dramatic warming to the permafrost and gas hydrate bearing sediments. Degradation of this shallow-water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Although relict permafrost-associated gas hydrate deposits likely make up only a small fraction of the global hydrate inventory, they have received a disproportionate amount of attention recently because of their susceptibility to climate change. This study is motivated by several recent field studies which report elevated methane levels in Arctic coastal waters. While these observations are consistent with methane release as a result of decomposing submarine permafrost and gas hydrates, the source of gas cannot easily be distinguished from other possibilities, including the escape of deep thermogenic gas through permeable pathways such as faults, or microbial activity on thawing organic matter within the shelf sediments. In this study, we investigate the response of relict Arctic submarine permafrost and permafrost-associated gas hydrate deposits to warming with a two-dimensional, finite-volume model for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. We track the evolution of temperature, salinity, and pressure fields with prescribed boundary conditions, and account for latent heat of water ice and methane hydrate formation during growth/decay of permafrost or methane hydrate. The permeability structure of the sediments is coupled to changes in permafrost. We assess the role of taliks (unfrozen portions of continuous permafrost) as a pathway for methane gas escape and make

  7. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  8. Evaluating Ecotypes as a means of Scaling-up Permafrost Thermal Measurements in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Cable, William; Romanovsky, Vladimir

    2015-04-01

    was anomalously low during both winters, while mean monthly and annual air temperature was similar to the long-term average the first year and considerably warmer (warm winter) the second year. Our results indicate that it is possible to extract information about subsurface temperature, active layer thickness, and other permafrost characteristics based on these ecotype classifications. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near surface permafrost. As a proof of concept, we used this information to translate the ecotype landcover map into a map of mean annual ground temperature ranges at 1 m depth. While this map is preliminary and would benefit from additional data and modeling exercises (both ongoing), we believe it provides useful information for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.

  9. A multi-scale permafrost investigation along the Alaska Highway Corridor based on airborne electromagnetic and auxiliary geophysical data

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Kass, M. A.; Bloss, B.; Pastick, N.; Panda, S. K.; Smith, B. D.; Abraham, J. D.; Burns, L. E.

    2012-12-01

    More than 8000 square kilometers of airborne electromagnetic (AEM) data were acquired along the Alaska Highway Corridor in 2005-2006 by the Alaska Department of Natural Resources Division of Geological and Geophysical Surveys. Because this large AEM dataset covers diverse geologic and permafrost settings, it is an excellent testbed for studying the electrical geophysical response from a wide range of subsurface conditions. These data have been used in several recent investigations of geology, permafrost, and infrastructure along the highway corridor. In this study, we build on existing interpretations of permafrost features by re-inverting the AEM data using traditional least squares inversion techniques as well as recently developed stochastic methods aimed at quantifying uncertainty in geophysical data. Ground-based geophysical measurements, including time-domain electromagnetic soundings, surface nuclear magnetic resonance soundings, and shallow frequency-domain electromagnetic profiles, have also been acquired to help validate and extend the AEM interpretations. Here, we focus on the integration of different types of data to yield an improved characterization of permafrost, including: methods to discriminate between geologic and thermal controls on resistivity; identifying relationships between shallow resistivity and active layer thickness by incorporating auxiliary remote sensing data and ground-based measurements; quantifying apparent slope-aspect-resistivity relationships, where south-facing slopes appear less resistive than north-facing slopes within similar geologic settings; and investigating an observed decrease in resistivity beneath several areas associated with recent fires.

  10. Permafrost soils and carbon cycling

    DOE PAGES

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; ...

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  11. Presence of rapidly degrading permafrost plateaus in south-central Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin M.; Baughman, Carson A.; Romanovsky, Vladimir E.; Parsekian, Andrew D.; Babcock, Esther L.; Stephani, Eva; Jones, Miriam C.; Grosse, Guido; Berg, Edward E.

    2016-11-01

    Permafrost presence is determined by a complex interaction of climatic, topographic, and ecological conditions operating over long time scales. In particular, vegetation and organic layer characteristics may act to protect permafrost in regions with a mean annual air temperature (MAAT) above 0 °C. In this study, we document the presence of residual permafrost plateaus in the western Kenai Peninsula lowlands of south-central Alaska, a region with a MAAT of 1.5 ± 1 °C (1981-2010). Continuous ground temperature measurements between 16 September 2012 and 15 September 2015, using calibrated thermistor strings, documented the presence of warm permafrost (-0.04 to -0.08 °C). Field measurements (probing) on several plateau features during the fall of 2015 showed that the depth to the permafrost table averaged 1.48 m but at some locations was as shallow as 0.53 m. Late winter surveys (augering, coring, and GPR) in 2016 showed that the average seasonally frozen ground thickness was 0.45 m, overlying a talik above the permafrost table. Measured permafrost thickness ranged from 0.33 to > 6.90 m. Manual interpretation of historic aerial photography acquired in 1950 indicates that residual permafrost plateaus covered 920 ha as mapped across portions of four wetland complexes encompassing 4810 ha. However, between 1950 and ca. 2010, permafrost plateau extent decreased by 60.0 %, with lateral feature degradation accounting for 85.0 % of the reduction in area. Permafrost loss on the Kenai Peninsula is likely associated with a warming climate, wildfires that remove the protective forest and organic layer cover, groundwater flow at depth, and lateral heat transfer from wetland surface waters in the summer. Better understanding the resilience and vulnerability of ecosystem-protected permafrost is critical for mapping and predicting future permafrost extent and degradation across all permafrost regions that are currently warming. Further work should focus on reconstructing

  12. Biodiversity of cryopegs in permafrost.

    PubMed

    Gilichinsky, David; Rivkina, Elizaveta; Bakermans, Corien; Shcherbakova, Viktoria; Petrovskaya, Lada; Ozerskaya, Svetlana; Ivanushkina, Natalia; Kochkina, Galina; Laurinavichuis, Kyastus; Pecheritsina, Svetlana; Fattakhova, Rushania; Tiedje, James M

    2005-06-01

    This study describes the biodiversity of the indigenous microbial community in the sodium-chloride water brines (cryopegs) derived from ancient marine sediments and sandwiched within permafrost 100-120,000 years ago after the Arctic Ocean regression. Cryopegs remain liquid at the in situ temperature of -9 to -11 degrees C and make up the only habitat on the Earth that is characterized by permanently subzero temperatures, high salinity, and the absence of external influence during geological time. From these cryopegs, anaerobic and aerobic, spore-less and spore-forming, halotolerant and halophilic, psychrophilic and psychrotrophic bacteria, mycelial fungi and yeast were isolated and their activity was detected below 0 degrees C.

  13. The International University Courses on Permafrost (IUCP): an IPY Education Initiative From the International Permafrost Association (IPA)

    NASA Astrophysics Data System (ADS)

    Prick, A.; Christiansen, H. H.

    2006-12-01

    Worldwide, only very few dedicated permafrost courses exist at university level today. This significantly limits the development of new permafrost researchers. Therefore, the International Permafrost Association (IPA) has developed an overview of International University Courses on Permafrost (IUCP), as part of its participation in the IPY. This polar-related educational program covers cross-cutting activities of the four core IPY-IPA endorsed cluster projects that constitute the IPY Permafrost Programme: Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost (TSP; Project 50); Antarctic and sub-Antarctic Permafrost, Periglacial and Soil Environments (ANTPAS; Project 33); Arctic Circumpolar Coastal Observatory Network (ACCO-Net; Project 90); Carbon Pools in Permafrost Regions (CAPP; Project 373). The IUCP collects information about existing and new IPY permafrost courses worldwide, to encourage a broad international student participation in the existing courses. All courses dealing with permafrost and periglacial geomorphology within the science and engineering disciplines and organized in 2007 to 2009 in both hemispheres qualify for IUCP. Some courses are exclusively field-based and take place in various polar regions, offering students a unique opportunity to gather field experience. Other courses are theoretical and classroom-based or include only limited time in the field. All course levels are taken into account, from undergraduate to doctorate level; the IPA also encourages young professional participation in the IUCP. IPA- IPY education coordinators in each country are providing relevant information. IUCP course information is presented on the IPA webpage. The use of web resource and search tools allow easy access to course contents. The IUCP course numbers by countries as by August 2006 is: Argentina (1), Belgium (1), Canada (29), China (11), Denmark (1), France (2), Japan (7), Mongolia (1), Netherlands (4), New Zealand (1

  14. Permafrost degradation after the 2002 wildfire in Kougarok, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Harada, K.; Uchida, M.; Kondo, M.; Saito, K.; Narita, K.; Kushida, K.; Hinzman, L. D.; Fukuda, M.; Tsuyuzaki, S.

    2014-12-01

    Geomorphological and thermo-hydrological changes after wildfire were investigated here to clarify the rates of permafrost degradation and impacts on the surrounding environment. Study sites are located in Kougarok on the central Seward Peninsula of northwestern Alaska. This area is classified as zones of either continuous and discontinuous permafrost. In 2002, wildfire burned a large area of this region. We selected an intact area and a burned area as research sites located close to one another and divided by a road. The surface organic layer was either combusted or reduced in thickness during the fire. It is assumed that the vegetation cover and subsurface conditions were similar between both sites before the fire. General vegetation at unburned sites was shrub-tussock tundra with more than 30 % evergreen shrubs, about 30 % deciduous shrubs and about 20 % sedges. Our studies of aerial photography and high-resolution satellite images showed that surface subsidence due to thermokarst developed differentially within some of the burned and vehicle-disturbed areas, exposing the polygonal reliefs on the surface. Within burned areas absent the thermokarst polygonal reliefs, soil moisture was higher at burned areas than unburned, and the active layer thickness was about 1.5-2.0 times deeper at the burned area during the initial stage of the study (2005-2007). In the following years, however, the difference in active layer thickness decreased, and thickness for the burned area seemed to be recovering to pre-fire status. Geophysical surveys demonstrated that there had been no detectable difference in the depth of the permafrost base between the burned and unburned areas. On the other hand, at the burned site with thermokarst polygonal reliefs, we confirmed using differential GPS that the polygonal reliefs actually coincides with depression lines along the subsurface ice wedge network. Near-surface unfrozen and frozen soil cores down to 1.6 m depth were sampled at seven and

  15. Surface water dynamics of shallow lakes following wildfire in Alaska's discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Altmann, G.; Verbyla, D.; Rowland, J. C.; Yoshikawa, K.; Fox, J.; Chen, M.; Wilson, C. J.

    2011-12-01

    Wildfire is ubiquitous to boreal Alaska and is the primary disturbance regime affecting thawing permafrost and ecosystem processes in this region. Annually, an average area of 400,000 Ha burns in Alaska (Kasischke et al., 2010) and 96% of these fires occur in the interior portion of the state. Alaska's Interior contains numerous lakes and is widely associated with discontinuous permafrost, which is warmer than 1o C and more prone to thawing than continuous permafrost. Recent studies have indicated regional drying and shrinking of lakes throughout the boreal areas (Riordan et al., 2006; Klein, et al., 2005; Yoshikawa & Hinzman, 2003). While these lake dynamics have been attributed to both changes in climate and subsurface controls, the impact of fire on these changes has not been explored. Fire has a profound effect on the depth of the seasonally thawed active layer. The active layer depth is influenced by the thickness of the organic layer and typically thaws between 0.5 and 2 m from the surface (Bloom, 1998). A severe fire, however, can physically reduce or remove the organic layer and active layer depths have been known to deepen more than 3-4m after fire disturbance (Yoshikawa et al., 2003). Deepening of the active layer may improve exchanges between surface water and the groundwater system, thus facilitating changes in lake areas as lateral and vertical discharge occurs through patches of unfrozen ground (talik). Because surface and near surface hydrology is strongly affected by the presence of permafrost, changes in active layer thickness and permafrost extent may mark a distinct change of character in surface hydrology (Hinzman, 2005). In this study, we applied remote sensing and GIS to examine lake dynamics following wildfire in four regions of Interior Alaska. Study area selection was based on site association with discontinuous permafrost, lake and pond abundance, previous lake studies, and historical fire incidence between 1950 and 2009. An observation

  16. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites

    NASA Astrophysics Data System (ADS)

    Sattler, Katrin; Anderson, Brian; Mackintosh, Andrew; Norton, Kevin; de Róiste, Mairéad

    2016-02-01

    Alpine permafrost occurrence in maritime climates has received little attention, despite suggestions that permafrost may occur at lower elevations than in continental climates. To assess the spatial and altitudinal limits of permafrost in the maritime Southern Alps, we developed and tested a catchment-scale distributed permafrost estimate. We used logistic regression to identify the relationship between permafrost presence at 280 active and relict rock glacier sites and the independent variables a) mean annual air temperature and b) potential incoming solar radiation in snow free months. The statistical relationships were subsequently employed to calculate the spatially-distributed probability of permafrost occurrence, using a probability of ≥ 0.6 to delineate the potential permafrost extent. Our results suggest that topoclimatic conditions are favorable for permafrost occurrence in debris-mantled slopes above ~ 2000 m in the central Southern Alps and above ~ 2150 m in the more northern Kaikoura ranges. Considering the well-recognized latitudinal influence on global permafrost occurrences, these altitudinal limits are lower than the limits observed in other mountain regions. We argue that the Southern Alps' lower distribution limits may exemplify an oceanic influence on global permafrost distribution. Reduced ice-loss due to moderate maritime summer temperature extremes may facilitate the existence of permafrost at lower altitudes than in continental regions at similar latitude. Empirical permafrost distribution models derived in continental climates may consequently be of limited applicability in maritime settings.

