Science.gov

Sample records for active phased-array antenna

  1. Large-Aperture Membrane Active Phased-Array Antennas

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  2. Phased array antenna control

    NASA Technical Reports Server (NTRS)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  3. Spaced-antenna wind estimation using an X-band active phased-array weather radar

    NASA Astrophysics Data System (ADS)

    Venkatesh, Vijay

    Over the past few decades, several single radar methods have been developed to probe the kinematic structure of storms. All these methods trade angular-resolution to retrieve the wind-field. To date, the spaced-antenna method has been employed for profiling the ionosphere and the precipitation free lower atmosphere. This work focuses on applying the spaced-antenna method on an X-band active phased-array radar for high resolution horizontal wind-field retrieval from precipitation echoes. The ability to segment the array face into multiple displaced apertures allows for flexible spaced-antenna implementations. The methodology employed herein comprises of Monte-Carlo simulations to optimize the spaced-antenna system design and analysis of real data collected with the designed phased-array system. The contribution that underpins this dissertation is the demonstration of qualitative agreement between spaced-antenna and Doppler beam swinging retrievals based on real data. First, simulations of backscattered electric fields at the antenna array elements are validated using theoretical expressions. Based on the simulations, the degrees of freedom in the spaced-antenna system design are optimized for retrieval of mean baseline wind. We show that the designed X-band spaced-antenna system has lower retrieval uncertainty than the existing S-band spaced-antenna implementation on the NWRT. This is because of the flexibility to synthesize small overlapping apertures and the ability to obtain statistically independent samples at a faster rate at X-band. We then demonstrate a technique to make relative phase-center displacement measurements based on simulations and real data from the phased-array spaced-antenna system. This simple method uses statistics of precipitation echoes and apriori beamwidth measurements to make field repeatable phase-center displacement measurements. Finally, we test the hypothesis that wind-field curvature effects are common to both the spaced-antenna and

  4. Coaxial phased array antenna

    NASA Astrophysics Data System (ADS)

    Ellis, H., Jr.

    1980-08-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  5. Coaxial phased array antenna

    NASA Technical Reports Server (NTRS)

    Ellis, H., Jr. (Inventor)

    1980-01-01

    A coaxial antenna array for communicating circularly polarized electromagnetic radiation is disclosed. A pair of open ended antenna cavities is coaxially constructed and operates by excitation of linear radiation elements arranged within each of the cavities. A pair of crossed dipole radiation devices is centered within the inner cavity and operated by means of a phase shifting network circuit to transmit as well as receive circularly polarized radiation. Four monopole radiation devices are symmetrically arranged to operate in the outer cavity in phase quadrature by means of the phase shifting network circuit to both transmit and receive circularly polarized electromagnetic radiation. Combined operation of the two antenna cavities with a 180 deg phase differential between the fields related to the two antenna cavities provides a broad beam, relatively wide frequency bandwidth communication capability. Particular embodiments disclosed feature a generally square cavity array as well as a circular cavity array.

  6. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  7. Phased array-fed antenna configuration study

    NASA Technical Reports Server (NTRS)

    Crosswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.

  8. A phased array tracking antenna for vehicles

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Mano, Kazukiko; Tanaka, Kenji; Matsunaga, Makoto; Tsuchiya, Makio

    1990-01-01

    An antenna system including antenna elements and a satellite tracking method is considered a key technology in implementing land mobile satellite communications. In the early stage of land mobile satellite communications, a mechanical tracking antenna system is considered the best candidate for vehicles, however, a phased array antenna will replace it in the near future, because it has many attractive advantages such as a low and compact profile, high speed tracking, and potential low cost. Communications Research Laboratory is now developing a new phased array antenna system for land vehicles based on research experiences of the airborne phased array antenna, which was developed and evaluated in satellite communication experiments using the ETS-V satellite. The basic characteristics of the phased array antenna for land vehicles are described.

  9. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  10. Active membrane phased array radar

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Huang, John; Sadowy, Greg; Hoffman, James; Smith, Phil; Hatake, Toshiro; Derksen, Chuck; Lopez, Bernardo; Caro, Ed

    2005-01-01

    We have developed the first membrane-based active phased array in L-band (1.26GHz). The array uses membrane compatible Transmit/Receive (T/R) modules (membrane T/R) for each antenna element. We use phase shifters within each T/R module for electronic beam steering. We will discuss the T/R module design and integration with the membrane, We will also present transmit and receive beam-steering results for the array.

  11. Coplanar waveguide fed phased array antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Ponchak, George E.; Lee, R. Q.; Fernandez, N. S.

    1990-01-01

    A K-band four element linear phased array was designed and tested. Coplanar waveguide (CPW) is used for the microwave distribution system. A CPW to twin strip transition is used to interface with the printed dipole antennas. MMIC phased shifters are used for phase control.

  12. Control of phased-array antennas

    NASA Astrophysics Data System (ADS)

    Samoilenko, V. I.; Shishov, Iu. A.

    Principles and algorithms for the control of phased arrays are described. Particular consideration is given to algorithms for the control of phase distribution, adaptive arrays, beam-steerable arrays, the design of phase shifters, the compensation of beam-pointing errors, and the calibration of high-gain antenna pointing.

  13. Multiband Photonic Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Tang, Suning

    2015-01-01

    A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.

  14. Joint stars phased array radar antenna

    NASA Astrophysics Data System (ADS)

    Shnitkin, Harold

    1994-10-01

    The Joint STARS phased array radar system is capable of performing long range airborne surveillance and was used during the Persian Gulf war on two E8-A aircraft to fly many around-the-clock missions to monitor the Kuwait and Iraq battlefield from a safe distance behind the front lines. This paper is a follow-on to previous publications on the subject of the Joint STARS antenna and deals mainly with mission performance and technical aspects not previously covered. Radar data of troop movements and armament installations will be presented, a brief review of the antenna design is given, followed by technical discussions concerning the three-port interferometry, gain and sidelobe design approach, cost control, range test implementation and future improvements.

  15. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  16. Remoting alternatives for a multiple phased-array antenna network

    NASA Astrophysics Data System (ADS)

    Shi, Zan; Foshee, James J.

    2001-10-01

    Significant improvements in technology have made phased array antennas an attractive alternative to the traditional dish antenna for use on wide body airplanes. These improvements have resulted in reduced size, reduced cost, reduced losses in the transmit and receive channels (simplifying the design), a significant extension in the bandwidth capability, and an increase in the functional capability. Flush mounting (thus reduced drag) and rapid beam switching are among the evolving desirable features of phased array antennas. Beam scanning of phased array antennas is limited to +/-45 degrees at best and therefore multiple phased array antennas would need to be used to insure instantaneous communications with any ground station (stations located at different geographical locations on the ground) and with other airborne stations. The exact number of phased array antennas and the specific installation location of each antenna on the wide body airplane would need to be determined by the specific communication requirements, but it is conceivable as many as five phased array antennas may need to be used to provide the required coverage. Control and switching of these antennas would need to be accomplished at a centralized location on the airplane and since these antennas would be at different locations on the airplane an efficient scheme of remoting would need to be used. To save in cost and keep the phased array antennas as small as possible the design of the phased array antennas would need to be kept simple. A dish antenna and a blade antenna (small size) could also be used to augment the system. Generating the RF signals at the central location and then using RF cables or waveguide to get the signal to any given antenna could result in significant RF losses. This paper will evaluate a number of remoting alternatives to keep the system design simple, reduce system cost, and utilize the functional capability of networking multiple phased array antennas on a wide body

  17. Grounded Coplanar Waveguide Feeds Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Ponchak, G.E.; Lee, R. Q.; Simons, R. N.; Fernandez, N.S.

    1993-01-01

    Prototype electronically steerable K-band end-fire antenna includes phased array of four printed-circuit linear dipole elements fed by grounded coplanar waveguide (GCPW). Distribution-and-phasing network of antenna fed through single entering antenna split equally by three GCPW T junctions onto four GCPW transmission lines.

  18. MSAT mobile electronically steered phased array antenna development

    NASA Technical Reports Server (NTRS)

    Schmidt, Fred

    1988-01-01

    The Mobile Satellite Experiment (MSAT-X) breadboard antenna design demonstrates the feasibility of using a phased array in a mobile satellite application. An electronically steerable phased array capable of tracking geosynchronous satellites from anywhere in the Continental United States has been developed. The design is reviewed along with the test data. Cost analysis are presented which indicate that this design can be produced at a cost of $1620 per antenna.

  19. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  20. MSAT-X phased array antenna adaptions to airborne applications

    NASA Technical Reports Server (NTRS)

    Sparks, C.; Chung, H. H.; Peng, S. Y.

    1988-01-01

    The Mobile Satellite Experiment (MSAT-X) phased array antenna is being modified to meet future requirements. The proposed system consists of two high gain antennas mounted on each side of a fuselage, and a low gain antenna mounted on top of the fuselage. Each antenna is an electronically steered phased array based on the design of the MSAT-X antenna. A beamforming network is connected to the array elements via coaxial cables. It is essential that the proposed antenna system be able to provide an adequate communication link over the required space coverage, which is 360 degrees in azimuth and from 20 degrees below the horizon to the zenith in elevation. Alternative design concepts are suggested. Both open loop and closed loop backup capabilities are discussed. Typical antenna performance data are also included.

  1. Method for calculating longitudinal microstrip antennas in planar phased arrays

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.

    The characteristics of longitudinal microstrip antennas in a planar phased array are examined on the basis of the application of the finite element method to an integral equation for the 'charge' on the microstrip line. Microstrip dipoles, and Yagi and log-periodic antennas are examples of such radiators. The analysis takes into account the complex configuration of the conductors, both current components, and the presence of dielectric substrates and a protective coating.

  2. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  3. Microwave power transmitting phased array antenna research project

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1978-01-01

    An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.

  4. Optical beam forming techniques for phased array antennas

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao; Chandler, C.

    1993-01-01

    Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid

  5. Evolutionary Design of a Phased Array Antenna Element

    NASA Technical Reports Server (NTRS)

    Globus, Al; Linden, Derek; Lohn, Jason

    2006-01-01

    We present an evolved S-band phased array antenna element design that meets the requirements of NASA's TDRS-C communications satellite scheduled for launch early next decade. The original specification called for two types of elements, one for receive only and one for transmit/receive. We were able to evolve a single element design that meets both specifications thereby simplifying the antenna and reducing testing and integration costs. The highest performance antenna found using a genetic algorithm and stochastic hill-climbing has been fabricated and tested. Laboratory results are largely consistent with simulation. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years its computer speed has increased and electromagnetic simulators have improved. Many antenna types have been investigated, including wire antennas, antenna arrays and quadrifilar helical antennas. In particular, our laboratory evolved a wire antenna design for NASA's Space Technology 5 (ST5) spacecraft. This antenna has been fabricated, tested, and is scheduled for launch on the three spacecraft in 2006.

  6. Phased array antenna investigation for CubeSat size satellites

    NASA Astrophysics Data System (ADS)

    Dang, Kien

    Increasing bandwidth of the communication link has been a challenge for CubeSat class satellite. Traditional satellites usually utilizes high gain antennas for this purpose, but these antenna are rarely seen in CubeSat because of its power, volume and weight constraints. To solve these issues, this dissertation presents a phased array antenna system prototyped at 2.45 GHz with 17.7 dBi gain at broadside, 14.2 dBi at +/-40°, 50 MHz bandwidth, and fits on a side of a 3U CubeSat. The gain can be increased by adding more antenna elements into the array as needed. Testing for electronic beam steering has been completed and detailed results will be presented.

  7. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    NASA Technical Reports Server (NTRS)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  8. Receiver Would Control Phasing of a Phased-Array Antenna

    NASA Technical Reports Server (NTRS)

    Dunn, Charles E.; Young, Lawrence E.

    2006-01-01

    In a proposed digital signal-processing technique, a radio receiver would control the phasing of a phased-array antenna to aim the peaks of the antenna radiation pattern toward desired signal sources while aiming the nulls of the pattern toward interfering signal sources. The technique was conceived for use in a Global Positioning System (GPS) receiver, for which the desired signal sources would be GPS satellites and typical interference sources would be terrestrial objects that cause multipath propagation. The technique could also be used to optimize reception in spread-spectrum cellular-telephone and military communication systems. During reception of radio signals in a conventional phased-array antenna system, received signals at their original carrier frequencies are phase-shifted, then combined by analog circuitry. The combination signal is then subjected to down-conversion and demodulation. In a system according to the proposed technique (see figure), the signal received by each antenna would be subjected to down-conversion, spread-spectrum demodulation, and correlation; this processing would be performed separately from, and simultaneously with, similar processing of signals received by the other antenna elements. Following analog down-conversion to baseband, the signals would be digitized, and all subsequent processing would be digital. In the digital process, residual carriers would be removed and each signal would be correlated with a locally generated model pseudorandum-noise code, all following normal GPS procedure. As part of this procedure, accumulated values would be added in software and the resulting signals would be phase-shifted in software by the amounts necessary to synthesize the desired antenna directional gain pattern of peaks and nulls. The principal advantage of this technique over the conventional radio-frequency-combining technique is that the parallel digital baseband processing of the signals from the various antenna elements would be

  9. Time-delayed directional beam phased array antenna

    DOEpatents

    Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron

    2004-10-19

    An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.

  10. Cylindrical Antenna With Partly Adaptive Phased-Array Feed

    NASA Technical Reports Server (NTRS)

    Hussein, Ziad; Hilland, Jeff

    2003-01-01

    A proposed design for a phased-array fed cylindrical-reflector microwave antenna would enable enhancement of the radiation pattern through partially adaptive amplitude and phase control of its edge radiating feed elements. Antennas based on this design concept would be attractive for use in radar (especially synthetic-aperture radar) and other systems that could exploit electronic directional scanning and in which there are requirements for specially shaped radiation patterns, including ones with low side lobes. One notable advantage of this design concept is that the transmitter/ receiver modules feeding all the elements except the edge ones could be identical and, as a result, the antenna would cost less than in the cases of prior design concepts in which these elements may not be identical.

  11. 2-D scalable optical controlled phased-array antenna system

    NASA Astrophysics Data System (ADS)

    Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.

    2006-02-01

    A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.

  12. SAR processing with stepped chirps and phased array antennas.

    SciTech Connect

    Doerry, Armin Walter

    2006-09-01

    Wideband radar signals are problematic for phased array antennas. Wideband radar signals can be generated from series or groups of narrow-band signals centered at different frequencies. An equivalent wideband LFM chirp can be assembled from lesser-bandwidth chirp segments in the data processing. The chirp segments can be transmitted as separate narrow-band pulses, each with their own steering phase operation. This overcomes the problematic dilemma of steering wideband chirps with phase shifters alone, that is, without true time-delay elements.

  13. Phased-array-fed antenna configuration study, volume 2

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.

    1983-01-01

    Increased capacity in future satellite systems can be achieved through antenna systems which provide multiplicity of frequency reuses at K sub a band. A number of antenna configurations which can provide multiple fixed spot beams and multiple independent spot scanning beams at 20 GHz are addressed. Each design incorporates a phased array with distributed MMIC amplifiers and phasesifters feeding a two reflector optical system. The tradeoffs required for the design of these systems and the corresponding performances are presented. Five final designs are studied. In so doing, a type of MMIC/waveguide transition is described, and measured results of the breadboard model are presented. Other hardware components developed are described. This includes a square orthomode transducer, a subarray fed with a beamforming network to measure scanning performance, and another subarray used to study mutual coupling considerations. Discussions of the advantages and disadvantages of the final design are included.

  14. Phased array antenna analysis using hybrid finite element methods

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel T.

    1993-06-01

    This research in computational electromagnetics developed a new method for predicting the near-field mutual coupling effects in phased array antennas, using the finite element method (FEM) in combination with integral equations. Accurate feed modeling is accomplished by enforcing continuity between the FEM solution and an arbitrary number of wave guide models across a ground plane aperture. A periodic integral equation is imposed above the antenna's physical structure in order to enforce the radiation condition and to confine the analysis to an array unit cell. The electric field is expanded in terms of vector finite elements, and Galerkin's method is used to write the problem as a matrix equation. A general-purpose computer code was developed and validated by comparing its results to published data for several array types. Its versatility was demonstrated with predictions of the scanning properties of arrays of printed dipoles and printed flared notches.

  15. A Study of Phased Array Antennas for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.

    2001-01-01

    In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.

  16. Phased-array-fed antenna configuration study. Volume 1: Technology assessment

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.

    1983-01-01

    The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.

  17. The frequency response of phased-array antennas

    NASA Astrophysics Data System (ADS)

    Brock, B. C.

    1989-02-01

    The phased-array antenna will be examined from the point of view of effects caused by changes in frequency. Both simple linear arrays and the more complex conformal array are examined. For the conformal array, a comparison between a corporate-feed structure and a row series-feed structure is included. There are two primary effects which will be discussed: beam-pointing errors and distortion of large bandwidth signals. A formula for estimating the operating or tunable array bandwidth for narrow-bandwidth signals is derived. An expression for the wide-bandwidth-signal transfer function is also obtained and examined. It will be shown that the transfer function depends both on the array scan angle and the position within the mainbeam.

  18. The frequency response of phased-array antennas

    SciTech Connect

    Brock, B.C.

    1989-02-01

    The phased-array antenna will be examined from the point of view of effects caused by changes in frequency. Both simple linear arrays and the more complex conformal array are examined. For the conformal array, a comparison between a corporate-feed structure and a row series-feed structure is included. There are two primary effects which will be discussed: beam-pointing errors and distortion of large bandwidth signals. A formula for estimating the operating or tunable array bandwidth for narrow-bandwidth signals is derived. An expression for the wide-bandwidth-signal transfer function is also obtained and examined. It will be shown that the transfer function depends both on the array scan angle and the position within the mainbeam. 25 figs.

  19. MSAT-X electronically steered phased array antenna system

    NASA Technical Reports Server (NTRS)

    Chung, H. H.; Foy, W.; Schaffner, G.; Pagels, W.; Vayner, M.; Nelson, J.; Peng, S. Y.

    1988-01-01

    A low profile electronically steered phased array was successfully developed for the Mobile Satellite Experiment Program (MSAT-X). The newly invented cavity-backed printed crossed-slot was used as the radiating element. The choice of this element was based on its low elevation angle gain coverage and low profile. A nineteen-way radial type unequal power divider and eighteen three-bit diode phase shifters constitute the beamformer module which is used to scan the beams electronically. A complete hybrid mode pointing system was also developed. The major features of the antenna system are broad coverage, low profile, and fast acquisition and tracking performance, even under fading conditions. Excellent intersatellite isolation (better than 26 dB) was realized, which will provide good quality mobile satellite communication in the future.

  20. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1983-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented highlighting the advantages of distributed amplifier approach compared to the conventional single power source designs.

  1. Phased array antenna matching: Simulation and optimization of a planar phased array of circular waveguide elements

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.

    1972-01-01

    A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.

  2. Microwave monolithic integrated circuit development for future spaceborne phased array antennas

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Kascak, T. J.; Downey, A. N.; Liu, D. C.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide (GaAs) receive and transmit modules suitable for phased array antenna applications in the 30/20 gigahertz bands is presented. Specifications and various design approaches to achieve the design goals are described. Initial design and performance of submodules and associated active and passive components are presented. A tradeoff study summary is presented, highlighting the advantages of a distributed amplifier approach compared to the conventional single power source designs. Previously announced in STAR as N84-13399

  3. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  4. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly

  5. A study program on large aperture electronic scanning phased array antennas for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Fundamental phased array theory and performance parameters are discussed in terms of their application to microwave radiometry, and four scanning phased arrays representing current examples of state-of-the-art phased array technology are evaluated for potential use as components of the multispectral antenna system for the space shuttle imaging microwave system (SIMS). A discussion of problem areas, both in performance and fabrication is included, with extrapolations of performance characteristics for phased array antennas of increased sizes up to 20 m by 20 m. The possibility of interlacing two or more phased arrays to achieve a multifrequency aperture is considered, and, finally, a specific antenna system is recommended for use with SIMS.

  6. Multiple-access phased array antenna simulator for a digital beam-forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  7. Multiple-access phased array antenna simulator for a digital beam forming system investigation

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Yu, John; Walton, Joanne C.; Perl, Thomas D.; Andro, Monty; Alexovich, Robert E.

    1992-01-01

    Future versions of data relay satellite systems are currently being planned by NASA. Being given consideration for implementation are on-board digital beamforming techniques which will allow multiple users to simultaneously access a single S-band phased array antenna system. To investigate the potential performance of such a system, a laboratory simulator has been developed at NASA's Lewis Research Center. This paper describes the system simulator, and in particular, the requirements, design, and performance of a key subsystem, the phased array antenna simulator, which provides realistic inputs to the digital processor including multiple signals, noise, and nonlinearities.

  8. Phased array-fed antenna configuration study: Technology assessment

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.

  9. Phased-array antenna control by a monolithic photonic integrated circuit, COMPASS

    SciTech Connect

    Kravitz, S.H.; Hietala, V.M.; Vawter, G.A.; Meyer, W.J.

    1991-01-01

    Phased-array antenna systems are well known for rapid beam steering and their ability to bring high power to the target. Such systems are also quite complex and heavy, which have limited their usefulness. The issues of weight, size, power use, and complexity have been addressed through a system named COMPASS (Coherent Optical Monolithic Phased Array Steering System). All phased-array antenna systems need: (1) small size; (2) low power use; (3) high-speed beam steering; and (4) digitally-controlled phase shifting. COMPASS meets these basic requirements, and provides some very desirable additional features. These are: (1) phase control separate from the transmit/receive module; (2) simple expansion to large arrays; (3) fiber optic interconnect for reduced sensitivity to EMI; (4) an intrinsically radiation-hard GaAs chip; and (5) optical power provided by a commercially available continuous wave (CW) laser. 4 refs., 8 figs.

  10. Thermal imaging of plasma with a phased array antenna in QUEST

    SciTech Connect

    Mishra, Kishore Nagata, K.; Akimoto, R.; Banerjee, S.; Idei, H.; Zushi, H.; Hanada, K.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Onchi, T.; Kuzmin, A.; Yamamoto, M. K.

    2014-11-15

    A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversion region and its position is successfully reconstructed using phase array technique which is done in post processing.

  11. Thermal imaging of plasma with a phased array antenna in QUEST

    NASA Astrophysics Data System (ADS)

    Mishra, Kishore; Idei, H.; Zushi, H.; Nagata, K.; Akimoto, R.; Yamamoto, M. K.; Hanada, K.; Hasegawa, M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Banerjee, S.; Onchi, T.; Kuzmin, A.

    2014-11-01

    A thermal imaging system to measure plasma Electron Bernstein Emission (EBE) emanating from the mode conversion region in overdense plasma is discussed. Unlike conventional ECE/EBE imaging, this diagnostics does not employ any active mechanical scanning mirrors or focusing optics to scan for the emission cones in plasma. Instead, a standard 3 × 3 waveguide array antenna is used as a passive receiver to collect emission from plasma and imaging reconstruction is done by accurate measurements of phase and intensity of these signals by heterodyne detection technique. A broadband noise source simulating the EBE, is installed near the expected mode conversion region and its position is successfully reconstructed using phase array technique which is done in post processing.

  12. Characteristics of block-periodic phased-array antennas with circular polarization of the radiated field

    NASA Astrophysics Data System (ADS)

    Likhoded, Iu. V.; Mironnikov, A. S.

    1990-02-01

    The paper presents results of a numerical investigation of the directivity characteristics of a block-periodic waveguide phased-array antenna with circular polarization of the radiated field. The advantages of this array from the viewpoint of maximining the ellipticity coefficent of the radiated field in the scanning sector are pointed out.

  13. Ultra wideband photonic control of an adaptive phased array antenna

    NASA Astrophysics Data System (ADS)

    Cox, Joseph L.; Zmuda, Henry; Li, Jian; Sforza, Pasquale M.

    2006-05-01

    This paper presents a new concept for a photonic implementation of a time reversed RF antenna array beamforming system. The process does not require analog to digital conversion to implement and is therefore particularly suited for high bandwidth applications. Significantly, propagation distortion due to atmospheric effects, clutter, etc. is automatically accounted for with the time reversal process. The approach utilizes the reflection of an initial interrogation signal from off an extended target to precisely time match the radiating elements of the array so as to re-radiate signals precisely back to the target's location. The backscattered signal(s) from the desired location is captured by each antenna and used to modulate a pulsed laser. An electrooptic switch acts as a time gate to eliminate any unwanted signals such as those reflected from other targets whose range is different from that of the desired location resulting in a spatial null at that location. A chromatic dispersion processor is used to extract the exact array parameters of the received signal location. Hence, other than an approximate knowledge of the steering direction needed only to approximately establish the time gating, no knowledge of the target position is required, and hence no knowledge of the array element time delay is required. Target motion and/or array element jitter is automatically accounted for. This paper presents the preliminary study of the photonic processor, analytical justification, and simulated results. The technology has a broad range of applications including aerospace and defense and in medical imaging.

  14. Optically controlled phased-array antenna technology for space communication systems

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Bhasin, Kul B.

    1988-01-01

    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.

  15. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    PubMed

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss <27  dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed. PMID:27411185

  16. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Claspy, Paul C.; Richard, Mark A.; Bhasin, Kul B.

