Science.gov

Sample records for active permafrost layer

  1. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    SciTech Connect

    Abbott, Robert; Knox, Hunter Anne; James, Stephanie; Lee, Rebekah; Cole, Chris

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  2. Microbial diversity in European alpine permafrost and active layers.

    PubMed

    Frey, Beat; Rime, Thomas; Phillips, Marcia; Stierli, Beat; Hajdas, Irka; Widmer, Franco; Hartmann, Martin

    2016-03-01

    Permafrost represents a largely understudied genetic resource. Thawing of permafrost with global warming will not only promote microbial carbon turnover with direct feedback on greenhouse gases, but also unlock an unknown microbial diversity. Pioneering metagenomic efforts have shed light on the permafrost microbiome in polar regions, but temperate mountain permafrost is largely understudied. We applied a unique experimental design coupled to high-throughput sequencing of ribosomal markers to characterize the microbiota at the long-term alpine permafrost study site 'Muot-da-Barba-Peider' in eastern Switzerland with an approximate radiocarbon age of 12 000 years. Compared to the active layers, the permafrost community was more diverse and enriched with members of the superphylum Patescibacteria (OD1, TM7, GN02 and OP11). These understudied phyla with no cultured representatives proposedly feature small streamlined genomes with reduced metabolic capabilities, adaptations to anaerobic fermentative metabolisms and potential ectosymbiotic lifestyles. The permafrost microbiota was also enriched with yeasts and lichenized fungi known to harbour various structural and functional adaptation mechanisms to survive under extreme sub-zero conditions. These data yield an unprecedented view on microbial life in temperate mountain permafrost, which is increasingly important for understanding the biological dynamics of permafrost in order to anticipate potential ecological trajectories in a warming world. PMID:26832204

  3. Towards NOAA Forecasts of Permafrost Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Jonassen, R. G.; Horsfall, F. M. C.; Jafarov, E. E.; Schaefer, K. M.

    2014-12-01

    NOAA's implementation of its 2014 Arctic Action Plan (AAP) lacks services related to permafrost change yet the Interagency Working Group on Coordination of Domestic Energy Development and Permitting in Alaska noted that warming permafrost challenges land-based development and calls for agencies to provide focused information needed by decision-makers. To address this we propose to link NOAA's existing seasonal forecasts of temperature and precipitation with a high-resolution model of the thermal state of permafrost (Jafarov et al., 2012) to provide near-term (one year ahead) forecasts of active layer thickness (ALT). Such forecasts would be an official NOAA statement of the expected thermal state of permafrost ALT in Alaska and would require: (1) long-term climate outlooks, (2) a permafrost model, (3) detailed specification of local spatial and vertical controls upon soil thermal state, (4) high-resolution vertical measurements of that thermal state, and (5) demonstration of forecast skill in pilot studies. Pilot efforts should focus on oil pipelines where the cost can be justified. With skillful forecasts, engineers could reduce costs of monitoring and repair as well as ecosystem damage by positioning equipment to more rapidly respond to predicted disruptions.

  4. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Zhang, Ting-Jun; Li, Shu-Sun

    2003-01-01

    The objective of this project is to map the spatial variation of the active layer over the arctic permafrost in terms of two parameters: (i) timing and duration of thaw period and (ii) differential frost heave and thaw settlement of the active layer. To achieve this goal, remote sensing, numerical modeling, and related field measurements are required. Tasks for the University of Colorado team are to: (i) determine the timing of snow disappearance in spring through changes in surface albedo (ii) simulate the freezing and thawing processes of the active layer and (iii) simulate the impact of snow cover on permafrost presence.

  5. Possible Future Changes in Permafrost and Active Layer Thickness in Northern Eurasia and their Relation to Permafrost Carbon Pool

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Romanovsky, V. E.; Chapman, W. L.; Walsh, J. E.

    2012-12-01

    Recent observations indicate a warming of permafrost in many northern regions with the resulting degradation of ice-rich and carbon-rich permafrost. Permafrost temperature has increased by 1 to 3 deg C in northern Eurasia during the last 30 years. To assess possible changes in the permafrost thermal state and the active layer thickness we implemented the GIPL2 (Geophysical Institute Permafrost Lab) transient model for the entire Northern Eurasia for the 1981-2100 time period. Input parameters to the model are spatial datasets of mean monthly air temperature, snow properties or SWE, prescribed vegetation and thermal properties of the multilayered soil column, and water content. The climate scenario was derived from an ensemble of five IPCC Global Circulation Models (GCM) ECHAM5, GFDL21, CCSM, HADcm and CCCMA. The outputs from these five models have been scaled down to 25 km spatial resolution with monthly temporal resolution, based on the composite (mean) output of the five models, using the IPCC SRES A1B CO2 emission scenario through the end of current century. Historic ground temperature measurements in shallow boreholes (3.2 m in depth) from more than 120 weather stations located within the continuous, discontinuous, and sporadic permafrost zones were available for the initial model validation and calibration. To prescribe the thermal properties we used the map of soil characteristics for whole of Russia (Stolbovoi & Savin, 2002) and the map of Soil Carbon Pools, CO2 and CH4 emissions (Tarnocai et al., 2009) and also the soil structure descriptions available for some locations. We estimated dynamics of the seasonally thawed volume of soils within the two upper meters for the entire North Eurasia. The model results indicate 1,200 km3 of seasonally unfrozen soils within the two upper meters within 10,800,000 km2 of northern Eurasian permafrost domain during the last two decades of the 20th century. Our projections have shown that unfrozen volume of soil within two

  6. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    NASA Astrophysics Data System (ADS)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude M.; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer; Turetsky, Merritt R.; McGuire, A. David; Shah, Manesh B.; Verberkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K.

    2015-05-01

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular `omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  7. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes.

    PubMed

    Hultman, Jenni; Waldrop, Mark P; Mackelprang, Rachel; David, Maude M; McFarland, Jack; Blazewicz, Steven J; Harden, Jennifer; Turetsky, Merritt R; McGuire, A David; Shah, Manesh B; VerBerkmoes, Nathan C; Lee, Lang Ho; Mavrommatis, Kostas; Jansson, Janet K

    2015-05-14

    Over 20% of Earth's terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular 'omics' approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost. PMID:25739499

  8. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    SciTech Connect

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  9. Application of Satellite SAR Imagery in Mapping the Active Layer of Arctic Permafrost

    NASA Technical Reports Server (NTRS)

    Li, Shu-Sun; Romanovsky, V.; Lovick, Joe; Wang, Z.; Peterson, Rorik

    2003-01-01

    A method of mapping the active layer of Arctic permafrost using a combination of conventional synthetic aperture radar (SAR) backscatter and more sophisticated interferometric SAR (INSAR) techniques is proposed. The proposed research is based on the sensitivity of radar backscatter to the freeze and thaw status of the surface soil, and the sensitivity of INSAR techniques to centimeter- to sub-centimeter-level surface differential deformation. The former capability of SAR is investigated for deriving the timing and duration of the thaw period for surface soil of the active layer over permafrost. The latter is investigated for the feasibility of quantitative measurement of frost heaving and thaw settlement of the active layer during the freezing and thawing processes. The resulting knowledge contributes to remote sensing mapping of the active layer dynamics and Arctic land surface hydrology.

  10. Vertical profiles of trapped greenhouse gases in Alaskan permafrost active layers before the spring thaw

    NASA Astrophysics Data System (ADS)

    Byun, Eunji; Yang, Ji-woong; Kim, Yongwon; Ahn, Jinho

    2015-04-01

    Seasonally frozen ground over permafrost is important in controlling annual greenhouse gas exchange between permafrost and atmosphere. Soil microbes decompose soil carbon and generate carbon dioxide and methane when they become activated. However, the actual greenhouse gas emission follows various efflux pathways. For example, seasonal freezing of the top soil layers can either restrain or press the gas emission from deeper layers. It has been reported that abrupt release of methane during spring is attributable to the emission of trapped gases that had failed to be released instantly after formation (1, 2). In order to examine the seasonally trapped greenhouse gases, we drilled five Alaskan permafrost cores before spring thaw; one from coastal tundra, two from typical boreal forests, one from area where fire occurred, and one from peat accumulated sites. Vertical profiles of carbon dioxide and methane concentrations were obtained with 5-10 cm depth intervals. We found methane peaks from two cores, indicating inhibition of methane efflux. We also analyzed organic carbon, nitrogen and water contents and compared them with the greenhouse gas profiles. We are continuing analysis for the soil temperature profiles of the sampling boreholes because the detailed temperature information might be related to microbial activity, and can be used as indirect indicators of soil water freezing and latent heat influences at some active layer depth (zero curtain effects). All the high-resolution analyses for subsurface environments may help to improve understanding greenhouse gas emission from permafrost regions. 1. Mastepanov M, et al. (2008) Large tundra methane burst during onset of freezing. Nature 456(7222):628-630. 2. Song C, et al. (2012) Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters 7(3):034009.

  11. Microbial Activity in Active and Upper Permafrost Layers in Axel Heiberg Island

    NASA Astrophysics Data System (ADS)

    Vishnivetskaya, T. A.; Allan, J.; Cheng, K.; Chourey, K.; Hettich, R. L.; Layton, A.; Liu, X.; Murphy, J.; Mykytczuk, N. C.; Phelps, T. J.; Pfiffner, S. M.; Saarunya, G.; Stackhouse, B. T.; Whyte, L.; Onstott, T. C.

    2011-12-01

    Data on microbial communities and their metabolic activity in Arctic wetlands and underlying permafrost sediments is lacking. Samples were collected from different depths of a cryosol (D1, D2) and upper permafrost (D3) at the Axel Heiberg Island in July 2009. Upper cryosol has lower H2O but higher C and N content when compared to deeper horizons including upper permafrost layer. Deep cryosol and upper permafrost contained SO42- (155 and 132 ppm) and NO3- (0.12 and 0.10 ppm), respectively. The phylogenetic analyses of the environmental 16S rRNA genes showed the putative SRB were more abundant in permafrost (8%) than in cryosols, D1 (0.2%) and D2 (1.1%). Putative denitrifying bacteria varied along depth with near 0.1% in D1 and a significant increase in D2 (2.7%) and D3 (2.2%). Methanogens were not detected; methanotrophs were present at low levels in D3 (1%). Two sets of microcosms were set up. Firstly, anaerobic microcosms, amended with 10 mM glucose, sulfate or nitrate, were cultivated at varying temperatures (15o, 6o, and 0o C) for 10 months. Metabolic activity was monitored by measuring CO2 and CH4 every 3 months. A total of 89.5% of the D3-originated microcosms showed higher activity in comparison to cryosols in first 3 months. CH4 was not detected in these microcosms, whereas CO2 production was higher at 15o C or with glucose. Metaproteomics analyses of microcosms with higher levels of CO2 production indicated the presence of stress responsive proteins (e.g. DnaK, GroEL) and proteins essential for energy production and survival under carbon starvation (e.g. F0F1 ATP synthase, acyl-CoA dehydrogenase). These proteins have been previously shown to be up-regulated at low temperatures by permafrost bacteria. Metaproteomics data based on the draft sequences indicated the presence of proteins from the genera Bradyrhizobium, Sphingomonas, Lysinibacillus and Methylophilaceae and these bacteria were also detected by pyrosequencing. Secondly, a duplicate set of anaerobic

  12. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    NASA Astrophysics Data System (ADS)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  13. Morphology and geotechnique of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Antoni G.; Harris, Charles

    2005-07-01

    Fifty active-layer detachment failures triggered after forest fire in the discontinuous permafrost zone (central Mackenzie Valley, 65° N.) are compared to several hundred others caused by summer meteorological triggers in continuous permafrost (Fosheim Peninsula, Ellesmere Island, 80°N). Most failures fall into compact or elongated morphological categories. The compact type occur next to stream channels and have little internal disturbance of the displaced block, whereas the elongated types can develop on any part of the slope and exhibit greater internal deformation. Frequency distributions of length-to-width and length-to-depth ratios are similar at all sites. Positive pore pressures, expected theoretically, were measured in the field at the base of the thawing layer. Effective stress analysis could predict the instability of slopes in both areas, providing cohesion across the thaw plane was set to zero and/or residual strength parameters were employed. The location of the shear planes or zones in relation to the permafrost table and the degree of post-failure secondary movements (including headwall recession and thermokarst development within the failure track) differed between the localities, reflecting dissimilarity in the environmental triggers and in the degree of ground thermal disturbance.

  14. Imaging active layer and permafrost variability in the Arctic using electromagnetic induction data

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Hubbard, S. S.; Ulrich, C.; Peterson, J. E.; Wu, Y.; Chen, J.; Wullschleger, S. D.

    2012-12-01

    Characterizing the spatial variability of active layer and permafrost properties is critical for gaining an understanding of Arctic ecosystem functioning and for parameterizing process-rich models that simulate feedbacks to a changing climate. Due to the sensitivity of electrical conductivity measurements to moisture content, salinity and freeze state in the active layer and permafrost and the ease of collecting electromagnetic induction (EMI) data with portable tools over large regions, EMI holds great potential for characterization of permafrost systems. However, inversion of such EMI data to estimate the subsurface electrical conductivity distribution is challenging. The challenges are due to the insufficient amount of information (even when using multiple configurations that vary coil spacing, orientation and elevation and signal frequency) needed to find a unique solution. The non-uniqueness problem is typically approached by invoking prior information, such as inversion constraints and initial models. Unfortunately, such prior information can significantly influence the obtained inversion result. We describe the development and implementation of a new grid search based method for estimating electrical conductivity from EMI data that evaluates the influence of priors and the information contained in such data. The new method can be applied to investigate two or three layer 1-D models reproducing the recorded data within a specified range of uncertainty at each measurement location over a large surveyed site. Importantly, the method can quickly evaluate multiple priors and data from numerous measurement locations, since the time-consuming simulation of the EMI signals from the multi-dimension search grid needs to be performed only once. We applied the developed approach to EMI data acquired in Barrow, AK at the Next-Generation Ecosystem Experiments (NGEE Arctic) study site on the Barrow Environmental Observatory. Our specific focus was on a 475-meter linear

  15. Monitoring of the permafrost surface active layer in Quebec and in the Arctic using remote sensing

    NASA Astrophysics Data System (ADS)

    Marchand, Nicolas; Royer, Alain; Krinner, Gerhard; Roy, Alexandre

    2014-05-01

    Projected future warming is particularly strong in the Northern high latitudes. Increases of temperatures are up to 2 to 6°C in the northern high latitudes, and up to 3 to 8°C in the North Pole area. Permafrosts (grounds with negative temperatures at least two years in a row) are present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). Recent studies have shown that a significant part (50%) of the first meters of the permafrost could melt within 2050, and 90 % within 2100. The aim of this study is to help understand the climate evolution in arctic areas, and more specifically of land areas covered by snow. We want to describe the ground temperature all year round even under snow cover. We hope to be able to deduce the active layer thickness evolution over the last ten years in northern Quebec. With the use of satellite data (fusion of Modis land surface temperature « LST » and AMSR-E brillance temperature « Tb », land cover …), and with the assimilation of these observations in the Canadian Landscape Surface Scheme (CLASS, CLASS-SSA) and in a simple radiative transfert model (HUT), we try to benefit from the advantages of each one of the sources in order to complete two objectives : 1- build a solid methodology in order to retrieve the land surface temperature, with and without snow cover, in taïga and toundra areas ; 2 - from those retrieved land surface temperatures, describe the ground temperature during summer as well as in winter (under snow) so that we can have a better look at the summer melt of the permafrost active layer. We have proposed a methodology that takes into account the evolution of two main input parameters of the CLASS model (air temperature and precipitations) in order to minimise the LST and Tb ouput. The proposed methodology seems to improve the results on the LST and Tb at 10 and 19 GHz in summer in a toundra environment

  16. Seismic Spatial Autocorrelation as a Technique to Track Changes in the Permafrost Active Layer

    NASA Astrophysics Data System (ADS)

    Abbott, R. E.

    2013-12-01

    We present preliminary results from an effort to continuously track freezing and thawing of the permafrost active layer using a small-aperture seismic array. The 7-element array of three-component posthole seismometers is installed on permafrost at Poker Flat Research Range, near Fairbanks, Alaska. The array is configured in two three-station circles with 75 and 25 meter radii that share a common center station. This configuration is designed to resolve omnidirectional, high-frequency seismic microtremor (i.e. ambient noise). Microtremor is continuously monitored and the data are processed using the spatial autocorrelation (SPAC) method. The resulting SPAC coefficients are then inverted for shear-wave velocity structure versus depth. Thawed active-layer soils have a much slower seismic velocity than frozen soils, allowing us to track the depth and intensity of thawing. Persistent monitoring on a permanent array would allow for a way to investigate year-to-year changes without costly site visits. Results from the seismic array will compared to, and correlated with, other measurement techniques, such as physical probing and remote sensing methods. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Study of the Northern Qinghai-Tibetan Plateau Permafrost Active Layer Depth Rate Using Satellite Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Su, X.; Shum, C. K.; Kim, J. W.; Kuo, C. Y.

    2015-12-01

    The Tibetan Plateau is the world's largest and the highest plateau with distinct and competing surface and subsurface processes. It is the Third Pole and the World Water Tower, owing to its vast ice reservoir with the largest number of glaciers in the world, and covered by a large (1.3 to 1.6 million km2) layer of discontinuous and sporadic alpine permafrost. The thawing over Tibetan Plateau permafrost regions is thought to be more severe compared with other high latitude permafrost regions by the fact that the permafrost is warm. During the past few decades, 82% of Tibetan Plateau glaciers have retreated and 10% permafrost has degraded. The overall mean active layer depth (ALD) rate increase over the Plateau is 1.4 cm yr-1, 1980-2001, based on model studies and comparison with in situ borehole data. Here we report on the work in progress to quantify ALD rate increase in the northern Tibetan Plateau near the Tibetan national highway, using multi-band SAR/InSAR for improved the thermokarst surface classification, Envisat radar altimetry and ALOS-1 InSAR observed land subsidence, ALD modeling for the various thermokarst surface to relate to subsidence measurements, and the associated validations using available in situ borehole subsidence measurements.

  18. Isotopic Identification of Nitrate Sources and Cycling in Arctic Tundra Active Layer Soils and Permafrost

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Throckmorton, H.; Newman, B. D.; Perkins, G.; Gard, M.; Iversen, C. M.; Wilson, C. J.; Wullschleger, S. D.

    2014-12-01

    The effect of nitrogen cycling on release of carbon from tundra ecosystems is being studied as part of the US Department of Energy Next Generation Ecosystem Experiment - Arctic project. Sampling and analysis of active layer soil water at the Barrow Environmental Observatory (Alaska, USA) was performed in ancient drained thaw lake basins (DTLBs), drainages, and in polygonal terrain associated with inter-DTLB tundra. Within active layer soils, nitrate was most commonly found above analytical limits of detection in pore water from the unsaturated centers of high-centered polygons. Nitrate has also been detected, though less frequently, in soil water immediately above the frost table of an ancient (14C age of 2000 - 5500 BP) DTLB and in a small drainage adjacent to high-centered polygonal terrain. Nitrate from high-centered polygons had δ15N ranging from -9.2 to +8.5 ‰ and δ18O ranging from -8.4 to +1.4 ‰. The δ15N isotopic range is consistent with microbial mineralization and nitrification of reduced nitrogen sources including ammonium, dissolved organic nitrogen, and soil organic nitrogen. The range in δ18O of nitrate is also consistent with nitrification based on the δ18O of site waters. No evidence for an atmospheric nitrate signal, as defined by δ15N and δ18O of nitrate in snow and snowmelt, is seen. In contrast, nitrate in permafrost appears to be a mixture of pre-industrial atmospheric nitrate (with higher δ15N than modern atmospheric nitrate) and nitrate that is microbial in origin. Massive ice wedges appear to contain larger proportions of snowmelt (based on δ18O of ice) and atmospheric nitrate, whereas textural ice appears to contain a greater proportion of summer precipitation and microbially-derived nitrate. Nitrate from the ancient DTLB and drainage samples also has isotopic signatures that appear to represent a mixture of pre-industrial atmospheric nitrate and nitrate from microbial nitrification, and may, at least in part, be derived from

  19. Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Xicai; Li, Yanping; Yu, Qihao; Shi, Xiaogang; Yang, Daqing; Roth, Kurt

    2016-07-01

    Seasonally variable thermal conductivity in active layers is one important factor that controls the thermal state of permafrost. The common assumption is that this conductivity is considerably lower in the thawed than in the frozen state, λt/λf < 1. Using a 9-year dataset from the Qinghai-Tibet Plateau (QTP) in conjunction with the GEOtop model, we demonstrate that the ratio λt/λf may approach or even exceed 1. This can happen in thick (> 1.5 m) active layers with strong seasonal total water content changes in the regions with summer-monsoon-dominated precipitation pattern. The conductivity ratio can be further increased by typical soil architectures that may lead to a dry interlayer. The unique pattern of soil hydraulic and thermal dynamics in the active layer can be one important contributor for the rapid permafrost warming at the study site. These findings suggest that, given the increase in air temperature and precipitation, soil hydraulic properties, particularly soil architecture in those thick active layers must be properly taken into account in permafrost models.

  20. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    PubMed

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  1. Permafrost and active layer monitoring in the maritime Antarctic: Preliminary results from CALM sites on Livingston and Deception Islands

    USGS Publications Warehouse

    Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.

    2007-01-01

    This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.

  2. Fate and Transport of Methane Formed in the Active Layer of Alaskan Permafrost

    NASA Astrophysics Data System (ADS)

    Conrad, M. E.; Curtis, J. B.; Smith, L. J.; Bill, M.; Torn, M. S.

    2015-12-01

    Over the past 2 years a series of tracer tests designed to estimate rates of methane formation via acetoclastic methanogenesis in the active layer of permafrost soils were conducted at the Barrow Environmental Observatory (BEO) in northernmost Alaska. The tracer tests consisted of extracting 0.5 to 1.0 liters of soil water in gas-tight bags from different features of polygons at the BEO, followed by addition of a tracer cocktail including acetate with a 13C-labeled methyl group and D2O (as a conservative tracer) into the soil water and injection of the mixture back into the original extraction site. Samples were then taken at depths of 30 cm (just above the bottom of the active layer), 20 cm, 10 cm and surface flux to determine the fate of the 13C-labeled acetate. During 2014 (2015 results are pending) water, soil gas, and flux gas were sampled for 60 days following injection of the tracer solution. Those samples were analyzed for concentrations and isotopic compositions of CH4, DIC/CO2 and water. At one site (the trough of a low-centered polygon) the 13C acetate was completely converted to 13CH4 within the first 2 days. The signal persisted for throughout the entire monitoring period at the injection depth with little evidence of transport or oxidation in any of the other sampling depths. In the saturated center of the same polygon, the acetate was also rapidly converted to 13CH4, but water turnover caused the signal to rapidly dissipate. High δ13C CO2 in flux samples from the polygon center indicate oxidation of the 13CH4 in near-surface waters. Conversely, CH4 production in the center of an unsaturated, flat-centered polygon was relatively small 13CH4 and dissipated rapidly without any evidence of either 13CH4 transport to shallower levels or oxidation. At another site in the edge of that polygon no 13CH4 was produced, but significant 13CO2/DIC was observed indicating direct aerobic oxidation of the acetate was occurring at this site. These results suggest that

  3. Active layer thickness and thaw subsidence in permafrost terrain: results from long-term observations near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Streletskiy, D. A.; Nelson, F. E.

    2012-12-01

    Patterns of active-layer thickness (ALT) on the North Slope of Alaska are highly variable, both spatially and temporally. Although geographic patterns of ALT repeat themselves from year to year, ALT is an integrated response to a large number of parameters. Thaw penetration into an ice-rich layer at the base of the active layer is accompanied by loss of volume (thaw consolidation) and results in subsidence at the ground surface. Differential thaw settlement occurs annually in permafrost environments as the layer of annual thaw (the active layer) develops. Significant ice segregation can occur at the bottom of the active layer during "cold" periods, due predominantly to freezing from below in the autumn and winter. This study examines trends in seasonal thawing of soils and vertical movements of the ground surface associated with formation and ablation of ice near the permafrost table in the Barrow region. The core thaw depth data set consists of ALT measurements conducted under the Circumpolar Active Layer Monitoring (CALM) program. The Barrow CALM site, represented by a regular 1 km2 grid, was established in the early 1990s. The reported ALT observations were initiated in 1992 and are measured annually in late August. Additional ALT measurements are available from a series of 10 x 10 meter plots established in 1962 as part of the Cold Regions Research and Engineering Laboratory (CRREL) research program at Barrow. Annual observations were made between 1962 and 1970. Measurements were reestablished in 1991 under the CALM program, following the original methodology. Field investigations to track interannual vertical movements associated with formation and ablation of ice near the permafrost table were initiated in 2003. Measurements continue annually at several CRREL plots representative of different elements of the tundra landscape. Observations were made at the end of the thawing season using Differential Global Positioning Systems (DGPS) technology. Results from

  4. Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Wu, Qingbai; Zhang, Zhongqiong; Gao, Siru; Ma, Wei

    2016-08-01

    Climate warming and engineering activities have various impacts on the thermal regime of permafrost in alpine ecosystems of the Qinghai-Tibet Plateau. Using recent observations of permafrost thermal regimes along the Qinghai-Tibet highway and railway, the changes of such regimes beneath embankments constructed in alpine meadows and steppes are studied. The results show that alpine meadows on the Qinghai-Tibet Plateau can have a controlling role among engineering construction effects on permafrost beneath embankments. As before railway construction, the artificial permafrost table (APT) beneath embankments is not only affected by climate change and engineering activities but is also controlled by alpine ecosystems. However, the change rate of APT is not dependent on ecosystem type, which is predominantly affected by climate change and engineering activities. Instead, the rate is mainly related to cooling effects of railway ballast and heat absorption effects of asphalt pavement. No large difference between alpine and steppe can be identified regarding the variation of soil temperature beneath embankments, but this difference is readily identified in the variation of mean annual soil temperature with depth. The vegetation layer in alpine meadows has an insulation role among engineering activity effects on permafrost beneath embankments, but this insulation gradually disappears because the layer decays and compresses over time. On the whole, this layer is advantageous for alleviating permafrost temperature rise in the short term, but its effect gradually weakens in the long term.

  5. Permafrost vulnerability and active layer thickness increases over the high northern latitudes inferred from satellite remote sensing and process model assessments

    NASA Astrophysics Data System (ADS)

    Park, Hotaek; Kim, Youngwook

    2016-04-01

    Permafrost extent (PE) and active layer thickness (ALT) are important for assessing high northern latitude (HNL) ecological and hydrological processes, and potential land-atmosphere carbon and climate feedbacks. We developed a new approach to infer PE from satellite microwave remote sensing of daily landscape freeze-thaw (FT) status. Our results document, for the first time, the use of satellite microwave FT observations for monitoring permafrost extent and condition. The FT observations define near-surface thermal status used to determine permafrost extent and stability over a 30-year (1980-2009) satellite record. The PE results showed similar performance against independent inventory and process model (CHANGE) estimates, but with larger differences over heterogeneous permafrost subzones. A consistent decline in the ensemble mean of permafrost areas (‑0.33 million km2 decade‑1; p < 0.05) coincides with regional warming (0.4 °C decade‑1; p < 0.01), while more than 40% (9.6 million km2) of permafrost areas are vulnerable to degradation based on the 30-year PE record. ALT estimates determined from satellite (MODIS) and ERA-Interim temperatures, and CHANGE simulations, compared favorably with independent field observations and indicate deepening ALT trends consistent with widespread permafrost degradation under recent climate change. The integration of remote sensing and modeling of permafrost and active layer conditions developed from this study may facilitate regular and effective regional monitoring of these parameters, and expand applications of remote sensing for examining permafrost-related feedbacks and consequences for biogeochemical and hydrological cycling in the Arctic.

  6. Modeling Active Layer and Permafrost Dynamics of Ice Wedge Polygon Dominated Arctic Ecosystems

    NASA Astrophysics Data System (ADS)

    Kumar, J.; Bisht, G.; Liljedahl, A.; Mills, R. T.; Karra, S.; Painter, S. L.; Thornton, P. E.

    2013-12-01

    Permafrost soils contains vast stock of frozen organic carbon. As warming climate accelerates the thaw of the permafrost, increasing amount of organic matter is exposed to respiration leading to release of carbon to the atmosphere in the form of CO2 and CH4 . Permafrost thermal dynamics play a key role influencing hydrologic and biogeochemical processes in these ecosystems. Large areas of Arctic landscape are covered by the patterned ground features created by repeated freezing and thawing of soil underlain by aerially continuous permafrost. These microtopographic features in the landscape controls the local surface-subsurface hydrology and thermal regimes through differential transport of heat and water. Study of these interacting thermal-hydrologic-biogeochemical in permafrost soils are further complicated by the complex topography and heterogeneity of subsurface. We have developed and applied a coupled multiscale-multiphase-multicomponent surface-subsurface flow and reactive transport model PFLOTRAN for modeling of thermal-hydrologic-biogeochemical processes in permafrost soils. We study the permafrost thermal dynamics, role of microtopography in local scale hydrology at the Department of Energy's Next Generation Ecosystem Experiment (NGEE) - Arctic field sites near Barrow, Alaska. High resolution LiDAR data is used to represent the microtopography at sub-meter resolution in PFLOTRAN. Long term simulations have been conducted at the field sites informed by the observations from field and laboratory campaigns to study and understand the hydrologic and biogeochemical processes in these Arctic ecosystems.

  7. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China

    NASA Astrophysics Data System (ADS)

    Wu, Qingbai; Hou, Yandong; Yun, Hanbo; Liu, Yongzhi

    2015-01-01

    Between 2002 and 2012, daily soil temperature measurements were made at 10 sites within five alpine ecosystems in the Beiluhe area of the central Qinghai-Tibet Plateau. Changes in freeze-thaw occurrence, active-layer thickness and near-surface permafrost temperature in barren, desert grassland, alpine steppe and alpine meadow ecosystems indicate that alpine ecosystems are sensitive to climate variability. During this time, the average onset of spring thawing at 50-cm depth advanced by at least 16 days in all but the barren alpine settings, and the duration of thaw increased by at least 14 days for all but the desert grassland and barren ecosystems. All sites showed an increase in active-layer thickness (ALT) and near-surface permafrost temperature: the average increase of ALT was ~ 4.26 cm/a and the average increase in permafrost temperatures at 6 m and 10 m depths were, respectively, ~ 0.13 °C and ~ 0.14 °C. No apparent trend in mean annual air temperature was detected at the Beiluhe weather station. However, an increasing trend in precipitation was measured. This suggests that the primary control on the ALT increase was an increase in summer rainfall and the primary control on increasing permafrost temperature was probably the combined effects of increasing rainfall and the asymmetrical seasonal changes in subsurface soil temperatures.

  8. Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats ecoregion, central Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Minsley, Burke J.; Ji, Lei; Walvoord, Michelle A.; Smith, Bruce D.; Abraham, Jared D.; Rose, Joshua R.

    2013-01-01

    Machine-learning regression tree models were used to extrapolate airborne electromagnetic resistivity data collected along flight lines in the Yukon Flats Ecoregion, central Alaska, for regional mapping of permafrost. This method of extrapolation (r = 0.86) used subsurface resistivity, Landsat Thematic Mapper (TM) at-sensor reflectance, thermal, TM-derived spectral indices, digital elevation models and other relevant spatial data to estimate near-surface (0–2.6-m depth) resistivity at 30-m resolution. A piecewise regression model (r = 0.82) and a presence/absence decision tree classification (accuracy of 87%) were used to estimate active-layer thickness (ALT) (< 101 cm) and the probability of near-surface (up to 123-cm depth) permafrost occurrence from field data, modelled near-surface (0–2.6 m) resistivity, and other relevant remote sensing and map data. At site scale, the predicted ALTs were similar to those previously observed for different vegetation types. At the landscape scale, the predicted ALTs tended to be thinner on higher-elevation loess deposits than on low-lying alluvial and sand sheet deposits of the Yukon Flats. The ALT and permafrost maps provide a baseline for future permafrost monitoring, serve as inputs for modelling hydrological and carbon cycles at local to regional scales, and offer insight into the ALT response to fire and thaw processes.

  9. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest

    PubMed Central

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-01-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG—CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629

  10. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest.

    PubMed

    Taş, Neslihan; Prestat, Emmanuel; McFarland, Jack W; Wickland, Kimberley P; Knight, Rob; Berhe, Asmeret Asefaw; Jorgenson, Torre; Waldrop, Mark P; Jansson, Janet K

    2014-09-01

    Permafrost soils are large reservoirs of potentially labile carbon (C). Understanding the dynamics of C release from these soils requires us to account for the impact of wildfires, which are increasing in frequency as the climate changes. Boreal wildfires contribute to global emission of greenhouse gases (GHG-CO2, CH4 and N2O) and indirectly result in the thawing of near-surface permafrost. In this study, we aimed to define the impact of fire on soil microbial communities and metabolic potential for GHG fluxes in samples collected up to 1 m depth from an upland black spruce forest near Nome Creek, Alaska. We measured geochemistry, GHG fluxes, potential soil enzyme activities and microbial community structure via 16SrRNA gene and metagenome sequencing. We found that soil moisture, C content and the potential for respiration were reduced by fire, as were microbial community diversity and metabolic potential. There were shifts in dominance of several microbial community members, including a higher abundance of candidate phylum AD3 after fire. The metagenome data showed that fire had a pervasive impact on genes involved in carbohydrate metabolism, methanogenesis and the nitrogen cycle. Although fire resulted in an immediate release of CO2 from surface soils, our results suggest that the potential for emission of GHG was ultimately reduced at all soil depths over the longer term. Because of the size of the permafrost C reservoir, these results are crucial for understanding whether fire produces a positive or negative feedback loop contributing to the global C cycle. PMID:24722629

  11. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    PubMed Central

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  12. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.

    PubMed

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  13. Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route

    PubMed Central

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099

  14. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    PubMed

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099

  15. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    NASA Astrophysics Data System (ADS)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  16. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    SciTech Connect

    Johnson, Kristopher D; Harden, Jennifer; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew

    2013-01-01

    Permafrost is tightly coupled to the organic layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between PF, OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow v. deep organic layers. Permafrost probability sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. As temperature warmed, sandy soils varied little in PF or OLT, but PF in loamy and sandy soils decreased substantially. The change in OLT was more heterogeneous across soil types in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened as temperature warmed. Furthermore, the rate of thickening with warming for OLTd soils was on average almost 4 times greater than the rate of thinning for OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  17. The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Jafarov, Elchin; Schaefer, Kevin

    2016-03-01

    Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere. Studies show that warming of the perennially frozen ground could initiate significant release of the frozen soil carbon into the atmosphere. Initializing the frozen permafrost carbon with the observed soil carbon distribution from the Northern Circumpolar Soil Carbon Database reduces the uncertainty associated with the modeling of the permafrost carbon feedback. To improve permafrost thermal and carbon dynamics we implemented a dynamic surface organic layer with vertical carbon redistribution, and introduced dynamic root growth controlled by active layer thickness, which improved soil carbon exchange between frozen and thawed pools. These changes increased the initial amount of simulated frozen carbon from 313 to 560 Gt C, consistent with observed frozen carbon stocks, and increased the spatial correlation of the simulated and observed distribution of frozen carbon from 0.12 to 0.63.

  18. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    USGS Publications Warehouse

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  19. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    PubMed Central

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  20. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    SciTech Connect

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.

  1. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DOE PAGESBeta

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-04-30

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy numbermore » of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below -10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface.« less

  2. Active-Passive Microwave Remote Sensing of Martian Permafrost and Subsurface Water

    NASA Technical Reports Server (NTRS)

    Raizer, V.; Linkin, V. M.; Ozorovich, Y. R.; Smythe, W. D.; Zoubkov, B.; Babkin, F.

    2000-01-01

    The investigation of permafrost formation global distribution and their appearance in h less than or equal 1 m thick subsurface layer would be investigated successfully by employment of active-passive microwave remote sensing techniques.

  3. On the connection of permafrost and debris flow activity in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  4. GlobPermafrost - how space supports understanding of permafrost?

    NASA Astrophysics Data System (ADS)

    Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin

    2016-04-01

    The GlobPermafrost project (2016-2019) develops, validates and implements information products to support the research communities and related international organisations like IPA and CliC in their work on understanding permafrost better by integration of EO data. Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution in various wavelengths. Prototype cases will cover different aspects of permafrost by integrating in situ measurements of subsurface permafrost properties (active layer depth, active layer and permafrost temperatures, organic layer thickness, liquid water content in the active layer and permafrost), surface properties (vegetation cover, snow depth)and modelling to provide a better understanding of permafrost today. The techniques will extend point source process and permafrost monitoring to a broader spatial domain, to support permafrost distribution modelling and mapping techniques implemented in a GIS framework and will complement active layer and thermal observing networks. Initial user requirements have been gathered at the DUE-IPA-GTNP-CliC workshop in Frascati in February 2014, which have been further consolidated within the Permafrost community during 2014 in request of the WMO Polar Space Task Group. A subset of these requirements will be demonstrated within GlobPermafrost and assessed by user organisations: -Circumpolar permafrost extend -Permafrost dedicated land cover class prototype -Local investigations around long term monitoring sites -Regional transects for "hot spot" identification -Mountain permafrost areas The initial observation scenario is presented, discussing challenges in methods as well as data availability.

  5. Permafrost

    USGS Publications Warehouse

    Ray, Louis L.

    1993-01-01

    In 1577, on his second voyage to the New World in search of the Northwest Passage, Sir Martin Frobisher reported finding ground in the far north that was frozen to depths of "four or five fathoms, even in summer," and that the frozen condition "so combineth the stones together that scarcely instruments with great force can unknit them." This permanently frozen ground, now termed permafrost, underlies perhaps a fifth of the Earth's land surface. It occurs in Antarctica but is most extensive in the Northern Hemisphere. In the lands surrounding the Arctic Ocean, its maximum thickness has been reported in thousands of feet as much as 5,000 feet in Siberia and 2,000 feet in northern Alaska.

  6. Metabolic activity of permafrost bacteria below the freezing point

    NASA Technical Reports Server (NTRS)

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and -20 degrees C on the basis of incorporation of (14)C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5 degrees C) to 20 days (-10 degrees C) to ca. 160 days (-20 degrees C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature.

  7. Metabolic Activity of Permafrost Bacteria below the Freezing Point

    PubMed Central

    Rivkina, E. M.; Friedmann, E. I.; McKay, C. P.; Gilichinsky, D. A.

    2000-01-01

    Metabolic activity was measured in the laboratory at temperatures between 5 and −20°C on the basis of incorporation of 14C-labeled acetate into lipids by samples of a natural population of bacteria from Siberian permafrost (permanently frozen soil). Incorporation followed a sigmoidal pattern similar to growth curves. At all temperatures, the log phase was followed, within 200 to 350 days, by a stationary phase, which was monitored until the 550th day of activity. The minimum doubling times ranged from 1 day (5°C) to 20 days (−10°C) to ca. 160 days (−20°C). The curves reached the stationary phase at different levels, depending on the incubation temperature. We suggest that the stationary phase, which is generally considered to be reached when the availability of nutrients becomes limiting, was brought on under our conditions by the formation of diffusion barriers in the thin layers of unfrozen water known to be present in permafrost soils, the thickness of which depends on temperature. PMID:10919774

  8. Predicting/Extrapolating Active Layer Thickness Using Statistical Learning from Remotely-Sensed High-resolution Data in Arctic Permafrost Landscapes: Improved parameterization of Ice-wedge polygons from LiDAR/WorldView-2 derived metrics

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Rowland, J. C.; Hubbard, S. S.; Brumby, S. P.; Liljedahl, A.; Wainwright, H. M.; Sloan, V. L.; Altmann, G.; Skurikhin, A. N.; Shelef, E.; Wilson, C. J.; Dafflon, B.; Peterson, J.; Ulrich, C.; Gibbs, A.; Tweedie, C. E.; Painter, S. L.; Wullschleger, S. D.

    2014-12-01

    Landscape attributes that vary with micro-topography, such as active layer thickness (ALT) in ice-wedge polygon ground, are labor-intensive to document in the field at large spatial extents, necessitating remotely sensed methods. Robust techniques to estimate ALT over large areas would improve understanding of coupled dynamics between permafrost, hydrology and landsurface processes, and improve simulations of the rate and timing of release of soil carbon from permafrost settings. In particular, it would provide critically needed data to parameterize and initialize soil property information in permafrost models and evaluate model predictions for large, complex domains. In this work, we demonstrate a new data fusion approach using high-resolution remotely sensed data for estimating cm scale ALT in a 5 km2 area of ice-wedge polygon terrain in Barrow, Alaska. We used topographic (directed distance, slope, wavelet-curvature) and spectral (NDVI) metrics derived from multisensor data obtained from LiDAR and WorldView-2 platforms to develop a simple data fusion algorithm using statistical machine learning. This algorithm was used to estimate ALT (2 m spatial resolution) across the study area. A comparison of the estimates with ground-based measurements documented the accuracy (±4.4 cm, r2=0.76) of the approach. Our findings suggest that the broad climatic variability associated with warming air temperature will govern the regional averages of ALT, but the smaller-scale variability could be controlled by local eco-hydro-geomorphic variables. This work demonstrates a path forward for mapping subsurface properties over large areas from readily available remote sensing data. Methodology of Mapping and Characterization Polygons:We convolve LiDAR elevations with multiscale wavelets and objectively chose appropriate scales to map interconnected troughs of high- and low-centered polygons. For the ice wedges where LiDAR surface expressions (troughs) are not well developed, we used

  9. Cryostratigraphy and Main Physical Properties of Active Layer Soils and Upper Horizon of Permafrost at the Barrow Environmental Observatory Research Site.

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Liljedahl, A.; Romanovsky, V. E.; Cable, W.

    2014-12-01

    Complete understanding of the results of geophysical survey, microbiological and biogeochemical analyzes of soil cores in the Arctic environment impossible without detail description of the frozen soil and its physical properties determination. Cryostratigraphyc features i.e. total ice content and forms of ice patterns reflects the important processes such as water migration due to freezing in frozen active layer soils and history of sedimentation and freezing in underlying perennially frozen deposits. That plays significant role in biogeochemical processes that take place in the Arctic ecosystem. Current research was based on description and analyzing of 8 cores taken during 2012 and 2013 coring campaigne had been done at the Barrow Environmental Observatory research site. Cores were taken from different types of polygons and analyzed on lithological composition, soil density, ice content and thermal conductivity. Volumetric ice content within the active layer composed by organic soil consists of 70 to 80% and within silt one - less than 60%. Ice content of underlying syncryogenic perennial frozen deposits is about 70%. No clear evidences of soil moisture redistribution due to freezing of active layer were noticed in the cores composed by the organic soil. Organic soil does not have any clear cryogenic structures. Ice usually fills the pores and follows the plants fibers. Mineral soil has recticulated cryogenic structure (ice forms grid like patterns with vertically oriented cells) with some thin (up to 2 cm thick) layers of soil particles and aggregates suspended in ice. Thermal conductivity of frozen samples varies in the range from 1.5 to 2.8 W/(m*°K). It has a positive correlation with soil density and negative with gravimetric ice content (see figure below). Mineral soils have a higher bulk density and average thermal conductivity in the range 2.15 W/(m*°K), organic soils have a lower density and average thermal conductivity about 2 W/(m*°K). Samples

  10. Implications of fire-mediated changes in larch forest structure on leaf litter inputs, organic layer accumulation, and permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Ganzlin, P.; Alexander, H. D.; Petronio, B.; Natali, S.; Davydov, S.

    2012-12-01

    The boreal forest is an expansive biome and stores the majority of the world's above and belowground carbon stocks. These forests are very vulnerable to changes in global climate. As climate warms and dries, boreal forest ecosystems are expected to experience greater fire activity. An increase in fire activity will likely lead to greater consumption of the soil organic layer (SOL), the thick layer of undecomposed mosses and other plant materials lying above the mineral soil. Because the SOL serves as a natural barrier to seed germination, a reduction in SOL depth could increase tree seedling establishment during post-fire succession. This could ultimately lead to stands of greater density, with potentially cascading effects on belowground carbon dynamics due to density-driven changes in understory microenvironment and leaf litter inputs, especially in forests dominated by deciduous species. In permafrost-affected regions, organic soil materials - especially mosses - are important insulators of permafrost and the high content of thermally protected carbon it contains. In order to assess the importance of fire-mediated changes in stand density on permafrost dynamics, we surveyed forests of Cajander Larch (Larix cajander) surrounding the Northeast Science Station in far northeastern Siberia. Two sets of low and high-density stands were selected to establish a natural density gradient in these forests. In each stand we evaluated stand density effects on aboveground biomass, leaf litter inputs, moss abundance, organic layer depth, and permafrost thaw depth. Here we show that the low-density larch stands had significantly higher moss abundance, green moss depth, and organic layer depth. The insulating organic layer was nearly 25% shallower in high-density stands, which was accompanied by a nearly 50% increase in depth of seasonal permafrost thaw. In addition to density, stand biomass and landscape position may also be very important factors in determining litter inputs

  11. Climatological conditions of enhanced Arctic storm activity in relation to permafrost degradation in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Nakamura, T.; PARK, H.; Fedorov, A. N.

    2015-12-01

    The last decade (2000-2010) was the warmest on record at high northern latitudes. Surface air temperature anomalies and associated sea level pressure fields in Arctic exhibited different spatial patterns at the beginning of the 21st century than they did throughout the majority of the 20th century. In eastern Siberia, the abrupt soil warming within upper permafrost layer and deepening active layer thickness has observed in response to increasing in soil moisture under wet hydro-climatic conditions during the warming period of 2000s. According to climatological analyses, the large positive anomalies of both rainfall and snow accumulation in eastern Siberia are caused by strengthened cyclonic pattern in these years which induce more water vapor advection. These anomalies are more enhanced than those before 1990s and continuously appear after 2004. Long-term simulation of permafrost temperature and active layer thickness using a sophisticated land surface model (CHANGE) was carried out. The correlations between precipitation in late summer and soil temperature showed that the most regions exhibited either negative or not significant correlations between precipitation and soil temperature during the past period (1961-1980), whereas positive correlations were observed during the recent period (1991-2009). A region of significantly positive correlation was observed along the Siberian coast and in eastern Siberia and could have corresponded with areas of increased storm activity. The soil warming is thus due to not only increasing in snow accumulation which is well-known relationship by previous studies but also increasing in rainfall in late summer which furthermore accelerates the warming due to changes in hydro-thermal properties within the active layer. The precipitation increase in the last decade led to deepening active layer accompanying with remarkable increase in soil moisture. The perennially waterlogged conditions had exacerbated the boreal forest habitat; that

  12. The peculiarities of relict gas hydrate forms existence within permafrost layers

    NASA Astrophysics Data System (ADS)

    Chuvilin, E.

    2005-12-01

    bulk water and interfacial water located on the particles and aggregates surface. The primary hydrate preservation will occur by surrounding ice. Under thermodynamic non-equilibrium condition for hydrate existence (pressure reducing to atmosphere level) secondary preservation of pore hydrate would be occurred due to partially hydrate dissociation. This phenomenon was described earlier as self- preservation effect at negative temperature. The results of quantitative experimental study of frozen hydrate-saturated sediments metastability showed that self preservation effect of gas hydrate in pore space od sediments was determined by complex of hydrate containing sediments parameters and characteristics, some among them should be mentioned, such as: temperature conditions, macro- and micromorphological features, degree of hydrate and ice pore space filling, composition and properties of sediment matrix etc. Obtained experimental data make possible to substantiation of relic gas hydrate forms existence within permafrost layers. These investigations were supported by grants INTAS Nr03-51-4259 and RFBR Nr04-05-64757.

  13. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    NASA Astrophysics Data System (ADS)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  14. Effects of temperature on biological activity of permafrost microorganisms.

    PubMed

    Kalyonova, L F; Novikova, M A; Subbotin, A M; Bazhin, A S

    2015-04-01

    The number and viability of microorganism specimens Bacillus spp. isolated from permafrost soil remained unchanged after incubation at temperatures of -16-37°C. Experiments on F1 CBA/Black-6 mice showed that incubation of bacteria at -5°C for 72 h promotes a decrease in their toxicity and an increase in their immunostimulating effect. PMID:25894776

  15. Use Of Amino Acid Racemization To Investigate The Metabolic Activity Of ?Dormant? Microorganisms In Siberian Permafrost

    NASA Astrophysics Data System (ADS)

    Tsapin, A.; McDonald, G.

    2002-12-01

    search for extraterrestrial life or its remnants is based on studying the most probable environments in which life (extant or extinct) may be found, and determining the maximum period of time over which such life could be preserved. The terrestrial permafrost, inhabited by cold adapted microbes, can be considered as an extraterrestrial analog environment. The cells and their metabolic end-products in Earth's permafrost can be used in the search for possible ecosystems and potential inhabitants on extraterrestrial cryogenic bodies. The study of microorganisms (or their remnants) that were buried for a few million years in permafrost provides us with a unique opportunity to determine the long-term viability of (micro)organisms. We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia (Brinton et al. 2002, Astrobiology 2, 77), an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of approximately 25,000 years (around 5 m depth). The apparent temperature of racemization over the age range 0-25,000 years, determined using measured aspartic acid racemization rate constants, is ?19 C. This apparent racemization temperature is significantly lower than the measured environmental temperature (?11 to ?13 C), and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while they are in a ?dormant? state over geologic time.

  16. Assessing hazard risk, cost of adaptation and traditional land use activities in the context of permafrost thaw in communities in Yukon and the Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Benkert, B.; Perrin, A.; Calmels, F.

    2015-12-01

    Together with its partners, the Northern Climate ExChange (NCE, part of the Yukon Research Centre at Yukon College) has been mapping permafrost-related hazard risk in northern communities since 2010. By integrating geoscience and climate project data, we have developed a series of community-scale hazard risk maps. The maps depict hazard risk in stoplight colours for easy interpretation, and support community-based, future-focused adaptation planning. Communities, First Nations, consultants and local regulatory agencies have used the hazard risk maps to site small-scale infrastructure projects, guide land planning processes, and assess suitability of land development applications. However, we know that assessing risk is only one step in integrating the implications of permafrost degradation in societal responses to environmental change. To build on our permafrost hazard risk maps, we are integrating economic principles and traditional land use elements. To assess economic implications of adaptation to permafrost change, we are working with geotechnical engineers to identify adaptation options (e.g., modified building techniques, permafrost thaw mitigation approaches) that suit the risks captured by our existing hazard risk maps. We layer this with an economic analysis of the costs associated with identified adaptation options, providing end-users with a more comprehensive basis upon which to make decisions related to infrastructure. NCE researchers have also integrated traditional land use activities in assessments of permafrost thaw risk, in a project led by Jean Marie River First Nation in the Northwest Territories. Here, the implications of permafrost degradation on food security and land use priorities were assessed by layering key game and gathering areas on permafrost thaw vulnerability maps. Results indicated that close to one quarter of big and small game habitats, and close to twenty percent of key furbearer and gathering areas within the First Nation

  17. Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard, TSP NORWAY

    NASA Astrophysics Data System (ADS)

    Christiansen, H.; Berthling, I.; Blikra, L.; Dehls, J.; Etzelmuller, B.; Farbrot, H.; Humlum, O.; Isaksen, K.; Juliussen, H.; Lauknes, T.; Midttomme, K.; Rønning, J.

    2007-12-01

    The Norwegian funded IPY project 'Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard', (TSP NORWAY) is part of the TSP cluster. The main goal of TSP NORWAY is to measure and model the permafrost distribution in Norway and Svalbard, focussing on its thermal state, thickness and associated periglacial processes, including increased knowledge of the mountain permafrost distribution related to geohazard studies on rockslides. TSP NORWAY will contribute to IPY by providing a spatially distributed set of observations on the present status of permafrost temperatures and active layer thicknesses, and periglacial processes in Svalbard and Norway. Special focus is given to empirical and numerical modelling of permafrost distribution and thermal ground heat fluxes to address future climate variability on permafrost distribution and associated geomorphic activity. Permafrost distribution in the North Atlantic area is strongly climatically controlled, mainly by the North Atlantic Drift, providing much less permafrost than in any other high latitude terrestrial region on the Northern Hemisphere. Hopefully a first Nordic permafrost map will be based on Nordic permafrost collaboration during IPY. The TSP NORWAY project has established two permafrost observatories with intensive permafrost and periglacial monitoring sites in maritime and continental areas. One in Troms, northern Norway, which will be part of the north Scandinavian Permafrost Observatory extending into northernmost Sweden and Finland, and the Svalbard Nordenskiöld Land Permafrost Observatory also with both maritime and continental sites. The first Norwegian permafrost database, NORPERM, with all permafrost data from Norway and Svalbard, collected before and during IPY, has been established at the Norwegian Geological Survey. NORPERM shall contribute data as requested in the IPY data protocol and the TSP cluster to the international Global Terrestrial Network on

  18. Hydrogeology, Chemical and Microbial Activity Measurement Through Deep Permafrost

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2011-01-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with ??18O values ???5??? lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  19. Hydrogeology, chemical and microbial activity measurement through deep permafrost

    SciTech Connect

    Stotler, R.L.; Frape, S.K.; Freifeld, B.M.; Holden, B.; Onstott, T.C.; Ruskeeniemi, T.; Chan, E.

    2010-04-01

    Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface-drilled borehole. Using a U-tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460-m-thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non-drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with {delta}{sup 18}O values {approx}5{per_thousand} lower than the local surface water. The fluid isotopic composition was affected by the permafrost-formation process. Nonbacteriogenic CH{sub 4} was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH{sub 4} is consistent with the high sulfate concentrations observed in cores. The combined surface-drilled borehole/U-tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.

  20. Permafrost Monitoring Sonnblick

    NASA Astrophysics Data System (ADS)

    Reisenhofer, Stefan; Riedl, Claudia

    2014-05-01

    Within the project 'Permafrost Monitoring Sonnblick' (PERSON) the spatial distribution of permafrost is investigated by the 'Zentralanstalt für Meteorologie und Geodynamik' (ZAMG) in the Sonnblick area, in the Hohe Tauern in Austria. The aim of PERSON is to identify parameters affecting permafrost (geological, geomorphological, orographical and climatic factors), to determine its spatio-temporal behaviour under present day climate conditions and to estimate its possible future extension under a climate change scenario. PERSON makes use of a permafrost monitoring network that was installed 2005 in the Sonnblick area and is made up by four study sites: On the one hand the spatial extension of permafrost was focused at the ice-dammed lake Pilatus and the rock glacier Zirmsee. On the other hand, at two sites, namely Goldbergspitze and Wintergasse measurements of 'Ground-Surface Temperature' (GST) and 'Bottom Temperatures of the Snow cover' (BTS) are measured. In order to record temperatures in the uppermost layer of the ground and avoid heating by direct solar radiation loggers were buried a few centimetres into the ground or installed in boreholes at depths between 2 and 140 cm. Each of the 'Near Surface Temperature' (NST) borehole mouths is closed up with insulating foam to protect the measurements from atmospheric influence. In addition to these measurements, continuous temperature records from three 20 m deep boreholes located at the southern slope of Hoher Sonnblick are available since 2007, which represent the longest series of its kind in Austria. Furthermore, data from seismic and geoelectric measurements, temperature sensors readings at the surface and extensive meteorological observations from the Sonnblick Observatory are available. Already collected and evaluated data indicate that the thickness of the debris layer around the boreholes reaches a depth of 2 m but no more. The active layer thickness measured in the borehole next to the glacier ranges between

  1. Rapid disturbances in Arctic permafrost regions (Invited)

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Romanovsky, V. E.; Arp, C. D.; Jones, B. M.