  17. Estimates of northern Eurasian permafrost degradation and induced changes in soil carbon storage and methane emissions in the 21st century

    NASA Astrophysics Data System (ADS)

    Denisov, Sergey; Maxim, Arzhanov; Alexey, Eliseev; Igor, Mokhov

    2016-04-01

    The carbon storage in frozen soils of the Northern Hemisphere (equals to about 1670 Gt) is by more than two times greater than its current content in the atmosphere. An increase of the permafrost active layer depth and subsequent microbial degradation of the thawed organic carbon stocks cause the growth of greenhouse gas emissions from soil to the atmosphere and therefore, can establish the positive feedback under projected climate change. In this study, based on the results of calculation of the permafrost soil thermal state forced by atmospheric parameters from the ensemble of CMIP5 project models and the content and the vertical distribution of soil carbon data NCSCDv2 (The Northern Circumpolar Soil Carbon database, version 2) estimated the carbon stocks, which may be included in the global biogeochemical cycle by the end of the 21st century. The largest estimated increase in the thaw layer thickness is more than 7-8 m (including the depth of seasonal thaw and taliks) to the 2090-2099 period from the beginning of the 21st century under the RCP 8.5 scenario. It takes place on the southern boundary of the permafrost zone, Western Siberia and the Baikal region. In Chukotka, the thickness of active layer increases by 5-6 m. Increase of the active layer thickness leads to the permafrost thaw and degradation of soil organic matter. Increasing the carbon pool in the thawed layer is the most pronounced in the northern part of the permafrost zone, and much suppressed in the southern part due to the exponential form of the vertical distribution of carbon in the soil with the highest values in the upper soil layers. In the permafrost regions, the increase of the active layer thickness, soil temperature, and the length of the warm period leads to significant increase in methane emissions from soil to the atmosphere. Under the most aggressive scenarios of anthropogenic forcing RCP 8.5, these methane emissions here increase more than three-fold in the 21st century. The

  18. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2015-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: International

  19. Effect of snow cover on pan-Arctic permafrost thermal regimes

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Fedorov, Alexander N.; Zheleznyak, Mikhail N.; Konstantinov, Pavel Y.; Walsh, John E.

    2015-05-01

    This study quantitatively evaluated how insulation by snow depth (SND) affected the soil thermal regime and permafrost degradation in the pan-Arctic area, and more generally defined the characteristics of soil temperature (TSOIL) and SND from 1901 to 2009. This was achieved through experiments performed with the land surface model CHANGE to assess sensitivity to winter precipitation as well as air temperature. Simulated TSOIL, active layer thickness (ALT), SND, and snow density were generally comparable with in situ or satellite observations at large scales and over long periods. Northernmost regions had snow that remained relatively stable and in a thicker state during the past four decades, generating greater increases in TSOIL. Changes in snow cover have led to changes in the thermal state of the underlying soil, which is strongly dependent on both the magnitude and the timing of changes in snowfall. Simulations of the period 2001-2009 revealed significant differences in the extent of near-surface permafrost, reflecting differences in the model's treatment of meteorology and the soil bottom boundary. Permafrost loss was greater when SND increased in autumn rather than in winter, due to insulation of the soil resulting from early cooling. Simulations revealed that TSOIL tended to increase over most of the pan-Arctic from 1901 to 2009, and that this increase was significant in northern regions, especially in northeastern Siberia where SND is responsible for 50 % or more of the changes in TSOIL at a depth of 3.6 m. In the same region, ALT also increased at a rate of approximately 2.3 cm per decade. The most sensitive response of ALT to changes in SND appeared in the southern boundary regions of permafrost, in contrast to permafrost temperatures within the 60°N-80°N region, which were more sensitive to changes in snow cover. Finally, our model suggests that snow cover contributes to the warming of permafrost in northern regions and could play a more important role

  20. Impact of thawing ground on subsurface water flow and transport in a modelled permafrost system

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew

    2015-04-01

    Long-term simulations representing warming temperature trends in cold regions indicate that the temporal and seasonal variability characteristics of groundwater and its discharges into surface waters is expected to decrease in a warming climate. A compelling question for waterborne transport of substances relevant for climate feedbacks, biogeochemical cycling and/or water pollution is how different scenarios of hydro-climatic change influence permafrost formation and degradation dynamics and through that also the residence times of subsurface water, from land surface recharge to surface water discharge. In this contribution, heat transport and water flow in permafrost systems which include the active layer are simulated and changes in water fluxes and associated travel times of water parcels through the subsurface are investigated. Initial results indicate that the geological setting can notably impact the spread and change in travel time distributions during warming. Also, for all cases investigated the median and minimum travel times of solute transport consistently increase, indicating longer flow pathways and greater attenuation potential as permafrost thaws. Possible related effects on carbon transport and subsequent climatic feedbacks are highlighted.

  1. Major anion and cation fluxes from the Central SiberianPlateau watersheds with underlying permafrost

    NASA Astrophysics Data System (ADS)

    Kolosov, Roman R.; Prokushkin, Anatoly S.; Pokrovsky, Oleg S.

    2016-11-01

    The subarctic rivers of the Central Siberian Plateau have specific fed-characteristics due to the permafrost distribution and the active layer thawing dynamics. Two watersheds with different types of permafrost (from insular to continuous) are studied. Different data sources (Roshydromet and our own observations) are used for receiving anions’ (HCO3-, SO4 2-, Cl-) and cations’ (Ca2+, Mg2+) fluxes from the Nizhnyaya Tunguska river (1960-2011) and the Tembenchi river (1970-2011). The annual discharge of N. Tunguska for 1939-2011 is characterized by an increase of 0.3 km3/year/year, and for Tembenchi, 0.04 km3/year/year. The major part of the increase (about 60%) is due to spring flooding (May - June). The volume-weighted mean concentrations of major anions and cations in the N. Tunguska river water increased three times in the spring period (40.7 - 116.8 mg/l) and in the summer-fall period (74-212.9 mg/l). On the contrary, such concentrations decreased sharply during the winter mean water period. Due to these results, the total export of main anions and cations from the N. Tunguska river basin rose more than 4,5 times. Two possible reasons can be identified: 1) a water discharge increase of the Subarctic rivers (Peterson et al., 2002); 2) permafrost degradation induced by global climate warming (Frey and McClelland 2009).

  2. Assessment of the thermal and dynamic reaction scenarios of different permafrost typologies in the European Alps: A PermaNET initiative

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, A.

    2009-04-01

    High altitude and high latitude regions are generally recognized as being particularly sensitive to the effects of the ongoing climate change. A large part of permafrost in the European Alps for instance is at or close to melting conditions and is therefore very sensitive to degradation caused by atmospheric warming. Knowledge regarding permafrost distribution and its climatologically driven dynamics in the entire European Alps is still far from being complete. The new European Union co-funded project "PermaNET - Permafrost long-term monitoring network" (launched in July 2008) attempts to close some of these major gaps in permafrost knowledge (www.permanet-alpinespace.eu). One work package of PermaNET focuses on the assessment of the relationship between permafrost and climate change. In it, one action is concerned with the assessment of the thermal and dynamic reaction scenarios of different permafrost typologies in the European Alps. Research in this action is focussing on the relationship between measured climate data and observed permafrost reaction using available datasets collected during the last decades in the European Alps. Such datasets include ground temperature measurements (at the surface and in boreholes), rock glacier displacements or observations on mass movement events that were initiated in permafrost environments (e.g. rock falls). These established relationships in combination with calculated data from climate scenario modelling will form the basis for model simulations and estimations regarding changes in permafrost distribution (vertically and horizontally), in the active layer thickness, in the rates of rock glacier displacement, etc. Study sites for this action are located in Austria (Mt. Sonnblick, Central Schober Mountains, Dösen Valley, Mt. Hochreichart, Schrank Cirque), in Italy (Cime Bianche Pass, Matterhorn SW ridge, Valtournenche, Aosta Valley Region, Val di Genova and Val d'Amola in the Adamello-Presanella Group), in Switzerland

  3. Geophysical characterization of permafrost terrain at Iqaluit International Airport, Nunavut

    NASA Astrophysics Data System (ADS)

    Oldenborger, Greg A.; LeBlanc, Anne-Marie

    2015-12-01

    Iqaluit International Airport presently suffers from instabilities and subsidence along its runway, taxiways and apron. In particular, asphalt surfaces are significantly impacted by settlement and cracking. These instabilities may be related to permafrost, permafrost degradation and associated drainage conditions. Low induction number electromagnetic measurements along with galvanic and capacitive electrical resistivity surveys were performed over selected areas within the airport boundary and in the near vicinity to assist with permafrost characterization and to investigate active permafrost processes. Electrical resistivity images suggest distinct electrical signatures for different terrain units and sediment types, and for ice-rich material including ice wedges. Anomalous regions are identified that are coincident with localized settlement problems. Repeated resistivity maps reveal seasonal changes indicative of high unfrozen water content and freeze/thaw of groundwater beneath airport infrastructure in distinct regions related to surficial geology. Even with continuous permafrost and cold permafrost temperatures, the resistivity models reveal anomalously conductive material at depth that is not obviously correlated to mapped surficial sediments and that may represent thaw susceptible sediments or significant unfrozen water content.

  4. Long-term preservation of microbial ecosystems in permafrost

    NASA Astrophysics Data System (ADS)

    Gilichinsky, D. A.; Vorobyova, E. A.; Erokhina, L. G.; Fyordorov-Dayvdov, D. G.; Chaikovskaya, N. R.

    It has been established that significant numbers (up to 10 million cells per gram of sample) of living microorganisms of various ecological and morphological groups have been preserved under permafrost conditions, at temperatures ranging from -9 to -13°C and depths of up to 100 m, for thousands and sometimes millions of years. Preserved since the formation of permafrost in sand-clay sediments of the Pliocene-Quaternary period and in paleosols and peats buried among them, these cells are the only living organisms that have survived for a geologically significant period of time. The complexity of the microbial community preserved varies with the age of the permafrost. Eukaryotes are found only in Holocene sediments; while prokaryotes are found to greater ages, i.e., Pliocene and Pleistocene. The diversity of microorganisms decreases with increasing age of sediments, and as a result cocci and corynebacteria are predominant. Enzyme activity (catalase and hydrolytic enzymes) and photosynthetic pigments (chlorophyll and pheophytin have also been detected in permafrost sediments. These results permit us to outline some approaches to the search for traces of life in the permafrost of Martian sediments by borehole core sampling. It is in the deep horizons (and not on the planet surface), isolated by permafrost from the external conditions, that results similar to those obtained on Earth can be expected.