    1990-01-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  17. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  18. Microstrip Antennas with Polarization Diversity across a Wide Frequency Range and Phased Array Antennas for Radar and Satellite Communications

    NASA Astrophysics Data System (ADS)

    Ho, Kevin Ming-Jiang

    The thesis comprises of 3 projects; an L-band microstrip antenna with frequency agility and polarization diversity, X-band phased array antennas incorporating commercially packaged RFIC phased array chips, and studies for Ku/Ka-band shared aperture antenna array. The first project features the use of commercially packaged RF-MEMS SPDT switches, that boasts of high reliability, high linearity, low losses, hermetically packaged and fully compatible for SMTA processes for mass-assembly and production. Using the switches in a novel manner for the feed network, microstrip antennas with polarization diversity are presented. Frequency agility is achieved with the use of tuning diodes to provide capacitive loading to the antenna element. Additional inductance effects from surface-mounted capacitors, and its impact, is introduced. Theoretical cross-polarization of probe-fed antenna elements is presented for both linear and circular polarized microstrip antennas. Designs and measurements are presented, for microstrip antennas with polarization diversity, wide frequency tuning range, and both features. Replacement of the tuning diodes with commercially-packaged high Q RF MEMS tunable capacitors will allow for significant improvements to the radiation efficiency. In another project, multi-channel CMOS RFIC phased-array receiver chips are assembled in QFN packages and directly integrated on the same multi-layered PCB stack-up with the antenna arrays. Problems of isolation from the PCB-QFN interface, and potential performance degradation on antenna array from the use of commercial-grade laminates for assembly requirements, namely potential scan blindness and radiation efficiency, are presented. Causes for apparent drift of dielectric constant for microstrip circuits, and high conductor losses observed in measurements, are introduced. Finally, studies are performed for the design of a Ku/Ka-Band shared aperture array. Different approaches for developing dual-band shared apertures

  19. Fully Printed High-Frequency Phased-Array Antenna on Flexible Substrate

    NASA Technical Reports Server (NTRS)

    Chen, Yihong; Lu, Xuejun

    2010-01-01

    To address the issues of flexible electronics needed for surface-to-surface, surface-to-orbit, and back-to-Earth communications necessary for manned exploration of the Moon, Mars, and beyond, a room-temperature printing process has been developed to create active, phased-array antennas (PAAs) on a flexible Kapton substrate. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proven feasible for phased-array antenna systems. The carrier mobility of an individual CNT is estimated to be at least 100,000 sq cm/V(dot)s. The CNT network in solution has carrier mobility as high as 46,770 sq cm/V(dot)s, and has a large current-density carrying capacity of approx. 1,000 mA/sq cm , which corresponds to a high carrying power of over 2,000 mW/ sq cm. Such high carrier mobility, and large current carrying capacity, allows the achievement of high-speed (>100 GHz), high-power, flexible electronic circuits that can be monolithically integrated on NASA s active phasedarray antennas for various applications, such as pressurized rovers, pressurized habitats, and spacesuits, as well as for locating beacon towers for lunar surface navigation, which will likely be performed at S-band and attached to a mobile astronaut. A fully printed 2-bit 2-element phasedarray antenna (PAA) working at 5.6 GHz, incorporating the CNT FETs as phase shifters, is demonstrated. The PAA is printed out at room temperature on 100-mm thick Kapton substrate. Four CNT FETs are printed together with microstrip time delay lines to function as a 2-bit phase shifter. The FET switch exhibits a switching speed of 0.2 ns, and works well for a 5.6-GHz RF signal. The operating frequency is measured to be 5.6 GHz, versus the state-of-the-art flexible FET operating frequency of 52 MHz. The source-drain current density is measured to be over 1,000 mA/sq cm, while the conventional organic FETs, and single carbon nanotube-based FETs, are typically in the m

  20. MMIC devices for active phased array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1986-01-01

    The use of finlines for microwave monolithic integrated circuit application in the 20 to 40 GHz frequency range. Other wave guiding structures, are also examined from a comparative point of view and some sonclusions are drawn on the basis of the results.

  1. Extending the scanning angle of a phased array antenna by using a null-space medium.

    PubMed

    Sun, Fei; He, Sailing

    2014-01-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198

  2. Extending the scanning angle of a phased array antenna by using a null-space medium

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2014-10-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome.

  3. Extending the scanning angle of a phased array antenna by using a null-space medium

    PubMed Central

    Sun, Fei; He, Sailing

    2014-01-01

    By introducing a columnar null-space region as the reference space, we design a radome that can extend the scanning angle of a phased array antenna (PAA) by a predetermined relationship (e.g. a linear relationship between the incident angle and steered output angle can be achieved). After some approximation, we only need two homogeneous materials to construct the proposed radome layer by layer. This kind of medium is called a null-space medium, which has been studied and fabricated for realizing hyper-lenses and some other devices. Numerical simulations verify the performance of our radome. PMID:25355198

  4. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  5. System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications

    NASA Technical Reports Server (NTRS)

    Windyka, John A.; Zablocki, Ed G.

    1997-01-01

    This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.

  6. X-band printed phased array antennas using high-performance CNT/ion gel/Ag transistors

    NASA Astrophysics Data System (ADS)

    Grubb, Peter M.; Bidoky, Fazel; Mahajan, Ankit; Subbaraman, Harish; Li, Wentao; Frisbie, Daniel; Chen, Ray T.

    2016-05-01

    This paper reports a fully printed phased array antenna developed on a 125 micron thick flexible Kapton substrate. Switching for the phase delay lines is accomplished using printed carbon nanotube transistors with ion gel dielectric layers. Design of each element of the phased array antenna is reported, including a low loss constant impedance power divider, a phase shifter network, and patch antenna design. Steering of an X-band PAA operating at 10GHz from 0 degrees to 22.15 degrees is experimentally demonstrated. In order to completely package the array with electrical interconnects, a single substrate interconnect scheme is also investigated.

  7. Electron Cyclotron / Bernstein Wave Heating and Current Drive Experiments using Phased-array Antenna in QUEST

    SciTech Connect

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Hasegawa, M.; Yoshida, N.; Watanebe, H.; Tokunaga, K.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Sakamoto, M.; Ejiri, A.; Takase, Y.; Sakaguchi, M.; Kalinnikova, E.; Ishiguro, M.; Tashima, S.

    2011-12-23

    The phased-array antenna system for Electron Cyclotron/Bernstein Wave Heating and Current Drive experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the O-X-B mode conversion experiments, and its good performances were confirmed at a low power level. The plasma current (<{approx}15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection in the low-density operations. The long pulse discharge of 10 kA was also attained for 37 s. The new density window to sustain the plasma current was observed in the high-density plasmas. The single-null divertor configuration with the high plasma current (<{approx}25 kA) was attained in the 17 s plasma sustainment.

  8. Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Sands, O. Scott

    2003-01-01

    When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.

  9. The application of taylor weighting, digital phase shifters, and digital attenuators to phased-array antennas.

    SciTech Connect

    Brock, Billy C.

    2008-03-01

    Application of Taylor weighting (taper) to an antenna aperture can achieve low peak sidelobes, but combining the Taylor weighting with quantized attenuators and phase shifters at each radiating element will impact the performance of a phased-array antenna. An examination of array performance is undertaken from the simple point of view of the characteristics of the array factor. Design rules and guidelines for determining the Taylor-weighting parameters, the number of bits required for the digital phase shifter, and the dynamic range and number of bits required for the digital attenuator are developed. For a radar application, when each element is fed directly from a transmit/receive module, the total power radiated by the array will be reduced as a result of the taper. Consequently, the issue of whether to apply the taper on both transmit and receive configurations, or only on the receive configuration is examined with respect to two-way sidelobe performance.

  10. System-Level Integrated Circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  11. System-level integrated circuit (SLIC) development for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Raquet, C. A.

    1991-01-01

    A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.

  12. Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors

    NASA Technical Reports Server (NTRS)

    Cooley, Michael E.

    2014-01-01

    Communication link and target ranges for satellite communications (SATCOM) and space-based sensors (e.g. radars) vary from approximately 1000 km (for LEO satellites) to 35,800 km (for GEO satellites). At these long ranges, large antenna gains are required and legacy payloads have usually employed large reflectors with single beams that are either fixed or mechanically steered. For many applications, there are inherent limitations that are associated with the use of these legacy antennas/payloads. Hybrid antenna designs using Phased Array Fed Reflectors (PAFRs) provide a compromise between reflectors and Direct Radiating phased Arrays (DRAs). PAFRs provide many of the performance benefits of DRAs while utilizing much smaller, lower cost (feed) arrays. The primary limitation associated with hybrid PAFR architectures is electronic scan range; approximately +/-5 to +/- 10 degrees is typical, but this range depends on many factors. For LEO applications, the earth FOV is approximately +/-55 degrees which is well beyond the range of electronic scanning for PAFRs. However, for some LEO missions, limited scanning is sufficient or the CONOPS and space vehicle designs can be developed to incorporate a combination mechanical slewing and electronic scanning. In this paper, we review, compare and contrast various PAFR architectures with a focus on their general applicability to space missions. We compare the RF performance of various PAFR architectures and describe key hardware design and implementation trades. Space-based PAFR designs are highly multi-disciplinary and we briefly address key hardware engineering design areas. Finally, we briefly describe two PAFR antenna architectures that have been developed at Northrop Grumman.

  13. RF MEMS Phase Shifters and their Application in Phase Array Antennas

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian; Ponchak, George E.; Zaman, Afroz J.; Lee, Richard Q.

    2005-01-01

    Electronically scanned arrays are required for space based radars that are capable of tracking multiple robots, rovers, or other assets simultaneously and for beam-hopping communication systems between the various assets. ^Traditionally, these phased array antennas used GaAs Monolithic Microwave Integrated Circuit (MMIC) phase shifters, power amplifiers, and low noise amplifiers to amplify and steer the beam, but the development of RF MEMS switches over the past ten years has enabled system designers to consider replacing the GaAs MMIC phase shifters with RF Micro-Electro Mechanical System (MEMS) phase shifters. In this paper, the implication of replacing the relatively high loss GaAs MMICs with low loss MEMS phase shifters is investigated.

  14. Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas.

    PubMed

    Kriehn, G; Kiruluta, A; Silveira, P E; Weaver, S; Kraut, S; Wagner, K; Weverka, R T; Griffiths, L

    2000-01-10

    We present an approach to receive-mode broadband beam forming and jammer nulling for large adaptive antenna arrays as well as its efficient and compact optical implementation. This broadband efficient adaptive method for true-time-delay array processing (BEAMTAP) algorithm decreases the number of tapped delay lines required for processing an N-element phased-array antenna from N to only 2, producing an enormous savings in delay-line hardware (especially for large broadband arrays) while still providing the full NM degrees of freedom of a conventional N-element time-delay-and-sum beam former that requires N tapped delay lines with M taps each. This allows the system to adapt fully and optimally to an arbitrarily complex spatiotemporal signal environment that can contain broadband signals of interest, as well as interference sources and narrow-band and broadband jammers--all of which can arrive from arbitrary angles onto an arbitrarily shaped array--thus enabling a variety of applications in radar, sonar, and communication. This algorithm is an excellent match with the capabilities of radio frequency (rf) photonic systems, as it uses a coherent optically modulated fiber-optic feed network, gratings in a photorefractive crystal as adaptive weights, a traveling-wave detector for generating time delay, and an acousto-optic device to control weight adaptation. Because the number of available adaptive coefficients in a photorefractive crystal is as large as 10(9), these photonic systems can adaptively control arbitrarily large one- or two-dimensional antenna arrays that are well beyond the capabilities of conventional rf and real-time digital signal processing techniques or alternative photonic techniques. PMID:18337889

  15. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  16. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  17. Recirculating photonic filter: a wavelength-selective time delay for optically controlled phased-array antenna

    NASA Astrophysics Data System (ADS)

    Yegnanarayanan, Siva; Trinh, Paul D.; Jalali, Bahram

    1996-11-01

    A wavelength-selective photonic time delay filter is proposed and demonstrated. The device consists of an optical phased-array waveguide grating in a recirculating feedback configuration. It can function as a true-time-delay generator for squint-free beam steering in optically- controlled phased-array antennas. As the photonic filter uses the optical carrier wavelength to select the desired time delay, a one-to-one map is established between the optical carrier wavelength and the desired antenna direction, thus eliminating complex switching networks required to select the appropriate delay line. The proposed device can also function as the encoder/decoder in wavelength-CDMA. The concept uses a waveguide prism in a symmetric feedback (recirculating) configuration. The modulated optical carrier is steered by the waveguide prism to the appropriate integrated delay line depending on the carrier wavelength. The signal is delayed and is fed back into the symmetric input port. The prism then focuses the delayed beam into the common output port. Thus three sequential operations are performed: (1) wavelength demultiplexing, (2) time delay, and (3) wavelength multiplexing. It is important to note that the recirculating photonic filter has no 1/N loss; all the power at a given wavelength is diffracted into the output port. Furthermore, high resolution (6 - 8 bits) can be obtained in a compact integrated device. A prototype regular recirculating photonic filter true-time delay device was realized using a 8-channel arrayed-waveguide grating demultiplexer and external (off-chip) fiber delay lines. The grating was fabricated in the silica waveguide technology with 0.8 nm channel spacing (FSR equals 6.4 nm) and operating in the 1.5 micrometers wavelength range. Light from an external cavity tunable laser was rf modulated at 10 - 40 MHz and was coupled into the arrayed waveguide grating chip and time/phase measurements were performed sing a digital oscilloscope. Feedback delay

  18. Substrate-guided wave true-time delay network for phased array antenna steering

    NASA Astrophysics Data System (ADS)

    Fu, Zhenhai

    2000-11-01

    Military and civilian wireless communication systems require compact phased array antenna systems with high performance. Unlike narrow-bandwidth phase shifters or bulky and lossy metallic time delay lines, photonic true- time delay lines open the possibility of high-performance antenna systems, while at the same time meeting the stringent weight and size requirements. Substrate-guided wave true-time delay lines, which have many advantages over other proposed structures, are proposed herein. The system structures of one-dimensional and two-dimensional antenna arrays based on the proposed true-time delay modules, along with the corresponding signal distribution methods for both transmit and receive modes were proposed and discussed. To demonstrate the generation and detection of microwave- encoded optical signal sources for the optically controlled antenna array, up to 50 GHz microwave signals with greater than 20 dB signal-to-noise ratios were generated by the optical heterodyning of two lasers with slightly different wavelengths at 786 nm or 1550 nm, demodulated by an ultra-fast photodetector, and then measured by a spectrum analyzer. The diffraction efficiencies of volume holographic gratings recorded on DuPont photopolymer for S-wave, P- wave, and random wave under different wavelengths were investigated in detail. The shrinkage effect of the holographic grating was compensated for by a proposed method shown herein. A simple method was also used to equalize the fanout beams to within +/-5%. Based on the above fabrication techniques, up to 7-bit TTD modules working at 850 nm and 1550 nm, which have the most number of bits and the highest packing density ever reported, were fabricated and packaged. The delay steps of the fabricated delay modules were experimentally confirmed using an original setup based on a femto-second laser, a high-speed photodetector, and the equivalent time sampling technique. The bandwidth of the delay module is experimentally confirmed to

  19. Understanding and optimizing microstrip patch antenna cross polarization radiation on element level for demanding phased array antennas in weather radar applications

    NASA Astrophysics Data System (ADS)

    Vollbracht, D.

    2015-11-01

    The antenna cross polarization suppression (CPS) is of significant importance for the accurate calculation of polarimetric weather radar moments. State-of-the-art reflector antennas fulfill these requirements, but phased array antennas are changing their CPS during the main beam shift, off-broadside direction. Since the cross polarization (x-pol) of the array pattern is affected by the x-pol element factor, the single antenna element should be designed for maximum CPS, not only at broadside, but also for the complete angular electronic scan (e-scan) range of the phased array antenna main beam positions. Different methods for reducing the x-pol radiation from microstrip patch antenna elements, available from literature sources, are discussed and summarized. The potential x-pol sources from probe fed microstrip patch antennas are investigated. Due to the lack of literature references, circular and square shaped X-Band radiators are compared in their x-pol performance and the microstrip patch antenna size variation was analyzed for improved x-pol pattern. Furthermore, the most promising technique for the reduction of x-pol radiation, namely "differential feeding with two RF signals 180° out of phase", is compared to single fed patch antennas and thoroughly investigated for phased array applications with simulation results from CST MICROWAVE STUDIO (CST MWS). A new explanation for the excellent port isolation of dual linear polarized and differential fed patch antennas is given graphically. The antenna radiation pattern from single fed and differential fed microstrip patch antennas are analyzed and the shapes of the x-pol patterns are discussed with the well-known cavity model. Moreover, two new visual based electromagnetic approaches for the explanation of the x-pol generation will be given: the field line approach and the surface current distribution approach provide new insight in understanding the generation of x-pol component in microstrip patch antenna radiation

  20. Cantilever RF-MEMS for monolithic integration with phased array antennas on a PCB

    NASA Astrophysics Data System (ADS)

    Aguilar-Armenta, C. J.; Porter, S. J.

    2015-12-01

    This article presents the development and operation of a novel electrostatic metal-to-metal contact cantilever radio-frequency microelectromechanical system (RF-MEMS) switch for monolithic integration with microstrip phased array antennas (PAAs) on a printed circuit board. The switch is fabricated using simple photolithography techniques on a Rogers 4003c substrate, with a footprint of 200 µm × 100 µm, based on a 1 µm-thick copper cantilever. An alternative wet-etching technique for effectively releasing the cantilever is described. Electrostatic and electromagnetic measurements show that the RF-MEMS presents an actuation voltage of 90 V for metal-to-metal contact, an isolation of -8.7 dB, insertion loss of -2.5 dB and a return loss of -15 dB on a 50 Ω microstrip line at 12.5 GHz. For proof-of-concept, a beam-steering 2 × 2 microstrip PAA, based on two 1-bit phase shifters suitable for the monolithic integration of the RF-MEMS, has been designed and measured at 12.5 GHz. Measurements show that the beam-steering system presents effective radiation characteristics with scanning capabilities from broadside towards 29° in the H-plane.

  1. Frequency Tunable Antennas and Novel Phased Array Feeding Networks for Next Generation Communication Systems

    NASA Astrophysics Data System (ADS)

    Avser, Bilgehan

    The thesis presents three dual-band frequency tunable antennas for carrier aggregation systems and two new feeding networks for reducing the number of phase shifters in limited-scan arrays. First, single- and dual-feed, dual-frequency, low-profile antennas with independent frequency tuning using varactor diodes are presented. The dual-feed planar inverted F-antenna (PIFA) has two operating frequencies which are independently tuned at 0.7--1.1 GHz and at 1.7--2.3 GHz with better than 10 dB impedance match. The isolation between the high-band and the low-band ports is > 13 dB; hence, one resonant frequency can be tuned without affecting the other. The single-feed contiguous-dual-band antenna has two resonant frequencies, which are independently tuned at 1.2--1.6 GHz at 1.6--2.3 GHz with better than 10 dB impedance match for most of the tuning range. And the single-feed dual-band antenna has two resonant frequencies, which are independently tuned at 0.7--1.0 GHz at 1.7--2.3 GHz with better than 10 dB impedance match for most of the tuning range. The tuning is done using varactor diodes with a capacitance range from 0.8 to 3.8 pF, which is compatible with RF MEMS devices. The antenna volumes are 63 x 100 x 3.15 mm3 on epsilon r = 3.55 substrates and the measured antenna efficiencies vary between 25% and 50% over the tuning range. The application areas are in carrier aggregation systems for fourth generation (4G) wireless systems. Next, a new phased array feeding network that employs random sequences of non-uniform sub-arrays (and a single phase shifter for each sub-array) is presented. When these sequences are optimized, the resulting phased arrays can scan over a wide region with low sidelobe levels. Equations for analyzing the random arrays and an algorithm for optimizing the array sequences are presented. Multiple random-solutions with different number of phase shifters and different set of sub-array groups are analyzed and design guidelines are presented. The

  2. Conceptual Design and Prototype Performance of Phased-array Antenna for EBWH/CD Experiments in QUEST

    NASA Astrophysics Data System (ADS)

    Idei, Hiroshi; Sakaguchi, Masatsugu; Nagata, Kazuya; Hanada, Kazuaki; Zushi, Hideki; Nakamura, Kazuo; Hasegawa, Makoto; Sato, Kohnosuke; Sakamoto, Mizuki; Kawasaki, Shoji; Nakashima, Hisatoshi; Higashijima, Aki

    Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments have been conducted to sustain a spherical tokamak configuration in a steady state in QUEST. In the EBWH/CD experiments on QUEST, the O-X-B mode conversion scenario was selected for plasma current sustainment in rather low-density plasmas. A new phased-array antenna system was proposed to launch a pure elliptically-polarized O-mode in the oblique injection. The prototype antenna system was designed and its performance was checked at low power test facilities. Good focusing and steering properties were confirmed in the low power test.

  3. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  4. The design and analysis of a phased array microstrip antenna for a low earth orbit communication satellite

    NASA Astrophysics Data System (ADS)

    Barfield, William L.

    1994-06-01

    A Naval Postgraduate School spacecraft design class proposed a multiple beam, phased array, microstrip antenna as part of the preliminary design of a low earth orbit communication satellite. The antenna must provide coverage over the satellite's entire field of view while both uplink and down-link operate simultaneously on the same 1-band frequency. This thesis assesses the feasibility of the antenna proposed in that preliminary design. Design tradeoffs for a microstrip array constrained by both available surface area and a limited mass budget are examined. Two different substrate materials are considered in terms of weight and performance. Microstrip patch theory is applied to array element design and layout and antenna array theory is applied to determine phase and amplitude coefficients. The focus of the design is on obtaining the desired beam shape and orientation, given antenna size constraints. A corporate feed method is discussed and a general design presented. Antenna performance is predicted through the use of a computer model based on Modal Expansion theory and results are plotted in a series of graphs which demonstrate the limitations of the proposed design.

  5. Bit-error-rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  6. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  7. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements.

    PubMed

    Ye, Xingwei; Zhang, Fangzheng; Pan, Shilong

    2016-09-01

    A hardware-compressive optical true time delay architecture for 2D beam steering in a planar phased array antenna is proposed using fiber-Bragg-grating-based tunable dispersive elements (TDEs). For an M×N array, the proposed system utilizes N TDEs and M wavelength-fixed optical carriers to control the time delays. Both azimuth and elevation beam steering are realized by programming the settings of the TDEs. An experiment is carried out to demonstrate the delay controlling in a 2×2 array, which is fed by a wideband pulsed signal. Radiation patterns calculated from the experimentally measured waveforms at the four antennas match well with the theoretical results. PMID:27607946

  8. Comparison of steering angle and bandwidth for various phased array antenna concepts

    NASA Astrophysics Data System (ADS)

    Bonjour, Romain; Singleton, Matthew; Leuchtmann, Pascal; Leuthold, Juerg

    2016-08-01

    In this paper we compare different integratable ultra-fast tunable true-time delay concepts with respect to their performances in a phased array system. The performances of the schemes are assessed with respect to the supported range, i.e. the range within which beam steering for a given fractional bandwidth can be achieved with a gain flatness better than 3 dB. We also compare the array gain as of function of steering angle and fractional bandwidth.

  9. Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access.

    PubMed

    Yegnanarayanan, S; Trinh, P D; Jalali, B

    1996-05-15

    A novel wavelength-selective photonic time-delay filter is proposed and demonstrated. The device consists of an optical phased-array waveguide grating in a recirculating feedback configuration. It can function as a true-time-delay generator for squint-free beam steering in optically controlled phased-array antennas and as an encoding-decoding filter for wavelength code-division multiple access. PMID:19876143

  10. Measuring phased-array antenna beampatterns with high dynamic range for the Murchison Widefield Array using 137 MHz ORBCOMM satellites

    NASA Astrophysics Data System (ADS)

    Neben, A. R.; Bradley, R. F.; Hewitt, J. N.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-07-01

    Detection of the fluctuations in a 21 cm line emission from neutral hydrogen during the Epoch of Reionization in thousand hour integrations poses stringent requirements on calibration and image quality, both of which necessitate accurate primary beam models. The Murchison Widefield Array (MWA) uses phased-array antenna elements which maximize collecting area at the cost of complexity. To quantify their performance, we have developed a novel beam measurement system using the 137 MHz ORBCOMM satellite constellation and a reference dipole antenna. Using power ratio measurements, we measure the in situ beampattern of the MWA antenna tile relative to that of the reference antenna, canceling the variation of satellite flux or polarization with time. We employ angular averaging to mitigate multipath effects (ground scattering) and assess environmental systematics with a null experiment in which the MWA tile is replaced with a second-reference dipole. We achieve beam measurements over 30 dB dynamic range in beam sensitivity over a large field of view (65% of the visible sky), far wider and deeper than drift scans through astronomical sources allow. We verify an analytic model of the MWA tile at this frequency within a few percent statistical scatter within the full width at half maximum. Toward the edges of the main lobe and in the sidelobes, we measure tens of percent systematic deviations. We compare these errors with those expected from known beamforming errors.

  11. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  12. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    NASA Astrophysics Data System (ADS)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  13. Hemispheric Imaging of Galactic Neutral Hydrogen with a Phased Array Antenna System

    NASA Astrophysics Data System (ADS)

    Wijnholds, Stefan J.; De Bruyn, A. Ger; Bregman, Jaap D.; Bij De Vaate, Jan Geralt

    2004-06-01

    The thousand element array (THEA) system is a phased array system consisting of 1 m2 tiles having 64 Vivaldi elements each, arranged on a regular 8-by-8 grid, which has been developed as a demonstrator of technology and applicability for SKA. In this paper we present imaging results of Galactic neutral hydrogen with THEA. Measurements have been taken using a dense 2-by-2 array of four tiles as a four tile adder. The results are compared with results from the Leiden-Dwingeloo Survey, showing qualitative agreement, but also indicating that further studies are needed on the instrumental characteristics.

  14. Phased Array GNSS Antenna for the FORMOSAT-7/COSMIC-2 Radio Occultation Mission

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry; Young, Larry E.; Meehan, Tom K.