    2013-12-01

    Permafrost thaw is often perceived as a slow process dominated by press disturbances such as gradual active layer thickening. However, various pulse disturbances such as thermokarst formation can substantially increase the rate of permafrost thaw and result in rapid landscape change on sub-decadal to decadal time scales. Other disturbances associated with permafrost thaw are even more dynamic and unfold on sub-annual timescales, such as catastrophic thermokarst lake drainage. The diversity of processes results in complex feedbacks with soil carbon pools, biogeochemical cycles, hydrology, and flora and fauna, and requires a differentiated approach when quantifying how these ecosystem componentsare affected,how vulnerablethey are to rapid change, and what regional to global scale impacts result. Here we show quantitative measurements for three examples of rapid pulse disturbances in permafrost regions as observed with remote sensing data time series: The formation of a mega thaw slump (>50 ha) in syngenetic permafrost in Siberia, the formation of new thermokarst ponds in ice-rich permafrost regions in Alaska and Siberia, and the drainage of thermokarst lakes along a gradient of permafrost extent in Western Alaska. The surprising setting and unabated growth of the mega thaw slump during the last 40 years indicates that limited information on panarctic ground ice distribution, abundance, and vulnerability remains a key gap for reliable projections of thermokarst and thermo-erosion impacts, and that the natural limits on the growth and size of thaw slumps are still poorly understood. Observed thermokarst pond formation and expansion in our study regions was closely tied to ice-rich permafrost terrain, such as syngenetic Yedoma uplands, but was also found in old drained thermokarst lake basins with epigenetic permafrost and shallow drained thermokarst lake basins whose ground ice had not been depleted by the prior lake phase. The very different substrates in which new

  2. Changes of permafrost and ecological environments in the sources of the Yellow River

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Jin, H.; Cheng, G.; Wang, S.

    2008-12-01

    The sources of the Yellow River (SYR) are located in the marginal areas of the permafrost regions on the northeastern Qinghai-Tibet Plateau, where seasonally frozen ground, and isolated patchy, sporadic and discontinuous permafrost coexist. Vertically, permafrost is either detached or connected from the overlying active layer. The detached permafrost can be further categorized into shallowly- and deeply-buried-, and double-layered permafrost. The SYR has been warming at an average rate of about 0.2 degree Celsius per decade. The impacts of human activities have been increasing rapidly. They have resulted in significant permafrost degradation. This is evidenced by the 50 to 80 m elevation of the lower limit of permafrost, and about 0.5 to 0.7 degree Celsius rising of shallow ground water temperatures. The general trend of permafrost degradation is from discontinuous to isolated patches, shrinking in areal extent and thinning in thickness of permafrost, and expanding taliks. Some permafrost islands have been converted to seasonally frozen ground. The permafrost degradation has led to lowering of ground water table, shrinking lakes and wetlands, succession of alpine wetlands, meadow, and steppes. The degradation of alpine ecological environments would eventually result in desertification or other deterioration of permafrost environments.

  3. Permafrost distribution mapping and temperature modeling along the Alaska Highway corridor, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Panda, Santosh K.

    An up-to-date permafrost distribution map is critical for making engineering decisions during the planning and design of any engineering project in Interior Alaska. I used a combination of empirical-statistical and remote sensing techniques to generate a high-resolution spatially continuous near-surface (< 1.6 m) permafrost map by exploiting the correlative relationships between permafrost and biophysical terrain parameters. A Binary Logistic Regression (BLR) model was used to establish the relationship between vegetation type, aspect-slope and permafrost presence. The logistic coefficients for each variable class obtained from the BLR model were supplied to respective variable classes mapped from remotely sensed data to estimate permafrost probability for every pixel. The BLR model predicts permafrost presence/absence at an accuracy of 88%. Near-surface permafrost occupies 37% of the total study area. A permafrost map based on the interpretation of airborne electromagnetic (EM) resistivity data shows 22.5 -- 43.5% of the total study area as underlain by permafrost. Permafrost distribution statistics from both the maps suggest near-surface permafrost distribution in the study area is sporadic (10 -- 50 % of the area underlain by permafrost). Changes in air temperature and/or winter snow depth are important factors responsible for permafrost aggradation or degradation. I evaluated the effects of past and recent (1941-2008) climate changes on permafrost and active-layer dynamics at selected locations using the Geophysical Institute Permafrost Laboratory model. Results revealed that active-layer thickness reached 0.58 and 1.0 m, and mean annual permafrost temperature increased by 1.6 and 1.7 °C during 1966-1994 at two sites in response to increased mean annual air temperature, mean summer air temperature and winter snow depth. The study found that active-layer thickness is not only a function of summer air temperature but also of mean annual air temperature and

  4. The role of organic soil layer on the fate of Siberian larch forest and near-surface permafrost under changing climate: A simulation study

    NASA Astrophysics Data System (ADS)

    SATO, H.; Iwahana, G.; Ohta, T.

    2013-12-01

    Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates

  5. Detecting the Signature of Permafrost Thaw in Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Mann, P. J.; Dittmar, T.; Eglinton, T. I.; Stubbins, A.

    2014-12-01

    Arctic permafrost soils contain vast quantities of ancient organic matter. Numerous studies have shown extensive permafrost thaw and degradation in the Arctic, but dissolved organic carbon (DOC) exported from the mouths of large Arctic rivers - which are expected to integrate processes and changes occurring through their watersheds - has been shown to be predominantly modern. This raises the question, where is the ancient DOC that is mobilized from permafrost thaw and the deepening of the active layer? This study examines DOC radiocarbon age, biolability and dissolved organic matter (DOM) composition via FT-ICR-MS in permafrost thaw streams and the Kolyma River mainstem (Northeast Siberia). Ancient permafrost thaw stream DOC is observed to be highly biolabile particularly in comparison to modern Kolyma River mainstem DOC. In conjunction with this high biolability the permafrost thaw stream DOM exhibits large changes in molecular structure, loss of hydrogen rich (energy rich) aliphatic molecules, and production of molecules in the classical area in van Krevelen space associated with riverine DOM. Modern Kolyma River mainstem DOM conversely appears very stable in bioincubations in comparison to ancient permafrost thaw DOM. Thus the apparent offset between mobilization of ancient permafrost derived organic matter and the current predominantly modern age of DOC at the mouth of major Arctic rivers may be explained due to microbial degradation of permafrost derived DOC within the river's hydrologic residence time.

  6. Improved Modeling of Soil Biogeochemistry in Permafrost

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Jafarov, E. E.

    2014-12-01

    Modeling frozen biogeochemistry in permafrost soils is a major challenge because using observed Q10 values from incubation studies results in unrealistically high carbon emissions from permafrost. Incubation studies of frozen soil show a rapid decline in respiration as temperature decreases below freezing. Permafrost soils contain 1700 Gt of carbon, most of it frozen in permafrost below the active layer. Models with permafrost carbon in the frozen soil layers show unrealistic losses during spinup with observed Q10 values. Greatly increasing the frozen Q10 eliminates the unrealistic emissions, but suppresses winter respiration below observed values. We used a more physical approach in the Simple Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA) model by separating the simulated soil carbon into three pools: thawed, thin film, and bulk frozen. Carbon transfers between thawed, thin film, and frozen pools are controlled by a curve fit of observed liquid water content in frozen soils as a function of temperature, eliminating the frozen Q10 function entirely. This restricts respiration only to the thawed pools while the frozen and thin film pools remain inactive. SiBCASA reproduces observed fluxes from incubation studies and observed winter fluxes. This new parameterization eliminated unrealistic fluxes of permafrost carbon during spinup and resulted in global total amount of frozen carbon much closer to observed values.

  7. Microbial decomposer communities in Alaskan permafrost soils and their response to thaw

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Wickland, K.; Harden, J.; Striegl, R.; Aiken, G.

    2007-12-01

    Permafrost protected soil carbon in boreal forest ecosystems represents a significant portion of the approximately 500 Gt C in the soil organic matter of boreal regions. The magnitude of this thermally-protected carbon pool makes it a particularly important to the global C cycle within the context of global climatic change. Permafrost has acted as a C sink for thousands of years yet currently has been warming at a rate of 1°C per decade, making the C contained within it potentially available for decomposition. Thawing permafrost opens a latch into a globally important C reservoir that could be released to the atmosphere (as CO2) and rivers (as dissolved organic carbon, DOC), affecting greenhouse warming and aquatic chemistry. A gap in our current knowledge is the extent to which permafrost-protected C is available for microbial metabolism once soils thaw. Current indications are that organic matter contained within permafrost is relatively labile since it is not protected from decomposition by physical protection or humification mechanisms. However, we have little understanding of the microbiology of permafrost soils, which could significantly affect the rate of decomposition of permafrost C after thaw. Our aim was to use quantitative molecular techniques to examine the abundance of microbial decomposer functional groups in permafrost soils, the enzymes they encode, and their rates of respiration under both aerobic and anaerobic conditions in a simulated summer thaw at 5°C. We compared microbial and chemical characteristics of active layer and permafrost soils from black spruce stands in three distinct geographic regions: Coldfoot, Hess Creek, and Smith Lake, AK. We chose these regions because they span a range of permafrost conditions from shallow active layers and mineral-associated permafrost layers to thick active layers and deep organic permafrost soils. Soil carbon and nitrogen concentrations did not differ between active layer and permafrost soils within

  8. Effects of Vegetation Removal and Subsequent Re-vegetation on Warm Ice Rich Permafrost

    NASA Astrophysics Data System (ADS)

    Bjella, K.

    2005-12-01

    Continued polar climate change will impact existing infrastructure built on warm permafrost, and will also affect the design of future infrastructure on frozen ground. Determining the role that vegetation plays on the stabilization and possible aggrading of permafrost will be a key component for future project design. In 1946, a study was conducted by Kenneth Linell at the Cold Regions Research and Engineering Laboratory (CRREL) Permafrost Experiment Station in Fairbanks, Alaska on warm, ice rich permafrost to determine the rate at which subsurface thawing proceeded following the removal of the insulating vegetation. Three one acre plots were chosen and the boreal vegetation was removed to varying degrees. Thaw depth of the permafrost was then observed through 1972, and results were published for the 2nd International Conference on Permafrost, in 1973. Permafrost boundaries have not been measured at the site for some time, and in areas where vegetation has returned, it is unknown whether permafrost degradation has continued, abated, or aggraded. We will examine the current depth to permafrost in the `Linell Plots' and the extent of the active layer. DC resistivity will be used to obtain a macro scale picture of the depth to permafrost over the plots. Micro scale ground truthing by soil borings will then be performed to confirm the geophysical survey and yield useful soil classifications. This information will add knowledge to the understanding of the role that vegetation plays in permafrost dynamics over time.

  9. ESA Data User Element PERMAFROST: a spaceborne permafrost monitoring and information system

    NASA Astrophysics Data System (ADS)

    Bartsch, A.; Heim, B.; Boike, J.; Elger, K.; Muster, S.; Langer, M.; Westermann, S.; Sobiech, J.

    2010-12-01

    Permafrost is a subsurface phenomenon whose ground thermal regime is mainly influenced by air temperature, land cover, soil and rock properties and snow parameters. Many spaceborne applications are potentially indicative for the thermal state of Permafrost, such as ‘land surface temperature’, ‘surface moisture’, ‘freeze/thaw’, ‘terrain’, ‘vegetation’ and ‘changes of surface waters’. The major task of the ESA Data User Element Permafrost project is to develop circumarctic/-boreal Earth Observation services of these parameters with extensive involvement of the permafrost research community The DUE PERMAFROST datasets will be processed in the EO-PERMAFROST Information System and provided via a WebGIS-interface. Further information is available at www.ipf.tuwien.ac.at/ permafrost. In order to set up the required validation tasks and information services, a target area approach with specified case study regions is used. Most of the foreseen DUE PERMAFROST remote sensing applications are well established and can optimally become operational. The goal of DUE PERMAFROST is to lend confidence in their scientific utility for high-latitude permafrost landscapes. Therefore, a major component is the evaluation of the DUE PERMAFROST products. Ground measurements in the high-latitude landscapes involve challenging logistics and are networked on multidisciplinary and circum-arctic level by the Permafrost community. The International Permafrost Association (IPA) has built up the Global Terrestrial Network for Permafrost (GTN-P) that is a network of the Circumpolar Active Layer Monitoring (CALM) and the Thermal State of Permafrost (TSP) projects. A major part of the DUE PERMAFROST core User group is contributing to GTN-P. Additional members of these programs and circum-arctic networks have also been involved in the consulting process and ground data providing process. Match-up data sets of ground data and remote sensing products coincident in time and

  10. Role of Fire in the Permanent Loss of Permafrost under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Shur, Y.; Jorgenson, M. T.

    2004-12-01

    Climate conditions can be described as favorable (1), neutral (2), or unfavorable (3) for permafrost stability. When climate is favorable to permafrost, it takes only a few years to turn the soil below the active layer to a perennially frozen state (way 1). Permafrost thickness will grow with time until it reaches the maximum set by the geothermal gradient. Under the cold temperatures in the continuous permafrost zone, permafrost formation occurs independent of ecological processes. With climate neutral to permafrost, permafrost formation can occur in special topographic situations, such as north facing slopes. More commonly, however, permafrost formation is a result of ecosystem development and its effect on reducing soil temperatures (way 2). Permafrost in the discontinuous permafrost zone is highly dependent on type of soil, vegetation, and soil moisture. Therefore, permafrost is a product of landscape evolution, not just a product of climate, and it takes to an ecosystem hundreds of years to develop conditions that are favorable to permafrost under appropriate topographic conditions. Permafrost initially formed under a favorable climate can also persist under neutral or unfavorable climates because of surface conditions created by ecosystem development. Permafrost forms a drainage barrier that increases soil moisture and peat accumulation under anaerobic conditions, and influences vegetation succession in a direction favorable to moss growth. Thus, mosses, peat, and soil saturation produce an important positive feedback to permafrost. As a result, permafrost that formed in a favorable climate, such as during the Little Ice Age, can remain relatively stable in a neutral climate as long as it protected by other ecological components. Removal of vegetation and soil by natural or human disturbance typically leads to permafrost degradation. After fire, the permafrost table decreases for hundreds of years and can be stabilized only if ecosystem development after fire

  11. Permafrost: An International Approach to 21th Century Challenges

    NASA Astrophysics Data System (ADS)

    Brown, J.

    2003-12-01

    Whereas glaciers are easily discernible to the human eye and satellites, permafrost terrains and their physical components are not easily detected from the surface without supplemental knowledge and measurements. In the Northern Hemisphere, approximately 17 million km2 of exposed land contains some extent of permafrost or ground that remains frozen for more than two years. The vast majority, or 11 million km2, of permafrost terrain has temperatures of 5° C or below, with perennially frozen ground underlying essentially all ground surfaces to considerable depths. Permafrost in the remaining regions, including mid-latitude mountains, is both warmer and is spatially variable (discontinuous). As climate warms the uppermost permafrost is subjected to increase thaw with resulting ground subsidence, accelerated erosion, and related biogeochemical modifications. The challenging questions to geocryologists, modelers and the public relate to the rate of change and the spatial variability of the projected thaw, particularly in the warmer zones where actual areal and subareal distribution of permafrost is poorly known. An international network of active layer measurements and borehole sites now exists under the Global Climate Observing System (GCOS), but requires additional sites for representative coverage. This Global Terrestrial Network for Permafrost (GTN-P) is coordinated by the 24-member, International Permafrost Association. At the Eighth International Conference on Permafrost (ICOP) in Zurich in July 2003, the IPA Council agreed on the scope of new activities for the next five years, many of which will be undertaken in cooperation with other international organizations (e.g. WCRP/CliC; ICSI, IASC, SCAR, IGU, IUGS). Examples of the activities of the IPA Working Groups are: 1. Antarctic Permafrost and Periglacial Environments (active layer processes, maps, database). 2. Coastal and Offshore Permafrost (sediment and organic transfers, subsea permafrost dynamics). 3

  12. Spatiotemporal impacts of wildfire and climate warming on permafrost across a subarctic region, Canada

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wolfe, Stephen A.; Morse, Peter D.; Olthof, Ian; Fraser, Robert H.

    2015-11-01

    Field observations show significant impacts of wildfires on active layer thickness and ground temperatures. However, the importance of fires to permafrost conditions at regional scales remains unclear, especially with climate warming. This study evaluated the regional impacts of fire on permafrost with climate change from 1942 to 2100 using a process-based model in a large subarctic region in the Northwest Territories, Canada. Climate warming is shown to be the dominant factor for permafrost reduction. The warming trend of climate reduces permafrost extent in this region from 67% at present to 2% by 2100. For burned areas, fire increases the reduction of permafrost extent by up to 9% on average, with up to 16% for forest, 10% for tundra and bogs, and 4% for fens. Fire accelerates permafrost disappearance by 5 years on average. The effects of fire on active layer thickness and permafrost extent are much larger in forest areas than in tundra, bogs, and fens. Since active layer is thicker after a fire and cannot recover in most of the areas, the fire effects on active layer are widespread. On average, fires thickens active layer by about 0.5 m. The fire effects on active layer increased significantly after 1990 due to climate warming.

  13. Seasonal Variations of Stable Isotope Composition of River Flow in Permafrost Regions of Yenisei and Kolyma Rivers (Russia)

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Davydova, A.; Davydov, S. P.; Opel, T.; Shiklomanov, A. I.; Shiklomanov, N. I.; Streletskaya, I. D.; Tananaev, N.; Tokarev, I.

    2015-12-01

    Permafrost plays an important role in the hydrology of the northern regions. To investigate the role of climate change on permafrost degradation and hydrology, extensive field work was conducted in a series of small watersheds located in the discontinuous permafrost zone of the lower Yenisei River near Igarka, and in the continuous permafrost zone of the Kolyma River near Cherskii. Climatic, hydrologic and permafrost characteristics were monitored at both locations over a three year period and extended using historical data. Stable isotope composition of rain, snow, water from lakes and rivers, and various types of ground ice was used to determine various inputs and runoff pathways to a river flow in several watersheds. The study found that water flow of smaller creeks follows precipitation closely, while flow of larger rivers is affected by evaporation effects related to water storage in thermokarst lakes. Ground ice of the epigenetic permafrost near Igarka has a similar isotopic composition as that of Holocene permafrost and contemporary late summer precipitation. Ground ice of the syngenetic Pleistocene permafrost (Ice Complex) near Cherskii has a significantly lighter isotopic composition than pore water of the active and transient layers. Increases in air temperature resulted in thickening of the active-layer and melting of ice that reach the transient layer in continuous permafrost. In areas where the transient layer severely reduced as a result of intense forest fires and other landscape disturbances, ground ice from permafrost is also involved in hydrological processes. Progressive decrease in the seasonal freezing layer thickness and a lower permafrost table promoted more groundwater storage and redistribution of summer precipitation towards winter baseflow in discontinuous permafrost region. The major contribution of permafrost at both locations is not through the melting of ground ice, but through changes in soil properties affecting the water flow.

  14. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  15. Changes in the 1963-2013 shallow ground thermal regime in Russian permafrost regions

    NASA Astrophysics Data System (ADS)

    Streletskiy, Dmitry A.; Sherstiukov, Artem B.; Frauenfeld, Oliver W.; Nelson, Frederick E.

    2015-12-01

    Spatial variability and temporal trends of the shallow ground thermal regime and permafrost active-layer thickness (ALT) were estimated over 1963-2013 using daily soil temperature data available from stations of the Russian Hydrometeorological Service. Correlation analysis was used to evaluate the role of changing climatic conditions on the ground thermal regime. ALT data collected by the Circumpolar Active Layer Monitoring program in Russia were used to expand the geography of ALT observations over 1999-2013, and to identify ‘hot spots’ of soil temperature and ALT change. Results indicate that a substantially higher rate of change in the thermal regime of permafrost-affected soils prevailed during 1999-2013, relative to the last fifty years. Results indicate that the thermal regime of the upper permafrost in western Russia is strongly associated with air temperature, with much weaker relationships in central and eastern Russia. The thermal regime of permafrost-affected soils shows stronger dependence on climatic conditions over the last fifteen years relative to the historical 50-year period. Geostatistical analysis revealed that the cities of Norilsk and Susuman are hot spots of permafrost degradation. Of six settlements selected for detailed analysis in various parts of the permafrost regions, all but one (Chukotka), show substantial changes in the shallow ground thermal regime. Northern locations in the continuous permafrost region show thickening of the active layer, while those farther south experienced development of residual thaw layers above the permafrost and decreases in the duration of the freezing period.

  16. Distribution of Near-Surface Permafrost in Alaska: Estimates of Present and Future Conditions

    NASA Astrophysics Data System (ADS)

    Pastick, N.; Jorgenson, T.; Wylie, B. K.; Nield, S.; Johnson, K. D.; Finley, A.

    2014-12-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Further warming could lead to increasing ground temperatures, thickening active-layers, and accelerated thawing and degradation of permafrost. Despite permafrost's influence on ecosystem structure and functions, relatively little has been done to quantify permafrost properties across extremely large areas and at high resolutions. Detection and mapping of permafrost are difficult, however, because it is a subsurface condition of the ground, heterogeneous in nature, and largely exists in remote locations. Here we overcome complex interactions among surface and subsurface conditions to map permafrost through empirical modeling approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated high-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout most of Alaska. Our calibrated models were then used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  17. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    USGS Publications Warehouse

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the

  18. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    SciTech Connect

    Waldrop, Mark P.; Wickland, Kimberly P.; White III, R.; Berhe, Asmeret A.; Harden, Jennifer W.; Romanovsky, Vladimir E.

    2010-09-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5ºC were measured to calculate temperature response quotients (Q₁₀). The Q₁₀ was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q₁₀ values. CH₄ fluxes were correlated with methanogen abundance and the highest CH₄ production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region.

  19. Hydrogeologic Controls on Water Dynamics in a Discontinuous Permafrost, Lake-Rich Landscape

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Briggs, M. A.; Day-Lewis, F. D.; Jepsen, S. M.; Lane, J. W., Jr.; McKenzie, J. M.; Minsley, B. J.; Striegl, R. G.; Voss, C. I.; Wellman, T. P.

    2014-12-01

    Understanding permafrost distribution, rate of change, and influence on groundwater movement are critical for assessing climate change impacts in northern ecosystems. Lake-rich lowlands in interior Alaska provide important habitat for migratory waterfowl, ungulates, and other wildlife. Despite low annual precipitation, the Yukon Flats area in the north central Yukon River Basin of Alaska (USA) supports over 20,000 lakes, due in part to the presence of permafrost. The fate of this lake-rich lowland and, by proxy, similar circumboreal lowland systems under projected climate warming is the focus of a series of recent studies highlighted here. Lake water chemistry analyses of over 200 lakes in the Yukon Flats reveal a large degree of spatial heterogeneity suggestive of a hydrologically disconnected system, a conclusion also supported by abrupt spatial changes in lake elevation. Airborne geophysical characterization shows a laterally continuous shallow gravel layer (~25-m thick) that would offer good hydraulic connectivity throughout the lowlands. However, the gravel layer is generally frozen (as permafrost) except beneath surface water bodies; thus inhibiting lateral pathways of groundwater flow under current conditions. Ground-based geophysical characterization provides a high resolution of permafrost distribution and relevant hydrogeologic features at several lake study sites. Relatively recent thaw in the gravel layer appears to be associated with lakes that have experienced change in size (area) over the past several decades, whereas lakes with taliks (unfrozen conduits) that fully penetrate the permafrost layer are more likely to be stable. Multi-scale permafrost characterization provides the basis for numerical models that simulate permafrost dynamics, lake-talik evolution, supra-, intra-, and sub-permafrost groundwater flow, lake-groundwater exchange, active layer dynamics, and permafrost aggradation response to lake recession. Collective field and simulation

  20. Permafrost in the Fox Permafrost Tunnel

    NASA Astrophysics Data System (ADS)

    Shur, Y.; Bray, M. T.; Anderson, D. A.

    2002-12-01

    Geology, engineering geology, and paleo-geography of the Fox permafrost tunnel have been thoroughly studied (Sellmann, 1967, 1972; Hamilton and others, 1988, Huang, 1985, Johansen and others 1981, 1982,). Permafrost specific information from previous studies is very limited and controversial. We applied 3D mapping and a cryo-facial analysis to identify genesis and structure of permafrost and distinguish between original syngenetic permafrost and later alternations of soil and massive ice. By mapping the tunnel in a 3D framework, features which occur on both walls of the tunnel and at its ceiling can be connected. For example, ice wedge continuity can be seen along with the nature of their disruption patterns. Mapping is particularly useful for determining the history of syngenetic ice-wedges modification, which show most visually the timing patterns and nature of the events that transpired in modification of the original permafrost conditions. Main principals of the cryo-facial analysis (Katasonov, 1960) are based on dependence of shape and size of ice inclusions in permafrost on facial type of soil and consequently on morphological conditions in which soil was deposited and frozen such floodplain, slope, etc. Quaternary permafrost deposits have different ice content depending on its genesis and facial type. We analyzed the permafrost cryogenic structure and soil water content to distinguish between original syngetetic permafrost and soil altered later. In previous studies two layers of silt with a sub-horizontal thermal unconformity between them and two types of massive ice (ice-wedges and buried ice) have been identified. Our study contradicts to such descriptions. Ice, which was described previously as buried pond or aufeis, we identified as thermokarst-cave ice, which was formed inside permafrost in channels made by running water. Such thermokarst caves occur mainly in ice-wedges and seldom in ice-rich soil. Both situations take place in the Fox permafrost

  1. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    PubMed

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. PMID:26766394

  2. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE PAGESBeta

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-05-13

    The nitrate (NO3–) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3– derived from atmospheric deposition versus that derived from microbial nitrification.

  3. The International Permafrost Association: current initiatives for cryospheric research

    NASA Astrophysics Data System (ADS)

    Schollaen, Karina; Lewkowicz, Antoni G.; Christiansen, Hanne H.; Romanovsky, Vladimir E.; Lantuit, Hugues; Schrott, Lothar; Sergeev, Dimitry; Wei, Ma

    2015-04-01

    The International Permafrost Association (IPA), founded in 1983, has as its objectives to foster the dissemination of knowledge concerning permafrost and to promote cooperation among persons and national or international organizations engaged in scientific investigation and engineering work on permafrost. The IPA's primary responsibilities are convening International Permafrost Conferences, undertaking special projects such as preparing databases, maps, bibliographies, and glossaries, and coordinating international field programs and networks. Membership is through adhering national or multinational organizations or as individuals in countries where no Adhering Body exists. The IPA is governed by its Executive Committee and a Council consisting of representatives from 26 Adhering Bodies having interests in some aspect of theoretical, basic and applied frozen ground research, including permafrost, seasonal frost, artificial freezing and periglacial phenomena. This presentation details the IPA core products, achievements and activities as well as current projects in cryospheric research. One of the most important core products is the circumpolar permafrost map. The IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA are the biannually competitively-funded Action Groups which work towards the production of well-defined products over a period of two years. Current IPA Action Groups are working on highly topical and interdisciplinary issues, such as the development of a regional Palaeo-map of Permafrost in Eurasia, the integration of multidisciplinary knowledge about the use of thermokarst and permafrost

  4. Feedbacks between tall shrubland development and active layer temperatures in northwest Siberian arctic tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Frost, G. V.; Walker, D. A.; Matyshak, G.

    2013-12-01

    Permafrost soils are a globally significant carbon store, but changes in permafrost thermal regime observed in recent decades across much of the Arctic suggest that permafrost carbon balance is likely to change with continued climate warming. Critical to changes in permafrost carbon balance in a warmer world, however, are feedbacks between changes in the composition and density of surface vegetation, and the thermal state of permafrost. Shrub expansion has been widely observed in the northwest Siberian Low Arctic, but the magnitude and direction of shrub-induced impacts to permafrost temperature and stability remain poorly understood. Here we evaluate changes to active layer properties and thermal regime that occur during tall shrubland development (shrubs > 1.5 m height) within a northwest Siberian landscape dominated by well-developed, small-scale patterned ground features (e.g., non-sorted circles). We measured the annual time-series of soil temperature at 5 cm and 20 cm depth, and the structural attributes of vegetation at patterned-ground microsites across four stages of tall shrubland development: low-growing tundra lacking erect shrubs, newly-developed shrublands, mature shrublands, and paludified shrublands. Mean summer soil temperatures declined with increasing shrub cover and moss thickness, but winter soil temperatures increased with shrub development. Shrubland development strongly attenuated cryoturbation, promoting the establishment of complete vegetation cover and the development of a continuous organic mat. Increased vegetation cover, in turn, led to further reduced cryoturbation and an aggrading permafrost table. These observations indicate that tall shrub expansion that is now occurring in patterned-ground landscapes of the northwest Siberian Arctic may buffer permafrost from atmospheric warming, and increase carbon storage in these systems at least in the short term.

  5. Intra-permafrost water and hydrological chronology; a case study of aufeis and spring hydrology in continuous permafrost regions

    NASA Astrophysics Data System (ADS)

    Yoshikawa, K.; Romanovsky, V.; Hinzman, L.; Zheleznyak, M.; Romanovsky, N.; Buldovich, S.

    2006-12-01

    The purpose of this study is to identify and characterize groundwater infiltration and discharge processes in continuous permafrost regions between the Lena River in Siberia and the Mackenzie River in Canada. The source and heat content of the intra-, or sub- permafrost groundwater is being studied. Intra permafrost (30- 40m below ground surface) taliks, which serve as groundwater reservoirs, are widely observed in the cold continuous permafrost regions of Siberia, Alaska and Canada. These talik formations are often located at favorable sites in glacial outwash or sandy flood plains. The areas have densely-distributed closed system pingos and/or alas formations, which are useful to understand the subsurface talik environments. Stable isotope results from these alas lakes provide indications of aquifer connections to the intra-, or sub- permafrost groundwater. Radio active isotopes (36Cl, 14C, 3H, and 129I), stable isotopes (18O, 2H, 13C, 87/86Sr), chemical compositions and discharge measurements were used to detect areas of infiltration of surface water, residence time and bedrock interactions. The residence time of the groundwater was determined to be several months to several decades depending on study site. The same infiltration process was observed for the last 20 years in the headwaters of the Mackenzie River. The preliminary results show a large amount of the groundwater could be held in storage in the intra permafrost talik layers. Talik permeability is an important parameter for an existing aquifer system in cold permafrost. Conclusions from this study were that the perennial intra permafrost groundwater has four different types of flow: 1) sub-alas talik network flow in sandy sediments, 2) relict stream talik flow, 3) relict aquifer flow systems in glaciated areas, and 4) limestone related bedrock controlled flow systems. Each of these flow paths plays a critical role in aufeis and spring formations in permafrost-dominated watersheds. This study presents

  6. Permafrost, climate, and change: predictive modelling approach.

    NASA Astrophysics Data System (ADS)

    Anisimov, O.

    2003-04-01

    Predicted by GCMs enhanced warming of the Arctic will lead to discernible impacts on permafrost and northern environment. Mathematical models of different complexity forced by scenarios of climate change may be used to predict such changes. Permafrost models that are currently in use may be divided into four groups: index-based models (e.g. frost index model, N-factor model); models of intermediate complexity based on equilibrium simplified solution of the Stephan problem ("Koudriavtcev's" model and its modifications), and full-scale comprehensive dynamical models. New approach of stochastic modelling came into existence recently and has good prospects for the future. Important task is to compare the ability of the models that are different in complexity, concept, and input data requirements to capture the major impacts of changing climate on permafrost. A progressive increase in the depth of seasonal thawing (often referred to as the active-layer thickness, ALT) could be a relatively short-term reaction to climatic warming. At regional and local scales, it may produce substantial effects on vegetation, soil hydrology and runoff, as the water storage capacity of near-surface permafrost will be changed. Growing public concerns are associated with the impacts that warming of permafrost may have on engineered infrastructure built upon it. At the global scale, increase of ALT could facilitate further climatic change if more greenhouse gases are released when the upper layer of the permafrost thaws. Since dynamic permafrost models require complete set of forcing data that is not readily available on the circumpolar scale, they could be used most effectively in regional studies, while models of intermediate complexity are currently best tools for the circumpolar assessments. Set of five transient scenarios of climate change for the period 1980 - 2100 has been constructed using outputs from GFDL, NCAR, CCC, HadCM, and ECHAM-4 models. These GCMs were selected in the course

  7. Methane in permafrost - Preliminary results from coring at Fairbanks, Alaska

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    1993-01-01

    Permafrost has been suggested as a high-latitude source of methane (a greenhouse gas) during global warming. To begin to assess the magnitude of this source, we have examined the methane content of permafrost in samples from shallow cores (maximum depth, 9.5m) at three sites in Fairbanks, Alaska, where discontinuous permafrost is common. These cores sampled frozen loess, peat, and water (ice) below the active layer. Methane contents of permafrost range from <0.001 to 22.2mg/kg of sample. The highest methane content of 22.2mg/kg was found in association with peat at one site. Silty loess had high methane contents at each site of 6.56, 4.24, and 0.152mg/kg, respectively. Carbon isotopic compositions of the methane (??13C) ranged from -70.8 to -103.9 ???, and hydrogen isotopic compositions of the methane (??D) from -213 to -313 ???, indicating that the methane is microbial in origin. The methane concentrations were used in a one dimensional heat conduction model to predict the amount of methane that will be released from permafrost worldwide over the next 100 years, given two climate change scenarios. Our results indicate that at least 30 years will elapse before melting permafrost releases important amounts of methane; a maximum methane release rate will be about 25 to 30 Tg/yr, assuming that methane is generally distributed in shallow permafrost as observed in our samples.

  8. Interannual active layer thermal and dynamics evolution at the crater Lake CALM site, Deception Island (Antarctica).

    NASA Astrophysics Data System (ADS)

    Ramos, Miguel; Vieira, Gonzalo; Ángel De Pablo, Miguel; Molina, Antonio; Abramov, Andrey

    2015-04-01

    Deception Island, is an active strato-volcano on South Shetland Archipelago of Antarctica (62° 55' 0″ S, 60° 37' 0″ W), is a cold region with harsh remote and hostile environmental conditions. The permafrost and active layer existence, and the cold climate conditions together with volcanic material with height water content inside made this region of the Earth a perfect site to study the active layer and permafrost evolution involved in the Circumpolar Active Layer South (CALM-S) program. The active layer is measured in late January or firs february (during the end of the thaw period) at the "Crater Lake" CALM site (62°58'06.7''; 60°40'44.8'') on Deception Island, Antarctica, at the period 2006 to 2014 we obtained a mean annual value of 29,7±2 cm. In this paper, we describe the spatial active layer thickness distribution and report the reduction on the mean thickness between February 2006 and 2014. Below the active layer, permafrost could be also reported (with a mean thickness of 4.5± 0.5 m.) based on the temperature data acquired by sensors installed at different depth inside the soil; three different shallow boreholes was drilled (1.0 m., 1.6 m., 4.5 m. in depth) and we have been registered its temperature gradient at the 2010 to 2013 period. Here we use all those data 1) to describe the thermal behavior of the permafrost at the CALM site, and 2) to describe its evolution (aggradation/degradation) along fourteen years of continuous measurements. We develop this study, to known the thermal behavior of the permafrost and the active layer related with the air/soil interaction being one of the most important factors the snow layer that was measured by the installation of termo-snowmeters with the complement of an automatic digital camera during the 2008 to 2014 period. On the other hand, the pyroclastics soil materials has a very high values of water content then the latent heat in the freezing/thawing process controls the active layer evolution and the

  9. Detecting and Forecasting Permafrost Degradation in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Kholodov, A. L.; Nicolsky, D.; Marchenko, S. S.; Panda, S. K.; Muskett, R. R.

    2015-12-01

    The timing and rate of permafrost degradation are two of the major factors in determining the increase of carbon emissions from thawing permafrost. These changes in permafrost vary both temporally and spatially and do not happen everywhere at the same time. A good example of this heterogeneity is provided by our permafrost data collection in Alaska. Most of the permafrost observatories in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming varies with location, but is typically between 0.5 and 2°C. However, this warming is not linear in time and not spatially uniform. A short warmer period in the early 1980s was followed by a relative cooling in the mid-1980s. From the late-1980s to the late-1990s, the permafrost and active layer temperatures were increasing. During the first half of the 2000s, permafrost temperatures were not changing significantly at almost all sites in Alaska, except for the sites in the Brooks Range and in its southern foothills were temperature was still increasing. Interesting dynamics in permafrost temperatures have been observed in Alaska since the mid-2000s until present. While permafrost warming resumed on the North Slope of Alaska with a rate of increase between 0.2 to 0.5°C per decade, permafrost temperatures in the Alaskan Interior began a slight cooling trend that has continued during the first half of the 2010s. Most of these changes can be explained by changes in air temperature and snow cover during the observational period. These observations confirm that the future changes in permafrost temperature, in natural undisturbed conditions, will closely follow the changes in climate and as such can be successfully predicted using numerical models forced by established climate change scenarios. In our presentation, we will provide the results from application of our permafrost change models and discuss what this means in terms of potential organic carbon release and its conversion to the greenhouse

  10. Microbes in thawing permafrost: the unknown variable in the climate change equation

    SciTech Connect

    Graham, David E; Wallenstein, Matthew D; Vishnivetskaya, T.; Waldrop, Mark P.; Phelps, Tommy Joe; Pfiffner, Susan M.; Onstott, T. C.; Whyte, Lyle; Rivkina, Elizaveta; Gilichinsky, David A; Elias, Dwayne A; Mackelprang, Rachel; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Wagner, Dirk; Wullschleger, Stan D; Jansson, Janet

    2012-01-01

    Considering that 25% of Earth s terrestrial surface is underlain by permafrost (ground that has been continuously frozen for at least 2 years), our understanding of the diversity of microbial life in this extreme habitat is surprisingly limited. Taking into account the total mass of perennially frozen sediment (up to several hundred meters deep), permafrost contains a huge amount of buried, ancient organic carbon (Tarnocai et al., 2009). In addition, permafrost is warming rapidly in response to global climate change (Romanovsky et al., 2010), potentially leading to widespread thaw and a larger, seasonally thawed soil active layer. This concern has prompted the question: will permafrost thawing lead to the release of massive amounts of carbon dioxide (CO2) and methane (CH4) into the atmosphere? This question can only be answered by understanding how the microbes residing in permafrost will respond to thaw, through processes such as respiration, fermentation, methanogenesis and CH4 oxidation (Schuur et al., 2009). Predicting future carbon fluxes is complicated by the diversity of permafrost environments, ranging from high mountains, southern boreal forests, frozen peatlands and Pleistocene ice complexes (yedoma) up to several hundred meters deep, which vary widely in soil composition, soil organic matter (SOM) quality, hydrology and thermal regimes (Figure 1). Permafrost degradation can occur in many forms: thaw can progress downward from seasonally-thawed active layer soils in warming climates or laterally because of changes in surface or groundwater flow paths (Grosse et al., 2011). Permafrost degradation can sometimes lead to dramatic changes in ecosystem structure and function

  11. Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    NASA Astrophysics Data System (ADS)

    Streletskiy, Dmitry A.; Tananaev, Nikita I.; Opel, Thomas; Shiklomanov, Nikolay I.; Nyland, Kelsey E.; Streletskaya, Irina D.; Tokarev, Igor'; Shiklomanov, Alexandr I.

    2015-09-01

    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months.

  12. Impacts of permafrost change on landscape stability and water quality

    NASA Astrophysics Data System (ADS)

    Lamoureux, S. F.; Lafreniere, M. J.

    2015-12-01

    Communities and northern development depend on knowledge to support safe infrastructure design and to define appropriate environmental targets. Projected climate change is expected to have substantial impacts on permafrost through increased seasonal thaw. These changes will likely result in changing hydrological processes that will alter surface and subsurface water flow and quality. Similarly, in settings with ice-rich surficial materials, changing active layer depth and hydrological conditions can contribute to permafrost degradation and land instability. Predicting these impacts is an important need for sustainable development in permafrost regions. We have investigated these processes through a long term integrated watershed program at the Cape Bounty Arctic Watershed Observatory (CBAWO) in the Canadian Arctic. Surface water discharge and quality has been assessed since 2005 and in particular, through a period of record summer temperatures that resulted in substantial active layer perturbation and resulted in widespread localized disturbance. Research has documented the impact and recovery from these permafrost changes and demonstrate several key linkages between changing hydrological conditions, quality, and landscape sensitivity to disturbance. Deeper active layer thaw appears to alter subsurface flow paths, resulting sustained changes to water quality through increased solute fluxes and changes to nutrients. These effects are widespread across the landscape, while physical disturbance due to permafrost slope failures are dispersed and generate impacts ranging from minimal to locally-significant increases in downstream sediment and solute transport. We note that this strong spatial contrast between "thermal" and "physical" perturbation of the shallow permafrost system represents a key impact in these settings. Further, subsurface water pressurization appears to be localized but linked to physical disturbance. Hence, results indicate the benefit of an

  13. High-resolution Near-surface Permafrost Modeling for the 21st Century, Wrangell-St. Elias National Park and Preserve, Alaska

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Marchenko, S. S.; Romanovsky, V. E.; Swanson, D. K.

    2013-12-01

    Permafrost within most part of Wrangell-St. Elias National Park and Preserve (WRST) is discontinuous and warm i.e. within a few degrees of thawing. It is the physical foundation on which the ecosystems in the park rest. Thawing of permafrost alters this foundation, and can alter ecosystems and landscapes. Nonetheless, the data on permafrost condition and extent within WRST is limited. The current and future permafrost distribution and thickness of active layer can be modeled, given sufficient data about ground properties, vegetation, topography, and climate. We used GIPL 1.0 (Spatially Distributed Model of Permafrost Dynamics in Alaska) model; and downscaled climate forcing from 5 Global Circulation Models (GCM) that work best for Alaska and high-resolution soil landscape and ecotype maps from National Park Service (NPS) as model inputs to develop high-resolution permafrost maps for the recent past (2001-10) and the future decades (2050s and 2090s). The soil landscape and ecotype maps were derived from Landsat TM scenes (Jorgenson et al. 2008). The modeling effort resulted in recent and future permafrost maps of WRST at a spatial resolution of 28.5 m, the best resolution permafrost maps available for any part of Alaska. The model mapped 80% of WRST as underlain by near-surface permafrost during the decade of 2001-10 (Fig. 1) and predicted 50% decrease in the near-surface permafrost extent by 2050s owing to a 2 °C increase in the mean decadal air temperature and slightly higher precipitation. According to the 5 GCM projections, the decadal air temperature will increase by another 2 °C between 2050s and 2090s which will likely cause further increase in the ground temperature and decrease in the permafrost extent. The model predicts a meager 15% of WRST would still remain underlain by near-surface permafrost toward the end of the 21st century. Comparison of the modeled permafrost distribution with in situ observation of permafrost presence/absence at 430 sites

  14. The Comparison of East Siberian and Alaskan Transects in terms of Permafrost Dynamics (in the past, present and future) using Geographical Informational System.

    NASA Astrophysics Data System (ADS)

    Sazonova, T.; Romanovsky, V.; Sergueev, D. O.; Tipenko, G.

    2002-12-01

    Permafrost is the product of severe climate conditions and is more vulnerable to climatic changes than any other part of a landscape. At present time, due to development of General Circulation Models and growing needs of understanding the impact of global climate change on the ecosystems and infrastructure, it becomes necessary to assess permafrost conditions for the circumpolar region in order to include them into GCM's. The purpose of this research is to validate the transect method in permafrost dynamics evaluation. Two components of the permafrost dynamics are: changes in active layer thickness, and variations of mean annual ground temperatures. Almost all biological processes and activities take place within active layer. Mean annual ground temperatures reflect the thermal stability and mechanical properties of the permafrost and affect active layer thickness. At present, it is practically impossible to gather all necessary information for the entire circumpolar region needed to evaluate permafrost dynamics. We used the transect approach to evaluate permafrost dynamics in well studied transects in order to find differences and similarities. On this base it is feasible to interpolate and extrapolate data between them to get a picture of permafrost conditions within larger regions. For our studies we chose two transects -Alaskan North Slope transect which includes the area of the Kuparuk and Sagavanirktok River basins, and the Tiksi-Yakutsk East Siberian transect, designated as the Far East Siberian transect in the IGBP Northern Eurasia Study project (IGBP-NES). The East-Siberian transect is centered on the 135o meridian. The GIS database for the two transects was created in order to get the picture of present permafrost conditions. The GIS includes climate, topography, geology and vegetation layers. Active layer thickness and permafrost temperature were evaluated by using Kudryavtsev's formulas. According to these formulas, mean annual air temperatures and

  15. Temporal and Spatial Changes of Permafrost in the Tien Shan Mountains Since the Little Ice Age.

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Romanovsky, V.

    2006-12-01

    During the Late Holocene there were numerous periods of warming and cooling in the Tien Shan Mountains, Central Asia. Ground temperatures and permafrost area in the Tien Shan have been subjected to repeated fluctuations during the last millennia brought about by the general planetary changes in climate. The altitudinal oscillations of the mean annual air temperature (MAAT) zero Centigrade isotherm had a range of about 300 m during that time. Air temperature in the Tien Shan Mountains has increased at a higher rate than the global mean during the 20th century. Climate warming in the high-mountains regions could induce the further near-surface permafrost degradation, which may lead to slope instability and permafrost-related hazards. The main objectives of the modeling process were to estimate the permafrost thermal regime and assess the area where permafrost disappeared since the second part of the nineteenth century. To estimate the effect of climate change on permafrost a one-dimensional process-based model was used to simulate the ground thermal regime of the Tien Shan at a resolution of a half-degree latitude-longitude since the Little Ice Age up to present. The results of numerical simulation show that at an altitude of 2500 m a.s.l. the permafrost temporary formed at least three times during the last 500 years. At the lover altitudinal boundary of permafrost distribution the permafrost temperatures now are close to 0°C and at some sites permafrost degradation has already started. Analysis of measured active layer and permafrost temperatures coupled with numerical thermal modeling (permafrost temperature reanalysis) shows that most of the recently thawed permafrost was formed during the Little Ice Age. The modeling of alpine permafrost dynamics shows that the altitudinal lower boundary of permafrost distribution has shifted by about 150-200 m upward since the end of the Little Ice Age (circa 1850). During the same period, the area of permafrost distribution

  16. Microbial mediators of carbon fate in thawing permafrost: connecting microbial activity to geochemistry across an in situ thaw gradient

    NASA Astrophysics Data System (ADS)

    Kim, E.; Mondav, R.; Woodcroft, B. J.; Hodgkins, S. B.; McCalley, C. K.; Wehr, R.; Logan, T.; VerBerkmoes, N. C.; Crill, P. M.; Chanton, J.; Saleska, S. R.; Rich, V. I.; Tyson, G. W.

    2012-12-01

    Permafrost holds approximately one third of global soil carbon in a relatively unavailable form. Climate change is predicted to virtually eliminate permafrost by the end of the century. The fate of the stored carbon will be driven by local geohydrology and mediated by microbial carbon transformations. Predicting thaw-induced feedbacks to climate change requires improving our understanding of concomitant changes in microbial activity, particularly in CO2 fixation, organic matter degradation, and CH4 cycling. Our team is using diverse geochemical and molecular measurements to track changes in carbon cycling and microbial communities across a natural permafrost thaw gradient. The gradient habitats are highly instrumented for ecological, hydrologic, and biogeochemical monitoring, and the thaw progression has been documented over decades. Permafrost thaw has caused slumping ground level and progressive changes in hydrology and plant composition, culminating in sedge-dominated fen wetland. Although this endpoint habitat supports higher plant productivity, there is a net increase in radiative forcing due to high methane emissions. This natural laboratory permits the examination of in situ changes in microbial composition and activity across thaw-induced habitat change. Specifically, taxonomic and metabolic profiling (16S rRNA gene amplicon, metagenomic and metaproteomic sequencing) is linking microbial metabolisms to synoptic geochemistry. Community data have revealed the presence of a novel highly active methanogen from the euryarchaeal lineage Rice Cluster-II. The abundance and distribution of RC-II across the thaw gradient habitats correlate to methane emission. The 2.1Mb RC-II genome (in 117 contigs, median 47kb, longest 135kb) was assembled from metagenomic data. The genome suggests the ability to perform hydrogenotrophic methanogenesis. To link resident microbes to active carbon cycling, we determined in situ community global protein expression profiles (i

  17. Structure of Syngenetic Permafrost: New Data from the CRREL Permafrost Tunnel, Fox, Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M.; Fortier, D.; Cysewski, M.; Shur, Y.; Jorgenson, T.

    2006-12-01

    Syngenetic permafrost formation is a complex process related to sedimentation in cold conditions when the base of the active layer rises up step by step in phase with the accumulation of deposits of various origin (alluvial, slope, aeolian, lacustrine, etc.) at the surface. Syngenetically frozen sediments usually have high silt particles content (up to 70-80%); slightly decomposed rootlets and buried organic-rich horizons; high ice content; ice wedges with big vertical length; rhythmically organized cryogenic structure specific for syngenetic permafrost. The well-known CRREL Permafrost Tunnel near Fairbanks Alaska offers excellent exposures of syngenetic permafrost. The section of Late Pleistocene deposits in the Tunnel is comprised mostly of syngenetically frozen aeolian and fluvial silts with sand lenses, partly reworked by thermal erosion which proceeded mainly along the large ice wedges. Gullies and underground channels cut in the Late Pleistocene permafrost were filled with ice and soils of different origins and cryogenic structures. The Permafrost Tunnel consists of a main shaft and an inclined winze. The former has been extensively studied during the last 40 years. However the permafrost in the winze has not been studied thoroughly even though the Late Wisconsinian syngenetic permafrost is better preserved there than in the main shaft. The main objective of our work was to map the cryostratigraphy (scale 1:20) of the winze. The results show the prevalence of syngenetic permafrost with a micro-lenticular cryostructure. The gravimetric moisture content of such sediments is very high and varies from 100 to 240%. The sediments which were formed in the tunnels cut in the permafrost and in the filled gullies are mostly stratified silts with lenses of sands and (sometimes) gravel. The gravimetric moisture content of these sediments varies from 70 to100% which is smaller than the water content of the Late Wisconsinian syngenetic permafrost. In the upper part of the

  18. Influences and interactions of inundation, peat, and snow on active layer thickness

    NASA Astrophysics Data System (ADS)

    Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; Harp, Dylan R.; Wilson, Cathy J.

    2016-05-01

    Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. We investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. The weak ALT sensitivity to subsurface saturation suggests that changes in Arctic landscape hydrology may only have a minor effect on future ALT. However, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.

  19. Carbon and Nitrogen cycling in a permafrost soil profile

    NASA Astrophysics Data System (ADS)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.

    2015-12-01

    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  20. Application of 2-D geoelectrical resistivity tomography for mountain permafrost detection in sporadic permafrost environments: Experiences from Eastern Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, Andreas

    2015-04-01

    , the 12 profiles are well distributed over the entire cirque. At this site permafrost was detected as up to 5 m thick lenses at SW-facing slopes and at 2740 m asl. Several permafrost lenses were found at a terminal moraine complex dating to the Little Ice Age (LIA) influenced by thermokarst at about 2635 m asl. At one profile a >8 m thick massive debris-covered glacier remnant (resistivity values >100.000 ohm.m) was identified. However, no large permafrost bodies have been found. Consequently, no clear transition zone between permafrost free to more discontinuous permafrost was detected at this cirque. Summarizing, neither at the Hochreichart site nor at the Kögele site a clear altitudinal lower limit of permafrost was detectable by ERT and MTD. At the first site only small patches of permafrost exist today mostly at coarse-grained sediment sites. At the latter site patches of permafrost can be found in LIA-terminal moraines and at higher parts of the cirque. The remnants of a former cirque glacier are well preserved under a thin veneer of debris which is, however, so far thinner than the active layer thickness. More continuous permafrost areas presumably only exist at north-facing areas above c.2800 m asl.

  1. Realizing the full potential of Remotely Sensed Active Layer Thickness (ReSALT) Products

    NASA Astrophysics Data System (ADS)

    Schaefer, K. M.; Chen, A.; Liu, L.; Parsekian, A.; Jafarov, E. E.; Panda, S. K.; Zebker, H. A.

    2015-12-01

    The Remotely Sensed Active Layer Thickness (ReSALT) product uses the Interferometric Synthetic Aperture Radar (InSAR) technique to measure ground subsidence, active layer thickness (ALT), and thermokarst activity in permafrost regions. ReSALT supports research for the Arctic-Boreal Vulnerability Experiment (ABoVE) field campaign in Alaska and northwest Canada and is a precursor for a potential Nasa-Isro Synthetic Aperture Radar (NISAR) product. ALT is a critical parameter for monitoring the status of permafrost and thermokarst activity is one of the key drivers of change in permafrost regions. The ReSALT product currently includes 1) long-term subsidence trends resulting from the melting and subsequent drainage of excess ground ice in permafrost-affected soils, 2) seasonal subsidence resulting from the expansion of soil water into ice as the active layer freezes and thaws, and 3) ALT estimated from the seasonal subsidence assuming a vertical profile of water within the soil column. ReSALT includes uncertainties for all parameters and is validated against in situ measurements from the Circumpolar Active Layer Monitoring (CALM) network, Ground Penetrating Radar and mechanical probe measurements. We present high resolution ReSALT products on the North Slope of Alaska: Prudhoe Bay, Barrow, Toolik Lake, Happy Valley, and the Anaktuvuk fire zone. We believe that the ReSALT product could be expanded to include maps of individual thermokarst features identified as spatial anomalies in the subsidence trends, with quantified expansion rates. We illustrate the technique with multiple examples of thermokarst features on the North Slope of Alaska. Knowing the locations and expansion rates for individual features allows us to evaluate risks to human infrastructure. Our results highlight the untapped potential of the InSAR technique to remotely sense ALT and thermokarst dynamics over large areas of the Arctic.

  2. Late summer heat-transfer regimes at adjacent permafrost and non-permafrost sites in central Alaska

    SciTech Connect

    Hinkel, K.M.; Nicholas, J. . Dept. of Geography); Outcalt, S.I. . Dept. of Geological Sciences)

    1992-01-01

    Hourly observations of soil temperature and a surrogate index of soil water ion concentration were collected during late summer from the upper 50 cm of soil at two adjacent sites in the discontinuous permafrost zone of central Alaska. One site is above permafrost while the other, 13 m away in an area of weak groundwater discharge, has no underlying permafrost. At the permafrost site, temperatures at the surface of the dry, porous organic mat experienced large diurnal variation but temperature amplitude was strongly attenuated with depth. Steep thermal gradients induce diffusion of water vapor from the base of the active layer toward the surface. Evaporative cooling thus inhibits heat penetration and maintains subfreezing temperatures at depth. However, infiltration of precipitation is an effective method of transporting sensible heat to the base of the active layer and extending seasonal thaw depth above permafrost. Conversely, at the groundwater seep site, saturation maintained by throughflow damps temperature variation with time and depth, and precipitation has little impact on the evolution of the thermal regime. Soil conditions and precipitation patterns strongly influence the nonconductive heat flux component and produce complex spatial and temporal thaw patterns.

  3. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    NASA Astrophysics Data System (ADS)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  4. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID

  5. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland.

    PubMed

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Capek, Petr; Kaiser, Christina; Torsvik, Vigdis L; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID:25360132

  6. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    climate change. Extra maintenance activity is needed for existence infrastructure to stay operable. Engineers should run climate models under the most pessimistic scenarios when planning new infrastructure projects. That would allow reducing the potential shortcomings related to the permafrost thawing.

  7. Merging Field Measurements and High Resolution Modeling to Predict Possible Societal Impacts of Permafrost Degradation

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Nicolsky, D.; Marchenko, S. S.; Cable, W.; Panda, S. K.

    2015-12-01

    A general warming trend in permafrost temperatures has triggered permafrost degradation in Alaska, especially at locations influenced by human activities. Various phenomena related to permafrost degradation are already commonly observed, including increased rates of coastal and riverbank erosion, increased occurrences of retrogressive thaw slumps and active layer detachment slides, and the disappearance of tundra lakes. The combination of thawing permafrost and erosion is damaging local community infrastructure such as buildings, roads, airports, pipelines, water and sanitation facilities, and communication systems. The potential scale of direct ecological and economical damage due to degrading permafrost has just begun to be recognized. While the projected changes in permafrost are generally available on global and regional scales, these projections cannot be effectively employed to estimate the societal impacts because of their coarse resolution. Intrinsic problems with the classical "spatial grid" approach in spatially distributed modeling applications preclude the use of this modeling approach to solve the above stated problem. Two types of models can be used to study permafrost dynamics in this case. One approach is a site-specific application of the GIPL2.0 permafrost model and another is a very high (tens to hundred meter) resolution spatially distributed version of the same model. The results of properly organized field measurements are also needed to calibrate and validate these models for specific locations and areas of interest. We are currently developing a "landscape unit" approach that allows practically unlimited spatial resolution of the modeling products. Classification of the study area into particular "landscape units" should be performed in accordance with the main factors controlling the expression of climate on permafrost in the study area, typically things such as vegetation, hydrology, soil properties, topography, etc. In areas with little

  8. Geophysical Monitoring for Validation of Transient Permafrost Models (Invited)

    NASA Astrophysics Data System (ADS)

    Hauck, C.; Hilbich, C.; Marmy, A.; Scherler, M.