  5. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  6. Seasonal Variability of Major Ions and δ13CDIC in Permafrost Watersheds of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2011-12-01

    Models and observations predict that climate change will have more severe effects at higher latitudes. Many effects may already be underway. Increasing temperatures are expected to thaw permafrost soils, changing the hydrology and biogeochemistry of Arctic watersheds. These changes are particularly important because permafrost thaw could destabilize a large carbon reservoir, potentially leading to sizable greenhouse gas emissions. Tracking soil thaw and concomitant changes in carbon export are therefore critical to predicting feedbacks between Arctic climate change and global warming. As the climate warms, the seasonally thawed active layer will extend into deeper, previously frozen, mineral-rich soils, increasing the signal of chemical weathering in streams. Historical methods of monitoring active layer thaw depth are labor intensive and may not capture the heterogeneity of Arctic soils, whereas stream geochemistry provides a unique opportunity to integrate signals across vast spatial distances. We present major ion geochemistry and δ13C of dissolved inorganic carbon (DIC) variations that relate to seasonal changes in permafrost thaw depths. Samples were collected from six watersheds on the North Slope of Alaska. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain bare bedrock catchments with minor tundra influences. Water samples were collected from April until October in 2009 and 2010. The major ion and δ13CDIC trends of tundra streams suggest that silicate weathering dominates during the spring melt while carbonate weathering dominates as the active layer deepens in the summer. In tundra streams, early season δ13CDIC values indicate carbonic acid-silicate weathering. Summer δ13CDIC values indicate carbonic acid-carbonate weathering. In both cases, carbonic acid forms from CO2 produced by the microbial decomposition of C3 organic matter. Bedrock streams have nearly constant δ13CDIC values and high

  7. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Gentsch, N.; Mikutta, R.; Alves, R. J. E.; Barta, J.; Čapek, P.; Gittel, A.; Hugelius, G.; Kuhry, P.; Lashchinskiy, N.; Palmtag, J.; Richter, A.; Šantrůčková, H.; Schnecker, J.; Shibistova, O.; Urich, T.; Wild, B.; Guggenberger, G.

    2015-07-01

    In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5 m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, < 1.6 g cm-3), mineral associated OM (heavy fraction, HF, > 1.6 g cm-3), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 ± 8.0 kg m-2 (mean ± SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35 % was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19 % in mineral and 13 % in organic horizons). During fractionation, approximately 13 % of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 ± 8.1 kg m-2; all mineral B, C, and permafrost horizons). Approximately 22 % of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C / N ratios and high δ13C values indicated substantial microbial OM transformation in the

  8. Assessing Silicate Weathering in Permafrost-Dominated Catchments Using Lithium Isotopes: The Lena River, Siberia

    NASA Astrophysics Data System (ADS)

    Murphy, M. J.; Pogge von Strandmann, P.; Porcelli, D.; Katchinoff, J. A.; Moreras Martí, A.; Hirst, C. A.; Andersson, P. S.; Maximov, T. C.

    2015-12-01

    Rising global temperatures have the potential to influence the Earth's climate feedback cycles due to permafrost thawing, altering the freshwater input and trace metal and carbon fluxes into the ocean and atmosphere. Riverine lithium isotope ratios (d7Li) are a tracer of silicate weathering processes, which are key in the removal of atmospheric CO2 over geological timescales. Despite this, little is known about the effects of permafrost thawing on d7Li variations. Strong seasonal changes in the thawed active layer thickness dictate surficial water flow paths, which may influence intra-annual riverine d7Li signatures. We present a study of the dissolved d7Li from the large permafrost-dominated watersheds of the Lena River (Siberia), which drain into the Arctic Ocean. This work comprises a temporal study during the May 2015 spring flood, from ice breakup through peak flooding, thus monitoring changes in water-rock and water-soil interaction, both processes that control weathering and hence Li isotopes. Before riverine ice started to break up, high [Li] are observed as the river signature is governed by winter base flow conditions. As the river ice breaks up, surface runoff flows over the impermeable permafrost, interacting with leaf litter, diluting the [Li]. We compare d7Li over the spring flood period with a greater spatial study conducted over two summer field seasons (2012/2013) of the main Lena River channel and its tributaries, which drain a variety of lithologies/topographies. During the summer, the thawed active layer promotes deeper water flow paths, greater water-rock interaction and enhanced secondary minerals formation which preferentially take up 6Li. Summer riverine d7Li typically fall between +14.5 ‰ to +28.5 ‰, with rivers draining the Central Siberian Plateau typically exhibiting high [Li], but similar δ7Li to rivers draining the Verkhoyansk Mountain Range. Overall, this study demonstrates how Li isotopes respond to weathering in a permafrost

  9. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils.

    PubMed

    Penton, Christopher R; St Louis, Derek; Pham, Amanda; Cole, James R; Wu, Liyou; Luo, Yiqi; Schuur, E A G; Zhou, Jizhong; Tiedje, James M

    2015-01-01

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

  10. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    DOE PAGES

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; ...

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less

  11. Cryogenic cave carbonates as an archive of Late Pleistocene permafrost in the Ural Mountains: preliminary results

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri; Kadebskaya, Olga; Cheng, Hai; Luetscher, Mark; Spötl, Christoph

    2015-04-01

    A specific type of cave deposits, cryogenic cave carbonates (CCCs), was discovered in the late 1980s in several caves of Central Europe. Unlike 'common' speleothems that form primarily due to degassing of CO2 from Ca2+ and HCO3- -rich waters, CCCs form by freezing-induced segregation (Žák et al., 2004). The formation of CCCs, hence, requires the presence of both liquid water and freezing temperatures. The latter combination may occur in caves in two situations: (1) freezing-thawing cycles in cave entrance zones; and (2) degrading permafrost conditions, when the active layer reaches the cave ceiling, whilst the deeper parts of the cave remain frozen. The latter situation is associated with a particular type of CCCs, which can be used as a marker for permafrost conditions. Because cave carbonates can be accurately dated using the U/Th method, CCCs may be used to identify events of (degrading) palaeo-permafrost conditions. In this study, CCCs were identified and sampled in four caves, located along a 1000 km-long transect from the northern to the southern Ural Associating the CCCs to permafrost conditions was possible on the basis of field observations (locations deep inside the cave, far from entrance zones) and stable isotope properties (strongly depleted δ18O values, inverse correlation between δ18O and δ13C). Chaikovskiy et al. (2014) reported five U/Th analyses of CCC from three caves: 16.7 ka and 104.8 ka (Divja Cave, northern Ural); and 13.4 ka, 86.5 ka and 125.3 ka (Rossijskaya and Usvinskaya Caves, central Ural). In this study we report 25 additional U/Th ages from northern and central Ural, as well as the first CCC age from southern Ural (Shulgan-Tash Cave). Most of the younger ages (

  12. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    PubMed

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  13. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    SciTech Connect

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

  14. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle A.; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-11-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (-21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Using α254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  15. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle Ann; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-01-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (−21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Usingα254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  16. Buried glacier ice in permafrost, a window to the past: examples from Bylot Island, Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Coulombe, S.; Kanevskiy, M. Z.; Paquette, M.; Shur, Y.; Stephani, E.

    2011-12-01

    Bylot Island is located north of Baffin Island (73°N, 80°W) and is extensively covered by an ice cap and its outlet glaciers flowing towards the arctic lowland of the Lancaster formation. During summers of 2009 and 2011 several active-layer detachment slides exposed large massive ice bodies and other types of debris-rich ice that were interpreted as buried glacier ice. The upper part of the massive ice and debris-rich ice were usually in contact with various types of ice-contact or glacio-fluvial sediments and in some cases they were covered by mass wasting/colluvial deposits. This suggests that their preservation was likely related to burial of the ice and refreezing of the overlying sediments following permafrost aggradation. A preliminary analysis of the ice facies and ice crystals revealed the presence of four distinct types of ice: 1) clear-ice bodies with very few sediment and no organic inclusions. The ice crystals were large (cm), randomly oriented and air bubbles were observed at the junction of crystals. These characteristics could potentially indicate an englacial (snow-neve metamorphism) origin for these clear ice bodies; 2) large, meter thick, clear ice layers with no sediment, nor organics. The ice crystals were large (cm), several cm long, oriented in the same direction, and vertically aligned. These characteristics could potentially point to water that refroze in a tunnel incised in englacial ice; 3) Successive, mm to cm thick, ice layers, separated by undulating sand and gravel bands also containing cobles to boulder size rock fragments. These characteristics could potentially represent regelation ice formed at the base of glaciers and incorporated to the glacier sole; 4) mm to cm suspended aggregate of fine-grained sediments in clear ice. These micro-suspended and suspended cryostructures were sometimes deformed and aligned in the form of thin (mm) undulating layers. These micro-structures were very similar to basal ice facies, presumably

  17. Impact of Climate and Fires on Abrupt Permafrost Thaw in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Reents, C.; Greenberg, J. A.; Hu, F.

    2015-12-01

    Thermo-erosion from abrupt permafrost thaw is a key pulse disturbance in the Arctic that may impact the global carbon cycle. Abrupt thaw can occur when the permafrost active layer expands in response to climate warming and/or increased wildfire activity. Understanding these drivers of thermo-erosion is necessary to anticipate feedbacks in the Arctic, where summer temperature and fire frequency are predicted to increase. We examine modern and late-Holocene thermo-erosion in high-fire (Noatak) and low-fire (North Slope) tundra ecoregions of Alaska using a combination of remote-sensing and paleo-records. Lakes with active thaw features were identified through Landsat-7 image classification and time-series analysis based on observed 0.52-0.60 μm reflectance peaks following slump formation. We identified 1067 and 1705 lakes with active features between CE 2000-2012 in the Noatak and North Slope ecoregions, respectively. The density of features was higher in the highly flammable Noatak (0.04 versus 0.01 features km-2, respectively), suggesting that warmer climate and/or fires likely promote high thermo-erosional activity at present. To assess modern signals of thermo-erosion and identify past events, we analyzed soil profiles and lake-sediment cores from both ecoregions using X-ray fluorescence. The ratios of Ca:K and Ca:Sr increased with depth in permafrost soils, were higher in soils from younger versus older slump surfaces, and were significantly correlated with the ratio of carbonate to feldspar and clay minerals in lake sediments (r=0.96 and 0.93, P<0.0001, n=15). We interpret past increases in Ca:K, Ca:Sr, and δ13C as enhanced weathering of carbonate-rich permafrost soils associated with thermo-erosion. At the North Slope site, we identified ten episodes of thermoerosion over the past 6000 years and found strong correspondence to summer temperature trends. Events were more frequent at the Noatak site, where 15 thermo-erosional episodes and 26 fires occurred over

  18. Time-lapse capacitive resistivity imaging: a new technology concept for the monitoring of permafrost

    NASA Astrophysics Data System (ADS)

    Kuras, O.; Krautblatter, M.; Murton, J.; Haslam, E.; Wilkinson, P.; Meldrum, P.

    2011-12-01

    We have investigated and sought to prove a new technology concept for the non-invasive volumetric imaging and routine temporal monitoring of the thermal state of permafrost, a key indicator of global climate change. Capacitive Resistivity Imaging (CRI), a technique based upon low-frequency, capacitively-coupled measurements across permanently installed multi-sensor arrays is applied in order to emulate Electrical Resistivity Tomography (ERT) methodology, but without the need for galvanic contact on frozen soils or rocks. Recent work has shown that temperature-calibrated ERT using galvanic sensors is capable of imaging recession and re-advance of rock permafrost in response to the ambient temperature regime. However, our own laboratory experiments on rock samples under simulated permafrost conditions have equally demonstrated that galvanic electrodes experience large variations in contact resistances between sensors and the host material as the active layer freezes and thaws, leading to a rapid deterioration of data quality over time. As the presence of systematic but uncontrolled sensor noise will reduce the value of time-lapse ERT datasets for monitoring permafrost, the use of galvanic sensors will invariably impose practical limitations on field measurements. The capacitive methodology we are presenting here overcomes this problem and provides a roadmap for making stable resistance measurements with permanently installed sensors over time. We report on our experience with designing, building, testing and validating a functional prototype time-lapse CRI measurement system. The practical system architecture draws upon conceptual ideas incorporated in existing, field-scale CRI instrumentation designed by BGS; however, the use of dense capacitive sensor networks at the laboratory scale and the need for collecting tomographic imaging data across multiple sensors in an automated fashion required a novel technical approach. Our research has applied 4D CRI as well as

  19. An Integrated Observational and Model Synthesis Approach to Examine Dominant Environmental Controls on Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Coon, E.; Painter, S. L.; Harp, D. R.; Wilson, C. J.