    2012-01-01

    Future GNSS remote sensing instruments such as the TriG receiver require more capable antennas than those flown on missions such as COSMIC. To maximize the number of ionospheric and atmospheric profiles, the TriG receiver will be capable of tracking legacy and new GPS signals such as L5, L2C and L1C; GLONASS CDMA and Galileo E1 and E5a. There has been an in-house effort at JPL to develop a set of antennas that would provide excellent Radio Occultations performance as well as navigation and ionospheric profiling. This effort is on-going but near completion for the manufacture and delivery of a set of flight antennas for the FORMOSAT-7/COSMIC-2 mission.

  15. Theoretical and measured electric field distributions within an annular phased array: consideration of source antennas.

    PubMed

    Zhang, Y; Joines, W T; Jirtle, R L; Samulski, T V

    1993-08-01

    The magnitude of E-field patterns generated by an annular array prototype device has been calculated and measured. Two models were used to describe the radiating sources: a simple linear dipole and a stripline antenna model. The stripline model includes detailed geometry of the actual antennas used in the prototype and an estimate of the antenna current based on microstrip transmission line theory. This more detailed model yields better agreement with the measured field patterns, reducing the rms discrepancy by a factor of about 6 (from approximately 23 to 4%) in the central region of interest where the SEM is within 25% of the maximum. We conclude that accurate modeling of source current distributions is important for determining SEM distributions associated with such heating devices. PMID:8258444

  16. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.

    2015-03-01

    The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.

  17. Formation of a sector dip in the radiation pattern of a phased-array antenna in the case of the suppression of broadband noise

    NASA Astrophysics Data System (ADS)

    Gusevskii, V. I.

    1991-05-01

    The linear relationship between the width of the noise spectrum and the magnitude of the sector dip in the radiation pattern of a linear equidistant antenna array is extended to the case of linear and planar phased-array antennas with arbitrary amplitude-phase distribution and arbitrary boundary of the antenna aperture. The nonlinear phase distribution law in the antenna aperture (necessary for the formation of the dip) is synthesized using the method of aperture orthogonal polynomials and is shown to be optimal according to the criterion of minimum gain losses in the noise-suppression process.

  18. Integrated Phase Array Antenna/Solar Cell System for Flexible Access Communication (IA/SAC)

    NASA Technical Reports Server (NTRS)

    Clark, E. B.; Lee, R. Q.; Pal, A. T.; Wilt, D. M.; McElroy, B. D.; Mueller, C. H.

    2005-01-01

    This paper describes recent efforts to integrate advanced solar cells with printed planar antennas. Several previous attempts have been reported in the literature, but this effort is unique in several ways. It uses Gallium Arsenide (GaAs) multi-junction solar cell technology. The solar cells and antennas will be integrated onto a common GaAs substrate. When fully implemented, IA/SAC will be capable of dynamic beam steering. In addition, this program targets the X-band (8 - 12 GHz) and higher frequencies, as compared to the 2.2 - 2.9 GHz arrays targeted by other organizations. These higher operating frequencies enable a greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of 2 x 2 cm GaAs Monolithically Integrated Modules (MIM) with integrated patch antennas on the opposite side of the substrate. Subsequent work will involve the design and development of devices having the GaAs MIMs and the antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  19. Phased Array Radiometer Calibration Using a Radiated Noise Source

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutoch S.; Laymon, Charles A.; Meyer, Paul J.

    2010-01-01

    Electronic beam steering capability of phased array antenna systems offer significant advantages when used in real aperture imaging radiometers. The sensitivity of such systems is limited by the ability to accurately calibrate variations in the antenna circuit characteristics. Passive antenna systems, which require mechanical rotation to scan the beam, have stable characteristics and the noise figure of the antenna can be characterized with knowledge of its physical temperature [1],[2]. Phased array antenna systems provide the ability to electronically steer the beam in any desired direction. Such antennas make use of active components (amplifiers, phase shifters) to provide electronic scanning capability while maintaining a low antenna noise figure. The gain fluctuations in the active components can be significant, resulting in substantial calibration difficulties [3]. In this paper, we introduce two novel calibration techniques that provide an end-to-end calibration of a real-aperture, phased array radiometer system. Empirical data will be shown to illustrate the performance of both methods.

  20. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  1. An Error Analysis of the Phased Array Antenna Pointing Algorithm for STARS Flight Demonstration No. 2

    NASA Technical Reports Server (NTRS)

    Carney, Michael P.; Simpson, James C.

    2005-01-01

    STARS is a multicenter NASA project to determine the feasibility of using space-based assets, such as the Tracking and Data Relay Satellite System (TDRSS) and Global Positioning System (GPS), to increase flexibility (e.g. increase the number of possible launch locations and manage simultaneous operations) and to reduce operational costs by decreasing the need for ground-based range assets and infrastructure. The STARS project includes two major systems: the Range Safety and Range User systems. The latter system uses broadband communications (125 kbps to 500 kbps) for voice, video, and vehicle/payload data. Flight Demonstration #1 revealed the need to increase the data rate of the Range User system. During Flight Demo #2, a Ku-band antenna will generate a higher data rate and will be designed with an embedded pointing algorithm to guarantee that the antenna is pointed directly at TDRS. This algorithm will utilize the onboard position and attitude data to point the antenna to TDRS within a 2-degree full-angle beamwidth. This report investigates how errors in aircraft position and attitude, along with errors in satellite position, propagate into the overall pointing vector.

  2. Active antenna

    NASA Astrophysics Data System (ADS)

    Sutton, John F.

    1994-05-01

    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband.

  3. Active antenna

    NASA Technical Reports Server (NTRS)

    Sutton, John F. (Inventor)

    1994-01-01

    An antenna, which may be a search coil, is connected to an operational amplifier circuit which provides negative impedances, each of which is in the order of magnitude of the positive impedances which characterize the antenna. The antenna is connected to the inverting input of the operational amplifier; a resistor is connected between the inverting input and the output of the operational amplifier; a capacitor-resistor network, in parallel, is connected between the output and the noninverting input of the operational amplifier; and a resistor is connected from the noninverting input and the circuit common. While this circuit provides a negative resistance and a negative inductance, in series, which appear, looking into the noninverting input of the operational amplifier, in parallel with the antenna, these negative impedances appear in a series loop with the antenna positive impedances, so as to algebraically add. This circuit is tuned by varying the various circuit components so that the negative impedances are very close, but somewhat less, in magnitude, to the antenna impedances. The result is to increase the sensitivity of the antenna by lowering its effective impedance. This, in turn, increases the effective area of the antenna, which may be broadband.

  4. Optical Phased Array Antennas using Coupled Vertical Cavity Surface Emitting Lasers

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Rojas, Roberto A.; Nessel, James A.; Miranda, Felix A.

    2007-01-01

    High data rate communication links are needed to meet the needs of NASA as well as other organizations to develop space-based optical communication systems. These systems must be robust to high radiation environments, reliable, and operate over a wide temperature range. Highly desirable features include beam steering capability, reconfigurability, low power consumption, and small aperture size. Optical communication links, using coupled vertical cavity surface emitting laser radiating elements are promising candidates for the transmit portion of these communication links. In this talk we describe a mission scenario, and how the antenna requirements are derived from the mission needs. We describe a potential architecture for this type of antenna, and outline the advantages and drawbacks of this approach relative to competing technologies. The technology we are proposing used coupled arrays of 1550 nm vertical cavity surface emitting lasers for transmission. The feasibility of coupling these arrays together, to form coherent high-power beams that can be modulated at data rates exceeding 1 Gbps, will be explored. We will propose an architecture that enables electronic beam steering, thus mitigating the need for ancillary acquisition, tracking and beam pointing equipment such as needed for current optical communicatin systems. The beam-steering capability we are proposing also opens the possibility of using this technology for inter-satellite communicatin links, and satellite-to-surface links.

  5. Reconfigurable Delay Time Polymer Planar Lightwave Circuit for an X-band Phased-Array Antenna Demonstration

    NASA Astrophysics Data System (ADS)

    Howley, Brie; Wang, Xiaolong; Chen, Maggie; Chen, Ray T.

    2007-03-01

    A 4-bit polymer optoelectronic true-time delay (TTD) device is demonstrated. The planar lightwave circuit (PLC) is composed of monolithically integrated low-loss passive polymer waveguide delay lines and five cascaded 2 x 2 polymer thermooptic switches. Waveguide junction offsets and air trenches simultaneously reduce the bending loss and device area. Simulations are used to optimize the trench and offset structures for fabrication. The 16 time delays generated by the device are measured to be in the range from 0 to 177 ps in 11.8-ps increments. The packaged PLC has an insertion loss of up to 14.9 dB, and the delay switching speed is 2 ms. An eight-element X-band phased-array antenna system is constructed to demonstrate the beam-steering capabilities of the 4-bit-delay devices. The TTD devices are shown to steer the far-field radiation pattern between 0° and -14.5°.

  6. Fabrication and characterization of a hybrid SOI 1×4 silicon-slot optical modulator array incorporating EO polymers for optical phased-array antenna applications

    NASA Astrophysics Data System (ADS)

    Kim, Richard S.; Szep, Attila; Usechak, Nicholas G.; Chen, Antao; Sun, Haishan; Shi, Shouyuan; Abeysinghe, Don; You, Young-Hwan; Dalton, Larry R.

    2012-03-01

    Optical phased arrays are promising candidates for both RF signal processing and optical beam forming and steering. These platforms not only enable accurate electrically controlled beam steering at high frequencies but also have the potential to significantly improve the performance of future free-space optical communications systems. In this work we exploit recent advancements in both nano-scale hybrid silicon-slot waveguides and electro-optic (EO) polymers to demonstrate an integrated optical phased-array antenna. Specifically, we create a hybrid integrated "photonic circuit" that connects an array of optical phase modulators, fed by a common optical signal and a 1x4 splitter, to a compact optical waveguide diffraction array for optical beam steering applications. The fundamental characteristics of the resulting integrated optical beam former, including the optical insertion loss, driving voltage, and phase control from the waveguide aperture are summarized in this letter.

  7. Trends in phased array development

    NASA Astrophysics Data System (ADS)

    Schell, A. C.

    1986-03-01

    In the past 15 years, several outstanding phased arrays have been taken into service for functions involving defense applications. It is pointed out, however, that the impact of phased array technology on radar and communications antennas has been minor in comparison to the impact of solid-state technology on the other major subsystem, the signal processor. This situation is mainly related to cost considerations, and the scale of the commercial market involved. Attention is given to details regarding the economics of phased arrays, a possible key to improved solutions to phased array construction and operation, the employment of the techniques of photolithography in the fabrication of a transversely-developed array, the need for manufacturing techniques to incorporate magnetic or electroacoustic control devices into the array, problems of heat generation, small mm-wave arrays, questions of reliability, and integrated antennas.

  8. Optoelectronic signal processing for phased-array antennas; Proceedings of the Meeting, Los Angeles, CA, Jan. 12, 13, 1988

    NASA Astrophysics Data System (ADS)

    Bhasin, Kul B.; Hendrickson, Brian M.

    1988-01-01

    Papers are presented on fiber optic links for airborne satellite applications, optoelectronic techniques for broadband switching, and GaAs circuits for a monolithic optical controller. Other topics include the optical processing of covariance matrices for adaptive processors, an optical linear heterodyne matrix-vector processor, and an EHF fiber optic-based array. An adaptive optical signal processing architecture using a signed-digit number system is considered along with microwave fiber optic links for phased arrays.

  9. Phased arrays 1985 symposium: Proceedings

    NASA Astrophysics Data System (ADS)

    Steyskal, H. P.

    1985-08-01

    The Phased Arrays '85 Symposium, sponsored by the Rome Air Development Center, the MITRE Corporation, and the University of Massachusetts, was held at the MITRE Corporation 15 to 18 October and reviewed the state-of-the-art of phased array antenna systems and of the technology for next generation systems. This report contains the full papers which were presented with clearance for unlimited distribution.

  10. Optically interconnected phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  11. Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas.

    PubMed

    DeRose, C T; Kekatpure, R D; Trotter, D C; Starbuck, A; Wendt, J R; Yaacobi, A; Watts, M R; Chettiar, U; Engheta, N; Davids, P S

    2013-02-25

    An optical phased array of nanoantenna fabricated in a CMOS compatible silicon photonics process is presented. The optical phased array is fed by low loss silicon waveguides with integrated ohmic thermo-optic phase shifters capable of 2π phase shift with ∼ 15 mW of applied electrical power. By controlling the electrical power to the individual integrated phase shifters fixed wavelength steering of the beam emitted normal to the surface of the wafer of 8° is demonstrated for 1 × 8 phased arrays with periods of both 6 and 9 μm. PMID:23482053

  12. Effects of the space environment on space-based radar phased-array antenna; status and preliminary observations (LDEF Experiment A0133)

    NASA Technical Reports Server (NTRS)

    Whiteside, J. B.; Giangano, D.; Heuer, R. L.; Kamykowski, E.; Kesselman, M.; Rooney, W. D.; Schulte, R.; Stauber, M.

    1992-01-01

    The overall objective of the experiment was to evaluate the effect of the space environment on components considered for a Space-Based Radar (SBR) Phased-Array Antenna. Of primary interest was a study of the degradation of the polyimide film Kapton (DuPont trademark), the material considered for use in the antenna plane. The most striking result of the experiment was the overall good condition of the Kapton antenna planes and Kapton tensile specimens, despite nearly six years of exposure to the space environment. This was largely attributable to the orientation of the Kapton (parallel and flush on the space end) and the stability of the Long Duration Exposure Facility (LDEF) in orbit. However, weathering of exposed Kapton surfaces was not insignificant. Results on elongation and mechanical properties of the plain and the fiberglass-reinforced Kapton are presented. Reduction in strain to failure of flight-exposed Kapton is attributed to surface defects of these specimens. Physical property testing of the materials to date reveals no significant difference between flight-exposed and control material. The second objective was to investigate the interaction between high-voltage electrodes and typical spacecraft contaminants in simulation of discharge triggering across differentially charged dielectric surfaces (spacecraft charging conditions). Electronic data acquisition and memory systems appeared to operate correctly, but very few discharges were recorded. Induced radioactivity, contamination, impacts, and orientation features of atomic oxygen erosion were observed.

  13. Beam-forming Errors in Murchison Widefield Array Phased Array Antennas and their Effects on Epoch of Reionization Science

    NASA Astrophysics Data System (ADS)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Bradley, Richard F.; Dillon, Joshua S.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2016-03-01

    Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of ±10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image- and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the “wedge”). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the “EOR window”), showing that foreground avoidance remains a viable strategy.

  14. Analysis of double stub tuner control stability in a many element phased array antenna with strong cross-coupling

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Fitzgerald, E.; Hillairet, J.; Johnson, D. K.; Kanojia, A. D.; Koert, P.; Lin, Y.; Murray, R.; Shiraiwa, S.; Terry, D. R.; Wukitch, S. J.

    2014-02-01

    Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ2 in the "forbidden region." The relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n∥ spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n∥.

  15. Analysis of double stub tuner control stability in a many element phased array antenna with strong cross-coupling

    SciTech Connect

    Wallace, G. M.; Fitzgerald, E.; Johnson, D. K.; Kanojia, A. D.; Koert, P.; Lin, Y.; Murray, R.; Shiraiwa, S.; Terry, D. R.; Wukitch, S. J.; Hillairet, J.

    2014-02-12

    Active stub tuning with a fast ferrite tuner (FFT) allows for the system to respond dynamically to changes in the plasma impedance such as during the L-H transition or edge localized modes (ELMs), and has greatly increased the effectiveness of fusion ion cyclotron range of frequency systems. A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system. Exact impedance matching with a double-stub is possible for a single radiating element under most load conditions, with the reflection coefficient reduced from Γ to Γ{sup 2} in the “forbidden region.” The relative phase shift between adjacent columns of a LHCD antenna is critical for control of the launched n{sub ∥} spectrum. Adding a double-stub tuning network will perturb the phase of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ∥}.

  16. Simulation of Transrib HIFU Propagation and the Strategy of Phased-array Activation

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Wang, Mingjun

    Liver ablation is challenging in high-intensity focused ultrasound (HIFU) because of the presence of ribs and great inhomogeneity in multi-layer tissue. In this study, angular spectrum approach (ASA) has been used in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation and the nonlinearity are accounted for by means of second order operator splitting method. Bioheat equation is used to simulate the subsequent temperature elevation and lesion formation with the formation of shifted focus and multiple foci. In summary, our approach could simulate the performance of phased-array HIFU in the clinics and then develop an appropriate treatment plan.

  17. Experimental results for a photonic time reversal processor for the adaptive control of an ultra wideband phased array antenna

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Fanto, Michael; McEwen, Thomas

    2008-04-01

    This paper describes a new concept for a photonic implementation of a time reversed RF antenna array beamforming system. The process does not require analog to digital conversion to implement and is therefore particularly suited for high bandwidth applications. Significantly, propagation distortion due to atmospheric effects, clutter, etc. is automatically accounted for with the time reversal process. The approach utilizes the reflection of an initial interrogation signal from off an extended target to precisely time match the radiating elements of the array so as to re-radiate signals precisely back to the target's location. The backscattered signal(s) from the desired location is captured by each antenna and used to modulate a pulsed laser. An electrooptic switch acts as a time gate to eliminate any unwanted signals such as those reflected from other targets whose range is different from that of the desired location resulting in a spatial null at that location. A chromatic dispersion processor is used to extract the exact array parameters of the received signal location. Hence, other than an approximate knowledge of the steering direction needed only to approximately establish the time gating, no knowledge of the target position is required, and hence no knowledge of the array element time delay is required. Target motion and/or array element jitter is automatically accounted for. Presented here are experimental results that demonstrate the ability of a photonic processor to perform the time-reversal operation on ultra-short electronic pulses.

  18. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements

  19. Infrared phased-array sensor

    NASA Astrophysics Data System (ADS)

    Slovick, Brian A.; Bean, Jeffrey A.; Florence, Lou A.; Boreman, Glenn D.

    2011-06-01

    Metal-oxide-metal (MOM) tunnel diode detectors when integrated with phased-array antennas provide determination of the angle of arrival and degree of coherence of received infrared radiation. Angle-of-arrival measurements are made with a pair of dipole antennas coupled to a MOM diode through a coplanar strip transmission line. The direction of maximum angular response is altered by varying the position of the MOM diode along the transmission line connecting the antenna elements. Phased-array antennas can also be used to measure the degree of coherence of a partially coherent infrared field. With a two-element array, the degree of coherence is a measure of the correlation of electric fields received by the antennas as a function of the element separation. Antenna-coupled MOM diode devices are fabricated using electron beam lithography and thin-film deposition through a resist shadow mask. Measurements at 10.6 μm are substantiated by electromagnetic simulations and compared to analytic results.

  20. Distributed phased array architecture study

    NASA Technical Reports Server (NTRS)

    Bourgeois, Brian

    1987-01-01

    Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.

  1. Aircraft antennas/conformal antennas missile antennas

    NASA Astrophysics Data System (ADS)

    Solbach, Klaus

    1987-04-01

    Three major areas of airborne microwave antennas are examined. The basic system environment for missile telemetry/telecommand and fuze functions is sketched and the basic antenna design together with practical examples are discussed. The principle requirements of modern nose radar flat plate antennas are shown to result from missile/aircraft system requirements. Basic principles of slotted waveguide antenna arrays are sketched and practical antenna designs are discussed. The present early warning system designs are sketched to point out requirements and performance of practical radar warning and jamming antennas (broadband spiral antennas and horn radiators). With respect to newer developments in the ECM scenario, some demonstrated and proposed antenna systems (lens fed arrays, phased array, active array) are discussed.

  2. Airborne electronically steerable phased array

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  3. 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy.

    PubMed

    Avdievich, N I; Hetherington, H P

    2007-06-01

    Typically 31P in vivo magnetic resonance spectroscopic studies are limited by SNR considerations. Although phased arrays can improve the SNR; to date 31P phased arrays for high-field systems have not been combined with 31P volume transmit coils. Additionally, to provide anatomical reference for the 31P studies, without removal of the coil or patient from the magnet, double-tuning (31P/1H) of the volume coil is required. In this work we describe a series of methods for active detuning and decoupling enabling use of phased arrays with double-tuned volume coils. To demonstrate these principles we have built and characterized an actively detuneable 31P/1H TEM volume transmit/four-channel 31P phased array for 4 T magnetic resonance spectroscopic imaging (MRSI) of the human brain. The coil can be used either in volume-transmit/array-receive mode or in TEM transmit/receive mode with the array detuned. Threefold SNR improvement was obtained at the periphery of the brain using the phased array as compared to the volume coil. PMID:17379554

  4. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  5. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  6. Low cost, electronically steered phased array for general aviation

    NASA Technical Reports Server (NTRS)

    Strickland, Peter C.

    1990-01-01

    This paper describes a multifaced, phased array antenna developed for general aviation satellite communications applications. The antenna design satisfies all INMARSAT Aeronautical SDM requirements. Unique features of this antenna include an integral LNA and diplexer, integral phase shifters which are shared among the array faces, a serial beam steering interface and low manufacturing cost.

  7. Ultra-wideband 4 × 4 Phased Array Containing Exponentially Tapered Slot Antennas and a True-Time Delay Phase Shifter at UHF

    NASA Astrophysics Data System (ADS)

    Schmitz, J.; Jung, M.; Bonney, J.; Caspary, R.; Schüür, J.; Schöbel, J.

    For angular scanning a true-time array is developed for UHF ultra-wideband (UWB) applications in time and/or frequency domain. It is based on a 4 × 4 array with antipodal exponentially tapered slot antennas (ETSA, Vivaldi) and a 3-bit phase shifter. Distances of antenna elements are designed to be compromise between gain, scanning angle, side/grating lobe levels. The uniform spaced and fed array maximizes the overall gain. After defining the antenna shape, corrugations are introduced to improve antenna matching and gain pattern. Nine equally spaced beam positions for a 90° scanning angle are induced by an optimized 3-bit phase shifter on high permittivity substrate, while 4 bits are usually needed. Parasitic resonances are avoided by using PIN diodes in single pole double throw configuration. All components and the complete array system are simulated and verified in frequency domain with good agreement. Adaptation to UWB pulses is possible.

  8. Semiconductor Laser Phased Array

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1985-01-01

    Oscillations synchronized and modulated individually for beam steering. Phased array of GaAs infrared lasers put out powerful electronically-steerable coherent beam. Fabricated as integrated circuit on GaAs chip, new device particularly suited to optical communications, optical data processing and optical detection and ranging systems.

  9. FEL phased array configurations

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    1986-01-01

    The advantages and disadvantages of various phased array and shared aperture concepts for FEL configurations are discussed. Consideration is given to the characteristics of intra- and inter-micropulse phasing; intra-macropulse phasing; an internal coupled resonator configuration; and an injection locked oscillator array. The use of a master oscillator power amplifier (MOPA) configuration with multiple or single master oscillators for FELs is examined. The venetian blind, rotating plate, single grating, and grating rhomb shared aperture concepts are analyzed. It is noted that the shared aperture approach using a grating rhomb and the MOPA concept with a single master oscillator and a coupled resonator are useful for FEL phased array configurations; and the MOPA concept is most applicable.

  10. Ka-Band Phased Array System Characterization

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  11. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  12. Phased array ghost elimination.

    PubMed

    Kellman, Peter; McVeigh, Elliot R

    2006-05-01

    Parallel imaging may be applied to cancel ghosts caused by a variety of distortion mechanisms, including distortions such as off-resonance or local flow, which are space variant. Phased array combining coefficients may be calculated that null ghost artifacts at known locations based on a constrained optimization, which optimizes SNR subject to the nulling constraint. The resultant phased array ghost elimination (PAGE) technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation is applied to full field-of-view (FOV) images. The phased array method for ghost elimination may result in greater flexibility in designing acquisition strategies. For example, in multi-shot EPI applications ghosts are typically mitigated by the use of an interleaved phase encode acquisition order. An alternative strategy is to use a sequential, non-interleaved phase encode order and cancel the resultant ghosts using PAGE parallel imaging. Cancellation of ghosts by means of phased array processing makes sequential, non-interleaved phase encode acquisition order practical, and permits a reduction in repetition time, TR, by eliminating the need for echo-shifting. Sequential, non-interleaved phase encode order has benefits of reduced distortion due to off-resonance, in-plane flow and EPI delay misalignment. Furthermore, the use of EPI with PAGE has inherent fat-water separation and has been used to provide off-resonance correction using a technique referred to as lipid elimination with an echo-shifting N/2-ghost acquisition (LEENA), and may further generalized using the multi-point Dixon method. Other applications of PAGE include cancelling ghosts which arise due to amplitude or phase variation during the approach to steady state. Parallel imaging requires estimates of the complex coil sensitivities. In vivo estimates may be derived by temporally varying the phase encode ordering to obtain a full k-space dataset in a scheme

  13. RADIATION CHARACTERISTICS OF A GENERALIZED PHASED ARRAY

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.

    1994-01-01

    The phased array has become a key component in the design of advanced antenna systems. This computer program was developed to examine the radiation characteristics of a generalized phased array antenna. Using a very efficient numerical technique, this program calculates the array's radiated power and its directivity. The results can be used to determine the radiation pattern of a generalized phased array at near- or far-field observation points. This program is a key research tool at the NASA Lewis Research Center for analyzing advanced space communication antenna systems. Results from this program compare favorably with experimental Lewis results for arrays of 2x2 and 3x3 elements. Given the array geometry and element characteristics, generalized phased array attributes can be broken into two areas: 1) the power radiated and its directivity at any given point, and 2) the co- and cross-polarization field components. This program allows arbitrarily located source elements with an analytically described cosine pattern. The formulation is based on a Romberg integration scheme and takes into account arbitrary element polarization, E and H plane element patterns, and mutual coupling. The input consists of the array geometry; phase, amplitude, linear and circular polarization of each source element; and the cosine functions of the element pattern. The output is a series of observation angles with their associated field magnitude and polarizations. Total radiated power and peak directivity are also calculated. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer operating under TSS with a central memory requirement of approximately 22K of 8 bit bytes. The IBM Scientific Subroutine Package (SSP) is required to run the program. This program was developed in 1986.