    2013-12-01

    Permafrost is a widespread phenomenon at high latitudes and high altitudes and describes the permanently frozen state of the subsurface in lithospheric material. In the context of climate change, both, new monitoring and modelling techniques are required to observe and predict potential permafrost changes, e.g. the warming and degradation which may lead to the liberation of carbon (Arctic) and the destabilisation of permafrost slopes (mountains). Mountain permafrost occurrences in the European Alps are characterised by temperatures only a few degrees below zero and are therefore particularly sensitive to projected climate changes in the 21st century. Traditional permafrost observation techniques are mainly based on thermal monitoring in vertical and horizontal dimension, but they provide only weak indications of physical properties such as ice or liquid water content. Geophysical techniques can be used to characterise permafrost occurrences and to monitor their changes as the physical properties of frozen and unfrozen ground measured by geophysical techniques are markedly different. In recent years, electromagnetic, seismic but especially electrical methods have been used to continuously monitor permafrost occurrences and to detect long-term changes within the active layer and regarding the ice content within the permafrost layer. On the other hand, coupled transient thermal/hydraulic models are used to predict the evolution of permafrost occurrences under different climate change scenarios. These models rely on suitable validation data for a certain observation period, which is usually restricted to data sets of ground temperature and active layer depth. Very important initialisation and validation data for permafrost models are, however, ground ice content and unfrozen water content in the active layer. In this contribution we will present a geophysical monitoring application to estimate ice and water content and their evolution in time at a permafrost station in

  9. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  10. Modeling the Effects of Climate Change on Permafrost in National Parks of Alaska: Will Permafrost Survive the Climate Warming of 21st Century?

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Marchenko, S. S.; Romanovsky, V. E.; Swanson, D. K.

    2014-12-01

    Permafrost underlies ~70% of all National Park Service administered land in Alaska and it provides a stable foundation to parks' ecosystems and wildlife habitats. However, the strength of this foundation is waning as its temperature is rising in response to recent climate warming. Consequently, thermokarst activities are on the rise and they are altering the parks' landscape, ecosystems, and wildlife habitats. In order to effectively respond to these changes park managers need up-to-date knowledge of the current permafrost temperature and distribution, and how they might evolve with changing climate in the future. To help decision makers understand and respond to the changing permafrost condition, we are modeling near-surface permafrost dynamics—permafrost temperature, distribution, and active layer thickness—in eight national parks of Alaska at a decadal time scale. We are using GIPL 1.0 model (Spatially Distributed Model of Permafrost Dynamics in Alaska), the best available climate inputs, and high-resolution (28 m) ecotype, soil landscape, and snow inputs. Here we present results for two national parks—Denali National Park and Preserve (DENA) and Wrangell-St. Elias National Park and Preserve (WRST). Areas underlain by glaciers and permanent ice-fields were excluded. In DENA, the model suggested near-surface permafrost in 51% of the park area for the 2000 decade, predicted its decline to 6% by 2050s, and 1% by 2090s. In WRST, the model suggested near-surface permafrost in 72% of the park area for the 2000 decade, predicted its decline to 42% by 2050s, and 15% by 2090s. In summary, the near-surface permafrost will likely be degrading in most parts of DENA and WRST towards the end of the current century except at higher elevations where climate models continue to project colder temperature. The modeled maps of DENA and WRST showed 86% and 95% agreement with the field observations of permafrost presence/ absence at 1375 and 430 sites, respectively. In

  11. Edaphic and microclimatic controls over permafrost response to fire in interior Alaska

    NASA Astrophysics Data System (ADS)

    Nossov, Dana R.; Torre Jorgenson, M.; Kielland, Knut; Kanevskiy, Mikhail Z.

    2013-09-01

    Discontinuous permafrost in the North American boreal forest is strongly influenced by the effects of ecological succession on the accumulation of surface organic matter, making permafrost vulnerable to degradation resulting from fire disturbance. To assess factors affecting permafrost degradation after wildfire, we compared vegetation composition and soil properties between recently burned and unburned sites across three soil landscapes (rocky uplands, silty uplands, and sandy lowlands) situated within the Yukon Flats and Yukon-Tanana Uplands in interior Alaska. Mean annual air temperatures at our study sites from 2011 to 2012 were relatively cold (-5.5 ° C) and favorable to permafrost formation. Burning of mature evergreen forests with thick moss covers caused replacement by colonizing species in severely burned areas and recovery of pre-fire understory vegetation in moderately burned areas. Surface organic layer thickness strongly affected thermal regimes and thaw depths. On average, fire caused a five-fold decrease in mean surface organic layer thickness, a doubling of water storage in the active layer, a doubling of thaw depth, an increase in soil temperature at the surface (-0.6 to +2.1 ° C) and at 1 m depth (-1.7 to +0.4 ° C), and a two-fold increase in net soil heat input. Degradation of the upper permafrost occurred at all burned sites, but differences in soil texture and moisture among soil landscapes allowed permafrost to persist beneath the active layer in the silty uplands, whereas a talik of unknown depth developed in the rocky uplands and a thin talik developed in the sandy lowlands. A changing climate and fire regime would undoubtedly influence permafrost in the boreal forest, but the patterns of degradation or stabilization would vary considerably across the discontinuous permafrost zone due to differences in microclimate, successional patterns, and soil characteristics.

  12. Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada

    NASA Astrophysics Data System (ADS)

    James, Megan; Lewkowicz, Antoni G.; Smith, Sharon L.; Miceli, Christina M.

    2013-12-01

    Changes in permafrost distribution in the southern discontinuous zone were evaluated by repeating a 1964 survey through part of the Alaska Highway corridor (56° N-61° N) in northwest Canada. A total of 55 sites from the original survey in northern British Columbia and southern Yukon were located using archival maps and photographs. Probing for frozen ground, manual excavations, air and ground temperature monitoring, borehole drilling and geophysical techniques were used to gather information on present-day permafrost and climatic conditions. Mean annual air temperatures have increased by 1.5-2.0 ° C since the mid-1970s and significant degradation of permafrost has occurred. Almost half of the permafrost sites along the entire transect which exhibited permafrost in 1964 do so no longer. This change is especially evident in the south where two-thirds of the formerly permafrost sites have thawed and the limit of permafrost appears to have shifted northward. The permafrost that persists is patchy, generally less than 15 m thick, has mean annual surface temperatures >0 ° C, mean ground temperatures between -0.5 and 0 ° C, is in peat or beneath a thick organic mat, and appears to have a thicker active layer than in 1964. Its persistence may relate to the latent heat requirements of thawing permafrost or to the large thermal offset of organic soils. The study demonstrates that degradation of permafrost has occurred in the margins of its distribution in the last few decades, a trend that is expected to continue as the climate warms.

  13. Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations based on the DUE PERMAFROST Circumpolar Remote Sensing Service for Permafrost

    NASA Astrophysics Data System (ADS)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Matthes, Heidrun; Zhou, Xu; Klehmet, Katharina; Buchhorn, Marcel; Duguay, Claude

    2014-05-01

    Permafrost is a subsurface phenomenon. However, monitoring from Earth Observation (EO) platforms can provide spatio-temporal data sets on permafrost-related indicators and geophysical parameters used in modelling and monitoring. The ESA Data User Element (DUE) Permafrost project (2009-2012) developed a suite of EO satellite-derived products: Land Surface Temperature (LST), Surface Soil Moisture (SSM), Surface Frozen and Thawed State (Freeze/Thaw), Terrain, Land Cover, and Surface Water. The satellite-derived products are weekly and monthly averages of the bio- and geophysical terrestrial parameters and static circum-Arctic maps. The final DUE Permafrost products cover the years 2007 to 2011 with a circum-Arctic coverage (north of 50°N). The products were released in 2012, and updated in 2013. Further information is available at geo.tuwien.ac.at/permafrost/. The remote sensing service also supports the EU-FP7 funded project PAGE21 - Changing Permafrost in the Arctic and its Global Effects in the 21st Century (www.page21.eu). The Global Terrestrial Network for Permafrost (GTN-P), initiated by the International Permafrost Association (IPA), is the prime program concerned with monitoring of permafrost. It provides an important database for the evaluation of EO-derived products and climate and permafrost models. GTN-P ground data ranges from air-, ground-, and borehole temperature data to active layer monitoring, soil moisture measurements, and the description of landform and vegetation. The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the satellite-derived products make the DUE Permafrost products relevant to the scientific community. The Helmholtz Climate Initiative REKLIM (Regionale KlimaAnderungen/Regional Climate Change) is a climate research program where regional observations and process studies are coupled with model simulations (http://www.reklim.de/en/home/). ESA DUE Permafrost User workshops initiated the use of EO

  14. ESA Data User Element DUE PERMAFROST Circumpolar Remote Sensing Service for Permafrost - Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Matthes, Heidrun; Zhou, Xu; Klehmet, Katharina; Rockel, Burkhardt; Lantuit, Hugues; Duguay, Claude

    2015-04-01

    Permafrost is a subsurface phenomenon. However, monitoring from Earth Observation (EO) platforms can provide spatio-temporal data sets on permafrost-related indicators and quantities used in modelling and monitoring. The ESA Data User Element (DUE) Permafrost project (2009-2012) developed a suite of EO satellite-derived products: Land Surface Temperature (LST), Surface Soil Moisture (SSM), Surface Frozen and Thawed State (Freeze/Thaw), Terrain, Land Cover, and Surface Water. The satellite-derived products are weekly and monthly averages of the bio- and geophysical terrestrial parameters and static circum-Arctic maps. The final DUE Permafrost products cover the years 2007 to 2011, some products up to 2013, with a circum-Arctic coverage (north of 50°N). The products were released in 2012, and updated in 2013 and 2014. Further information is available at geo.tuwien.ac.at/permafrost/. The remote sensing service also supports the EU-FP7 funded project PAGE21 - Changing Permafrost in the Arctic and its Global Effects in the 21st Century (www.page21.eu). The Global Terrestrial Network for Permafrost (GTN-P), initiated by the International Permafrost Association (IPA), is the prime program concerned with monitoring of permafrost. It provides an important database for the evaluation of EO-derived products and climate and permafrost models. GTN-P ground data ranges from air-, ground-, and borehole temperature data to active layer monitoring, soil moisture measurements, and the description of landform and vegetation. The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the satellite-derived products make the DUE Permafrost products relevant to the scientific community. The Helmholtz Climate Initiative REKLIM (Regionale KlimaAnderungen/Regional Climate Change) is a climate research program where regional observations and process studies are coupled with model simulations (http://www.reklim.de/en/home/). ESA DUE Permafrost User workshops

  15. Distributed Permafrost Observation Network in Western Alaska: the First Results

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Marchenko, S. S.; Panda, S. K.

    2014-12-01

    The area of Western Alaska including the Selawik National Wildlife Refuge (SNWR) is generally underrepresented in terms of permafrost thermal monitoring. Thus, the main objective of this study was to establish a permafrost monitoring network in Western Alaska in order to understand the spatial variability in permafrost thermal regime in the area and to have a baseline in order to detect future change. Present and future thawing of permafrost in the region will have a dramatic effect on the ecosystems and infrastructure because the permafrost here generally has a high ice content, as a result of preservation of old ground ice in these relatively cold regions even during the warmer time intervals of the Holocene. Over the summers of 2011 and 2012 a total of 26 automated monitoring stations were established to collect temperature data from the active layer and near-surface permafrost. While most of these stations were basic and only measured the temperature down to 1.5 m at 4 depths, three of the stations had higher vertical temperature resolution down to 3 m. The sites were selected using an ecotype (basic vegetation groups) map of very high resolution (30 m) that had been created for the area in 2009. We found the Upland Dwarf Birch-Tussock Shrub ecotype to be the coldest with a mean annual ground temperature at 1 meter (MAGT1.0) of -3.9 °C during the August 1st, 2012 to July 31st, 2013 measurement period. This is also the most widespread ecotype in the SNWR, covering approximately 28.4% by area. The next widespread ecotype in the SNWR is the Lowland and Upland Birch-Ericaceous Low Shrub. This ecotype had higher ground temperatures with an average MAGT1.0 of -2.4 °C during the same measurement period. We also found that within some ecotypes (White Spruce and Alder-Willow Shrub) the presence or absence of moss on the surface seems to indicate the presence or absence of near surface permafrost. In general, we found good agreement between ecotype classes and

  16. Long-term active layer and ground surface temperature trends: results of 12 years of observations at Alaskan CALM sites

    NASA Astrophysics Data System (ADS)

    Shiklomanov, N. I.; Nelson, F. E.; Streletskyi, D. A.; Klene, A. E.; Schimek, M.; Little, J.

    2006-12-01

    The uppermost layer of seasonal thawing above permafrost (the active layer) is an important regulator of energy and mass fluxes between the surface and the atmosphere in the polar regions. The Circumpolar Active Layer Monitoring (CALM) program is a network of sites at which data about active-layer thickness (ALT) and dynamics are collected. CALM was established in the 1990s to observe and detect the long-term response of the active layer and near-surface permafrost to changes in climate. Active layer monitoring is an important component of efforts to assess the effects of global change in permafrost environments. CALM strategies are evolving; this presentation showcases some additions to CALM observation procedures designed to monitor processes and detect changes not anticipated in the original CALM protocol of the early 1990s. In this study we used data from 12 (1995-2006) years of extensive, spatially oriented field observations at CALM sites in northern Alaska to examine landscape-specific spatial and temporal trends in active-layer thickness and air and ground surface temperature. Despite an observed increase in air temperature, active-layer thickness exhibited a decreasing trend over the study period. This result indicates that soil consolidation accompanying penetration of thaw into an ice-rich stratum at the base of the active layer has resulted in subsidence of the surface with little or no apparent thickening of the active layer, as traditionally defined. Differential Global Positioning Systems (DGPS) technology was used to detect frost heave and thaw settlement within representative landscapes. Preliminary results indicate that heave and settlement follow patterns of spatial variation similar to those of active-layer thickness. To evaluate the effect of vegetation on ground surface temperature, several heat-transfer coefficients were estimated, including land cover specific thermal diffusivity and empirical n-factors.

  17. Last Decade of Changes in Ground Temperature and Active Layer Thickness in the High Canadian Arctic and in Barrow

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Cable, W.; Walker, D. A.; Yoshikawa, K.; Marchenko, S. S.

    2013-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Most of the permafrost observatories in the Northern Hemisphere show substantial warming of permafrost since circa 1980-1990. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C. Permafrost is already thawing within the southern part of the permafrost domain. However, recent observations documented propagation of this process northward into the continuous permafrost zone. The close proximity of the exceptionally icy soil horizons to the ground surface, which is typical for the arctic tundra biome, makes tundra surfaces extremely sensitive to the natural and human-made changes that may resulted in development of processes such as thermokarst, thermal erosion, and retrogressive thaw slumps that strongly affect the stability of ecosystems and infrastructure. In 2003-2005, three Ecological Permafrost Observatories where established in the High Canadian Arctic (Green Cabin on the Banks Island, Mould Bay on the Prince Patrick Island, and Isachsen on the Ellef Ringnes Island) as a part of the University of Alaska Fairbanks NSF funded Biocomplexity Project. These observatories represent the northern part of the North American Arctic Transect (NAAT) established as a result of this project. The climatic and ground temperature data collected at these observatories show a general warming trend similar to what has been observed at the other locations in the North American Arctic. An important result of this resent warming is a significant increase in the active layer thickness (ALT) during the last decade. For example, ALT at the Isachsen observatory increased from 0.4-0.42 m in 2005 to 0.54 m in 2012. The maximum ALT of 0.58 m was recorded in 2008. In a shallow excavation across an ice wedge at the Isachsen site, we estimated that the top of the ice wedge ice was located at 42

  18. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

    USGS Publications Warehouse

    Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.; McGuire, A. David

    2013-01-01

    Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil

  19. Advances in permafrost and periglacial research in Antarctica: A review

    NASA Astrophysics Data System (ADS)

    Guglielmin, Mauro

    2012-06-01

    Recently the research on permafrost, periglacial morphology and processes had a great stimulus especially from the International Polar Year. Permafrost areas of continental Antarctica with its extreme dry and cold environment can be considered an analog of extraterrestrial landscapes like those on Mars, but also preserve much paleoclimatic information of this crucial part of the global climatic system. On the other hand, maritime Antarctica is one of the areas of the world currently affected by the greatest air warming and provides a unique opportunity to understand the impacts of climate change on permafrost and its related ecosystems. Despite the significant recent progress, some gaps on permafrost distribution still remain as the network for permafrost and active layer monitoring needs further enlargement and better standardization. Ground ice, its age and stability over time need further investigation, as well as the role of living organisms on the weathering processes within the cryotic rocks, the landscape evolution of continental Antartica could be improved providing potential implications also for a better understanding and modeling of life and landscape evolution of other planets.

  20. Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock

    NASA Astrophysics Data System (ADS)

    Krautblatter, Michael; Draebing, Daniel

    2014-02-01

    permafrost in steep rock walls can cause hazardous rock creep and rock slope failure. Spatial and temporal patterns of permafrost degradation that operate at the scale of instability are complex and poorly understood. For the first time, we used P wave seismic refraction tomography (SRT) to monitor the degradation of permafrost in steep rock walls. A 2.5-D survey with five 80 m long parallel transects was installed across an unstable steep NE-SW facing crestline in the Matter Valley, Switzerland. P wave velocity was calibrated in the laboratory for water-saturated low-porosity paragneiss samples between 20°C and -5°C and increases significantly along and perpendicular to the cleavage by 0.55-0.66 km/s (10-13%) and 2.4-2.7 km/s (>100%), respectively, when freezing. Seismic refraction is, thus, technically feasible to detect permafrost in low-porosity rocks that constitute steep rock walls. Ray densities up to 100 and more delimit the boundary between unfrozen and frozen bedrock and facilitate accurate active layer positioning. SRT shows monthly (August and September 2006) and annual active layer dynamics (August 2006 and 2007) and reveals a contiguous permafrost body below the NE face with annual changes of active layer depth from 2 to 10 m. Large ice-filled fractures, lateral onfreezing of glacierets, and a persistent snow cornice cause previously unreported permafrost patterns close to the surface and along the crestline which correspond to active seasonal rock displacements up to several mm/a. SRT provides a geometrically highly resolved subsurface monitoring of active layer dynamics in steep permafrost rocks at the scale of instability.

  1. Drivers and Estimates of Terrain Suitability for Active Layer Detachment Slides and Retrogressive Thaw Slumps in the Brooks Range and Foothills of Northwest Alaska, USA

    NASA Astrophysics Data System (ADS)

    Balser, A.; Jones, J.

    2015-12-01

    Active layer detachment sliding and retrogressive thaw slumping are important modes of upland permafrost degradation and disturbance in permafrost regions, and have been linked with climate warming trends, ecosystem impacts, and permafrost carbon release. In the Brooks Range and foothills of northwest Alaska, these features are widespread, with distribution linked to multiple landscape properties. Inter-related and co-varying terrain properties, including surficial geology, topography, geomorphology, vegetation and hydrology, are generally considered key drivers of permafrost landscape characteristics and responses to climate perturbation. However, these inter-relationships as collective drivers of terrain suitability for active layer detachment and retrogressive thaw slump processes are poorly understood in this region. We empirically tested and refined a hypothetical model of terrain factors driving active layer detachment and retrogressive thaw slump terrain suitability, and used final model results to generate synoptic terrain suitability estimates across the study region. Spatial data for terrain properties were examined against locations of 2,492 observed active layer detachments and 805 observed retrogressive thaw slumps using structural equation modelling and integrated terrain unit analysis. Factors significant to achieving model fit were found to substantially hone and constrain region-wide terrain suitability estimates, suggesting that omission of relevant factors leads to broad overestimation of terrain suitability. Resulting probabilistic maps of terrain suitability, and a threshold-delineated mask of suitable terrain, were used to quantify and describe landscape settings typical of these features. 51% of the study region is estimated suitable terrain for retrogressive thaw slumps, compared with 35% for active layer detachment slides, while 29% of the study region is estimated suitable for both. Results improve current understanding of arctic landscape

  2. Permafrost and Climate Change in Nunavik and Nunatsiavut: Importance for Municipal and Transportation Infrastructures

    NASA Astrophysics Data System (ADS)

    Lemay, M.; Allard, M.

    2011-12-01

    Permafrost degradation is seriously affecting the natural environment. The landscape is changing through thermokarst that takes place mostly in the discontinuous permafrost zone and through increased active layer depth and more frequent slope processes in the continuous zone. Northern residents are affected as vegetation, water bodies and soil drainage are greatly modified, which has an impact on resources traditionally available for humans such as berries that are shaded in the understory of shrubs that expand in thermokarst hollows. The modern built environment is particularly affected. Essential transportation infrastructures are being studied and adaptive solutions are sought, applied and tested. To protect and optimize the major investments required for extensive housing and construction, the urban planning of communities calls upon better permafrost maps and prediction of permafrost behavior. Final permafrost degradation around 0°C appears to be in great part under the influence of unfrozen water contents and heat brought at the thawing interface by groundwater. This process is also effective in accelerating localized thawing under human infrastructures. Collection and organization of permafrost information in geographic information systems (GIS) allows the integration of essential knowledge and provide very useful tools for sharing information with stakeholders and communities, for establishing diagnostics of situations and for supporting multidisciplinary decision making for land use planning. The principal adaptive measures lie in adapting foundations types to mapped permafrost conditions to ensure a prolonged service life of buildings.

  3. The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange

    USGS Publications Warehouse

    Hayes, Daniel J.; Kicklighter, David W.; McGuire, Anthony; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.

  4. The effect of arctic mosses on the simulation of permafrost by the JULES land surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S.; Burke, E.; Cox, P.; Friedlingstein, P.

    2013-12-01

    Thawing permafrost is a potential source of large quantities of carbon, which could lead to significant climate feedbacks in the future, so it is important to include this effect in climate models. JULES (Joint UK Land Environment Simulator) is the land surface model used in the Hadley Centre climate model, as well as a land model in its own right, which will soon be used to quantify the magnitude of carbon release from permafrost thaw. It is therefore imperative that JULES simulates permafrost realistically. It has been shown that the model currently overestimates the permafrost active layer thickness, suggesting that its summer soil temperatures in permafrost regions are too high. One possible reason for this is that the physical properties of organic soil content such as moss and peat are not currently included. This organic matter is abundant at high latitudes and provides thermal insulation to the soil. In this work we include a routine to represent moss cover on the land surface, and find that it significantly improves the modelled soil temperatures. We quantify the effect of this new process on the large-scale representation of permafrost in JULES, including the active layer thickness.

  5. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  6. Climate Change and Thawing Permafrost in Two Iñupiaq Communities of Alaska's Arctic: Observations, Implications, and Resilience

    NASA Astrophysics Data System (ADS)

    Woodward, A.; Kofinas, G.

    2013-12-01

    For thousands of years the Iñupiat of northern Alaska have relied on ecosystems underlain by permafrost for material and cultural resources. As permafrost thaws across the Arctic, these social-ecological systems are changing rapidly. Community-based research and extensive local knowledge of Iñupiaq villagers offer unique and valuable contributions to understanding permafrost change and its implications for humans. We partnered with two Iñupiaq communities in Alaska's Arctic to investigate current and potential effects of thawing permafrost on social-ecological systems. Anaktuvuk Pass is situated on thaw-stable consolidated gravel in the Brooks Range, while Selawik rests on ice-rich permafrost in Beringia lowland tundra. Using the transdisciplinary approach of resilience theory and mixed geophysical and ethnographic methods, we measured active layer thaw depths and documented local knowledge about climate and permafrost change. Thaw depths were greater overall in Selawik. Residents of both communities reported a variety of changes in surface features, hydrology, weather, flora, and fauna that they attribute to thawing permafrost and / or climate change. Overall, Selawik residents described more numerous and extreme examples of such changes, expressed higher degrees of certainty that change is occurring, and anticipated more significant and negative implications for their way of life than did residents of Anaktuvuk Pass. Of the two villages, Selawik faces greater and more immediate challenges to the resilience of its social-ecological system as permafrost thaws.

  7. Past permafrost on the Mid-Atlantic coastal plain, eastern United States

    USGS Publications Warehouse

    French, H.; Demitroff, M.; Newell, W.L.

    2009-01-01

    Sand-wedge casts, soil wedges and other non-diastrophic, post-depositional sedimentary structures suggest that Late-Pleistocene permafrost and deep seasonal frost on the Mid-Atlantic Coastal Plain extended at least as far south as southern Delaware, the Eastern Shore and southern Maryland. Heterogeneous cold-climate slope deposits mantle lower valley-side slopes in central Maryland. A widespread pre-existing fragipan is congruent with the inferred palaeo-permafrost table. The high bulk density of the fragipan was probably enhanced by either thaw consolidation when icy permafrost degraded at the active layer-permafrost interface or by liquefaction and compaction when deep seasonal frost thawed. ?? 2009 John Wiley & Sons, Ltd.

  8. A chronology of Late-Pleistocene permafrost events in southern New Jersey, eastern USA

    USGS Publications Warehouse

    French, H.M.; Demitroff, M.; Forman, S.L.; Newell, W.L.

    2007-01-01

    Frost fissures, filled with wind-abraded sand and mineral soil, and numerous small-scale non-diastrophic deformations, occur in the near-surface sediments of the Pine Barrens of southern New Jersey. The fissures are the result of thermal-contraction cracking and indicate the previous existence of either permafrost or seasonally-frozen ground. The deformations reflect thermokarst activity that occurred when permafrost degraded, icy layers melted and density-controlled mass displacements occurred in water-saturated sediments. Slopes and surficial materials of the area reflect these cold-climate conditions. Optically-stimulated luminescence permits construction of a tentative Late-Pleistocene permafrost chronology. This indicates Illinoian, Early-Wisconsinan and Late-Wisconsinan episodes of permafrost and/or deep seasonal frost and a Middle-Wisconsinan thermokarst event. Copyright ?? 2007 John Wiley & Sons, Ltd.

  9. Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.

    2012-12-01

    Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2

  10. Terrestrial Permafrost Models of Martian Habitats and Inhabitants

    NASA Astrophysics Data System (ADS)

    Gilichinsky, D.

    2011-12-01

    The terrestrial permafrost is the only rich depository of viable ancient microorganisms on Earth, and can be used as a bridge to possible Martian life forms and shallow subsurface habitats where the probability of finding life is highest. Since there is a place for water, the requisite condition for life, the analogous models are more or less realistic. If life ever existed on Mars, traces might have been preserved and could be found at depth within permafrost. The age of the terrestrial isolates corresponds to the longevity of the frozen state of the embedding strata, with the oldest known dating back to the late Pliocene in Arctic and late Miocene in Antarctica. Permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Such a difference in time scale would have a significant impact on the possibility of preserving life on Mars, which is why the longevity of life forms preserved within terrestrial permafrost can only be an approximate model for Mars. 1. A number of studies indicate that the Antarctic cryosphere began to develop on the Eocene-Oligocene boundary, after the isolation of the continent. Permafrost degradation is only possible if mean annual ground temperature, -28°C now, rise above freezing, i.e., a significant warming to above 25°C is required. There is no evidence of such sharp temperature increase, which indicates that the climate and geological history was favorable to persistence of pre-Pliocene permafrost. These oldest relics (~30Myr) are possibly to be found at high hypsometric levels of ice-free areas (Dry Valleys and nearby mountains). It is desirable to test the layers for the presence of viable cells. The limiting age, if one exists, within this ancient permafrost, where the viable organisms were no longer present, could be established as the limit for life preservation below 0oC. Positive results will extend the known temporal limits of life in permafrost. 2. Even in this case, the age of

  11. Pedogenesis and Permafrost Carbon Over the Eboling Ridge in Heihe River Basin, Northwestern China

    NASA Astrophysics Data System (ADS)

    Mu, C.; Zhang, T.; Cao, B.; Wang, Q.; Peng, X.; Cheng, G.

    2013-12-01

    Based on field permafrost sampling and laboratory analysis, we found that the average storages of soil organic carbon (SOC), total nitrogen (TN) and soil inorganic carbon (SIC) in permafrost soils were much more than that in the active layer on the Eboling Mountain in the upper reach of Heihe River basin, northwestern China. The objective of this study is to better understand the main soil physicochemical parameters influencing C and N dynamics in permafrost regions of northwestern China. Specifically, we investigated the effect of pedogenesis, cryogenic structure and SIC on SOC, TN and water-soluble organic carbon (WSOC) in the permafrost regions. The preliminary results show that SIC is a significant factor influencing carbon flux between atmosphere and terrestrial ecosystem and the distribution patterns of SOC and N. There are high correlation between SIC, SOC and N in permafrost. SOC and SIC can interact with each other, their small change may radically alter the carbon balance. SIC as a major factor will be crucial for developing large scale models evaluating C and N dynamics. High contents of C and N combined with a low vertical variability in each horizon on the Eboling Mountain can be explained by longer duration of pedogenesis and the influence of permafrost. In permafrost regions, the vertical distribution of soil C and N is also influenced by soil cryogenic structure. The high content of WSOC in deep permafrost soils can be explained by the formation of the ground ice causes the WSOC enrichment followed moisture migration. The average WSOC content in permafrost soils was larger than that in the active layer, suggesting that the labile carbon in permafrost soils has higher quality. SIC can reflect the microbial activity indirectly, due to the good negative relationship between SIC, soil pH and C/N ratios in permafrost. Soil pH values were the important factor influencing the distribution of SIC in deep permafrost soils. SIC in permafrost soils was

  12. Mid-Holocene permafrost: Results from CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Liu, Yeyi; Jiang, Dabang

    2016-01-01

    Distribution of frozen ground and active layer thickness in the Northern Hemisphere during the mid-Holocene (MH) and differences with respect to the preindustrial (PI) were investigated here using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Two typical diagnostic methods, respectively, based on soil temperature (Ts based; a direct method) and air temperature (Ta based; an indirect method) were employed to classify categories and extents of frozen ground. In relation to orbitally induced changes in climate and in turn freezing and thawing indices, the MH permafrost extent was 20.5% (1.8%) smaller than the PI, whereas seasonally frozen ground increased by 9.2% (0.8%) in the Northern Hemisphere according to the Ts-based (Ta-based) method. Active layer thickness became larger, but by ≤ 1.0 m in most of permafrost areas during the MH. Intermodel disagreement remains within areas of permafrost boundary by both the Ts-based and Ta-based results, with the former demonstrating less agreement among the CMIP5 models because of larger variation in land model abilities to represent permafrost processes. However, both the methods were able to reproduce the MH relatively degenerated permafrost and increased active layer thickness (although with smaller magnitudes) as observed in data reconstruction. Disparity between simulation and reconstruction was mainly found in the seasonally frozen ground regions at low to middle latitudes, where the reconstruction suggested a reduction of seasonally frozen ground extent to the north, whereas the simulation demonstrated a slightly expansion to the south for the MH compared to the PI.

  13. International Field School on Permafrost, Polar Urals, 2012

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the

  14. Deception island, Antarctica: a terrestrial analogue for the study and understanding of the martian permafrost and subsurface glaciers

    NASA Astrophysics Data System (ADS)

    Hernandez de Pablo, M. A.; Ramos, M.; Vieira, G.; Gilichinsky, D.; Gómez, F.; Molina, A.; Segovia, R.

    2009-04-01

    The existence of permafrost on Mars was widely studied since Viking era and its presence is fundamental in the understanding of the water-cycle, the geological history of Mars, and the evolution of the martian hydrosphere. Viking, MOC, THEMIS, HRSC and HiRISE images allowed increase our knowledge about the role of ice on the martian landscapes. Polygonal terrains, glacial-like features, "basketball terrain" or pingos are some of the landforms that reveal the existence of frozen ice near the surface and in the ground forming the martian permafrost on present, recent or ancient times. The field observations and analyses done by Phoenix mission seem to confirm the existence of the martian permafrost hypothesized by the analyses of the images acquired by the previous missions to Mars. Moreover, the recent interpretations of the (RADAR) sensor on board of MRO mission also revealed that the surface of Mars seems to cover an important volume of ice forming glaciers covered by different materials. Here we propose the study of the glaciers and permafrost of Deception Island (Antarctica) such as a terrestrial analogue of the glaciers and permafrost of Mars. This active volcanic island is an exceptional site to study the permafrost since the climatic conditions maintain the surface covered by the ice and snow during the main part of the year. This characteristic allows the existence of an important permafrost layer also during the summer, and permanent glaciers in the higher part of the island. In addition, Deception Island is an active volcano. Some of the glaciers are covered by the ash and tephra what made difficult to distinguish between the covered glacier and the permafrost. The eruptive volcanic materials could have similar characteristics than some martian regolith by lithology, granulometry and texture. In this way, the study of the permafrost and glaciers in Deception Island could help to understand the martian permafrost and glaciers at present. On the other hand

  15. Is Thawing Permafrost as a Result of Global Warming a Possible Significant Source of Degradable Carbon for Microbiota Residing In Situ and in Arctic Rivers?

    NASA Astrophysics Data System (ADS)

    Zhu, E. Y.; Coolen, M. J.

    2008-12-01

    Northern high-latitude ecosystems contain about half of the world's soil carbon, most of which is stored in permanently frozen soil (permafrost). Global warming through the 21st century is expected to induce permafrost thaw, which will increase microbial organic matter (OM) decomposition and release large amounts of the greenhouse gasses methane and carbon dioxide into the atmosphere. In addition, Arctic rivers are a globally important source of terrestrial organic carbon to the ocean and further permafrost melting will impact surface runoff, directly affecting groundwater storage and river discharge. Up to now, it remains largely unknown to what extent the ancient OM stored in newly thawing permafrost can be consumed by microbes in situ or by microbes residing in Arctic rivers which become exposed to newly discharged permafrost OM. In addition, we know little about which microbes are capable of degrading permafrost OM. During a field trip to the Toolik Lake Arctic Long Term Ecological Research (LTER) field station in northern Alaska in August 2008, we cored permafrost located near the Kuparuk River down to 110 cm below the active layer (i.e. the top layer which melts each summer) and analyzed the initial microbial enzymatic cleavage of particulate OM (POM) stored in permafrost. Alkaline phosphatase activity remained fairly constant throughout the permafrost and was only one order of magnitude lower than in the active layer. The latter enzyme cleaves organic phosphoesters into phosphate, which could cause eutrophication of lakes and rivers via ground water discharge. Similar results were found for β-glucosidase, which cleaves cellobiose into glucose. This process could fuel heterotrophic bacteria to produce carbon dioxide which, in return, could be converted to the stronger greenhouse gas methane by methanogenic archaea. Leucine aminopeptidase activities, on the other hand, were highest in the top Sphagnum root layer and quickly dropped to below detection limit

  16. Distinguishing between Old and Modern Permafrost Sources with Compound-Specific Deuterium Analysis

    NASA Astrophysics Data System (ADS)

    Tesi, T.; Vonk, J.; Hugelius, G.; Kuhry, P.; Gustafsson, O.

    2015-12-01

    Permafrost underlies about a quarter of the northern hemispheric landmass and stores about 1450 Pg organic carbon (OC). When permafrost thaws, its OC is remobilized into the environment where it is available for degradation, transport or burial. The fate of this OC is partly determined by the type of thaw: (i) abrupt thaw of ice-rich Pleistocene permafrost causing collapse and deep exposure, and (ii) gradual thaw of the surface active layer causing release of topsoil, modern permafrost. The relative magnitude of each thaw pathway, along with its potential impacts on the permafrost carbon feedback, are however not known. We here present compound-specific deuterium analysis as a permafrost tracing tool to distinguish between old permafrost OC release, primarily released through abrupt thaw, and modern permafrost OC release, mostly released through gradual active layer thaw. We analyzed δ2H values of leaf waxes extracted from both Pleistocene-aged permafrost samples (n=9) and modern vegetation/O-horizon (topsoil) samples (n=9) from across northeast coastal Siberia. We analyzed both long-chain n-alkanes (chain lengths C25, C27, C29 and C31) as well as long-chain n-alkanoic acids (C22, C24, C26, C28). Results show more depleted values for the Pleistocene samples (-264±33 and -280±6.5‰ for average n-alkanes and n-alkanoic acids, respectively) than for the topsoil samples (-227±23 and -234±13‰). The variability in distribution and δ2H signals for n-alkanoic acids and n-alkanes of topsoils is higher than the Pleistocene samples, that show more constant values, yet the isotopic distinction between the two sources is consisten. For n-alkanes, there is a clear decrease in δ2H signal with chain length (from -201±32 to -247±23‰ for topsoil, and -221±26 to -297±15‰ for Pleistocene samples). These data suggest that δ2H analysis on leaf wax lipids in environments receiving OC from permafrost thaw can be used to assess the relative input of Pleistocene versus

  17. Nonlinear thermal and moisture dynamics of high Arctic wetland polygons following permafrost disturbance

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.; Lévesque, E.

    2015-07-01

    Low-centre polygonal terrain developing within gentle sloping surfaces and lowlands in the high Arctic have a potential to retain snowmelt water in their bowl-shaped centre and as such are considered high latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies are rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. While intact polygons were characterized by a relative homogeneity (topography, snow cover, maximum active layer thaw depth, ground moisture content, vegetation cover), eroded polygons had a non-linear response for the same elements following their perturbation. The heterogeneous nature of disturbed terrains impacts active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture and vegetation dynamics, carbon storage and terrestrial green-house gas emissions.

  18. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  19. Isotropic thaw subsidence in undisturbed permafrost landscapes

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay I.; Streletskiy, Dmitry A.; Little, Jonathon D.; Nelson, Frederick E.

    2013-12-01

    in undisturbed terrain within some regions of the Arctic reveal limited correlation between increasing air temperature and the thickness of the seasonally thawed layer above ice-rich permafrost. Here we describe landscape-scale, thaw-induced subsidence lacking the topographic contrasts associated with thermokarst terrain. A high-resolution, 11 year record of temperature and vertical movement at the ground surface from contrasting physiographic regions of northern Alaska, obtained with differential global positioning systems technology, indicates that thaw of an ice-rich layer at the top of permafrost has produced decimeter-scale subsidence extending over the entire landscapes. Without specialized observation techniques the subsidence is not apparent to observers at the surface. This "isotropic thaw subsidence" explains the apparent stability of active layer thickness records from some landscapes of northern Alaska, despite warming near-surface air temperatures. Integrated over extensive regions, it may be responsible for thawing large volumes of carbon-rich substrate and could have negative impacts on infrastructure.

  20. Response of Permafrost to Anthropogenic Land Surface Disturbance near Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Astley, B. N.; Douglas, T. A.; Campbell, S.; Snyder, C.; Goggin, E.; Saari, S.

    2011-12-01

    Permafrost near Fairbanks Alaska is relatively warm (measured between -1 and 0°C in this study), and is thus highly susceptible to thawing following surface disturbance by land clearing or fire. The surface moss layer and other vegetation are important insulators for near-surface permafrost in the summer months. The removal of this insulation causes the seasonally thawed (active layer) depth to increase and eventually results in formation of taliks (thawed ground below the seasonally frozen active layer). We have been investigating the response of permafrost seasonal thaw depths and rates in soils commonly found around Fairbanks, Alaska following anthropogenic disturbances such as trails, roads, and large clearings. This information is useful to predict the impact of future disturbances on the permafrost landscape and on local ecology and aids in modeling permafrost stability under land that has already been cleared of vegetation. We combined direct current resistivity, ground-penetrating radar (GPR), and borehole data to evaluate permafrost top-down thawing at multiple locations in the Fairbanks area: on Fort Wainwright north of the Chena River, south of the Chena River within Yukon Training Area (YTA), and at the Farmer's Loop Permafrost Research Site. These sites were cleared of vegetation in the past and were selected to represent time since disturbance. The trails north of the Chena River were cleared in 1994 and were surveyed with GPR in 1994-1995, the YTA site was cleared around 1965, and the Farmer's Loop site was cleared in 1946. These sites represent varying types of soil including alluvial soils (containing sandy gravel capped with sandy silt) on Fort Wainwright and thick loess at Farmer's Loop Road. The YTA site does not contain deep borings for detailed stratigraphic interpretation, but hand auguring confirmed this site also contains thick loess at the surface. Resistivity data were used to discern taliks from permafrost and were compared to the 1994

  1. On Active Layer Environments and Processes in Western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hansen, C. D.; Meiklejohn, I.; Nel, W.

    2012-12-01

    The current understanding of Antarctic permafrost is poor, particularly regarding its evolution, the current thermal characteristics, and relationships with pedogenesis, hydrology, geomorphic, dynamics, biotic activity and response to global changes. Results from borehole temperature measurements over a four-year period in Western Dronning Maud Land suggest that the active layer depth is dependent on the substrate, latitude, altitude and the volume of ground exposed; the latter alludes to the potential impact of surrounding ice on the ground thermal regime. The active layer depths at the monitoring sites, varied between 16 cm at Vesleskarvet, a small nunatak at 850 masl to 28 cm in granitic till at Jutulsessen (1 270 masl). The mean near surface (1.5 cm depth) ground temperatures from 2009 to 2012 in the region have a narrow range from -16.4°C at 850m to -17.5°C at 1270 masl. Permafrost temperatures for the same locations vary between -16.3°C and -18.3°C. While little variability exists between the mean temperatures at the study locations, each site is distinct and seasonal and shorter-term frost cycles have produced landforms that are characteristic of both permafrost and diurnal frost environments. One of the key aspects of investigation is the control that the active layer has on autochthonous blockfield development in the region. The, thus far, exploratory research is being used to understand controls on the landscape and the relationship between distribution and abundance of biota. Given the rapidly changing climates in the region, improving knowledge of what drives patterns of biodiversity at a local and regional scale is vital to assess consequences of environmental change.

  2. The new database of the Global Terrestrial Network for Permafrost (GTN-P)

    NASA Astrophysics Data System (ADS)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-09-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63 % metadata completeness at active layer sites and 50 % metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73 % are shallower than 25 m and 27 % are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global

  3. Relic and Active Cold Permafrost Springs in the Arctic as Martian Analogs

    NASA Astrophysics Data System (ADS)

    Andersen, D. T.; Heldmann, J. L.; McKay, C. P.; Pollard, W. H.; Vali, H.; Whyte, L. G.; Zentilli, M.

    2005-12-01

    The discovery of presumably geologically recent gully features on Mars (Malin and Edgett 2000) and the revelation by the MER rover Opportunity that Meridiani Planum may have once been the site of a significant body of water (or groundwater) at or near the surface of Mars (Squyres et al. 2004) has significantly increased the prospects of locating sites capable of hosting microbial life. Future exploration of potential habitats for extant life or evidence of past life on Mars will require fundamental knowledge of life and habitable environments on Earth particularly those found in regions with a mean annual temperature well below freezing. We describe a series of perennial springs and associated periglacial features (seasonal icings, frost mounds and pingos) along with their physical, chemical and biological components that occur in a region of thick continuous permafrost in the Canadian High Arctic at latitudes of nearly 80° N and higher. A recently discovered paleospring site located on Axel Heiberg Island will also be described and discussed as an analog to relic martian springs.

  4. Modeling Permafrost's Distribution and Prospective Development with Coupled Heat and Groundwater Flow Equation.

    NASA Astrophysics Data System (ADS)

    Pannetier, R.

    2014-12-01

    A need for improvements in numerical models for the representation of permafrost and active layer dynamics has been highlighted. Initial efforts to address this have been made, in particular by coupling heat and multiphase flow equations under transient conditions. Implications of honoring the physical representation of such process includes an improved ability to model and analyze effects of projected changes in hydro-climatic variables, as for example the change in thermal regime and the geographic patterns of permafrost degradation. In this contribution the recently developed frozen ground module of PFloTran for fully coupled transient heat and water flow under partially saturated conditions is applied to the subarctic field site of Tarfala in Northern Sweden, where the occurrence of permafrost is sporadic and strongly dependent on snow-depth. Optimizing this model to reproduce subsurface temperature fluctuations in the ground, as recorded in two different boreholes over the last decade, allows to identify the respective roles played by heat diffusion, advection and convection in a changing permafrost environment. The influence of topography is analyzed by applying the model to different domains geometries, where topography is simplified to different degrees. The model has been configured to reproduce temperature observations, providing a estimation of the distribution and thermal regime of permafrost over the entire hill-slope. Based on the configurations that give the most accurate validation against data, changes in permafrost are extrapolated by applying different scenarios of prospective climatic conditions.

  5. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra

    NASA Astrophysics Data System (ADS)

    Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Biasi, C.; Marushchak, M.; Martikainen, P.

    2016-05-01

    The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil-geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer-upper permafrost-underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50-90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.

  6. Satellite based permafrost modeling in low land tundra landscapes

    NASA Astrophysics Data System (ADS)

    Langer, M.; Westermann, S.; Heikenfeld, M.; Boike, J.

    2012-12-01

    For most of the cryosphere components such as glaciers, ice sheets, sea ice, and snow satellite monitoring and change detection is well established since several decades. For permafrost, however, which represents the largest component of the Arctic cryosphere operational satellite monitoring schemes do not exist so far. Most of the processes which control the Arctic terrestrial ecosystems are related to the thermal state of permafrost and the freeze/thaw dynamics of the active layer. Hence, satellite based permafrost monitoring would be highly beneficial for the impact assessment of climate change in the Arctic. Permafrost monitoring could also be highly beneficial for the risk assessment of infrastructure in the Arctic such as roads, pipelines, and buildings which are directly affected by the thermal stability of permafrost. Increasing thaw depths and prolonged thaw periods can damage pipelines and interrupt the access to vast regions due to road damages. Sustained warming of permafrost can result in thermal erosion and landslides which threaten buildings and other infrastructural facilities. In this study we present a possible permafrost monitoring scheme based on a numerical heat flow model which is forced by multiple satellite products and initialized by weather reanalysis data. The used forcing and initialization dataset includes the land surface temperature (LST), the snow cover fraction (SCF), and the snow water equivalent (SWE). Previous studies demonstrated that MODIS LST products can deliver reasonable surface temperature measurements in tundra landscapes (Langer et al. 2010, Westermann et al. 2011). This study is based on the ten year record of the daily MOD11A1v5 and MYD11A1v5 land surface temperature products with a spatial resolution of 1km. The snow cover evolution is obtained from the daily GlobSnow SWE product with a spatial resolution of about 25km. In addition, the MODIS snow cover products MOD10A1v5 and MYD10v5 with a resolution of 1km are used

  7. The effect of vegetation type and fire on permafrost thaw: An empirical test of a process based model

    NASA Astrophysics Data System (ADS)

    Thierry, Aaron; Estop-Aragones, Cristian; Fisher, James; Hartley, Iain; Murton, Julian; Phoenix, Gareth; Street, Lorna; Williams, Mathew

    2015-04-01

    As conditions become more favourable for plant growth in the high latitudes, most models predict that these areas will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback could potentially substantially reduce the predicted global net uptake of carbon by terrestrial ecosystems, with major implications for the rate of climate change. However, large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. The role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in many models. But it is thought that they may play a key role in determining permafrost resilience. In order to test the importance of these ecological processes we use a new specially acquired dataset from sites in the Canadian arctic to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions which includes an insulating moss understory. We tested the sensitivity of modelled active layer depth to a series of factors linked to fire disturbance, which is common in boreal permafrost areas. We show how simulations of active layer depth (ALD) respond to removals of (i) vascular vegetation, (ii) moss cover, and (iii) organic soil layers. We compare model responses to observed patterns from Canada. We also describe the sensitivity of our modelled ALD to changes in temperature and precipitation. We found that four parameters controlled most of the sensitivity in the modelled ALD, linked to conductivity of organic soils and mosses.

  8. Thermal erosion of ice-wedge polygon terrains changes fluxes of energy and matter of permafrost geosystems

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.; Lamarque, L.

    2015-12-01

    Subsurface thermal erosion is triggered by convective heat transfers between flowing water and permafrost. Heat advection due to infiltration of run-off in the massive ice wedges and the ice-rich upper portion of permafrost creates sink holes and networks of interconnected tunnels in the permafrost. Mass movements such as collapse of tunnel's roof, retrogressive thaw-slumping and active layer detachment slides lead to the development of extensive gully networks in the landscape. These gullies drastically change the hydrology of ice-wedge polygon terrains and the fluxes of heat, water, sediment, nutrients and carbon within the geosystem. Exportation of sediments out of gullies are positive mechanical feed-back that keep channels active for decades. Along gully margins, drainage of disturbed polygons and ponds, slope drainage, soil consolidation, gully walls colonization by vegetation and wet to mesic plant succession change the thermal properties of the active layer and create negative feedback effects that stabilize active erosion processes and promote permafrost recovery in gully slopes and adjacent disturbed polygons. On Bylot Island (Nunavut), over 40 gullies were monitored to characterize gully geomorphology, thermal and mechanical processes of gully erosion, rates of gully erosion over time within different sedimentary deposits, total volume of eroded permafrost at the landscape scale and gully hydrology. We conducted field and laboratory experiments to quantify heat convection processes and speed of ice wedge ablation in order to derive empirical equations to develop model of permafrost thermal erosion. We used data, collected over 10 years, of geomorphological gully monitoring and regional climate scenarios to evaluate the potential response of ice-wedge polygon terrains to changes in snow, permafrost thermal regime and hydrological conditions over the coming decades and its implication for the short and long term dynamics of arctic permafrost geosystems.

  9. Open-path TDL-Spectrometry for a Tomographic Reconstruction of 2D H2O-Concentration Fields in the Soil-Air-Boundary-Layer of Permafrost

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2013-04-01

    The melting of permafrost soils in arctic regions is one of the effects of climate change. It is recognized that climatically relevant gases are emitted during the thawing process, and that they may lead to a positive atmospheric feedback [1]. For a better understanding of these developments, a quantification of the gases emitted from the soil would be required. Extractive sensors with local point-wise gas sampling are currently used for this task, but are hampered due to the complex spatial structure of the soil surface, which complicates the situation due to the essential need for finding a representative gas sampling point. For this situation it would be much preferred if a sensor for detecting 2D-concentration fields of e.g. water vapor, (and in the mid-term also for methane or carbon dioxide) directly in the soil-atmosphere-boundary layer of permafrost soils would be available. However, it also has to be kept in mind that field measurements over long time periods in such a harsh environment require very sturdy instrumentation preferably without the need for sensor calibration. Therefore we are currently developing a new, robust TDLAS (tuneable diode laser absorption spectroscopy)-spectrometer based on cheap reflective foils [2]. The spectrometer is easily transportable, requires hardly any alignment and consists of industrially available, very stable components (e.g. diode lasers and glass fibers). Our measurement technique, open path TDLAS, allows for calibration-free measurements of absolute H2O concentrations. The static instrument for sampling open-path H2O concentrations consists of a joint sending and receiving optics at one side of the measurement path and a reflective element at the other side. The latter is very easy to align, since it is a foil usually applied for traffic purposes that retro-reflects the light to its origin even for large angles of misalignment (up to 60°). With this instrument, we achieved normalized detection limits of up to 0

  10. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the v...

  11. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-05-13

    The nitrate (NO3) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3 derived from atmospheric deposition versus that derived from microbial nitrification.

  12. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  13. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  14. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  15. Permafrost conditions over Heihe River Basin in Qilian Mountains of Western China

    NASA Astrophysics Data System (ADS)

    Cao, B.; Zhang, T.; Zhang, X.; Peng, X.; Wang, K.; Guo, H.; Zheng, L.; Wang, Q.; Wan, X.; Mu, C.; Wu, J.; Jin, H.; He, R.

    2015-12-01

    To investigate the thermal state of permafrost, a monitoring network with 13 boreholes and 5 automatic weather stations was established over the Upper Reaches of Heihe River Basin in Qilian Mountains of western China from 2011 to 2014. The boreholes were drilled along both east-west transects which is parallel to the Qilian Mountain ridges and the north-south transects. These boreholes with elevation from 3642 m a.s.l. to 4153 m a.s.l., covering different facing-slopes, vegetation cover, land cover, and soil types. Five automatic meteorological stations were established with measurements of soil temperatures within the active layer up to 2 m. In the present study, ground penetrating radar (GPR), mechanical probing and site digging methods were also used to detect active layer thickness (ALT) and permafrost distribution over the Upper Reaches of Heihe River Basin. The results showed that the ground temperature between 18 m and 20 m depth ranged from -1.85 °C to 0.45 °C in this area. There was a significant negative correction between elevation and mean annual ground temperature (MAGT), i.e., MAGT increases -0.65°C for every 100 m. The permafrost thickness varies from nearly 200 m to about 4.3 m. Both the ground temperature and permafrost thickness were significantly influenced by slope aspect, vegetation, surface condition, lithology and groundwater. The ALT was 133 cm with a range of 81~210 cm in eastern tributary and varied from 107 cm at the north-facing slope to 484 cm near the lower limit of permafrost with a mean depth of 271 cm in western tributary. The lower limit of permafrost was found at lowest elevation 3389 m and 3649 m on the north- and south-facing slopes, respectively. The near-zero temperature gradients suggested that recent warming had already penetrated into the ground and influenced the thermal state of permafrost significantly.

  16. Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau

    PubMed Central

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904

  17. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Roy Chowdhury, Taniya; Romanovsky, Vladimir; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-01

    The nitrate (NO3-) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3- derived from atmospheric deposition versus that derived from microbial nitrification. Snowmelt had an atmospheric NO3- signal with δ15N averaging -4.8 ± 1.0‰ (standard error of the mean) and δ18O averaging 70.2 ± 1.7‰. In active layer pore waters, NO3- primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ15N and δ18O of NO3- from high-centered polygons were 0.5 ± 1.1‰ and -4.1 ± 0.6‰, respectively. When compared to the δ15N of reduced nitrogen (N) sources, and the δ18O of soil pore waters, it was evident that NO3- in high-centered polygons was primarily from microbial nitrification. Permafrost NO3- had δ15N ranging from approximately -6‰ to 10‰, similar to atmospheric and microbial NO3-, and highly variable δ18O ranging from approximately -2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO3-, while permafrost textural ice contained a greater proportion of microbially derived NO3-. Large-scale permafrost thaw in this environment would release NO3- with a δ18O signature intermediate to that of atmospheric and microbial NO3. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO3- dual isotope technique in tundra environments, attribution of NO3- from thawing permafrost will not be straightforward. The NO3- isotopic signature, however, appears useful in identifying NO3- sources in extant permafrost ice.

  18. Fate and effects of crude oil spilled on subarctic permafrost terrain in interior Alaska: Fifteen years later

    SciTech Connect

    Collins, C.M.; Racine, C.H.; Walsh, M.E.

    1993-08-01

    The effects of two large experimental oil spills conducted in the winter and summer of 1976 in the permafrost-underlain black spruce forest of interior Alaska were assessed 15 years after the spills. Effects on the permafrost, as determined from measurements of active layer thaw depths and of the total amount of ground subsidence, were far more pronounced on the winter spill because it had a larger area with oil on the surface. The winter spill also had a more drastic effect on the vegetation. Where the black, asphalt-like oil is present on the surface, black spruce mortality is 100% and there is very little live vegetation cover, except for cottongrass tussocks. Changes in oil chemistry vary with depth; surface samples show signs of microbiological degradation, whereas some subsurface samples taken just above the permafrost show no evidence of degradation and still contain volatiles. Black spruce forest, Crude oil, Oil spills, Terrestrial oil spills, Interior Alaska, Permafrost.

  19. Feedbacks between climate, fire severity, and differential permafrost degradation in Alaskan black spruce forests - implications for carbon cycling

    NASA Astrophysics Data System (ADS)

    Kasischke, E. S.; Kane, E. S.; O'Donnell, J. A.; Christensen, N. L.; Mitchell, S. R.; Turetsky, M. R.; Hayes, D. J.; Hoy, E.; Barrett, K. M.; McGuire, A. D.; Yuan, F.