    2015-12-01

    The active layer thickness (ALT) - the annual maximum depth of soil with above 0°C temperatures - in part determines the volume of carbon-rich stores available for decomposition and therefore potential greenhouse gas release into the atmosphere from Arctic tundra. However, understanding and predicting ALT in polygonal tundra landscapes is difficult due to the complex nature of hydrothermal atmospheric-surface-subsurface interactions in freezing/thawing soil. Simply deconvolving effects of single environmental controls on ALT is not possible with measurements alone as processes act in concert to drive thaw depth formation. Process-rich models of thermal hydrological dynamics, conversely, are a valuable tool for understanding the dominant controls and uncertainties in predicting permafrost conditions. By integrating observational data with known physical relationships to form process-rich models, synthetic experiments can then be used to explore a breadth of environmental conditions encountered and the effect of each environmental attribute may be assessed. Here a process rich thermal hydrology model, The Advanced Terrestrial Simulator, has been created and calibrated using observed data from Barrow, AK. An ensemble of 1D thermal hydrologic models were simulated that span a range of three environmental factors 1) thickness of organic rich soil, 2) snow depth, and 3) soil moisture content, to investigate the role of each factor on ALT. Results show that organic layer thickness acts as a strong insulator and is the dominant control of ALT, but the strength of the effect of organic layer thickness is also dependent on the saturation state. Using the ensemble results, the effect of peat thickness on ALT was then examined on a 2D domain. This work was supported by LANL Laboratory Directed Research and Development Project LDRD201200068DR and by the The Next-Generation Ecosystem Experiments (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and

  20. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    PubMed

    Wang, Zhiwei; Wang, Qian; Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the

  1. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas

    PubMed Central

    Wu, Xiaodong; Zhao, Lin; Yue, Guangyang; Nan, Zhuotong; Wang, Puchang; Yi, Shuhua; Zou, Defu; Qin, Yu; Wu, Tonghua; Shi, Jianzong

    2017-01-01

    The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the

  2. Martian and Ionian Analogs of Permafrost-Volcano Interactions in Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Beget, J. E.; Skinner, J. A.; Wessels, R.

    2005-12-01

    Volcanic landforms in Alaskan lowland permafrost exhibit several unique morphological attributes, as described in a companion AGU abstract (Beget et al.). These features include (1) giant maar sizes (in Bering Land Bridge National Preserve) an order of magnitude larger than common in non-permafrost terrains, (2) composite volcanic forms produced by repeated maar-forming explosions (the novel Ingakslugwat-type volcano in Yukon Delta), and (3) super-inflated lava flows with marginal thermokarst pits (Lost Jim flow, Imuruk Lake Volcanic Field, Bering Land Bridge area). We have identified on Mars, in areas not indicating glaciation, several landforms and on Io an active volcanic process that might be analogs of these in Alaska. On Mars, within and near Elysium (Galaxias Fossae and Hrad Vallis region) multiple crater-like depressions occur with other volcanic features. Their characteristics suggest that the depressions are maars. The composite structures suggest similarities to Ingakslugwat volcanoes. Possible analogs of giant oversize maars also have been identified on Mars. In addition to surface gravitational differences between Earth and Mars, it seems likely that volatile composition is a key aspect controlling the explosivity and sizes of maars on both planets. In Alaska, we suspect that volcanic interactions with methane clathrate hydrate-rich permafrost tends to yield larger maar sizes than with ice-rich permafrost or ground water. This working hypothesis fits well with observations that the giant maars formed during the climatically coldest periods (Beget et al., 2005, this conference). During those periods, permafrost was thick, strong, and unpunctured by lakes and rivers, and so it could have trapped clathrate-forming gases. During interglacials, thinner permafrost and the widespread occurrence of thaw lakes and surface streams may cause the permafrost to be ineffective in confining ascending gases, and so clathrates were absent or not abundant, and volcanic

  3. Glacial erosion and expected permafrost thickness of Fennoscandia and adjacent regions

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey

    2013-04-01

    temperatures and solve the Stefan's problem several known climate reconstructions were involved, but with account of possible ice-sheet related temperature depressions. In time-slices they were reinterpolated in agreement with changing the outlines of the ice sheets. Models of the basal sub-ice temperature based on relevant models for Greenland (Huybrechts P., 1996) and Antarctic ice sheets (Pattyn F., 2010) were accounted to estimate possible zonation and variability of warming effects of ice sheets. Expected lower permafrost thickness (first hundreds meters) and extent in the Barents region could be caused by unfavorable conditions and relatively high heat flow. Lowlands bearing major topographic ice streams were likely represented by taliks not affected by continuous permafrost or - depending on scenarios and parameters - were shortly affected by reduced permafrost with thick active layer. The same is expected for the Novaya Zemlya trench of the Kara Sea, while bordering shallow shelf parts were possibly characterized by thick permafrost, especially growing in time of eustatic ocean lowering. Permafrost in Fennoscandia and adjacent regions could be strongly variable but shortly relatively thick (hundreds meters) over large areas, including higher landscape on sedimentary cover west of Baltic - White Sea lowland. Linear taliks of discontinous permafrost zone on terrigenous sediments could contribute tunnel valley formation.

  4. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  5. The use of electromagnetic induction methods for establishing quantitative permafrost models in West Greenland

    NASA Astrophysics Data System (ADS)

    Ingeman-Nielsen, Thomas; Brandt, Inooraq

    2010-05-01

    permafrozen sediments is generally not available in Greenland, and mobilization costs are therefore considerable thus limiting the use of geotechnical borings to larger infrastructure and construction projects. To overcome these problems, we have tested the use of shallow Transient ElectroMagnetic (TEM) measurements, to provide constraints in terms of depth to and resistivity of the conductive saline layer. We have tested such a setup at two field sites in the Ilulissat area (mid-west Greenland), one with available borehole information (site A), the second without (site C). VES and TEM soundings were collected at each site and the respective data sets subsequently inverted using a mutually constrained inversion scheme. At site A, the TEM measurements (20x20m square loop, in-loop configuration) show substantial and repeatable negative amplitude segments, and therefore it has not presently been possible to provide a quantitative interpretation for this location. Negative segments are typically a sign of Induced Polarization or cultural effects. Forward modeling based on inversion of the VES data constrained with borehole information has indicated that IP effects could indeed be the cause of the observed anomaly, although such effects are not normally expected in permafrost or saline deposits. Data from site C has shown that jointly inverting the TEM and VES measurements does provide well determined estimates for all layer parameters except the thickness of the active layer and resistivity of the bedrock. The active layer thickness may be easily probed to provide prior information on this parameter, and the bedrock resistivity is of limited interest in technical applications. Although no confirming borehole information is available at this site, these results indicate that joint or mutually constrained inversion of TEM and VES data is feasible and that this setup may provide a fast and cost effective method for establishing quantitative interpretations of permafrost structure in

  6. Analysis of ERT data of geoelectrical permafrost monitoring on Hoher Sonnblick (Austrian Central Alps)

    NASA Astrophysics Data System (ADS)

    Pfeiler, Stefan; Schöner, Wolfgang; Reisenhofer, Stefan; Ottowitz, David; Jochum, Birgit; Kim, Jung-Ho; Hoyer, Stefan; Supper, Robert; Heinrich, Georg

    2016-04-01

    In the Alps infrastructure facilities such as roads, routes or buildings are affected by the changes of permafrost, which often cause enormous reparation costs. Investigation on degradation of Alpine Permafrost in the last decade has increased, however, the understanding of the permafrost changes inducing its atmospheric forcing processes is still insufficient. Within the project ATMOperm the application of the geoelectrical method to estimate thawing layer thickness for mountain permafrost is investigated near the highest meteorological observatory of Austria on the Hoher Sonnblick. Therefore, it is necessary to further optimize the transformation of ERT data to thermal changes in the subsurface. Based on an innovative time lapse inversion routine for ERT data (Kim J.-H. et al 2013) a newly developed data analysis software tool developed by Kim Jung-Ho (KIGAM) in cooperation with the Geophysics group of the Geological Survey of Austria allows the statistical analysis of the entire sample set of each and every data point measured by the geoelectrical monitoring instrument. This gives on the one hand of course an enhanced opportunity to separate between „good" and „bad" data points in order to assess the quality of measurements. On the other hand, the results of the statistical analysis define the impact of every single data point on the inversion routine. The interpretation of the inversion results will be supplemented by temperature logs from selected boreholes along the ERT profile as well as climatic parameters. KIM J.-H., SUPPER R., TSOURLOS P. and YI M.-J.: Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations. - Geophysical Journal International, 195(3), 1640-1656, 2013. Doi: 10.1093/gji/ggt324. (No OA) Acknowledgments: The geoelectrical monitoring on Hoher Sonnblick has been installed and is operated in the frame of the project ATMOperm (Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme

  7. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra.

    PubMed

    Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung

    2016-11-01

    The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

  8. Observations on permafrost ground thermal regimes from Antarctica and the Italian Alps, and their relevance to global climate change

    NASA Astrophysics Data System (ADS)

    Mauro, Guglielmin

    2004-01-01

    Active-layer monitoring and the permafrost thermal regime are key indicators of climate change. The results of 3 years (1997-1999) of active-layer monitoring at one high-mountain site (La Foppa, 46°28'42″N; 10°11'18″E, 2670 m a.s.l.) and at one Antarctic site (Boulder Clay, 74°44'45″S; 164°01'17″E, 205 m a.s.l) are presented. The initial analysis of a thermal profile in a borehole (100.3 m deep) within mountain permafrost at Stelvio (3000 m a.s.l., 46°30'59″N; 10°28'35″E) is also presented. At the alpine site, the active-layer thickness variations (between 193 and 229 cm) relate to both the snow cover and to the air temperature changes. By contrast, at the Antarctic site, there is a strong direct linkage only between air temperature fluctuations and active-layer variations. At the alpine (La Foppa) site, the relationship between climate and active-layer thickness is complicated by thermal offset that is almost negligible at both the Stelvio and Antarctic sites. The permafrost temperature profile at Stelvio site contains a climate signal suitable for paleoclimate reconstruction. The permafrost at this site has a mean annual ground surface temperature (MAGST) of -1.9 °C (during 1998/1999), an active layer of about 2.5 m thick and a total thickness of ˜200 m. Analysis of the MAGST history, obtained by applying a simple heat conduction one-dimensional model, revealed the occurrence of a cold period from 1820 to 1940 followed by a warming period until 1978. Since the beginning of the 1980s, temperature dropped (less than 2 °C) until the middle 1990s, when a new period of warming started. All these climatic changes fit well with the glacial fluctuations in the area and with other paleoclimatic information derived from different proxy data.

  9. Impacts of tundra fire on active layer condition and estimation of true resistivity value of soil in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harada, K.; Sawada, Y.; Narita, K.; Fukuda, M.

    2007-12-01

    In Seward Peninsula, southwest Alaska, large tundra fires were occurred in 1997 and 2002, and a discontinuous permafrost area burned widely near the Kougarok River. After fires, a vegetation condition was destroyed and a ground surface thermal condition was changed. Then, field observations were conducted at burned and unburned sites in summer 2005, 2006 and 2007, in order to clarify impacts of the tundra fire on thermal and water conditions of active layer. From pit surveys, ground temperatures at burned sites showed 4-5 °C higher values than those at unburned sites. Soil water contents at burned sites showed relative high values in 2005, but low in 2006. Active layer thicknesses were significantly different between burned and unburned sites, about 60cm and 40cm, respectively. There is no significant increasing of the thickness between 2005 and 2006, however, the thickness in 2007 at north-facing sites increased to 80cm at the burned site and 50cm at the unburned site, respectively. Apparent electrical resistivity values up to 1m deep were obtained from electrical soundings in 2006, and values at burned sites were lower than those at unburned sites due to the thick active layer whose resistivity value is relatively low. As an apparent resistivity value is generally produced from the combination of a true resistivity value and a thickness of a layer, a simple calculation was carried out in order to estimate a true resistivity value of unfrozen mineral soil in the active layer. The calculated results showed that the true resistivity at burned sites was higher than that at unburned sites, which was seemed to correspond to a relative low water condition. This result is in agreement with the measured result of water content in 2006. Using this method, the apparent resistivity may show a soil water condition.