  14. Nonlinear phased array imaging

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  15. Phased-array design for MST and ST radars

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.

    1986-01-01

    All of the existing radar systems fully dedicated to clear-air radar studies use some type of phased-array antennas. The effects of beam-steering techniques including feed networks and phase shifters; sidelobe control; ground-clutter suppression; low altitude coverage; arrays with integrated radiating elements and feed networks; analysis of coaxial-collinear antennas; use of arrays with multiple beams; and array testing and measure on structural design of the antenna are discussed.

  16. High Temporal-Resolution Analysis of Electrical Activity in a Severe Hailstorm Scanned Using Phased Array Radar

    NASA Astrophysics Data System (ADS)

    Emersic, C.; Heinselman, P.; Macgorman, D. R.

    2009-12-01

    Using Phased Array Radar in conjunction with Lightning Mapping Array data has enabled the examination of an Oklahoma summertime hailstorm in higher temporal resolution than has been conventionally studied before. Enhanced temporal resolution of reflectivity data has revealed that electrical onset of this hailstorm occurred with the presence of 20-30 dBZ reflectivity echoes above the freezing level. The storm initially had a negative dipole structure consisting of lower positive and midlevel negative charge centers, followed later by an upper positive charge center to form a commonly observed positive tripole charge structure. The lower positive charge center was present from lightning onset; other storms in which this has been observed and examined using polarimetric radar have revealed a predominance of graupel as the likely charge carrier, with graupel also being dominant in the midlevel negative charge region. These observations suggest that graupel charges positively or negatively depending on altitude, or more specifically, ambient temperature, consistent with laboratory studies. Two peaks in hailstorm lightning flash rate of approximately 250 and 450 flashes/min respectively were observed which correlated well with two main updraft pulses—the latter constituting a lightning ‘jump’. The storm had very little ground lightning activity—less than 40 total detected ground flashes; most ground flashes were negative discharges, with a total of 4 positives (10 %) starting approximately 5 min prior to and during hail fall. During maximum hail presence within the storm inferred from a three-body scatter spike in radar data, lightning avoided cloud regions containing hail, with the storm’s few ground strikes during this time being to the sides of the hail shaft. Two periods of frequent isolated VHF LMA radiation sources were observed, and both were coincident with the rising updraft pulses—with the latter associated with the presence of an overshooting top

  17. Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode

    NASA Technical Reports Server (NTRS)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2009-01-01

    This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.

  18. Coplanar waveguide feeds for phased array antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1992-01-01

    The design and performance of the following coplanar waveguide (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and printed dipole arrays is presented: (1) CPW/microstrip line feed; (2) CPW/balanced stripline feed; (3) CPW/slotline feed; (4) grounded CPW (GCPW)/balanced coplanar stripline feed; and (5) CPW/slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  19. Coplanar waveguide feeds for phased array antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1991-01-01

    The design and performance is presented of the following coplanar waveguides (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and dipole arrays: (1) CPW/microstrip line feed; (2) CPW/balanced stripline feed; (3) CPW/slotline feed; (4) grounded CPW/balanced coplanar stripline feed; and (5) CPW/slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  20. Monolithic and integrated phased array antennas

    NASA Astrophysics Data System (ADS)

    Schaubert, Daniel H.; Pozar, David M.

    Some of the problems relevant to the design of monolithic and integrated arrays are examined. In particular, attention is given to electrical and mechanical design considerations, restrictions they impose on the choice of elements and architecture of integrated arrays, and elements that can alleviate one or more of these restrictions. Monolithic array designs are compared with some multiple-layer and two-sided designs using such criteria as scan range, bandwidth, substrate size and configuration, polarization, and feed line radiation. Broadside radiating elements, such as microstrip dipoles and patches, as well as end-fire radiating slots are considered.

  1. Coplanar waveguide feeds for phased array antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1991-01-01

    The design and performance is presented of the following Coplanar Waveguides (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and dipole arrays: (1) CPW/Microstrip Line feed; (2) CPW/Balanced Stripline feed; (3) CPW/Slotline feed; (4) Grounded CPW/Balanced coplanar stripline feed; and (5) CPW/Slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  2. Coplanar waveguide feeds for phased array antennas

    NASA Astrophysics Data System (ADS)

    Simons, Rainee N.; Lee, Richard Q.

    1991-09-01

    The design and performance is presented of the following coplanar waveguides (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and dipole arrays: (1) CPW/microstrip line feed; (2) CPW/balanced stripline feed; (3) CPW/slotline feed; (4) grounded CPW/balanced coplanar stripline feed; and (5) CPW/slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  3. Coplanar waveguide feeds for phased array antennas

    NASA Astrophysics Data System (ADS)

    Simons, Rainee N.; Lee, Richard Q.

    1992-08-01

    The design and performance of the following coplanar waveguide (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and printed dipole arrays is presented: (1) CPW/microstrip line feed; (2) CPW/balanced stripline feed; (3) CPW/slotline feed; (4) grounded CPW (GCPW)/balanced coplanar stripline feed; and (5) CPW/slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  4. Coplanar waveguide feeds for phased array antennas

    NASA Astrophysics Data System (ADS)

    Simons, Rainee N.; Lee, Richard Q.

    1991-09-01

    The design and performance is presented of the following Coplanar Waveguides (CPW) microwave distribution networks for linear as well as circularly polarized microstrip patches and dipole arrays: (1) CPW/Microstrip Line feed; (2) CPW/Balanced Stripline feed; (3) CPW/Slotline feed; (4) Grounded CPW/Balanced coplanar stripline feed; and (5) CPW/Slot coupled feed. Typical measured radiation patterns are presented, and their relative advantages and disadvantages are compared.

  5. Adaptive multibeam phased array design for a Spacelab experiment

    NASA Technical Reports Server (NTRS)

    Noji, T. T.; Fass, S.; Fuoco, A. M.; Wang, C. D.

    1977-01-01

    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio.

  6. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  7. Using Antenna Arrays to Motivate the Study of Sinusoids

    ERIC Educational Resources Information Center

    Becker, J. P.

    2010-01-01

    Educational activities involving antenna arrays to motivate the study of sinusoids are described. Specifically, using fundamental concepts related to phase and simple geometric arguments, students are asked to predict the location of interference nulls in the radiation pattern of two-element phased array antennas. The location of the radiation…

  8. Inter-costal Liver Ablation Under Real Time MR-Thermometry With Partial Activation Of A HIFU Phased Array Transducer

    NASA Astrophysics Data System (ADS)

    Quesson, Bruno; Merle, Mathilde; Köhler, Max; Mougenot, Charles; Roujol, Sebastien; de Senneville, Baudouin Denis; Moonen, Chrit

    2010-03-01

    HIFU ablation of tumours located inside the liver is hampered by the rib cage, which partially obstructs the beam path and may create adverse effects such as skin burns. This study presents a method for selectively deactivating the transducer elements causing undesired temperature increases near the bones. A manual segmentation of the bones visualized on 3D anatomical MR images acquired prior to sonication was performed to identify the beam obstruction. The resulting mask was projected (ray tracing starting from the focal point) on the transducer and elements with more than 50% obstruction of their active surface were deactivated. The effectiveness of the method for HIFU ablations is demonstrated ex vivo and in vivo in the liver of pigs with real-time MR thermometry, using the proton resonant frequency (PRF) method. For both ex vivo and in vivo experiments, the temperature increase near the bones was significantly reduced when the elements located in front of the ribs were deactivated. The temperature evolution at the focal point were similar, indicative of the absence of loss of heating efficacy when the elements were deactivated. This method is simple, rapid and reliable and allows to perform intercostal MRgHIFU ablation of the liver while sparing the ribs.

  9. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  10. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  11. A 32-GHz phased array transmit feed for spacecraft telecommunications

    NASA Technical Reports Server (NTRS)

    Lee, K. A.; Rascoe, D. L.; Crist, R. A.; Huang, J.; Wamhof, P. D.; Lansing, F. S.

    1992-01-01

    A 21-element phased array transmit feed was demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 34 GHz for future deep-space missions. Antenna pattern measurements demonstrating electronic beam steering of the two-dimensional array are reported and compared with predictions based on measured performance of MMIC-based phase shifter and amplifier modules and Vivaldi slotline radiating elements.

  12. MMIC Phased Array Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.

    1996-01-01

    Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.

  13. Performance limits of planar phased array with dome lens

    NASA Astrophysics Data System (ADS)

    Geren, W. P.; Taylor, Michael

    1998-10-01

    Communication systems based on low-earth-orbit (LEO) satellites have generated a requirement for high-performance phased array antennas with exceptional gain, sidelobe levels, and axial ratio over broad scan angles and 360 degree azimuth coverage. One approach to mitigating the effects of scan dependence is to cover the planar array with a hemispherical lens, or dome, which implements passive or active phase correction of the scanned beam. The phase correction over the dome surface may be represented as the function (Delta) (Phi) ((theta) , (phi) ), with (theta) and (phi) the polar and azimuth angles in a coordinate system having z-axis normal to the array. The purpose of this study was to determine the performance improvement achievable with such an ideal lens. Three cases were considered: a conventional lens with fixed optimum phase correction, an active lens with scan-dependent phase correction a function of polar angle only, and an active lens with phase correction a function of polar and azimuthal angles. In all cases, the planar array distribution had a fixed radial Taylor amplitude distribution and a phase taper consisting of a linear beam-pointing term and a non-linear focusing term.

  14. Design of a K-Band Transmit Phased Array For Low Earth Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Watson, Thomas; Miller, Stephen; Kershner, Dennis; Anzic, Godfrey

    2000-01-01

    The design of a light weight, low cost phased array antenna is presented. Multilayer printed wiring board (PWB) technology is utilized for Radio Frequencies (RF) and DC/Logic manifold distribution. Transmit modules are soldered on one side and patch antenna elements are on the other, allowing the use of automated assembly processes. The 19 GHz antenna has two independently steerable beams, each capable of transferring data at 622 Mbps. A passive, self-contained phase change thermal management system is also presented.

  15. A design concept for an MMIC microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    1986-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  16. Low Noise Performance Perspectives Of Wideband Aperture Phased Arrays

    NASA Astrophysics Data System (ADS)

    Woestenburg, E. E. M.; Kuenen, J. C.

    2004-06-01

    A general analysis of phased array noise properties and measurements, applied to one square meter tiles of the Thousand Element Array (THEA), has resulted in a procedure to define the noise budget for a THEA-tile (Woestenburg and Dijkstra, 2003). The THEA system temperature includes LNA and receiver noise, antenna connecting loss, noise coupling between antenna elements and other possible contributions. This paper discusses the various noise contributions to the THEA system temperature and identifies the areas where improvement can be realized. We will present better understanding of the individual noise contributions using measurements and analysis of single antenna/receiver elements. An improved design for a 1-m2 Low Noise Tile (LNT) will be discussed and optimized low noise performance for the LNT is presented. We will also give future perspectives of the noise performance for such tiles, in relation to the requirements for SKA in the 1 GHz frequency range.

  17. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  18. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  19. Phased array radars - Present and future

    NASA Astrophysics Data System (ADS)

    Pell, Christopher

    1989-12-01

    The characteristics of tactical defense phased-array radars mainly employing two-dimensional electronic beam alignment are reviewed. Technology issues connected with the phased-array architecture and array control are examined. Technical summaries are then given for a representative selection of projected future operational systems, i.e, EMPAR, Multifire, and MESAR.

  20. Proceedings: EPRI Second Phased Array Inspection Seminar

    SciTech Connect

    2001-11-01

    The Second EPRI Phased Array Inspection Seminar focused on industrial applications of phased array technology that have been achieved to date or are planned for the near future. Presentations were made by developers of inspection techniques, inspection services vendors, and utility personnel who have performed inspections using arrays.

  1. Scan blindness in infinite phased arrays of printed dipoles

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.; Schaubert, D. H.

    1984-01-01

    A comprehensive study of infinite phased arrays of printed dipole antennas is presented, with emphasis on the scan blindness phenomenon. A rigorous and efficient moment method procedure is used to calculate the array impedance versus scan angle. Data are presented for the input reflection coefficient for various element spacings and substrate parameters. A simple theory, based on coupling from Floquet modes to surface wave modes on the substrate, is shown to predict the occurrence of scan blindness. Measurements from a waveguide simulator of a blindness condition confirm the theory.

  2. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nicholas Keith; Chen, Chi-Chih; Volakis, John L.

    2012-01-01

    This presentation discussed a novel phased array with an emphasis to simplify the array feed. Specifically, we will demonstrate a simple, low cost feeding approach by mechanically controlling the substrate thickness. The array feed lines are constructed from parallel plate transmission lines whose thickness are adjusted to control their effective dielectric constant (Epsilon_eff). As a result the phase delay/excitation at each array element will be adjusted per desired beam direction. The proposed antenna elements will be overlapping dipoles operating over a 2:1 bandwidth in the Ku-Band spectrum. Preliminary simulation and experimental demonstration of such an array will be presented.

  3. Microwave performance characterization of large space antennas

    NASA Technical Reports Server (NTRS)

    Bathker, D. A. (Editor)

    1977-01-01

    Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.

  4. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  5. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  6. Phased Array Ultrasonic Inspection of Titanium Forgings

    SciTech Connect

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-03-21

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed.

  7. Antenna development at DARPA

    NASA Astrophysics Data System (ADS)

    Corey, Larry; Jaska, Esko

    2004-09-01

    This paper reviews recent and ongoing antenna technology and systems development in the Special Projects Office of the Defense Advanced Research Projects Agency (DARPA/SPO). These programs fall into two categories: development and application of antenna component technologies and development of transportable phased-array radar antennas. These development programs are presented in a chronological order.

  8. Analysis of phased-array diode lasers

    SciTech Connect

    Hardy, A.; Streifer, W.

    1985-07-01

    An improved, more accurate analysis of phased-array diode lasers is presented, which yields results that differ both qualitatively and quantitatively from those previously employed. A numerical example indicating decreased splitting in array mode gains is included.

  9. Recent activities in printed Antennas at LeRC

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1993-01-01

    This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.

  10. Phased Antenna Array for Global Navigation Satellite System Signals

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  11. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  12. Antenna Technologies for NASA Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix

    2007-01-01

    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed.

  13. A 1 GHz Oscillator-Type Active Antenna

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Scardelletti, Maximilian; Ponchak, George E.

    2008-01-01

    Wireless sensors are desired for monitoring aircraft engines, automotive engines, industrial machinery, and many other applications. The most important requirement of sensors is that they do not interfere with the environment that they are monitoring. Therefore, wireless sensors must be small, which demands a high level of integration. Sensors that modulate an oscillator active antenna have advantages of small size, high level of integration, and lower packaging cost. Several types of oscillator active antennas have been reported. Ip et al. demonstrated a CPW line fed patch antenna with a feedback loop [1]. No degradation in performance was noticed without a ground plane. A GaAs FET was used in an amplifier/oscillator-based active antenna [2]. An oscillator based on a Cree SiC transistor was designed and characterized in [3]. This paper reports the integration of the SiC Clapp oscillator to a slotline loop antenna.

  14. Circularly polarized antennas for active holographic imaging through barriers

    SciTech Connect

    McMakin, Douglas L; Severtsen, Ronald H; Lechelt, Wayne M; Prince, James M

    2011-07-26

    Circularly-polarized antennas and their methods of use for active holographic imaging through barriers. The antennas are dielectrically loaded to optimally match the dielectric constant of the barrier through which images are to be produced. The dielectric loading helps to remove barrier-front surface reflections and to couple electromagnetic energy into the barrier.

  15. Intracavitary ultrasound phased arrays for thermal therapies

    NASA Astrophysics Data System (ADS)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  16. Spatially resolving antenna arrays using frequency diversity.

    PubMed

    Marks, Daniel L; Gollub, Jonah; Smith, David R

    2016-05-01

    Radio imaging devices and synthetic aperture radar typically use either mechanical scanning or phased arrays to illuminate a target with spatially varying radiation patterns. Mechanical scanning is unsuitable for many high-speed imaging applications, and phased arrays contain many active components and are technologically and cost prohibitive at millimeter and terahertz frequencies. We show that antennas deliberately designed to produce many different radiation patterns as the frequency is varied can reduce the number of active components necessary while still capturing high-quality images. This approach, called frequency-diversity imaging, can capture an entire two-dimensional image using only a single transmit and receive antenna with broadband illumination. We provide simple principles that ascertain whether a design is likely to achieve particular resolution specifications, and illustrate these principles with simulations. PMID:27140887

  17. Mobile antenna development at JPL

    NASA Technical Reports Server (NTRS)

    Huang, J.; Jamnejad, V.; Densmore, A.; Tulintseff, A.; Thomas, R.; Woo, K.

    1993-01-01

    The Jet Propulsion Laboratory (JPL), under the sponsorship of NASA, has pioneered the development of land vehicle antennas for commercial mobile satellite communications. Several novel antennas have been developed at L-band frequencies for the Mobile Satellite (MSAT) program initiated about a decade ago. Currently, two types of antennas are being developed at K- and Ka-band frequencies for the ACTS (Advanced Communications Technology Satellite) Mobile Terminal (AMT) project. For the future, several hand-held antenna concepts are proposed for the small terminals of the Ka-band Personal Access Satellite System (PASS). For the L-band MSAT program, a number of omni-directional low-gain antennas, such as the crossed drooping-dipoles, the higher-order-mode circular microstrip patch, the quadrifilar helix, and the wrapped-around microstrip 'mast' array, have been developed for lower data rate communications. Several medium-gain satellite tracking antennas, such as the electronically scanned low-profile phased array, the mechanically steered tilted microstrip array, the mechanically steered low-profile microstrip Yagi array, and the hybrid electronically/mechanically steered low-profile array, have been developed for the MSAT's higher data rate and voice communications. To date, for the L-band vehicle application, JPL has developed the world's lowest-profile phased array (1.8 cm height), as well as the lowest-profile mechanically steered antenna (3.7 cm height). For the 20/30 GHz AMT project, a small mechanically steered elliptical reflector antenna with a gain of 23 dBi has recently been developed to transmit horizontal polarization at 30 GHz and receive vertical polarization at 20 GHz. Its hemispherical radome has a height of 10 cm and a base diameter of 23 cm. In addition to the reflector, a mechanically steered printed MMIC active array is currently being developed to achieve the same electrical requirements with a low profile capability. These AMT antenna developments

  18. Multi-carrier mobile TDMA system with active array antenna

    NASA Technical Reports Server (NTRS)

    Suzuki, Ryutaro; Matsumoto, Yasushi; Hamamoto, Naokazu

    1990-01-01

    A multi-carrier time division multiple access (TDMA) is proposed for the future mobile satellite communications systems that include a multi-satellite system. This TDMA system employs the active array antenna in which the digital beam forming technique is adopted to control the antenna beam direction. The antenna beam forming is carried out at the base band frequency by using the digital signal processing technique. The time division duplex technique is applied for the TDM/TDMA burst format, in order not to overlap transmit and receive timing.

  19. Plane wave imaging using phased array

    NASA Astrophysics Data System (ADS)

    Volker, Arno

    2014-02-01

    Phased arrays are often used for rapid inspections. Phased arrays can be used to synthesize different wave fronts. For imaging, focused wave fronts are frequently used. In order to build an image, the phased array has to be fired multiple times at the same location. Alternatively, different data acquisition configurations can be designed in combination with an imaging algorithm. The objective of this paper is to use the minimal amount of data required to construct an image. If a plane wave is synthesized, the region of interest is illuminated completely. For plane wave synthesis, all elements in the phase array are fired. This ensures a good signal to noise ratio. Imaging can be performed efficiently with a mapping algorithm in the wavenumber domain. The algorithm involves only two Fourier transforms and can therefore be extremely fast. The obtained resolution is comparable to conventional imaging algorithms. This work investigates the potential and limitations of this mapping algorithm on simulated data. With this approach, frame rates of more than 1 kHz can be achieved.

  20. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    NASA Technical Reports Server (NTRS)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  1. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  2. Mobile antennas for COMETS advanced mobile Satcom experiment

    NASA Technical Reports Server (NTRS)

    Hase, Yoshihiro; Tanaka, Masato; Saito, Haruo

    1995-01-01

    Advanced mobile satellite communication experiments in the Ka-band and the mm-wave will be carried out using the COMETS satellite, which is scheduled for launch in 1997. Mobile antennas will play a much more key role in high frequency systems such as COMETS than in conventional L-band mobile systems. This paper describes three types of antennas which are now being developed by the Communications Research Laboratory (CRL) for the COMETS mobile experiments. One is a mechanically steered waveguide slot array antenna, another is an electronically steered active phased array antenna, and the third is a mechanically steered torus reflector antenna. The first two antennas will be used in the Ka-band, while the latter will be used in the mm-wave.

  3. KPAF (K-band phased array feed) instrument concept

    NASA Astrophysics Data System (ADS)

    Locke, Lisa; Claude, Stéphane; Bornemann, Jens; Henke, Doug; Di Francesco, James; Jiang, Frank; Garcia, Dominic; Wevers, Ivan; Niranjanan, Pat

    2014-07-01

    Astronomical surveys are demanding more throughput from telescope receivers. Currently, microwave/millimeter telescopes with mature cryogenic single pixel receivers are upgrading to multi-pixel receivers by replacing the conventional feed horns with phased array feeds (PAFs) to increase the field of view and, thus, imaging speeds. This step in astronomy instrumentation has been taken by only a few research laboratories world-wide and primarily in Lband (0.7-1.5 GHz). We present a K-band (18-26 GHz) 5x5 modular PAF to demonstrate the feasibility of higher frequency receiving arrays. The KPAF system includes a tapered slot antenna array, a cryogenic commercial GaAs MMIC amplifier block, and a mixing stage to down-convert to L band for an existing beamformer. The noise temperature and power budget are outlined. Full antenna S-parameters and far-field beam patterns are simulated and measured using both planar near-field and far-field techniques. Cryogenic and room temperature amplifier noise measurements with varying bias levels are presented.

  4. Spatial frequency multiplier with active linearly tapered slot antenna array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1994-01-01

    A frequency multiplier with active linearly tapered slot antennas (LTSA's) has been demonstrated at the second harmonic frequency. In each antenna element, a GaAs monolithic microwave integrated circuit (MMIC) distributed amplifier is integrated with two LTSA's. The multiplier has a very wide bandwidth and large dynamic range. The fundamental-to-second harmonic conversion efficiency is 8.1 percent. The spatially combined second harmonic signal is 50 dB above the noise level. The design is suitable for constructing a large array using monolithic integration techniques.

  5. Space Power Amplification with Active Linearly Tapered Slot Antenna Array

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1993-01-01

    A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.

  6. Optimisation Of An Integrated Planar Magnetic For Active Antenna Panels

    NASA Astrophysics Data System (ADS)

    Strixner, E.; Godzik, S.; Drechsler, E., , Dr.

    2011-10-01

    The envisaged German Space Missions HRWS and TerraSAR-X follow-on have triggered the development of a new generation of low voltage DC power supplies for active antennas at Astrium GmbH. The basic approachis tointegrate all power, digital, RF electronics and RF radiators required for one antenna tile into one common unit. Due to the high number of electronic boxes needed for one antenna it is essential to optimise cost, volume, efficiency and weight. The development of an integrated planar magnetic for power conversion is one contribution to this overall optimisation process. The focus of this presentation is the development of an integrated planar magnetic used for a half-bridge forward converter with secondary side synchronous current doubler. The converter is supplied from a 100 V power bus and delivers a total average output power of 280W for the drain supply of the pulsed RF power stages.

  7. Adaptive antenna design considerations for satellite communication antennas

    NASA Astrophysics Data System (ADS)

    Mayhan, J. T.

    1983-02-01

    The present investigation is concerned with some general considerations inherent in designing an adaptive antenna system for use on a geosynchronous satellite illuminating the earth field of view. The problem has been addressed from the viewpoint of the system designer who has to determine the required antenna characteristics and the antenna aperture size. Concerning the choice of the antenna type, it usually has to be decided whether to use a phased array (PA) or a multiple-beam antenna (MBA). Attention is given to nulling resolution and MBA/PA configuration, taking into account the phased array and multiple-beam antennas. The choice of which antenna type to use depends on the nulling bandwidth, the number of weighted channels in the adaptive processor, and the overall coverage area to be served by the antenna system.

  8. Phased array performance evaluation with photoelastic visualization

    SciTech Connect

    Ginzel, Robert; Dao, Gavin

    2014-02-18

    New instrumentation and a widening range of phased array transducer options are affording the industry a greater potential. Visualization of the complex wave components using the photoelastic system can greatly enhance understanding of the generated signals. Diffraction, mode conversion and wave front interaction, together with beam forming for linear, sectorial and matrix arrays, will be viewed using the photoelastic system. Beam focus and steering performance will be shown with a range of embedded and surface targets within glass samples. This paper will present principles and sound field images using this visualization system.

  9. Wide Angle Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xing-Hua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John J.; Miranda, Felix A.; McManamon, Paul F.

    2004-01-01

    Accurate modeling of a high resolution, liquid crystal (LC) based, optical phased array (OPA) is shown. The simulation shows excellent agreement with a test 2-D LC OPA. The modeling method is extendable to cases where the array element size is close to the wavelength of light. The fringing fields of such a device are first studied, and subsequently reduced. This results in a device that demonstrates plus or minus 7.4 degrees of continuous beam steering at a wavelength of 1550 nm, and a diffraction efficiency (DE) higher than 72%.