    2011-12-01

    Black spruce forests are the dominant forest cover type in the boreal region of Alaska and Canada In the northern portion of its range, permafrost is common to sites occupied by black spruce forest, which in turn, leads topromotes the accumulation of large reservoirs of organic carbon in mineral and organic soils. Another important trait of black spruce forests is the high occurrence of fire which is enhanced by the presence of flammable foliage, surface litter (duff), dead stems, aboreal lichens, and understory vegetation that is highly flammable during the dry conditions found during the summer fire season. In turn, fire plays an important role in carbon cycling in black spruce forests through direct burning of vegetation and organic soils, initiation of secondary succession, and alteration of the ambient environmental conditions, in particular, the permafrost and the soil thermal regimes, including permafrost stability. The spatial and temporal characteristics of permafrost (e.g. ice content and, seasonal deepening thawing of the active layer) not only control fire severity in terms of depth of burning of the active layer, but also the level of permafrost degradation that occurs in the post-fire environment. Fire severity, in combination with soil thermal properties (e.g. temperature, moisture, permafrost state), moisture and temperature conditions controlled by rates of permafrost warming and drying then controls the biological processes (plant succession and growth and heterotrophic respiration), thus regulating post-fire re-accumulation of carbon in biomass. In this paper, we will review research that investigates the interactions between fire and permafrost regimes that influence and how they influence carbon cycling in black spruce forests in interior Alaska.

  20. Metagenomics Reveals Microbial Community Composition And Function With Depth In Arctic Permafrost Cores

    NASA Astrophysics Data System (ADS)

    Jansson, J.; Tas, N.; Wu, Y.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Chakraborty, R.; Graham, D. E.; Wullschleger, S. D.

    2013-12-01

    The Arctic is one of the most climatically sensitive regions on Earth and current surveys show that permafrost degradation is widespread in arctic soils. Biogeochemical feedbacks of permafrost thaw are expected to be dominated by the release of currently stored carbon back into the atmosphere as CO2 and CH4. Understanding the dynamics of C release from permafrost requires assessment of microbial functions from different soil compartments. To this end, as part of the Next Generation Ecosystem Experiment in the Arctic, we collected two replicate permafrost cores (1m and 3m deep) from a transitional polygon near Barrow, AK. At this location, permafrost starts from 0.5m in depth and is characterized by variable ice content and higher pH than surface soils. Prior to sectioning, the cores were CT-scanned to determine the physical heterogeneity throughout the cores. In addition to detailed geochemical characterization, we used Illumina MiSeq technology to sequence 16SrRNA genes throughout the depths of the cores at 1 cm intervals. Selected depths were also chosen for metagenome sequencing of total DNA (including phylogenetic and functional genes) using the Illumina HiSeq platform. The 16S rRNA gene sequence data revealed that the microbial community composition and diversity changed dramatically with depth. The microbial diversity decreased sharply below the first few centimeters of the permafrost and then gradually increased in deeper layers. Based on the metagenome sequence data, the permafrost microbial communities were found to contain members with a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. The surface active layers had more representatives of Verrucomicrobia (potential methane oxidizers) whereas the deep permafrost layers were dominated by several different species of Actinobacteria. The latter are known to have a diverse metabolic capability and are able to adapt to stress by entering a dormant yet

  1. Permafrost-ice-sheet interactions during the Quaternary

    NASA Astrophysics Data System (ADS)

    Willeit, Matteo; Ganopolski, Andrey

    2016-04-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. We recently included a permafrost module in the Earth system model CLIMBER-2 to explore the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution during the Quaternary. The model has been shown to perform generally well at reproducing present-day permafrost extent and thickness. Modelled permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. In a previous study we showed that over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM. In transient model simulations of the "40 kyr world" of the early Pleistocene we show that when all continents are covered by a thick sediment layer the response of ice volume to the obliquity component of orbital forcing is enhanced while the response to precession is dampened. We therefore argue that permafrost could have played a role for ice sheet evolution when all continents were covered by a thick sediment layer, as was likely the case in the early Pleistocene before the sediment layer was gradually eroded by expanding ice sheets over parts of northern Canada and Scandinavia.

  2. Changes in permafrost hydrology at the arctic treeline in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Marsh, P.; Yang, D.; Shi, X.

    2013-12-01

    The climate of the Western Canadian Arctic has undergone dramatic changes, with warming air temperature and decreasing winter and summer precipitation, over the last 50 years. This has resulted in changes to permafrost in this region, including a deepening of the active layer as well as melting of massive ice layers that result in changes in ice wedge polygons and lake drainage, with obvious changes in surface drainage patterns. In addition, north of the treeline there is an ongoing change from tundra to shrub tundra, with impacts on snow cover, soil moisture and surface energy balance and permafrost. These changes would be expected to have a significant impact on hydrology. This paper will outline past changes in climate and permafrost in this region of continuous permafrost, and discuss the observed impacts of these changes on hydrology, including earlier snowmelt runoff, earlier rainfall runoff during the later stages of melt, and decreases in summer runoff. In addition, we will outline a new research project that is using detailed observations along with high resolution modelling to consider the complex interactions between climate, snow, vegetation, permafrost and hydrology.

  3. Assessing the Reliability of Geoelectric Imaging Results for Permafrost Investigations

    NASA Astrophysics Data System (ADS)

    Marescot, L.; Loke, M.; Abbet, D.; Delaloye, R.; Hauck, C.; Hilbich, C.; Lambiel, C.; Reynard, E.

    2007-12-01

    The effects of global climate change on mountain permafrost are of increasing concern; warming thaws permafrost, thereby increasing the risk of slope instabilities. Consequently, knowledge of the extent and location of permafrost are important for construction and other geotechnical and land-management activities in mountainous areas. Geoelectric imaging is a useful tool for mapping and characterizing permafrost occurrences. To overcome the generally poor electrical contacts in the active layer, geoelectric surveys usually involve coupling the electrodes to the ground via sponges soaked in salt water. The data are processed and inverted in terms of resistivity models of the subsurface. To monitor the evolution of mountain permafrost, time-lapse geoelectric imaging may be employed. A challenging aspect in geoelectric imaging of permafrost is the very large resistivity contrast between frozen and unfrozen material. Such a contrast makes inversion and interpretation difficult. To assess whether features at depth are required by the data or are artifacts of the inversion process, the reliability of models needs to be evaluated. We use two different approaches to assess the reliability of resistivity images in permafrost investigations: (i) depth of investigation (DOI) and (ii) resolution matrix maps. To compute the DOI, two inversions of the same data set using quite different reference resistivity models are carried out. At locations where the resistivity is well constrained by the data, the inversions yield the same results. At other locations, the inversions yield different values that are controlled by the reference models. The resolution matrix, which is based on the sensitivity matrix calculated during the inversion, quantifies the degree to which each resistivity cell in the model can be resolved by the data. Application of these two approaches to field data acquired in the Swiss Alps and Jura Mountains suggests that it is very difficult to obtain dependable

  4. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  5. Factors Affecting the Sensitivity of Permafrost to Climate Change

    NASA Astrophysics Data System (ADS)

    Jorgenson, T.; Romanovsky, V.; Harden, J.; Shur, Y.; Hinzman, L.; Marchenko, S.; Bolton, R.; O'Donnell, J.

    2009-05-01

    Permafrost aggradation and degradation are affected by numerous geomorphological and ecological properties of the landscape that confound our ability to accurately predict the response of permafrost to climate change. Permafrost can persist at mean annual air temperatures (MAAT) of +2 °C and can degrade at MAAT of -15 °C with the help of surface water. Permafrost is decoupled from the atmosphere by the active layer, thus, its thermal regime is mediated by numerous factors such as topography, soil texture, organic-matter accumulation, vegetation, snow, surface water, groundwater movement, and disturbance. Topography affects the amount of solar radiation to the soil surface, causing permafrost in the discontinuous zone to occur generally on north-facing slopes that receive less direct radiation and on flat, low- lying areas where vegetation and organic soils have a greater insulating effect and where air temperatures tend to be colder during winter inversions. Soil texture affects soil moisture and thermal properties. For instance, gravelly soils tend to be well-drained with little difference between thermal conductivities when frozen or thawed. In contrast, surface organic soils, as well as clayey and silty soils, in lowland areas tend to be poorly drained and have much higher thermal conductivities when frozen in winter than unfrozen in summer. In well- drained upland sites, however, organic soils typically are well below saturation. Differences in frozen and unfrozen thermal conductivities lead to more rapid heat loss in winter, depending on snow, and slower heat penetration in summer. Vegetation has important effects through interception of solar radiation, growth of mosses, accumulation of organic matter, and interception of snow by trees and shrubs. Snow protects soil from cooling in winter. Thus, the seasonality (e.g., timing of snowfall in early winter) and depth of snow are very important. Surface water provides an important positive feedback that enhances

  6. The International Permafrost Association: new structure and initiatives for cryospheric research

    NASA Astrophysics Data System (ADS)

    May, I.; Lewkowicz, A. G.; Christiansen, H.; Romanovsky, V. E.; Lantuit, H.; Schrott, L.; Sergeev, D.; Wei, M.

    2012-12-01

    within Global Climate Models and promote the study of the carbon cycle and other biogeochemical cycles in permafrost regions that contribute to atmospheric greenhouse gas concentrations. Within the discussion of climate change and the organic carbon stored in the frozen ground, the IPA also fosters and supports the activities of the Global Terrestrial Network on Permafrost (GTN-P) sponsored by the Global Terrestrial Observing System, GTOS, and the Global Climate Observing System, GCOS, whose long-term goal is to obtain a comprehensive view of the spatial structure, trends, and variability of changes in the active layer thickness and permafrost temperature. A further important initiative of the IPA is the new Standing Committee on Outreach and Education that is responsible for the development and implementation of new outreach products and projects on permafrost for schools, universities, and the general public. In all of these activities, the IPA emphasizes the involvement of young researchers (especially through the Permafrost Young Researchers Network) as well as its international partner organizations.

  7. Topographic Signature of Climate Change- insights into climatic controls on landscape evolution under permafrost and non-permafrost environments

    NASA Astrophysics Data System (ADS)

    Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.; Brumby, S.; Prancevic, J. P.; Crosby, B. T.; Marsh, P.; Altmann, G.

    2012-12-01

    relatively large divergent hillslopes (0.3 ≤ NDDR ≤ 0.9), moderately long convergent flowpaths (400-500 m), and hillslope to fluvial transition through longer networks hollows (200-300 m). We demonstrate our findings using high resolution lidar dataset obtained for Trail Valley, Mackenzie River, Canada; Brooks Range, North Slope, Alaska; Tenderfoot Creek, Montana, and Pleasant, Maine, USA that were previously occupied by North American Laurantide Ice Sheet and Brooks Range glaciers. South Fork Eel River (NDDR > 0.9), California is used a representative temperate non-glaciated basin. Our results suggest, that in landscapes on the north side of the Laurentide ice sheet where permafrost has been present since deglaciation, periglacial landsurface processes such as freeze-thaw driven solifluction process and geomorphic disturbances like active layer detachment etc., limited the development of channel networks and helped to preserve signatures of glaciation on hillslopes. In contrast, in more southerly latitudes, where permafrost is absent fluvial networks have more fully developed but the hillslopes appear to retain some signature of prior glaciation. Finally, now we can test different hypotheses on many possible future trajectories of landscape evolutions under different climate change scenarios.

  8. Influence of Plant Communities on Active Layer Depth in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Fisher, James; Estop Aragones, Cristian; Thierry, Aaron; Hartley, Iain; Murton, Julian; Charman, Dan; Williams, Mathew; Phoenix, Gareth

    2015-04-01

    Vegetation plays a crucial role in determining active layer depth (ALD) and hence the extent to which permafrost may thaw under climate change. Such influences are multifaceted and include, for example, promotion of shallow ALD by insulation from moss or shading by plant canopies in summer, or trapping of snow in evergreen tree canopies that reduces snow insulation of soil in winter. However, while the role of different vegetation components are understood at a conceptual level, quantitative understanding of the relative importance of different vegetation components and how they interact to determine active layer depth is lacking. In addition, major abiotic factors such as fire and soil hydrological properties will considerably influence the role of vegetation in mediating ALD, though again this is not well understood. To address this we surveyed 60 plots across 4 sites of contrasting vegetation and fire status, encompassing a range of soil moisture and organic matter thickness, in the discontinuous permafrost zone near Yellowknife, NT, Canada. In each plot we measured ALD and a range of vegetation and soil parameters to understand how key characteristics of the understory and canopy vegetation, and soil properties influence ALD. Measurements included moss depth, tree canopy LAI, understory LAI, understory height, vegetation composition, soil organic matter depth, slope and soil moisture. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have also been able to determine which characteristics of the vegetation and soil are important for protecting permafrost, which characteristics emerge as the most important factors across sites (i.e. irrespective of site conditions) and which factors have site (ecosystem) specific influences. This work provides a major insight into how ecosystem properties influence ALD and therefore also how changes in ecosystems properties arising from climate change may influence

  9. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw.

    PubMed

    Coolen, Marco J L; van de Giessen, Jeroen; Zhu, Elizabeth Y; Wuchter, Cornelia

    2011-08-01

    Amplified Arctic warming could thaw 25% of the permafrost area by 2100, exposing vast amounts of currently fixed organic carbon to microbially mediated decomposition and release of greenhouse gasses through soil organic matter (SOM) respiration. We performed time-series incubation experiments with Holocene permafrost soils at 4°C for up to 11 days to determine changes in exoenzyme activities (EEAs) (i.e. phosphatase, β-glucosidase, aminopeptidase) as a measure for the bioavailability of SOM in response to permafrost thaw. We also profiled SSU rRNA transcripts to follow the qualitative and quantitative changes in viable prokaryotes and eukaryotes during incubation. EEA, amount of rRNA transcripts and microbial community structures differed substantially between the various soil intervals in response to thaw: after 11 days of incubation, the active layer became slightly depleted in C and P and harboured bacterial phyla indicative of more oligotrophic conditions (Acidobacteria). A fast response in phosphatase and β-glucosidase upon thaw, and a predominance of active copiotrophic Bacteroidetes, showed that the upper permafrost plate serves as storage of easily degradable carbon derived from the overlying thawed active layer during summer. EEA profiles and microbial community dynamics furthermore suggest that the deeper and older permafrost intervals mainly contain recalcitrant SOM, and that extracellular soil-bound exoenzymes play a role in the initial cleavage of biopolymers, which could kick-start microbial growth upon thaw. Basidiomycetous fungi and Candidate Subdivision OP5 bacteria were the first to respond in freshly thawed deeper permafrost intervals, and might play an important role in the decomposition of recalcitrant SOM to release more labile substrates to support the major bacterial phyla (β-Proteobacteria, Actinobacteria, Firmicutes), which predominated thereafter. PMID:21554513

  10. The Influence of Seasonal Climatic Parameters on the Permafrost Thermal Regime in West Siberia

    NASA Astrophysics Data System (ADS)

    Popova, V. V.; Shmakin, A. B.

    2009-12-01

    Statistical correlations between seasonal air temperatures and snow depths and active layer depths and permafrost temperatures were analyzed for tundra (Marre-Salle) and northern taiga (Nadym) sites in Western Siberia. Interannual variations in active layer depth in the tundra zone correlated with the average air temperature of the current summer, and in peatland and humid tundra, also with summer temperatures of the preceding 1-2 years. In the northern taiga zone, the active layer depth related to current summer air temperature and to a lesser extent, to spring and/or winter air temperatures. Variations in summer permafrost temperatures at 5-10m depth were correlated with spring air temperatures in the current and preceding 1-2 years. The weather regime during the preceding 1-2 years, therefore, reinforced or weakened ground temperature variations in a given year. Overall, the most important factors influencing the permafrost regime were spring and summer air temperatures, and in one case snow depth. However, statistical links between meteorological and permafrost parameters varied between the tundra and northern taiga zones and among landscape types within each zone, emphasizing the importance of analyses at short temporal scales and for individual terrain units.

  11. Effects of temperature, moisture, and permafrost thaw on ecosystem carbon exchange in Alaskan tundra.

    NASA Astrophysics Data System (ADS)

    Natali, S.; Schuur, E. A.; Webb, E.

    2012-12-01

    Carbon has been accumulating in northern high latitude ecosystems for thousands of years because cold and moist conditions have protected soil organic matter from microbial decomposition. Over the past several decades, warming surface air temperatures have been accompanied by thawing of the perennially frozen permafrost layer where much of the accumulated carbon is stored. In addition to its role in carbon storage, permafrost regulates surface hydrology by restricting vertical water flow, thereby maintaining a water table that remains close to the ground surface. In the absence of the permafrost layer, enhanced water drainage will result in increased water table depth and decreased soil moisture. The biological availability of permafrost carbon may increase in a warmer and drier soil environment, as is expected for the region of this study. To determine the effects of warming temperatures and changes in soil moisture on ecosystem carbon exchange, we established a water table drawdown experiment within the footprint of the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, an ecosystem warming experiment in Interior Alaska that warms air and soil temperatures and degrades permafrost. Here we present ecosystem carbon balance results from combined warming and moisture manipulation treatments at the CiPEHR project. Soil warming increased soil temperature by 2-3o C and resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m-2 in the warmed plots did not increase net growing season CO2 loss from this ecosystem. In contrast, soil warming and permafrost thaw increased growing season CO2 uptake, which was a result of both higher net primary productivity and an inhibition of microbial decomposition by soil saturation at the base of the active layer. The drying treatment (i.e., water table drawdown) decreased soil moisture by 25%, which led to an increase in ecosystem respiration and decrease in net

  12. The Vulnerability of Permafrost from 1960 to 2300 Based on Simulations of the Process-Based Model GIPL2 Across the Permafrost Region in the Northern Hemisphere: Implications for Soil Carbon Vulnerability

    NASA Astrophysics Data System (ADS)

    Marchenko, S. S.; Nicolsky, D.; Romanovsky, V. E.; McGuire, A. D.

    2014-12-01

    Recent observations indicate a warming of permafrost in many northern regions with a resulting degradation of ice-rich and carbon-rich permafrost. In the last 30-40 years, warming in permafrost temperatures observed in Northern Eurasia, Canada, and Alaska has resulted in the thawing of permafrost in natural, undisturbed conditions in areas close to the southern boundary of the permafrost zone. The main aim of this study is to evaluate the vulnerability of permafrost under climate warming across the Permafrost Region of the Northern Hemisphere. We applied the process-based permafrost dynamics model GIPL2 (Geophysical Institute Permafrost Lab), using a historical climate forcing CRU3.1 data set for retrospective (1960-2009) and CCSM4 RCP4.5 and RCP8.5 (2009-2300) for analysis of permafrost dynamics in the future. We estimated dynamics of the area and volume of seasonally thawed soils within the three upper meters across the entire Permafrost Domain. During the last four decades of the 20th century, the simulated total area and the volume of thawed soils with Active Layer Thickness (ALT) shallower than 3 m has been varying between 11 and 13 million km2, and between 17.3 to 19.4 thousand km3 respectively. Our projections according to the CCSM4 RCP4.5 climate scenario indicate that the maximum unfrozen volume of soil within three upper meters would change between 12.8 and 20.8 thousand km3 during 2009-2300. Despite the slower rate of soil warming in peatland areas and a slower degradation of permafrost under peat soils, a considerable volume of peat (approximately 20% of the total volume of peat in the Northern Hemisphere) could be thawed by the end of the current century and 35% by 2300. The potential release of carbon and the net effect of this thawing will depend on the balance between increased productivity and respiration, and will also depend on soil moisture dynamics.

  13. Diversity and Distribution of Archaea Community along a Stratigraphic Permafrost Profile from Qinghai-Tibetan Plateau, China

    PubMed Central

    Cui, Hongpeng; He, Hao; Hu, Fei; Su, Xin; Zhu, Youhai

    2014-01-01

    Accompanying the thawing permafrost expected to result from the climate change, microbial decomposition of the massive amounts of frozen organic carbon stored in permafrost is a potential emission source of greenhouse gases, possibly leading to positive feedbacks to the greenhouse effect. In this study, the community composition of archaea in stratigraphic soils from an alpine permafrost of Qinghai-Tibetan Plateau was investigated. Phylogenic analysis of 16S rRNA sequences revealed that the community was predominantly constituted by Crenarchaeota and Euryarchaeota. The active layer contained a proportion of Crenarchaeota at 51.2%, with the proportion of Euryarchaeota at 48.8%, whereas the permafrost contained 41.2% Crenarchaeota and 58.8% Euryarchaeota, based on 16S rRNA gene sequence analysis. OTU1 and OTU11, affiliated to Group 1.3b/MCG-A within Crenarchaeota and the unclassified group within Euryarchaeota, respectively, were widely distributed in all sediment layers. However, OTU5 affiliated to Group 1.3b/MCG-A was primarily distributed in the active layers. Sequence analysis of the DGGE bands from the 16S rRNAs of methanogenic archaea showed that the majority of methanogens belonged to Methanosarcinales and Methanomicrobiales affiliated to Euryarchaeota and the uncultured ZC-I cluster affiliated to Methanosarcinales distributed in all the depths along the permafrost profile, which indicated a dominant group of methanogens occurring in the cold ecosystems. PMID:25525409

  14. Detecting alpine permafrost using electro-magnetic methods

    NASA Astrophysics Data System (ADS)

    Hauck, Christian; Mühll, Daniel Vonder

    In the European Alps, thawing permafrost caused by warmer temperatures has been recognised as a possible danger for slope instabilities in the past few years. The permanently frozen layer (permafrost) is often only a few metres thick. Consequently it is very vulnerable to small changes in local climate. Furthermore, the detection and localisation of such shallow permafrost sites is difficult. The heterogeneity of the material and the difficult access of the steep slopes make commonly used techniques such as reflection seismics or Ground Penetrating Radar (GPR) less adequate for alpine permafrost studies.

  15. Using dissolved organic matter (DOM) composition to detect permafrost thaw in arctic and boreal watersheds

    NASA Astrophysics Data System (ADS)

    ODonnell, J. A.; Aiken, G.; Walvoord, M. A.; Butler, K.

    2013-12-01

    Permafrost thaw can profoundly alter hydrology and carbon dynamics in northern high-latitude regions. Thawing of permafrost has been detected through monitoring of borehole temperatures and active layer thickness (ALT), but these measurements have limited spatial inference and primarily reflect local conditions. Remote sensing analyses have been useful for detecting thermokarst features, yet have limited application in upland forests or in ice-poor regions not susceptible to ground subsidence. Analysis of stream discharge time-series (e.g. recession flow analysis) can be a powerful tool for detecting watershed-scale changes in ALT, but long-term hydrologic data is sparse in many northern regions. Given the large pool of organic carbon (C) in permafrost soils, most research has focused on how permafrost thaw impacts C released to the atmosphere. However, permafrost thaw may also modify the lateral flux of C from terrestrial to aquatic systems, often through increasing groundwater discharge to stream flow. Here, we present data from arctic (n=36) and boreal rivers (n=60) of Alaska to address the question: can DOM character in rivers be used as a tool for detecting permafrost thaw in high-latitude watersheds? We hypothesize that the chemical composition of DOM is sensitive to permafrost configuration as a control on (1) groundwater transit times, (2) microbial processing, and (3) stabilization in mineral soils. Using measurements of DOM optical properties, chemical fractionation, and 14C-DOC, we distinguished DOM character between supra- and sub-permafrost aquifers. DOM transported from supra-permafrost soils to rivers is subject to seasonal thawing and re-freezing of the active layer. DOC concentrations peaked during spring snowmelt (7.5 to 41.7 mgC L-1), when frozen soils confine subsurface flow to organic-soil horizons, and declined during summer (2.6 to 27.3 mgC L-1), when soils of the active layer thaw. Δ14C-DOC in three boreal rivers also declined seasonally

  16. Permafrost and Hydrology in the High Latitudes of Eurasia

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Tananaev, N.; Tokarev, I.; Shiklomanov, A. I.

    2014-12-01

    Eurasia contributes three quarters of all terrestrial runoff to the Arctic Ocean and contains three out of four major Arctic rivers. River flow is an integrated characteristic reflecting numerous environmental characteristics and processes aggregated over large spatial domains. A significant increase in discharge during low-flow has been observed everywhere in the Eurasian pan-Arctic, while precipitation decreased over the same period. This increase was accompanied by a significant increase in air temperature. Over the permafrost regions climatic warming results in higher ground temperature, a deeper annual thaw propagation, degradation of the ice rich upper permafrost layers, and a longer thaw season. The thicker active layer has more ground water storage and regulating capacity for increased contribution to runoff during low flow periods. Melt water of the excess ground-ice near the permafrost surface also contribute to the increase in river runoff. The deeper active layer delays its freeze-up date in winter and this late active layer freeze-up and increased ground water storage result in greater contribution of subsurface water to the river system, especially in the winter season. Extensive fieldwork and analytical procedures were implemented to quantify the contribution of permafrost to river flow in small rivers of Siberia and to understand its relation to air temperature. The paper focuses on variability of various water inputs to a hydrological system across multiple scales in a series of watersheds located in the transition of tundra to forest landscapes in the Arctic. Stable isotopes of δ18O and D were used used to trace the inputs of various sources (ground ice, snow, precipitation, ground water) in a river flow. Mixing of these sources results in isotopic composition that varies throughout the year. Heavy content of δ18O and D was found during winter season and is attributed to ground water from permafrost taliks. Lighter values in spring are

  17. Nonlinear thermal and moisture response of ice-wedge polygons to permafrost disturbance increases heterogeneity of high Arctic wetland

    NASA Astrophysics Data System (ADS)

    Godin, Etienne; Fortier, Daniel; Lévesque, Esther

    2016-03-01

    Low-center polygonal terrains with gentle sloping surfaces and lowlands in the high Arctic have a potential to retain water in the lower central portion of ice-wedge polygons and are considered high-latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada), thermal erosion gullies were rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. Intact polygons were characterized by a relative homogeneity in terms of topography, snow cover, maximum active layer thaw depth, ground moisture content and vegetation cover (where eroded polygons responded nonlinearly to perturbations, which resulted in differing conditions in the latter elements). The heterogeneous nature of disturbed terrains impacted active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture, vegetation dynamics and carbon storage.

  18. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    SciTech Connect

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; Wilson, Cathy; Wullschleger, Stan D.

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  19. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Throckmorton, H. M.; Graham, D. E.; Gu, B.; Hubbard, S. S.; Liang, L.; Wu, Y.; Heikoop, J. M.; Herndon, E. M.; Phelps, T. J.; Wilson, C. J.; Wullschleger, S. D.

    2015-03-01

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) for analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.

  20. Current and Projected Changes in Permafrost and Societal Impacts of Permafrost Degradation (Invited)

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Marchenko, S. S.; Brubaker, M.

    2010-12-01

    Most of the permafrost observatories in Northern Hemisphere show substantial warming of permafrost during the last 20 to 30 years. The magnitude of warming has varied with location, but was typically from 0.5 to 2°C at the depth of zero annual amplitude. Permafrost is already thawing in specific landscape settings within the southern part of the permafrost domain. Formation of new closed taliks and an increase in depth of pre-existing taliks has been observed in this area during the last 20 to 30 years. In the past, the thawing of permafrost and talik development was observed in the sporadic and less frequently in the discontinuous permafrost zones. However, very recent observations documented propagation of this process into continuous permafrost zone, especially in the Russian European North and in West Siberia. Projections of future changes in permafrost suggest that by the end of the 21st century, late-Holocene permafrost in the Northern Hemisphere may be actively thawing within the wide area of the presently discontinuous and continuous permafrost domain and some Late Pleistocene permafrost could start to thaw as well at some locations. In Alaska, the mean annual ground temperatures at 2 m depth could be above 0°C everywhere southward of latitude 66o except for small patches at high altitude in the Alaska Range and Wrangell Mountains and within the patches of ecosystem-protected permafrost. By the end of the 21st century, permafrost in Russia may be actively thawing at most locations within the Pechora River basin and within continental West Siberia. Warming and thawing of permafrost will continue to adversely affect northern communities. The phenomena related to permafrost degradation is already widely observed, including increased rates of shore line and river bank erosion, thermal slumps, and drying of tundra lakes. Some northern communities are experiencing food insecurity from the thawing of traditional underground food cellars. Others have seen

  1. Quantifying the effect size of changing environmental controls on carbon release from permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Bader, M. K. F.; Schuur, E. A. G.; Bracho, R. G.; Capek, P.; De Baets, S. L.; Diakova, K.; Ernakovich, J. G.; Hartley, I. P.; Iversen, C. M.; Kane, E. S.; Knoblauch, C.; Lupascu, M.; Natali, S.; Norby, R. J.; O'Donnell, J. A.; Roy Chowdhury, T.; Santruckova, H.; Shaver, G. R.; Sloan, V. L.; Treat, C. C.; Waldrop, M. P.

    2014-12-01

    High-latitude surface air temperatures are rising twice as fast as the global mean, causing permafrost to thaw and thereby exposing large quantities of previously frozen organic carbon (C) to microbial decomposition. Increasing temperatures in high latitude ecosystems not only increase C emissions from previously frozen C in permafrost but also indirectly affect the C cycle through changes in regional and local hydrology. Warmer temperatures increase thawing of ice-rich permafrost, causing land surface subsidence where soils become waterlogged, anoxic conditions prevail and C is released in form of anaerobic CO2 and CH4. Although substrate quality, physical protection, and nutrient availability affect C decomposition, increasing temperatures and changes in surface and sub-surface hydrology are likely the dominant factors affecting the rate and form of C release from permafrost; however, their effect size on C release is poorly quantified. We have compiled a database of 24 incubation studies with soils from active layer and permafrost from across the entire permafrost zone to quantify a) the effect size of increasing temperatures and b) the changes from aerobic to anaerobic environmental soil conditions on C release. Results from two different meta-analyses show that a 10°C increase in temperature increased C release by a factor of two in boreal forest, peatland and tundra ecosystems. Under aerobic incubation conditions, soils released on average three times more C than under anaerobic conditions with large variation among the different ecosystems. While peatlands showed similar amounts of C release under aerobic and anaerobic soil conditions, tundra and boreal forest ecosystems released up to 8 times more C under anoxic conditions. This pan-arctic synthesis shows that boreal forest and tundra soils will have a larger impact on climate change when newly thawed permafrost C decomposes in an aerobic environment compared to an anaerobic environment even when

  2. Legacy Effects of Warming on Permafrost Carbon Release

    NASA Astrophysics Data System (ADS)

    Blok, D.; Faucherre, S.; Banyasz, I.; Michelsen, A.; Elberling, B.

    2015-12-01

    Warming in arctic tundra may thaw currently frozen upper permafrost layers, potentially releasing organic carbon (C) that was preserved by cold conditions for hundreds or thousands of years. Apart from the direct control of temperature on permafrost carbon dioxide (CO2) production, warming may alter permafrost CO2 production rates through changes in either permafrost C quality or changes in microbial communities. We incubated exogenous permafrost cores in four different warming experiments in NE-Greenland. The experiments were located in both Salix- and Cassiope-dominated sub-sites and were established in 2004 (old site) and 2007 (new site). Permafrost cores were buried as "open incubators" (free vertical water flow) at both 5-10cm depth (shallow) and 15-20cm depth (deep) in both non-manipulated (control) and warmed plots (warmed) and incubated for 2 years in the field. After retrieval from the field, permafrost cores were kept undisturbed in a lab fridge for three months, after which sub-samples were incubated at 5°C in glass vials. Permafrost CO2 production rates were subsequently measured after one week, four weeks and three months incubation in the lab. We measured the legacy effects of in situ conditions, including experimental warming in the field, on permafrost respiration under controlled laboratory conditions. We assessed the effects of plot type, vegetation type, experiment age, and incubation depth on permafrost CO2 production rates. After 3 months incubation in the lab, we measured a positive effect of warming on permafrost CO2 production rates for shallow-incubated cores, but not for deep-incubated cores. Production rates of CO2 were significantly higher for cores incubated in the old site compared to the new site. Our results suggest that warming may not only directly stimulate permafrost C release, but also indirectly through the effects of infiltrating water, nutrients and microbes from near-surface soil layers.

  3. Assessment of Climate Driven Dynamics of Active Layer, Hydrological and Vegetation Status at the Qinghai-Tibet Plateau Using Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2014-12-01

    Extensive permafrost degradation starting from 1970s is observed at the Qinghai-Tibet Plateau , China. Degradation is attributed to an increase in mean annual ground temperature 0.1◦-0.5◦ C with mainly winter warming. The construction of Qinghai-Tibet Railway also influenced a state of permafrost in the area Permafrost degradation caused negative environmental consequences in the area. The areas covered by sand are expanding steadily making large concern of accelerating desertification. The general pathway of future joint dynamics of permafrost, vegetation and hydrological status at the Qinghai-Tibet Plateau is still poorly understood and foreseeable. Hydrology in the area is determined by heat-moisture dynamics of active layer. This dynamics is highly non-linear and depends as on external climatic variables temperature and precipitation, so on soil and rock properties (amount of sand against aeolian deposits in the Plateau) as well as vegetation cover, which determine thaw and freeze processes in the active layer and evaporation and run-off. SEVER DGVM was modified to include heat-moisture dynamics of active layer in the Qinghai-Tibet Plateau. SEVER DGVM imitates processes in 10 plant functional types at coarse resolution of 0.5 degrees. This model imitates behavior of average individual of each plant type in each grid cell through simulation years. Each of those grid cells processed independently. First, this model starts from "bare soil", placing a bit of each plant type and giving them some time to grow and achieve equilibrium. Then, including active layer thickness and soil moisture dynamics into this layer, it allows assessment of potential environmental dynamics in this area. Simulations demonstrate further degradation of pastureland and accelerating desertification processes in this vitally important water feed area for many Asian rivers. Negative environmental problems related to operation of Qinghai-Tibet are also assessed.

  4. CLIMATE INTERACTIONS ON INFRASTUCTURE STABILITY IN THE DISCONTINUOUS PERMAFROST ZONE

    NASA Astrophysics Data System (ADS)

    Sarrazin, D.; Allard, M.; Leclerc, A.; L'Hérault, E.

    2009-12-01

    Remote airport infrastructures in northern communities are an essential link to major cities in the South for the transportation of persons, goods, and supplies. The stability of airport infrastructures is therefore a major concern given the essential services they provide. The impact of climate warming on their stability is of even greater concern for those located in the discontinuous permafrost zone because of its sensitivity to thawing. The Kuujjuaq airport is a major hub for satellite communities in Nunavik, near Ungava Bay. It is underlined by permafrost and the principal runway consists of a paved surface. The initial goal of this study was to assess the stability of the infrastructure in the context of warming since very little information is known on permafrost distribution and its characteristics for this area. The surface geology was studied and the properties of the permafrost under the runway were determined using several methods, which include excavation with machinery, ground penetrating radar surveys, drilling and sediment analysis. Thermistor strings were installed in six boreholes to depths ranging from 4 to 8 meters and automated data logging since 2006 has provided valuable information on the thermal regime surrounding the infrastructure. This study assesses the interactions between climate and infrastructure stability over warming permafrost, discusses factors affecting the ground thermal regime, and relates the observed impacts. The soil under the runway is dominated by till and coarse glacial drift that varies in thickness from about 1.5 m to over 9 m over bedrock. The active layer has a thickness of about 3 meters and its yearly freezing and thawing rates vary depending on ground surface conditions and the surface drainage regime which are particularly affected by the sharp contrast between the paved runway surface and the unpaved shoulders and natural terrain. This spatial and temporal variability of the active layer influences the ground

  5. Climate Change and the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Schuur, E. A. G.; McGuire, A. D.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, G.; Koven, C. D.; Kuhry, P.; Lawrence, D. M.; Natali, S.; Olefeldt, D.; Romanovsky, V. E.; Schaedel, C.; Schaefer, K. M.; Turetsky, M. R.; Treat, C. C.; Vonk, J.

    2014-12-01

    historically important biospheric C sources, such as land use change, but that is only a fraction of current fossil fuel emissions. Permafrost C emissions are likely to be felt over decades to centuries as northern regions warm, making climate change happen even faster than we think based on projected emissions from human activities alone.

  6. Impact of model developments on present and future simulations of permafrost in a global land-surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S. E.; Burke, E. J.; Essery, R. L. H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P. M.; Friedlingstein, P.

    2015-08-01

    There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth system models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land-surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock and a modification to the snow scheme; the sensitivity of permafrost to these new developments is investigated in this study. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. A comparison with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated; by contrast, with a poorly resolved soil at least 50 % of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14 and 19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost loss per degree of warming reduced from 1.5 million km2 °C-1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C-1

  7. Active layer thermal regime at different vegetation covers at Lions Rump, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Almeida, Ivan C. C.; Schaefer, Carlos Ernesto G. R.; Fernandes, Raphael B. A.; Pereira, Thiago T. C.; Nieuwendam, Alexandre; Pereira, Antônio Batista

    2014-11-01

    Climate change impacts the biotic and abiotic components of polar ecosystems, affecting the stability of permafrost, active layer thickness, vegetation, and soil. This paper describes the active layer thermal regimes of two adjacent shallow boreholes, under the same soil but with two different vegetations. The study is location in Lions Rump, at King George Island, Maritime Antarctic, one of the most sensitive regions to climate change, located near the climatic limit of Antarctic permafrost. Both sites are a Turbic Cambic Cryosol formed on andesitic basalt, one under moss vegetation (Andreaea gainii, at 85 m a.s.l.) and another under lichen (Usnea sp., at 86 m a.s.l.), located 10 m apart. Ground temperature at same depths (10, 30 and 80 cm), water content at 80 cm depth and air temperature were recorded hourly between March 2009 and February 2011. The two sites showed significant differences in mean annual ground temperature for all depths. The lichen site showed a higher soil temperature amplitude compared to the moss site, with ground surface (10 cm) showing the highest daily temperature in January 2011 (7.3 °C) and the lowest daily temperature in August (- 16.5 °C). The soil temperature at the lichen site closely followed the air temperature trend. The moss site showed a higher water content at the bottommost layer, consistent with the water-saturated, low landscape position. The observed thermal buffering effect under mosses is primarily associated with higher moisture onsite, but a longer duration of the snowpack (not monitored) may also have influenced the results. Active layer thickness was approximately 150 cm at low-lying moss site, and 120 cm at well-drained lichen site. This allows to classify these soils as Cryosols (WRB) or Gelisols (Soil Taxonomy), with evident turbic features.

  8. Ground Ice in the New Crrel Permafrost Tunnel

    NASA Astrophysics Data System (ADS)

    Kanevskiy, M. Z.; Shur, Y.; Beget, J. E.; Bigelow, N. H.; Bjella, K.; Cysewski, M.; Jorgenson, T.; Sturm, M.

    2014-12-01

    Permafrost in the new CRREL tunnel was described based on mapping of massive-ice bodies and other permafrost features exposed in the tunnel as well as studying frozen sediment cores from numerous boreholes drilled around and above the tunnel and from its floor. The mapping covers 48-m long and 4-m high walls and the ceiling of the tunnel. A general cryostratigraphic map of the entire tunnel and more detailed maps of several parts of the tunnel were compiled, and ground-ice content was estimated. The tunnel presents features typical of ice-rich syngenetic permafrost (yedoma): ice wedges with a vertical extent of more than 10 m, the prevalence of micro-cryostructures, and the occurrence of large amount of almost undecomposed organic matter. The isotope composition of the Late Pleistocene ice wedges ranges between -28.7‰ and -25.5‰ for δ18O (mean value -27.3‰, n=18), while for the Holocene wedges the range is between -26.5‰ and -21.9‰ (mean value -24.3‰, n=26). Numerous bodies of thermokarst-cave ice and several layers of segregated ice (both of the Late Pleistocene age) were also sampled: δ18O values for thermokarst-cave ice vary from -25.5‰ to -19.3‰ (mean value -23.0‰, n=23), and for layers of segregated ice (ice "belts") - from -23.4‰ to -21.0‰ (mean value -21.7‰, n=9). Five main cryostratigraphic units include (described from the top): (1) active layer, 0.6 to 0.8-m thick; (2) intermediate layer (ice-rich silt, up to 0.6-m thick); (3) yedoma silts reworked by thermokarst and thermal erosion during the Holocene, 3 to 5-m thick, generally ice-poor, with thin ice wedges; (4) Late Pleistocene ice-rich yedoma silts with large ice wedges, 10 to 14-m thick; (5) ice-poor alluvial gravels. Occurrence of the ice-poor deposits in the upper permafrost protects ice-rich yedoma deposits from thermokarst development. These studies revealed significant differences in the cryostratigraphy of the new and old CRREL tunnels: permafrost in the new tunnel has

  9. Thermal state of permafrost in the Northern Yakutia: modern dynamics and spatial variability.

    NASA Astrophysics Data System (ADS)

    Kholodov, Alexander; Gilichinsky, David; Abramov, Andrey; Lupachev, Alexey; Davydov, Sergey; Romanovsky, Vladimir; Natali, Susan

    2013-04-01

    can be explained by the different surface heat transfer conditions in the various ecosystems. Due to lower thermal conductivity (0.6 - 0.8 W/(m*°K)) organic rich soils of active layer prevent propagation of summer heat into permafrost, while the sites with active layer mostly composed of mineral soil (thermal conductivity 1.2 - 1.5 W/(m*°K)) are characterized by higher permafrost temperature and higher temperature increasing rates. Thus conclusion about the higher resilience of permafrost within the ecosystems with high bioproductivity can be done. Following this conclusion we can assume, that climate induced increasing of bioproductivity can reduce the atmosphere warming impact on permafrost. Results of the observations are available for the broader scientific community and for the public at the Cooperative Arctic Data and Information Service (CADIS) data portal: www.aoncadis.ucar.edu and Geophysical Institute Permafrost Laboratory web site www.permafrostwatch.org. Current research was supported by the NSF (ARC-0520578, ARC-0632400 and ARC- 0856864) and collaborative RFFI-CRDF program (RUG1-2986-PU-10).

  10. Marine permafrost detection using galvanic electrical resistivity methods

    SciTech Connect

    Corwin, R.F.

    1983-05-01

    Because of the high electrical resistivity contrast between ice-bonded sediments (permafrost) and the same sediments in an unfrozen state, galvanic (direct-current) electrical resistivity measurements are capable of determining the depth below the sea floor of marine permafrost layers. Unlike the seismic refraction method usually used for offshore permafrost surveying, resistivity measurements can determine the thickness as well as the depth of a permafrost layer. Also, the resistivity method is usable in acoustic anomaly areas where seismic data cannot be obtained and in shallow water where air gun sources are not effective. Marine resistivity measurements may be made through the sea ice in the winter or from a stationary or moving boat in the summer. The results of field trials conducted in the Prudhoe Bay area indicated that marine permafrost depths and thicknesses determined from resistivity measurements agreed well with those obtained from borehole data.

  11. In situ contribution of old CO2 and CH4 released from soils in burnt and collapsed permafrost in Canada

    NASA Astrophysics Data System (ADS)

    Estop Aragones, Cristian; Fisher, James; Cooper, Mark; Williams, Mathew; Thierry, Aaron; Phoenix, Gareth; Murton, Julian; Charman, Dan; Hartley, Iain

    2015-04-01

    Permafrost degradation is associated with an aggradation of the active layer thus exposing previously frozen soil carbon (C) to microbial activity. This may increase the generation of greenhouse gases and potentially increase rates of climate change. However, the rate of C release remains highly uncertain, not least because few in situ studies have measured the rate at which previously frozen C is released from the soil surface, post thaw. We quantified the contribution of this "old" C being released as CO2 and CH4 from permafrost degraded soils in sporadic and discontinuous permafrost in Yukon and Northwest Territories, Canada. Firstly, we studied the effect of fire on black spruce forests as the removal of vegetation, especially mosses, may play a key role on thaw depth. Secondly, we investigated the collapse of peatland plateau after permafrost thaw which resulted in the formation of wetlands. We combined radiocarbon measurements of respired CO2 and CH4 with a novel collar-design that either included or excluded respiration from deeper soil horizons. Our results from the first field campaign show that, while excluding deeper layers did reduce the average age of the C being released from the soil surface, more than 90% of the CO2 and CH4 came from contemporary sources, even after burn and permafrost plateau collapse. Furthermore, soil cores dated using 210Pb show that the rapid accumulation of sedge peat after plateau collapse may more than compensate for any C losses from depth. Additional incubation experiments quantified the effect of temperature on respiration rates and assessed the vulnerability of permafrost soil C. Our results from the Canadian boreal contrast strongly with findings from other geographical areas emphasising the complexities of predicting the impact of permafrost thaw on the carbon balance of northern ecosystems.

  12. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  13. Thermal State of Permafrost in the Northern Yakutia: Responce on the Modern Climate Changes

    NASA Astrophysics Data System (ADS)

    Kholodov, A.; Romanovsky, V.; Gilichinsky, D.; Zheleznyak, M.; Rusakov, V.; Davydov, S.

    2009-04-01

    Permafrost continues to receive much attention as observed climate change brings many regions underlain by permafrost to the edge of widespread thawing and degradation. This process can lead both to the local (engineering construction damages, landscape or hydrological condition changes) and global (green hose gases and carbon emission to the atmosphere) negative consequences To develop a better understanding of the response of permafrost to changes in climate the International Permafrost Association launched under the International Polar Year, the Thermal State of Permafrost (TSP) project(IPY project #50). This program based on the measurements of temperatures in existing and new boreholes in order to develop a snapshot of permafrost temperatures across the entire world permafrost domain. The set of temperature data will serve as a baseline for the assessment of the rate of permafrost temperature changes and changes in permafrost boundaries under the recent climatic changes. Comparison of recently obtained data about permafrost thermal state with historical data allows us to estimate changes of this parameter took place during the last decades. Now boreholes network includes 40 boreholes in Alaska, 100 in Russia, and 13 in Central Asia (Kazakhstan, China and Mongolia). Most of the permafrost observatories show a substantial warming during the last few decades. Geothermal observation in the boreholes on the Yakutian coastal lowlands carried out since 80th years of the last century. Current research was focused on the investigation of thermal state of upper horizon of permafrost (up to 25 m) in the Yakutian coastal lowlands. Investigated region covers the area from the Lena delta to Kolyma and characterized by cold continental climate (mean annual air temperature -13.5 to -14˚ C) and continuous permafrost distribution up to 700-800 m thick. Active layer thickness is 0.3-0.6 m in some spots up to 1 m. Recently, the network for continuous geothermal observation was

  14. Uranium isotopes in Pleistocene permafrost: evaluating the age of ancient ice

    NASA Astrophysics Data System (ADS)

    Ewing, S. A.; Paces, J. B.; O'Donnell, J.; Kanevskiy, M. Z.; Aiken, G.; Jorgenson, T.; Shur, Y.; Striegl, R. G.

    2010-12-01

    the deepest core. Our results suggest that in this area of deep, ice-rich, syngenetic loess permafrost, ice bodies below the modern active layer (uppermost ~1 m) were formed during the last glacial period, starting 110 ky ago, and were preserved through subsequent fluctuations in climate and vegetation.

  15. Microbial communities of the deep unfrozen: Do microbes in taliks increase permafrost carbon vulnerability? (Invited)

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Blazewicz, S.; Jones, M.; Mcfarland, J. W.; Harden, J. W.; Euskirchen, E. S.; Turetsky, M.; Hultman, J.; Jansson, J.

    2013-12-01

    The vast frozen terrain of northern latitude ecosystems is typically thought of as being nearly biologically inert for the winter period. Yet deep within the frozen ground of northern latitude soils reside microbial communities that can remain active during the winter months. As we have shown previously, microbial communities may remain active in permafrost soils just below the freezing point of water. Though perhaps more importantly, microbial communities persist in unfrozen areas of water, soil, and sediment beneath water bodies the entire year. Microbial activity in taliks may have significant impacts on biogeochemical cycling in northern latitude ecosystems because their activity is not limited by the winter months. Here we present compositional and functional data, including long term incubation data, for microbial communities within permafrost landscapes, in permafrost and taliks, and the implications of these activities on permafrost carbon decomposition and the flux of CO2 and CH4. Our experiment was conducted at the Alaska Peatland Experiment (APEX) within the Bonanza Creek LTER in interior Alaska. Our site consists of a black spruce forest on permafrost that has degraded into thermokarst bogs at various times over the last five hundred years. We assume the parent substrate of the deep (1-1.5m) thermokarst peat was similar to the nearby forest soil and permafrost C before thaw. At this site, flux tower and autochamber data show that the thermokarst bog is a sink of CO2 , but a significant source of CH4. Yet this does not tell the whole story as these data do not fully capture microbial activity within the deep unfrozen talik layer. There is published evidence that within thermokarst bogs, relatively rapid decomposition of old forest floor material may be occurring. There are several possible mechanisms for this pattern; one possible mechanism for accelerated decomposition is the overwintering activities of microbial communities in taliks of thermokarst

  16. Estimation of Mercury Storage in Permafrost and Potential Release to the Environment by Thaw

    NASA Astrophysics Data System (ADS)

    Schuster, P. F.; Kamark, B. L.; Striegl, R. G.; Aiken, G.

    2011-12-01

    northern hemisphere suggest the potential range of THg sequestered in permafrost is 35,000 to 17 million metric tons. Using the mean THg value for all three cores and assuming an average 1 meter permafrost depth with a soil density of 0.75 g cm-3, we estimate sequestered THg to be about 1.5 million metric tons. The current estimate of annual natural and anthropogenic Hg inputs to the global atmospheric pool is about 7500 metric tons. These data suggest that permafrost contain a substantial reservoir of Hg. Efforts are under way to measure THg in up to seven more permafrost cores and associated active layers recently collected in interior Alaska to further refine the estimate of THg stocks in permafrost. In a warming northern climate, the pool of Hg currently residing in permafrost could become mobilized and undergo transformation reactions such as methylation, the main pathway by which Hg enters the food web as a toxic agent. Areas that are conducive to the methylation of Hg, typically wetlands and riparian zones, are often referred to as hot spots. If the northern climate continues to warm and permafrost continues to thaw there may be an increase in wetlands, riparian areas and sources of previously sequestered Hg that could lead to an increased number of hot spots in the northern regions of the world.

  17. Quantifying carbon, water and energy fluxes under the influence of rapidly degrading discontinuous permafrost in the Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Helbig, M.; Detto, M.; Higgins, K.; Wischnewski, K.; Chasmer, L.; Quinton, W. L.; Sonnentag, O.

    2013-12-01

    A large portion of Canada's northern landscapes, including boreal forest, peatland and tundra ecosystems, is affected by permanently cryotic ground (permafrost) that underlies a seasonally-thawed (i.e. active) layer. A widely used classification distinguishes between discontinuous (thickness varies but is typically <10 m at its southern extent) and continuous (thickness usually is >100 m) permafrost zones, consisting of less than 90% and 90-100% of permanently cryotic ground in areal extent, respectively. Recent research indicates rapid degradation of permafrost at its southern limit with associated ground surface subsidence and conversion of forest to wetland. Together these changes might cause a strong net feedback to the climate system of unknown magnitude and direction by altering important land surface characteristics and/or by altering the fluxes of carbon dioxide (CO2) and methane (CH4) between the biosphere and the atmosphere. Large knowledge gaps exist regarding the links between continued permafrost degradation, regional hydrology and topography, vegetation composition and structure, land surface properties, and CO2 and CH4 sink-source strengths. To shed light on these links, we have measured the net exchanges of CH4, CO2, water vapour and heat with an eddy covariance system at Scotty Creek, Northwest Territories, Canada, a hydrologically well-characterized watershed in the discontinuous permafrost zone. The landscape in the vicinity of the eddy covariance tower features forested permafrost peat plateaus (~40%) and permafrost-free bogs (~25%), fens (~25%) and shallow lakes (~10%). These measurements are complemented by repeated surveys of surface and frost table topography and vegetation, and by remote sensing-based footprint analysis. With our contribution, we will present the first growing season of measurements. Preliminary results for May and June 2013 suggest that daily net uptake of atmospheric CO2 at Scotty Creek peaks at 2.5 g C m-2 day-1 and is

  18. Response characteristics of vegetation and soil environment to permafrost degradation in the upstream regions of the Shule River Basin

    NASA Astrophysics Data System (ADS)

    Chen, Shengyun; Liu, Wenjie; Qin, Xiang; Liu, Yushuo; Zhang, Tongzuo; Chen, Kelong; Hu, Fengzu; Ren, Jiawen; Qin, Dahe

    2012-12-01

    Permafrost degradation exhibits striking and profound influences on the alpine ecosystem, and response characteristics of vegetation and soil environment to such degradation inevitably differ during the entire degraded periods. However, up to now, the related research is lacking in the Qinghai-Tibetan Plateau (QTP). For this reason, twenty ecological plots in the different types of permafrost zones were selected in the upstream regions of the Shule River Basin on the northeastern margin of the QTP. Vegetation characteristics (species diversity, community coverage and biomass etc) and topsoil environment (temperature (ST), water content (SW), mechanical composition (SMC), culturable microorganism (SCM), organic carbon (SOC) and total nitrogen (TN) contents and so on), as well as active layer thickness (ALT) were investigated in late July 2009 and 2010. A spatial-temporal shifts method (the spatial pattern that is represented by different types of permafrost shifting to the temporal series that stands for different stages of permafrost degradation) has been used to discuss response characteristics of vegetation and topsoil environment throughout the entire permafrost degradation. The results showed that (1) ST of 0-40 cm depth and ALT gradually increased from highly stable and stable permafrost (H-SP) to unstable permafrost (UP). SW increased initially and then decreased, and SOC content and the quantities of SCM at a depth of 0-20 cm first decreased and then increased, whereas TN content and SMC showed obscure trends throughout the stages of permafrost degradation with a stability decline from H-SP to extremely unstable permafrost (EUP); (2) further, species diversity, community coverage and biomass first increased and then decreased in the stages from H-SP to EUP; (3) in the alpine meadow ecosystem, SOC and TN contents increased initially and then decreased, soil sandy fractions gradually increased with stages of permafrost degradation from substable (SSP) to

  19. High morphogenic activity in the permafrost-affected rock walls of the Mont Blanc massif during the 2015 summer heat wave

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Magnin, Florence; Deline, Philip

    2016-04-01

    In order to test the geomorphological hypothesis on the link between permafrost degradation and rock wall destabilisation, we survey all the rockfalls that occur in the central part of the Mont-Blanc massif using a network of observers since 2007. 511 rockfalls (100 < V < 45,000 m3) have been documented, year 2015 included. Between 2007 and 2014, the average number of destabilizations was 44 (from 17 in 2014 with a cold summer to 72 in 2009 with a relatively hot summer). In 2015, 160 events were recorded i.e. 4 times more than the annual average of the previous years. That makes the year 2015 similar to 2003 that was characterized by its summer heatwave triggering 152 rockfalls in the area currently covered by the network of observers, as shown by the analysis of a SPOT-5 image. Observations of 2015 are discussed and crossed with a statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period, implemented on a 4-m-resolution DEM of the Mont Blanc massif, and temperature measurements in three 10-m-deep boreholes at the Aiguille du Midi (3842 m a.s.l.), where the summer 2015 active layers have been the thickest since the start of measurements in 2009 (e.g. 3.6 m in the NE face against 2.9 m in average during the previous years). Before 2015, 90 % of the inventoried rockfalls occurred in areas where MARST is in the range -5 to 1°C, whereas only 50 % of the whole rock wall area above 2000 m a.s.l. covers this temperature range. With an air 0°C isotherm which sometimes exceeded the summit of Mont Blanc (4809 m a.s.l.) during the 2015 Summer, conditions were particularly unfavorable for mountaineering. Numerous rescues were carried out to climbers technically blocked by uncommon conditions or injured by rockfalls. On the normal route to the summit of Mont Blanc, two administrative closures of the Goûter hut (3835 m a.s.l.) were necessary to prevent climbers from the huge risk of rockfalls in the access couloir, known for its rockfall

  20. Does mountain permafrost in Mongolia control water availability?

    NASA Astrophysics Data System (ADS)

    Menzel, Lucas; Kopp, Benjamin; Munkhjargal, Munkhdavaa

    2016-04-01

    faster runoff responses during and after summer rainfall. As the active layer depth increases, the soil water storage capacity decreases, which may adversely impact forest regeneration. Therefore, permafrost and forest occurrence appears to be a self-regulating system that rapidly degrades after forest fire. How these processes affect water availability on a larger scale however remains a challenging research question in that region.

  1. The Effects of Permafrost Thaw on Organic Matter Quality and Availability Along a Hill Slope in Northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spawn, S.; Ludwig, S.; Schade, J. D.; Natali, S.