  10. Mapping Microbial Carbon Substrate Utilization Across Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Rich, V. I.; Hodgkins, S. B.; Tfaily, M.; Chanton, J.

    2014-12-01

    Permafrost thaw is likely to create a substantial positive feedback to climate warming, as previously frozen carbon becomes bioavailable and is released to the atmosphere. Microbes mediate this release, while also consuming "new" carbon from plant inputs and middle-aged soil carbon pools in the seasonally-thawed active layer overlying permafrost. This carbon consumption releases carbon dioxide (CO2) and methane (CH4), both potent greenhouse gases. To investigate microbial carbon cycling in this changing habitat, we examined how microbial communities' carbon substrate degradation changes along a natural permafrost thaw gradient in Stordalen Mire (68.35°N, 19.05°E), northern Sweden. At this location, intermediate thaw creates Sphagnum moss-dominated bogs, while complete thaw results in Eriophorum sedge-dominated fens. The progression of thaw results in increasing organic matter lability (Hodgkins et al, 2014), shifting microbial community composition (Mondav & Woodcroft et al 2014), and changing carbon gas emissions (McCalley et al, in review). However, the inter-relationship of the first two in producing the third remains unclear. We analyzed microbial carbon substrate utilization in the intermediate-thaw and full-thaw sites by two incubation-based methods. We used Biolog EcoPlates, which contain 31 ecologically relevant carbon substrates and a colorimetric marker of their consumption, and into which we added a soil liquid suspension. In addition, we performed mason-jar incubations of peat with carbon substrate amendments and measured CH4 and CO2 emissions. Preliminary Biolog Ecoplate incubations showed that intermediate-thaw features responded faster and more strongly overall to a wide range of substrates relative to the full-thaw features. Preliminary mason jar incubations showed that acetate amendment elicited the greatest response increase in CH4 production and the second greatest increase in CO2 production relative to the controls, in samples from both

  11. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; Coon, Ethan T.; Wilson, Cathy J.; Romanovsky, Vladimir E.; Rowland, Joel C.

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21$^{st}$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  12. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGES

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; ...

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties

  13. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGES

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; ...

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  14. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  15. Deployment of an Ecosystem Warming Prototype at the Fairbanks Permafrost Experiment Station

    NASA Astrophysics Data System (ADS)

    Wagner, A. M.; Zufelt, J. E.; Wullschleger, S. D.

    2010-12-01

    Controlled experiments in terrestrial ecosystems are necessary to understand how changes in climate may affect the interactions among physical, chemical, and biological parameters. Advanced approaches to above and below ground warming will improve our understanding of the biotic and abiotic processes that govern plant and soil response to climatic change in terrestrial ecosystems. A prototype concept for raising soil temperatures in large outdoor plots has been developed at Oak Ridge National Laboratory. The performance of this design has been field-tested in 3-m diameter plots in a temperate deciduous forest and also numerically simulated for experimental plots ranging from 3 to 20 m in diameter. The goal of the present study is to determine if the prototype system can be used to increase the temperature of permafrost soils in arctic and sub-arctic climates. Two sites in Alaska have been selected (Fairbanks and Barrow) for installation and testing of 20-meter diameter plots beginning in the fall of 2010. Fairbanks has a continental climate, with a mean annual air temperature of -3.3°C, mean annual precipitation of 287 mm, and relatively warm (-1 to -2°C) permafrost temperatures. Barrow is located within the Alaskan Arctic coastal plain and has a mean annual air temperature of -12.6°C, mean annual precipitation of 124 mm, and colder (-8 to -12°C) permafrost temperatures. This presentation focuses on the study site located at the U.S. Army Cold Regions Research and Engineering Laboratory Permafrost Experiment Station, Fairbanks. The experiment station was established in 1945 and consists of 135 acres of ice-rich permafrost soils generally present to a depth of 60 m with an active layer that varies from 55 to 85 cm in undisturbed areas. The site has a smooth, gentle slope to the west, providing good surface drainage except at the lowest elevations where saturated conditions can exist. Soils consist of tan silt and wind blown loess near the surface and grey silt

  16. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Shirokova, L. S.; Krivtzov, I. A.; Pokrovsky, B. G.; Kolesnichenko, L. G.; Kopysov, S. G.; Zemtzov, V. A.; Kulizhsky, S. P.; Vorobiev, S. N.; Kirpotin, S. N.

    2015-07-01

    cation flux (TDS_c) ranged from 1.5 to 5.5 t km-2 yr-1, similar to that in central Siberian rivers of the continuous permafrost region. While Si concentration was almost unaffected by the latitude over all seasons, the Si flux systematically increased northward, suggesting a decreasing role of secondary mineral formation in soil and of vegetation uptake. The dominating effect of latitude cannot however be interpreted solely in terms of permafrost abundance and water flow path (deep vs. surface) but has to be considered in the context of different climate, plant biomass productivity, unfrozen peat thickness and peat chemical composition. It can be anticipated that, under climate warming in western Siberia, the maximal change will occur in small (< 1000 km2 watershed) rivers DOC, DIC and ionic composition, and this change will be mostly pronounced in summer and autumn. The wintertime concentrations and spring flood fluxes and concentrations are unlikely to be appreciably affected by the change of the active layer depth and terrestrial biomass productivity. Assuming a conservative precipitation scenario and rising temperature over next few centuries, the annual fluxes of DOC and K in the discontinuous permafrost zone may see a maximum increase by a factor of 2, whereas for DIC and Mg, this increase may achieve a factor of 3. The fluxes of Ca and TDSc may increase by a factor of 5. At the same time, Si fluxes will either remain constant or decrease two-fold in the permafrost-bearing zone relative to the permafrost-free zone of western Siberia.

  17. The diversity of permafrost-affected soils in the Lena River Delta and its hinterland

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Kutzbach, Lars; Yakshina, Irina; Pfeiffer, Eva-Maria

    2013-04-01

    The North-Siberian Lena River Delta is the largest Arctic delta and an important interface between the Arctic Ocean in the North and the large Siberian land masses in the South. This delta consists not only of Holocene deltaic sediment deposits as a river terrace and the modern active floodplains but also of remnants of the former Pleistocene mainland including large islands of ice-complex sediments and the Arga-Muora-Sise Island, which is composed of pure sand sediments of still debated origin. The highly diverse landscape structure of the Lena River Delta is reflected by a great variety of permafrost-affected soils (gelisols). This study aims at describing this great gelisol diversity and at analysing the dominant soil-forming processes in this comparatively scarcely studied soil region. The soil development in the investigated continuous permafrost region is limited by the short thawing period of around three months (June to September) and takes place in the shallow (< 1 m) seasonally thawed active layer. The geological parent material plays an important role for the development of soils in the Lena River Delta region. The distribution of the various soil types closely follows the pattern of the geomorphic units characterised by differing sedimentation conditions. The properties and genesis of the soils on the Holocene river terrace and the modern floodplains are strongly affected by the enormous amounts of fluvial sediments (about 12 x 106 tons per year) brought by the Lena River into its delta. The fluvial sedimentation together with the also pronounced aeolian sedimentation results in a fast vertical growth of soils. The upward rise of the soil surface leads to an upward movement of the permafrost table resulting in fast incorporation of soil material formed in the supra-permafrost zone into the permafrost. Due to the morphodynamics of ice-wedge polygons and resulting formation of patterned ground with elevated rims and depressed and water-saturated centres

  18. A re-analysis of 533 rockfalls occurred since 2003 in the Mont Blanc massif for the study of their relationship with permafrost

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Magnin, Florence; Deline, Philip

    2015-04-01

    Rockfall is one of the main natural hazards in high mountain regions and its frequency is growing, especially since two decades. Collapses at high elevation are with an increasing certainty assumed to be a consequence of the climate change through the warming permafrost. In the Mont Blanc massif, data on present rockfalls (occurrence time when possible, accurate location, topographical and geological settings, volume, weather and snow conditions) were acquired for 2003 and for the period 2007-2014 thanks to a satellite image of the massif and a network of observers in the central part of the massif, respectively. The study of the 533 so-documented rockfalls shows a strong correlation at the year scale between air temperature and rockfall. Along with this data acquisition, a statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period has been implemented on a 4-m-resolution DEM of the Mont Blanc massif. The model runs with Potential Incoming Solar radiation (PISR) calculated with GIS tools and air temperature parameters computed from Chamonix Météo France records. We cross here the data on rockfalls with the permafrost distribution model to show that: (i) rockfall occurs mainly over modeled negative MARST (context of permafrost); (ii) simulated warm permafrost areas (> -2°C) are the most affected by instabilities; (iii) as the 1961-1990 period is supposed to be representative of the conditions at depth that are not affected by the climate warming during the two last decades, the latest results are mainly valuable for rockfalls related to pluri-decadal signal; and (iv) the higher (close to 0°C) the MARST, the deeper the detachment (possibly related to the deepening of the permafrost active layer). These results and field observations confirm that warming permafrost corresponds to the main required configuration for rockfall triggering at high elevation. In addition, we show that rockfalls for which ice observed in their scar

  19. Regional extent of permafrost and boreal forest degradations in the central Yakutia by ALOS-PALSAR and AVNIR2 images

    NASA Astrophysics Data System (ADS)

    Iijima, Yoshihiro; Fedorov, Alexander; Abe, Konomi; Ise, Hajime; Masuzawa, Tadashi

    2013-04-01

    Wet climate with largely increased in precipitation during summer and snow accumulation during winter had continued 4 years since 2004 winter in eastern Siberia. Soil moisture in the active layer had been significantly increased corresponding with thawing of permafrost near the surface during following years. The perennially water-logged active layer furthermore exacerbated the boreal forest habitat, namely withered and dead forests widely extended in this region. In the present study, we have attempted to extract the region of degraded boreal forest based on the analysis of satellite data in the left and right banks of Lena River near Yakutsk, along with expansion of the water surface area in relation to permafrost degradation. We utilized ALOS-PALSAR and AVNIR2 images taken during 2006 through 2009. After geocoding and noise reduction of PALSAR images, classification of water surface area including water-logged ground was performed with supervised classification using the threshold of a microwave backscattering coefficient. Then, we compared the distribution of the water-logged area between multi-years. In addition, during the same period, supervised classification of grassland and boreal forest was conducted using AVNIR2 images. Then, both classifications were overlaid and the multi-years change in degraded boreal forest due to water-logged conditions was extracted as well. Boreal forest in the left bank of the Lena River distributes on river terrace where density of alas lakes is quite low due to consisting of sandy loam soil with underlying permafrost with less ground ice content. In this area, water surface area expanded in concaved terrain and along the valley year by year in conjunction with change from forest to grassland. On the other hand, forest in the right bank of the Lena River distributed in the region with very high density of alas lakes due to underlying ice rich permafrost. During the same period, alas lakes expanded and boreal forest on the

  20. High risk of permafrost thaw

    SciTech Connect

    Schuur, E.A.G.; Abbott, B.; Koven, C.D,; Riley, W.J.; Subin, Z.M.; al, et

    2011-11-01

    In the Arctic, temperatures are rising fast, and permafrost is thawing. Carbon released to the atmosphere from permafrost soils could accelerate climate change, but the likely magnitude of this effect is still highly uncertain. A collective estimate made by a group of permafrost experts, including myself, is that carbon could be released more quickly than models currently suggest, and at levels that are cause for serious concern. While our models of carbon emission from permafrost thaw are lacking, experts intimately familiar with these landscapes and processes have accumulated knowledge about what they expect to happen, based on both quantitative data and qualitative understanding of these systems. We (the authors of this piece) attempted to quantify this expertise through a survey developed over several years, starting in 2009. Our survey asked experts what percentage of surface permafrost they thought was likely to thaw, how much carbon would be released, and how much of that would be methane, for three time periods and under four warming scenarios that are part of the new IPCC Fifth Assessment Report.

  1. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests

    NASA Astrophysics Data System (ADS)

    Brown, Dana R. N.; Jorgenson, M. Torre; Douglas, Thomas A.; Romanovsky, Vladimir E.; Kielland, Knut; Hiemstra, Christopher; Euskirchen, Eugenie S.; Ruess, Roger W.