  10. Phased array beamforming using nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Larsen, Michael L.; Tsimring, Lev S.

    2004-10-01

    We describe a concept in which an array of coupled nonlinear oscillators is used for beamforming in phased array receivers. The signal that each sensing element receives, beam steered by time delays, is input to a nonlinear oscillator. The nonlinear oscillators for each element are in turn coupled to each other. For incident signals sufficiently close to the steering angle, the oscillator array will synchronize to the forcing signal whereas more obliquely incident signals will not induce synchronization. The beam pattern that results can show a narrower mainlobe and lower sidelobes than the equivalent conventional linear beamformer. We present a theoretical analysis to explain the beam pattern of the nonlinear oscillator array.

  11. Antennae

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 7' x 7' on the sky of the interacting galaxies NGC 4038 and NGC 4039, better known as the Antennae, or Ring Tail galaxies. The two galaxies are engaged in a tug-of-war as they collide. The mutual gravitation between them is working to distort each spiral galaxy's appearance as the two merge. The interaction is evidently impetus for an intense burst of new star formation, as can be seen from the many infrared-bright knots and bright galactic nuclei. Compare the 2MASS view of this system with that obtained by the Hubble Space Telescope in the optical. Many of the same features are seen, although 2MASS is able to peer through much of the dust seen in the galaxies' disks. The galaxy light looks smoother. Also, in the near-infrared the bright knots of star formation are likely highlighted by the light of massive red supergiant stars. The much more extended 'tidal tails,' which give the Antennae their name, are quite faint in the 2MASS image mosaic.

  12. Antenna engineering handbook /2nd edition/

    NASA Astrophysics Data System (ADS)

    Johnson, R. C.; Jasik, H.

    Essential principles, methods, and data for solving a wide range of problems in antenna design and application are presented. The basic concepts and fundamentals of antennas are reviewed, followed by a discussion of arrays of discrete elements. Then all primary types of antennas currently in use are considered, providing concise descriptions of operating principles, design methods, and performance data. Small antennas, microstrip antennas, frequency-scan antennas, conformal and low-profile arrays, adaptive antennas, and phased arrays are covered. The major applications of antennas and the design methods peculiar to those applications are discussed in detail. The employment of antennas to meet the requirements of today's complex electronic systems is emphasized, including earth station antennas, satellite antennas, seeker antennas, microwave-relay antennas, tracking antennas, radiometer antennas, and ECM and ESM antennas. Finally, significant topics related to antenna engineering, such as transmission lines and waveguides, radomes, microwave propagation, and impedance matching and broadbanding, are addressed.

  13. Measured Radiation Patterns of the Boeing 91-Element ICAPA Antenna With Comparison to Calculations

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Burke, Thomas (Technical Monitor)

    2003-01-01

    This report presents measured antenna patterns of the Boeing 91-Element Integrated Circuit Active Phased Array (ICAPA) Antenna at 19.85 GHz. These patterns were taken in support of various communication experiments that were performed using the antenna as a testbed. The goal here is to establish a foundation of the performance of the antenna for the experiments. An independent variable used in the communication experiments was the scan angle of the antenna. Therefore, the results presented here are patterns as a function of scan angle, at the stated frequency. Only a limited number of scan angles could be measured. Therefore, a computer program was written to simulate the pattern performance of the antenna at any scan angle. This program can be used to facilitate further study of the antenna. The computed patterns from this program are compared to the measured patterns as a means of validating the model.

  14. A dual frequency microstrip antenna for Ka band

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Baddour, M. F.

    1985-01-01

    For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.

  15. Passive monitoring using a combination of focused and phased array radiometry: a simulation study.

    PubMed

    Farantatos, Panagiotis; Karanasiou, Irene S; Uzunoglu, Nikolaos

    2011-01-01

    Aim of this simulation study is to use the focusing properties of a conductive ellipsoidal reflector in conjunction with directive phased microwave antenna configurations in order to achieve brain passive monitoring with microwave radiometry. One of the main modules of the proposed setup which ensures the necessary beamforming and focusing on the body and brain areas of interest is a symmetrical axis ellipsoidal conductive wall cavity. The proposed system operates in an entirely non-invasive contactless manner providing temperature and/or conductivity variations monitoring and is designed to also provide hyperthermia treatment. In the present paper, the effect of the use of patch antennas as receiving antennas on the system's focusing properties and specifically the use of phased array setups to achieve scanning of the areas under measurement is investigated. Extensive simulations to compute the electric field distributions inside the whole ellipsoidal reflector and inside two types of human head models were carried out using single and two element microstrip patch antennas. The results show that clear focusing (creation of "hot spots") inside the head models is achieved at 1.53GHz. In the case of the two element antennas, the "hot spot" performs a linear scan around the brain area of interest while the phase difference of the two microstrip patch antennas significantly affects the way the scanning inside the head model is achieved. In the near future, phased array antennas with multiband and more elements will be used in order to enhance the system scanning properties toward the acquisition of tomography images without the need of subject movement. PMID:22254358

  16. Ghost artifact cancellation using phased array processing.

    PubMed

    Kellman, P; McVeigh, E R

    2001-08-01

    In this article, a method for phased array combining is formulated which may be used to cancel ghosts caused by a variety of distortion mechanisms, including space variant distortions such as local flow or off-resonance. This method is based on a constrained optimization, which optimizes SNR subject to the constraint of nulling ghost artifacts at known locations. The resultant technique is similar to the method known as sensitivity encoding (SENSE) used for accelerated imaging; however, in this formulation it is applied to full field-of-view (FOV) images. The method is applied to multishot EPI with noninterleaved phase encode acquisition. A number of benefits, as compared to the conventional interleaved approach, are reduced distortion due to off-resonance, in-plane flow, and EPI delay misalignment, as well as eliminating the need for echo-shifting. Experimental results demonstrate the cancellation for both phantom as well as cardiac imaging examples. PMID:11477638

  17. Wavelet Analysis for Acoustic Phased Array

    NASA Astrophysics Data System (ADS)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.

  18. A Phased Array Approach to Rock Blasting

    SciTech Connect

    Leslie Gertsch; Jason Baird

    2006-07-01

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  19. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.

    PubMed

    Giannini, Vincenzo; Berrier, Audrey; Maier, Stefan A; Sánchez-Gil, José Antonio; Rivas, Jaime Gómez

    2010-02-01

    Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors. PMID:20174108

  20. Experimental assessment of phased-array heating of neck tumours.

    PubMed

    Gross, E J; Cetas, T C; Stauffer, P R; Liu, R L; Lumori, M L

    1990-01-01

    An investigation of phased-array microwave systems (PAMS) for non-invasively inducing hyperthermia, primarily in neck lesions, has been done with implications for applications at other sites such as lung and pelvis. Our general approach was to combine numerical and analytical approaches with parallel experimental studies. In this paper we will concentrate only on the experimental aspects. The object, such as a homogeneous cylindrical phantom or a neck phantom, was encircled with several standard applicators driven by a single source, but with relative phase and amplitude control over each applicator. The relative phases of the applicators were adjusted by using an implanted monopole antenna connected to an HP network analyser. Power was applied and the specific absorption rate (SAR) was determined by using split phantoms and thermography or by measuring temperature transients dT/dt, recorded by implanted thermometer probes. We found that at 915 MHz for our applicators (SMA Co.) the centre of an 11 cm diameter muscle-like phantom heated to about 33% of the value at the surface in front of the applicator. Similarly, we were able to show significant SAR at the centre of realistically sized neck phantoms using four phased apertures of 915 MHz. Furthermore, substantial improvement was observed if the frequency was lowered to about 400 MHz. PMID:2324581

  1. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  2. Synthesized Bistatic Echo Imaging Using Phased Arrays

    NASA Astrophysics Data System (ADS)

    Soumekh, Mehrdad

    1990-01-01

    An object illuminated by a source produces a scattered signal; this signal depends upon both the source and the physical properties of the object. The problem of deducing coordinates, shape and/or certain physical properties of the object from the measurements of the returned signal is an inverse problem called echo imaging. The problem of echo imaging arises in medical imaging, remote sensing (radar; sonar; geophysical exploration), and non-destructive testing. In this paper, we address the problem of imaging an object form its returned signals using a phased array. Our approach is to exploit the array's various radiation patterns and the recordable portion of the returned signal's spectrum to generate the data base for this echo imaging system. Rapid steering of a phased array's radiation patterns can be achieved electronically. These steered waves can be utilized to synthesize waves with varying angles of propagation. In this case, the recorded returned signal for each direction of propagation can be viewed as data obtained by a bistatic array configuration. We first formulate the imaging problem for a plane wave source in a bistatic configuration. We utilize the two-way propagation time and amplitude of the returned signal to relate the object's properties, reflectivity function and coordinates, to the measured data (system modeling). This relationship is the basis for deducing the object's reflectivity function from the recorded data (inverse problem). We then extend these results for an arbitrary radiation pattern and synthesized radiation patterns generated by an array capable of beam steering in cross-range. We show that the recorded returned signals can be related to the spatial frequency contents of the reflectivity function. We also show that these array processing principles can be utilized to formulate a system model and inversion for synthetic aperture radar (SAR) imaging that incorporates wavefront curvature.

  3. DC electric field induced phase array self-assembly of Au nanoparticles.

    PubMed

    Yadavali, S; Sachan, R; Dyck, O; Kalyanaraman, R

    2014-11-21

    In this work we report the discovery of phase array self-assembly, a new way to spontaneously make periodic arrangements of metal nanoparticles. An initially random arrangement of gold (Au) or silver (Ag) nanoparticles on SiO2/Si substrates was irradiated with linearly polarized (P) laser light in the presence of a dc electric (E) field applied to the insulating substrate. For E fields parallel to the laser polarization (E||P), the resulting periodic ordering was single-crystal like with extremely low defect density and covered large macroscopic areas. The E field appears to be modifying the phase between radiation scattered by the individual nanoparticles thus leading to enhanced interference effects. While phase array behavior is widely known in antenna technology, this is the first evidence that it can also aid in nanoscale self-assembly. These results provide a simple way to produce periodic metal nanoparticles over large areas. PMID:25355725

  4. Acoustic trapping with a high frequency linear phased array

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-11-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  5. Frequency translating phase conjugation circuit for active retrodirective antenna array

    NASA Astrophysics Data System (ADS)

    Chernoff, R.

    1980-11-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  6. An Overview of Antenna R&D Efforts in Support of NASA's Space Exploration Vision

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2007-01-01

    This presentation reviews the research and development work being conducted at Glenn Research Center in the area of antennas for space exploration. In particular, after reviewing the related goals of the agency, antenna technology development at GRC is discussed. The antennas to be presented are large aperture inflatable antennas, phased array antennas, a 256 element Ka-band antenna, a ferroelectric reflectarray antenna, multibeam antennas, and several small antennas.

  7. A reconfigurable plasma antenna

    SciTech Connect

    Kumar, Rajneesh; Bora, Dhiraj

    2010-03-15

    An experiment aimed at investigating the antenna properties of different plasma structures of a plasma column as a reconfigurable plasma antenna, is reported. A 30 cm long plasma column is excited by surface wave, which acts as a plasma antenna. By changing the operating parameters, e.g., working pressure, drive frequency, input power, radius of glass tube, length of plasma column, and argon gas, single plasma antenna (plasma column) can be transformed to multiple small antenna elements (plasma blobs). It is also reported that number, length, and separation between two antenna elements can be controlled by operating parameters. Moreover, experiments are also carried out to study current profile, potential profile, conductivity profile, phase relations, radiation power patterns, etc. of the antenna elements. The effect on directivity with the number of antenna elements is also studied. Findings of the study indicate that entire structure of antenna elements can be treated as a phased array broadside vertical plasma antenna, which produces more directive radiation pattern than the single plasma antenna as well as physical properties and directivity of such antenna can be controlled by operating parameters. The study reveals the advantages of a plasma antenna over the conventional antenna in the sense that different antennas can be formed by tuning the operating parameters.

  8. Nonmechanical beam steering using optical phased arrays

    NASA Astrophysics Data System (ADS)

    Dillon, Thomas E.; Schuetz, Christopher A.; Martin, Richard D.; Mackrides, Daniel G.; Curt, Petersen F.; Bonnett, James; Prather, Dennis W.

    2011-11-01

    Beam steering is an enabling technology for establishment of ad hoc communication links, directed energy for infrared countermeasures, and other in-theater defense applications. The development of nonmechanical beam steering techniques is driven by requirements for low size, weight, and power, and high slew rate, among others. The predominant beam steering technology currently in use relies on gimbal mounts, which are relatively large, heavy, and slow, and furthermore create drag on the airframes to which they are mounted. Nonmechanical techniques for beam steering are currently being introduced or refined, such as those based on liquid crystal spatial light modulators; however, drawbacks inherent to some of these approaches include narrow field of regard, low speed operation, and low optical efficiency. An attractive method that we explore is based on optical phased arrays, which has the potential to overcome the aforementioned issues associated with other mechanical and nonmechanical beam steering techniques. The optical array phase locks a number of coherent optical emitters in addition to applying arbitrary phase profiles across the array, thereby synthesizing beam shapes that can be steered and utilized for a diverse range of applications.

  9. Investigating a stepped ultrasonic phased array transducer for the evaluation and characterization of defects

    NASA Astrophysics Data System (ADS)

    Bohenick, M.; Blickley, E.; Tittmann, B. R.; Kropf, M.

    2007-04-01

    Previous work has led to the design, simulation, and development of a linear phased array transducer. The intention of the array is to be used as a non-destructive ultrasonic device to monitor and evaluate the health of a given specimen. The phased array has been manufactured and tested for the detection and characterization of defects on a target. The array was fabricated with a four-row "stepped" design with four wires to transfer data and one wire for grounding. The "stepped" design allows for the interrogation of a larger region using time delays and beam sweeping without the use of additional electrical channels. The array was designed to be utilized in a water immersion environment with about one inch between the array and the target specimen. An OmniScan MX system was used to operate the phased array and perform real-time linear and sectorial scans on a set of rectangular plates. S-scans allow for beam sweeping over an angle range as well as adjustments for time delays and a true-depth display. The array was operated with sixteen active elements and an angle range of 0 to 30 degrees. The phased array was tested with a variety of targets and was used to investigate and characterize different types of defects such as cracking, warping, and corrosion. The ability of the phased array to distinguish between defect types as well as resolve defect size was evaluated.

  10. Measurement of the Earth-Observer-1 Satellite X-Band Phased Array

    NASA Technical Reports Server (NTRS)

    Perko, Kenneth; Dod, Louis; Demas, John

    2003-01-01

    The recent launch and successful orbiting of the EO-1 Satellite has provided an opportunity to validate the performance of a newly developed X-Band transmit-only phased array aboard the satellite. This paper will compare results of planar near-field testing before and after spacecraft installation as well as on-orbit pattern characterization. The transmit-only array is used as a high data rate antenna for relaying scientific data from the satellite to earth stations. The antenna contains distributed solid-state amplifiers behind each antenna element that cannot be monitored except for radiation pattern measurements. A unique portable planar near-field scanner allows both radiation pattern measurements and also diagnostics of array aperture distribution before and after environmental testing over the ground-integration and prelaunch testing of the satellite. The antenna beam scanning software was confirmed from actual pattern measurements of the scanned beam positions during the spacecraft assembly testing. The scanned radiation patterns on-orbit were compared to the near-field patterns made before launch to confirm the antenna performance. The near-field measurement scanner has provided a versatile testing method for satellite high gain data-link antennas.

  11. Inferential statistics for transient signal detection in radio astronomy phased arrays

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.; Alkhweldi, Marwan

    2015-05-01

    In this paper we develop two statistical rules for the purpose of detecting pulsars and transients using signals from phased array feeds installed on a radio telescope in place of a traditional horn receiver. We assume a known response of the antenna arrays and known coupling among array elements. We briefly summarize a set of pre-processing steps applied to raw array data prior to signal detection and then derive two detection statistics assuming two models for the unknown radio source astronomical signal: (1) the signal is deterministic and (2) the signal is a random process. The performance of both detectors is analyzed using both real and simulated data.

  12. SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.

    2012-01-01

    In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.

  13. Automatic antenna switching design for Extra Vehicular Activity (EVA) communication system

    NASA Technical Reports Server (NTRS)

    Randhawa, Manjit S.

    1987-01-01

    An Extra Vehicular Activity (EVA) crewmember had two-way communications with the space station in the Ku-band frequency (12 to 18 GHz). The maximum range of the EVA communications link with the space station is approximately one kilometer for nominal values for transmitter power, antenna gains, and receiver noise figure. The EVA Communications System, that will continue to function regardless of the astronaut's position and orientation, requires an antenna system that has full spherical coverage. Three or more antennas that can be flush mounted on the astronaut's space suit (EMU) and/or his propulsive backpack (MMU), will be needed to provide the desired coverage. As the astronaut moves in the space station, the signal received by a given EVA antenna changes. An automatic antenna switching system is needed that will switch the communication system to the antenna with the largest signal strength. A design for automatic antenna switching is presented and discussed.

  14. A space-fed phased array for surveillance from space

    NASA Astrophysics Data System (ADS)

    Hightower, Charles H.; Wong, Sam H.; Perkons, Alfred R.; Igwe, Christian I.

    1991-05-01

    A space-fed radar antenna called a venetian blind is proposed for all-weather wide-area surveillance from space. Radar requirements for tasked and untasked operation are discussed, and the process of selecting the venetian blind concept, which can support both, is described. In its untasked form (essentially a space-fed passive lens), it achieves off-axis squint angles of many beamwidths with negligible performance degradation. It is inherently insensitive to mechanical distortion and is a first step in the evolution to the more complex tasked system antenna. The antenna lens consists of easily manufactured slats with microstrip dipole radiating elements and matching networks on a dielectric substrate. Phase control is achieved with low-loss delay lines in the passive lens or active transmit/receive modules if electronic scan is desired.

  15. Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.

    2013-01-01

    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.

  16. Feed system design and experimental results in the uhf model study for the proposed Urbana phased array

    NASA Technical Reports Server (NTRS)

    Loane, J. T.; Bowhill, S. A.; Mayes, P. E.

    1982-01-01

    The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.

  17. The Implications of Encoder/Modulator/ Phased Array Designs for Future Broadband LEO Communications

    NASA Technical Reports Server (NTRS)

    Vanderaar, Mark; Jensen, Chris A.; Terry, John D.

    1997-01-01

    In this paper we summarize the effects of modulation and channel coding on the design of wide angle scan, broadband, phased army antennas. In the paper we perform several trade studies. First, we investigate the amplifier back-off requirement as a function of variability of modulation envelope. Specifically, we contrast constant and non-constant envelope modulations, as well as single and multiple carrier schemes. Additionally, we address the issues an(f concerns of using pulse shaping filters with the above modulation types. Second, we quantify the effects of beam steering on the quality of data, recovery using selected modulation techniques. In particular, we show that the frequency response of the array introduces intersymbol interference for broadband signals and that the mode of operation for the beam steering controller may introduce additional burst or random errors. Finally, we show that the encoder/modulator design must be performed in conjunction with the phased array antenna design.

  18. Baseline antenna design for space exploration initiative

    NASA Technical Reports Server (NTRS)

    Chen, Y. L.; Nasir, M. A.; Lee, S. W.; Zaman, Afroz

    1993-01-01

    A key element of the future NASA Space Exploration Initiative (SEI) mission is the lunar and Mars telecommunication system. This system will provide voice, image, and data transmission to monitor unmanned missions to conduct experiments, and to provide radiometric data for navigation. In the later half of 1991, a study was conducted on antennas for the Mars Exploration Communication. Six antenna configurations were examined: three reflector and three phased array. The conclusion was that due to wide-angle scan requirement, and multiple simultaneous tracking beams, phased arrays are more suitable. For most part, this report studies phased array antenna designs for two different applications for Space Exploration Initiative. It also studies one design for a tri-reflector type antenna. These antennas will be based on a Mars orbiting satellite.

  19. Phased-array sources based on nonlinear metamaterial nanocavities

    SciTech Connect

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil Andrew; Shaner, Eric A.; Klem, John Frederick; Sinclair, Michael B.; Brener, Igal

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

  20. Phased-array sources based on nonlinear metamaterial nanocavities

    NASA Astrophysics Data System (ADS)

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

  1. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    NASA Astrophysics Data System (ADS)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  2. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  3. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  4. An Overview of NASA Glenn Research Center's Antenna R&D and Technology Efforts

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2002-01-01

    This viewgraph presentation provides an overview of antenna research and design efforts being performed at NASA's Glenn Research Center. The following type of antenna research projects are discussed: phased array antennas, thin film ferroelectric reflectarray antenna, microelectromechanical systems (MEMs) based antennas and multi-beam antennas. Project overviews, design issues and research problems for each type of antenna system are covered. Additional topics reviewed included: communication systems of the future and a facility description.

  5. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    NASA Astrophysics Data System (ADS)

    Melodelima, David; Lafon, Cyril; Prat, Frederic; Birer, Alain; Cathignol, Dominique

    2002-12-01

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm-2. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  6. Optimizing an ELF/VLF Phased Array at HAARP

    NASA Astrophysics Data System (ADS)

    Fujimaru, S.; Moore, R. C.

    2013-12-01

    The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.

  7. Parabolic torus transreflector antenna

    NASA Astrophysics Data System (ADS)

    Diaz, L. M.; Smith, M. S.

    1984-12-01

    The possible scan rate of conventional radar antennas using parabolic dishes is limited to about 60 rev/min. This limitation is related to mechanical rotation requirements. Many radar applications require high data renewal rates, including short-range defense systems and systems for reduction of sea clutter. Faster scan rates can be obtained by using phased arrays and electronic scanning. However, the use of the required equipment introduces considerable complexity and cost. The present investigation is concerned with a novel form of antenna permitting high scan rates, taking into account a parabolic torus transreflector antenna. The feed horn illuminates one side of the radome with polarization parallel to the wires, which therefore reflect the radiation like a dish antenna. In the antenna considered, rotation of the beam is effected by mechanical rotation of the horn feed only, and this provides the potential for high scanning rates.

  8. An active K/Ka-band antenna array for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, Art; Sukamto, L.

    1993-01-01

    An active K/Ka-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz. Satellite tracking for the land-mobile vehicular antenna system involves 'mechanical dithering' of the antenna, where the antenna radiates a fixed beam 46 deg. above the horizon. The antenna is to transmit horizontal polarization and receive vertical polarization at 29.634 plus or minus 0.15 GHz and 19.914 plus or minus 0.15 GHz, respectively. The active array will provide a minimum of 22 dBW EIRP transmit power density and a -8 dB/K deg. receive sensitivity.

  9. The Design of Monolithic AC-coupled 1-Dimensional Voltage-Controlled-Oscillators (VCOs) Phased-array Network

    NASA Astrophysics Data System (ADS)

    Lie, Donald Y. C.; Lopez, J.

    2011-04-01

    A fully monolithic 1-Dimensional (1-D) AC-coupled Voltage-Controlled-Oscillators (VCOs) phased-array network design will be presented in this paper. This radio-frequency (RF) VCO array integrates on-chip inductors, varactors and bias current sources and it contains an odd number of VCOs AC-coupled through on-chip switchable resistor networks using MOSFETs. The measured results and SPICE simulated performance of the monolithic unit cell VCO agree reasonably well. Realistic circuit simulations in IBM 7HP 0.18 um BiCMOS design kit indicate promising results of the 1-D coupled-VCO array by showing the design can control the phasing of this on-chip VCO-array by means of tuning the edge elements and/or by varying the coupling strength via different resistor values using the on-chip MOSFET switches. Simulation data shows that it can offer high directivity and a possible element-to-element phase tuning arrangement that allows a ˜±20-30° degree coverage from broadside without the need for phase shifters or additional circuitry complexity. This AC-coupled 1-D VCO array, therefore, shows great potential for RF active antennas applications to perform wide angle beam steering for the highly used S-band.

  10. Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links.

    PubMed

    Nazarathy, Moshe; Khurgin, Jacob; Weidenfeld, Rakefet; Meiman, Yehuda; Cho, Pak; Noe, Reinhold; Shpantzer, Isaac; Karagodsky, Vadim

    2008-09-29

    We develop an analytic model of Coherent Optical Orthogonal Frequency Division Multiplexing (OFDM) propagation and detection over multi-span long-haul fiber links, comprehensively and rigorously analyzing the impairments due the combined effects of FWM, Dispersion and ASE noise. Consistent with prior work of Innoe and Schadt in the WDM context, our new closed-form expressions for the total FWM received power fluctuations in the wake of dispersive phase mismatch in OFDM transmission, indicate that the FWM contributions of the multitude of spans build-up on a phased-array basis. For particular ultra-long haul link designs, the effectiveness of dispersion in reducing FWM is far greater than previously assumed in OFDM system analysis. The key is having the dominant FWM intermodulation products due to the multiple spans, destructively interfere, mutually cancelling their FWM intermodulation products, analogous to operating at the null of a phased-array antenna system. By applying the new analysis tools, this mode of effectively mitigating the FWM impairment, is shown under specific dispersion and spectral management conditions, to substantially suppress the FWM power fluctuations. Accounting for the phased-array concept and applying the compact OFDM design formulas developed here, we analyzed system performance of a 40 Gbps coherent OFDM system, over standard G.652 fiber, with cyclic prefix based electronic dispersion compensation but no optical compensation along the link. The transmission range for 10-3 target BER is almost tripled from 2560 km to 6960 km, relative to a reference system performing optical dispersion compensation in every span (ideally accounting for FWM and ASE noise and the cyclic prefix overhead, but excluding additional impairments). PMID:18825217

  11. Ultrasonic Phased-Array Characterization for NDE Applications

    NASA Technical Reports Server (NTRS)

    Hanley, John J.; Tennis, Richard F.; Pickens, Keith S.