    2014-12-01

    Climate warming and permafrost thaw in northeastern Siberia are expected to change the quantity and quality of organic matter (OM) transported through watersheds, releasing previously frozen carbon (C) to biologically available pool. Hill slopes have shown to influence the distribution of OM, resulting in a downhill accumulation of available C and nutrients relative to uphill. Here we examine how future permafrost thaw will change OM quality and availability along a hill slope in a larch-dominated watershed. We collected soils from the thawed organic and mineral layers, and 1m deep permafrost cores for dissolved organic C (DOC) and total dissolved N (TDN), C composition from measures of colored dissolved organic matter (CDOM), DOC lability from biodegradable DOC (BDOC) incubations, C and nutrient availability from extracellular-enzyme assays (EEA's), and microbial respiration from aerobic soil incubations. Here we show that organic soils (O), in comparison to mineral soils (M) and permafrost (P) are the most abundant source of C (avg O DOC: 51.6mg/L), exhibiting low molecular complexity (avg O SUVA254: 4.05) and high quality. Evidence suggests permafrost OM may be an equally abundant, and more labile source of C than mineral soils (highest P DOC: 16.1 mg/L, lowest P SUVA254: 6.32; median M DOC: 18.5 mg/L, median M SUVA254: 24.0). Furthermore, we demonstrate that there may be a positive relationship in the rate of C mineralization and distance downhill, showing 15-30% greater CO2 production/gC downhill relative to uphill. Evidence also supports a similar relationship in permafrost DOC content and molecular complexity, showing more DOC of a lower complexity further downhill. This indicates DOC transport may have been occurring through the active layer and downhill during ice-rich permafrost formation, and may supply a labile source of carbon to lowland areas and adjacent stream networks upon thaw.

  2. Permafrost and Periglacial Activity Distribution and Geothermal Anomalies in the Chachani and El Misti Volcanoes (Southern Peru)

    NASA Astrophysics Data System (ADS)

    Palacios, D.; Andrés, N.; Úbeda, J.; Alcalá, J.

    2009-04-01

    because it never existed. In the latter case, considering its altitude and the conditions in the extinct Chachani and Pichupichu volcanoes nearby, that no evidence is available could be due to the action of geothermal heat, as this is an active volcano. With this aim, three thermal stations were established on El Misti, at altitudes of 4780, 5438 and 5740 m, consisting of an air temperature sensor and a ground temperature sensor, installed at a depth of 20 cm. When possible, a third sensor was installed in the ground at a depth of 40 to 100 cm. Three stations were also installed on the Chachani volcano, at altitudes of 4871, 5013 and 5352 m, with the same orientation where possible, and with the same sensor types and positions. Data was collected during the period 2004-2008. Results obtained for the Chachani volcano during the four complete years for which data is available are fairly uniform, despite the occasional failure of some sensors. For the air temperature, the 0°C mean annual temperature (MAAT) isotherm is situated at around 5000 m altitude, and the -2°C isotherm, which we consider the limit of probable permafrost (Palacios et al. 2007), at around 5300 m. At 5352 m, permafrost was not detected at a depth of 40 cm, with 78 days above 0°C, although it may exist and may be detectable using a deeper probe. The daily temperature range is always very wide, with an average daily range of around 8°C and a maximum daily range of up to 20°C. The number of days where the temperature oscillates above and below 0°C (freeze-thaw cycles) is practically nil at an altitude of 4870 m (between 0 and 75 cycles/year), and maximum at 5013 m (around 200 cycles/year). It then decreases as the altitude increases, with fewer than 150 cycles/year at 5352 m. The data from the ground sensors shows that the mean annual temperatures from the ground thermometers (MAGTs) are slightly higher (2°C on average) than from the air thermometers, including those at a depth of 100 cm. In

  3. Remotely Sensed Active Layer Thickness (ReSALT) from InSAR data near Toolik Lake in Northern Alaska

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Liu, L.; Schaefer, K. M.; Parsekian, A.; Jafarov, E. E.; Zebker, H. A.; Zhang, T.

    2014-12-01

    Toolik Field Station is built on spatially continuous permafrost on the north slope of Alaska. Seasonal surface subsidence and uplift occurs in permafrost regions due to thaw settlement and frost heave as the active layer thaws and refreezes. Using L-band (23.6 cm wavelength) InSAR data from ALOS-PALSAR acquired between 2006 and 2010, we use a small-baseline subset (SBAS) method to estimate seasonal surface subsidence and retrieve fine-resolution maps of active layer thickness (ALT) for a ~25x25 km area surrounding Toolik Field Station (located at 68.63°N, -149.60°E). We compare these remotely sensed ALT (ReSALT) results with in situ data from: 1) the Circumpolar Active Layer Monitoring (CALM) network showing mean ALT of ~40-50 cm in the region surrounding Toolik Field Station, corresponding to seasonal subsidence of 1 to 2 cm, and 2) mechanical probing measurements of ALT, obtained during field work in the study area in August 2014. We also solve for secular subsidence trends from the InSAR data. The trends are close to zero in most places, but larger subsidence trends in some isolated areas could be due to thermokarst processes (long-term thawing of ice-rich permafrost). We note, however, that downslope motion due to gelifluction cannot be separated from vertical thermokarst-related deformation without incorporating InSAR measurements from multiple look angles. Two key limitations to our method are the spatial variability of volumetric soil moisture content and the accuracy of the DEM needed to correct for topographic effects. We investigate the use of bulk volumetric water content inferred from ground-penetrating radar (GPR) data to improve the ReSALT retrieval algorithm. We also quantify the effect of DEM accuracy on ReSALT uncertainties, leads to requirements for DEM accuracy in InSAR-based ALT retrieval.

  4. Resilience of Arctic Permafrost Carbon in Mackenzie River Basin: An Incubation Experiment to Observe Priming Potentials and Biodegradability of Arctic Permafrost Peatlands

    NASA Astrophysics Data System (ADS)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2015-12-01

    Arctic permafrost zones cover 25% of the Northern Hemisphere and hold 1672Pg of soil carbon (C) with 277Pg in Arctic permafrost peatlands, which is 1/3 of the CO2 in the atmosphere. This currently protected C is a potential source for increased emissions in a warmer climate. Longer growing seasons resulting in increased plant productivity above and below ground may create new labile C inputs with the potential to affect mineralization of previously stable SOM, known as the priming effect. This study examined the response of soil respiration to labile substrate addition in carbon-rich (42-48 %C) permafrost peatland soils along a N-S transect in the central Mackenzie River Basin (69.2-62.6°N). Active layer and near surface soils (surface Δ14C values > -140.0) were collected from four sites between -10.5 and -5.2 MAT. Soils were spiked with 0.5 mg D-glucose g-1soil, and incubated at 10°C for 23 days to determine potential, short term (i.e., apparent) priming effects. On average glucose addition increased respiration in all samples. One site showed priming evidence in active layer soils despite one-way ANOVA not illustrating statistically significant differences between control and treated final cumulative CO2. Apparent priming effects were seen in two near surface permafrost samples, however cumulative increases in CO2 were not identified as significant. When all results from all sites and depths were considered, the addition of glucose showed no significant effect on total CO2 production relative to controls (p=0.957), suggesting that these sites may be resilient to increased inputs in that little priming evidence was observed. To test the idea that the soils that showed priming effects are of poorer quality, we conducted an additional incubation experiment to explore the biodegradability of these permafrost peatland soils. Soils from these four sites were inoculated and incubated for 17 days. The two sites with observed priming showed the highest biodegradability

  5. Predicting permafrost stability in northern peatlands with climate change and disturbance

    NASA Astrophysics Data System (ADS)

    Treat, C. C.; Wisser, D.; Marchenko, S.; Humphreys, E. R.; Frolking, S. E.; Huemmrich, K. F.

    2010-12-01

    Permafrost thaw may cause significant carbon loss from northern organic soils, a large terrestrial carbon pool. To predict permafrost stability in organic soils, we adapted an existing soil temperature model (GIPL 2.0) to peatlands by including a three-layer peat soil column and dynamic soil moisture. GIPL 2.0 numerically solves the 1-dimensional heat transfer equation. We evaluated the model at Daring Lake Fen, a sedge-dominated Arctic Fen in the Northwest Territories, Canada and College Peat, a permafrost muskeg in Fairbanks, AK. We examined the sensitivity of the model to seasonality and total soil moisture, thermal properties and organic layer thickness. We also evaluated active layer depth for future climate scenarios. Finally, we compared the relative magnitude of climate change impacts on soil temperatures to the effects of current and predicted wildfire. We simulated wildfire by removing the surface soil (5 - 15 cm) and increasing air temperatures post-fire due to changes in surface energy balance. We found that air temperature, rather than changes in soil moisture, was the most important predictor of changes in active layer depth and permafrost stability. Also, the seasonality of soil moisture was relatively unimportant, while changes in temperature seasonality were important to active layer depths. In the climate change scenarios (using IPCC scenario A1b), active layer depths and the length of the growing season (determined as soil thawed at 10 cm) increased significantly by 2100. Warmer soil temperatures at depth due to higher air temperatures resulted in an increase of liquid water in the soil and the possibility of increased biological activity. Soil temperatures and active layer depths increased following disturbance, but the increases were relatively short-lived (decades) and were strongly correlated with post-fire temperature changes. The simulated removal of a shallow layer of surface organic soil following disturbance has limited long-term effects

  6. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  7. A projection of permafrost degradation on the Tibetan Plateau during the 21st century

    NASA Astrophysics Data System (ADS)

    Guo, Donglin; Wang, Huijun; Li, Duo

    2012-03-01

    The current distribution and future change of permafrost on the Tibetan Plateau were examined using the Community Land Model version 4 (CLM4) with explicit treatment of frozen soil processes. When forced off-line with archived high-resolution data from The Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 3 nested within the Model for Interdisciplinary Research on Climate 3.2 HiRes, the CLM4 produced a near-surface permafrost area of 122.2 × 104 km2 for the Tibetan Plateau. This area compares reasonably with area estimates of 126.7 × 104 km2 for the Plateau frozen soil map. In response to the simulated strong Plateau warming (approximately 0.58°C per decade over the Tibetan Plateau for the period from 1980 to 2100 under the A1B greenhouse gas emissions scenario), the near-surface permafrost area is projected to decrease by approximately 39% by the mid-21st century and by approximately 81% by the end of the 21st century. The near-surface permafrost area exhibits a significant decreasing linear trend, with a rate of decrease of 9.9 × 104 km2 per decade. The simulated deep permafrost area remains longer than the near-surface permafrost for the same period. The active layer thickness of 0.5-1.5 m found in the present-day increases to approximately 1.5-2.0 m by the period of 2030-2050. This increase will continue and reach a level of 2.0-3.5 m by the period of 2080-2100. Surface runoff decreases but subsurface runoff increases, both relative to the difference between precipitation and evapotranspiration. This is related to the fact that the decrease in ground ice content, as caused by permafrost degradation, facilitates the percolation of more water to deeper soil layers, thus resulting in the reallocation of runoff. These results provide useful references for evaluating the level of permafrost degradation in response to climate warming on the Tibetan Plateau.

  8. Impact of model developments on present and future simulations of permafrost in a global land-surface model

    NASA Astrophysics Data System (ADS)

    Chadburn, S. E.; Burke, E. J.; Essery, R. L. H.; Boike, J.; Langer, M.; Heikenfeld, M.; Cox, P. M.; Friedlingstein, P.

    2015-03-01

    There is a large amount of organic carbon stored in permafrost in the northern high latitudes, which may become vulnerable to microbial decomposition under future climate warming. In order to estimate this potential carbon-climate feedback it is necessary to correctly simulate the physical dynamics of permafrost within global Earth System Models (ESMs) and to determine the rate at which it will thaw. Additional new processes within JULES, the land surface scheme of the UK ESM (UKESM), include a representation of organic soils, moss and bedrock, and a modification to the snow scheme. The impact of a higher vertical soil resolution and deeper soil column is also considered. Evaluation against a large group of sites shows the annual cycle of soil temperatures is approximately 25 % too large in the standard JULES version, but this error is corrected by the model improvements, in particular by deeper soil, organic soils, moss and the modified snow scheme. Comparing with active layer monitoring sites shows that the active layer is on average just over 1 m too deep in the standard model version, and this bias is reduced by 70 cm in the improved version. Increasing the soil vertical resolution allows the full range of active layer depths to be simulated, where by contrast with a poorly resolved soil, at least 50% of the permafrost area has a maximum thaw depth at the centre of the bottom soil layer. Thus all the model modifications are seen to improve the permafrost simulations. Historical permafrost area corresponds fairly well to observations in all simulations, covering an area between 14-19 million km2. Simulations under two future climate scenarios show a reduced sensitivity of permafrost degradation to temperature, with the near-surface permafrost lost per degree of warming reduced from 1.5 million km2 °C-1 in the standard version of JULES to between 1.1 and 1.2 million km2 °C-1 in the new model version. However, the near-surface permafrost area is still projected

  9. The impacts of permafrost thaw on land-atmosphere greenhouse gas exchange

    SciTech Connect

    Hayes, Daniel J; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry; Wullschleger, Stan

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon stored in previously frozen soil organic matter (SOM) would be a strong positive feedback to climate1. As the northern permafrost region experiences double the rate of warming as the rest of the Earth2, the vast amount of carbon in permafrost soils3 is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases (GHG). Here, we employ a process-based model simulation experiment to assess the net effect of this so-called permafrost carbon feedback (PCF) in recent decades. Results show a wide-spread increase in the depth to permafrost between 1990 and 2006, with simulated active layer thickness (ALT) capturing the mean and spatial variability of the observational data. Analysis of the simulation experiment provides an estimate of a 2.8 mm/yr increase in permafrost depth, which translates to 281 TgC/yr thawed from previously frozen SOM. Overall, we estimate a net GHG forcing of 534 MtCO2eq/yr directly tied to ALT dynamics, while accounting for CO2 (562 MtCO2eq/yr) and CH4 (52 MtCO2eq/yr) release as well as CO2 uptake by vegetation (-80 MtCO2eq/yr). This net forcing represents a significant factor in the estimated 640 MtCO2eq/yr pan-arctic GHG source4, and an additional 6.9% contribution on top of the combined 7792 MtCO2eq/yr fossil fuel emissions from the eight Arctic nations over this time period5.

  10. Thermal State of Permafrost in the Northern Yakutia: Responce on the Modern Climate Changes

    NASA Astrophysics Data System (ADS)

    Kholodov, A.; Romanovsky, V.; Gilichinsky, D.; Zheleznyak, M.; Rusakov, V.; Davydov, S.

    2009-04-01

    Permafrost continues to receive much attention as observed climate change brings many regions underlain by permafrost to the edge of widespread thawing and degradation. This process can lead both to the local (engineering construction damages, landscape or hydrological condition changes) and global (green hose gases and carbon emission to the atmosphere) negative consequences To develop a better understanding of the response of permafrost to changes in climate the International Permafrost Association launched under the International Polar Year, the Thermal State of Permafrost (TSP) project(IPY project #50). This program based on the measurements of temperatures in existing and new boreholes in order to develop a snapshot of permafrost temperatures across the entire world permafrost domain. The set of temperature data will serve as a baseline for the assessment of the rate of permafrost temperature changes and changes in permafrost boundaries under the recent climatic changes. Comparison of recently obtained data about permafrost thermal state with historical data allows us to estimate changes of this parameter took place during the last decades. Now boreholes network includes 40 boreholes in Alaska, 100 in Russia, and 13 in Central Asia (Kazakhstan, China and Mongolia). Most of the permafrost observatories show a substantial warming during the last few decades. Geothermal observation in the boreholes on the Yakutian coastal lowlands carried out since 80th years of the last century. Current research was focused on the investigation of thermal state of upper horizon of permafrost (up to 25 m) in the Yakutian coastal lowlands. Investigated region covers the area from the Lena delta to Kolyma and characterized by cold continental climate (mean annual air temperature -13.5 to -14˚ C) and continuous permafrost distribution up to 700-800 m thick. Active layer thickness is 0.3-0.6 m in some spots up to 1 m. Recently, the network for continuous geothermal observation was

  11. Dynamics of the Thermal State of Active Layer at the Alaska North Slope and Northern Yakutia

    NASA Astrophysics Data System (ADS)

    Kholodov, A. L.; Romanovsky, V. E.; Marchenko, S.; Shiklomanov, N. I.; Fedorov-Davydov, D.

    2010-12-01

    Dynamics of the active layer is one of the most important indexes, reflecting permafrost response to the modern climate changes. Monitoring of active layer thickness dynamics is the main goal of CALM (Circumpolar Active Layer Monitoring) project. But, from different points of view, it is very important to know not only maximal depth of seasonal thawing but also dynamics of thermal field of active layer and duration of its staying in the unfrozen state. Current research was aimed on the analyzing data of temperature measurements have been done during the more then 10 years at the North Slope of Brooks Range (Alaska) and 2 years at the selected sites at the Northern Yakutia (Russia) and its comparison with the 17 to 10 years records of active layer thickness dynamics at the corresponding sites (http://www.udel.edu/Geography/calm/data/north.html). The area of investigation characterized by the typical tundra landscape and different kinds of micro topography. Reported observation sites located at the latitudinal range from 68.5 to 70.3N in Alaska and 70.5 to 71.75N in the Northern Yakutia. Observation have been done using the 1 meter long MRC probe with 11 sensors (every 10 cm) and single Campbell SCI A107 sensors in Alaska and 2-channel HOBO U23 data loggers with TMC-HD thermistors in the Northern Yakutia. Analyses of CALM data show what most observation sites in Alaska (except located near the Brooks Range and at the Arctic Ocean coast) do not subjected to the significant sustainable changes of active layer thickness over the last 10 years. At the same time active layer thickness at the Yakutian sites was increasing. Temperature observations show decreasing of the mean annual temperature at the average depth of active layer bottom at the Alaskan sites. But, because of general trend to increasing of period of thawing it does not lead to the decreasing of active layer thickness. Recent equipment deployment at the Tiksi and Allaikha sites (Northern Yakutia) does not

  12. River mobility in a permafrost dominated floodplain

    NASA Astrophysics Data System (ADS)

    Rowland, J.; Wilson, C.; Brumby, S.; Pope, P.

    2009-04-01

    Along arctic coastlines, recent studies have attributed dramatic increases in the rates of shoreline erosion to global climate change and permafrost degradation. While across much of the arctic, changes in the size and number of lakes have been interpreted as the result of permafrost degradation altering surface water dynamics. The potential influence of climate change and permafrost thawing on the mobility and form of arctic rivers, however, has been relatively unexplored to date. In rivers located within permafrost, some to potentially most, of the cohesive bank strength may be derived from frozen materials. It is likely that, as permafrost thaws, river bank erosion may increase, in turn influencing both migration rates and channel planform. Using automated feature extraction software (GeniePro), we quantified the of the mobility of a 200 km reach of the Yukon River through the Yukon Flats region located just north of Fairbanks, Alaska, USA. The Yukon Flats is an area of comprised of both continuous and discontinuous permafrost. Based on both changes in lake distributions and wintertime river base flows, it has been suggested that permafrost in this area has been experiencing recent thawing. In this reach, the Yukon River transitions from a 2 km wide braided channel to a multi-thread meandering channel where individual threads are approximately 1 km wide and the floodplain preserves prior meander cutoffs and oxbow lakes. Preliminary results from thirty years of LANDSAT imagery shows a surprising stability of channel location (at the image resolution of 30m/pixel) given the channel form. Within the braid-belt there is localized relocation of channel threads and mid-channel islands, though along much of the reach, the change in the location of channels banks is close to the resolution of the imagery. At the most active bends, bank migration rates range from 0.007 to 0.02 channel widths per year. These rates are comparable to system wide average rates observed on

  13. Layer-by-layer nanoencapsulation of camptothecin with improved activity

    PubMed Central

    Parekh, Gaurav; Pattekari, Pravin; Joshi, Chaitanya; Shutava, Tatsiana; DeCoster, Mark; Levchenko, Tatyana; Torchilin, Vladimir; Lvov, Yuri

    2014-01-01

    160 nm nanocapsules containing up to 60% of camptothecin in the core and 7–8 polyelectrolyte bilayers in the shell were produced by washless layer-by-layer assembly of heparin and block-copolymer of poly-L-lysine and polyethylene glycol. The outer surface of the nanocapsules was additionally modified with polyethylene glycol of 5 kDa or 20 kDa molecular weight to attain protein resistant properties, colloidal stability in serum and prolonged release of the drug from the capsules. An advantage of the LbL coated capsules is the preservation of camptothecin lactone form with the shell assembly starting at acidic pH and improved chemical stability of encapsulated drug at neutral and basic pH, especially in the presence of albumin that makes such formulation more active than free camptothecin. LbL nanocapsules preserve the camptothecin lactone form at pH 7.4 resulting in triple activity of the drug toward CRL2303 glioblastoma cell. PMID:24508806

  14. Modeling the effects of fire severity and climate warming on active layer and soil carbon dynamics of black spruce forests across the landscape in interior Alaska

    USGS Publications Warehouse

    Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  15. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    NASA Astrophysics Data System (ADS)

    Genet, H.; McGuire, A. D.; Barrett, K.; Breen, A.; Euskirchen, E. S.; Johnstone, J. F.; Kasischke, E. S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, T. S.; Schuur, A. E. G.; Turetsky, M. R.; Yuan, F.

    2013-12-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  16. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    NASA Astrophysics Data System (ADS)

    Johansson, Margareta; Callaghan, Terry V.; Bosiö, Julia; Åkerman, H. Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R.

    2013-09-01

    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season.

  17. Influences and interactions of inundation, peat, and snow on active layer thickness: Modeling Archive

    DOE Data Explorer

    Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley

    2016-04-21

    This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.

  18. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment.

    PubMed

    Nowinski, Nicole S; Taneva, Lina; Trumbore, Susan E; Welker, Jeffrey M

    2010-07-01

    A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2-3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (Delta(14)C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO(2) efflux by partitioning respiration into autotrophic and heterotrophic components. Delta(14)C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO(2) sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45-55 cm thaw depth), while CO(2) from the ambient snow areas was approximately 100 years old (30-cm thaw depth). Heterotrophic respiration Delta(14)C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO(2) in the atmosphere. PMID:20084398

  19. Threshold driven response of permafrost in Northern Eurasia to climate and environmental change: from conceptual model to quantitative assessment

    NASA Astrophysics Data System (ADS)

    Anisimov, Oleg; Kokorev, Vasiliy; Reneva, Svetlana; Shiklomanov, Nikolai

    2010-05-01

    thermal conductivity and leads to enhanced active-layer thickness, soil depression, and ponding. Above certain threshold the process becomes self-sustained ultimately leading to degradation of permafrost. Threshold mechanisms are intrinsically probabilistic, and new type of permafrost model has been developed to address them. Unlike conventional models, it takes into account the small-scale spatial variability of soil, snow, and biophysiographic parameters in the calculations of the statistical ensemble representing potential states of permafrost under the prescribed conditions. Such model was used to assess changes in permafrost in Northern Eurasia under current and projected for the future climatic conditions. Results indicate that 1-2° C warming will lead to large-scale degradation of the frozen ground in the southernmost zone of sporadic permafrost. In continuous and discontinuous zones patchy effects will be manifested in vegetation changes at individual locations and subsequent local retreat of permafrost. Under sustained warming such changes will affect larger areas ultimately changing the landscape while local biophysiographic factors, i.e. soil, topography, slope, etc., will still play important role. Warming by more than 2° C may lead to completely different vegetation patterns in the entire Arctic, with new biomes and taller and more productive spices replacing typical plant forms. Together with the direct warming effect it will make existence of near-surface permafrost virtually impossible in the modern sporadic and large part of the discontinuous zones, although at larger depths relict frozen ground will remain for centuries. Support for this research comes from the Russian foundation for basic research (project 09-05-13544), Otto-Schmidt polar research laboratory (project OSL-10-02), and NASA (project NNX08AP30G).

  20. Microbial community response to permafrost thaw after wildfire in an Alaskan upland boreal forest

    NASA Astrophysics Data System (ADS)

    Tas, N.; Jorgenson, M. T.; Wang, S.; Berhe, A. A.; Wickland, K. P.; Waldrop, M. P.; Jansson, J. K.

    2012-12-01

    Fire is a major factor controlling the long-term dynamics of soil carbon in Alaskan boreal forests. Wildfire not only contributes to a significant global emission of greenhouse gasses but also can indirectly result in the deepening of the active layer and thawing of near-surface permafrost due to reductions in organic layer depth and increases in heat flux through soil. Although boreal ecosystems are fire-adapted, increased fire frequency and rising global temperatures may result in warmer soils and therefore increase the metabolic rates of decomposer microbes and result in accelerated permafrost decomposition and greenhouse gas fluxes. In addition to fire-mediated changes in soil and vegetation structure, changes in the soil microbial community structure are likely to have consequences for rates of soil carbon cycling. In this study we aimed to define the impact of fire on soil microbial communities in an upland black spruce forest and to assess microbial metabolic potential for soil respiration, methanogenesis, and nitrous oxide (N2O) flux. Soil samples from two fire impacted and three control (unburned) locations were collected near Nome Creek, AK, an upland moderately drained black spruce forest. This location was within the Boundary fire that burned between mid-June and the end of August 2004. Soil temperature measurements from before and after the fire showed that soils were warmer after the fire event and the permafrost thawed below 1m. At each sampling location, soil and permafrost samples were collected every 10 cm to a depth of 1 m. Besides biochemical characterization, CO2, CH4, N2O fluxes and potential activities of enzymes involved in extracellular decomposition of complex organic molecules (hemicellulose, chitin and lignin) were measured. The microbial community composition in the samples was determined by sequencing of 16S rRNA genes and microbial metabolic potential was assessed via sequencing of total genomic DNA (metagenomics) in selected active

  1. Impact of permafrost thaw on Arctic tundra pond geochemistry

    NASA Astrophysics Data System (ADS)

    Reyes, F.; Lougheed, V.

    2012-12-01

    Increasing evidence indicates the arctic tundra is changing physically, biologically, and chemically due to climate warming. With a warmer climate, permafrost is expected to thaw and influence the chemistry of arctic aquatic ecosystems. However, knowledge is limited on how geochemistry of arctic tundra pond ecosystems will respond. By re-sampling historical IBP ponds in Barrow, AK first sampled in the 1970s, previous studies have shown an increase in water temperature, nutrients and algal biomass through time. Results from this study indicate an increase of Ca, Mg, and Na in the water column, and a decrease in pH relative to the 1970s, suggesting an increased rate and magnitude of carbonate and Mg release. Seasonal trends were also examined to understand what processes, such as mineral weathering, peat decomposition and evaporation, were currently most influential in determining pond geochemistry. An increase in Ca/Na molar ratios, and carbonate and magnesium concentrations indicates that these tundra ponds are experiencing greater carbonate weathering compared to the 1970s and the rate of carbonate weathering increases in ponds as the summer progresses. However, increasing dissolved organic carbon (DOC) concentrations originating from peat decomposition are likely neutralizing additional inputs of carbonate, causing pond pH to decrease and exacerbating mineral weathering. A strong positive relationship between element concentrations and active layer pond thaw depth suggests that the origin of these additional solutes is likely from permafrost thaw. Active layer thaw depth has increased substantially over the past 40 years in the IBP ponds. Chloride/Bromide molar ratios and Deuterium/ 18-Oxygen isotope ratios will be used to determine the degree of evaporation occurring in tundra ponds. Ultimately, this study provides evidence for how geochemistry can identify the sources of chemical inputs to Arctic ponds affected by climate change and permafrost thaw.

  2. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

    SciTech Connect

    Genet, Helene; McGuire, A. David; Barrett, K.; Breen, Amy; Euskirchen, Eugenie S; Johnstone, J. F.; Kasischke, Eric S.; Melvin, A. M.; Bennett, A.; Mack, M. C.; Rupp, Scott T.; Schuur, Edward; Turetsky, M. R.; Yuan, Fengming

    2013-01-01

    There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layercaused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness

  3. In Situ Contribution of Old Respired CO2 from Soils in Burnt and Collapsed Permafrost in Canada

    NASA Astrophysics Data System (ADS)

    Estop-Aragones, C.; Fisher, J. P.; Cooper, M.; Thierry, A.; Williams, M. D.; Phoenix, G. K.; Murton, J.; Charman, D.; Hartley, I. P.

    2014-12-01

    Permafrost degradation is associated with an aggradation of the active layer thus exposing previously frozen soil carbon (C) to microbial activity. This may increase the generation of greenhouse gases and potentially increase rates of climate change. However, the rate of C release remains highly uncertain, not least because few in situ studies have measured the rate at which previously frozen C is released from the soil surface, post thaw. We quantified the contribution of this "old" C being released as CO2 from permafrost degraded soils in sporadic and discontinuous permafrost in Yukon and Northwest Territories, Canada. Firstly, we studied the effect of fire on black spruce forests as the removal of vegetation, especially mosses, may play a key role on thaw depth. Secondly, we investigated the collapse of peatland plateau after permafrost thaw which resulted in the formation of wetlands. We combined radiocarbon measurements of respired CO2 with a novel collar-design that either included or excluded CO2 released from deeper soil horizons. Our results show that, while excluding deeper layers did reduce the average age of the C being released from the soil surface, more than 90% of the CO2 came from contemporary sources, even after burnt and permafrost plateau collapse. Furthermore, soil cores dated using 210Pb show that the rapid accumulation of sedge peat after plateau collapse may more than compensate for any C losses from depth. Our results from the Canadian boreal contrast strongly with findings from other geographical areas emphasising the complexities of predicting the impact of permafrost thaw on the carbon balance of northern ecosystems.

  4. Urban Geocryology: Mapping Urban-Rural Contrasts in Active-Layer Thickness, Barrow Penninsula, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Klene, A. E.; Nelson, F. E.

    2014-12-01

    As development proceeds in the high latitudes, information about interactions between urban influences and the thickness of the active layer above permafrost becomes vital, particularly given the possibility of increasing temperatures accompanying climate change. Permafrost characteristics are often mapped at small geographical scales (i.e., over large areas), at low resolution, and without extensive field validation. Although maps of active-layer thickness (ALT) have been created for areas of relatively undisturbed terrain, this has rarely been done within urbanized areas, even though ALT is a critical factor in the design of roads, buildings, pipelines, and other elements of infrastructure. The need for detailed maps of ALT is emphasized in work on potential hazards in permafrost regions associated with global warming scenarios. Northern Alaska is a region considered to be at moderate to high risk for thaw-induced damage under climatic warming. The Native Village of Barrow (71°17'44"N; 156°45' 59"W), the economic, transportation, and administrative hub of the North Slope Borough, is the northernmost community in the USA, and the largest native settlement in the circum-Arctic. A winter urban heat island in Barrow, earlier snowmelt in the village, and dust deposition downwind of gravel pads and roads are all urban effects that could increase ALT. A recent empirical study documented a 17 to 41 cm difference in ALT between locations in the village of Barrow and surrounding undeveloped tundra, even in similar land-cover classes. We mapped ALT in the Barrow Peninsula, with particular attention to contrasts between the urbanized village and relatively undisturbed tundra in the nearby Barrow Environmental Observatory. The modified Berggren solution, an advanced analytic solution to the general Stefan problem of calculating frost and thaw depth, was used in a geographic context to map ALT over the 150 km² area investigated in the Barrow Urban Heat Island Study. The

  5. Monitoring active layer thaw and freeze-back in four different periglacial landforms in Svalbard using Electrical Resistivity Tomography (ERT)

    NASA Astrophysics Data System (ADS)

    Juliussen, H.; Oswald, A.; Watanabe, T.; Christiansen, H. H.; Matsuoka, N.

    2012-04-01

    Thawing and freezing of the active layer has an important impact on the underlying permafrost through latent heat effects and changes in effective thermal conductivity and mechanisms of heat transport. Information on the active layer freeze/thaw dynamics is therefore important to understand the permafrost response to climate variability. In addition, active layer deepening may be an early sign of permafrost degradation, making monitoring programs such as the CALM network important. Active layer depths are traditionally measured by mechanical probing in fine-grained sediments or by vertical arrays of ground temperature sensors. The first technique prevents measurements to be made in stony sediments, while the latter technique gives only a point value of the active layer depth. In this study we have tested Electrical Resistivity Tomography (ERT) as a tool to measure and monitor active layer depth and freeze/thaw dynamics. The electrical resistivity of the ground is largely dependent on the unfrozen water content, making resistivity monitoring a potentially valuable tool to delineate freeze and thaw extent, and patterns in soil moisture. The results presented here are part of the IPY 2007-2009 research project 'Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard' (TSP NORWAY) and the IPA periglacial working group project on 'High-Resolution Periglacial Climate Indicators'. Electrode arrays were installed permanently in four different periglacial landforms in the Adventdalen valley area in central Svalbard; a solifluction slope in May 2007, a loess terrace (the UNISCALM site) in September 2007, and a mudboil site and ice-wedge site in June 2009 (Watanabe et al., submitted). The arrays were 16m long, giving maximum profile depths of 2m, and electrodes were installed with 0.2m spacing. Measurements were made with irregular but approximately two- to four-week time intervals, depending on weather conditions and

  6. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  7. Degradation of Dissolved Organic Carbon from Discontinuous Permafrost Due to Photolysis and Different Inoculants

    NASA Astrophysics Data System (ADS)

    Aukes, P.; Schiff, S. L.

    2013-12-01

    Northern areas with permafrost are very susceptible to a warming climate. Temperature increases can alter hydrologic flow paths, increase the depth and biogeochemistry of the active layer, and degrade and reduce the amount of remaining permafrost. Particularly, loss of permafrost will release large stores of previously unavailable frozen carbon to the environment. Dissolved organic carbon (DOC) plays many important roles that affect both ecosystem health and drinking water quality. Comprised of countless different molecules, DOC absorbs harmful ultra-violet (UV) radiation and controls thermal regimes of lakes, is an important energy and nutrient source for heterotrophic microbes, complexes with and transports heavy metals, and reacts during chlorination of drinking water to form carcinogenic disinfection by-products. Since the ultimate fate of DOC depends on its reactivity with the surrounding environment, the implications of DOC released from permafrost for ecosystems and drinking water quality will vary across the landscape. We used 90-day lab incubations to assess the differences in quality of DOC by observing the susceptibility for DOC to degrade among various discontinuous-permafrost sources. Specifically, UV-photolysis and two surface water inoculants (pond and creek water filtered to 2.0μm) were used to represent the dominant degradation pathways encountered within the environment. Samples were taken in July 2013 from three locations (pond, creek, and wetland porewater) in a region of discontinuous permafrost near Yellowknife, NWT, Canada. We observed changes to the composition and quality of DOC resulting from photolysis and degradation by two inoculants over 90 days, where DOC quality was determined by Liquid Chromatography - Organic Carbon Detection, DOC:DON, UV-absorbance, and changes to other constituents (DIC, δ13C-DIC, CO2). We hypothesize that UV-photolysis and microbial degradation will readily degrade easily accessible and reactive components of

  8. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    SciTech Connect

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; Wullschleger, Stan D.

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources, and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.

  9. Isotopic identification of soil and permafrost nitrate sources in an Arctic tundra ecosystem

    DOE PAGESBeta

    Heikoop, Jeffrey M.; Throckmorton, Heather M.; Newman, Brent D.; Perkins, George B.; Iversen, Colleen M.; Chowdhury, Taniya Roy; Romanovsky, Vladimir E.; Graham, David E.; Norby, Richard J.; Wilson, Cathy J.; et al

    2015-06-08

    The nitrate (NO₃⁻) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO₃⁻ derived from at NO₃⁻ signal with δ¹⁵N averaging –4.8 ± 1.0‰ (standard error of the mean) and δ¹⁸O averaging 70.2 ±1.7‰. In active layer pore waters, NO₃⁻ primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average δ¹⁵N and δ¹⁸O of NO₃⁻ from high-centered polygons were 0.5 ± 1.1‰ and –4.1 ± 0.6‰, respectively. When compared to the δ¹⁵N of reduced nitrogen (N) sources,more » and the δ¹⁸O of soil pore waters, it was evident that NO₃⁻ in high-centered polygons was primarily from microbial nitrification. Permafrost NO₃⁻ had δ¹⁵N ranging from approximately –6‰ to 10‰, similar to atmospheric and microbial NO₃⁻, and highly variable δ¹⁸O ranging from approximately –2‰ to 38‰. Permafrost ice wedges contained a significant atmospheric component of NO₃⁻, while permafrost textural ice contained a greater proportion of microbially derived NO₃⁻. Large-scale permafrost thaw in this environment would release NO₃⁻ with a δ¹⁸O signature intermediate to that of atmospheric and microbial NO₃. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO₃⁻ dual isotope technique in tundra environments, attribution of NO₃⁻ from thawing permafrost will not be straightforward. The NO₃⁻ isotopic signature, however, appears useful in identifying NO₃⁻ sources in extant permafrost ice.« less

  10. Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska

    USGS Publications Warehouse

    McConnell, Nicole A.; Turetsky, Merritt R.; McGuire, A. David; Kane, Evan S.; Waldrop, Mark P.; Harden, Jennifer W.

    2013-01-01

    Permafrost is common to many northern wetlands given the insulation of thick organic soil layers, although soil saturation in wetlands can lead to warmer soils and increased thaw depth. We analyzed five years of soil CO2 fluxes along a wetland gradient that varied in permafrost and soil moisture conditions. We predicted that communities with permafrost would have reduced ecosystem respiration (ER) but greater temperature sensitivity than communities without permafrost. These predictions were partially supported. The colder communities underlain by shallow permafrost had lower ecosystem respiration (ER) than communities with greater active layer thickness. However, the apparent Q10 of monthly averaged ER was similar in most of the vegetation communities except the rich fen, which had smaller Q10 values. Across the gradient there was a negative relationship between water table position and apparent Q10, showing that ER was more temperature sensitive under drier soil conditions. We explored whether root respiration could account for differences in ER between two adjacent communities (sedge marsh and rich fen), which corresponded to the highest and lowest ER, respectively. Despite differences in root respiration rates, roots contributed equally (~40%) to ER in both communities. Also, despite similar plant biomass, ER in the rich fen was positively related to root biomass, while ER in the sedge marsh appeared to be related more to vascular green area. Our results suggest that ER across this wetland gradient was temperature-limited, until conditions became so wet that respiration became oxygen-limited and influenced less by temperature. But even in sites with similar hydrology and thaw depth, ER varied significantly likely based on factors such as soil redox status and vegetation composition.

  11. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Carey, S. K.; Quinton, W. L.; Janowicz, J. R.; Pomeroy, J. W.; Flerchinger, G. N.

    2010-05-01

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada's discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils.

  12. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Carey, S. K.; Quinton, W. L.; Janowicz, J. R.; Flerchinger, G. N.

    2009-09-01

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada's discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15-30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines and can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils.

  13. Controls on ecosystem and root respiration across a permafrost and wetland gradient in interior Alaska

    NASA Astrophysics Data System (ADS)

    McConnell, Nicole A.; Turetsky, Merritt R.; McGuire, A. David; Kane, Evan S.; Waldrop, Mark P.; Harden, Jennifer W.

    2013-12-01

    Permafrost is common to many northern wetlands given the insulation of thick organic soil layers, although soil saturation in wetlands can lead to warmer soils and increased thaw depth. We analyzed five years of soil CO2 fluxes along a wetland gradient that varied in permafrost and soil moisture conditions. We predicted that communities with permafrost would have reduced ecosystem respiration (ER) but greater temperature sensitivity than communities without permafrost. These predictions were partially supported. The colder communities underlain by shallow permafrost had lower ecosystem respiration (ER) than communities with greater active layer thickness. However, the apparent Q10 of monthly averaged ER was similar in most of the vegetation communities except the rich fen, which had smaller Q10 values. Across the gradient there was a negative relationship between water table position and apparent Q10, showing that ER was more temperature sensitive under drier soil conditions. We explored whether root respiration could account for differences in ER between two adjacent communities (sedge marsh and rich fen), which corresponded to the highest and lowest ER, respectively. Despite differences in root respiration rates, roots contributed equally (∼40%) to ER in both communities. Also, despite similar plant biomass, ER in the rich fen was positively related to root biomass, while ER in the sedge marsh appeared to be related more to vascular green area. Our results suggest that ER across this wetland gradient was temperature-limited, until conditions became so wet that respiration became oxygen-limited and influenced less by temperature. But even in sites with similar hydrology and thaw depth, ER varied significantly likely based on factors such as soil redox status and vegetation composition.

  14. Effect of the permafrost thawing on the organic carbon and microbial activity in thermokarst lakes of Western Siberia: important source of carbon dioxide in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shirokova, L. S.; Pokrovsky, O. S.; Kirpotin, S. N.; Dupre, B.

    2008-12-01

    Ongoing processes of the permafrost thawing in Western Siberia are likely to increase the surface of water reservoirs via forming so-called thermokarst lakes, mobilizing the organic carbon (OC) from the soil pool to the rivers and, finally, to the ocean, and thus modifying the fluxes of methane and CO2 to the atmosphere. In order to understand the mechanisms of carbon mobilization and biodegradation during permafrost thawing and to establish the link between the OC and microbial activity in forming thermokarstic lakes, we performed a comparative multidisciplinary study on the biogeochemistry of OC and metals in lakes located in the northern part of Western Siberia. About 10 lakes and small ponds of various size and age were sampled for dissolved and colloidal organic carbon and metals and total bacterial cell number. There is a systematic evolution of DOC, pH, trace elements and biological activity during successions of thermokarst lakes encountered in the present study. At the beginning of permafrost thawing at the scale of several meter size ponds, fast lixiviation of unaltered peat yields significant amount of OC, major and trace elements; the pH of these waters is between 3.5 and 4.0 and the conductivity is 20-30 μS. The intermediate stage of lake formation still preserve low pHs, high DOC and conductivity, even in relatively large, up to 1 km diameter but fast growing lakes. At these stages, there is no any productivity as phytoplankton cannot live in these acidic waters and bacterial mineralization intensity is around 0.3 mg C/L/day both in the surface and bottom horizons. Once the lake border is stabilized, there are no new "unaltered peat" sources and the biological processes start to consume the OC and nutrients. At this stage, there is still no production in the water column (< 0.01 mg C/L/day) but the bacterial mineralization intensity remains high, up to 0.3 mg C/L/day. At this final stage, the remaining part of the lake located in the centre of the

  15. Permafrost warming and vegetation changes in continental Antarctica

    NASA Astrophysics Data System (ADS)

    Guglielmin, Mauro; Dalle Fratte, Michele; Cannone, Nicoletta

    2014-04-01

    Continental Antarctica represents the last pristine environment on Earth and is one of the most suitable contexts to analyze the relations between climate, active layer and vegetation. In 2000 we started long-term monitoring of the climate, permafrost, active layer and vegetation in Victoria Land, continental Antarctica. Our data confirm the stability of mean annual and summer air temperature, of snow cover, and an increasing trend of summer incoming short wave radiation. The active layer thickness is increasing at a rate of 0.3 cm y-1. The active layer is characterized by large annual and spatial differences. The latter are due to scarce vegetation, a patchy and very thin organic layer and large spatial differences in snow accumulation. The active layer thickening, probably due to the increase of incoming short wave radiation, produced a general decrease of the ground water content due to the better drainage of the ground. The resultant drying may be responsible for the decline of mosses in xeric sites, while it provided better conditions for mosses in hydric sites, following the species-specific water requirements. An increase of lichen vegetation was observed where the climate drying occurred. This evidence emphasizes that the Antarctic continent is experiencing changes that are in total contrast to the changes reported from maritime Antarctica.

  16. Slope instability related to permafrost changes on Mexican volcanoes

    NASA Astrophysics Data System (ADS)

    Delgado Granados, Hugo; Molina, Victor Soto

    2015-04-01

    Permafrost is present above 4,500 meters at the three highest Mexican mountains, Citlaltépetl, Popocatépetl and Iztaccihuatl (5,675, 5,452 and 5,286m asl, respectively), all active volcanoes. During the rainy season in the central region of Mexico, the occurrence of small debris-flows in the ice-free parts of the mountains, as well as small lanslides is frequent. At Popocatépetl volcano, flows are mostly related to a combination of the eruptive activity and climatic factors. However, the volcanic activity is different at Citlaltépetl and Iztaccihuatl where there is no eruptive activity, but landslides have occurred in recent years on their steep slopes because its stability has been altered as a result of an increase in the air temperature which in turn has caused variations in the thickness of the active layer of permafrost, causing as a consequence, the increase of an even more unstable soil. Additionally, cracks in the rock walls are subject to an increasing hydrostatic pressure due to continuous daily freezing and thawing of seasonal water produced by a warmer and less solid precipitation accumulating in the cracks over time and in the unconsolidated potentially unstable material.

  17. Evolving drainage networks and nutrient fluxes in continuous permafrost zones of interior and arctic Alaska

    NASA Astrophysics Data System (ADS)

    Koch, J. C.; Smith, R. L.; Gurney, K.; Wipfli, M.; Ewing, S. A.; Jorgenson, M. T.; Striegl, R. G.; Schmutz, J.

    2012-12-01

    It is generally accepted that permafrost thaw will release carbon and nutrients into high-latitude environments. However, utilization of these additions is highly dependent on hydrologic transport within ecosystems. Here we compare two headwater catchments in the interior Alaska and two sites further north on the Arctic Coastal Plain. All sites are underlain by continuous permafrost and summer warming leads to seasonal deepening of the active layer up to 0.3 to 1 m in early August. This annual thaw cycle promotes water and solute infiltration and storage, and often allows rapid movement of water and solutes near the organic/mineral and freeze/thaw soil boundaries. We present data from laboratory incubations, runoff and interflow sampling, and natural and manipulative stream nutrient additions. Our results indicate 1) the ability of runoff to access and thaw solute-rich water at the top of the permafrost, 2) the high concentrations of carbon, nitrogen, and phosphorous that can be delivered to aquatic ecosystems, and 3) the potential for rapid nutrient assimilation and cycling in ponds and low-order streams. We also provide evidence that rapid transport often limits actual cycling/assimilation rates. Understanding these coupled hydrological and biogeochemical processes is increasingly a focus of catchment and polar hydrology and will aid in predicting the effects of decadal-scale permafrost thaw and subsurface flowpath and drainage network evolution on nutrient fluxes and cycling.

  18. Rapid Permafrost Carbon Degradation at the Land-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Tanski, G.

    2015-12-01

    Climate change has a strong impact on permafrost coasts in the Arctic. With increasing air and water temperatures, the ice-rich unlithified permafrost coasts will thaw and erode at a greater pace. Organic carbon that has been stored for thousands of years is mobilized and degrades on its way to the ocean. The objective of this study is to investigate to what extent permafrost carbon degrades after thawing before it enters the ocean in a retrogressive thaw slump. A slump located on Herschel Island (Yukon Territory, Canada) was sampled systematically along transects from the permafrost headwall to the coastline. Concentrations of particulate and dissolved organic carbon (POC and DOC) as well as its stable carbon isotopes (δ13C-POC and δ13C-DOC) were measured and compared in frozen deposits and in thawed sediments. Ammonium, nitrite and nitrate were also analyzed in order to identify and understand the carbon metabolization mechanisms taking place during slump activity. Our results show that major portions of permafrost carbon are metabolized right after thawing. Ammonium concentrations are highest in areas where thawed permafrost material directly accumulates. We suggest that before entering the nearshore zone permafrost organic carbon and nitrogen is subject to major degradation and metabolization. This makes permafrost coasts and retrogressive thaw slumps degradation hotspots at the land-ocean-interface.

  19. Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-07-01

    The Arctic is a water-rich region, with freshwater systems covering 16 % of the northern permafrost landscape. The thawing of this permafrost creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic and lotic systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas, vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying variables determine the degree to which permafrost thaw manifests as thermokarst, whether thermokarst leads to slumping or the formation of thermokarst lakes, and the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying variables determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted systems is also likely to change, with thaw-impacted lakes and streams having unique microbiological communities, and showing differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter and nutrient delivery. The degree to which thaw enables the delivery of

  20. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-12-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  1. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    NASA Astrophysics Data System (ADS)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum

  2. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-02-05

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore » this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  3. Spatially Distributed Model of Permafrost Dynamics in Alaska

    NASA Astrophysics Data System (ADS)

    Tipenko, G.; Marchenko, S.; Romanovsky, V.; Groshev, V.; Sazonova, T.

    2004-12-01

    Given the possibility of climate warming in the near future, an evaluation of the magnitude of changes in the ground thermal regime becomes desirable for assessments of possible ecosystem responses and impacts on infrastructure in the Arctic and sub-Arctic regions. In the past, a soil model GIPL 1.0 developed at the Geophysical Institute Permafrost Lab was used to simulate the dynamics of the active layer thickness and mean annual ground temperature, both retrospectively and prognostically, using climate forcing from Global Climate Models. The GIPL 1.0 model is a quasi-transitional, spatially distributed, analytical model for the active layer thickness and mean annual ground temperature. This model is incorporated into GIS, which contains the information on geology, soils properties, vegetation, and snow distribution. GIS allows visualization of input and output parameters and their representation in the form of digital maps. As a further significant step in the GIPL model development, we replaced the analytical solution with a numerical model based on a finite difference method for the non-linear Heat Conduction Equation. In this model the process of soil freezing/thawing is occurring in accordance with the unfrozen water content curve, which is specific for each soil layer and for each geographical location. For each grid point on the map we used a one-dimensional multi-layer model of soil down to the depth of a constant geothermal heat flux (typically 500 to 1000 m). At the upper boundary, there are insulating layers of snow and vegetation that can change their properties with time. Special Enthalpy formulation of the energy conservation law makes it possible to use a coarse vertical resolution without loss of latent heat effects in phase transition zone even in case of fast temporally and spatially varying temperature fields. The new version of GIPL (GIPL 2.0) calculates soil temperature and liquid water content fields for the entire spatial domain with daily

  4. Permafrost and Climate Change

    NASA Astrophysics Data System (ADS)

    Basnet, S.; Shahroudi, N.

    2012-12-01

    This paper examines the effects of climate change on Permafrost. Climate change has been shown to have a global correlation with decreased snow cover in high latitudes. In the current research station and satellite data were used to detect the location of permafrost. Permafrost is dependent on the temperature of the ground surface. Air temperature and snow cover from Integrated Surface Database (ISD) downloaded from National Climatic Data Center (NCDC) were observed for six consecutive years (1999-2004). The research was carried out over the entire globe to study the trend between fluctuating temperature and snow cover. Number of days with temperature below zero (freezing) and above zero (melting) was counted over a 6-year period. It was observed that each year the area of ice cover decreased by 0.3% in the Northern Hemisphere; a 1% increase in air temperature was also observed. Furthermore, the results from station data for snow cover and air temperature were compared with the snow cover and skin temperature from the satellite data. The skin temperature was retrieved from infrared (IR) radiance at International Satellite Cloud Climatology Project (ISCCP) and the snow cover is derived from visible satellite data at The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA). Both dataset projected that the higher latitudes had the highest number of days with temperature below zero degree Celsius and these locations will be able to house permafrost. In order to improve the data quality as well as for more accurate results, in the future ISD data and satellite skin temperature will be analyzed for longer period of time (1979-2011) and (1983-2007) respectively also, two additional station data will be studied. The two datasets for future studies are Integrated Global Radiosonde Archive (IGRA) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The results outputted by

  5. Recent ecohydrological change in relation to permafrost degradation in eastern Siberia

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Fedorov, A. N.; Maximov, T. C.

    2010-12-01

    Recently, our continuous observations during the last decade revealed considerable evidence of abrupt land surface moistening and synchronized rapid soil warming within active layer and upper part of permafrost in the central Lena River basin in eastern Siberia. The present study focuses firstly on the linkage between atmospheric and land surface variations in eastern Siberia in terms of the hydrothermal variations within the surface layer of the permafrost and influence of storm track activity in Arctic during pre-winter and snow start season and moreover on the linkage between the permafrost degradation and ecohydrological change in this region. We utilized soil temperature, moisture and active layer thickness data from the observational network in the left and right banks of the Lena River in the Yakutsk area. Daily data of precipitation and snow depth and reanalysis dataset were used to analyze the large-scale atmospheric fields and determine storm-track activity. The peculiar feature of the warming is that the soil moisture correspondingly increases within the active layer observed at many sites in the Yakutsk area. This hydro-thermal change is primarily due to wetting climate conditions rather than atmospheric warming with abnormally large amounts of winter snow accumulation and summer precipitation in the central and southern part of the Lena River basin. The wetting conditions in eastern Siberia are likely due to enhancement of cyclonic anomaly over the Arctic Ocean and eastward propagation of storm activities in summer and early winter. Water vapor flux from Pacific side (Okhotsk sea) was enhanced in conjunction with the manifested precipitation over the eastern Siberia. As results, consecutive positive anomalies of winter snow accumulation and next summer precipitation which had seldom occurred in the second half of the last century in eastern Siberia effectively humidified land surface on the permafrost region after 2005 resulting abrupt soil warming in

  6. Estimations of moisture content in the active layer in an Arctic ecosystem by using ground-penetrating radar profiling

    NASA Astrophysics Data System (ADS)

    Gacitúa, Guisella; Tamstorf, Mikkel Peter; Kristiansen, Søren Munch; Uribe, José Andrés

    2012-04-01

    We applied high-frequency GPR at a study site in the high arctic ecosystem of Northeast Greenland to evaluate its usefulness in assessing depth of, and water content in, the active layer at Zackenberg Valley (74°N; 20°W) to evaluate its usefulness in the high arctic ecosystems. The study site includes different vegetation types, and it well represents of the entire valley, for which we aimed to determine the conditions and characteristics that influence the GPR performance in the active layer. The spatial distribution of moisture content along the transect studied was estimated using GPR data (400 MHz antenna), depth to permafrost, soil samples and vegetation observations. Vertical distribution of the water content in the unfrozen soil bulk was predicted for several points on the transect by combining data that influence the behavior of the radar waves with that of capacitive moisture probes. The statistical models resulted to be highly significant, thus assuming common conditions of the soil to the classified vegetation, we can obtain from the GPR data, truthful estimations of water content, and, moreover, we can predict the distribution to the bottom of the active layer. Hence, we conclude that GPR is a viable option for improving active layer spatial quantification of water contents that can be used to assess changes in the active layer in arctic regions.

  7. 3D Numerical Simulation of the Geothermal Field of Permafrost at Salluit in Nunavik, Québec, in Response to Climate Warming. Research in Progress.

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Allard, M.; Gagnon, O.

    2002-12-01

    The village of Salluit is located in the continuous permafrost zone in Nunavik, Québec. This Inuit community of about 1100 people is characterized by a fast population growth. The village lies in the bottom of a restricted valley flanked by steep rock walls. Most village infrastructures are built on frozen saline and ice-rich marine silts creating problematic ground conditions for infrastructures construction. For satisfying the fast population growth, a housing program is in progress but the available terrain with proper ground conditions for stable foundation is scarce and little is known on the permafrost conditions in the valley. During the construction of the airport of Salluit, a thermistor cable has been permanently buried in a rock outcrop. Regular temperature measurements have been carried out from 1987 and 1994, and from 2001 until now. During the first measurement interval, the permafrost temperature decreased steadily from -8 to -8.5 °C at a depth of 8 m. According to Environment Canada, the climate in that region of Canada was slowly cooling. However, this trend was reversed around 1997-1998 and some important warming recently occurred. In August 2001, the temperature measurements showed an increase of about 1.9 °C at the same depth. Moreover, a major active layer detachment failure occurred in the valley uphill in 1998 forcing the moving of twenty houses recently built. This landslide was probably triggered by the climate warming. Proper assessment of available terrain for the village expansion is therefore a major concern for the Inuit community of Salluit. Following the request of the provincial government, a thorough study for mapping the permafrost conditions and assessing the impacts of climate warming on permafrost conditions has been undertaken in 2002. The surveys carried out included deep sampling of permafrost, seismic reflection and ground penetrating radar profiling, and surface mapping supported by a detailed photo interpretation. The

  8. Microbial populations description in Deception Island (Antarctica): exploring the surface and the permafrost using an antibody microrray

    NASA Astrophysics Data System (ADS)

    Blanco, Y.; Prieto-Ballesteros, O.; Gómez, M. J.; Moreno-Paz, M.; García-Villadangos, M.; Rodríguez-Manfredi, J. A.; Cruz-Gil, P.; Sánchez-Román, M.; Rivas, L. A.; Parro, V.