    2015-08-01

    We examined the effects of fire disturbance on permafrost degradation and thaw settlement across a series of wildfires (from ~1930 to 2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats lowland of interior Alaska. Field measurements were combined with numerical modeling of soil thermal dynamics to assess the roles of fire severity and climate history in postfire permafrost dynamics. Field-based calculations of potential thaw settlement following the loss of remaining ice-rich permafrost averaged 0.6 m. This subsidence would cause the surface elevations of forests to drop on average 0.1 m below the surface water level of adjacent collapse-scar features. Up to 0.5 m of thaw settlement was documented after recent fires, causing water impoundment and further thawing along forest margins. Substantial heterogeneity in soil properties (organic layer thickness, texture, moisture, and ice content) was attributed to differing site histories, which resulted in distinct soil thermal regimes by soil type. Model simulations showed increasing vulnerability of permafrost to deep thawing and thaw settlement with increased fire severity (i.e., reduced organic layer thickness). However, the thresholds of fire severity that triggered permafrost destabilization varied temporally in response to climate. Simulated permafrost dynamics underscore the importance of multiyear to multidecadal fluctuations in air temperature and snow depth in mediating the effects of fire on permafrost. Our results suggest that permafrost is becoming increasingly vulnerable to substantial thaw and collapse after moderate to high-severity fire, and the ability of permafrost to recover is diminishing as the climate continues to warm.

  2. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  3. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters.

  4. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  5. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.

    PubMed

    Koch, Katharina; Knoblauch, Christian; Wagner, Dirk

    2009-03-01

    The Siberian Laptev Sea shelf contains submarine permafrost, which was formed by flooding of terrestrial permafrost with ocean water during the Holocene sea level rise. This flooding resulted in a warming of the permafrost to temperatures close below 0 degrees C. The impact of these environmental changes on methanogenic communities and carbon dynamics in the permafrost was studied in a submarine permafrost core of the Siberian Laptev Sea shelf. Total organic carbon (TOC) content varied between 0.03% and 8.7% with highest values between 53 and 62 m depth below sea floor. In the same depth, maximum methane concentrations (284 nmol CH(4) g(-1)) and lowest carbon isotope values of methane (-72.2 per thousand VPDB) were measured, latter indicating microbial formation of methane under in situ conditions. The archaeal community structure was assessed by a nested polymerase chain reaction (PCR) amplification for DGGE, followed by sequencing of reamplified bands. Submarine permafrost samples showed a different archaeal community than the nearby terrestrial permafrost. Samples with high methane concentrations were dominated by sequences affiliated rather to the methylotrophic genera Methanosarcina and Methanococcoides as well as to uncultured archaea. The presented results give the first insights into the archaeal community in submarine permafrost and the first evidence for their activity at in situ conditions.

  6. Active Boundary Layer Trip for Supersonic Flows

    NASA Astrophysics Data System (ADS)

    Schloegel, F.; Panigua, G.; Tirtey, S.

    2009-01-01

    The last decade has been full of excitement and success for the hypersonic community thanks to various Scramjet ground tests and launches. These studies have shown promising potentials but the viability to perform commercial flights at Mach 8 is still to be demonstrated. An ideal Scramjet is one which is capable of self- starting over a wide range of angles of attack and Mach number. The Scramjet designer has to ensure that the boundary layer over the inlet ramp is fully turbulent where shocks impact, hence reducing the risks of chocked flow conditions. Most studies have issued the efficiency of roughness trip to trigger the boundary layer transition. At hypersonic speed, heat transfer and drag dramatically increase resulting in skin friction averaging at 40% of the overall drag. This study investigates the possibility of triggering transition using perpendicular air jets on a flat plate place in a hypersonic cross-flow. Experiments were conducted in the von Karman Institute hypersonic blow down wind tunnel H3. This facility is mounted with a Mach 6 contoured nozzles and provides flows with Reynolds number in the range of 10x106/m to 30x106/m. The model consist of a flat plate manufactured with a built -in settling chamber, equipped with a pressure tap and a thermocouple to monitor the jet conditions. A first flat plate was manufactured with a black-coated Plexiglas top, for surface heat transfer measurement using an infrared camera. On the second model, a Upilex sheet equipped with 32 thin film gages was glued, time dependent heat transfer measurements up to 60kHz. The jet injection conditions have been varied and a Mach number of 5.5 kept constant. The flow topology was investigated using fast schlieren techniques and oil flow, in order to gain a better understanding.

  7. A permafrost distribution estimate for the Southern Alps, New Zealand, inferred from topoclimatic conditions at rock glacier sites

    NASA Astrophysics Data System (ADS)

    Sattler, Katrin; Mackintosh, Andrew; Anderson, Brian; Norton, Kevin; de Róiste, Mairead

    2014-05-01

    The presence of numerous rock glaciers and perennial snow patches indicate the existence of discontinuous alpine permafrost in New Zealand's Southern Alps. However, research on the geographic extent of permafrost in the South Island has been limited. Existing estimates are restricted to single mountain ranges or focus on steep bedrock permafrost. A recent global-scale estimate has not been evaluated by local observations. We present the results of a regional, spatially distributed permafrost estimate for the Southern Alps, focusing on debris-covered slopes. Permafrost distribution modelling was based on the statistical evaluation of 280 active and relict rock glaciers. Logistic regression identified characteristic topoclimatic conditions at the head area of presently active rock glaciers. Statistical relationships between permafrost presence, mean annual air temperature, and potential incoming solar radiation in snow-free months were subsequently used to calculate the spatially distributed probability of permafrost occurrence. The potential permafrost extent was delineated using a probability threshold of ≥ 0.6. Model results suggest that topoclimatic conditions are favourable for permafrost occurrence above ~ 2000 m a.s.l. in the central Southern Alps and above ~ 2150 m a.s.l. in the northern ranges. This gradient in permafrost altitude reflects the warmer climate at lower latitudes. Model results were locally validated by BTS (bottom temperature of snow cover) data derived from two-year continuous ground surface temperature (GST) measurements in the Ben Ohau Range, central Southern Alps. Applicability of BTS measurements for permafrost mapping had not been tested previously in the maritime setting of New Zealand, where common warm spells during winter can result in isothermal snow pack conditions, preventing the inference of late-winter equilibrium temperatures. BTS-indicated permafrost sites were in good agreement with modelled permafrost probabilities at the

  8. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-06

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  9. Effects of a Ground Source Heat Pump in Discontinuous Permafrost

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Garber-Slaght, R.; Daanen, R. P.

    2015-12-01

    A ground source heat pump (GSHP) was installed in a discontinuous permafrost region of Fairbanks Alaska in 2013 with the primary aim of determining the effect of different ground cover options on the long-term subterranean temperature regime. Three different surface treatments were applied to separate loops of the GSHP; grass, sand, and gravel, and temperature monitoring was established at several depths above and below the heat sink loops. The GSHP has been actively utilized to supplement the heat in a hydronic heating system of a neighboring 5000 ft2 research facility. The ground immediately surrounding the GSHP was not permafrost when initially installed. Numerical modeling simulations were used to predict the long-term ground temperature regime surrounding the GSHP loops, and results indicate that permafrost would begin to form after the first year. A pseudo-steady state temperature regime would establish in approximately 8 years with a yearly fluctuation of -14°C to -2°C. Simulations also indicate that permafrost could be prevented with a 15 W/m recharge during the summer, such as from a solar thermal system. The ground surface treatments have negligible effect on the ground temperature below 1 meter and therefore have no long-term effect on the active region the GSHP. Data collected from thermistors in the two years since installation indicate that permafrost has not yet been established, although the ground is now becoming seasonally frozen due to the GSHP energy removal. Yearly average temperatures are declining, and extrapolation indicates that permafrost will establish in future years. The GSHP coefficient of performance (COP) was initially 3.6 and is declining with the decreasing ground temperatures. Economic modeling indicates that the system may become uneconomical in future years, although volatile energy costs have a substantial effect of the prediction.

  10. Vibration control through passive constrained layer damping and active control

    NASA Astrophysics Data System (ADS)

    Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.

    1997-05-01

    To add damping to systems, viscoelastic materials (VEM) are added to structures. In order to enhance the damping effects of the VEM, a constraining layer is attached. When this constraining layer is an active element, the treatment is called active constrained layer damping (ACLD). Recently, the investigation of ACLD treatments has shown it to be an effective method of vibration suppression. In this paper, the treatment of a beam with a separate active element and passive constrained layer (PCLD) element is investigated. A Ritz- Galerkin approach is used to obtain discretized equations of motion. The damping is modeled using the GHM method and the system is analyzed in the time domain. By optimizing on the performance and control effort for both the active and passive case, it is shown that this treatment is capable of lower control effort with more inherent damping, and is therefore a better approach to damp vibration.

  11. The bog landforms of continental western Canada in relation to climate and permafrost patterns

    SciTech Connect

    Vitt, D.H.; Halsey, L.A. ); Zoltai, S.C. )

    1994-02-01

    In continental western Canada, discontinuous permafrost is almost always restricted to ombrotrophic peatlands (bogs). Bogs occur mostly as islands or peninsulas in large, often complex fens or are confined to small basins. Permafrost may be present in extensive peat plateaus (or more locally as palsas) and was preceded by a well-developed layer of Sphagnum that served to insulate the peat and lower the pore water temperatures. Air photo interpretation reveals the occurrence of bogs with five types of surface physiography. Concentrated to the south are bogs without internal patterns that have never had permafrost. Dominating the mid-latitudes are bogs with internal lawns and fens with internal lawns (mostly representing former bogs) that had permafrost lenses in the past that have recently degraded. Concentrated in the northwest are peat plateaus without internal lawns or distinct collapse scars, but with permafrost; dominating in the northernmost area are peat plateaus with extensive permafrost and collapse scars. Relationships are apparent between the current - 1[degrees]C isotherm and the southern occurrence of peat plateaus and between the 0[degrees]C isotherm and the southern edge of bogs and fens with internal lawns. We interpret bogs and fens with internal lawns to represent areas where permafrost degradation is currently occurring at a greater rate than aggradation, seemingly in response to warmer regional climate, although fire frequency may also be of local importance. 54 refs., 21 figs., 2 tabs.

  12. The HOLOANTAR project: Holocene environmental change in the Maritime Antarctic. Interactions between permafrost and the lacustrine environment

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Vieira, Gonçalo; Mora, Carla; Trindade, Alexandre; Agrela, Joao; Batista, Vanessa; Correia, António; Schaefer, Carlos; Simas, Felipe; Ramos, Miguel; De Pablo, Miguel Angel; Toro, Manuel; Antoniades, Dermot; Galan, Luis; Giralt, Santiago; Granados, Ignacio; Pla, Sergi; Serrano, Enrique

    2013-04-01

    The objective of this abstract is to present the HOLOANTAR project, a multidisciplinary research funded by the Portuguese Government. The project integrates 16 researchers from different international institutions (Portugal, Spain, Brazil and Uruguay).. The main purpose of HOLOANTAR is to infer the palaeoenvironmental evolution and associated climate variability occurred over the last millennia in ice-free areas of the Maritime Antarctica based on the study of lake sediments. The South Shetland Islands (SSI) are located in the northwestern tip of the Antarctic Peninsula, one of the Earth's regions that have experienced a stronger warming signal during the second half of the 20th century. In the ice-free areas of this archipelago the terrestrial ecosystem is supported by permafrost, though its reaction to climate change is still poorly known. However, in the recent years a very important effort took place to monitor the thermal state and characteristics of permafrost in order to study its response to the recent warming trend. Many international teams are involved on several of these long-term monitoring projects, but HOLOANTAR, in addition, pretends to offer a new integrated approach aiming to bridge the gap between contemporary and past changes in permafrost environments. HOLOANTAR project is based on two main hypotheses: a) A multi-proxy analysis of lake sediments will allow reconstructing the palaeoecological evolution in the Maritime Antarctic and the role played in it by permafrost and active layer dynamics, b) The detection of activity rates, spatial patterns and geographical controls of contemporary key-geomorphic processes and permafrost distribution, will allow defining their limiting climatic conditions that will be used to interpret the sedimentary record. This approach is innovative since it will focus on both present and past geomorphodynamics as keys for understanding the landscape evolution. In Byers Peninsula (Livingston), the largest ice-free area

  13. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  14. Seasonal variation of ecosystem respiration delta 13C in response to experimental permafrost thaw and vegetation removal in moist acidic tundra

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Natali, S.; Schuur, E.