    1995-01-01

    Southwest Research Institute (SwRI) recently fabricated and delivered the 100-channel Ultrasonic Phased-Array Testbed System (UPATS) for NASA's Langley Research Center. NASA prepared the specifications and provided the funding to develop UPATS in order to provide a tool for the improvement of ultrasonic nondestructive evaluation (NDE) and characterization of materials. UPATS incorporates state-of-the-art phased-array concepts such as beam steering, focusing, apodization, and phase-sensitive detection which make it possible to develop more sophisticated testing methodologies. It also can be used to investigate fundamental ultrasonic propagation and detection phenomena such as refraction, diffraction, scattering, and beam broadening.

  12. Rocket Experiment on Construction of Huge Transmitting Antenna for the SPS Using Furoshiki Satellite System with Robots

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Iwashita, M.; Nakasuka, S.; Summerer, L.; Mankins, J.

    2004-12-01

    Construction technology of huge structures is essential for the future space development as well as the Solar Power Satellite (SPS). The SPS needs huge antennas to transmit the generated electric power toward the ground, while the huge antenna have many useful applications in space as well as on the ground, for example, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. A parabola antenna was mostly used for the space antenna. However, it is very difficult for the larger parabola antenna to keep accuracy of the reflectors and the beam control, because the surfaces of the reflectors are mechanically supported and controlled. The huge space antenna with flexible and ultra-light structures is essential and necessary for the future applications. An active phased array antenna is more suitable and promising for the huge flexible antenna than the parabola antenna. We are proposing to apply the Furoshiki satellite [1] with robots for construction of the huge structures. While a web is deployed using the Furoshiki satellite in the same size of the huge antenna, all of the antenna elements crawl on the web with their own legs toward their allocated locations. We are verifying the deployment concept of the Furoshiki satellite using a sounding rocket with robots crawling on the deployed web. The robots are internationally being developed by NASA, ESA and Kobe University. The paper describes the concept of the crawling robot developed by Kobe University as well as the plan of the rocket experiment.

  13. Active dielectric antenna on chip for spatial light modulation

    PubMed Central

    Qiu, Ciyuan; Chen, Jianbo; Xia, Yang; Xu, Qianfan

    2012-01-01

    Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally waveguide based, many optical applications are free-space based, such as imaging, display, holographics, metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that allows the large-scale integration capability of silicon photonics to serve the free-space applications. We show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation speed is discussed. PMID:23152946

  14. Large space antenna communications systems: Integrated Langley Research Center/Jet Propulsion Laboratory development activities. 2: Langley Research Center activities

    NASA Technical Reports Server (NTRS)

    Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.

    1983-01-01

    The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.

  15. Airborne ultrasonic phased arrays using ferroelectrets: a new fabrication approach.

    PubMed

    Ealo, Joao L; Camacho, Jorge J; Fritsch, Carlos

    2009-04-01

    In this work, a novel procedure that considerably simplifies the fabrication process of ferroelectret-based multielement array transducers is proposed and evaluated. Also, the potential of ferroelectrets being used as active material for air-coupled ultrasonic transducer design is demonstrated. The new construction method of multi-element transducers introduces 2 distinctive improvements. First, active ferroelectret material is not discretized into elements, and second, the need of structuring upper and/or lower electrodes in advance of the permanent polarization of the film is removed. The aperture discretization and the mechanical connection are achieved in one step using a through-thickness conductive tape. To validate the procedure, 2 linear array prototypes of 32 elements, with a pitch of 3.43 mm and a wide usable frequency range from 30 to 300 kHz, were built and evaluated using a commercial phased-array system. A low crosstalk among elements, below -30 dB, was measured by interferometry. Likewise, a homogeneous response of the array elements, with a maximum deviation of +/-1.8 dB, was obtained. Acoustic beam steering measurements were accomplished at different deflection angles using a calibrated microphone. The ultrasonic beam parameters, namely, lateral resolution, side lobe level, grating lobes, and focus depth, were congruent with theory. Acoustic images of a single reflector were obtained using one of the array elements as the receiver. Resulting images are also in accordance with numerical simulation, demonstrating the feasibility of using these arrays in pulse-echo mode. The proposed procedure simplifies the manufacturing of multidimensional arrays with arbitrary shape elements and not uniformly distributed. Furthermore, this concept can be extended to nonflat arrays as long as the transducer substrate conforms to a developable surface. PMID:19406714

  16. Simulation of Phased Array Wide-Field of View Radars for Space Surveillance

    NASA Astrophysics Data System (ADS)

    Gelhause, J.; Flegel, S.; Wiedemann, C.; Vorsmann, P.; Stabroth, S.; Wagner, A.; Klinkrad, H.

    2009-03-01

    Europe intends to develop its own Space Surveillance System as part of a more comprehensive Space Situational Awareness System. In the design process, simulations help to determine appropriate system architectures for given user requirements. In order to provide such a simulation environment, the ESA Program for Radar and Optical Observation Forecasting (PROOF) can be applied. The existing model for phased-array radar simulations only takes into account a simplified antenna pattern. A new simulation approach is envisaged within a current PROOF software upgrade. It considers the complete scanning area as a single field-of-view, with borders of the scanning area defined relative to the line of sight, and with path offsets randomly selected to cover the scanning area.

  17. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    SciTech Connect

    Li, Shi-Qiang; Bruce Buchholz, D.; Zhou, Wei; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-09

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  18. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays

    NASA Astrophysics Data System (ADS)

    Li, Shi-Qiang; Zhou, Wei; Bruce Buchholz, D.; Ketterson, John B.; Ocola, Leonidas E.; Sakoda, Kazuaki; Chang, Robert P. H.

    2014-06-01

    Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.

  19. NASA Adaptive Multibeam Phased Array (AMPA): An application study

    NASA Technical Reports Server (NTRS)

    Mittra, R.; Lee, S. W.; Gee, W.

    1982-01-01

    The proposed orbital geometry for the adaptive multibeam phased array (AMPA) communication system is reviewed and some of the system's capabilities and preliminary specifications are highlighted. Typical AMPA user link models and calculations are presented, the principal AMPA features are described, and the implementation of the system is demonstrated. System tradeoffs and requirements are discussed. Recommendations are included.

  20. Looking Below the Surface with Ultrasonic Phased Array

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.

    2010-10-01

    This article is a brief tutorial on the benefits of volumetric ultrasonic phased array line scanning. The article describes the need, the approach, and the methods/practices used to analyze the data for flaw detection and characterization in the nuclear power plant component arena.

  1. Beam-pointing errors of planar-phased arrays.

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Cooper, W. K.; Stutzman, W. L.

    1973-01-01

    Using both analytical and Monte Carlo techniques, beam-pointing errors of planar-phased arrays are analyzed. The obtained simple formulas for rms pointing errors are applicable to uniform planar arrays with both uniform and Gaussian uncorrelated phase-error distributions and for any arbitrary scan angle.

  2. Code-modulated interferometric imaging system using phased arrays

    NASA Astrophysics Data System (ADS)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  3. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGESBeta

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil Andrew; Shaner, Eric A.; Klem, John Frederick; Sinclair, Michael B.; et al

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  4. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  5. Phased-array sources based on nonlinear metamaterial nanocavities.

    PubMed

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P; Liu, Sheng; Luk, Ting S; Kadlec, Emil A; Shaner, Eric A; Klem, John F; Sinclair, Michael B; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  6. Guided wave phased array beamforming and imaging in composite plates.

    PubMed

    Yu, Lingyu; Tian, Zhenhua

    2016-05-01

    This paper describes phased array beamforming using guided waves in anisotropic composite plates. A generic phased array algorithm is presented, in which direction dependent guided wave parameters and the energy skew effect are considered. This beamforming at an angular direction is achieved based on the classic delay-and-sum principle by applying phase delays to signals received at array elements and adding up the delayed signals. The phase delays are determined with the goal to maximize the array output at the desired direction and minimize it otherwise. For array characterization, the beam pattern of rectangular grid arrays in composite plates is derived. In addition to the beam pattern, the beamforming factor in terms of wavenumber distribution is defined to provide intrinsic explanations for phased array beamforming. The beamforming and damage detection in a composite plate are demonstrated using rectangular grid arrays made by a non-contact scanning laser Doppler vibrometer. Detection images of the composite plate with multiple surface defects at various directions are obtained. The results show that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures. PMID:26907891

  7. The Architecture of an LWA Station - A New Phased-array Radio Telescope

    NASA Astrophysics Data System (ADS)

    Craig, Joseph; Rickard, L.; Ellingson, S.; Taylor, G.; Pihlstrom, Y.; Kassim, N.; Ray, P.; Clarke, T.; D'Addario, L.; Navarro, R.; Cohen, A.; Crane, P.; Hicks, B.; Polisensky, E.; Schmitt, H.; Cox, L.

    2009-05-01

    The Long Wavelength Array (LWA) is part of a new class of large low-frequency interferometric telescopes. The complete LWA will consist of more than 50 phased array "stations" distributed over a roughly 400 km diameter region in New Mexico. Each station will consist of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy with a resolution of 8" to 2" (20 to 80 MHz). Phase I of the LWA is nearly complete, with completion of PDR, construction of the first full station (LWA-1) in 2009-10, and operation as a stand-alone instrument in 2010. Utilizing modern FPGA computing, LWA-1 will form four independent (in both frequency and pointing) beams on the sky, and provide instantaneous bandwidths of 8 MHz per beam, spectral resolutions down to 100 Hz, and temporal resolutions down to 0.1 ms in the range of 10 to 88 MHz. Signals from 512 dipole antennas will be digitized without frequency conversion (a homodyne receiver architecture), allowing direct beam-formation of the entire LWA bandwidth. As the station will operate as a fully electronic phased array, very little repointing time is required. This will allow the beams to be cycled rapidly among many calibration sources on millisecond timescales. This scheme could provide real-time calibration of the turbulent ionospheric conditions, which limit both resolution and sensitivity at low-frequencies. The LWA Project is funded through a contract from the Office of Naval Research to the University of New Mexico. Partnering with UNM are the Naval Research Laboratory, Virginia Tech, the Jet Propulsion Laboratory, Los Alamos National Laboratory, and the University of Iowa. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding.

  8. Flare-antenna unit for system in which flare is remotely activated by radio

    NASA Astrophysics Data System (ADS)

    Hiltz, Frederick F.; Wilson, Charles E.

    1995-06-01

    A flare-antenna assembly has flare material enclosed in a cylindrical antenna and forms part of a marker beacon. The flare aids in the search for the marker beacon by providing means for both visual and infrared detection. The flare is actuated in response to a specific remote radio signal being received by the antenna. The received signal is decoded by the electronic system within the marker beacon. If the received signal meets the necessary criteria the electronic system generates an electrical signal that detonates a squib embedded in the flare material. The detonation of the squib activates the flare.

  9. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  10. W-band Phased Array Systems using Silicon Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Kim, Sang Young

    This thesis presents the silicon-based on-chip W-band phased array systems. An improved quadrature all-pass filter (QAF) and its implementation in 60--80 GHz active phase shifter using 0.13 microm SiGe BiCMOS technology is presented. It is demonstrated that with the inclusion of an Rs/R in the high Q branches of C and L, the sensitivity to the loading capacitance, therefore the I/Q phase and amplitude errors are minimized. This technique is especially suited for wideband millimeter-wave circuits where the loading capacitance (CL) is comparable to the filter capacitance (C). A prototype 60--80 GHz active phased shifter using the improved QAF is demonstrated. The overall chip size is 1.15 x 0.92 mm2 with the power consumption of 108 mW. The measured S11 and S22 are < -10 dB at 60--80 GHz and 60--73 GHz, respectively. The measured average power gain is 11.0--14.7 dB at 60--79 GHz with the rms gain error of < 1.3 dB at 60--78 GHz for 4-bit phase states. And the rms phase error is < 9.1 degree at 60--78.5 GHz showing wideband 4-bit performance. The measured NF is 9--11.6 dB at 63--75 GHz and the measured P 1dB is -27 dBm at 70 GHz. In another project, a 67--78 GHz 4-bit passive phase shifter using 0.13 microm CMOS switches is demonstrated. The phase shifter is based on a low-pass pi-network. The chip size is 0.45 x 0.3 mm2 without pads and consumes virtually no power. The measured S11 and S22 is < -10 dB at 67--81 GHz for all 16 phase states. The measured gain of 4-bit phase shifter is -19.2 +/- 3.7 dB at 77 GHz with the rms gain error of < 11.25 degree at 67--78 GHz. And the measured rms phase error is < 2.5 dB at 67--78 GHz. The measured P1dB is > 8 dBm and the simulated IIP3 is > 22 dBm. A low-power 76--84 GHz 4-element phased array receiver using the designed passive phase shifter is presented. The power consumption is minimized by using a single-ended design and alternating the amplifiers and phase shifter cells to result in a low noise figure at a low power

  11. Research on the Calculated Methods of Active Control Value for Antenna Panel Deformations under Gravity

    NASA Astrophysics Data System (ADS)

    Fu, L.; Zhong, W. Y.; Qiao, H. H.; Liu, G. X.; Qian, H. L.

    2015-07-01

    The methods of ideal reflector surface, two-parameter, five-parameter, and six-parameter best-fit paraboloid are presented in this paper. Based on these methods, the adjustment values of gravity deformations are calculated for the main reflector of large-scale Cassegrain antenna. Accordingly, the positions of subreflector are corrected, and the effects of offset-focus on electric performance are also analyzed. Taking Shanghai 65 m antenna as a research object, the adjustment values of actuator and hexapod, the accuracy of the main reflector surface, and the pointing error after offsetting the focus are contrasted. As a result, the method of six-parameter best-fit paraboloid is ideal to calculate active control value for antenna panels after the effects of feed defocus have been adjusted and modified. The results offer data for the active control of antenna.

  12. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.

    2006-01-01

    NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  13. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.

    2007-01-01

    NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  14. Endfire tapered slot antennas on dielectric substrates

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-01-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  15. Endfire tapered slot antennas on dielectric substrates

    NASA Astrophysics Data System (ADS)

    Yngvesson, K. S.; Schaubert, D. H.; Korzeniowski, T. L.; Kollberg, E. L.; Thungren, T.

    1985-12-01

    Endfire-tapered slot antennas are suitable for many integrated circuit applications, imaging and phased arrays. An investigation of single elements of such antennas, including slots which are exponentially tapered (Vivaldi), linearly tapered, and constant width. For antennas of all types, a good general agreement is obtained for curves of beamwidth-versus-length, normalized to wavelength, when one compares the data with that for traveling-wave antennas published by Zucker (1961). An important condition for this agreement is that the effective dielectric thickness, defined in the text, is in a certain optimum range. This condition is qualitatively explained in terms of the theory for traveling-wave antennas.

  16. The Dynein Motor is the Basis of Active Oscillations of Mosquito Antennae

    NASA Astrophysics Data System (ADS)

    Warren, B.; Lukashkin, A. N.; Russell, I. J.

    2009-02-01

    The driver responsible for spontaneous oscillations of the mosquito (Culex quinquefasciatus) antennae was investigated. The activation energy derived from the temperature dependence of the spontaneous oscillation frequency is 30 kJ/mol suggesting a dynein ATPase is responsible. Colchicine application abolished spontaneous oscillations but left transduction intact. Hence, the transduction apparatus is thought not to be responsible for the spontaneous oscillations of the antennae.

  17. PMN-PT single-crystal high-frequency kerfless phased array.

    PubMed

    Chen, Ruimin; Cabrera-Munoz, Nestor E; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K Kirk

    2014-06-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at -6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  18. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  19. Ultrasonic Phased Array Simulations of Welded Components at NASA

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.

    2009-01-01

    Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increasing role in the future for nondestructive evaluation in order to better understand the physics of the inspection process, to prove or disprove the feasibility for an inspection method or inspection scenario, for inspection optimization, for better understanding of experimental results, and for assessment of probability of detection. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles. Keywords: nondestructive evaluation, computational simulation, ultrasonics, weld, modeling, phased array

  20. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  1. Robotic inspection of fiber reinforced composites using phased array UT

    NASA Astrophysics Data System (ADS)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  2. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  3. Detection Performance of a Diffusive Wave Phased Array

    NASA Astrophysics Data System (ADS)

    Morgan, Stephen P.

    2004-04-01

    Diffusive wave phased arrays have been demonstrated to be a sensitive method of detecting inhomogeneities embedded in heavily scattering media. However, the increase in sensitivity is coupled with an increase in noise, so that the optimum performance may not be obtained when the sources are modulated in antiphase. The performance of a range of configurations in the presence of Gaussian noise is investigated by using probabilistic detection theory. A model of diffusive wave propagation through scattering media is used to demonstrate that the phase performance can be improved by controlling the relative phase difference between the two sources. However, the best performance is obtained by using the amplitude response of a single source system. The major benefit of a phased array system is therefore the rejection of common systematic noise.

  4. Phased Array Probe Optimization for the Inspection of Titanium Billets

    NASA Astrophysics Data System (ADS)

    Rasselkorde, E.; Cooper, I.; Wallace, P.; Lupien, V.

    2010-02-01

    The manufacturing process of titanium billets can produce multiple sub-surface defects that are particularly difficult to detect during the early stages of production. Failure to detect these defects can lead to subsequent in-service failure. A new and novel automated quality control system is being developed for the inspection of titanium billets destined for use in aerospace applications. The sensors will be deployed by an automated system to minimise the use of manual inspections, which should improve the quality and reliability of these critical inspections early on in the manufacturing process. This paper presents the first part of the work, which is the design and the simulation of the phased array ultrasonic inspection of the billets. A series of phased array transducers were designed to optimise the ultrasonic inspection of a ten inch diameter billet made from Titanium 6Al-4V. A comparison was performed between different probes including a 2D annular sectorial array.

  5. Antenna and coil design for wireless signal detection and charging of embedded power active contact lens.

    PubMed

    Ng, Benny; Heckler, Paul; Do, Alex; Azar, Phillip; Leon, Errol; Smilkstein, Tina

    2014-01-01

    This paper presents a screen printed 2.4 GHz antenna and induction charging coil for an active contact lens with a single large pixel user display and on-board 3.8 V 5 uAh rechargeable battery. The antenna traces are printed using silver conductive paste on a 25 um polyethylene terephthalate (PET) substrate. The incoming signal from the antenna feeds into an IC that amplifies and rectifies the signal. The coil provides wireless energy transfer to inductively charge a thin film battery [1] located on the contact lens. The printed antenna achieved a S11 of -4 dB at 2.4 GHz and a gain of -13 dB. PMID:25571353

  6. Ultrasonic Phased Array Inspection of Seeded Titanium Billet

    NASA Astrophysics Data System (ADS)

    Friedl, J. H.; Gray, T. A.; Khandelwal, P.; Dunhill, T.

    2004-02-01

    As part of efforts by Rolls-Royce to evaluate the use of ultrasonic phased arrays for inspection of titanium billets, a series of ultrasonic phased array inspections were performed at the Center for Nondestructive Evaluation (CNDE). The inspections were performed using a sectorial-annular array designed especially for titanium billets by R/D Tech and supplied to Rolls-Royce. The billet test piece is seeded with thirteen yttria disks, each located at successive depths below the outer diameter surface to just past the billet centerline. The phased array inspections employed both fixed-focus and dynamic-depth-focus (DDF) focal laws in conjunction with several depth gating schemes. Aperture and focal parameters were changed as a function of depth when using fixed-focus focal laws. Results include characterization of transducer performance and delay-time correction of imperfections, signal-to-noise measurements for the yttria disks in the billet test piece, and effects of probe misalignment on flaw sensitivity.

  7. MEMS-based phased arrays for army applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Holt, James C.; Mullins, James H.; Hudson, Tracy; Rock, Janice

    2007-04-01

    The Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) initiated a research and development project several years ago to develop Micro Electro-Mechanical Systems (MEMS)-based phased arrays to provide rapid beam steering for sensors, optical and Radio Frequency (RF) missile seekers, and RF communication links. In particular, the joint AMRDEC/Army Research Laboratory (ARL) project, which leverages low-cost phased array components developed under the Defense Advanced Research Projects Agency (DARPA) Low Cost Cruise Missile Defense (LCCMD) project, is developing RF switches, phase shifters, and passive phased sub-arrays to provide a fast scanning capability for pointing, acquisition, tracking, and data communication; and rugged, optical MEMS-based phased arrays to be employed in small volume, low-cost Laser Detection and Ranging (LADAR) seekers. The current status of the project is disclosed in this paper. Critical technical challenges, which include design and fabrication of the RF switches and phase shifters, design and fabrication of micro lens arrays, control of beam steering, scanning angular resolution and array losses, are discussed. Our approach to overcoming the technical barriers and achieving required performance is also discussed. Finally, the validity of a MEMS technology approach against competing low cost technologies is presented.

  8. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  9. Robustness of plasmon phased array nanoantennas to disorder

    PubMed Central

    Arango, Felipe Bernal; Thijssen, Rutger; Brenny, Benjamin; Coenen, Toon; Koenderink, A. Femius

    2015-01-01

    We present cathodoluminescence experiments that quantify the response of plasmonic Yagi-Uda antennas fabricated on one-dimensional silicon nitride waveguides as function of electron beam excitation position and emission wavelength. At the near-infrared antenna design wavelength cathodoluminescence signal robustly is strongest when exciting the antenna at the reflector element. Yet at just slightly shorter wavelengths the signal is highly variable from antenna to antenna and wavelength to wavelength. Hypothesizing that fabrication randomness is at play, we analyze the resilience of plasmon Yagi-Uda antennas to varations in element size of just 5 nm. While in our calculations the appearance of directivity is robust, both the obtained highest directivity and the wavelength at which it occurs vary markedly between realizations. The calculated local density of states is invariably high at the reflector for the design wavelength, but varies dramatically in spatial distribution for shorter wavelengths, consistent with the cathodoluminescence experiments. PMID:26038871

  10. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas.

    PubMed

    Berrier, Audrey; Ulbricht, Ronald; Bonn, Mischa; Rivas, Jaime Gómez

    2010-10-25

    Localized surface plasmon polaritons (LSPPs) provide an efficient means of achieving extreme light concentration. In recent years, their active control has become a major aspiration of plasmonic research. Here, we demonstrate direct control of semiconductor bowtie antennas, enabling active excitation of LSPPs, at terahertz (THz) frequencies. We modify the LSPPs by ultrafast optical modulation of the free carrier density in the plasmonic structure itself, allowing for active control of the semiconductor antennas on picosecond timescales. Moreover, this control enables the manipulation of the field intensity enhancements in ranges of four orders of magnitude. PMID:21164664

  11. Wide-Band, Wide-Scan Antenna For Circular Polarization

    NASA Technical Reports Server (NTRS)

    Huang, John

    1988-01-01

    Circular polarization generated by linearly polarized elements. Basic two-by-two subarray of antenna elements made of microstrip patches. Patches arranged in orthogonal pattern. Fed through different phase shifters so signal at feed points have same orthogonal relationship in phase. Antennas of this general type useful in communications and phased-array radar.

  12. Ultrasonic Phased Array Inspection Simulations of Welded Components at NASA

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.

    2009-01-01

    Comprehensive and accurate inspections of welded components have become of increasing importance as NASA develops new hardware such as Ares rocket segments for future exploration missions. Simulation and modeling will play an increased role in the future for nondestructive evaluation in order to better understand the physics of the inspection process and help explain the experimental results. It will also help to prove or disprove the feasibility for an inspection method or inspection scenario, help optimize inspections, and allow to a first approximation limits of detectability. This study presents simulation and experimental results for an ultrasonic phased array inspection of a critical welded structure important for NASA future exploration vehicles.

  13. Welding Process Feedback and Inspection Optimization Using Ultrasonic Phased Arrays

    NASA Astrophysics Data System (ADS)

    Hopkins, D. L.; Neau, G. N.; Davis, W. B.

    2009-03-01

    Measurements performed on friction-stir butt welds in aluminum and resistance spot welds in galvanized steel are used to illustrate how ultrasonic phased arrays can be used to provide high-resolution images of welds. Examples are presented that demonstrate how information extracted from the ultrasonic signals can be used to provide reliable feedback to welding processes. Modeling results are used to demonstrate how weld inspections can be optimized using beam-forming strategies that help overcome the influence of surface conditions and part distortion.

  14. Jet Noise Source Localization Using Linear Phased Array

    NASA Technical Reports Server (NTRS)

    Agboola, Ferni A.; Bridges, James

    2004-01-01

    A study was conducted to further clarify the interpretation and application of linear phased array microphone results, for localizing aeroacoustics sources in aircraft exhaust jet. Two model engine nozzles were tested at varying power cycles with the array setup parallel to the jet axis. The array position was varied as well to determine best location for the array. The results showed that it is possible to resolve jet noise sources with bypass and other components separation. The results also showed that a focused near field image provides more realistic noise source localization at low to mid frequencies.

  15. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  16. Sever Hazards Prediction Method by Using Phased Array Weather Radar (PAWR)

    NASA Astrophysics Data System (ADS)

    Michimoto, K.

    2014-12-01

    We are now research several sever hazards of meteorological phenomena, for example, thunderstorm, hail, heavy rain-fall, tornado, etc., by using Phased Array Weather Radar (PAWR). In this paper, we present our analyses between PAWRs echo data temporal variations and thunderstorms lightning activity, hail fall and/or heavy rain-fall rate, etc. We will develop nowcast and/or forecast methods of sever hazards and, in near future, we will prepare new prediction numerical model of sever hazards by using CReSS (Cloud Resolving Storm Simulator).