    2012-09-01

    We performed assays with a Life Detector Chip (so called LDChip300) to study on site the microbial diversity on the surface and the permafrost from a Deception Island borehole. LDChip300 contains more than 300 antibodies developed against bacterial and archaeal strains, crude extracts from environmental samples, proteins, peptides and other biological polymers [1,2,3]. Superficial and core permafrost samples were analyzed by sandwich microarray immunoassays (SMI) with LDChip300 by using a cocktail of 300 different fluorescent antibodies. Pyroclasts and rocks from the surface and the top layer of the permafrost showed positive antigen-antibody reactions against Alpha-, Delta- and Gamma-proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, archaeal species and proteins and peptides involved in nitrogen fixation and methanogenic processes, iron homeostasis and ABC transporters. Immunoarray results were validated on site with an oligonucleotide microarray for prokaryotic diversity and then in the laboratory through 16S and 23S rRNA gene sequence analysis, aerobic viable counts and microscopy studies. Those results revealed Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes and phototrophs as dominant groups in the top active layer of the Deception Island permafrost [4].

  9. Bacterial production in subarctic peatland lakes enriched by thawing permafrost

    NASA Astrophysics Data System (ADS)

    Deshpande, Bethany N.; Crevecoeur, Sophie; Matveev, Alex; Vincent, Warwick F.

    2016-08-01

    Peatlands extend over vast areas of the northern landscape. Within some of these areas, lakes and ponds are changing in size as a result of permafrost thawing and erosion, resulting in mobilization of the carbon-rich peatland soils. Our aims in the present study were to characterize the particle, carbon and nutrient regime of a set of thermokarst (thaw) lakes and their adjacent peatland permafrost soils in a rapidly degrading landscape in subarctic Québec, Canada, and by way of fluorescence microscopy, flow cytometry, production measurements and an in situ enrichment experiment, determine the bacterial characteristics of these waters relative to other thaw lakes and rock-basin lakes in the region. The soil active layer in a degrading palsa (peatland permafrost mound) adjacent to one of the lakes contained an elevated carbon content (51 % of dry weight), high C : N ratios (17 : 1 by mass), and large stocks of other elements including N (3 % of dry weight), Fe (0.6 %), S (0.5 %), Ca (0.5 %) and P (0.05 %). Two permafrost cores were obtained to a depth of 2.77 m in the palsa, and computerized tomography scans of the cores confirmed that they contained high concentrations (> 80 %) of ice. Upon thawing, the cores released nitrate and dissolved organic carbon (from all core depths sampled), and soluble reactive phosphorus (from bottom depths), at concentrations well above those in the adjacent lake waters. The active layer soil showed a range of particle sizes with a peak at 229 µm, and this was similar to the distribution of particles in the upper permafrost cores. The particle spectrum for the lake water overlapped with those for the soil, but extended to larger (surface water) or finer (bottom water) particles. On average, more than 50 % of the bacterial cells and bacterial production was associated with particles > 3 µm. This relatively low contribution of free-living cells (operationally defined as the < 1 µm fraction) to bacterial production was a general

  10. Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes

    NASA Astrophysics Data System (ADS)

    Wania, R.; Ross, I.; Prentice, I. C.

    2009-09-01

    Northern peatlands and permafrost soils are associated with large carbon stocks. Rising temperatures are likely to affect the carbon balance in high-latitude ecosystems, but to what degree is uncertain. We have enhanced the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model by introducing processes necessary to simulate permafrost dynamics, peatland hydrology, and peatland vegetation. The new version, LPJ-WHy v1.2, was used to study soil temperature, active layer depth, permafrost distribution, and water table position. Modeled soil temperatures agreed well with observations, apart from a Siberian site where the soil is insulated by an extensive shrub layer. Water table positions were generally in the range of observations, with some exceptions. Simulated active layer depth showed a mean absolute error of 44 cm when compared to observations, but the error was reduced to 25 cm when the soil type for seven sites was manually corrected to mirror local conditions. A sensitivity test, in which temperature and precipitation were varied independently, showed that soil temperatures and active layer depths increased more under higher temperatures when precipitation was increased at the same time. The sensitivity experiment suggested persisting wet conditions in peatlands even under temperature increases of up to 9°C as long as annual precipitation is allowed to increase with temperature to the extent indicated by climate model experiments.

  11. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost

    NASA Astrophysics Data System (ADS)

    Abbott, Benjamin W.; Larouche, Julia R.; Jones, Jeremy B.; Bowden, William B.; Balser, Andrew W.

    2014-10-01

    As high latitudes warm, a portion of the large organic carbon pool stored in permafrost will become available for transport to aquatic ecosystems as dissolved organic carbon (DOC). If permafrost DOC is biodegradable, much will be mineralized to the atmosphere in freshwater systems before reaching the ocean, accelerating carbon transfer from permafrost to the atmosphere, whereas if recalcitrant, it will reach marine ecosystems where it may persist over long time periods. We measured biodegradable DOC (BDOC) in water flowing from collapsing permafrost (thermokarst) on the North Slope of Alaska and tested the role of DOC chemical composition and nutrient concentration in determining biodegradability. DOC from collapsing permafrost was some of the most biodegradable reported in natural systems. However, elevated BDOC only persisted during active permafrost degradation, with a return to predisturbance levels once thermokarst features stabilized. Biodegradability was correlated with background nutrient concentration, but nutrient addition did not increase overall BDOC, suggesting that chemical composition may be a more important control on DOC processing. Despite its high biodegradability, permafrost DOC showed evidence of substantial previous microbial processing, and we present four hypotheses explaining this incongruity. Because thermokarst features form preferentially on river banks and lake shores and can remain active for decades, thermokarst may be the dominant short-term mechanism delivering sediment, nutrients, and biodegradable organic matter to aquatic systems as the Arctic warms.

  12. Long- and short-lived nuclide constraints on the recent evolution of permafrost soils

    NASA Astrophysics Data System (ADS)

    Bagard, M.; Chabaux, F. J.; Rihs, S.; Pokrovsky, O. S.; Prokushkin, A. S.; Viers, J.

    2011-12-01

    Frozen permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series. Two soil profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (234U), (232Th), (230Th), (226Ra), (228Ra), (228Th) and (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structure (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  13. Permafrost and Forest Degradation after Wet Climate Years in Eastern Siberian Boreal Forest

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Abe, K.; Ise, H.; Masuzawa, T.; Fedorov, A. N.

    2014-12-01

    Unusual precipitation increase during summer through winter had continued since 2004 in the central Lena river basin, eastern Siberia. The precipitation increase led to deepening active layer (permafrost thawing near the surface) accompanying with remarkable increase in soil moisture. The perennially waterlogged conditions had exacerbated the boreal forest habitat; that is, larch trees had widely withered and died in this region. The present study clarified spatial extent of permafrost and forest degradation due to the unexpected hydro-climate-driven damages. We have attempted to extract the degraded boreal forest based on satellite image analyses, along with expansion of the perennially waterlogged surface area. We used ALOS-PALSAR and AVNIR-2 images taken from 2006 to 2009. Classification of waterlogged area was performed by PALSAR images with supervised classification based on a microwave backscattering coefficient. Then, we compared the distribution of the waterlogged area between multi-years. Additional supervised classification of boreal forest change was conducted using AVNIR-2 images. Both classifications produced the multi-years change in degraded boreal forest at the intensive observational sites in both left and right bank of Lena River near Yakutsk. In the right bank area, most of alas lakes expanded and boreal forest on the periphery of lakes turned to waterlogged surface. In the left bank area, in contrast, waterlogged surface expanded at concaved terrain and along valleys in conjunction with forest degradation. Field survey supported that humidified and deepening active layer along slope and near alas lakes correspond with the gradient of forest degradation and enhanced thermokarst activity. Both of increasing precipitation and thawing ice in permafrost might cause the degradation. In brief, the method combining ALOS satellite images has possibility to detect permafrost and forest degradation caused by wet climate in boreal forest.

  14. Monitoring of the active layer at Kapp Linne', SVALBARD 1972-2002

    NASA Astrophysics Data System (ADS)

    Akerman, J.

    2003-04-01

    The active layer has been monitored at ten sites in the vicinity of Kapp Linné, (78o03'42" 13o37'07") Svalbard during the period 1972 - 2002. The ten sites differ in elevation, distance from the sea, vegetation cover, substrate and active periglacial processes. From 1994 the International permafrost Association "CALM" standard grids, with measurement within 100x100m squares, has been applied. Microclimate and soil temperatures have been monitored by data logger covering levels form 2 m above to 7m below the ground. The macroclimate is covered by complete data series from the nearby weather station at Kapp Linne’, covering the period 1912 to 2002. A number of periglacial processes, especially slope processes, are monitored parallel with the active layer. The mean active layer for the sites varies between 1,13m and 0,43m. The deepest active layer is found in the exposed, well drained raised beach ridges and the shallowest in the bogs. The interannual variability during the observation period do not correlate well with the MAAT but better with the summer climate, June - August mean or DDT. The data clearly illustrate colder summers during the period 1972 to 1983 and after that steadily increasing summer temperatures. The active layer follows the same general pattern with good correlations. There are several surface indications as a response to the deepening active layer especially in the bogs. Thermokarst scars appear frequently and a majority of the palsa like mounds and pounus have disappeared. A drastic change in the vegetation on the bogs has also occurred, from dry heath to wet Carex vegetation. In summary the observations from Kapp Linne’ are; 1. A clear trend towards milder summers, 2. A clear trend towards deeper active layers, 3. All sites show a similar pattern, 4. The bogs are getting strikingly wetter, 5. Mounds in the bog sites are disappearing, 6. The slow slope processes are getting accelerated, 7. Thermokarst depressions and scars are appearing in

  15. Environmental factors influencing trace house gas production in permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Walz, Josefine; Knoblauch, Christian; Böhme, Luisa; Pfeiffer, Eva-Maria

    2016-04-01

    The permafrost-carbon feedback has been identified as a major feedback mechanism to climate change. Soil organic matter (SOM) decomposition in the active layer and thawing permafrost is an important source of atmospheric carbon dioxide (CO2) and methane (CH4). Decomposability and potential CO2 and CH4 production are connected to the quality of SOM. SOM quality varies with vegetation composition, soil type, and soil depth. The regulating factors affecting SOM decomposition in permafrost landscapes are not well understood. Here, we incubated permafrost-affected soils from a polygonal tundra landscape in the Lena Delta, Northeast Siberia, to examine the influence of soil depth, oxygen availability, incubation temperature, and fresh organic matter addition on trace gas production. CO2 production was always highest in topsoil (0 - 10 cm). Subsoil (10 - 50 cm) and permafrost (50 - 90 cm) carbon did not differ significantly in their decomposability. Under anaerobic conditions, less SOM was decomposed than under aerobic conditions. However, in the absence of oxygen, CH4 can also be formed, which has a substantially higher warming potential than CO2. But, within the four-month incubation period (approximate period of thaw), methanogenesis played only a minor role with CH4 contributing 1-30% to the total anaerobic carbon release. Temperature and fresh organic matter addition had a positive effect on SOM decomposition. Across a temperature gradient (1, 4, 8°C) aerobic decomposition in topsoil was less sensitive to temperature than in subsoil or permafrost. The addition of labile plant organic matter (13C-labelled Carex aquatilis, a dominant species in the region) significantly increased overall CO2 production across different depths and temperatures. Partitioning the total amount of CO2 in samples amended with Carex material into SOM-derived CO2 and Carex-derived CO2, however, revealed that most of the additional CO2 could be assigned to the organic carbon from the amendment

  16. Effects of Temperature and Substrate Availability on Methanotrophy in Arctic Permafrost Landscapes

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, T.; Graham, D. E.; Wullschleger, S. D.

    2014-12-01

    Arctic permafrost ecosystems store ~ 50 % of global belowground carbon (C) and are a considerable source of atmospheric methane (CH4). Current estimates report that nearly 10 - 40 Tg yr-1 of CH4 is released from permafrost environments. In particular, topographic depressions on the landscape are predominantly anoxic and conducive to active methanogenesis. At the sediment-water interfaces of the water-saturated polygonal units, namely low- and flat-centered polygons, CH4 and oxygen gradients overlap and bacterial CH4 oxidation is an important process contributing to CH4 consumption. Methanotrophic bacteria represent the major terrestrial sinks for CH4 and can reduce CH4 emissions by ~70 %. Therefore, determining how the activity and abundance of methanotrophic communities respond to warming temperature conditions is critical to predicting effects of permafrost thaw and active layer warming on CH4 emissions. As ground temperature increases in the Arctic landscape, a major impact of permafrost thaw could be draining of the active layer with resultant subsidence leading to the formation of elevated and relatively oxic high-centered polygons. These changes can impact both methanogen and methanotroph communities and affect net CH4 fluxes. To understand the controls of temperature and substrate availability on CH4 oxidation, we examined process rates and temporal dynamics of methanotroph biomass in contrasting landscape gradients. We investigated the active layer and Cryoturbated permafrost organic soilsd from replicate soil cores collected from high-centered and flat-centered polygonal units in the Barrow Environmental Observatory, Barrow, AK. We used quantitative PCR to quantify methanogen (mcrA) and methanotroph (pmoA) population size by functional gene analysis. We present potential methane oxidation activity in response to three incubation temperatures (-2 oC, 4 oC, and 10 oC) that represent thaw-season ground temperatures. Our objectives were to estimate the rates

  17. Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground

    DOE PAGESBeta

    Newman, Brent D.; Throckmorton, Heather M.; Graham, David E.; Gu, Baohua; Hubbard, Susan S.; Liang, Liyuan; Wu, Yuxin; Heikoop, J. M.; Herndon, Elizabeth M.; Phelps, Tommy J.; et al

    2015-03-24

    Polygonal ground is a signature characteristic of Arctic lowlands, and carbon release from permafrost thaw can alter feedbacks to Arctic ecosystems and climate. This study describes the first comprehensive spatial examination of active layer biogeochemistry that extends across high- and low-centered, ice wedge polygons, their features, and with depth. Water chemistry measurements of 54 analytes were made on surface and active layer pore waters collected near Barrow, Alaska, USA. Significant differences were observed between high- and low-centered polygons suggesting that polygon types may be useful for landscape-scale geochemical classification. However, differences were found for polygon features (centers and troughs) formore » analytes that were not significant for polygon type, suggesting that finer-scale features affect biogeochemistry differently from polygon types. Depth variations were also significant, demonstrating important multidimensional aspects of polygonal ground biogeochemistry. These results have major implications for understanding how polygonal ground ecosystems function, and how they may respond to future change.« less

  18. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils.

    PubMed

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming. PMID:27157964

  19. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    PubMed Central

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming. PMID:27157964

  20. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  1. Impact of degrading permafrost on subsurface solute transport pathways and travel times

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew; Destouni, Georgia

    2015-09-01

    Subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in the subsurface water and inert solute pathways and travel times are analyzed for different modeled geological configurations. For all simulated cases, the minimum and mean travel times increase nonlinearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. The travel time changes depend on combined warming effects of: i) increase in pathway length due to deepening of the active layer, ii) reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and iii) pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles.

  2. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    NASA Astrophysics Data System (ADS)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  3. Habitability of Mars: hyperthermophiles in permafrost

    NASA Astrophysics Data System (ADS)

    Gilichinsky, David; Rivkina, Elizaveta; Vishnivetskaya, Tatiana; Felipe, Gomez; Mironov, Vasilii; Blamey, Jenny; Ramos, Miguel; Ángel de Pablo, Miguel; Castro, Miguel; Boehmwald, Freddy

    This is a first microbiological study of volcanic permafrost carried out on Kluchevskaya volcano group (Kamchatka Peninsula) and Deception Island (Antarctica). By culture-and culture-independent methods we showed the presence of viable hyper(thermophilic) microorganisms and their genes within volcanic permafrost. The optimal temperature for sulfide producing bacteria was 65, whereas acetogens and methanogens were able to produce acetate and methane at temperatures up to 75o C, while sulphur-reducers showed optimal growth at 85-92o C. Hy-per(thermophiles) were never found in permafrost outside the volcanic areas before. The only way they are to appear within a frozen material is a concurrent deposition during the eruption, together with products associated with volcano heated subsurface geothermal oases. The elo-quent evidence to the hypothesis is the presence among clones of the sequences affiliated with (hyper)thermophilic bacteria, both, aerobic and anaerobic, in the environmental DNA derived from ashes freshly deposited on snow in close proximity to volcano Shiveluch (Kamchatka) and aerobic bacteria incubated at 80o C from ashes freshly deposited on the top of Llaima Vol-cano glacier (Andes). Thus, in the areas of active volcanism the catastrophic geological events transports the life from the depths to the surface and this life from high-temperature ecological niches might survive in permafrost over a long period of time. The results obtained give insights for habitability of Mars. Terrestrial permafrost represents a possible ecosystem for Mars as an Earth-like cryogenic planet. But permafrost on Earth and Mars vary in age, from a few million years on Earth to a few billion years on Mars. Because such difference in age, the longevity of life forms preserved within terrestrial permafrost may only serve as an approximate model for Mars. On the other hand, numerous ancient extinct volcanoes are known on Mars. Their past eruptions periodically burn-through the

  4. International Field School on Permafrost: Yenisei, Russian Federation - 2013

    NASA Astrophysics Data System (ADS)

    Nyland, K. E.; Streletskiy, D. A.; Grebenets, V. I.

    2013-12-01

    The International Field School on Permafrost was established in Russia as part of International Polar Year activities. The first course was offered in 2007 in Northwestern Siberia and attracted students from Russia, Germany, and the United States. Over the past seven years undergraduate and graduate students representing eight different countries in North America, Europe, and Asia have participated in the field school. This annual summer field course visits different regions of the Russian Arctic each year, but the three course foci remain consistent, which are to make in depth examinations of, 1) natural permafrost characteristics and conditions, 2) field techniques and applications, and 3) engineering practices and construction on permafrost. During these field courses students participate in excursions to local museums and exhibitions, meet with representatives from local administrations, mining and construction industries, and learn field techniques for complex permafrost investigations, including landscape and soil descriptions, temperature monitoring, active-layer measurements, cryostratigraphy, and more. During these courses students attend an evening lecture series by their professors and also give presentations on various regionally oriented topics of interest, such as the local geology, climate, or historical development of the region. This presentation will relate this summer's (July 2013) field course which took place in the Yenisei River region of central Siberia. The course took place along a bioclimatic transect from south to north along the Yenisei River and featured extended stays in the cities of Igarka and Noril'sk. This year's students (undergraduate, masters, and one PhD student) represented universities in the United States, Canada, and the Russian Federation. The organization of this course was accomplished through the cooperation of The George Washington University's Department of Geography and the Lomonosov Moscow State University

  5. The state of permafrost surrounding "Gabriel de Castilla" Spanish Antarctic Station (Deception Island, Antarctica): Studying the possible degradation due to the infrastructures heating effect.

    NASA Astrophysics Data System (ADS)

    Recio, Cayetana; Ángel de Pablo, MIguel; Ramos, MIguel; Molina, Antonio

    2015-04-01

    Permafrost degradation is one of the effects of the global warming. Many studies reveal the increase of active layer and reduction on permafrost table thickness, also in Antarctica. However, these trends on permafrost can be accelerated by the human activities, as the heating produced by the Antarctic stations infrastructures when they are not properly isolated from the ground. In Deception island, South Shetland Archipelago, we started 3 years ago a monitoring program at the 26 years old "Gabriel de Castilla" Spanish Antarctic Station (SAS), It is focused on charactering the state of permafrost, since in the coastal scarps at tens of meters from the station an increase on erosion had been detected. Although the main cause of the erosion of this coastal volcanoclastic materials is the 2 meters thick icefield which forms during the winter in the inner sea of this volcanic island, we want to detect any possible contribution to the coastal erosion caused by the permafrost degradation related to the SAS presence. We present our preliminary analysis based on three years of continuous ground temperature data, monitored at a shallow borehole (70 cm deep) in the SAS edge, together with the active layer thickness measured around the station and their vicinities in two thawing seasons. We complete this study with the analysis of the continuous temperature data taken inside the SAS and the air and ground temperatures below the station, acquired during the last Antarctic Campaign (December 2014-February 2015). These preliminary results are fundamental 1) to discard any contribution from the SAS presence, and to help to improve its thermal isolation, 2) to help improve our knowledge about the thermal state of permafrost in the area, and 3) to help to understand the causes of the coastal erosion in the volcanic Deception Island.

  6. The GTN-P Data Management System: A central database for permafrost monitoring parameters of the Global Terrestrial Network for Permafrost (GTN-P) and beyond

    NASA Astrophysics Data System (ADS)

    Lanckman, Jean-Pierre; Elger, Kirsten; Karlsson, Ævar Karl; Johannsson, Halldór; Lantuit, Hugues

    2013-04-01

    Permafrost is a direct indicator of climate change and has been identified as Essential Climate Variable (ECV) by the global observing community. The monitoring of permafrost temperatures, active-layer thicknesses and other parameters has been performed for several decades already, but it was brought together within the Global Terrestrial Network for Permafrost (GTN-P) in the 1990's only, including the development of measurement protocols to provide standardized data. GTN-P is the primary international observing network for permafrost sponsored by the Global Climate Observing System (GCOS) and the Global Terrestrial Observing System (GTOS), and managed by the International Permafrost Association (IPA). All GTN-P data was outfitted with an "open data policy" with free data access via the World Wide Web. The existing data, however, is far from being homogeneous: it is not yet optimized for databases, there is no framework for data reporting or archival and data documentation is incomplete. As a result, and despite the utmost relevance of permafrost in the Earth's climate system, the data has not been used by as many researchers as intended by the initiators of the programs. While the monitoring of many other ECVs has been tackled by organized international networks (e.g. FLUXNET), there is still no central database for all permafrost-related parameters. The European Union project PAGE21 created opportunities to develop this central database for permafrost monitoring parameters of GTN-P during the duration of the project and beyond. The database aims to be the one location where the researcher can find data, metadata, and information of all relevant parameters for a specific site. Each component of the Data Management System (DMS), including parameters, data levels and metadata formats were developed in cooperation with the GTN-P and the IPA. The general framework of the GTN-P DMS is based on an object oriented model (OOM), open for as many parameters as possible, and

  7. Thermal regime of active layer at two lithologically contrasting sites on James Ross Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Hrbáček, Filip; Nývlt, Daniel; Láska, Kamil

    2016-04-01

    Antarctic Peninsula region (AP) represents one of the most rapidly warming parts of our planet in the last 50 years. Despite increasing research activities along both western and eastern sides of AP in last decades, there is still a lot of gaps in our knowledge relating to permafrost, active layer and its thermal and physical properties. This study brings new results of active layer monitoring on James Ross Island, which is the largest island in northern AP. Its northern part, Ulu Peninsula, is the largest ice-free area (more than 200 km2) in the region. Due its large area, we focused this study on sites located in different lithologies, which would affect local thermal regime of active layer. Study site (1) at Abernethy Flats area (41 m a.s.l.) lies ~7 km from northern coast. Lithologically is formed by disintegrated Cretaceous calcareous sandstones and siltstones of the Santa Marta Formation. Study site (2) is located at the northern slopes of Berry Hill (56 m a.s.l.), about 0.4 km from northern coastline. Lithology is composed of muddy to intermediate diamictites, tuffaceous siltstones to fine grained sandstones of the Mendel Formation. Data of air temperature at 2 meters above ground and the active layer temperatures at 75 cm deep profiles were obtained from both sites in period 1 January 2012 to 31 December 2014. Small differences were found when comparing mean air temperatures and active temperatures at 5 and 75 cm depth in the period 2012-2014. While the mean air temperatures varied between -7.7 °C and -7.0 °C, the mean ground temperatures fluctuated between -6.6 °C and -6.1 °C at 5 cm and -6.9 °C and -6.0 °C at 75 cm at Abernethy Flats and Berry Hill slopes respectively. Even though ground temperature differences along the profiles weren't pronounced during thawing seasons, the maximum active layer thickness was significantly larger at Berry Hill slopes (80 to 82 cm) than at Abernethy Flats (52 to 64 cm). We assume this differences are affected by

  8. Stability of permafrost dominated coastal cliffs in the Arctic

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Azharul; Pollard, Wayne H.

    2016-03-01

    Block failure is considered to be an important component of coastal retreat in permafrost regions. A comprehensive model is developed to study the effects of thermoerosional niche and ice wedge morphology on the stability of permafrost dominated coastal cliff against block failure. The model is formulated by coupling slope stability analysis with a time dependent progression of thermoerosional niches and the morphology of the nearby ice wedges. Model computations are initially performed for failure conditions for a given cliff height, frozen soil strength, ice content, water pressure in the active layer, thermoerosional niche depth and ice wedge morphology. Under these conditions block failures are found to be predominantly overturning failures and are governed by the tensile strength of frozen soil, thermoerosional niche depth and ice wedge location and depth. The effects of ice wedges are then examined by analyzing failure conditions for ice wedges of different locations and depths. For a given cliff height, strength and thermoerosional niche, block failure may occur at a range of different combinations of ice wedge locations and depths. Two stability nomograms are developed through repeated model calculations for range of cliff heights and frozen soil tensile strength. These nomograms can be used to determine the critical combinations of thermoerosional niche depth, ice wedge distance and ice wedge depth that lead to block collapse of a cliff of known height and soil strength. Some analytical expressions are also derived to determine potential block failure criteria along Arctic coasts.

  9. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  10. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  11. Recent evolution of permafrost soils: insight from U-Th series nuclides

    NASA Astrophysics Data System (ADS)

    Bagard, marie-laure; Chabaux, Francois; Rihs, Sophie; Pokrovsky, Oleg; Viers, Jérome

    2015-04-01

    Permafrost ecosystems are particularly sensitive to climate warming, which notably induces a deepening of the active layer (the maximum thawing depth during summer time). As a consequence, geochemical and hydrological fluxes within boreal areas are expected to be significantly affected in the future. Understanding the relationship between environmental changes and permafrost modifications is then a major challenge. This work aims to evaluate in a Siberian watershed the dynamics of the permafrost active layer and their recent modifications by combining a classic study of long-lived nuclides to the study of short-lived nuclides of U and Th decay series in two soil profiles. These profiles, located on opposite slopes (north- and south-facing slopes) of the Kulingdakan watershed (Putorana Plateau, Central Siberia), were sampled at several depths within the active layer and (238U), (230Th), (232Th), (226Ra), (228Ra), (228Th), (210Pb) were measured on bulk soil samples by TIMS or gamma spectrometry. Our results show that south-facing and north-facing soil profiles are significantly different in terms of evolution of chemical concentrations and nuclide activities; north-facing soil profile is strongly affected by atmospheric inputs whereas long-lived nuclide dynamics within south-facing soil profile are dominated by weathering and exhibit more complex patterns. The amount of above-ground biomass being the single varying parameter between the two slopes of the watershed, we suggest that the structuring of permafrost active layer is very sensitive to vegetation activity and that the functioning of boreal soils will be significantly modified by its development due to more favorable climatic conditions. Moreover, the coupling of long and short-lived nuclides highlights the superimposition of a recent mobilization of chemical elements within soils (<10 years) over a much older soil structuring (>8000 years), which can be observed for both soil profiles. The shallowest layer of

  12. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, Roberto; Schaefer, Carlos; Simas, Felipe; Pregesbauer, Michael; Bockheim, James

    2013-04-01

    International attention on the climate change phenomena has grown in the last decade, intense modelling of climate scenarios were carried out by scientific investigations searching the sources and trends of these changes. The cryosphere and its energy flux became the focus of many investigations, being recognised as a key element for the understanding of future trends. The active layer and permafrost are key components of the terrestrial cryosphere due to their role in energy flux regulation and high sensitivity to climate change (Kane et al., 2001; Smith and Brown, 2009). Compared with other regions of the globe, our understanding of Antarctic permafrost is poor, especially in relation to its thermal state and evolution, its physical properties, links to pedogenesis, hydrology, geomorphic dynamics and response to global change (Bockheim, 1995, Bockheim et al., 2008). The active layer monitoring site was installed in the summer of 2008, and consist of thermistors (accuracy ± 0.2 °C) arranged in a vertical array (Turbic Eutric Cryosol 600 m asl, 10.5 cm, 32.5 cm, 67.5 cm and 83.5 cm). King George Island experiences a cold moist maritime climate characterized by mean annual air temperatures of -2°C and mean summer air temperatures above 0°C for up to four months (Rakusa-Suszczewski et al., 1993, Wen et al., 1994). Ferron et al., (2004) found great variability when analysing data from 1947 to1995 and identified cycles of 5.3 years of colder conditions followed by 9.6 years of warmer conditions. All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from March 1st 2008 until November 30th 2012. Meteorological data for Fildes was obtained from the near by stations. We calculated the thawing days, freezing days; thawing degree days and freezing degree days; all according to Guglielmin et al. (2008). The active lawyer thickness was calculated as the 0 °C depth by extrapolating the thermal gradient from the two

  13. Measuring Atmospheric Emissions of CH4 from Permafrost with Remote Low-Power Automated Stations

    NASA Astrophysics Data System (ADS)

    Burba, G. G.; Anderson, T.; Haapanala, S.; Mammarella, I.; McDermitt, D. K.; Oechel, W. C.; Peltola, O.; Rinne, J.; Schreiber, P.; Sturtevant, C. S.; Zulueta, R. C.

    2012-12-01

    Permafrost regions accumulate considerable amounts of organic materials held in anaerobic conditions. This leads to production and storage of CH4 in the upper layers of bedrock and soil, under the ice, and at lake bottoms. Presently, the permafrost is undergoing significant change in response to warming trends, and may become a significant source of CH4 release into the atmosphere. Direct measurements of CH4 emission in permafrost regions have most often been made with static chambers, and few were made using closed-path eddy flux stations. Although both approaches have advantages, they also have significant limitations. Static chamber measurements are discrete in time and space, and are particularly difficult to use over a polygonal tundra with highly non-uniform micro-topography and an active water layer. Closed-path gas analyzers for measuring CH4 eddy fluxes employ advanced laser technologies, but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. As a result, they require vacuum pumps and 400-1500 Watts of system power and can weigh over 100-200 lbs, restricting practical applicability for remote studies. As a result, spatial coverage of eddy flux measurements of CH4 in cold regions remains limited. Alternatively, open-path stations allow CH4 flux measurements at normal pressure without the need for a pump. As a result, the measurements can be done with very low-power (7-10 Watts) lightweight (11-12 lbs) arrangement permitting solar- and wind-powered deployments in remote sites using small automated stations. Such stations are important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but are especially important for permafrost regions where grid power and access roads are generally not available. Emerging new research on CH4 flux measurements using automated low-power stations equipped with high-speed open-path CH4 analyzers are presented for a

  14. NORPERM, the Norwegian Permafrost Database - a TSP NORWAY IPY legacy

    NASA Astrophysics Data System (ADS)

    Juliussen, H.; Christiansen, H. H.; Strand, G. S.; Iversen, S.; Midttømme, K.; Rønning, J. S.

    2010-10-01

    NORPERM, the Norwegian Permafrost Database, was developed at the Geological Survey of Norway during the International Polar Year (IPY) 2007-2009 as the main data legacy of the IPY research project Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost in Norway and Svalbard (TSP NORWAY). Its structural and technical design is described in this paper along with the ground temperature data infrastructure in Norway and Svalbard, focussing on the TSP NORWAY permafrost observatory installations in the North Scandinavian Permafrost Observatory and Nordenskiöld Land Permafrost Observatory, being the primary data providers of NORPERM. Further developments of the database, possibly towards a regional database for the Nordic area, are also discussed. The purpose of NORPERM is to store ground temperature data safely and in a standard format for use in future research. The IPY data policy of open, free, full and timely release of IPY data is followed, and the borehole metadata description follows the Global Terrestrial Network for Permafrost (GTN-P) standard. NORPERM is purely a temperature database, and the data is stored in a relation database management system and made publically available online through a map-based graphical user interface. The datasets include temperature time series from various depths in boreholes and from the air, snow cover, ground-surface or upper ground layer recorded by miniature temperature data-loggers, and temperature profiles with depth in boreholes obtained by occasional manual logging. All the temperature data from the TSP NORWAY research project is included in the database, totalling 32 temperature time series from boreholes, 98 time series of micrometeorological temperature conditions, and 6 temperature depth profiles obtained by manual logging in boreholes. The database content will gradually increase as data from previous and future projects are added. Links to near real-time permafrost temperatures, obtained

  15. Challenges for geochronologies in permafrost environments: the case of Bol'shoy Lyakhovsky, Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Fuchs, Margret; Schwamborn, Georg; Schirrmeister, Lutz

    2015-04-01

    Ice-bearing Quaternary deposits in permafrost environments comprise valuable archives of paleoenvironmental and palaeo-landscape dynamics over several glacial-interglacial cycles. Information on past conditions manifest in the mineralogical, organic and ice inventories. The characteristic ground ice abundance of permafrost evolves largely due to water supply by precipitation and surface run-off, while air, and consequently near-surface, temperatures control to which depth deposits freeze or thaw. This has several consequences on the continuity of permafrost sequences. Permafrost preservation or degradation depends basically on (1) climatic conditions during formation, (2) their decoupling from the active layer depth and (3) past relief conditions. In this context, warmer interstadial and interglacial periods promote permafrost degradation by ground ice melt and subsequent surface subsidence. Such processes are commonly named as thermokarst that forms basins and valleys within older deposits and creates new accumulation areas. Shifts between periglacial accumulation and erosion frequently cause gaps in permafrost sequences. This complicates geochronological interpretations as representatives of consecutive Quaternary periods may be found at laterally different positions and altitudes. Additionally, they may comprise differing sediment properties as a consequence of paleo-relief and related process dynamic. With this contribution, we discuss the challenges for establishing Quaternary geochronologies of arctic permafrost sequences using the example of Bol'shoy Lyakhovsky Island (New Siberian Archipelago). The island exposes sequences at its southern coast that are among the oldest dated Quaternary terrestrial permafrost deposits. Various proxies for paleo environmental reconstruction unravel at least three generations of cold- and warm-stage deposition ranging from the Holocene to the Eemian (MIS 5e) Interglacial, and potentially beyond that. However, the

  16. Modeling permafrost extension in a rock slope since the Last Glacial Maximum: Application to the large Séchilienne landslide (French Alps)

    NASA Astrophysics Data System (ADS)

    Lebrouc, V.; Schwartz, S.; Baillet, L.; Jongmans, D.; Gamond, J. F.

    2013-09-01

    Recent dating performed on large landslides in the Alps has revealed that the initiation of instability did not immediately follow deglaciation but occurred several thousand years after ice down-wastage in the valleys. This result indicates that debuttressing is not the immediate cause of landslide initiation. The period of slope destabilization appears to coincide with the wetter and warmer Holocene Climatic Optimum, indicating a climatic cause of landslide triggering, although the role of seismic activity cannot be ruled out. A phenomenon which may partly explain the delay between valley deglaciation and gravitational instability is the temporal persistence of thick permafrost layers developed in the Alps since the Last Glacial Maximum (LGM). This hypothesis was tested through 2D thermal numerical modeling of the large Séchilienne landslide (Romanche valley, French Alps) using plausible input parameter values. Simulation results suggest that permafrost vanished in the Séchilienne slope at 10 to 11 ka, 3000 to 4000 years following the total ice down-wastage of the Romanche valley at 14.3 ka. Permafrost persistence could have contributed to the failure delay by temporally strengthening the slope. Numerical simulations also show that the permafrost depth expansion approximately fits the thickness of ground affected by gravitational destabilization, as deduced from geophysical investigations. These results further suggest that permafrost development, associated with an ice segregation mechanism, damaged the rock slope and influenced the resulting landslide geometry.

  17. Uncertainties in the simulation of permafrost response to global warming

    NASA Astrophysics Data System (ADS)

    Dankers, Rutger; Anisimov, Oleg; Falloon, Pete; Gornall, Jemma; Reneva, Svetlana; Wiltshire, Andy

    2010-05-01

    Permafrost is generally believed to be highly sensitive to global warming, and some studies have projected dramatic reductions in permafrost extent by the end of this century. However, few studies have addressed the uncertainties in simulating the response of permafrost to climate change. Conventional permafrost models are based on well-established relations of permafrost occurrence with climatic variables, but often assume that the ground thermal regime is in equilibrium with the atmospheric climate. The land surface schemes of many climate models, on the other hand, use a process-based approach to simulate the dynamics of frozen ground, but ignore some of the key processes that will determine the pace of the permafrost response, in particular the thermodynamics of the deeper soil. Here we attempt to identify and quantify the different sources of uncertainty in the simulation of the permafrost response to climate change. These include model structure, parameter uncertainty, and uncertainty in the climate signal over permafrost regions. To this end, we used two very different modelling approaches: a stochastic equilibrium model that is able to account for the parameter uncertainty in traditional large-scale models of climate-permafrost interactions; and an updated version of the JULES (Joint UK Land Environment Simulator) land surface scheme, that now includes a representation of organic soils and the deeper soil layers. Both models have been driven by probabilistic climate scenarios from the Hadley Centre (HadCM3) perturbed physics ensemble, that allows for an estimation of the probability density function of key climatic parameters over the region. By using this approach we can compare the level of parameter uncertainty in the stochastic permafrost model to uncertainty in the climate model simulations, and we can determine the differences that arise from the divergent modelling approaches. First results indicate that the spread in the climate scenario ensemble is

  18. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    NASA Astrophysics Data System (ADS)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    decomposition in the permafrost deposits during cryopegs' migration. From these horizons will be active methane emissions, including gas explosion in coastal areas and on the Arctic shelf. This mechanism of methane emissions is a significant geological hazard during the development of oil and gas fields in the Arctic. References. 1. Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2. Chuvilin E.M., Bukhanov B.A., Ekimova V.V. et al. Experimental modeling of interaction between salt solutions and frozen sediments containing gas hydrates. / The 8th International Conference on Gas Hydrates. Beijing, China, 2014. These researches were supported by grants RFBR № 13-05-12039 and RSF №16-17-00051.

  19. Thermal State Of Permafrost In Urban Environment Under Changing Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V. I.; Kerimov, A. G.; Kurchatova, A.; Andruschenko, F.; Gubanov, A.

    2015-12-01

    Risks and damage, caused by deformation of building and constructions in cryolithozone, are growing for decades. Worsening of cryo-ecological situation and loss of engineering-geocryological safety are induced by both technogenic influences on frozen basement and climate change. In such towns on permafrost as Vorkuta, Dixon more than 60% of objects are deformed, in Yakutsk, Igarka- nearly 40%, in Norilsk, Talnakh, Mirnij 35%, in old indigenous villages - approximately 100%; more than 80% ground dams with frozen cores are in poor condition. This situation is accompanied by activation of dangerous cryogenic processes. For example in growing seasonally-thaw layer is strengthening frost heave of pipeline foundation: only on Yamburg gas condensate field (Taz Peninsula) are damaged by frost heave and cut or completely replaced 3000 - 5000 foundations of gas pipelines. Intensity of negative effects strongly depends on regional geocryology, technogenic loads and climatic trends, and in Arctic we see a temperature rise - warming, which cause permafrost temperature rise and thaw). In built areas heat loads are more diverse: cold foundations (under the buildings with ventilated cellars or near termosyphons) are close to warm areas with technogenic beddings (mainly sandy), that accumulate heat, close to underground collectors for communications, growing thaw zones around, close to storages of snows, etc. Note that towns create specific microclimate with higher air temperature. So towns are powerful technogenic (basically, thermal) presses, placed on permafrost; in cooperation with climate changes (air temperature rise, increase of precipitation) they cause permafrost degradation. The analysis of dozens of urban thermal fields, formed in variable cryological and soil conditions, showed, that nearly 70% have warming trend, 20% - cooling and in 10% of cases the situation after construction is stable. Triggered by warming of climate changes of vegetation, depth and temperature of

  20. Permafrost soils and carbon cycling

    DOE PAGESBeta

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2014-10-30

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon (OC) stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous OC stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global C cycle and the potential vulnerability of the region's soil OC stocks to changing climatic conditions. In this review,more » we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of OC stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this OC to permafrost thaw under a warming climate.« less

  1. Evaluating Ecotypes as a means of Scaling-up Permafrost Thermal Measurements in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Cable, William; Romanovsky, Vladimir

    2015-04-01

    was anomalously low during both winters, while mean monthly and annual air temperature was similar to the long-term average the first year and considerably warmer (warm winter) the second year. Our results indicate that it is possible to extract information about subsurface temperature, active layer thickness, and other permafrost characteristics based on these ecotype classifications. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near surface permafrost. As a proof of concept, we used this information to translate the ecotype landcover map into a map of mean annual ground temperature ranges at 1 m depth. While this map is preliminary and would benefit from additional data and modeling exercises (both ongoing), we believe it provides useful information for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.

  2. Water movement and solute transport in permafrost wetlands: implications for inorganic carbon cycling

    NASA Astrophysics Data System (ADS)

    Jessen, Søren; Dahl Holmslykke, Hanne; Rasmussen, Kristine; Richardt, Niels; Engelund Holm, Peter

    2014-05-01

    Carbon dioxide emissions from thawing permafrost wetlands are an expected consequence of global warming. Addressing the pathways by which carbon is emitted, we investigated the hydrological and geochemical controls on the pore water chemistry of a permafrost wetland, with a shallow geological sequence comprising loam overlain by sphagnum peat, in Ilulissat, Greenland. A 400 m transect parallel to the general flow direction was established, along which water table measurements and slug tests were conducted, and the active layer thickness recorded (typically ~0.5 m). Also, in three detailed profiles along the transect, the vertical distributions of stable isotopes of water and major ion chemistry were investigated, by analysis of active layer pore water and water of melted core sections of permafrost. Concentrations of chloride (0.3-0.4 mM) did not show variation with depth, dismissing solute movement by ion freeze-out during fall freeze-up as a main control on the water chemistry. In addition, the observed vertical δ18O distribution did not to any extent conform to modelled Rayleigh distillation curves for the preferential inclusion of H218O into ice, which could be a scenario for fall freeze-up. The δ18O data therefore suggests either a rapid freeze-up or a simultaneous phase transition at all depths of the active layer, which in either case also would minimize potential ion freeze-out effects. Nevertheless, concentrations of major ions generally increased with depth. A conceptual model for water and solute transport was therefore established, according to which solutes are mobilized by weathering reactions in the loam and then transported upwards to the peat by diffusion. In the peat, lateral advective solute transport dominates. We applied the model to observed profiles of Ca, Mg, HCO3 and the partial CO2 pressure (PCO2). Concentrations of Ca, Mg and HCO3 increased with depth, reaching ~2 mM, ~2 mM and ~8 meq/L at the bottom of the active layer. Pore water at

  3. Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Zhao, Lin; Fang, Hongbing; Zhao, Yuguo; Smoak, Joseph M.; Pang, Qiangqiang; Ding, Yongjian

    2016-01-01

    While permafrost in the circum-Artic has great influence on soil organic carbon (SOC) and total nitrogen (TN) stocks, this might not be the case in low-latitude arid permafrost regions. We test this hypothesis in the western Qinghai-Tibetan Plateau (QTP) permafrost region. Fifty-nine soil profiles were analyzed to examine the SOC and TN distribution and the controlling factors in western QTP, which is a desert steppe ecoregion. Mean stocks of SOC (5.29 kg m-2) and TN (0.56 kg m-2) for the top 200 cm in this area were lower than those of the east QTP and circum-Arctic regions. The SOC and TN stocks under vegetative cover with permafrost conditions were significantly higher than those of desert conditions. The SOC and TN stocks for the layers of different depths were related to the content of clay, silt, and moisture. Although the active layer thickness (ALT) had a significant negative correlation to soil moisture, the ALT explained little or no variance in the SOC and TN stocks. The results showed that in the vast permafrost regions of the western QTP, the SOC and TN stocks are very low, and the main controlling factors for the SOC and TN are soil texture, moisture, and vegetation type. The SOC pool in this area may not be as vulnerable to degradation associated with climate warming and thus not emit greenhouse gases at the same rate as other permafrost regions. The different response of the SOC in this region should be considered in carbon cycling models.

  4. Permafrost degradation after the 2002 wildfire in Kougarok, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Iwahana, G.; Harada, K.; Uchida, M.; Kondo, M.; Saito, K.; Narita, K.; Kushida, K.; Hinzman, L. D.; Fukuda, M.; Tsuyuzaki, S.

    2014-12-01

    Geomorphological and thermo-hydrological changes after wildfire were investigated here to clarify the rates of permafrost degradation and impacts on the surrounding environment. Study sites are located in Kougarok on the central Seward Peninsula of northwestern Alaska. This area is classified as zones of either continuous and discontinuous permafrost. In 2002, wildfire burned a large area of this region. We selected an intact area and a burned area as research sites located close to one another and divided by a road. The surface organic layer was either combusted or reduced in thickness during the fire. It is assumed that the vegetation cover and subsurface conditions were similar between both sites before the fire. General vegetation at unburned sites was shrub-tussock tundra with more than 30 % evergreen shrubs, about 30 % deciduous shrubs and about 20 % sedges. Our studies of aerial photography and high-resolution satellite images showed that surface subsidence due to thermokarst developed differentially within some of the burned and vehicle-disturbed areas, exposing the polygonal reliefs on the surface. Within burned areas absent the thermokarst polygonal reliefs, soil moisture was higher at burned areas than unburned, and the active layer thickness was about 1.5-2.0 times deeper at the burned area during the initial stage of the study (2005-2007). In the following years, however, the difference in active layer thickness decreased, and thickness for the burned area seemed to be recovering to pre-fire status. Geophysical surveys demonstrated that there had been no detectable difference in the depth of the permafrost base between the burned and unburned areas. On the other hand, at the burned site with thermokarst polygonal reliefs, we confirmed using differential GPS that the polygonal reliefs actually coincides with depression lines along the subsurface ice wedge network. Near-surface unfrozen and frozen soil cores down to 1.6 m depth were sampled at seven and

  5. Constraining Soil C Loss upon Thaw: Comparing Soils with and without Permafrost

    NASA Astrophysics Data System (ADS)

    Harden, J. W.; Ping, C. L.; O'Donnell, J. A.; Koven, C. D.; Michaelson, G. J.; Genet, H.; Xu, X.

    2014-12-01

    Permafrost thaw, with its state change and increased temperature, clearly results in increased decomposition, but constraining directions and amounts of net C exchange is confounded by feedbacks among dynamic vegetation and soil layers, nutrients, and microbial communities. One way to constrain potential loss is to compare soils with and without permafrost. We compared three sets of soil profiles developed in late Pleistocene loess from various slope positions in western Iowa (no permafrost for >10ka), south-central Alaska (no permafrost for > 3550 y), and interior Alaska (current permafrost). In Iowa C where deep C was protected by loess burial, % soil C declined most precipitously with depth (down to < 0.6 %C at 1m). Alaska soils with and without permafrost were similar in %C at 1m depths (up to 2% C). However soils with permafrost had 2X to 4X more C than non-permafrost soils at 1.5 m and maintained high and highly variable (0.8 to 11% C) C contents below 150 cm. Data provide an additional line of evidence that carbon in deep permafrost is highly susceptible to loss upon thawing. Meanwhile modeling and forecasting C fate requires more insight into C protection and stabilization by burial.

  6. Subsea Permafrost Mapped Across the U.S. Beaufort Sea Using Multichannel Seismic Data

    NASA Astrophysics Data System (ADS)

    Brothers, L.; Hart, P. E.; Ruppel, C. D.

    2011-12-01

    Circum-Arctic continental shelves at water depths less than ~100 m were subaerial permafrost prior to the onset of sea-level rise starting in the late Pleistocene. Rapid transgression and the resulting temperature increase at the sediment surface have led to thawing of the inundated permafrost, landward retreat of the leading edge of the permafrost, and dissociation of permafrost-associated gas hydrates. Past numerical modeling has shown that gas hydrate dissociation is particularly pronounced at the permafrost-to-no permafrost transition offshore. On the U.S. Beaufort margin, subsea permafrost has never been systematically mapped, and the best insights about permafrost and associated gas hydrate have been based on a limited number of offshore boreholes and numerical studies, with sometimes contrasting predictions of the permafrost's seaward extent. We bring together 5370 km of multichannel seismic (MCS) data acquired during various proprietary exploration industry and public domain government surveys between 1977 and 1992 to map a velocity anomaly diagnostic of submerged permafrost along 500 km of the US Beaufort coastline. These high-velocity (>~2.8 km/s) refractions (HVR), which are evident in prestack MCS shot records, reveal laterally continuous layers of shallow, ice-bonded, coarse-grained sediments beneath the inner continental shelf. The HVR occur in less than 5% of the tracklines, and calculated HVR depths range from 60 to 350 m below seafloor. The velocity anomaly is not observed seaward of the 20 m isobath, and is only found within 30 km of the current shoreline. These results can be used to: 1) create a map of the minimum distribution of remaining US Beaufort shelf subsea permafrost; 2) reconcile discrepancies between model-predicted and borehole-verified offshore permafrost distribution; and 3) constrain where to expect hydrate dissociation.

  7. Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites

    NASA Astrophysics Data System (ADS)

    Sattler, Katrin; Anderson, Brian; Mackintosh, Andrew; Norton, Kevin; de Róiste, Mairéad

    2016-02-01

    Alpine permafrost occurrence in maritime climates has received little attention, despite suggestions that permafrost may occur at lower elevations than in continental climates. To assess the spatial and altitudinal limits of permafrost in the maritime Southern Alps, we developed and tested a catchment-scale distributed permafrost estimate. We used logistic regression to identify the relationship between permafrost presence at 280 active and relict rock glacier sites and the independent variables a) mean annual air temperature and b) potential incoming solar radiation in snow free months. The statistical relationships were subsequently employed to calculate the spatially-distributed probability of permafrost occurrence, using a probability of ≥ 0.6 to delineate the potential permafrost extent. Our results suggest that topoclimatic conditions are favorable for permafrost occurrence in debris-mantled slopes above ~ 2000 m in the central Southern Alps and above ~ 2150 m in the more northern Kaikoura ranges. Considering the well-recognized latitudinal influence on global permafrost occurrences, these altitudinal limits are lower than the limits observed in other mountain regions. We argue that the Southern Alps' lower distribution limits may exemplify an oceanic influence on global permafrost distribution. Reduced ice-loss due to moderate maritime summer temperature extremes may facilitate the existence of permafrost at lower altitudes than in continental regions at similar latitude. Empirical permafrost distribution models derived in continental climates may consequently be of limited applicability in maritime settings.

  8. Estimates of northern Eurasian permafrost degradation and induced changes in soil carbon storage and methane emissions in the 21st century

    NASA Astrophysics Data System (ADS)

    Denisov, Sergey; Maxim, Arzhanov; Alexey, Eliseev; Igor, Mokhov

    2016-04-01

    The carbon storage in frozen soils of the Northern Hemisphere (equals to about 1670 Gt) is by more than two times greater than its current content in the atmosphere. An increase of the permafrost active layer depth and subsequent microbial degradation of the thawed organic carbon stocks cause the growth of greenhouse gas emissions from soil to the atmosphere and therefore, can establish the positive feedback under projected climate change. In this study, based on the results of calculation of the permafrost soil thermal state forced by atmospheric parameters from the ensemble of CMIP5 project models and the content and the vertical distribution of soil carbon data NCSCDv2 (The Northern Circumpolar Soil Carbon database, version 2) estimated the carbon stocks, which may be included in the global biogeochemical cycle by the end of the 21st century. The largest estimated increase in the thaw layer thickness is more than 7-8 m (including the depth of seasonal thaw and taliks) to the 2090-2099 period from the beginning of the 21st century under the RCP 8.5 scenario. It takes place on the southern boundary of the permafrost zone, Western Siberia and the Baikal region. In Chukotka, the thickness of active layer increases by 5-6 m. Increase of the active layer thickness leads to the permafrost thaw and degradation of soil organic matter. Increasing the carbon pool in the thawed layer is the most pronounced in the northern part of the permafrost zone, and much suppressed in the southern part due to the exponential form of the vertical distribution of carbon in the soil with the highest values in the upper soil layers. In the permafrost regions, the increase of the active layer thickness, soil temperature, and the length of the warm period leads to significant increase in methane emissions from soil to the atmosphere. Under the most aggressive scenarios of anthropogenic forcing RCP 8.5, these methane emissions here increase more than three-fold in the 21st century. The

  9. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment

    PubMed Central

    Taneva, Lina; Trumbore, Susan E.; Welker, Jeffrey M.

    2010-01-01

    A snow addition experiment in moist acidic tussock tundra at Toolik Lake, Alaska, increased winter snow depths 2–3 m, and resulted in a doubling of the summer active layer depth. We used radiocarbon (∆14C) to (1) determine the age of C respired in the deep soils under control and deepened active layer conditions (deep snow drifts), and (2) to determine the impact of increased snow and permafrost thawing on surface CO2 efflux by partitioning respiration into autotrophic and heterotrophic components. ∆14C signatures of surface respiration were higher in the deep snow areas, reflecting a decrease in the proportion of autotrophic respiration. The radiocarbon age of soil pore CO2 sampled near the maximum mid-July thaw depth was approximately 1,000 years in deep snow treatment plots (45–55 cm thaw depth), while CO2 from the ambient snow areas was ~100 years old (30-cm thaw depth). Heterotrophic respiration ∆14C signatures from incubations were similar between the two snow depths for the organic horizon and were extremely variable in the mineral horizon, resulting in no significant differences between treatments in either month. Radiocarbon ages of heterotrophically respired C ranged from <50 to 235 years BP in July mineral soil samples and from 1,525 to 8,300 years BP in August samples, suggesting that old soil C in permafrost soils may be metabolized upon thawing. In the surface fluxes, this old C signal is obscured by the organic horizon fluxes, which are significantly higher. Our results indicate that, as permafrost in tussock tundra ecosystems of arctic Alaska thaws, carbon buried up to several thousands of years ago will become an active component of the carbon cycle, potentially accelerating the rise of CO2 in the atmosphere. Electronic supplementary material The online version of this article (doi:10.1007/s00442-009-1556-x) contains supplementary material, which is available to authorized users. PMID:20084398

  10. Melanin as an active layer in biosensors

    SciTech Connect

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jéssica Colnaghi Biziak de Figueiredo, Natália Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  11. Melanin as an active layer in biosensors

    NASA Astrophysics Data System (ADS)

    Piacenti da Silva, Marina; Fernandes, Jéssica Colnaghi; de Figueiredo, Natália Biziak; Congiu, Mirko; Mulato, Marcelo; de Oliveira Graeff, Carlos Frederico

    2014-03-01

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  12. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2015-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: International

  13. Intensification of hydrological process in permafrost regions and correlation with ecological processes from multi-sensor satellite observations and in-situ measurements

    NASA Astrophysics Data System (ADS)

    Tong, J.; Velicogna, I.; Zhang, T.; Kimball, J. S.; Rawlins, M. A.; McDonald, K. C.

    2010-12-01

    Global warming is driving dramatic changes in arctic terrestrial hydrological and ecological processes. We apply synergistic multi-sensor satellite observations, in-situ measurements and hydro-ecological process modeling to quantify recent changes in terrestrial water storage, plant available moisture and biophysical controls on vegetation productivity and ET for boreal-Arctic biomes in Eurasia. Using GRACE measurements of time variable gravity, for the period between 2002 and 2010 in conjunction with precipitation (P) and evapotraspiration (ET) from a range of GCM and hydrological model outputs, runoff measurements and snow water equivalent (SWE) measurements, we analyze the changes in the water cycle in Eurasia. During this period the water cycle appears to have intensified. We observe a water storage increase in the Lena and Yenisei basins, in areas characterized by permafrost coverage. Using observations of active layer changes in these regions in combination with the GRACE data we interpret this water storage increase as a combination of deepening of the soil active layer and formation of close talik with associated impact on the permafrost regime in those regions. We present result from spatial and temporal correlation analyses of GRACE derived water storage changes, Net Primary Production (NPP) and NDVI from MODIS, precipitation and evapotraspiration, length of the growing season, fractional open water cover, snow cover, permafrost, and land cover. We interpret these correlations in terms of mutual feedbacks between water cycle variability, ecosystem change and permafrost regime.

  14. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J. W.; Schuur, E. A. G.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G. J.; Koven, C. D.; O'Donnell, J. A.; Elberling, B.; Mishra, U.; Camill, P.; Yu, Z.; Palmtag, J.; Kuhry, P.

    2014-12-01

    permafrost region is ∼1300 Pg with an uncertainty range of ∼1100 to 1500 Pg. Of this, ∼500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while ∼800 Pg is perennially frozen. This represents a substantial ∼300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.