    2015-12-01

    Permafrost soils store twice as much carbon (C) as is contained in the atmosphere and about one-third of global soil C. Under a warmer future climate, permafrost is expected to thaw and decompose, releasing C to the atmosphere, further amplifying global warming. However, studies show that warmer arctic temperatures promote plant growth, in addition to stimulating losses from the soil C pool. Using delta 13C of ecosystem respiration (Reco) during the seasonal cycle of active layer thaw, we seek to understand the effect of permafrost thaw on the relative contributions from microbial decomposition of soil C and more recently fixed, plant-dominated C. We measured weekly CO2 flux rates and delta 13C of Reco from experimentally warmed plots with rapid permafrost thaw and control thaw. Vegetation removal plots, in un-warmed tundra, were monitored to isolate the seasonal contributions from soil alone. We expected delta 13C to be dominated by plant activity in vegetated plots, particularly in areas with greater permafrost thaw because they have highest plant biomass. In vegetation removal plots we expected to see greater contribution from deep soil as seasonal thaw progressed. From May to July delta 13C was extremely variable early in the growing season, but became more uniform as vegetation greened and thaw deepened. In vegetated plots CO2 fluxes doubled, but remained constant in vegetation removal plots. This indicates that, with thaw, microbes had access to a more spatially uniform C substrate, but this had little effect on the magnitude of CO2 flux. Overall delta 13C in rapidly thawed plots was least enriched (-29.4 ‰), control plots intermediate (-28.9 ‰), and vegetation removal plots were most enriched (-28.5 ‰). This suggests that in vegetation removal plots microbes used more decomposed soil C as substrate, and much of the increase in CO2 flux in vegetated plots was the result of C recently fixed and contributed by plants.

  15. Characterizing Soil Organic Matter Degradation Levels in Permafrost-affected Soils using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Calderon, F.; Liang, C.; Miller, R. M.; Ping, C. L.; Michaelson, G. J.; Hofmann, S.

    2014-12-01

    Diffuse-reflectance Fourier-transform mid-infrared spectroscopy (MidIR) was used to (1) investigate soil quality along a latitudinal gradient of Alaskan soils, and in combination with soil incubations, (2) to assess the relative lability of soil organic matter in the active layer and upper permafrost for some of those soils. Twenty nine sites were sampled along a latitudinal gradient (78.79 N to 55.35 N deg). The sites included 8 different vegetation types (moss/lichen, non-acidic and acidic tundra, shrub areas, deciduous forests, mixed forests, coniferous forests, and grassland). At each site, soils were separated by soil horizons and analyzed for pH, cation exchange capacity (CEC), organic and inorganic C, and total N. Samples were also scanned to obtain MidIR spectra, and ratios of characteristic bands previously suggested as indicators of organic matter quality or degradation level were calculated. Principal component analysis showed that axis 1 explained 70% of the variation and was correlated with the general Organic:Mineral ratio, soil organic C, total N, and CEC, but not with vegetation type. Axis 2 explained 25% of the variation and was correlated with most of the band ratios, with negative values for the condensation index (ratio of aromatic to aliphatic organic matter) and positive values for all humification ratios (HU1: ratio of aliphatic to polysaccharides; HU2: ratio of aromatics to polysaccharides; and HU3 ratio of lignin/phenols to polysaccharides) suggesting that axis 2 variations were related to differences in level of soil organic matter degradation. Active organic, active mineral and permafrost layers from selected tundra sites were incubated for two months at -1, 1, 4, 8 and 16 ⁰C. The same band ratios were correlated with total CO2 mineralized during the incubations. Data from 4⁰C showed that the cumulative respired CO2 from the active organic layer across all sites was negatively correlated with the HU1 humification ratio, suggesting

  16. Biogeochemistry of methane and methanogenic archaea in permafrost.

    PubMed

    Rivkina, Elizaveta; Shcherbakova, Viktoria; Laurinavichius, Kestas; Petrovskaya, Lada; Krivushin, Kirill; Kraev, Gleb; Pecheritsina, Svetlana; Gilichinsky, David

    2007-07-01

    This study summarizes the findings of our research on the genesis of methane, its content and distribution in permafrost horizons of different age and origin. Supported by reliable data from a broad geographical sweep, these findings confirm the presence of methane in permanently frozen fine-grained sediments. In contrast to the omnipresence of carbon dioxide in permafrost, methane-containing horizons (up to 40.0 mL kg(-1)) alternate with strata free of methane. Discrete methane-containing horizons representing over tens of thousands of years are indicative of the absence of methane diffusion through the frozen layers. Along with the isotopic composition of CH(4) carbon (delta(13)C -64 per thousand to -99 per thousand), this confirms its biological origin and points to in situ formation of this biogenic gas. Using (14)C-labeled substrates, the possibility of methane formation within permafrost was experimentally shown, as confirmed by delta(13)C values. Extremely low values (near -99 per thousand) indicate that the process of CH(4) formation is accompanied by the substantial fractionation of carbon isotopes. For the first time, cultures of methane-forming archaea, Methanosarcina mazei strain JL01 VKM B-2370, Methanobacterium sp. strain M2 VKM B-2371 and Methanobacterium sp. strain MK4 VKM B-2440 from permafrost, were isolated and described.

  17. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2016-02-01

    The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil

  18. Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability.

    PubMed

    Gunjakar, Jayavant L; Kim, Tae Woo; Kim, Hyo Na; Kim, In Young; Hwang, Seong-Ju

    2011-09-28

    Mesoporous layer-by-layer ordered nanohybrids highly active for visible light-induced O(2) generation are synthesized by self-assembly between oppositely charged 2D nanosheets of Zn-Cr-layered double hydroxide (Zn-Cr-LDH) and layered titanium oxide. The layer-by-layer ordering of two kinds of 2D nanosheets is evidenced by powder X-ray diffraction and cross-sectional high resolution-transmission electron microscopy. Upon the interstratification process, the original in-plane atomic arrangements and electronic structures of the component nanosheets remain intact. The obtained heterolayered nanohybrids show a strong absorption of visible light and a remarkably depressed photoluminescence signal, indicating an effective electronic coupling between the two component nanosheets. The self-assembly between 2D inorganic nanosheets leads to the formation of highly porous stacking structure, whose porosity is controllable by changing the ratio of layered titanate/Zn-Cr-LDH. The resultant heterolayered nanohybrids are fairly active for visible light-induced O(2) generation with a rate of ∼1.18 mmol h(-1) g(-1), which is higher than the O(2) production rate (∼0.67 mmol h(-1) g(-1)) by the pristine Zn-Cr-LDH material, that is, one of the most effective visible light photocatalysts for O(2) production, under the same experimental condition. This result highlights an excellent functionality of the Zn-Cr-LDH-layered titanate nanohybrids as efficient visible light active photocatalysts. Of prime interest is that the chemical stability of the Zn-Cr-LDH is significantly improved upon the hybridization, a result of the protection of the LDH lattice by highly stable titanate layer. The present findings clearly demonstrate that the layer-by-layer-ordered assembly between inorganic 2D nanosheets is quite effective not only in improving the photocatalytic activity of the component semiconductors but also in synthesizing novel porous LDH-based hybrid materials with improved chemical

  19. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2016-05-01

    Permafrost on the Qinghai-Tibet Plateau is one of the most sensitive regions to climate warming, thus characterizing its microbial diversity and community composition may be important for understanding their potential responses to climate changes. Here, we investigated the prokaryotic diversity in a 10-m-long permafrost core from the Qinghai-Tibet Plateau by restriction fragment length polymorphism analysis targeting the 16S rRNA gene. We detected 191 and 17 bacterial and archaeal phylotypes representing 14 and 2 distinct phyla, respectively. Proteobacteria was the dominant bacterial phylum, while archaeal communities were characterized by a preponderance of Thaumarchaeota. Some of prokaryotic phylotypes were closely related to characterized species involved in carbon and nitrogen cycles, including nitrogen fixation, methane oxidation and nitrification. However, the majority of the phylotypes were only distantly related to known taxa at order or species level, suggesting the potential of novel diversity. Additionally, both bacterial α diversity and community composition changed significantly with sampling depth, where these communities mainly distributed according to core horizons. Arthrobacter-related phylotypes presented at high relative abundance in two active layer soils, while the deeper permafrost soils were dominated by Psychrobacter-related clones. Changes in bacterial community composition were correlated with most measured soil variables, such as carbon and nitrogen contents, pH, and conductivity.

  20. Diversity and community structure of fungi through a permafrost core profile from the Qinghai-Tibet Plateau of China.

    PubMed

    Hu, Weigang; Zhang, Qi; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2014-12-01

    While a vast number of studies have addressed the prokaryotic diversity in permafrost, characterized by subzero temperatures, low water activity, and extremely low rates of nutrient and metabolite transfer, fungal patterns have received surprisingly limited attention. Here, the fungal diversity and community structure were investigated by culture-dependent technique combined with cloning-restriction fragment length polymorphism (RFLP) analysis of sediments in a 10-m-long permafrost core from the Qinghai-Tibet Plateau of China. A total of 62 fungal phylotypes related to 10 distinct classes representing three phyla were recovered from 5031 clones generated in 13 environmental gene libraries. A large proportion of the phylotypes (25/62) that were distantly related to described fungal species appeared to be novel diversity. Ascomycota was the predominant group of fungi, with respect to both clone and phylotype number. Our results suggested there was the existence of cosmopolitan psychrophilic or psychrotolerant fungi in permafrost sediments, the community composition of fungi varied with increasing depth, while these communities largely distributed according to core layers.

  1. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  2. Simulating CO2 and CH4 production and consumption from incubated permafrost soils: how important are the microbial mechanisms

    NASA Astrophysics Data System (ADS)

    Xu, X.; Elias, D. A.; Graham, D. E.; Phelps, T. J.; Thornton, P. E.

    2012-12-01

    An incubation experiment was conducted to examine the production and consumption of the greenhouse gases CO2 and CH4 in soils of the top layer, active layer, and permafrost layer under various moisture and temperature conditions using soil cores extracted from the Alaskan permafrost region. The incubation results confirmed the production of hydrogen gas and acetic acid resulting in a decreased soil pH. Three key mechanisms for production and consumption of CH4 are suspected; CH4 production from acetic acid and H2 and CO2, and aerobic CH4 oxidation. We translated these mechanisms into a subroutine program which was then combined with decomposition subroutines in the community land model (CLM4) to evaluate the performance of these mechanisms in simulating CO2 and CH4 production and consumption from the incubated permafrost soils. Two guilds of microorganisms for methanogenesis and one group for methanotrophy were simulated. The simulation results confirmed that microbial mechanisms are critically important in reconstructing the observed changes in temporal CO¬2 and CH4 concentrations. There are large variations in CO2 and CH4 production and consumption among the different soil layers. Acetic acid production caused the observed drop in soil pH, which in turn exerted a substantial effect on CO2 and CH4 dynamics. The moisture and temperature had significant effects on microbial mechanisms and further on CO2 and CH4 production and consumption. Further efforts will be incorporating microbial dynamics and these mechanisms into the Community Earth System Model for a global scale investigation.onceptural diagram showing the mechanisms incorporated in the improved module

  3. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    PubMed

    Ding, Jinzhi; Li, Fei; Yang, Guibiao; Chen, Leiyi; Zhang, Beibei; Liu, Li; Fang, Kai; Qin, Shuqi; Chen, Yongliang; Peng, Yunfeng; Ji, Chengjun; He, Honglin; Smith, Pete; Yang, Yuanhe

    2016-08-01

    The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.

  4. Monitoring of thaw subsidence, lithalsa collapse and thermokarst pond aggradation due to climate warming in the discontinuous permafrost zone in Nunavik, Canada

    NASA Astrophysics Data System (ADS)

    Fortier, R.