  17. Towards the development of a high-sensitivity cryogenic phased array feed

    NASA Astrophysics Data System (ADS)

    Roshi, D. A.; Warnick, K. F.; Brandt, J.; Fisher, J. R.; Ford, P.; Jeffs, B. D.; Marganian, P.; McLeod, M.; Mello, M.; Morgan, M.; Norrod, R.; Shillue, W.; Simon, R.; White, S.

    2014-08-01

    A cryogenic phased array feed operating at L-band is in development for the Green Bank Telescope (GBT). The feed consists of electrically small feed elements optimized for active impedance matching to cooled front end low noise amplifiers (LNAs), down-converters, a real-time streaming data acquisition system, and beamforming algorithms applied in post-processing. A prototype cryogenic array feed was recently tested on the GBT. This results will be an important step towards the development of a new receiver instrument, the focal L-band array for the GBT (FLAG).

  18. Printed-Circuit Cross-Slot Antenna

    NASA Technical Reports Server (NTRS)

    Foy, Wong; Chung, Hsien-Hsien; Peng, Sheng Y.

    1990-01-01

    Coupling between perpendicular slots suppressed. Balanced feed configuration minimizes coupling between slots of printed-circuit cross-slot antenna unit. Unit and array have conventional cavity-backed-printed-circuit, crossed-slot antenna design. Strip-line feeders behind planar conductive antenna element deliver power to horizontal slot in opposite phase. As result, little or no power propagates into vertical slot. Similar considerations apply to strip lines that feed vertical slot. Units of this type elements of phased-array antennas for radar, mobile/satellite communications, and other applications requiring flush mounting and/or rapid steering of beams with circular polarization.

  19. Development and Observation of the Phase Array Radar at X band

    NASA Astrophysics Data System (ADS)

    Ushio, T.; Shimamura, S.; Wu, T.; Kikuchi, H.; Yoshida, S.; Kawasaki, Z.; Mizutani, F.; Wada, M.; Satoh, S.; Iguchi, T.

    2013-12-01

    A new Phased Array Radar (PAR) system for thunderstorm observation has been developed by Toshiba Corporation and Osaka University under a grant of NICT, and installed in Osaka University, Japan last year. It is now well known that rapidly evolving severe weather phenomena (e.g., microbursts, severe thunderstorms, tornadoes) are a threat to our lives particularly in a densely populated area and is closely related to the production of lightning discharges. Over the past decade, mechanically rotating radar systems at the C-band or S-band have been proved to be effective for weather surveillance especially in a wide area more than 100 km in range. However, severe thunderstorm sometimes develops rapidly on the temporal and spatial scales comparable to the resolution limit (-10 min. and -500m) of typical S-band or C-band radar systems, and cannot be fully resolved with these radar systems. In order to understand the fundamental process and dynamics of such fast changing weather phenomena like lightning and tornado producing thunderstorm, volumetric observations with both high temporal and spatial resolution are required. The phased array radar system developed has the unique capability of scanning the whole sky with 100m and 10 to 30 second resolution up to 60 km. The system adopts the digital beam forming technique for elevation scanning and mechanically rotates the array antenna in azimuth direction within 10 to 30 seconds. The radar transmits a broad beam of several degrees with 24 antenna elements and receives the back scattered signal with 128 elements digitizing at each elements. Then by digitally forming the beam in the signal processor, the fast scanning is realized. After the installation of the PAR system in Osaka University, the initial observation campaign was conducted in Osaka urban area with Ku-band Broad Band Radar (BBR) network, C-band weather radar, and lightning location system. The initial comparison with C band radar system shows that the developed

  20. Simplified System Efficiency Functions for Linear Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Margetan, F. J.; Gray, T. A.; Huang, Ruiju

    2010-02-01

    Computer models are often used to simulate ultrasonic inspections of industrial components. One ingredient of such simulations is a frequency dependent function which describes the efficiency of the inspection system for converting electrical energy to sound and vice versa. For a phased-array transducer there are many such efficiency functions, namely one for each independent pair of piezoelectric elements. In this paper we describe a simplified, approximate approach for specifying these functions. Element-to-element differences are accounted for by two "residual" parameters: (1) a strength factor which describes the relative "hotness" of an element compared to its peers; and (2) a time delay which describes the extent to which an element fires later or earlier than its peers when all elements are instructed to fire in unison. These residuals are used to relate the system efficiency function for any pair of elements to that of an average efficiency which can be readily measured. The use of this approach is demonstrated using front-wall and back-wall responses from a stainless steel block, as acquired using a 5-MHz, 32-element, linear phased-array transducer. Good agreement was found between measured and simulated surface responses.

  1. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  2. A 220 GHz reflection-type phased array concept study

    NASA Astrophysics Data System (ADS)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2011-05-01

    The goal of this project is to enable light-weight, durable, and portable systems capable of performing standoff detection of person-borne improvised explosive devices (PB-IEDs) through the development of millimeter-wave reflection-type phased arrays. Electronic beam steering eliminates the need for complex mechanical scanners that are commonly implemented with millimeter-wave imaging systems and would reduce overall system size and weight. We present a concept study of a 220 GHz reflection-type phased array for the purpose of performing beam scanning of a confocal reflector system. Requirements for effective imaging of the desired target region are established, including spatial resolution, total scan angle, and number of image pixels achievable. We examine the effects of array architecture on beam characteristics as it is scanned off broadside, including Gaussicity and encircled energy. Benchmark requirements are determined and compared with the capabilities of several potential phase shifter technologies, including MEMS-based variable capacitor phase shifters, switches, and varactor diode-based phase shifters.

  3. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas. PMID:27494498

  4. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  5. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  6. An Active K/K-Band Antenna Array for the NASA ACTS Mobile Terminal

    NASA Technical Reports Server (NTRS)

    Tulintseff, A.; Crist, R.; Densmore, A.; Sukamto, L.

    1993-01-01

    An active K/K-band antenna array is currently under development for NASA's ACTS Mobile Terminal (AMT). The AMT task will demonstrate voice, data, and video communications to and from the AMT vehicle in Los Angeles, California, and a base station in Cleveland, Ohio, via the ACTS satellite at 30 and 20 GHz.

  7. Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)

    NASA Technical Reports Server (NTRS)

    Sato, T.; Inooka, Y.; Fukao, S.; Kato, S.

    1986-01-01

    As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed.

  8. Notch Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.

    2004-01-01

    Notch antennas, also known as the tapered slot antenna (TSA), have been the topics of research for decades. TSA has demonstrated multi-octave bandwidth, moderate gain (7 to 10 dB), and symmetric E- and H- plane beam patterns and can be used for many different applications. This chapter summarizes the research activities on notch antennas over the past decade with emphasis on their most recent advances and applications. This chapter begins with some discussions on the designs of single TSA; then follows with detailed discussions of issues associated with TSA designs and performance characteristics. To conclude the chapter, some recent developments in TSA arrays and their applications are highlighted.

  9. Hyperthermia and inhomogeneous tissue effects using an Annular Phased Array

    SciTech Connect

    Turner, P.F.

    1984-08-01

    A regional hyperthermia Annular Phased Array (APA) applicator is described, and examples of its various heating patterns, obtained by scanning the electric fields with a small E-field sensor, are illustrated. Also shown are the effects of different frequencies of an elliptical phantom cylinder having a 1-cm-thick artificial fat wall and the general dimensions of the human trunk. These studies show the APA's ability to achieve uniform heating at lower frequencies (below 70 MHz) or to focus central heating at moderately higher frequencies (above 70 MHz). The influence of human anatomical contours in altering heating patterns is discussed using results obtained with a female mannequin having a thin latex shell filled with tissue-equivalent phantom. Field perturbations caused by internally embedded low-dielectric structures are presented, showing the localized effects of small objects whose surfaces are perpendicular to the electric field.

  10. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  11. Improved Phased Array Imaging of a Model Jet

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Podboy, Gary G.

    2010-01-01

    An advanced phased array system, OptiNav Array 48, and a new deconvolution algorithm, TIDY, have been used to make octave band images of supersonic and subsonic jet noise produced by the NASA Glenn Small Hot Jet Acoustic Rig (SHJAR). The results are much more detailed than previous jet noise images. Shock cell structures and the production of screech in an underexpanded supersonic jet are observed directly. Some trends are similar to observations using spherical and elliptic mirrors that partially informed the two-source model of jet noise, but the radial distribution of high frequency noise near the nozzle appears to differ from expectations of this model. The beamforming approach has been validated by agreement between the integrated image results and the conventional microphone data.

  12. Phased-Array Measurements of Single Flow Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Lee, Sang Soo

    2005-01-01

    A 16 microphone phased-array system has been successfully applied to measure jet noise source distributions. In this study, a round convergent nozzle was tested at various hot and cold flow conditions: acoustic Mach numbers are between 0.35 and 1.6 and static temperature ratios are varied from cold to 2.7. The classical beamforming method was applied on narrowband frequencies. From the measured source distributions locations of peak strength were tracked and found to be very consistent between adjacent narrowband frequencies. In low speed heated and unheated jets, the peak source locations vary smoothly from the nozzle exit to downstream as the frequency is decreased. When the static temperature ratio was kept constant, the peak source position moved downstream with increasing acoustic Mach number for the Strouhal numbers smaller than about 1.5. It was also noted that the peak source locations of low frequencies occur farther downstream than the end of potential core.

  13. On the Fringe Field of Wide Angle LC Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Wang, Xighua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.

    2004-01-01

    For free space laser communication, light weighted large deployable optics is a critical component for the transmitter. However, such an optical element will introduce large aberrations due to the fact that the surface figure of the large optics is susceptable to deformation in the space environment. We propose to use a high-resolution liquid crystal spatial light modulator to correct for wavefront aberrations introduced by the primary optical element, and to achieve very fine beam steering and shaping at the same time. A 2-D optical phased array (OPA) antenna based on a Liquid Crystal on Silicon (LCOS) spatial light modulator is described. This device offers a combination of low cost, high resolution, high accuracy, high diffraction efficiency at video speed. To quantitatively understand the influence factor of the different design parameters, a computer simulation of the device is given by the 2-D director simulation and the Finite Difference Time domain (FDTD) simulation. For the 1-D OPA, we define the maximum steering angle to have a grating period of 8 pixel/reset scheme; as for larger steering angles than this criterion, the diffraction efficiency drops dramatically. In this case, the diffraction efficiency of 0.86 and the Strehl ratio of 0.9 are obtained in the simulation. The performance of the device in achieving high resolution wavefront correction and beam steering is also characterized experimentally.

  14. An advanced Ka band phased array communication system at commercial frequencies

    NASA Astrophysics Data System (ADS)

    Wald, Lawrence; Kacpura, Thomas; Kershner, Dennis

    2000-01-01

    The Glenn Research Center (GRC) Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communication system that transmits information from a technology payload carried by the Space Shuttle in low-Earth orbit (LEO) to a small receiving terminal on the Earth. The Shuttle-based communications package will utilize a solid-state, Ka-band phased array antenna that electronically steers the 19.05 Ghz RF signal toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The project will also demonstrate new digital modulation and processing technology that will allow transmission of user/platform data at rates up to 1200 Mbits per second. This capability will enable the management of the substantially increased amounts of data to be collected from the International Space Station (ISS) or other LEO platforms directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. .

  15. Ultrabroadband phased-array radio frequency (RF) receivers based on optical techniques

    NASA Astrophysics Data System (ADS)

    Overmiller, Brock M.; Schuetz, Christopher A.; Schneider, Garrett; Murakowski, Janusz; Prather, Dennis W.

    2014-03-01

    Military operations require the ability to locate and identify electronic emissions in the battlefield environment. However, recent developments in radio detection and ranging (RADAR) and communications technology are making it harder to effectively identify such emissions. Phased array systems aid in discriminating emitters in the scene by virtue of their relatively high-gain beam steering and nulling capabilities. For the purpose of locating emitters, we present an approach realize a broadband receiver based on optical processing techniques applied to the response of detectors in conformal antenna arrays. This approach utilizes photonic techniques that enable us to capture, route, and process the incoming signals. Optical modulators convert the incoming signals up to and exceeding 110 GHz with appreciable conversion efficiency and route these signals via fiber optics to a central processing location. This central processor consists of a closed loop phase control system which compensates for phase fluctuations induced on the fibers due to thermal or acoustic vibrations as well as an optical heterodyne approach for signal conversion down to baseband. Our optical heterodyne approach uses injection-locked paired optical sources to perform heterodyne downconversion/frequency identification of the detected emission. Preliminary geolocation and frequency identification testing of electronic emissions has been performed demonstrating the capabilities of our RF receiver.

  16. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    SciTech Connect

    Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

  17. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  18. Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.

    2011-07-31

    Ultrasonic phased array data were collected on a removed-from-service CRDM nozzle specimen to assess a previously reported leak path. First a mock-up CRDM specimen was evaluated that contained two 0.076-mm (3.0-mil) interference fit regions formed from an actual Inconel CRDM tube and two 152.4-mm (6.0-in.) thick carbon steel blocks. One interference fit region has a series of precision crafted electric discharge machining (EDM) notches at various lengths, widths, depths, and spatial separations for establishing probe sensitivity, resolution and calibration. The other interference fit has zones of boric acid (crystal form) spaced periodically between the tube and block to represent an actively leaking CRDM nozzle assembly in the field. Ultrasonic phased-array evaluations were conducted using an immersion 8-element annular 5.0-MHz probe from the tube inner diameter (ID). A variety of focal laws were employed to evaluate the interference fit regions and J grove weld, where applicable. Responses from the mock-up specimen were evaluated to determine detection limits and characterization ability as well as contrast the ultrasonic response differences with the presence of boric acid in the fit region. Nozzle 63, from the North Anna Unit-2 nuclear power plant, was evaluated to assess leakage path(s) and was destructively dismantled to allow a visual verification of the leak path(s).

  19. Microseismicity and b-values of the Wabash Valley Intraplate Seismic Zone from short-period phased arrays

    NASA Astrophysics Data System (ADS)

    Conder, J. A.; Milliron, K.; Zhu, L.

    2014-12-01

    Two phased arrays of 9 short-period stations each are currently recording in the Wabash Valley Seismic Zone (WVSZ) as part of the EarthScope Wabash FlexArray project. The phased arrays aim to address the level of microseismicity produced by the intraplate seismic zone. Although seismic hazard maps of the U.S. Midwest are dominated by the New Madrid Seismic Zone (NMSZ), the WVSZ has released 40% more seismic energy than the NMSZ over the last half century with four events larger than M5 and only one in the NMSZ reaching that threshold. A comparison of event frequency statistics suggests two markedly different systems. The NMSZ exhibits b-values near unity, but the WVSZ exhibits much smaller b-values in the 0.6-0.7 range. Deviations less than unity may be controlled through crack geometry and/or greater shear stresses possibly indicating a time-dependent, or migrating, behavior in mid-continent. Alternatively, it may be the case that the low b-values are simply a reflection of less complete catalog than the NMSZ. A previous short-term microseismicity study of the WVSZ shows a dearth of non-anthropogenic sources in the Wabash. The phased array near the central portion of the WVSZ largely confirms the previously noted lack of substantial natural seismicity along the central portion of the fault system and the associated low b-values. However, the phased array near the southern termination of the fault system shows significantly more activity. Importantly, the largest events from the Wabash, including the 2008 M5.4 Mt. Carmel and the 1968 M5.5 Harrisburg events occurred near the northern and southern ends of the fault system. The phased arrays seem to indicate different portions of the fault system yielding different levels of activity. As the catalogs become more complete, there is a preliminary suggestion that the anomalously low b-values for the Wabash do not denote a system under significantly larger stresses, but rather a conflation of regions along-strike of the

  20. Through Weld Inspection of Wrought Stainless Steel Piping Using Phased Arrays

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2004-12-31

    Outline: Discuss far-side weld problem and phased array techniques applied. Describe laboratory work on flawed piping specimens using L- and S-wave arrays and provide synopsis of results. Discuss conclusions ofr capability of phased array as applied to austenitic welds. Research Approach: Evaluate phased arrays on unifornly-welded piping specimens. Apply best methods to non-uniform welds. Correlate acoustic responses as function of weld microstructures.

  1. Further Development of a Conformable Phased Array Device for Inspection Over Irregular Surfaces

    NASA Astrophysics Data System (ADS)

    Long, R.; Cawley, P.

    2008-02-01

    Further development of a conformable phased array device that allows reliable ultrasonic inspection of components with irregular surfaces has been undertaken. The device uses a standard linear phased array transducer, which is coupled to the surface under test by a water path, encapsulated by a low loss, castable polyurethane rubber membrane. It is shown that the conformable membrane coupled phased array device provides a solution for ultrasonic inspection around the weld region of welded pipes.

  2. Development of ultrasonic phased array systems for applications in tube and pipe inspection

    NASA Astrophysics Data System (ADS)

    Guo, Yanming; Yuan, Qingshan; Sun, Zhigang; Logan, Kevin; Lam, Clive

    2012-05-01

    This paper reports the development of ultrasonic phased array systems used for tubular inspection. First the design of a linear phased array is discussed with considerations of both theoretically and practically important factors. Then systems utilizing the linear phased array are introduced for different applications. To evaluate the system performance, tests were performed on flat bottom holes and artificial notches, including notches in longitudinal, transverse, and oblique orientations made according to API specifications. Test results have been presented.

  3. Microstrip technology and its application to phased array compensation

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.; Daniels, W. D.

    1972-01-01

    A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.

  4. A New 50 MHz Phased-Array Radar on Pohnpei: A Fresh Perspective on Equatorial Plasma Bubbles

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    2014-12-01

    A new, phased-array antenna-steering capability has recently been added to an existing 50-MHz radar on Pohnpei, Federated States of Micronesia, in the central Pacific region. This radar, which we refer to as PAR-50, is capable of scanning in the vertical east-west plane, ±60° about the zenith. The alignment in the magnetic east-west direction allows detection of radar backscatter from small-scale irregularities that develop in the equatorial ionosphere, including those associated with equatorial plasma bubbles (EPBs). The coverage, about ±800 km in zonal distance, at an altitude of 500 km, is essentially identical to that provided by ALTAIR, a fully-steerable incoherent-scatter radar, which has been used in a number of studies of EPBs. Unlike ALTAIR, which has only been operated for several hours on a handful of selected nights, the PAR-50 has already been operated continuously, while performing repeated scans, since April 2014. In this presentation, we describe the PAR-50, then, compare it to ALTAIR and the Equatorial Atmospheric Radar (EAR); the latter is the only other phased-array system in use for equatorial studies. We then assess what we have learned about EPBs from backscatter radar measurements, and discuss how the PAR-50 can provide a fresh perspective to our understanding. Clearly, the ability to sort out the space-time ambiguities in EPB development from sequences of spatial maps of EPBs is crucial to our understanding of how EPBs develop.

  5. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    NASA Technical Reports Server (NTRS)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  6. Prospects for tracking spacecrafts within 2 million Km of Earth with phased array antennas

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Jamnejad, V.; Cesarone, R.

    2003-01-01

    Recent advances in space technology for Earth observations, global communications, and positioning systems have created heavy traffic at a variety of orbits. These include smart sensors in low Earth orbits (LEO), internet satellites in LEO and GEO orbits, Earth observing satellites in high Earth orbits (HEO), observatory class satellites at Lagrangian libration points, and those heading for deep space.

  7. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    NASA Technical Reports Server (NTRS)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  8. Phase interpolation circuits using frequency multiplication for phased arrays

    NASA Technical Reports Server (NTRS)

    Caron, P. R.; Mailloux, R. J.

    1970-01-01

    Antenna phasing circuit is described with the following advantages - 1/ increased number of phased elements, 2/ current repetition for each array element, 3/ circuit simplicity, and 4/ accurate phase interpolation. This circuit functions with Huggins Scan or with nearly any other phasing system.

  9. True-time-delay photonic beamformer for an L-band phased array radar

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications

  10. Advanced microwave radiometer antenna system study

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.; Villeneuve, A. T.; Seaton, A. F.

    1976-01-01

    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison.

  11. Land vehicle antennas for satellite mobile communications

    NASA Technical Reports Server (NTRS)

    Haddad, H. A.; Pieper, B. V.; Mckenna, D. B.

    1985-01-01

    The RF performance, size, pointing system, and cost were investigated concepts are: for a mechanically steered 1 x 4 tilted microstrip array, a mechanically steered fixed-beam conformal array, and an electronically steered conformal phased array. Emphasis is on the RF performance of the tilted 1 x 4 antenna array and methods for pointing the various antennas studied to a geosynchronous satellite. An updated version of satellite isolations in a two-satellite system is presented. Cost estimates for the antennas in quantities of 10,000 and 100,000 unites are summarized.

  12. Matrix phased arrays for the inspection of CFRP-components

    SciTech Connect

    Kreutzbruck, M.; Brackrock, D.; Brekow, G.; Montag, H.-J.; Boehm, R.; Illerhaus, B.

    2014-02-18

    Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced with different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.

  13. Matrix phased array (MPA) imaging technology for resistance spot welds

    SciTech Connect

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  14. Matrix phased array (MPA) imaging technology for resistance spot welds

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  15. High power compatible internally sensed optical phased array.

    PubMed

    Roberts, Lyle E; Ward, Robert L; Francis, Samuel P; Sibley, Paul G; Fleddermann, Roland; Sutton, Andrew J; Smith, Craig; McClelland, David E; Shaddock, Daniel A

    2016-06-13

    The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics. This architecture is compatible with high power continuous wave laser sources (e.g., fiber amplifiers) up to 100 W per channel. The high-power compatible internally sensed OPA was implemented experimentally using commercial 15 W fiber amplifiers, demonstrating an output RMS phase stability of λ/194, and the ability to steer the beam at up to 10 kHz. PMID:27410363

  16. Multiple-frequency phased array patterns for therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Ballard, John R.; Liu, Dalong; Casper, Andrew J.; Wan, Yayun; Almekkawy, Mohamed; Ebbini, Emad S.

    2012-10-01

    Modern transducer technology allows for the design and implementation of therapeutic arrays with relatively wide bandwidths (>50%) and low cross coupling between elements. We present results from a 3.5 MHz, 64-element prototype designed for small-animal and superficial therapeutic HIFU applications (Imasonic, Inc.) This transducer has a 58% 6-dB fractional BW average on its elements allowing for therapeutic output in the frequency range of 2.7 - 4.6 MHz. We present a simulation/experimental study to evaluate and optimize the focusing capabilities of the phased array prototype when excited by multiple-frequency components. Preliminary results have shown that multiple-frequency excitation may be beneficial in enhancing the therapeutic effects of HIFU beams. A multiple-focus pattern synthesis algorithm for arrays excited by multiple-frequency signals has been developed and tested using linear pressure field simulations. The algorithm maintains the precise phase relationship between the frequency components at each focal spot to achieve a desirable outcome. Hydrophone measurements to validate the approach show that nonlinear effects at the focal location are more prominent with the frequency mixing compared to conventional single frequency excitation. An in vitro study of lesion formation in freshly excised porcine liver was investigated.

  17. Evolutionary Adaptive Discovery of Phased Array Sensor Signal Identification

    SciTech Connect

    Timothy R. McJunkin; Milos Manic

    2011-05-01

    Tomography, used to create images of the internal properties and features of an object, from phased array ultasonics is improved through many sophisiticated methonds of post processing of data. One approach used to improve tomographic results is to prescribe the collection of more data, from different points of few so that data fusion might have a richer data set to work from. This approach can lead to rapid increase in the data needed to be stored and processed. It also does not necessarily lead to have the needed data. This article describes a novel approach to utilizing the data aquired as a basis for adapting the sensors focusing parameters to locate more precisely the features in the material: specifically, two evolutionary methods of autofocusing on a returned signal are coupled with the derivations of the forumulas for spatially locating the feature are given. Test results of the two novel methods of evolutionary based focusing (EBF) illustrate the improved signal strength and correction of the position of feature using the optimized focal timing parameters, called Focused Delay Identification (FoDI).

  18. Theory of metascreen-based acoustic passive phased array

    NASA Astrophysics Data System (ADS)

    Li, Yong; Qi, Shuibao; Badreddine Assouar, M.

    2016-04-01

    The metascreen-based acoustic passive phased array provides a new degree of freedom for manipulating acoustic waves due to their fascinating properties, such as a fully shifting phase, keeping impedance matching, and holding subwavelength spatial resolution. We develop acoustic theories to analyze the transmission/reflection spectra and the refracted pressure fields of a metascreen composed of elements with four Helmholtz resonators (HRs) in series and a straight pipe. We find that these properties are also valid under oblique incidence with large angles, with the underlying physics stemming from the hybrid resonances between the HRs and the straight pipe. By imposing the desired phase profiles, the refracted fields can be tailored in an anomalous yet controllable manner. In particular, two types of negative refraction are exhibited, based on two distinct mechanisms: one is formed from classical diffraction theory and the other is dominated by the periodicity of the metascreen. Positive (normal) and negative refractions can be converted by simply changing the incident angle, with the coexistence of two types of refraction in a certain range of incident angles.

  19. Matrix phased arrays for the inspection of CFRP-components

    NASA Astrophysics Data System (ADS)

    Kreutzbruck, M.; Brackrock, D.; Brekow, G.; Montag, H.-J.; Boehm, R.; Illerhaus, B.