  15. Methane in Upper Permafrost of Eastern Siberia: Sources and Significance

    NASA Astrophysics Data System (ADS)

    Brouchkov, A.; Fukuda, M.

    2002-12-01

    Methane contribution to greenhouse effect is significant, so the production and concentrations of methane in great permafrost areas of Eurasia is in important respects analogous to the climate change forecast. Studies of the widespread methane should provide insight into the microbiological activity in permafrost. The total amount of methane trapped in permafrost is poorly studied; methane could disappear in unfrozen deposits, but not in ice-saturated soils. Gas samples were collected directly from upper permafrost of Lena river valley, Eastern Siberia. Frozen alluvial deposits in different landscapes were studied for methane and carbon dioxide content from the depths of up to 5 m. Ice wedges were also investigated. Measurements show different values; highest methane content was found in frozen mineral deposits (up to 6000 ppmv), but some soils almost do not contain methane. Ice wedges contain great amount of carbon dioxide. Ice wedges are presented by two categories: those with high methane content (generally, small wedges often with high mineral content) and those with almost no methane (ice wedges of big thickness). There was no correlation established between the methane content and depth. Average methane content in permafrost could be estimated as 0.05 - 0.5 ml/kg. Normally, icy permafrost contains more gas. In general, methane and carbon dioxide content increase with water content increase. The older the permafrost, the more methane it contains; this could be an indirect evidence of possible methane generation in the frozen state. Long-term experiments have shown that there is a slow production of methane in different frozen soils at -5°C. The change of methane content occurred according to logarithmical law in samples of modern soils from Alaska, Yakutsk and Hokkaido; the rates of methane production decrease in time, but methane could be produced in significant amounts in frozen soils, taking into account the age of permafrost.

  16. Geophysical characterization of permafrost terrain at Iqaluit International Airport, Nunavut

    NASA Astrophysics Data System (ADS)

    Oldenborger, Greg A.; LeBlanc, Anne-Marie

    2015-12-01

    Iqaluit International Airport presently suffers from instabilities and subsidence along its runway, taxiways and apron. In particular, asphalt surfaces are significantly impacted by settlement and cracking. These instabilities may be related to permafrost, permafrost degradation and associated drainage conditions. Low induction number electromagnetic measurements along with galvanic and capacitive electrical resistivity surveys were performed over selected areas within the airport boundary and in the near vicinity to assist with permafrost characterization and to investigate active permafrost processes. Electrical resistivity images suggest distinct electrical signatures for different terrain units and sediment types, and for ice-rich material including ice wedges. Anomalous regions are identified that are coincident with localized settlement problems. Repeated resistivity maps reveal seasonal changes indicative of high unfrozen water content and freeze/thaw of groundwater beneath airport infrastructure in distinct regions related to surficial geology. Even with continuous permafrost and cold permafrost temperatures, the resistivity models reveal anomalously conductive material at depth that is not obviously correlated to mapped surficial sediments and that may represent thaw susceptible sediments or significant unfrozen water content.

  17. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  18. Influence of Fire on Permafrost in Lowland Forests of the Tanana Flats, Interior Alaska

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Jorgenson, T.; Douglas, T. A.; Romanovsky, V. E.; Kielland, K.; Euskirchen, E. S.; Ruess, R.

    2014-12-01

    The degradation of ice-rich permafrost in lowland ecosystems may have particularly strong ecological impacts due to the potential for thaw settlement and subsequent water impoundment. We examined the effects of fire disturbance on permafrost across a chronosequence of fire scars (1930-2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats of Interior Alaska, and utilized a thermal permafrost model (GIPL) to assess the roles of soil physical properties and historic climate. Field-based calculations of potential thaw settlement following the loss of ice-rich permafrost ranged from 0.4 m to 0.9 m. This subsidence would cause the surface elevations of current day forests to drop, on average, to 0.1 m below the surface water level of adjacent collapse-scar bogs, likely resulting in water impoundment. However, the vulnerability of permafrost to deep thawing and talik formation was variable among fire scars due to heterogeneity in organic layer thickness, soil texture, moisture, and associated thermal properties. Simulated reductions in organic layer thickness predicted talik formation in peat and silt loam-dominated soils, but not in sandy loams. The vulnerability of permafrost to talik formation increased under the climatic conditions since 1970, which were characterized by higher air temperatures. Pronounced permafrost thawing occurred during periods of high snow accumulation, whereas periods of low snow accumulation appeared to facilitate permafrost recovery. Simulations of the complete removal of the organic layer (high severity fire) in silt loam-dominated sites suggested the long-term loss of permafrost under the climate of the last century. Overall, the influence of fire on permafrost in these lowland ecosystems appears to be dependent on soil physical properties, fire severity, and climatic conditions.

  19. Seasonal Variability of Major Ions and δ13CDIC in Permafrost Watersheds of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Lehn, G. O.; Jacobson, A. D.; Douglas, T. A.; McClelland, J. W.; Khosh, M. S.; Barker, A. J.

    2011-12-01

    Models and observations predict that climate change will have more severe effects at higher latitudes. Many effects may already be underway. Increasing temperatures are expected to thaw permafrost soils, changing the hydrology and biogeochemistry of Arctic watersheds. These changes are particularly important because permafrost thaw could destabilize a large carbon reservoir, potentially leading to sizable greenhouse gas emissions. Tracking soil thaw and concomitant changes in carbon export are therefore critical to predicting feedbacks between Arctic climate change and global warming. As the climate warms, the seasonally thawed active layer will extend into deeper, previously frozen, mineral-rich soils, increasing the signal of chemical weathering in streams. Historical methods of monitoring active layer thaw depth are labor intensive and may not capture the heterogeneity of Arctic soils, whereas stream geochemistry provides a unique opportunity to integrate signals across vast spatial distances. We present major ion geochemistry and δ13C of dissolved inorganic carbon (DIC) variations that relate to seasonal changes in permafrost thaw depths. Samples were collected from six watersheds on the North Slope of Alaska. All rivers drain continuous permafrost but three drain tussock tundra-dominated watersheds and three drain bare bedrock catchments with minor tundra influences. Water samples were collected from April until October in 2009 and 2010. The major ion and δ13CDIC trends of tundra streams suggest that silicate weathering dominates during the spring melt while carbonate weathering dominates as the active layer deepens in the summer. In tundra streams, early season δ13CDIC values indicate carbonic acid-silicate weathering. Summer δ13CDIC values indicate carbonic acid-carbonate weathering. In both cases, carbonic acid forms from CO2 produced by the microbial decomposition of C3 organic matter. Bedrock streams have nearly constant δ13CDIC values and high

  20. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Gentsch, N.; Mikutta, R.; Alves, R. J. E.; Barta, J.; Čapek, P.; Gittel, A.; Hugelius, G.; Kuhry, P.; Lashchinskiy, N.; Palmtag, J.; Richter, A.; Šantrůčková, H.; Schnecker, J.; Shibistova, O.; Urich, T.; Wild, B.; Guggenberger, G.

    2015-07-01

    In permafrost soils, the temperature regime and the resulting cryogenic processes are important determinants of the storage of organic carbon (OC) and its small-scale spatial variability. For cryoturbated soils, there is a lack of research assessing pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM) fractions, such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels were sampled in 5 m wide soil trenches across the Siberian Arctic to calculate OC and total nitrogen (TN) stocks based on digital profile mapping. Density fractionation of soil samples was performed to distinguish between particulate OM (light fraction, LF, < 1.6 g cm-3), mineral associated OM (heavy fraction, HF, > 1.6 g cm-3), and a mobilizable dissolved pool (mobilizable fraction, MoF). Across all investigated soil profiles, the total OC storage was 20.2 ± 8.0 kg m-2 (mean ± SD) to 100 cm soil depth. Fifty-four percent of this OC was located in the horizons of the active layer (annual summer thawing layer), showing evidence of cryoturbation, and another 35 % was present in the upper permafrost. The HF-OC dominated the overall OC stocks (55 %), followed by LF-OC (19 % in mineral and 13 % in organic horizons). During fractionation, approximately 13 % of the OC was released as MoF, which likely represents a readily bioavailable OM pool. Cryogenic activity in combination with cold and wet conditions was the principle mechanism through which large OC stocks were sequestered in the subsoil (16.4 ± 8.1 kg m-2; all mineral B, C, and permafrost horizons). Approximately 22 % of the subsoil OC stock can be attributed to LF material subducted by cryoturbation, whereas migration of soluble OM along freezing gradients appeared to be the principle source of the dominant HF (63 %) in the subsoil. Despite the unfavourable abiotic conditions, low C / N ratios and high δ13C values indicated substantial microbial OM transformation in the

  1. Assessing Silicate Weathering in Permafrost-Dominated Catchments Using Lithium Isotopes: The Lena River, Siberia

    NASA Astrophysics Data System (ADS)

    Murphy, M. J.; Pogge von Strandmann, P.; Porcelli, D.; Katchinoff, J. A.; Moreras Martí, A.; Hirst, C. A.; Andersson, P. S.; Maximov, T. C.

    2015-12-01

    Rising global temperatures have the potential to influence the Earth's climate feedback cycles due to permafrost thawing, altering the freshwater input and trace metal and carbon fluxes into the ocean and atmosphere. Riverine lithium isotope ratios (d7Li) are a tracer of silicate weathering processes, which are key in the removal of atmospheric CO2 over geological timescales. Despite this, little is known about the effects of permafrost thawing on d7Li variations. Strong seasonal changes in the thawed active layer thickness dictate surficial water flow paths, which may influence intra-annual riverine d7Li signatures. We present a study of the dissolved d7Li from the large permafrost-dominated watersheds of the Lena River (Siberia), which drain into the Arctic Ocean. This work comprises a temporal study during the May 2015 spring flood, from ice breakup through peak flooding, thus monitoring changes in water-rock and water-soil interaction, both processes that control weathering and hence Li isotopes. Before riverine ice started to break up, high [Li] are observed as the river signature is governed by winter base flow conditions. As the river ice breaks up, surface runoff flows over the impermeable permafrost, interacting with leaf litter, diluting the [Li]. We compare d7Li over the spring flood period with a greater spatial study conducted over two summer field seasons (2012/2013) of the main Lena River channel and its tributaries, which drain a variety of lithologies/topographies. During the summer, the thawed active layer promotes deeper water flow paths, greater water-rock interaction and enhanced secondary minerals formation which preferentially take up 6Li. Summer riverine d7Li typically fall between +14.5 ‰ to +28.5 ‰, with rivers draining the Central Siberian Plateau typically exhibiting high [Li], but similar δ7Li to rivers draining the Verkhoyansk Mountain Range. Overall, this study demonstrates how Li isotopes respond to weathering in a permafrost

  2. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    PubMed

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  3. Cryogenic cave carbonates as an archive of Late Pleistocene permafrost in the Ural Mountains: preliminary results

    NASA Astrophysics Data System (ADS)

    Dublyansky, Yuri; Kadebskaya, Olga; Cheng, Hai; Luetscher, Mark; Spötl, Christoph

    2015-04-01

    A specific type of cave deposits, cryogenic cave carbonates (CCCs), was discovered in the late 1980s in several caves of Central Europe. Unlike 'common' speleothems that form primarily due to degassing of CO2 from Ca2+ and HCO3- -rich waters, CCCs form by freezing-induced segregation (Žák et al., 2004). The formation of CCCs, hence, requires the presence of both liquid water and freezing temperatures. The latter combination may occur in caves in two situations: (1) freezing-thawing cycles in cave entrance zones; and (2) degrading permafrost conditions, when the active layer reaches the cave ceiling, whilst the deeper parts of the cave remain frozen. The latter situation is associated with a particular type of CCCs, which can be used as a marker for permafrost conditions. Because cave carbonates can be accurately dated using the U/Th method, CCCs may be used to identify events of (degrading) palaeo-permafrost conditions. In this study, CCCs were identified and sampled in four caves, located along a 1000 km-long transect from the northern to the southern Ural Associating the CCCs to permafrost conditions was possible on the basis of field observations (locations deep inside the cave, far from entrance zones) and stable isotope properties (strongly depleted δ18O values, inverse correlation between δ18O and δ13C). Chaikovskiy et al. (2014) reported five U/Th analyses of CCC from three caves: 16.7 ka and 104.8 ka (Divja Cave, northern Ural); and 13.4 ka, 86.5 ka and 125.3 ka (Rossijskaya and Usvinskaya Caves, central Ural). In this study we report 25 additional U/Th ages from northern and central Ural, as well as the first CCC age from southern Ural (Shulgan-Tash Cave). Most of the younger ages (

  4. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    SciTech Connect

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

  5. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    DOE PAGESBeta

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less

  6. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    PubMed Central

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; Cole, James R.; Wu, Liyou; Luo, Yiqi; Schuur, E. A. G.; Zhou, Jizhong; Tiedje, James M.

    2015-01-01

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations. PMID:26284038

  7. Impact of Climate and Fires on Abrupt Permafrost Thaw in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Reents, C.; Greenberg, J. A.; Hu, F.

    2015-12-01

    Thermo-erosion from abrupt permafrost thaw is a key pulse disturbance in the Arctic that may impact the global carbon cycle. Abrupt thaw can occur when the permafrost active layer expands in response to climate warming and/or increased wildfire activity. Understanding these drivers of thermo-erosion is necessary to anticipate feedbacks in the Arctic, where summer temperature and fire frequency are predicted to increase. We examine modern and late-Holocene thermo-erosion in high-fire (Noatak) and low-fire (North Slope) tundra ecoregions of Alaska using a combination of remote-sensing and paleo-records. Lakes with active thaw features were identified through Landsat-7 image classification and time-series analysis based on observed 0.52-0.60 μm reflectance peaks following slump formation. We identified 1067 and 1705 lakes with active features between CE 2000-2012 in the Noatak and North Slope ecoregions, respectively. The density of features was higher in the highly flammable Noatak (0.04 versus 0.01 features km-2, respectively), suggesting that warmer climate and/or fires likely promote high thermo-erosional activity at present. To assess modern signals of thermo-erosion and identify past events, we analyzed soil profiles and lake-sediment cores from both ecoregions using X-ray fluorescence. The ratios of Ca:K and Ca:Sr increased with depth in permafrost soils, were higher in soils from younger versus older slump surfaces, and were significantly correlated with the ratio of carbonate to feldspar and clay minerals in lake sediments (r=0.96 and 0.93, P<0.0001, n=15). We interpret past increases in Ca:K, Ca:Sr, and δ13C as enhanced weathering of carbonate-rich permafrost soils associated with thermo-erosion. At the North Slope site, we identified ten episodes of thermoerosion over the past 6000 years and found strong correspondence to summer temperature trends. Events were more frequent at the Noatak site, where 15 thermo-erosional episodes and 26 fires occurred over

  8. Using TerraSAR-X and hyperspectral airborne data to monitor surface deformation and physical properties of the Barrow permafrost landscape, Alask

    NASA Astrophysics Data System (ADS)

    Haghshenas-Haghighi, M.; Motagh, M.; Heim, B.; Sachs, T.; Kohnert, K.; Streletskiy, D. A.

    2014-12-01

    In this study, we assess seasonal subsidence/heaving due to thawing/freezing of the permafrost in Barrow (71.3 N, 156.5 W) at the northernmost point of Alaska. The topographic relief in this area is low. Thick Permafrost underlies the entire area, with large ice volumes in its upper layer. With a large collection of field measurements during the past decades at the Barrow Environmental Observatory (BEO), it is an ideal site for permafrost investigation. There are long term systematic geocryological investigations within the Global Terrestrial Network (GTN-P) of the Circumpolar Active Layer Monitoring (CALM) programme. We use 28 TerraSAR-X images, acquired between December 2012 and December 2013 and analyze them using the Small BAseline Subset (SBAS) technique to extract time-series of ground surface deformation. We also analyze hyperspectral images acquired by the airborne AISA sensor over Barrow area, within the AIRMETH2013 programme, to assess physical characteristics such as vegetation biomass and density, surface moisture, and water bodies. Finally, we combine the information derived from both InSAR and hyperspectral analysis, with field measurements to investigate the link between physical characteristics of the permafrost and surface displacement.

  9. Using dissolved organic matter age and composition to detect permafrost thaw in boreal watersheds of interior Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, Jonathan A.; Aiken, George R.; Walvoord, Michelle A.; Raymond, Peter A.; Butler, Kenna D.; Dornblaser, Mark M.; Heckman, Katherine

    2014-11-01

    Recent warming at high latitudes has accelerated permafrost thaw, which can modify soil carbon dynamics and watershed hydrology. The flux and composition of dissolved organic matter (DOM) from soils to rivers are sensitive to permafrost configuration and its impact on subsurface hydrology and groundwater discharge. Here, we evaluate the utility of DOM composition and age as a tool for detecting permafrost thaw in three rivers (Beaver, Birch, and Hess Creeks) within the discontinuous permafrost zone of interior Alaska. We observed strong temporal controls on Δ14C content of hydrophobic acid isolates (Δ14C-HPOA) across all rivers, with the most enriched values occurring during spring snowmelt (75 ± 8‰) and most depleted during winter flow (-21 ± 8‰). Radiocarbon ages of winter flow samples ranged from 35 to 445 yr BP, closely tracking estimated median base flow travel times for this region (335 years). During spring snowmelt, young DOM was composed of highly aromatic, high molecular-weight compounds, whereas older DOM of winter flow had lower aromaticity and molecular weight. We observed a significant correlation between Δ14C-HPOA and UV absorbance coefficient at 254 nm (α254) across all study rivers. Using α254 as an optical indicator for Δ14C-HPOA, we also observed a long-term decline in α254 during maximum annual thaw depth over the last decade at the Hess Creek study site. These findings suggest a shift in watershed hydrology associated with increasing active layer thickness. Further development of DOM optical indicators may serve as a novel and inexpensive tool for detecting permafrost degradation in northern watersheds.

  10. Time-lapse capacitive resistivity imaging: a new technology concept for the monitoring of permafrost

    NASA Astrophysics Data System (ADS)

    Kuras, O.; Krautblatter, M.; Murton, J.; Haslam, E.; Wilkinson, P.; Meldrum, P.

    2011-12-01

    We have investigated and sought to prove a new technology concept for the non-invasive volumetric imaging and routine temporal monitoring of the thermal state of permafrost, a key indicator of global climate change. Capacitive Resistivity Imaging (CRI), a technique based upon low-frequency, capacitively-coupled measurements across permanently installed multi-sensor arrays is applied in order to emulate Electrical Resistivity Tomography (ERT) methodology, but without the need for galvanic contact on frozen soils or rocks. Recent work has shown that temperature-calibrated ERT using galvanic sensors is capable of imaging recession and re-advance of rock permafrost in response to the ambient temperature regime. However, our own laboratory experiments on rock samples under simulated permafrost conditions have equally demonstrated that galvanic electrodes experience large variations in contact resistances between sensors and the host material as the active layer freezes and thaws, leading to a rapid deterioration of data quality over time. As the presence of systematic but uncontrolled sensor noise will reduce the value of time-lapse ERT datasets for monitoring permafrost, the use of galvanic sensors will invariably impose practical limitations on field measurements. The capacitive methodology we are presenting here overcomes this problem and provides a roadmap for making stable resistance measurements with permanently installed sensors over time. We report on our experience with designing, building, testing and validating a functional prototype time-lapse CRI measurement system. The practical system architecture draws upon conceptual ideas incorporated in existing, field-scale CRI instrumentation designed by BGS; however, the use of dense capacitive sensor networks at the laboratory scale and the need for collecting tomographic imaging data across multiple sensors in an automated fashion required a novel technical approach. Our research has applied 4D CRI as well as

  11. Mapping permafrost with airborne electromagnetics

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  12. Glacial erosion and expected permafrost thickness of Fennoscandia and adjacent regions

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey

    2013-04-01

    temperatures and solve the Stefan's problem several known climate reconstructions were involved, but with account of possible ice-sheet related temperature depressions. In time-slices they were reinterpolated in agreement with changing the outlines of the ice sheets. Models of the basal sub-ice temperature based on relevant models for Greenland (Huybrechts P., 1996) and Antarctic ice sheets (Pattyn F., 2010) were accounted to estimate possible zonation and variability of warming effects of ice sheets. Expected lower permafrost thickness (first hundreds meters) and extent in the Barents region could be caused by unfavorable conditions and relatively high heat flow. Lowlands bearing major topographic ice streams were likely represented by taliks not affected by continuous permafrost or - depending on scenarios and parameters - were shortly affected by reduced permafrost with thick active layer. The same is expected for the Novaya Zemlya trench of the Kara Sea, while bordering shallow shelf parts were possibly characterized by thick permafrost, especially growing in time of eustatic ocean lowering. Permafrost in Fennoscandia and adjacent regions could be strongly variable but shortly relatively thick (hundreds meters) over large areas, including higher landscape on sedimentary cover west of Baltic - White Sea lowland. Linear taliks of discontinous permafrost zone on terrigenous sediments could contribute tunnel valley formation.

  13. Thin-Layer Chromatography: Four Simple Activities for Undergraduate Students.

    ERIC Educational Resources Information Center

    Anwar, Jamil; And Others

    1996-01-01

    Presents activities that can be used to introduce thin-layer chromatography at the undergraduate level in relatively less developed countries and that can be performed with very simple and commonly available apparati in high schools and colleges. Activities include thin-layer chromatography with a test-tube, capillary feeder, burette, and rotating…

  14. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  15. Analysis of ERT data of geoelectrical permafrost monitoring on Hoher Sonnblick (Austrian Central Alps)

    NASA Astrophysics Data System (ADS)

    Pfeiler, Stefan; Schöner, Wolfgang; Reisenhofer, Stefan; Ottowitz, David; Jochum, Birgit; Kim, Jung-Ho; Hoyer, Stefan; Supper, Robert; Heinrich, Georg

    2016-04-01

    In the Alps infrastructure facilities such as roads, routes or buildings are affected by the changes of permafrost, which often cause enormous reparation costs. Investigation on degradation of Alpine Permafrost in the last decade has increased, however, the understanding of the permafrost changes inducing its atmospheric forcing processes is still insufficient. Within the project ATMOperm the application of the geoelectrical method to estimate thawing layer thickness for mountain permafrost is investigated near the highest meteorological observatory of Austria on the Hoher Sonnblick. Therefore, it is necessary to further optimize the transformation of ERT data to thermal changes in the subsurface. Based on an innovative time lapse inversion routine for ERT data (Kim J.-H. et al 2013) a newly developed data analysis software tool developed by Kim Jung-Ho (KIGAM) in cooperation with the Geophysics group of the Geological Survey of Austria allows the statistical analysis of the entire sample set of each and every data point measured by the geoelectrical monitoring instrument. This gives on the one hand of course an enhanced opportunity to separate between „good" and „bad" data points in order to assess the quality of measurements. On the other hand, the results of the statistical analysis define the impact of every single data point on the inversion routine. The interpretation of the inversion results will be supplemented by temperature logs from selected boreholes along the ERT profile as well as climatic parameters. KIM J.-H., SUPPER R., TSOURLOS P. and YI M.-J.: Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations. - Geophysical Journal International, 195(3), 1640-1656, 2013. Doi: 10.1093/gji/ggt324. (No OA) Acknowledgments: The geoelectrical monitoring on Hoher Sonnblick has been installed and is operated in the frame of the project ATMOperm (Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme

  16. Changes in Soils and Permafrost as a Function of Distance to the Beaufort Sea Coast, Alaska

    NASA Astrophysics Data System (ADS)

    Lynn, L. A.; Ping, C.; Jorgenson, T.; Fortier, D.; Dou, F.

    2006-12-01

    Observed increases in the rate of coastal erosion have raised concerns about long term effects along the Beaufort Sea coast, Alaska. The objective of this study is to examine changes in soil and permafrost along three transects from the coastal bluff to 100 meters inland along the Beaufort Sea coast at three sites. The specific objectives are to determine site stratigraphy, cryogenic structure of the permafrost, and properties of the active layer as well as determine the effects of distance on the soil drainage, morphology, physical and biochemical properties, and fungal activity. Three sites on the north coast of Alaska were selected: Barrow, Prudhoe Bay, and Kaktovik. At each site three transects were laid perpendicular to the coast along which five points were designated: the bluff exposure at zero meters, one meter, five, 25, and 100 meters from the bluff. Elevations along transects were recorded as well as water depth and active layer thaw depth. Vegetative species and distribution data were recorded as well as physiographic descriptions. Soil samples for analysis were collected from each horizon of the active layer. The permafrost was sampled to a maximum depth of 2.5 meters in order to determine soil stratigraphy and ice content and to understand soil disturbances related to ice wedge growth in the polygons. Thermokarst trough expansion and changes in water ponding will be evaluated using historical photographs and GIS analysis. On polygonal terrain along the coast, soil properties including the type of sediment, cryoturbations, and ice content are strongly related to the dynamics of ice-wedge polygon development during the Holocene. This situation complicates the stratigraphy and the dynamics of the active layer and renders the systematic interpretation of the soils along a gradient perpendicular to the coast a challenge. Based on the first-year study, preliminary observations indicate that coastal erosion may propagate a substantial distance inland

  17. Mapping Microbial Carbon Substrate Utilization Across Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Rich, V. I.; Hodgkins, S. B.; Tfaily, M.; Chanton, J.

    2014-12-01

    Permafrost thaw is likely to create a substantial positive feedback to climate warming, as previously frozen carbon becomes bioavailable and is released to the atmosphere. Microbes mediate this release, while also consuming "new" carbon from plant inputs and middle-aged soil carbon pools in the seasonally-thawed active layer overlying permafrost. This carbon consumption releases carbon dioxide (CO2) and methane (CH4), both potent greenhouse gases. To investigate microbial carbon cycling in this changing habitat, we examined how microbial communities' carbon substrate degradation changes along a natural permafrost thaw gradient in Stordalen Mire (68.35°N, 19.05°E), northern Sweden. At this location, intermediate thaw creates Sphagnum moss-dominated bogs, while complete thaw results in Eriophorum sedge-dominated fens. The progression of thaw results in increasing organic matter lability (Hodgkins et al, 2014), shifting microbial community composition (Mondav & Woodcroft et al 2014), and changing carbon gas emissions (McCalley et al, in review). However, the inter-relationship of the first two in producing the third remains unclear. We analyzed microbial carbon substrate utilization in the intermediate-thaw and full-thaw sites by two incubation-based methods. We used Biolog EcoPlates, which contain 31 ecologically relevant carbon substrates and a colorimetric marker of their consumption, and into which we added a soil liquid suspension. In addition, we performed mason-jar incubations of peat with carbon substrate amendments and measured CH4 and CO2 emissions. Preliminary Biolog Ecoplate incubations showed that intermediate-thaw features responded faster and more strongly overall to a wide range of substrates relative to the full-thaw features. Preliminary mason jar incubations showed that acetate amendment elicited the greatest response increase in CH4 production and the second greatest increase in CO2 production relative to the controls, in samples from both

  18. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  19. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, Dylan; Atchley, Adam; Painter, Scott L; Coon, Ethan T.; Wilson, Cathy; Romanovsky, Vladimir E; Rowland, Joel

    2016-01-01

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21$^{st}$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant

  20. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    SciTech Connect

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although significant, is

  1. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGESBeta

    Harp, Dylan R.; Atchley, Adam L.; Painter, Scott L.; Coon, Ethan T.; Wilson, Cathy J.; Romanovsky, Vladimir E.; Rowland, Joel C.

    2016-02-11

    Here, the effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21more » $$^{st}$$ century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties

  2. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis

    DOE PAGESBeta

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2015-06-29

    The effect of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows formore » the evaluation of intra-annual uncertainty due to soil properties and the inter-annual variability due to year to year differences in CESM climate forcings. After calibrating to borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant intra-annual uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan number are small. A volume and time integrated Stefan number decreases significantly in the future climate, indicating that latent heat of phase change becomes more important than heat conduction in future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we show that the effect of calibration-constrained uncertainty in soil properties, although

  3. Deployment of an Ecosystem Warming Prototype at the Fairbanks Permafrost Experiment Station

    NASA Astrophysics Data System (ADS)

    Wagner, A. M.; Zufelt, J. E.; Wullschleger, S. D.

    2010-12-01

    Controlled experiments in terrestrial ecosystems are necessary to understand how changes in climate may affect the interactions among physical, chemical, and biological parameters. Advanced approaches to above and below ground warming will improve our understanding of the biotic and abiotic processes that govern plant and soil response to climatic change in terrestrial ecosystems. A prototype concept for raising soil temperatures in large outdoor plots has been developed at Oak Ridge National Laboratory. The performance of this design has been field-tested in 3-m diameter plots in a temperate deciduous forest and also numerically simulated for experimental plots ranging from 3 to 20 m in diameter. The goal of the present study is to determine if the prototype system can be used to increase the temperature of permafrost soils in arctic and sub-arctic climates. Two sites in Alaska have been selected (Fairbanks and Barrow) for installation and testing of 20-meter diameter plots beginning in the fall of 2010. Fairbanks has a continental climate, with a mean annual air temperature of -3.3°C, mean annual precipitation of 287 mm, and relatively warm (-1 to -2°C) permafrost temperatures. Barrow is located within the Alaskan Arctic coastal plain and has a mean annual air temperature of -12.6°C, mean annual precipitation of 124 mm, and colder (-8 to -12°C) permafrost temperatures. This presentation focuses on the study site located at the U.S. Army Cold Regions Research and Engineering Laboratory Permafrost Experiment Station, Fairbanks. The experiment station was established in 1945 and consists of 135 acres of ice-rich permafrost soils generally present to a depth of 60 m with an active layer that varies from 55 to 85 cm in undisturbed areas. The site has a smooth, gentle slope to the west, providing good surface drainage except at the lowest elevations where saturated conditions can exist. Soils consist of tan silt and wind blown loess near the surface and grey silt

  4. Active unjamming of confluent cell layers

    NASA Astrophysics Data System (ADS)

    Marchetti, M. Cristina

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. Motivated by these observations, we have studied a model of dense tissues that combines self-propelled particle models and vertex models of confluent cell layers. In this model, referred to as self-propelled Voronoi (SPV), cells are described as polygons in a Voronoi tessellation with directed noisy cell motility and interactions governed by a shape energy that incorporates the effects of cell volume incompressibility, contractility and cell-cell adhesion. Using this model, we have demonstrated a new density-independent solid-liquid transition in confluent tissues controlled by cell motility and a cell-shape parameter measuring the interplay of cortical tension and cell-cell adhesion. An important insight of this work is that the rigidity and dynamics of cell layers depends sensitively on cell shape. We have also used the SPV model to test a new method developed by our group to determine cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces, hence providing the spatio-temporal distribution of stresses in motile dense tissues. This work was done with Dapeng Bi, Lisa Manning and Xingbo Yang. MCM was supported by NSF-DMR-1305184 and by the Simons Foundation.

  5. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Shirokova, L. S.; Krivtzov, I. A.; Pokrovsky, B. G.; Kolesnichenko, L. G.; Kopysov, S. G.; Zemtzov, V. A.; Kulizhsky, S. P.; Vorobiev, S. N.; Kirpotin, S. N.

    2015-07-01

    cation flux (TDS_c) ranged from 1.5 to 5.5 t km-2 yr-1, similar to that in central Siberian rivers of the continuous permafrost region. While Si concentration was almost unaffected by the latitude over all seasons, the Si flux systematically increased northward, suggesting a decreasing role of secondary mineral formation in soil and of vegetation uptake. The dominating effect of latitude cannot however be interpreted solely in terms of permafrost abundance and water flow path (deep vs. surface) but has to be considered in the context of different climate, plant biomass productivity, unfrozen peat thickness and peat chemical composition. It can be anticipated that, under climate warming in western Siberia, the maximal change will occur in small (< 1000 km2 watershed) rivers DOC, DIC and ionic composition, and this change will be mostly pronounced in summer and autumn. The wintertime concentrations and spring flood fluxes and concentrations are unlikely to be appreciably affected by the change of the active layer depth and terrestrial biomass productivity. Assuming a conservative precipitation scenario and rising temperature over next few centuries, the annual fluxes of DOC and K in the discontinuous permafrost zone may see a maximum increase by a factor of 2, whereas for DIC and Mg, this increase may achieve a factor of 3. The fluxes of Ca and TDSc may increase by a factor of 5. At the same time, Si fluxes will either remain constant or decrease two-fold in the permafrost-bearing zone relative to the permafrost-free zone of western Siberia.

  6. The diversity of permafrost-affected soils in the Lena River Delta and its hinterland

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Kutzbach, Lars; Yakshina, Irina; Pfeiffer, Eva-Maria

    2013-04-01

    The North-Siberian Lena River Delta is the largest Arctic delta and an important interface between the Arctic Ocean in the North and the large Siberian land masses in the South. This delta consists not only of Holocene deltaic sediment deposits as a river terrace and the modern active floodplains but also of remnants of the former Pleistocene mainland including large islands of ice-complex sediments and the Arga-Muora-Sise Island, which is composed of pure sand sediments of still debated origin. The highly diverse landscape structure of the Lena River Delta is reflected by a great variety of permafrost-affected soils (gelisols). This study aims at describing this great gelisol diversity and at analysing the dominant soil-forming processes in this comparatively scarcely studied soil region. The soil development in the investigated continuous permafrost region is limited by the short thawing period of around three months (June to September) and takes place in the shallow (< 1 m) seasonally thawed active layer. The geological parent material plays an important role for the development of soils in the Lena River Delta region. The distribution of the various soil types closely follows the pattern of the geomorphic units characterised by differing sedimentation conditions. The properties and genesis of the soils on the Holocene river terrace and the modern floodplains are strongly affected by the enormous amounts of fluvial sediments (about 12 x 106 tons per year) brought by the Lena River into its delta. The fluvial sedimentation together with the also pronounced aeolian sedimentation results in a fast vertical growth of soils. The upward rise of the soil surface leads to an upward movement of the permafrost table resulting in fast incorporation of soil material formed in the supra-permafrost zone into the permafrost. Due to the morphodynamics of ice-wedge polygons and resulting formation of patterned ground with elevated rims and depressed and water-saturated centres

  7. Model Assessment of Permafrost Development for a Large Alpine Catchment

    NASA Astrophysics Data System (ADS)

    Voelksch, I.; Lehning, M.

    2005-12-01

    The extremely hot summer of 2003 saw increased rockfall and slope instability problems in the European Alps. This is generally attributed to permafrost thawing. Therefore, the development of permafrost in steep Alpine terrain under the observed warming trend needs to be investigated. We use ALPINE3D, a detailed model of Alpine surface processes to assess permafrost occurrence under the current climate and to predict an expected change under the warming scenario that future summers will be on average as the summer 2003. The ALPINE3D modules consist of a radiation balance model using a view factor approach and include short-wave scattering and long-wave emission from terrain and tall vegetation. The processes in the atmosphere are coupled to a distributed one-dimensional model of vegetation, snow and soil (SNOWPACK) using the assumption that lateral exchange is small in these media. Snow and soil processes are treated in much detail with adaptive multi-layer finite elements. The model modules can be run in a parallel (distributed) mode using a GRID infrastructure to allow such computationally demanding tasks. The application of ALPINE3D to the Cordevole river basin in the northern Italian Dolomites has been based on weather station data from seven locations in the area. A spatial resolution of 200 m is used for the simulation, which covers approximately 900 square kilometers. Typically, mass and energy exchange processes for 20 soil layers and up to 30 snow layers are calculated with an hourly time step and 15 years of data. In the steep terrain of the southern Alps, only a small area fraction has permafrost. Permafrost disappears almost completely under the warming scenario, which is achieved by simulating repeatedly the 2003 year.

  8. High risk of permafrost thaw

    SciTech Connect

    Schuur, E.A.G.; Abbott, B.; Koven, C.D,; Riley, W.J.; Subin, Z.M.; al, et

    2011-11-01

    In the Arctic, temperatures are rising fast, and permafrost is thawing. Carbon released to the atmosphere from permafrost soils could accelerate climate change, but the likely magnitude of this effect is still highly uncertain. A collective estimate made by a group of permafrost experts, including myself, is that carbon could be released more quickly than models currently suggest, and at levels that are cause for serious concern. While our models of carbon emission from permafrost thaw are lacking, experts intimately familiar with these landscapes and processes have accumulated knowledge about what they expect to happen, based on both quantitative data and qualitative understanding of these systems. We (the authors of this piece) attempted to quantify this expertise through a survey developed over several years, starting in 2009. Our survey asked experts what percentage of surface permafrost they thought was likely to thaw, how much carbon would be released, and how much of that would be methane, for three time periods and under four warming scenarios that are part of the new IPCC Fifth Assessment Report.

  9. A re-analysis of 533 rockfalls occurred since 2003 in the Mont Blanc massif for the study of their relationship with permafrost

    NASA Astrophysics Data System (ADS)

    Ravanel, Ludovic; Magnin, Florence; Deline, Philip

    2015-04-01

    Rockfall is one of the main natural hazards in high mountain regions and its frequency is growing, especially since two decades. Collapses at high elevation are with an increasing certainty assumed to be a consequence of the climate change through the warming permafrost. In the Mont Blanc massif, data on present rockfalls (occurrence time when possible, accurate location, topographical and geological settings, volume, weather and snow conditions) were acquired for 2003 and for the period 2007-2014 thanks to a satellite image of the massif and a network of observers in the central part of the massif, respectively. The study of the 533 so-documented rockfalls shows a strong correlation at the year scale between air temperature and rockfall. Along with this data acquisition, a statistical model of the Mean Annual Rock Surface Temperature (MARST) for the 1961-1990 period has been implemented on a 4-m-resolution DEM of the Mont Blanc massif. The model runs with Potential Incoming Solar radiation (PISR) calculated with GIS tools and air temperature parameters computed from Chamonix Météo France records. We cross here the data on rockfalls with the permafrost distribution model to show that: (i) rockfall occurs mainly over modeled negative MARST (context of permafrost); (ii) simulated warm permafrost areas (> -2°C) are the most affected by instabilities; (iii) as the 1961-1990 period is supposed to be representative of the conditions at depth that are not affected by the climate warming during the two last decades, the latest results are mainly valuable for rockfalls related to pluri-decadal signal; and (iv) the higher (close to 0°C) the MARST, the deeper the detachment (possibly related to the deepening of the permafrost active layer). These results and field observations confirm that warming permafrost corresponds to the main required configuration for rockfall triggering at high elevation. In addition, we show that rockfalls for which ice observed in their scar

  10. Regional extent of permafrost and boreal forest degradations in the central Yakutia by ALOS-PALSAR and AVNIR2 images

    NASA Astrophysics Data System (ADS)

    Iijima, Yoshihiro; Fedorov, Alexander; Abe, Konomi; Ise, Hajime; Masuzawa, Tadashi

    2013-04-01

    Wet climate with largely increased in precipitation during summer and snow accumulation during winter had continued 4 years since 2004 winter in eastern Siberia. Soil moisture in the active layer had been significantly increased corresponding with thawing of permafrost near the surface during following years. The perennially water-logged active layer furthermore exacerbated the boreal forest habitat, namely withered and dead forests widely extended in this region. In the present study, we have attempted to extract the region of degraded boreal forest based on the analysis of satellite data in the left and right banks of Lena River near Yakutsk, along with expansion of the water surface area in relation to permafrost degradation. We utilized ALOS-PALSAR and AVNIR2 images taken during 2006 through 2009. After geocoding and noise reduction of PALSAR images, classification of water surface area including water-logged ground was performed with supervised classification using the threshold of a microwave backscattering coefficient. Then, we compared the distribution of the water-logged area between multi-years. In addition, during the same period, supervised classification of grassland and boreal forest was conducted using AVNIR2 images. Then, both classifications were overlaid and the multi-years change in degraded boreal forest due to water-logged conditions was extracted as well. Boreal forest in the left bank of the Lena River distributes on river terrace where density of alas lakes is quite low due to consisting of sandy loam soil with underlying permafrost with less ground ice content. In this area, water surface area expanded in concaved terrain and along the valley year by year in conjunction with change from forest to grassland. On the other hand, forest in the right bank of the Lena River distributed in the region with very high density of alas lakes due to underlying ice rich permafrost. During the same period, alas lakes expanded and boreal forest on the

  11. Influence of subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Hoelzle, M.; Hauck, C.

    2012-04-01

    Permafrost in high mountain areas occurs in a large variety of surface and subsurface material within short distances. This work presents a nine-year (2002 - 2011) data set of borehole temperatures for five different (sub-) surface materials from the high alpine permafrost area, Murtèl-Corvatsch, Switzerland (Haeberli et al. (1988) and Hanson & Hoelzle (2005)). The influence of the material on the thermal regime was investigated by borehole temperature data, the temperature at the top of the permafrost (TTOP-concept) and the apparent thermal diffusivity (ATD). The results show no consistent subsurface temperature trends since 2002 within the uppermost 6 meters. Rather, the thermal regime is predominantly influenced by the composition of the subsurface material and the thickness and duration of the snow cover. At all sites the subsurface temperatures were the lowest when the snow thickness was less than 1m. As pointed out in Luetschg et al. (2008), it could be confirmed, that the longer the non-insulating snow cover lasts in autumn, the colder is the ground surface temperature (GST) through the entire year. At all sites the cooling during autumn/ winter and the duration of the zero curtain in spring had a stronger influence on the interannual variability of the thermal regime than the temperature increase during summer. At coarse blocky, ice-rich sites no changes in active layer depth were observed. Rather, the ATD values of the active layer and the high temperature transport rate of 5.6 K m-1 d-1 confirm a high thermal response of the active layer. Within coarse blocky material, the air ventilation (as described in Wakonigg (1996)) and the seasonal production of ice seem to be the main factors for permafrost occurrence in high alpine regions. While temperatures within the talus slope are close to 0 °C and a stable permafrost regime is observed, the subsurface of the fine-grained site (where convective and advective airflow can be neglected) showed positive

  12. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Tremblay, L. Bruno; Kassens, Heidemarie; Anisimov, Oleg A.; Lavrov, Sergey A.; Razumov, Sergey O.; Grigoriev, Mikhail N.

    2011-10-01

    Summer hydrographic data (1920-2009) show a dramatic warming of the bottom water layer over the eastern Siberian shelf coastal zone (<10 m depth), since the mid-1980s, by 2.1°C. We attribute this warming to changes in the Arctic atmosphere. The enhanced summer cyclonicity results in warmer air temperatures and a reduction in ice extent, mainly through thermodynamic melting. This leads to a lengthening of the summer open-water season and to more solar heating of the water column. The permafrost modeling indicates, however, that a significant change in the permafrost depth lags behind the imposed changes in surface temperature, and after 25 years of summer seafloor warming (as observed from 1985 to 2009), the upper boundary of permafrost deepens only by ˜1 m. Thus, the observed increase in temperature does not lead to a destabilization of methane-bearing subsea permafrost or to an increase in methane emission. The CH4 supersaturation, recently reported from the eastern Siberian shelf, is believed to be the result of the degradation of subsea permafrost that is due to the long-lasting warming initiated by permafrost submergence about 8000 years ago rather than from those triggered by recent Arctic climate changes. A significant degradation of subsea permafrost is expected to be detectable at the beginning of the next millennium. Until that time, the simulated permafrost table shows a deepening down to ˜70 m below the seafloor that is considered to be important for the stability of the subsea permafrost and the permafrost-related gas hydrate stability zone.

  13. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  14. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  15. Continuous recording of seismic signals in Alpine permafrost

    NASA Astrophysics Data System (ADS)

    Hausmann, H.; Krainer, K.; Staudinger, M.; Brückl, E.

    2009-04-01

    Over the past years various geophysical methods were applied to study the internal structure and the temporal variation of permafrost whereof seismic is of importance. For most seismic investigations in Alpine permafrost 24-channel equipment in combination with long data and trigger cables is used. Due to the harsh environment source and geophone layouts are often limited to 2D profiles. With prospect for future 3D-layouts we introduce an alternative of seismic equipment that can be used for several applications in Alpine permafrost. This study is focussed on controlled and natural source seismic experiments in Alpine permafrost using continuous data recording. With recent data from an ongoing project ("Permafrost in Austria") we will highlight the potential of the used seismic equipment for three applications: (a) seismic permafrost mapping of unconsolidated sediments, (b) seismic tomography in rock mass, and (c) passive seismic monitoring of rock falls. Single recording units (REFTEK 130, 6 channels) are used to continuously record the waveforms of both the seismic signals and a trigger signal. The combination of a small number of recording units with different types of geophones or a trigger allow numerous applications in Alpine permafrost with regard to a high efficiency and flexible seismic layouts (2D, 3D, 4D). The efficiency of the light and robust seismic equipment is achieved by the simple acquisition and the flexible and fast deployment of the (omni-directional) geophones. Further advantages are short (data and trigger) cables and the prevention of trigger errors. The processing of the data is aided by 'Seismon' which is an open source software project based on Matlab® and MySQL (see SM1.0). For active-source experiments automatic stacking of the seismic signals is implemented. For passive data a program for automatic detection of events (e.g. rock falls) is available which allows event localization. In summer 2008 the seismic equipment was used for the

  16. Relict permafrost features in Mediterranean environments: the Majella Massif

    NASA Astrophysics Data System (ADS)

    Cocco, S.; Basili, M.; Cioci, C.; di Peco, D.; Brecciaroli, G.; Agnelli, A.; Corti, G.

    2009-04-01

    clue of the presence of relict permafrost in the ground. The presence of an even deep permafrost would explain the observations made during a previous survey in August 2004, when in a soil pit dug till the depth of 2.6 m we measured temperatures that from 22.6°C at surface progressively decreased till 2.1°C at depth. The area under study is close to the Mount Amaro where there is an active rock-glacier that some authors considered the last relict permafrost feature of Late Pleistocene glacial events that interested the Apennines.

  17. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Comte, Jérôme; Lovejoy, Connie

    2015-01-01

    Permafrost thawing leads to the formation of thermokarst ponds that potentially emit CO2 and CH4 to the atmosphere. In the Nunavik subarctic region (northern Québec, Canada), these numerous, shallow ponds become well-stratified during summer. This creates a physico-chemical gradient of temperature and oxygen, with an upper oxic layer and a bottom low oxygen or anoxic layer. Our objective was to determine the influence of stratification and related limnological and landscape properties on the community structure of potentially active bacteria in these waters. Samples for RNA analysis were taken from ponds in three contrasting valleys across a gradient of permafrost degradation. A total of 1296 operational taxonomic units were identified by high throughput amplicon sequencing, targeting bacterial 16S rRNA that was reverse transcribed to cDNA. β-proteobacteria were the dominant group in all ponds, with highest representation by the genera Variovorax and Polynucleobacter. Methanotrophs were also among the most abundant sequences at most sites. They accounted for up to 27% of the total sequences (median of 4.9% for all samples), indicating the importance of methane as a bacterial energy source in these waters. Both oxygenic (cyanobacteria) and anoxygenic (Chlorobi) phototrophs were also well-represented, the latter in the low oxygen bottom waters. Ordination analyses showed that the communities clustered according to valley and depth, with significant effects attributed to dissolved oxygen, pH, dissolved organic carbon, and total suspended solids. These results indicate that the bacterial assemblages of permafrost thaw ponds are filtered by environmental gradients, and are complex consortia of functionally diverse taxa that likely affect the composition as well as magnitude of greenhouse gas emissions from these abundant waters. PMID:25926816

  18. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests

    NASA Astrophysics Data System (ADS)

    Brown, Dana R. N.; Jorgenson, M. Torre; Douglas, Thomas A.; Romanovsky, Vladimir E.; Kielland, Knut; Hiemstra, Christopher; Euskirchen, Eugenie S.; Ruess, Roger W.

    2015-08-01

    We examined the effects of fire disturbance on permafrost degradation and thaw settlement across a series of wildfires (from ~1930 to 2010) in the forested areas of collapse-scar bog complexes in the Tanana Flats lowland of interior Alaska. Field measurements were combined with numerical modeling of soil thermal dynamics to assess the roles of fire severity and climate history in postfire permafrost dynamics. Field-based calculations of potential thaw settlement following the loss of remaining ice-rich permafrost averaged 0.6 m. This subsidence would cause the surface elevations of forests to drop on average 0.1 m below the surface water level of adjacent collapse-scar features. Up to 0.5 m of thaw settlement was documented after recent fires, causing water impoundment and further thawing along forest margins. Substantial heterogeneity in soil properties (organic layer thickness, texture, moisture, and ice content) was attributed to differing site histories, which resulted in distinct soil thermal regimes by soil type. Model simulations showed increasing vulnerability of permafrost to deep thawing and thaw settlement with increased fire severity (i.e., reduced organic layer thickness). However, the thresholds of fire severity that triggered permafrost destabilization varied temporally in response to climate. Simulated permafrost dynamics underscore the importance of multiyear to multidecadal fluctuations in air temperature and snow depth in mediating the effects of fire on permafrost. Our results suggest that permafrost is becoming increasingly vulnerable to substantial thaw and collapse after moderate to high-severity fire, and the ability of permafrost to recover is diminishing as the climate continues to warm.

  19. Sporadic Layer es and Siesmic Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid; Blokhin, Alexandr; Kalashnikova, Tatyana

    2016-07-01

    To determine the influence of seismogenic disturbances on the calm state of the iono-sphere and assess the impact of turbulence development in sporadic-E during earthquake prepa-ration period we calculated the variation in the range of semitransparency ∆fES = f0ES - fbES. The study was based primarily on the ionograms obtained by vertical sounding of the ionosphere at Dushanbe at nighttime station from 15 to 29 August 1986. In this time period four successive earthquakes took place, which serves the purpose of this study of the impact of seis-mogenic processes on the intensity of the continuous generation of ionospheric turbulence. Analysis of the results obtained for seismic-ionospheric effects of 1986 earthquakes at station Dushanbe has shown that disturbance of ionospheric parameters during earthquake prepa-ration period displays a pronounced maximum with a duration of t = 1-6 hours. Ionospheric effects associated with the processes of earthquake preparation emerge quite predictably, which verifies seismogenic disturbances in the ionosphere. During the preparation of strong earthquakes, ionograms of vertical sounding produced at station Dushanbe - near the epicenter area - often shown the phenomenon of spreading traces of sporadic Es. It is assumed that the duration of manifestation of seismic ionospheric precursors in Du-shanbe τ = 1 - 6 hours may be associated with deformation processes in the Earth's crust and var-ious faults, as well as dissimilar properties of the environment of the epicentral area. It has been shown that for earthquakes with 4.5 ≤ M ≤ 5.5 1-2 days prior to the event iono-spheric perturbations in the parameters of the sporadic layer Es and an increase in the value of the range of semitransparency Es - ΔfEs were observed, which could lead to turbulence at altitudes of 100-130 km.

  20. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change

    NASA Astrophysics Data System (ADS)

    Gruber, S.; Haeberli, W.

    2007-06-01

    Permafrost in steep bedrock is abundant in many cold-mountain areas, and its degradation can cause slope instability that is unexpected and unprecedented in location, magnitude, frequency, and timing. These phenomena bear consequences for the understanding of landscape evolution, natural hazards, and the safe and sustainable operation of high-mountain infrastructure. Permafrost in steep bedrock is an emerging field of research. Knowledge of rock temperatures, ice content, mechanisms of degradation, and the processes that link warming and destabilization is often fragmental. In this article we provide a review and discussion of existing literature and pinpoint important questions. Ice-filled joints are common in bedrock permafrost and possibly actively widened by ice segregation. Broad evidence of destabilization by warming permafrost exists despite problems of attributing individual events to this phenomenon with certainty. Convex topography such as ridges, spurs, and peaks is often subject to faster and deeper thaw than other areas. Permafrost degradation in steep bedrock can be strongly affected by percolating water in fractures. This degradation by advection is difficult to predict and can lead to quick and deep development of thaw corridors along fractures in permafrost and potentially destabilize much greater volumes of rock than conduction would. Although most research on steep bedrock permafrost originates from the Alps, it will likely gain importance in other geographic regions with mountain permafrost.

  1. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald; Romanovsky, Vladimir; Cable, William; Kholodov, Alexander

    2016-04-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  2. A permafrost distribution estimate for the Southern Alps, New Zealand, inferred from topoclimatic conditions at rock glacier sites

    NASA Astrophysics Data System (ADS)

    Sattler, Katrin; Mackintosh, Andrew; Anderson, Brian; Norton, Kevin; de Róiste, Mairead

    2014-05-01

    The presence of numerous rock glaciers and perennial snow patches indicate the existence of discontinuous alpine permafrost in New Zealand's Southern Alps. However, research on the geographic extent of permafrost in the South Island has been limited. Existing estimates are restricted to single mountain ranges or focus on steep bedrock permafrost. A recent global-scale estimate has not been evaluated by local observations. We present the results of a regional, spatially distributed permafrost estimate for the Southern Alps, focusing on debris-covered slopes. Permafrost distribution modelling was based on the statistical evaluation of 280 active and relict rock glaciers. Logistic regression identified characteristic topoclimatic conditions at the head area of presently active rock glaciers. Statistical relationships between permafrost presence, mean annual air temperature, and potential incoming solar radiation in snow-free months were subsequently used to calculate the spatially distributed probability of permafrost occurrence. The potential permafrost extent was delineated using a probability threshold of ≥ 0.6. Model results suggest that topoclimatic conditions are favourable for permafrost occurrence above ~ 2000 m a.s.l. in the central Southern Alps and above ~ 2150 m a.s.l. in the northern ranges. This gradient in permafrost altitude reflects the warmer climate at lower latitudes. Model results were locally validated by BTS (bottom temperature of snow cover) data derived from two-year continuous ground surface temperature (GST) measurements in the Ben Ohau Range, central Southern Alps. Applicability of BTS measurements for permafrost mapping had not been tested previously in the maritime setting of New Zealand, where common warm spells during winter can result in isothermal snow pack conditions, preventing the inference of late-winter equilibrium temperatures. BTS-indicated permafrost sites were in good agreement with modelled permafrost probabilities at the

  3. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    NASA Astrophysics Data System (ADS)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  4. Effects of a Ground Source Heat Pump in Discontinuous Permafrost

    NASA Astrophysics Data System (ADS)

    Peterson, R.; Garber-Slaght, R.; Daanen, R. P.

    2015-12-01

    A ground source heat pump (GSHP) was installed in a discontinuous permafrost region of Fairbanks Alaska in 2013 with the primary aim of determining the effect of different ground cover options on the long-term subterranean temperature regime. Three different surface treatments were applied to separate loops of the GSHP; grass, sand, and gravel, and temperature monitoring was established at several depths above and below the heat sink loops. The GSHP has been actively utilized to supplement the heat in a hydronic heating system of a neighboring 5000 ft2 research facility. The ground immediately surrounding the GSHP was not permafrost when initially installed. Numerical modeling simulations were used to predict the long-term ground temperature regime surrounding the GSHP loops, and results indicate that permafrost would begin to form after the first year. A pseudo-steady state temperature regime would establish in approximately 8 years with a yearly fluctuation of -14°C to -2°C. Simulations also indicate that permafrost could be prevented with a 15 W/m recharge during the summer, such as from a solar thermal system. The ground surface treatments have negligible effect on the ground temperature below 1 meter and therefore have no long-term effect on the active region the GSHP. Data collected from thermistors in the two years since installation indicate that permafrost has not yet been established, although the ground is now becoming seasonally frozen due to the GSHP energy removal. Yearly average temperatures are declining, and extrapolation indicates that permafrost will establish in future years. The GSHP coefficient of performance (COP) was initially 3.6 and is declining with the decreasing ground temperatures. Economic modeling indicates that the system may become uneconomical in future years, although volatile energy costs have a substantial effect of the prediction.