    2009-12-01

    degradation occurred from 1957 to 1983 in spite of the cooling trend observed in Nunavik over that period. The marked warming trend from 1992 to 2002 accelerated the rate of permafrost degradation. The collapse of a lithalsa is a long term process due to the latent heat of fusion of ice delaying the impacts of climate warming. The thawing of ice-rich permafrost leads to thaw consolidation resulting in ground settlement and subsidence of the ground surface. Using a high-precision optical levelling technique, thaw subsidence in excess of 80 cm was monitored from 2004 to 2009 for a lithalsa close to the Inuit community of Umiujaq. Differential thaw subsidence taking place on the sides of the lithalsa was also observed over that period favouring snow accumulation in a small depression and preventing further ground cooling in winter due to the thermal insulation of snow. Water from snow melting and rainfall accumulated in the depression forming a small thermokarst pond. The freezing of the active layer underneath the thermokarst pond was then delayed the next winter due to the latent heat of freezing of water and thermal insulation of snow inducing further degradation. These mechanisms can cause eventually the lithalsa collapse.

  5. Variability in Canopy Transpiration with Atmospheric Drivers and Permafrost Thaw Depth in an Arctic Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Berner, L. T.; Alexander, H. D.; Davydov, S. P.

    2014-12-01

    Arctic ecosystems are experiencing rapid change associated with amplified rates of climate warming. A general increase in vegetation productivity has been among the expected responses for terrestrial ecosystems in the Arctic. However, recent evidence from satellite derived productivity metrics has revealed a high degree of spatial heterogeneity in the magnitude, and even the direction, of productivity trends in recent decades. Declines in productivity may seem counterintuitive in what are traditionally thought to be temperature limited ecosystems. However a warmer and drier atmosphere in conjunction with changing permafrost conditions may impose hydrologic stresses on vegetation as well. Many Siberian ecosystems receive annual precipitation inputs characteristics of arid and semiarid regions. Boreal forests persist because permafrost acts as an aquatard trapping water near the surface and because historically cool growing season temperatures have kept atmospheric evaporative demand relatively low. As climate change simultaneously warms the atmosphere and deepens the active layer it is likely that vegetation will experience a higher degree of hydrologic limitation, perhaps necessitating the reallocation of resources. Here we use sap flux observations of canopy transpiration to understand the influence of atmospheric and permafrost conditions on the function of an arctic boreal forest in northeastern Siberia. We find that individual trees exhibit stronger responses to atmospheric vapor pressure deficit (D) as the growing season progresses. Further, the magnitude of this response appears to be positively correlated with changes in the depth of permafrost thaw. These results imply that arctic boreal forests will need to adapt to increasing hydrologic stress in order to benefit from what are typically thought of as increasingly favorable growing conditions with continued climate change.

  6. Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia

    NASA Astrophysics Data System (ADS)

    Bagard, Marie-Laure; Schmitt, Anne-Désirée; Chabaux, François; Pokrovsky, Oleg S.; Viers, Jérôme; Stille, Peter; Labolle, François; Prokushkin, Anatoly S.

    2013-08-01

    Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of 40Ca. The imprint of organic matter degradation on the δ44/40Ca of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained δ44/40Ca patterns contrast with those described for permafrost-free environments with a much lower δ44/40Ca fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the δ44/40Ca signature may be controlled by the heterogeneity of lithological sources.

  7. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Shojae Ghias, Masoumeh; Therrien, René; Molson, John; Lemieux, Jean-Michel

    2016-12-01

    Numerical simulations of groundwater flow and heat transport are used to provide insight into the interaction between shallow groundwater flow and thermal dynamics related to permafrost thaw and thaw settlement at the Iqaluit Airport taxiway, Nunavut, Canada. A conceptual model is first developed for the site and a corresponding two-dimensional numerical model is calibrated to the observed ground temperatures. Future climate-warming impacts on the thermal regime and flow system are then simulated based on climate scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC). Under climate warming, surface snow cover is identified as the leading factor affecting permafrost degradation, including its role in increasing the sensitivity of permafrost degradation to changes in various hydrogeological factors. In this case, advective heat transport plays a relatively minor, but non-negligible, role compared to conductive heat transport, due to the significant extent of low-permeability soil close to surface. Conductive heat transport, which is strongly affected by the surface snow layer, controls the release of unfrozen water and the depth of the active layer as well as the magnitude of thaw settlement and frost heave. Under the warmest climate-warming scenario with an average annual temperature increase of 3.23 °C for the period of 2011-2100, the simulations suggest that the maximum depth of the active layer will increase from 2 m in 2012 to 8.8 m in 2100 and, over the same time period, thaw settlement along the airport taxiway will increase from 0.11 m to at least 0.17 m.

  8. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China

    PubMed Central

    Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C.; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  9. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  10. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes) Part II. Spatial trends and possible sources of organic composition

    NASA Astrophysics Data System (ADS)

    Szopińska, Małgorzata; Dymerski, Tomasz; Polkowska, Żaneta; Szumińska, Danuta; Wolska, Lidia

    2016-07-01

    The chemistry of river-lake systems located in Central Mongolia near the southern border of permafrost occurrence has not been well studied. The main aim of this paper is to summarize patterns in water chemistry in supply springs, rivers and lakes in relation to permafrost occurrence, as well as other natural and anthropogenic impacts. The analyses involved water samples taken from two river-lake systems: the Baydrag River-Böön Tsagaan Lake system and the Shargalyuut/Tuyn Rivers-Orog Lake system. Total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) were detected and quantified. Other organic compounds, such as organic halogen compounds, phthalates, and higher alkanes were also noted. The main factors which influence differences in TOC concentrations in the water bodies involve permafrost occurrence, mainly because compounds are released during active layer degradation (in the upper reach of the Tuyn river), and by intensive livestock farming in river valleys and in the vicinity of lakes. In relation to the concentrations of PAHs, high variability between samples (> 300 ng L- 1), indicates the influence of thermal water and local geology structures (e.g., volcanic and sedimentary deposits), as well as accumulation of suspended matter in lakes transported during rapid surface runoff events. The monitoring of TOC as well as individual PAHs is particularly important to future environmental studies, as they may potentially reflect the degradation of the environment. Therefore, monitoring in the Valley of the Lakes should be continued, particularly in the light of the anticipated permafrost degradation in the 21st century, in order to collect more data and be able to anticipate the response of river-lake water chemistry to changes in permafrost occurrence.

  11. Airborne electromagnetic imaging of discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Minsley, Burke J.; Abraham, Jared D.; Smith, Bruce D.; Cannia, James C.; Voss, Clifford I.; Jorgenson, M. Torre; Walvoord, Michelle A.; Wylie, Bruce K.; Anderson, Lesleigh; Ball, Lyndsay B.; Deszcz-Pan, Maryla; Wellman, Tristan P.; Ager, Thomas A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ˜1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ˜4 million years and the configuration of permafrost to depths of ˜100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface - groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ˜1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  12. Geophysical mapping of palsa peatland permafrost

    NASA Astrophysics Data System (ADS)

    Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S. W.

    2015-03-01

    Permafrost peatlands are hydrological and biogeochemical hotspots in the discontinuous permafrost zone. Non-intrusive geophysical methods offer a possibility to map current permafrost spatial distributions in these environments. In this study, we estimate the depths to the permafrost table and base across a peatland in northern Sweden, using ground penetrating radar and electrical resistivity tomography. Seasonal thaw frost tables (at ~0.5 m depth), taliks (2.1-6.7 m deep), and the permafrost base (at ~16 m depth) could be detected. Higher occurrences of taliks were discovered at locations with a lower relative height of permafrost landforms, which is indicative of lower ground ice content at these locations. These results highlight the added value of combining geophysical techniques for assessing spatial distributions of permafrost within the rapidly changing sporadic permafrost zone. For example, based on a back-of-the-envelope calculation for the site considered here, we estimated that the permafrost could thaw completely within the next 3 centuries. Thus there is a clear need to benchmark current permafrost distributions and characteristics, particularly in under studied regions of the pan-Arctic.

  13. Geophysical mapping of palsa peatland permafrost

    NASA Astrophysics Data System (ADS)

    Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S. W.

    2014-10-01

    Permafrost peatlands are hydrological and biogeochemical hotspots in the discontinuous permafrost zone. Non-intrusive geophysical methods offer possibility to map current permafrost spatial distributions in these environments. In this study, we estimate the depths to the permafrost table surface and base across a peatland in northern Sweden, using ground penetrating radar and electrical resistivity tomography. Seasonal thaw frost tables (at ~0.5 m depth), taliks (2.1-6.7 m deep), and the permafrost base (at ~16 m depth) could be detected. Higher occurrences of taliks were discovered at locations with a lower relative height of permafrost landforms indicative of lower ground ice content at these locations. These results highlight the added value of combining geophysical techniques for assessing spatial distribution of permafrost within the rapidly changing sporadic permafrost zone. For example, based on a simple thought experiment for the site considered here, we estimated that the thickest permafrost could thaw out completely within the next two centuries. There is a clear need, thus, to benchmark current permafrost distributions and characteristics particularly in under studied regions of the pan-arctic.

  14. Airborne electromagnetic imaging of discontinuous permafrost

    USGS Publications Warehouse

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ∼1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ∼4 million years and the configuration of permafrost to depths of ∼100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ∼1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments.

  15. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  16. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  17. Strong Seasonality of Biogeochemical Characteristics and Source Regions in Permafrost Watersheds

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.

    2015-12-01

    High latitude watersheds experience a dramatic seasonality of up to nine months of cold, snow covered winter and a warm, bright, summer. Spring melt runoff is a dramatic two to three week period when up to 75% of the yearly precipitation runs off. Identifying sources and measuring fluxes of compounds out of Arctic rivers is difficult in large rivers because they represent the combined effect of innumerable plot-scale melt water sources, each coming from different soil and vegetation types, each experiencing a slightly different melt timing and evolution. Numerous studies have shown spring melt is characterized by an ionic pulse of solutes, dissolved organic carbon and other nutrients (ammonium, phosphate and nitrate) leached by snow melt water from surface vegetation and soils. Summer and fall flows are comprised largely of shallow to deepening sources from a downwardly expanding seasonally thawed ("active") layer. In late summer flowpaths deepen and the biogeochemical composition of surface waters may be sourced from an increasing mineral weathering zone representing landscape scale soil processes. The watershed biogeochemical response to precipitation may also yield insight into subsurface permafrost geomorphological characteristics and flowpaths through water tracks or other small depressions. Winter processes are the least studied or understood but overflow ice ("aufeis") provides access to deep, old waters. The deeper snow pack in depressions can provide protection against winter cold and feed back to deeper summer season thaw. This presentation will focus on using water stable isotopes, major ion concentrations, trace metals, nutrients, and permafrost delineation to identify biogeochemical sources in watersheds draining continuous and discontinuous permafrost in Alaska. Biogeochemical processes associated with scaling, meteorology, and climate warming will be discussed.

  18. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska

    USGS Publications Warehouse

    Harden, J.W.; Manies, K.L.; Turetsky, M.R.; Neff, J.C.

    2006-01-01

    The influence of discontinuous permafrost on ground-fuel storage, combustion losses, and postfire soil climates was examined after a wildfire near Delta Junction, AK in July 1999. At this site, we sampled soils from a four-way site comparison of burning (burned and unburned) and permafrost (permafrost and nonpermafrost). Soil organic layers (which comprise ground-fuel storage) were thicker in permafrost than nonpermafrost soils both in burned and unburned sites. While we expected fire severity to be greater in the drier site (without permafrost), combustion losses were not significantly different between the two burned sites. Overall, permafrost and burning had significant effects on physical soil variables. Most notably, unburned permafrost sites with the thickest organic mats consistently had the coldest temperatures and wettest mineral soil, while soils in the burned nonpermafrost sites were warmer and drier than the other soils. For every centimeter of organic mat thickness, temperature at 5cm depth was about 0.5??C cooler during summer months. We propose that organic soil layers determine to a large extent the physical and thermal setting for variations in vegetation, decomposition, and carbon balance across these landscapes. In particular, the deep organic layers maintain the legacies of thermal and nutrient cycling governed by fire and revegetation. We further propose that the thermal influence of deep organic soil layers may be an underlying mechanism responsible for large regional patterns of burning and regrowth, detected in fractal analyses of burn frequency and area. Thus, fractal geometry can potentially be used to analyze changes in state of these fire prone systems. ?? 2006 Blackwell Publishing Ltd.

  19. Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations

    NASA Astrophysics Data System (ADS)

    Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.

    2012-04-01

    Methane is an important greenhouse gas with a warming potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a

  20. Permafrost Meta-Omics and Climate Change

    NASA Astrophysics Data System (ADS)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the