  5. The HOLOANTAR project: Holocene environmental change in the Maritime Antarctic. Interactions between permafrost and the lacustrine environment

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Vieira, Gonçalo; Mora, Carla; Trindade, Alexandre; Agrela, Joao; Batista, Vanessa; Correia, António; Schaefer, Carlos; Simas, Felipe; Ramos, Miguel; De Pablo, Miguel Angel; Toro, Manuel; Antoniades, Dermot; Galan, Luis; Giralt, Santiago; Granados, Ignacio; Pla, Sergi; Serrano, Enrique

    2013-04-01

    The objective of this abstract is to present the HOLOANTAR project, a multidisciplinary research funded by the Portuguese Government. The project integrates 16 researchers from different international institutions (Portugal, Spain, Brazil and Uruguay).. The main purpose of HOLOANTAR is to infer the palaeoenvironmental evolution and associated climate variability occurred over the last millennia in ice-free areas of the Maritime Antarctica based on the study of lake sediments. The South Shetland Islands (SSI) are located in the northwestern tip of the Antarctic Peninsula, one of the Earth's regions that have experienced a stronger warming signal during the second half of the 20th century. In the ice-free areas of this archipelago the terrestrial ecosystem is supported by permafrost, though its reaction to climate change is still poorly known. However, in the recent years a very important effort took place to monitor the thermal state and characteristics of permafrost in order to study its response to the recent warming trend. Many international teams are involved on several of these long-term monitoring projects, but HOLOANTAR, in addition, pretends to offer a new integrated approach aiming to bridge the gap between contemporary and past changes in permafrost environments. HOLOANTAR project is based on two main hypotheses: a) A multi-proxy analysis of lake sediments will allow reconstructing the palaeoecological evolution in the Maritime Antarctic and the role played in it by permafrost and active layer dynamics, b) The detection of activity rates, spatial patterns and geographical controls of contemporary key-geomorphic processes and permafrost distribution, will allow defining their limiting climatic conditions that will be used to interpret the sedimentary record. This approach is innovative since it will focus on both present and past geomorphodynamics as keys for understanding the landscape evolution. In Byers Peninsula (Livingston), the largest ice-free area

  6. The bog landforms of continental western Canada in relation to climate and permafrost patterns

    SciTech Connect

    Vitt, D.H.; Halsey, L.A. ); Zoltai, S.C. )

    1994-02-01

    In continental western Canada, discontinuous permafrost is almost always restricted to ombrotrophic peatlands (bogs). Bogs occur mostly as islands or peninsulas in large, often complex fens or are confined to small basins. Permafrost may be present in extensive peat plateaus (or more locally as palsas) and was preceded by a well-developed layer of Sphagnum that served to insulate the peat and lower the pore water temperatures. Air photo interpretation reveals the occurrence of bogs with five types of surface physiography. Concentrated to the south are bogs without internal patterns that have never had permafrost. Dominating the mid-latitudes are bogs with internal lawns and fens with internal lawns (mostly representing former bogs) that had permafrost lenses in the past that have recently degraded. Concentrated in the northwest are peat plateaus without internal lawns or distinct collapse scars, but with permafrost; dominating in the northernmost area are peat plateaus with extensive permafrost and collapse scars. Relationships are apparent between the current - 1[degrees]C isotherm and the southern occurrence of peat plateaus and between the 0[degrees]C isotherm and the southern edge of bogs and fens with internal lawns. We interpret bogs and fens with internal lawns to represent areas where permafrost degradation is currently occurring at a greater rate than aggradation, seemingly in response to warmer regional climate, although fire frequency may also be of local importance. 54 refs., 21 figs., 2 tabs.

  7. Characterizing Soil Organic Matter Degradation Levels in Permafrost-affected Soils using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Matamala, R.; Jastrow, J. D.; Calderon, F.; Liang, C.; Miller, R. M.; Ping, C. L.; Michaelson, G. J.; Hofmann, S.

    2014-12-01

    Diffuse-reflectance Fourier-transform mid-infrared spectroscopy (MidIR) was used to (1) investigate soil quality along a latitudinal gradient of Alaskan soils, and in combination with soil incubations, (2) to assess the relative lability of soil organic matter in the active layer and upper permafrost for some of those soils. Twenty nine sites were sampled along a latitudinal gradient (78.79 N to 55.35 N deg). The sites included 8 different vegetation types (moss/lichen, non-acidic and acidic tundra, shrub areas, deciduous forests, mixed forests, coniferous forests, and grassland). At each site, soils were separated by soil horizons and analyzed for pH, cation exchange capacity (CEC), organic and inorganic C, and total N. Samples were also scanned to obtain MidIR spectra, and ratios of characteristic bands previously suggested as indicators of organic matter quality or degradation level were calculated. Principal component analysis showed that axis 1 explained 70% of the variation and was correlated with the general Organic:Mineral ratio, soil organic C, total N, and CEC, but not with vegetation type. Axis 2 explained 25% of the variation and was correlated with most of the band ratios, with negative values for the condensation index (ratio of aromatic to aliphatic organic matter) and positive values for all humification ratios (HU1: ratio of aliphatic to polysaccharides; HU2: ratio of aromatics to polysaccharides; and HU3 ratio of lignin/phenols to polysaccharides) suggesting that axis 2 variations were related to differences in level of soil organic matter degradation. Active organic, active mineral and permafrost layers from selected tundra sites were incubated for two months at -1, 1, 4, 8 and 16 ⁰C. The same band ratios were correlated with total CO2 mineralized during the incubations. Data from 4⁰C showed that the cumulative respired CO2 from the active organic layer across all sites was negatively correlated with the HU1 humification ratio, suggesting

  8. The Age and Amount of Carbon Released From Incubations of Permafrost Soil From Northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Dutta, K.; Zimov, S. A.; Schuur, E. A.

    2004-12-01

    Permafrost soils are important reservoirs of carbon (C) in arctic and boreal ecosystems. Rising global temperatures are expected to enhance decomposition of permafrost organic matter, and in turn, respired CO2 may cause a positive feedback to warming. Yedoma soils from northeastern Siberia represent a large and poorly understood reservoir of permafrost soil organic matter, and are estimated to contain up to 450 Gt of C frozen since the Pleistocene. These mineral soils from the ice-rich areas of northeastern Siberia accumulated as wind blown loess buried organic matter fragments that were subsequently frozen in permafrost. We conducted laboratory incubations of Yedoma soils in order to understand the lability and the temperature dependence of this frozen organic matter. We collected frozen Yedoma soils from four different locations in northeastern Siberia and incubated them at 5° C, 10° C and 15° C to monitor CO2 flux from microbial decomposition. The four locations included two tundra sites close to the Arctic Ocean and two locations located in boreal forest along the banks of the Kolyma River near Cherskii, Siberia. At all sites, permafrost soils were collected from deep within the soil profile, at depths >10m. Additionally at one of the boreal forest sites, soils were also collected from the modern mineral soil surface, which is currently unfrozen in summer and at 2m depth, which is below the modern active layer. We found more than a four-fold range in the rate of CO2 flux among sites during the initial period of the incubation. This range in CO2 flux increased to more than a ten-fold range later in the incubation as the rates at some sites declined to very low levels. Incubation temperature had a positive effect on flux rates. The modern surface soil from the boreal forest had among the lowest fluxes, even though it receives current inputs of labile C from actively growing plant roots, dissolved organic C, and root exudates. The low fluxes from the modern

  9. Seasonal variation of ecosystem respiration delta 13C in response to experimental permafrost thaw and vegetation removal in moist acidic tundra

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Natali, S.; Schuur, E.

    2015-12-01

    Permafrost soils store twice as much carbon (C) as is contained in the atmosphere and about one-third of global soil C. Under a warmer future climate, permafrost is expected to thaw and decompose, releasing C to the atmosphere, further amplifying global warming. However, studies show that warmer arctic temperatures promote plant growth, in addition to stimulating losses from the soil C pool. Using delta 13C of ecosystem respiration (Reco) during the seasonal cycle of active layer thaw, we seek to understand the effect of permafrost thaw on the relative contributions from microbial decomposition of soil C and more recently fixed, plant-dominated C. We measured weekly CO2 flux rates and delta 13C of Reco from experimentally warmed plots with rapid permafrost thaw and control thaw. Vegetation removal plots, in un-warmed tundra, were monitored to isolate the seasonal contributions from soil alone. We expected delta 13C to be dominated by plant activity in vegetated plots, particularly in areas with greater permafrost thaw because they have highest plant biomass. In vegetation removal plots we expected to see greater contribution from deep soil as seasonal thaw progressed. From May to July delta 13C was extremely variable early in the growing season, but became more uniform as vegetation greened and thaw deepened. In vegetated plots CO2 fluxes doubled, but remained constant in vegetation removal plots. This indicates that, with thaw, microbes had access to a more spatially uniform C substrate, but this had little effect on the magnitude of CO2 flux. Overall delta 13C in rapidly thawed plots was least enriched (-29.4 ‰), control plots intermediate (-28.9 ‰), and vegetation removal plots were most enriched (-28.5 ‰). This suggests that in vegetation removal plots microbes used more decomposed soil C as substrate, and much of the increase in CO2 flux in vegetated plots was the result of C recently fixed and contributed by plants.

  10. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2016-02-01

    The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil

  11. Carbon Fluxes in a sub-arctic tundra undergoing permafrost degradation

    NASA Astrophysics Data System (ADS)

    Bracho, R. G.; Webb, E.; Mauritz, M.; Schuur, E. A. G.

    2014-12-01

    As an effect of climate change, temperatures in high latitude regions are increasing faster than in the rest of the world and future projections indicate it will increase between 7°C and 8°C by the end of the 21st century. Permafrost soils store around 1700 Pg of Carbon (C), which is approximately the amount of C stored in terrestrial vegetation and in the atmosphere combined. Sustained warming induces permafrost thaw, leads to a thicker seasonal active layer, and creates subsided patches in the landscape. Carbon that was previously inaccessible to decomposition is thus exposed, increasing the likelihood of positive feedback of CO2 to the atmosphere. We measured C fluxes (Net ecosystem carbon flux, NEE, and Ecosystem respiration, Re) using the eddy covariance approach in a tundra landscape (Eight Mile Lake Watershed, Alaska) undergoing permafrost degradation from the beginning of the growing season in 2008 and throughout most winters until May 2014. This interval encompassed a range of climatic variability that included a deviation of ± 50% from the long term average in growing season precipitation. Active layer depth (thaw depth at the end of the growing season) and subsidence in the footprint were used as indicators of permafrost degradation. Results indicate that annual NEE ranged from a sink of 0.76 MgC ha-1 yr-1 to a source of 0.55 MgC ha-1 yr-1. NEE during the growing seasons fluctuated from 1.1 to 1.8 MgC ha-1 season-1 in net C uptake. Annual NEE was strongly affected by winter Re, which represented between 33% and 45% of the annual value regardless of of the large drop in both air and soil temperature. Parameters from the light response curve (optimum NEE, NEEopt and quantum yield, α) showed a seasonal and interannual variability and were different between the most and least degraded sites in the footprint, which affected the magnitude of the carbon cycle and may have implications for landscape C balance in sub-arctic tundra.

  12. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2016-05-01

    Permafrost on the Qinghai-Tibet Plateau is one of the most sensitive regions to climate warming, thus characterizing its microbial diversity and community composition may be important for understanding their potential responses to climate changes. Here, we investigated the prokaryotic diversity in a 10-m-long permafrost core from the Qinghai-Tibet Plateau by restriction fragment length polymorphism analysis targeting the 16S rRNA gene. We detected 191 and 17 bacterial and archaeal phylotypes representing 14 and 2 distinct phyla, respectively. Proteobacteria was the dominant bacterial phylum, while archaeal communities were characterized by a preponderance of Thaumarchaeota. Some of prokaryotic phylotypes were closely related to characterized species involved in carbon and nitrogen cycles, including nitrogen fixation, methane oxidation and nitrification. However, the majority of the phylotypes were only distantly related to known taxa at order or species level, suggesting the potential of novel diversity. Additionally, both bacterial α diversity and community composition changed significantly with sampling depth, where these communities mainly distributed according to core horizons. Arthrobacter-related phylotypes presented at high relative abundance in two active layer soils, while the deeper permafrost soils were dominated by Psychrobacter-related clones. Changes in bacterial community composition were correlated with most measured soil variables, such as carbon and nitrogen contents, pH, and conductivity. PMID:27033516

  13. Dynamics of water mass in the Central Siberia permafrost zone based on gravity survey from the grace satellites

    NASA Astrophysics Data System (ADS)

    Im, S. T.; Kharuk, V. I.

    2015-12-01

    The GRACE gravimetric survey is applied to analyze the equivalent water mass anomalies (EWMAs) in the permafrost zone of Central Siberia. Variations in EWMAs are related to precipitation, air temperature, potential evapotranspiration, and soil composition (drainage conditions). The EWMA dynamics demonstrates two periods. The period of 2003-2008 is characterized by a positive trend. The one of 2008-2012 shows a decrease in the trend with a simultaneous increase by 30-70% of EWMA dispersion in the background of growth (up to 40%) of precipitation variability. The rate of water mass increment demonstrates a positive correlation with the sand and gravel contents in soil ( r = 0.72) and a negative one with clay content ( r =-0.69 to-0.77). For Taimyr Peninsula, there is a deficit of residual water mass (~250 mm for the period of 2012-2013) indicating the deeper thawing of permafrost soils. In the Central Siberian Plateau, the indicator of more intensive permafrost thawing (and that of an increase in active layer thickness) is a considerable trend of water mass increase (2003-2008). The increasing trend of the largest Siberian rivers (Yenisei and Lena) is revealed in the period of 2003-2012.

  14. Diversity and community structure of fungi through a permafrost core profile from the Qinghai-Tibet Plateau of China.

    PubMed

    Hu, Weigang; Zhang, Qi; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; An, Lizhe; Feng, Huyuan

    2014-12-01

    While a vast number of studies have addressed the prokaryotic diversity in permafrost, characterized by subzero temperatures, low water activity, and extremely low rates of nutrient and metabolite transfer, fungal patterns have received surprisingly limited attention. Here, the fungal diversity and community structure were investigated by culture-dependent technique combined with cloning-restriction fragment length polymorphism (RFLP) analysis of sediments in a 10-m-long permafrost core from the Qinghai-Tibet Plateau of China. A total of 62 fungal phylotypes related to 10 distinct classes representing three phyla were recovered from 5031 clones generated in 13 environmental gene libraries. A large proportion of the phylotypes (25/62) that were distantly related to described fungal species appeared to be novel diversity. Ascomycota was the predominant group of fungi, with respect to both clone and phylotype number. Our results suggested there was the existence of cosmopolitan psychrophilic or psychrotolerant fungi in permafrost sediments, the community composition of fungi varied with increasing depth, while these communities largely distributed according to core layers. PMID:24920339

  15. A comparison between modelling for spatial distribution of thaw depths using MODIS datasets and observational data of permafrost in Mongolia

    NASA Astrophysics Data System (ADS)

    Zorigt, Munkhtsetseg; Alexander, Orkhonselenge; Kwadijk, Jaap; van Beek, Eelco

    2016-04-01

    Thaw and freezing depth and the related variation in the top of the active layer of the permafrost are important variables for studying runoff production in permafrost regions. In this study we provide data on spatially distributed thawing depths in Mongolia based on Kudryavtsev approach. This approach requires land surface temperature (LSTs) and soil physical characteristics for estimating thaw depths. Measured data of ground land surface temperatures is lacking in Mongolia. Therefore, we estimated the LST based on satellite images of surface temperatures. Monthly values of the LSTs were obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Soil physical characteristics are defined by reference values from previous studies (Tumurbaatar, 2004; Anarmaa, 2006). We validated the results by comparing them with the observational data of permafrost boreholes in Mongolia in 2002-2009 CALM, 2009. The results indicate that thaw depths range between 0-14.5 m from southern to northern parts of Mongolia. This study shows that distribution of thaw depths using the MODIS LSTs can indicate a general overview of thaw depths distribution throughout the country.

  16. Correlating Permafrost Organic Matter Composition and Characteristics with Methane Production Potentials in a First Generation Thermokarst Lake and Its Underlying Permafrost Near Fairbanks, Alaska, USA

    NASA Astrophysics Data System (ADS)

    Heslop, J.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K. C.

    2014-12-01

    Thermokarst lakes, formed in permafrost-thaw depressions, are known sources of atmospheric methane (CH4) and carbon dioxide (CO2). The organic carbon (OC) utilized in the production of these greenhouse gases originates from microbial decomposition of aquatic and terrestrial organic matter (OM) sources, including soils of the lakes' watersheds and permafrost thaw beneath the lakes. OM derived from permafrost thaw is particularly important given the thickness of permafrost soils underlying some lakes (typically 10-30 m in yedoma permafrost); however, OM heterogeneity remains a significant uncertainty in estimating how microbial decomposition responds to permafrost thaw. This study correlates OM and water-extractable OC (WEOC) composition with CH4 production potentials determined from anaerobic laboratory incubations. Samples were collected from 21 depths along a 5.9-m deep thermokarst-lake sediment core and 17 depths along an adjacent 40-m deep undisturbed yedoma permafrost profile near Vault Creek, Alaska. The Vault Lake core, collected in the center of a 3230 m2 first generation thermokarst lake, includes surface lake sediments, the talik (thaw bulb), and permafrost actively thawing beneath the lake. Soil OM composition was characterized using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS) and the most prevalent compounds were grouped into six indices based on their likely origin. WEOC was characterized using fluorescence spectrometry. Using stepwise multiple linear regression analyses, we found that CH4 production was negatively correlated with WEOC aromaticity (p = 0.018) and fulvic acids (p = 0.027). CH4 production was positively correlated with lipids and carboxylic acids (p < 0.001), polysaccharides (p = 0.036) and the degree of WEOC humification (p = 0.013). Results suggest OM and WEOC composition can be correlated with CH4 production, indicating potential for model building to better predict greenhouse gas release from permafrost thaw.

  17. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    PubMed

    Ding, Jinzhi; Li, Fei; Yang, Guibiao; Chen, Leiyi; Zhang, Beibei; Liu, Li; Fang, Kai; Qin, Shuqi; Chen, Yongliang; Peng, Yunfeng; Ji, Chengjun; He, Honglin; Smith, Pete; Yang, Yuanhe

    2016-08-01

    The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region. PMID:26913840

  18. The interplay of predefined rock mechanics and permafrost forcing in a steep alpine rock crest (Steintaelli, Mattertal, Switzerland)

    NASA Astrophysics Data System (ADS)

    Halla, Christian; Krautblatter, Michael; Draebing, Daniel

    2014-05-01

    Freeze-thaw-processes in the active layer and degrading permafrost change ice and hydraulic pressures as well as rock- and ice-mechanical properties in rock masses which can cause instabilities. The characterization of the rock mass was determined by the geological strength index and a detailed discontinuity analysis along scanlines where the active layer reached depths of 5-15m (August 2012). Rock mass deformations and accordingly the divergence and convergence of deep reaching fractures were measured along 18 extensometer transects with various lengths from 2 to 27m. (1) The Geological Strength Index provided rock mechanical parameters which indicate stable conditions on the slope scale. The friction angle of the rock mass (44°) is higher than the mean slope inclination (37°). (2) The discontinuity analysis provided six joint sets, their geometries and mechanical properties. High roughness coefficients and wall strengths of the joints result in high total friction angles (>43°) and stable conditions on the block scale. However, the locations of several joints with wide apertures, ice fillings and joints influenced by snowmelt of the cornice at the crest are used as indicators for freeze-thaw related rock mass deformations. (3) The rock mass deformation rates during late summer (2012) are multiple times (>3) higher than deformation rates for several years (2008-2012). Furthermore, the direction of deformation changes between divergence and convergence over time. Both aspects indicate that seasonal and annual changes affect the rock mass deformations. We conclude, that rock mass deformation cannot be explained solely by rock mechanical parameters without freeze-thaw and permafrost influence. The higher deformation rates during the thaw season in late summer and the heterogeneity of deformation directions indicate that seasonal and annual changes of ice- and hydraulic pressures in discontinuities affect instabilities at the Steintaelli crestline. Here we show the

  19. Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia

    NASA Astrophysics Data System (ADS)

    Bagard, Marie-Laure; Schmitt, Anne-Désirée; Chabaux, François; Pokrovsky, Oleg S.; Viers, Jérôme; Stille, Peter; Labolle, François; Prokushkin, Anatoly S.

    2013-08-01

    Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of 40Ca. The imprint of organic matter degradation on the δ44/40Ca of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained δ44/40Ca patterns contrast with those described for permafrost-free environments with a much lower δ44/40Ca fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the δ44/40Ca signature may be controlled by the heterogeneity of lithological sources.

  20. Variability in Canopy Transpiration with Atmospheric Drivers and Permafrost Thaw Depth in an Arctic Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Berner, L. T.; Alexander, H. D.; Davydov, S. P.

    2014-12-01

    Arctic ecosystems are experiencing rapid change associated with amplified rates of climate warming. A general increase in vegetation productivity has been among the expected responses for terrestrial ecosystems in the Arctic. However, recent evidence from satellite derived productivity metrics has revealed a high degree of spatial heterogeneity in the magnitude, and even the direction, of productivity trends in recent decades. Declines in productivity may seem counterintuitive in what are traditionally thought to be temperature limited ecosystems. However a warmer and drier atmosphere in conjunction with changing permafrost conditions may impose hydrologic stresses on vegetation as well. Many Siberian ecosystems receive annual precipitation inputs characteristics of arid and semiarid regions. Boreal forests persist because permafrost acts as an aquatard trapping water near the surface and because historically cool growing season temperatures have kept atmospheric evaporative demand relatively low. As climate change simultaneously warms the atmosphere and deepens the active layer it is likely that vegetation will experience a higher degree of hydrologic limitation, perhaps necessitating the reallocation of resources. Here we use sap flux observations of canopy transpiration to understand the influence of atmospheric and permafrost conditions on the function of an arctic boreal forest in northeastern Siberia. We find that individual trees exhibit stronger responses to atmospheric vapor pressure deficit (D) as the growing season progresses. Further, the magnitude of this response appears to be positively correlated with changes in the depth of permafrost thaw. These results imply that arctic boreal forests will need to adapt to increasing hydrologic stress in order to benefit from what are typically thought of as increasingly favorable growing conditions with continued climate change.

  1. [The possible contribution of late pleistocene biota to biodiversity in present permafrost zone].

    PubMed

    Gubin, S V; Maksimovich, S V; Davydov, S P; Gilichinskiĭ, D A; Shatilovich, A V; Spirina, E V; Iashina, S G

    2003-01-01

    During the last decade a wide range of biological objects, which have preserved their viability for tens and hundreds of thousands of years, was found in the samples of permafrost sediments from North-East Eurasia. Among them are bacteria, fungi, algae, moss spores, seeds of higher plants, protists. Along with physiological mechanisms of cryoconservation and constant low temperature of great importance for long-term preservation of biological objects in permafrost layers are ways of burying the organisms and conditions that prevail before the transition of sediments to the permafrost state. The analysis of viability showed by preserved biological objects gives reasons to suppose that some representatives of Pleistocene biota buried in permafrost thickness may contribute to the biodiversity of present cryolite zone. PMID:12723372

  2. Numerical Modeling of Permafrost Dynamics Using Modified CoLM with Optimal Parameterization for Snow Density

    NASA Astrophysics Data System (ADS)

    Dong, Xinling; Zhang, Zhihua; Moore, John

    2014-05-01

    Most land surface models (LSMs) do not perform well in representing permafrost dynamics and snow properties. Due to the complex permafrost distribution characteristics and the differenncesbetween vegetation coverage types and snow-covered land, the LSMs simulations are even worse. In this study, we modified the permafrost scheme in the Common Land Model (CoLM) to improve its capability of simulating permafrost processes and snow density process. We adopted a new frozen soil parameterization scheme, the present version of CoLM includes permafrost layers down to 3.4 meters in ten different thicknesses. Based on literature and temperature gradient measurements, we extended the soil column to 25 soil layers and bottom depth to 15.4 m. Moreover, we revise the original snow cover fraction parameterization of CoLM according to specific snow cover characteristics including the effects of wind compaction on snow density in treeless regions. We have compared and validated the modified model against in situ soil temperatures from 431 Russian observation stations between 1973 and 2006. The modified model produces more accurate surface temperature simulation results. The modified CoLM provides a useful tool for understanding and predicting the fate of permafrost under a warming climate.

  3. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China

    PubMed Central

    Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C.; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  4. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes) Part II. Spatial trends and possible sources of organic composition

    NASA Astrophysics Data System (ADS)

    Szopińska, Małgorzata; Dymerski, Tomasz; Polkowska, Żaneta; Szumińska, Danuta; Wolska, Lidia

    2016-07-01

    The chemistry of river-lake systems located in Central Mongolia near the southern border of permafrost occurrence has not been well studied. The main aim of this paper is to summarize patterns in water chemistry in supply springs, rivers and lakes in relation to permafrost occurrence, as well as other natural and anthropogenic impacts. The analyses involved water samples taken from two river-lake systems: the Baydrag River-Böön Tsagaan Lake system and the Shargalyuut/Tuyn Rivers-Orog Lake system. Total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) were detected and quantified. Other organic compounds, such as organic halogen compounds, phthalates, and higher alkanes were also noted. The main factors which influence differences in TOC concentrations in the water bodies involve permafrost occurrence, mainly because compounds are released during active layer degradation (in the upper reach of the Tuyn river), and by intensive livestock farming in river valleys and in the vicinity of lakes. In relation to the concentrations of PAHs, high variability between samples (> 300 ng L- 1), indicates the influence of thermal water and local geology structures (e.g., volcanic and sedimentary deposits), as well as accumulation of suspended matter in lakes transported during rapid surface runoff events. The monitoring of TOC as well as individual PAHs is particularly important to future environmental studies, as they may potentially reflect the degradation of the environment. Therefore, monitoring in the Valley of the Lakes should be continued, particularly in the light of the anticipated permafrost degradation in the 21st century, in order to collect more data and be able to anticipate the response of river-lake water chemistry to changes in permafrost occurrence.

  5. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, China.

    PubMed

    Hu, Weigang; Zhang, Qi; Tian, Tian; Li, Dingyao; Cheng, Gang; Mu, Jing; Wu, Qingbai; Niu, Fujun; Stegen, James C; An, Lizhe; Feng, Huyuan

    2015-01-01

    Understanding the processes that influence the structure of biotic communities is one of the major ecological topics, and both stochastic and deterministic processes are expected to be at work simultaneously in most communities. Here, we investigated the vertical distribution patterns of bacterial communities in a 10-m-long soil core taken within permafrost of the Qinghai-Tibet Plateau. To get a better understanding of the forces that govern these patterns, we examined the diversity and structure of bacterial communities, and the change in community composition along the vertical distance (spatial turnover) from both taxonomic and phylogenetic perspectives. Measures of taxonomic and phylogenetic beta diversity revealed that bacterial community composition changed continuously along the soil core, and showed a vertical distance-decay relationship. Multiple stepwise regression analysis suggested that bacterial alpha diversity and phylogenetic structure were strongly correlated with soil conductivity and pH but weakly correlated with depth. There was evidence that deterministic and stochastic processes collectively drived bacterial vertically-structured pattern. Bacterial communities in five soil horizons (two originated from the active layer and three from permafrost) of the permafrost core were phylogenetically random, indicator of stochastic processes. However, we found a stronger effect of deterministic processes related to soil pH, conductivity, and organic carbon content that were structuring the bacterial communities. We therefore conclude that the vertical distribution of bacterial communities was governed primarily by deterministic ecological selection, although stochastic processes were also at work. Furthermore, the strong impact of environmental conditions (for example, soil physicochemical parameters and seasonal freeze-thaw cycles) on these communities underlines the sensitivity of permafrost microorganisms to climate change and potentially subsequent

  6. Airborne electromagnetic imaging of discontinuous permafrost

    USGS Publications Warehouse

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ???1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ???4 million years and the configuration of permafrost to depths of ???100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface-groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ???1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments. ?? 2012 by the American Geophysical Union.

  7. Examining Gas Flux Interactions in Wetland-Dominated Permafrost Terrain

    NASA Astrophysics Data System (ADS)

    Kenward, A.; Quinton, W.; Petrone, R.

    2009-05-01

    Northern boreal wetland complexes have been identified as substantial reservoirs for greenhouse gases and play a crucial role in both regional and global carbon budgets. These reservoirs are not only responding to shifts in atmospheric temperatures, but are also under additional pressure from increasing permafrost degradation. This study examines the carbon (CO2) respiration and net ecosystem exchange (NEE) of a high boreal wetland during the 2008 spring melt season, located near Fort Simpson (61o18'N, 121o 18'W), Northwest Territories. Gas flux was monitored daily with a dynamic closed-system chamber at nine sites in order to characterize and compare the gas flux gradients for three terrain types typical of the lower Liard River valley: channel fens, ombrotrophic flat bogs and peat plateaus. Each terrain site shows a clear pattern of increasing respiration rate during the transition period from snowmelt to senescence; however significant variation in this rate of change between terrain types is apparent. In order to determine how the fluxes change for each terrain during a period of active layer growth in relation to each other, controlling environmental variables (soil moisture, air temperature, relative humidity, and photosynthetic active radiation) were measured to derive any significant relationships. Additionally, the spatial variability of parameters such as soil moisture, snow and frost table depth, water table depth, and plant communities were investigated. This provides information on the gas flux characteristics for specific terrain features with implications for predicting the future regional flux for this area as a sink or source for carbon.

  8. Carbon Stocks in Permafrost-Affected Soils of the Lena River Delta

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Grosse, G.; Desyatkin, A.; Pfeiffer, E.

    2012-12-01

    The soil organic carbon stock (SSOC) of soils in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies report mainly the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 29) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 7 kg m-2 and 48 kg m-2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 29 kg m-2 (n = 22) for the first terrace and 14 kg m-2 (n = 7) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions a mean SSOC of 27 kg m-2 (min: 0.1 kg m-2, max: 126 kg m-2) for a depth of 1 m was reported [1]. For up-scaling solely over the soil-covered areas of the Lena River Delta, we excluded all water bodies >3,600 m2 from the geomorphological units studied (first river terrace and the active floodplains) and

  9. High severity experimental burns in Siberian larch forests increase permafrost thaw and larch tree regeneration

    NASA Astrophysics Data System (ADS)

    Alexander, H. D.; Davydov, S.; Zimov, N.; Mack, M. C.

    2013-12-01

    Global change models predict increased fire activity in boreal forests as climate warms and dries. We hypothesized that fire-driven decreases in soil organic layer (SOL) depth will (1) increase permafrost thaw by reducing the insulating capacity of the SOL and (2) improve seedbed conditions for tree regeneration. Over time, these changes will lead to altered patterns of above- and belowground carbon (C) accumulation. To test these hypotheses, we conducted plot-level experimental burns in July 2012 in a low-density, mature larch stand near the Northeast Science Station in Cherskii, Siberia. Dried fuels of naturally occurring vegetation were added to plots to achieve four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). Pre-fire and during two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature to determine severity effects on permafrost thaw. We also sowed larch seeds in fall 2012 and quantified germination rates the following growing season. By 1 wk post-fire, thaw depth was 15-25 cm deeper in plots burned at high severity (55 cm) compared to other treatments (30-40 cm). These differences in thaw depth with burn severity were maintained during the subsequent growing season and were associated with increased soil temperature and moisture. Larch regeneration was 10x higher on severely burned plots than those unburned. Our findings highlight the potential for increased fire severity to degrade permafrost and alter successional dynamics and patterns of C accumulation.

  10. Strong Seasonality of Biogeochemical Characteristics and Source Regions in Permafrost Watersheds

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.

    2015-12-01

    High latitude watersheds experience a dramatic seasonality of up to nine months of cold, snow covered winter and a warm, bright, summer. Spring melt runoff is a dramatic two to three week period when up to 75% of the yearly precipitation runs off. Identifying sources and measuring fluxes of compounds out of Arctic rivers is difficult in large rivers because they represent the combined effect of innumerable plot-scale melt water sources, each coming from different soil and vegetation types, each experiencing a slightly different melt timing and evolution. Numerous studies have shown spring melt is characterized by an ionic pulse of solutes, dissolved organic carbon and other nutrients (ammonium, phosphate and nitrate) leached by snow melt water from surface vegetation and soils. Summer and fall flows are comprised largely of shallow to deepening sources from a downwardly expanding seasonally thawed ("active") layer. In late summer flowpaths deepen and the biogeochemical composition of surface waters may be sourced from an increasing mineral weathering zone representing landscape scale soil processes. The watershed biogeochemical response to precipitation may also yield insight into subsurface permafrost geomorphological characteristics and flowpaths through water tracks or other small depressions. Winter processes are the least studied or understood but overflow ice ("aufeis") provides access to deep, old waters. The deeper snow pack in depressions can provide protection against winter cold and feed back to deeper summer season thaw. This presentation will focus on using water stable isotopes, major ion concentrations, trace metals, nutrients, and permafrost delineation to identify biogeochemical sources in watersheds draining continuous and discontinuous permafrost in Alaska. Biogeochemical processes associated with scaling, meteorology, and climate warming will be discussed.

  11. The impacts of thawing permafrost on tundra lakes, Mackenzie Delta region, NWT, Canada. (Invited)

    NASA Astrophysics Data System (ADS)

    Kokelj, S.; Thompson, M. S.; Lantz, T.; Thienpont, J.; Pisaric, M. F.; Smol, J. P.; Blais, J.; Zajdlik, B.

    2009-12-01

    Many arctic regions with abundant lakes and ponds are characterized by ice-rich terrain sensitive to thermokarst disturbance. In the Mackenzie Delta region, retrogressive thaw slumps commonly develop adjacent to tundra lakes and may impact several hectares of terrain. The numbers, size and growth rates of slumps have increased significantly since the 1970s with rising air and permafrost temperatures. To examine the chemical effects of thawing permafrost on lake water quality we assessed water chemistry for large number of slump-disturbed and undisturbed lakes across tundra uplands in the Mackenzie Delta region. The environmental factors typically evoked to explain variation in tundra lake water quality, including surficial geology and proximity to the treeline or to the coast, were subordinate to the main driver, permafrost degradation. Thaw slump-affected lakes had elevated ionic concentrations and water clarity in comparison with undisturbed lakes. The strength of the ionic impact was positively associated with the proportion of catchment affected by slumping and inversely related to disturbance age. We also found that fire-induced active-layer deepening had a detectable influence on lake water ionic strength. Preliminary evidence suggests sedimentary diatom assemblages track the changes in chemical and physical limnology coincident with the timing of thermokarst slumping, and thus, may prove a valuable tool for inferring changes at the base of the aquatic food web in these lakes. In a warming arctic, we can anticipate that thermokarst processes will increase in importance as a driver of ionic chemistry and optical properties of small lakes and ponds with potential to alter aquatic food webs.

  12. Active-Layer Soil Moisture Content Regional Variations in Alaska and Russia by Ground-Based and Satellite-Based Methods, 2002 Through 2014

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.; Romanovsky, V. E.; Cable, W.; Kholodov, A. L.

    2015-12-01

    Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multidecadal time scales. While in-situ measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer - Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission - Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed. Ref: Muskett, R

  13. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska

    USGS Publications Warehouse

    Harden, J.W.; Manies, K.L.; Turetsky, M.R.; Neff, J.C.

    2006-01-01

    The influence of discontinuous permafrost on ground-fuel storage, combustion losses, and postfire soil climates was examined after a wildfire near Delta Junction, AK in July 1999. At this site, we sampled soils from a four-way site comparison of burning (burned and unburned) and permafrost (permafrost and nonpermafrost). Soil organic layers (which comprise ground-fuel storage) were thicker in permafrost than nonpermafrost soils both in burned and unburned sites. While we expected fire severity to be greater in the drier site (without permafrost), combustion losses were not significantly different between the two burned sites. Overall, permafrost and burning had significant effects on physical soil variables. Most notably, unburned permafrost sites with the thickest organic mats consistently had the coldest temperatures and wettest mineral soil, while soils in the burned nonpermafrost sites were warmer and drier than the other soils. For every centimeter of organic mat thickness, temperature at 5cm depth was about 0.5??C cooler during summer months. We propose that organic soil layers determine to a large extent the physical and thermal setting for variations in vegetation, decomposition, and carbon balance across these landscapes. In particular, the deep organic layers maintain the legacies of thermal and nutrient cycling governed by fire and revegetation. We further propose that the thermal influence of deep organic soil layers may be an underlying mechanism responsible for large regional patterns of burning and regrowth, detected in fractal analyses of burn frequency and area. Thus, fractal geometry can potentially be used to analyze changes in state of these fire prone systems. ?? 2006 Blackwell Publishing Ltd.

  14. Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations

    NASA Astrophysics Data System (ADS)

    Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.

    2012-04-01

    Methane is an important greenhouse gas with a warming potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a

  15. Permafrost Meta-Omics and Climate Change

    NASA Astrophysics Data System (ADS)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  16. The transcriptional response of microbial communities in thawing Alaskan permafrost soils.

    PubMed

    Coolen, Marco J L; Orsi, William D

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  17. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    PubMed Central

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  18. Methane production potentials in a thermokarst lake and its underlying permafrost

    NASA Astrophysics Data System (ADS)

    Heslop, J.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2013-12-01

    Thermokarst lakes, formed in permafrost-thaw depressions, are known sources of atmospheric methane (CH4) and carbon dioxide (CO2) but the location of gas production in a thermokarst-lake environment is not well constrained. This study compares CH4 and CO2 production potentials of samples collected from various depths along a 5-m deep lake sediment core and an adjacent 40-m deep undisturbed permafrost profile, allowing for direct determination as to where CH4 and CO2 are originating within an active thermokarst-lake landscape. Vault Lake and Vault Creek Permafrost Tunnel are located approximately 40 km north of Fairbanks, Alaska in a region characterized by yedoma permafrost. The Vault Lake sediment core, collected in the center of a ~4000 m2 lake, captured the surface lake sediments, talik (thaw bulb), and the permafrost actively thawing beneath the lake for comparison to parallel permafrost soil samples from the Vault Creek Permafrost Tunnel. Samples were analyzed for bulk density, ice and water content, organic and inorganic carbon content, C:N ratios, and water-soluble organic C. Initial soil organic matter (SOM) composition was characterized using Fourier transform infrared (FTIR) spectroscopy and pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). CH4 and CO2 production potentials and their stable carbon isotope values from 21 depths along the lake core and 17 depths along the permafrost tunnel were measured in anaerobic laboratory incubations. We incubated samples at four temperatures (0 C, 3 C, 10 C and 25 C) to test the potential response of methanogenesis to increasing temperature in scenarios of future climate warming. Preliminary results suggest methanogenesis is highest in the top 1 m of the Vault Lake core and at the base of the talik, which is the permafrost thaw front beneath the lake.

  19. Percussive Force Magnitude in Permafrost

    NASA Technical Reports Server (NTRS)

    Eustes, A. W., III; Bridgford, E.; Tischler, A.; Wilcox, B. H.

    2000-01-01

    An in-depth look at percussive drilling shows that the transmission efficiency is very important; however, data for percussive drilling in hard rock or permafrost is rarely available or the existing data are very old. Transmission efficiency can be used as a measurement of the transmission of the energy in the piston to the drill steel or bit and from the bit to the rock. Having a plane and centralized impact of the piston on the drill steel can optimize the transmission efficiency from the piston to the drill steel. A transmission efficiency of near 100% between piston and drill steel is possible. The transmission efficiency between bit and rock is dependent upon the interaction within the entire system. The main factors influencing this transmission efficiency are the contact area between cutting structure and surrounding rock (energy loss due to friction heat), damping characteristics of the surrounding rock (energy dampening), and cuttings transport. Some of these parameters are not controllable. To solve the existing void regarding available drilling data, an experiment for gathering energy data in permafrost for percussive drilling was designed. Fifteen artificial permafrost samples were prepared. The samples differed in the grain size distribution to observe a possible influence of the grain size distribution on the drilling performance. The samples were then manually penetrated (with a sledge-hammer) with two different spikes.

  20. Preliminary Results of the Permafrost Carbon Study in the Lower Kolyma Lowland (Eastern Siberia) Based on Drilling Record

    NASA Astrophysics Data System (ADS)

    Spektor, V. V.; Kholodov, A. L.; Bulygina, E. B.; Andreeva, V.; Broderick, D.; Spawn, S.; Natali, S.; Davydova, A.

    2012-12-01

    In 2012, the Polaris Project (thepolarisproject.org, Director R.M. Holmes) has conducted the permafrost drilling on the Kolyma Lowland for a complex study of permafrost carbon as a potential source for microbial decomposition. In July 2012, the first two boreholes, 15.1 and 13.4 m in depth, were drilled. The first borehole (BH 12/1) was drilled in the stratum of ice complex (yedoma) on the local watershed near the Schuch'e lake in the vicinity of the town Chersky (N68°44.7' E161°23'). The depth of active layer is 45 cm. The permafrost to the depth of 15.1 m represents grey and brown silts with predominant homogeneous structure. Silts contain numerous thread-like roots, scarce plant macrofossils, and in places are colored with unclear spots of ferrugination. Cryostructure is mainly pore ice or thin lense-like ice layers. Wedge ice is observed in the interval 12.5-12.9 m. The moisture volumetric percentage of silts varies along the stratum, mainly, between 40-50%. The organic content, defined in every 20 cm of the core as a loss on ignition, varies between 2-4%. The second borehole (BH 12/2), located in the Pleistocene Park (N68°30.8' E161°30') was drilled through modern floodplain sediments (0-0.6 m) of the Kolyma River with polygonal network at the surface, underlain by peat (0.6-1.3 m), silt deposits of thermokarst lake (1.3-12.0 m), and river grey sands (12.0-13.4 m). The active layer thickness is 65 cm. The cryostructure is predominantly lattice-like. Silts contain modern wedge ice at the depth of 2.5-2.7 m. Mollusk shells and large amount of plant macrofossils are observed in the interval 5.7-8.0 m. The organic content in the thermokarst deposits varies in average within 2-3 %, but is about 1% in the underlying river sands. To investigate permafrost carbon, samples for microbial and enzyme activities, as well as samples of trapped gases were collected from different horizons of frozen cores. Samples for palynological, diatom, and lithological analyses, as

  1. Field information links permafrost carbon to physical vulnerabilities of thawing

    USGS Publications Warehouse

    Harden, Jennifer W.; Koven, Charles; Ping, Chien-Lu; Hugelius, Gustaf; McGuire, A. David; Camill, P.; Jorgenson, Torre; Kuhry, Peter; Michaelson, Gary; O'Donnell, Jonathan A.; Schuur, Edward A.G.; Tamocai, Charles; Johnson, K.; Grosse, G.

    2012-01-01

    Deep soil profiles containing permafrost (Gelisols) were characterized for organic carbon (C) and total nitrogen (N) stocks to 3m depths. Using the Community Climate System Model (CCSM4) we calculate cumulative probability functions (PDFs) for active layer depths under current and future climates. The difference in PDFs over time was multiplied by C and N contents of soil horizons in Gelisol suborders to calculate newly thawed C and N, Thawing ranged from 147 PgC with 10 PgN by 2050 (representative concentration pathway RCP scenario 4.5) to 436 PgC with 29 PgN by 2100 (RCP 8.5). Organic horizons that thaw are vulnerable to combustion, and all horizon types are vulnerable to shifts in hydrology and decomposition. The rates and extent of such losses are unknown and can be further constrained by linking field and modelling approaches. These changes have the potential for strong additional loading to our atmosphere, water resources, and ecosystems.

  2. Fire, temperature and nutrient responses on the C balance of arctic tundra soils from surface, mineral horizons and permafrost

    NASA Astrophysics Data System (ADS)

    De Baets, S. L.; Lewis, R.; van de Weg, M. J.; Quine, T. A.; Shaver, G. R.; Hartley, I. P.

    2013-12-01

    Models predict substantial release of carbon (C) from thawing permafrost as the climate warms. Therefore, determining how the decomposition of the organic matter stored in near surface permafrost is controlled represents a key research priority. Important questions remain regarding how readily decomposable the organic matter may be, as well as the extent to which microbial activity is limited by the low temperatures, the rate of new labile C inputs, and/or nitrogen (N) availability. Accurate model predictions require that these questions are addressed.Disturbances, including fire, which is becoming increasingly common in the tundra biome, may promote rates of permafrost thaw. In 2007, the Anaktuvuk River fire burned over 1,000 km2 of tundra on the North Slope of the Brooks Range, Alaska, USA, doubling the cumulative area burned in this region over the past 50 years. This fire enhanced active layer thickness by removing insulating plant biomass and exposing surfaces with low albedo. In this study we investigated how temperature, N and labile C additions affected rates of CO2 production over a one-year incubation of samples collected from different depths (topsoil, mineral horizons and near-surface permafrost) in burnt and unburnt sites within the Anaktuvik river catchment. The results show that respiration rates did not decline substantially during the 1-year incubation, indicating there were relatively large amounts of readily decomposable C present. However, decomposition rates per gram of C did decline with depth, especially in the burnt sites where some of the surface soil may have been lost. This indicates that the C present in the near surface permafrost may be less labile than C nearer the soil surface. In addition, respiration rates in the deeper horizons were more temperature sensitive, potentially reflecting the lower lability of the C present. Against expectations, N addition inhibited respiration in the deeper layers, especially at low temperatures

  3. Permafrost on Mars: distribution, formation, and geological role

    NASA Technical Reports Server (NTRS)

    Nummedal, D.

    1984-01-01

    The morphology of channels, valleys, chaotic and fretted terrains and many smaller features on Mars is consistent with the hypothesis that localized deterioration of thick layers of ice-rich permafrost was a dominant geologic process on the Martian surface. Such ground ice deterioration gave rise to large-scale mass movement, including sliding, slumping and sediment gravity flowage, perhaps also catastropic floods. In contrast to Earth, such mass movement processes on Mars lack effective competition from erosion by surface runoff. Therefore, Martian features due to mass movement grew to reach immense size without being greatly modified by secondary erosional processes. The Viking Mission to Mars in 1976 provided adequate measurements of the relevant physical parameters to constrain models for Martian permafrost.

  4. Assessing the recent climate change effects on Southern Carpathians permafrost

    NASA Astrophysics Data System (ADS)

    Popescu, Razvan; Vespremeanu-Stroe, Alfred; Cruceru, Nicolae; Pop, Olimpiu

    2014-05-01

    Most of the rock glaciers from Southern Carpathians (SC) are relict or inactive in the present. A few cases of active or complex (active only across their upper parts) rock glaciers are supposed to exist in Retezat Massif (Vespremeanu-Stroe et al., 2012), but recent growth of vegetation (especially Pynus mugo) on their fronts arises the hypothesis of a contemporary inactivation trend. The present work aims to evaluate how the climate oscillations from the last 70 years impacted SC permafrost. Rock glaciers feedback was assessed using permafrost creep measurements (on two rock glaciers from Retezat Massif) and estimations of the vegetation age installed on the rock glaciers fronts. We assessed the main climatic indices for the alpine area, with a focus on the cold snow free interval (SFI; autumn and early winter) which is the most critical period for permafrost existence as revealed by its correlations with the multiannual variability of the bottom temperature of snow during late winter (BTS) and with the permafrost temperature. We assessed the magnitude of SFI by calculating the freezing index (°Ch) at several locations from SC. The oscillation of the freezing index during the last 70 years was possible using air temperature from high meteorological stations by establishing a relation between ground surface temperatures (GST) monitored in numerous sites from SC and air temperature. The main findings indicate a recent climate warming, since late 1970s, who initiated a gradual rock glaciers inactivation which speeds up in the last decade (2003 - 2012) due to unprecedented low freezing indices. These are supported by the low creep values in the median and terminal parts of monitored rock glaciers comparing with the permafrost rich upper parts and by the young ages of Pynus mugo shrubs (few decades) which colonize the rock glaciers fronts.

  5. Recent cooling along the southern shore of Hudson Strait, Quebec, Canada, documented from permafrost temperature measurements

    SciTech Connect

    Allard, M.; Wang, B.; Pilon, J.A.

    1995-05-01

    Permafrost temperatures from the surface down to about 20 m from 10 boreholes distributed around three villages on the coast of Hudson Strait (Salluit, Kangiqsujuaq, and Quaqtaq) were recorded and analyzed for the period 1988-1993. The results indicate that the permafrost has been regularly cooling along the southern shore of Hudson Strait. The observed trend in the order of 0.05{degrees}C yr{sup {minus}1} at the 20-m depth is consistent with the long-term regional cooling observed in air temperatures. It also coincides with an increased rate of cooling since the mid-1980s, which has been interpreted in the literature as being related to recurrent changes in the thermohaline circulation in the Arctic and North Atlantic oceans. The weak variation observed in the active-layer thickness at the study sites leads to the conclusion that the climatic cooling takes place principally through longer and colder winters. 23 refs., 7 figs., 5 tabs.

  6. Dynamics of dissolved organic carbon release from a permafrost wetland catchment in northeast China

    NASA Astrophysics Data System (ADS)

    Guo, Y. D.; Song, C. C.; Wan, Z. M.; Lu, Y. Z.; Qiao, T. H.; Tan, W. W.; Wang, L. L.

    2015-12-01

    A large reservoir of organic carbon is stored in the permafrost region. Therefore, understanding the export of dissolved organic carbon (DOC) from rivers in the permafrost zone is important in the context of climate change. This study investigated the dynamics of DOC export from the wetlands of the Kandu River catchment located in a cold temperate region in northeast China during the growing seasons of 2011 and 2012. Our findings indicated that subsurface flow was the primary runoff pathway that transports DOC from wetland soil to stream discharge. The organic-mineral soil structure resulted in substantial differences in water sources, as well as in DOC resources, between the flood and base flow volume during the growing seasons. The active layer depth is key, as it affects runoff generation and the DOC concentration and chemical characteristics of stream discharge. The DOC flux from our study area was estimated to be up to 1039.66 t during the growing season, which represents more than one third of the net ecosystem exchange (NEE) in wetlands. Given the expected increase in air temperature and precipitation, our results indicate that there will be an increase in the total DOC flux for the study region in the future as a result of increased DOC concentration.

  7. Effects of 45 Years of Heavy Road Traffic and Infrastructure on Permafrost and Tundra at Prudhoe Bay, Alaska

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Buchhorn, M.; Raynolds, M. K.; Kanevskiy, M. Z.; Matyshak, G. V.; Shur, Y.; Peirce, J.

    2015-12-01

    The upper permafrost of the Prudhoe Bay Oilfield, the largest oil field in both the United States and in North America, contains significant amounts of excess ground ice, mainly in ice wedges. An increase in infrastructure development and road traffic since the initial development of the Prudhoe Bay Oilfield in 1968 has resulted in extensive flooding, accumulation of road dust, and roadside snowbanks, all of which affect the vegetation and alter the thermal properties of the ground surface. As part of the NSF's Arctic Science, Engineering, and Education for Sustainability (ArcSEES) project, we established four transects in 2014 and 2015 to document the effects of infrastructure and heavy road traffic on adjacent tundra. Two transects were established perpendicular to the Prudhoe Bay Spine Road north of Lake Colleen and two perpendicular to the Dalton Highway next to the Deadhorse airstrip. Prior to infrastructure development in 1949, rather homogeneous networks of low-centered polygons with less than 30 cm of trough-rim elevation contrast covered both locations. We present the detailed results of vegetation analysis, ice-core drilling, and extensive topographic surveys along the transects. A time series of aerial photographs from 1949 to 2014 (yearly since 1969) documents the changing landscapes in relationship to the record of air-temperature, active layer depths, and permafrost temperatures at Deadhorse. Flooding, road dust, and snow drifts have all contributed to creating warmer soil temperatures and deeper active layers near the road. These factors have all contributed in different ways to alteration of the plant canopy. The altered plant canopies in turn further altered the surface albedo and the ground temperatures. Historical photos indicate that between 1989 and 2012 a regional thawing of the ice-wedges occurred, increasing the extent of thermokarst. Our analysis demonstrates the cumulative effects of infrastructure-related and climate-related factors to

  8. Pyrosequencing Investigation into the Bacterial Community in Permafrost Soils along the China-Russia Crude Oil Pipeline (CRCOP)

    PubMed Central

    Yang, Sizhong; Wen, Xi; Jin, Huijun; Wu, Qingbai

    2012-01-01

    The China-Russia Crude Oil Pipeline (CRCOP) goes through 441 km permafrost soils in northeastern China. The bioremediation in case of oil spills is a major concern. So far, little is known about the indigenous bacteria inhabiting in the permafrost soils along the pipeline. A pilot 454 pyrosequencing analysis on the communities from four selected sites which possess high environment risk along the CRCOP is herein presented. The results reveal an immense bacterial diversity than previously anticipated. A total of 14448 OTUs with 84834 reads are identified, which could be assigned into 39 different phyla, and 223 families or 386 genera. Only five phyla sustain a mean OTU abundance more than 5% in all the samples, but they altogether account for 85.08% of total reads. Proteobacteria accounts for 41.65% of the total OTUs or 45% of the reads across all samples, and its proportion generally increases with soil depth, but OTUs numerically decline. Among Proteobacteria, the abundance of Beta-, Alpha-, Delta- and Gamma- subdivisions average to 38.7% (2331 OTUs), 37.5% (2257 OTUs), 10.35% (616 OTUs), and 6.21% (374 OTUs), respectively. Acidobacteria (esp. Acidobacteriaceae), Actinobacteria (esp. Intrasporangiaceae), Bacteroidetes (esp. Sphingobacteria and Flavobacteria) and Chloroflexi (esp. Anaerolineaceae) are also very common, accounting for 8.56% (1237 OTUs), 7.86% (1136 OTUs); 7.35% (1063 OTUs) and 8.27% (1195 OTUs) of total libraries, respectively. The ordination analysis indicates that bacteria communities in the upper active layer cluster together (similar), while bacterial consortia from the lower active layer and permafrost table scatter (less similar). The abundance of Rhodococcus (12 OTUs), Pseudomonas (71 OTUs) and Sphingomonas (87 OTUs) is even less (<0.01%). This effort to profile the background diversity may set the first stage for better evaluating the bacterial dynamics in response to accidental oil spills. PMID:23300754

  9. Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.

    PubMed

    Ward, Collin P; Cory, Rose M

    2016-04-01

    Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw. PMID:26910810

  10. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    USGS Publications Warehouse

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, Anthony; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  11. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    NASA Astrophysics Data System (ADS)

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, Claudia I.; Xu, Xiaomei; Chanton, Jeffrey P.; Waddington, James M.

    2014-03-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  12. Simulating soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for permafrost carbon dynamics to climate change

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yokozawa, M.; Toda, M.; Kushida, K.

    2015-12-01

    Boreal terrestrial ecosystems act as a huge reservoir of organic carbon, most of which is mainly stored in both active-layer soils and permafrost. Recently, many observational studies have revealed that ongoing climate warming has promoted changes in fire regime, which stimulates the permafrost thaw in the boreal area. Consequently, the decomposition rate of the organic and mineral soils will increase and a large amount of CO2 will be released into the atmosphere. The sustained CO2­ release from the soils may create a positive feedback in relation to carbon cycling between the atmosphere and boreal terrestrial ecosystems. However, there still remains substantial uncertainty for evaluating the mechanisms of the carbon cycle feedbacks over centuries. In the present study, we examined the effect of warming and fire episodes on soil carbon dynamics in an upland black spruce ecosystem in interior Alaska, by using a Physical and Biogeochemical Soil Dynamics Model (PB-SDM) which can simulate the feedback cycle of soil organic carbon accumulation with soil thermal and hydrological dynamics. The result indicates that soil carbon accumulation in the organic layer was strongly dominated by increased temperature. In addition, fire events by which a great number of soil layers burned contributed to decrease in soil carbon accumulation largely in the organic layer. On the other hand, remarkably increased temperature conditions (around 9.6℃ by 3000) controlled soil carbon accumulation in the mineral layer and changes in soil decomposition rate accompanying with the shift from frozen to thawed conditions with warming accelerated soil carbon decomposition. It is suggested that future climate warming would result in drastic decrease in the soil carbon stock, largely from the organic layer, whereas the vulnerability of deeper soil carbon to future warming is closely connected to permafrost degradation due to wildfire disturbance.

  13. Extrapolating active layer thickness measurements across Arctic polygonal terrain using LiDAR and NDVI data sets

    NASA Astrophysics Data System (ADS)

    Gangodagamage, Chandana; Rowland, Joel C.; Hubbard, Susan S.; Brumby, Steven P.; Liljedahl, Anna K.; Wainwright, Haruko; Wilson, Cathy J.; Altmann, Garrett L.; Dafflon, Baptiste; Peterson, John; Ulrich, Craig; Tweedie, Craig E.; Wullschleger, Stan D.

    2014-08-01

    Landscape attributes that vary with microtopography, such as active layer thickness (ALT), are labor intensive and difficult to document effectively through in situ methods at kilometer spatial extents, thus rendering remotely sensed methods desirable. Spatially explicit estimates of ALT can provide critically needed data for parameterization, initialization, and evaluation of Arctic terrestrial models. In this work, we demonstrate a new approach using high-resolution remotely sensed data for estimating centimeter-scale A