    2014-02-01

    Lightweight components are increasingly used in different industrial sectors such as transportation, energy generation and automotive. This growing field includes different types of CFRP-structures, hybrid materials and glued components showing - compared to their pure metallic counterparts- a significant more complicated structure in terms of internal interfaces and anisotropy of material parameters. In this work we present the use of matrix phased array to increase the amount of obtained information to enhance the inspection quality. We used different types of carbon materials such as 6 mm thick uni- and bidirectional prepreg specimens containing impact damages. The latter were introduced with different energy levels ranging from 1.3 to 7.2 J. By scanning a 2.25 MHz matrix array with 6 × 10 elements above the prepreg surface and using different angels of incidence a complete 3D-image was generated which allows the detection of defects as small as 1mm in a depth of 4 mm. A comparison with conventional approaches show that the signal-to-noise ratio can be highly increased. This enables us to visualize the region of damage within the impact zone, clearly showing the cone-like damage distribution along increasing material depth. The detection quality allows the estimation of the opening angles of the cone shaped damage, which can be used for further evaluation and quantitation of energy dependent impact damages.

  20. PARAS program: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Jakubowski, Antoni K.; Haynes, David A.; Nuss, Ken; Hoffmann, Chris; Madden, Michael; Dungan, Michael

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a Very Long Baseline Interferometry (VLBLI) scheme, would allow higher (than currently available) angular resolution and dynamic range in the maps, and the ability of observing rapidly changing astronomical sources. Using a passive phases array technology, the proposed design consists of 656 hexagonal modules forming a 150 meter diameter dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data is transmitted to telemetry stations on the ground. The truss frame supporting each observatory pane is a hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and bottom triangle. Attitude control and stationkeeping functions are performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and six hydrazine arcjets, the latter supported by a nuclear reactor. The total mass of the spacecraft is 22,060 kg.

  1. Thermal dispersion method for an ultrasonic phased-array transducer

    NASA Astrophysics Data System (ADS)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  2. Ultrasonic phased array inspection imaging technology for NDT of offshore platform structures

    NASA Astrophysics Data System (ADS)

    Shan, Baohua; Wang, Hua; Liang, Yongning; Duan, Zhongdong; Ou, Jinping

    2008-03-01

    In order to improve inspection result repetition and flaw ration veracity of manual ultrasonic inspection of offshore platform structure, an ultrasonic phased array inspection imaging technology for NDT of offshore platform structures is proposed in this paper. Aimed at the practical requirement of tubular joint welds inspection of offshore platform structures, the ultrasonic phased array inspection imaging system for offshore platform structures is developed, which is composed of computer, ultrasonic circuit system, scanning device, phased array transducer and inspection imaging software system. The experiment of Y shape tubular joint model of 60 degree is performed with the ultrasonic phased array inspection imaging system for offshore platform structures, the flaws characteristic could be exactly estimated and the flaws size could be measured through ultrasonic phased array inspection imaging software system for offshore platform structures. Experiment results show that the ultrasonic phased array inspection imaging technology for offshore platform structures is feasible, the ultrasonic phased array inspection imaging system could detect flaws in tubular joint model, the whole development trend of flaws is factually imaging by the ultrasonic phased array inspection technology of offshore platform structures.

  3. Frequency translating phase conjugation circuit for active retrodirective antenna array. [microwave transmission

    NASA Technical Reports Server (NTRS)

    Chernoff, R. (Inventor)

    1980-01-01

    An active retrodirective antenna array which has central phasing from a reference antenna element through a "tree" structured network of transmission lines utilizes a number of phase conjugate circuits (PCCs) at each node and a phase reference regeneration circuit (PRR) at each node except the initial node. Each node virtually coincides with an element of the array. A PCC generates the exact conjugate phase of an incident signal using a phase locked loop which combines the phases in an up converter, divides the sum by 2 and mixes the result with the phase in a down converter for phase detection. The PRR extracts the phase from the conjugate phase. Both the PCC and the PRR are not only exact but also free from mixer degeneracy.

  4. Phased array beamforming and imaging in composite laminates using guided waves

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-04-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple simulated defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple simulated defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  5. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  6. Simple tools for simulating phased array focal laws on 3D solids

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Frazer, Leigh

    2001-04-01

    This paper reports our progress on the development of a three-dimensional raytracing program that can simulate the focal laws of a phased array system. The modeled transducer is divided into elements of a given length, width and inter-element gap distance. Each focal law to be modeled requires a steering angle, focal length and selection of which groups of elements are transmitting and receiving. Electronic scanning is simulated by stepping through a series of predefined focal laws. The program phase shifts and sums the received rays at each element based on the properties of the currently-active focal law. Simulated A-scans are constructed from the received rays which appear animated as the beam is swept. Beam profiles can also be generated that show the primary forward beam and energy in the side lobes. The work is based on Imagine3D ultrasonic simulation software and the dedicated efforts of Doug Mair and Leigh Frazer.

  7. Experimental instrumentation system for the Phased Array Mirror Extendible Large Aperture (PAMELA) test program

    NASA Technical Reports Server (NTRS)

    Boykin, William H., Jr.

    1993-01-01

    Adaptive optics are used in telescopes for both viewing objects with minimum distortion and for transmitting laser beams with minimum beam divergence and dance. In order to test concepts on a smaller scale, NASA MSFC is in the process of setting up an adaptive optics test facility with precision (fraction of wavelengths) measurement equipment. The initial system under test is the adaptive optical telescope called PAMELA (Phased Array Mirror Extendible Large Aperture). Goals of this test are: assessment of test hardware specifications for PAMELA application and the determination of the sensitivities of instruments for measuring PAMELA (and other adaptive optical telescopes) imperfections; evaluation of the PAMELA system integration effort and test progress and recommended actions to enhance these activities; and development of concepts and prototypes of experimental apparatuses for PAMELA.

  8. High-speed 32×32 MEMS optical phased array

    NASA Astrophysics Data System (ADS)

    Megens, Mischa; Yoo, Byung-Wook; Chan, Trevor; Yang, Weijian; Sun, Tianbo; Chang-Hasnain, Connie J.; Wu, Ming C.; Horsley, David A.

    2014-03-01

    Optical phased arrays (OPAs) with fast response time are of great interest for various applications such as displays, free space optical communications, and lidar. Existing liquid crystal OPAs have millisecond response time and small beam steering angle. Here, we report on a novel 32×32 MEMS OPA with fast response time (<4 microseconds), large field of view (+/-2°), and narrow beam divergence (0.1°). The OPA is composed of high-contrast grating (HCG) mirrors which function as phase shifters. Relative to beam steering systems based on a single rotating MEMS mirror, which are typically limited to bandwidths below 50 kHz, the MEMS OPA described here has the advantage of greatly reduced mass and therefore achieves a bandwidth over 500 kHz. The OPA is fabricated using deep UV lithography to create submicron mechanical springs and electrical interconnects, enabling a high (85%) fill-factor. Each HCG mirror is composed of only a single layer of polysilicon and achieves >99% reflectivity through the use of a subwavelength grating patterned into the mirror's polysilicon surface. Conventional metal-coated MEMS mirrors must be thick (1- 50 μm) to prevent warpage arising from thermal and residual stress. The single material construction used here results in a high degree of flatness even in a thin 400 nm HCG mirror. Beam steering is demonstrated using binary phase patterns and is accomplished with the help of a closed-loop phase control system based on a phase-shifting interferometer that provides in-situ measurement of the phase shift of each mirror in the array.

  9. Phased-array ultrasonic surface contour mapping system. Technical note

    SciTech Connect

    Fasching, G.E.; Loudin, W.J.; Paton, D.E.; Smith, N.S. Jr.

    1992-11-01

    The development of reliable mechanistic models for prediction of conventional and fluidized-bed combustor and gasifier operation and solids flow behavior in silos or other solids handling and storage components requires knowledge of the contained solids flow characteristics. This knowledge is gained from dynamic experimental measurements of bed top surface contours in addition to measurements of bulk bed properties. The surface contour mapping system (SCMS) provides a means of generating surface contour maps in real time with a unique, automatically focused, density-compensated, digital phased-array scanning, ultrasonic-range measurement system. The system is designed to operate in environments having gas temperatures up to 1,600 {degree}F and pressures to 1,000 psig. Computer simulation of several SCMS candidates and acoustic carrier modulation techniques indicates that a surface measurement resolution of {plus_minus}2 inches over a range of 5 to 20 feet distance between the transmit/receive (T/R) transducers and the bed surface can be expected. The simulation of a particular design, a 9-T/R, 25-pixel bed surface, in which the level of each pixel was randomly set between 5 and 7 feet below the plane of the T/R transducers, then measured using two different modulation techniques, produced excellent results. The simulation of this surface contour mapping system determined the value of the level of each of the 25 pixels to within {plus_minus}1 inch for over 95 percent of more than 100 test cases for one of the modulation techniques, and for over 99 percent of about 100 test cases for a second modulation technique. A hardware implementation of the design simulated but using only a two-T/R, three-pixel SCMS produced results very closely approximating those obtained during the simulation.

  10. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity.

    PubMed

    Feng, Xiao; Ding, Xuesong; Chen, Long; Wu, Yang; Liu, Lili; Addicoat, Matthew; Irle, Stephan; Dong, Yuping; Jiang, Donglin

    2016-01-01

    Highly ordered discrete assemblies of chlorophylls that are found in natural light-harvesting antennae are key to photosynthesis, which converts light energy to chemical energy and is the principal producer of organic matter on Earth. Porphyrins and phthalocyanines, which are analogues of chlorophylls, exhibit a strong absorbance of visible and near-infrared light, respectively. A highly ordered porphyrin-co-phthalocyanine antennae would harvest photons over the entire solar spectrum for chemical transformation. However, such a robust antennae has not yet been synthesised. Herein, we report a strategy that merges covalent bonds and noncovalent forces to produce highly ordered two-dimensional porphyrin-co-phthalocyanine antennae. This methodology enables control over the stoichiometry and order of the porphyrin and phthalocyanine units; more importantly, this approach is compatible with various metalloporphyrin and metallophthalocyanine derivatives and thus may lead to the generation of a broad structural diversity of two-dimensional artificial antennae. These ordered porphyrin-co-phthalocyanine two-dimensional antennae exhibit unique optical properties and catalytic functions that are not available with single-component or non-structured materials. These 2D artificial antennae exhibit exceptional light-harvesting capacity over the entire solar spectrum as a result of a synergistic light-absorption effect. In addition, they exhibit outstanding photosensitising activities in using both visible and near-infrared photons for producing singlet oxygen. PMID:27622274

  11. Design and analysis of an electronically steerable microstrip patch and a novel Coplanar Waveguide (CPW) fed slot antenna array

    NASA Astrophysics Data System (ADS)

    Aldossary, Hamad

    Conformal Phased Array Antennas (CPAAs) are very attractive for their high gain, low profile, and beam scanning ability while being conformal to their mounting surface. Among them are microstrip patch phased arrays and wideband slot phased arrays which are of particular significance. In this work, first the study, design, and implementation of a conformal microstrip patch phased array is presented which consists of a high gain beam scanning array implemented using microstrip delay lines controlled using GaAs SPDT switches. Then the study and design of a wideband Coplanar Waveguide (CPW)-fed slot phased array antenna is presented. In both cases the array beam scanning properties are elucidated by incorporating the measured delay line scattering parameters inside Ansys Designer simulation models and then computing and presenting their full-wave radiation characteristics.

  12. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  13. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  14. Distortion of conformal antennas on aircraft structures

    NASA Astrophysics Data System (ADS)

    Schippers, Harmen; van Tongeren, Hans; Verpoorte, Jaco; Vos, Guus

    2001-08-01

    Conformal antennas on aircraft allow the use of non-conventional antenna locations such as the skin of the aircraft. However, when antennas are installed at these locations they are subject to steady and unsteady aerodynamic loads. The inertial forces and these aerodynamic loads will cause deformations and vibrations of the total antenna surface. The effect of these distortions on antenna performance will be most significant on highly directional antennas. The aim of the present paper is to describe technology development for estimating the effects of surface distortion on antenna performance. The technology is applied to a Side-Looking Airborne Radar (SLAR) antenna on a reconnaissance pod mounted on a fighter type aircraft. This generic SLAR antenna is a phased array antenna covering two faces of the pod: one part on the vertical side face and one part on the lower face of the pod. Radiation patterns are computed for distorted antenna surfaces. The computational model for the determination of the disturbed radiation pattern is based on geometrical parameterisation of the Stratton-Chu integral equations.

  15. Computer-based designing of waveguide radiators of arbitrary cross section for antenna arrays

    NASA Astrophysics Data System (ADS)

    Voskresenskii, D. I.; Grinev, A. Iu.; Ilinskii, A. S.; Kotov, Iu. V.

    1980-02-01

    A multistep method is proposed for designing waveguide radiators for use in antenna arrays. A rigorous electrodynamic method for structure analysis is developed, along with a computer program and a numerical algorithm. The aperture performance of a quadruple-ridge rectangular waveguide in a phased array is examined, along with the directivity patterns of H-shaped, square, and circular radiators in antenna arrays.

  16. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  17. Phased Array Inspection of Titanium Disk Forgings Targeting no. 1/2 FBH Sensitivity

    SciTech Connect

    Roberts, R.A.; Friedl, J.

    2005-04-09

    The phased array implementation of a focused zoned ultrasonic inspection to achieve a >3dB signal-to-noise for no. 1/2 flat bottom holes (FBH) in titanium is reported. Previous work established the ultrasound focusing required to achieve the targeted sensitivity. This work reports on the design of a phased array transducer capable of maintaining the needed focus to the depths required in the forging inspection. The performance of the phased array inspection is verified by examining signal-to-noise of no. 1/2 FBHs contained in coupons cut from actual forgings.

  18. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  19. A portable ultrasonic phased array device for tabular joint weld inspection of offshore platform structures

    NASA Astrophysics Data System (ADS)

    Shan, Baohua; Li, Jingan; Duan, Zhongdong; Ou, Jinping; Shen, Wei

    2012-05-01

    To meet the inspection need for complex tabular joints weld of offshore platform structures, a portable ultrasonic phased array inspection device is developed. The integrated device is small and portable. As designed, the device can implement different algorithm of the ultrasonic phased array inspection technology. With proposed inspection plan, the experiment of Y tubular joint model was performed in lab. Experiment results indicate that the possible ultrasonic phased array inspection device can detect and visualize the flaws on Y tubular joint weld, which are nearly consistent with the actual condition.

  20. Omnidirectional, circularly polarized, cylindrical microstrip antenna

    NASA Technical Reports Server (NTRS)

    Stanton, Philip H. (Inventor)

    1985-01-01

    A microstrip cylindrical antenna comprised of two concentric subelements on a ground cylinder, a vertically polarized (E-field parallel to the axis of the antenna cylinder) subelement on the inside and a horizontally polarized (E-field perpendicular to the axis) subelement on the outside. The vertical subelement is a wraparound microstrip radiator. A Y-shaped microstrip patch configuration is used for the horizontally polarized radiator that is wrapped 1.5 times to provide radiating edges on opposite sides of the cylindrical antenna for improved azimuthal pattern uniformity. When these subelements are so fed that their far fields are equal in amplitude and phased 90.degree. from each other, a circularly polarized EM wave results. By stacking a plurality of like antenna elements on the ground cylinder, a linear phased array antenna is provided that can be beam steered to the desired elevation angle.

  1. Antenna gain of actively compensated free-space optical communication systems under strong turbulence conditions.

    PubMed

    Juarez, Juan C; Brown, David M; Young, David W

    2014-05-19

    Current Strehl ratio models for actively compensated free-space optical communications terminals do not accurately predict system performance under strong turbulence conditions as they are based on weak turbulence theory. For evaluation of compensated systems, we present an approach for simulating the Strehl ratio with both low-order (tip/tilt) and higher-order (adaptive optics) correction. Our simulation results are then compared to the published models and their range of turbulence validity is assessed. Finally, we propose a new Strehl ratio model and antenna gain equation that are valid for general turbulence conditions independent of the degree of compensation. PMID:24921373

  2. New customizable phased array UT instrument opens door for furthering research and better industrial implementation

    SciTech Connect

    Dao, Gavin; Ginzel, Robert

    2014-02-18

    Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control various aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.

  3. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  4. Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel

    SciTech Connect

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.; Anderson, Michael T.

    2014-05-31

    This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.

  5. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  6. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  8. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  9. Ferroelectric/Semiconductor Tunable Microstrip Patch Antenna Developed

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2001-01-01

    A lithographically printed microwave antenna that can be switched and tuned has been developed. The structure consists of a rectangular metallic "patch" radiator patterned on a thin ferroelectric film that was grown on high-resistivity silicon. Such an antenna may one day enable a single-phased array aperture to transmit and receive signals at different frequencies, or it may provide a simple way to reconfigure fractal arrays for communications and radar applications.

  10. View of Terminal Building and antenna, looking southeast Beale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Terminal Building and antenna, looking southeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  11. View of Terminal Building and antenna, looking north Beale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Terminal Building and antenna, looking north - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Phased Array Ultrasonic Examination of Space Shuttle Main Engine Nozzle Weld

    NASA Technical Reports Server (NTRS)

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle - Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  13. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  14. Phased-array grating compression for high-energy chirped pulse amplification lasers.

    PubMed

    Cotel, A; Castaing, M; Pichon, P; Le Blanc, C

    2007-03-01

    The development of phased-array grating compressor is a crucial issue for high-energy, ultra-short pulse petawatt-class lasers. We present a theoretical and experimental analysis of two-grating phasing in a broadband pulse mosaic compressor. The phase defaults induced by misaligned gratings are studied. Monochromatic grating phasing is experimentally achieved with an interferometric technique and pulse compression is demonstrated with a two-phased-array grating system. PMID:19532511

  15. Optical phased array using single crystalline silicon high-contrast-gratings for beamsteering

    NASA Astrophysics Data System (ADS)

    Yoo, Byung-Wook; Chan, Trevor; Megens, Mischa; Sun, Tianbo; Yang, Weijian; Rao, Yi; Horsley, David A.; Chang-Hasnain, Connie J.; Wu, Ming C.

    2013-03-01

    We present a single crystalline silicon optical phased array using high-contrast-gratings (HCG) for fast two dimensional beamforming and beamsteering at 0.5 MHz. Since there are various applications for beamforming and beamsteering such as 3D imaging, optical communications, and light detection and ranging (LIDAR), it is great interest to develop ultrafast optical phased arrays. However, the beamsteering speed of optical phased arrays using liquid crystal and electro-wetting are typically limited to tens of milliseconds. Optical phased arrays using micro-electro-mechanical systems (MEMS) technologies can operate in the submegahertz range, but generally require metal coatings. The metal coating unfortunately cause bending of mirrors due to thermally induced stress. The novel MEMS-based optical phased array presented here consists of electrostatically driven 8 × 8 HCG pixels fabricated on a silicon-on-insulator (SOI) wafer. The HCG mirror is designed to have 99.9% reflectivity at 1550 nm wavelength without any reflective coating. The size of the HCG mirror is 20 × 20 μm2 and the mass is only 140 pg, much lighter than traditional MEMS mirrors. Our 8 × 8 optical phased array has a total field of view of +/-10° × 10° and a beam width of 2°. The maximum phase shift regarding the actuation gap defined by a 2 μm buried oxide layer of a SOI wafer is 1.7π at 20 V.

  16. COBRA meteor radar antenna designs

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohamad

    . This dissertation also discusses the performance of the individual current antenna in the current and proposed COBRA meteor antenna system configuration above an infinite and finite ground. Finally, the performance of linear phased array antenna designs as the proposed transmit antenna for the COBRA meteor radar is analyzed. The results of the performance of all antenna designs in this research are obtained from the 4NEC2 simulations. The accuracy of the 4NEC2 antenna modeler in the modeling of input impedance and radiation pattern is also addressed in this dissertation.

  17. Finite width coplanar waveguide patch antenna with vertical fed through interconnect

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.; Shalkhauser, Kurt A.; Owens, Jonathan; Demarco, James; Leen, Joan; Sturzebecher, Dana

    1996-01-01

    The paper presents the design, fabrication and characterization of a finite width Coplanar waveguide (FCPW) patch antenna and a FCPW-to-FCPW vertical interconnect. The experimental results demonstrate the antenna and interconnect performance. A scheme to integrate an eight element FCPW patch array with MMIC phase shifters and amplifiers using vertical interconnects is described. The antenna module has potential applications in an advanced satellite to ground transmit phased array at K-Band.

  18. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Landon, Jonathan C.

    Phased array feeds (PAFs) are a promising new technology for astronomical radio telescopes. While PAFs have been used in other fields, the demanding sensitivity and calibration requirements in astronomy present unique new challenges. This dissertation presents some of the first astronomical PAF results demonstrating the lowest noise temperature and highest sensitivity at the time (66 Kelvin and 3.3 m^2/K, respectively), obtained using a narrowband (425 kHz bandwidth)prototype array of 19 linear co-polarized L-band dipoles mounted at the focus of the Green Bank 20 Meter Telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. Results include spectral line detection of hydroxyl (OH) sources W49N and W3OH, and some of the first radio camera images made using a PAF, including an image of the Cygnus X region. A novel array Y-factor technique for measuring the isotropic noise response of the array is shown along with experimental measurements for this PAF. Statistically optimal beamformers (Maximum SNR and MVDR) are used throughout the work. Radio-frequency interference (RFI) mitigation is demonstrated experimentally using spatial cancelation with the PAF. Improved RFI mitigation is achieved in the challenging cases of low interference-to-noise ratio (INR) and moving interference by combining subspace projection (SP) beamforming with a polynomial model to track a rank 1 subspace. Limiting factors in SP are investigated including sample estimation error, subspace smearing, noise bias, and spectral scooping; each of these factors is overcome with the polynomial model and prewhitening. Numerical optimization leads to the polynomial subspace projection (PSP) method, and least-squares fitting to the series of dominant eigenvectors over a series of short term integrations (STIs) leads to the eigenvector polynomial subspace projection (EPSP) method. Expressions for the gradient, Hessian, and Jacobian are given for use in numerical optimization

  19. Integrated reflector antenna design and analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.

    1993-01-01

    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.

  20. Handbook of microstrip antennas. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    James, Jim R.; Hall, Peter S.

    The design and operation of microstrip antennas (MAs) are discussed in chapters contributed by leading experts. Topics addressed include the analysis of circular MAs, improving the frequency agility and bandwidth of patch MAs, circular polarization and bandwidth, microstrip dipoles, multilayer and parasitic MAs, wideband flat dipole and short-circuit MA patch elements and arrays, numerical analysis methods for MAs, multiport-network and transmission-line models of MAs, the design of low-cost printed MAs, printed phase-array antennas, and circularly polarized arrays. Consideration is given to MA feeds, substrate technology, measurement techniques for printed antennas, CAD of microstrip and triplate circuits, resonant MA elements and arrays for aerospace applications, MAs for mobile and satellite systems, a conical conformal microstrip tracking antenna, MA field diagnostics, MAs on a cylindrical surface, and extensions and variations of the MA concept.

  1. Phase conjugation method and apparatus for an active retrodirective antenna array

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.; Chernoff, R. C. (Inventor)

    1979-01-01

    An active retrodirective antenna array wherein a reference array element is used to generate a phase reference which is replicated at succeeding elements of the array. Each element of the array is associated with a phase regeneration circuit and the phase conjugation circuitry of an adjacent element. In one implementation, the phase reference circuit operates on the input signal at the reference element, a voltage controlled oscillator (VCO) output signal and the input pilot signal at the next array element received from a transmission line. By proper filtering and mixing, a phase component may be produced to which the VCO may be locked to produce the phase conjugate of the pilot signal at the next array element plus a transmission line delay. In another implementation, particularly suited for large arrays in space, two different input pilot frequencies are employed.

  2. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  3. POD evaluation using simulation: A phased array UT case on a complex geometry part

    NASA Astrophysics Data System (ADS)

    Dominguez, Nicolas; Reverdy, Frederic; Jenson, Frederic

    2014-02-01

    The use of Probability of Detection (POD) for NDT performances demonstration is a key link in products lifecycle management. The POD approach is to apply the given NDT procedure on a series of known flaws to estimate the probability to detect with respect to the flaw size. A POD is relevant if and only if NDT operations are carried out within the range of variability authorized by the procedure. Such experimental campaigns require collection of large enough datasets to cover the range of variability with sufficient occurrences to build a reliable POD statistics, leading to expensive costs to get POD curves. In the last decade research activities have been led in the USA with the MAPOD group and later in Europe with the SISTAE and PICASSO projects based on the idea to use models and simulation tools to feed POD estimations. This paper proposes an example of application of POD using simulation on the inspection procedure of a complex -full 3D- geometry part using phased arrays ultrasonic testing. It illustrates the methodology and the associated tools developed in the CIVA software. The paper finally provides elements of further progress in the domain.

  4. T/R module development for large aperture L-band phased array

    NASA Technical Reports Server (NTRS)

    Chamberlain, Neil; Andricos, Constantine; Kumley, Kendra; Berkun, Andrew; Hodges, Richard; Spitz, Suzanne

    2004-01-01

    This paper describes a transmit / receive (T/R) module for a large L-band space based radar active phased array being developed at JPL. Electrical performance and construction techniques are described, with emphasis on the former. The T/R modules have a bandwidth of more than 80 MHz centered at 1260MHz and support dual, switched polarizations. Phase and amplitude are controlled by a 6-bit phase shifter and a 6-bit attenuator, respectively. The transmitter power amplifier generates 2.4 W into a nominal 50 ohm load with 36% overall efficiency. The receiver noise figure is 4.4 dB including all front-end losses. The module weighs 32 g and has a footprint of 8 cm x 4.5 cm. Fourteen of these T/R modules were fabricated at the JPL Pick-and-Place Facility and were tested using a computer-controlled measurement facility developed at JPL. Calibrated performance of this set of T/R modules is presented and shows good agreement with design predictions.

  5. Coherent beam combining using a 2D internally sensed optical phased array.

    PubMed

    Roberts, Lyle E; Ward, Robert L; Sutton, Andrew J; Fleddermann, Roland; de Vine, Glenn; Malikides, Emmanuel A; Wuchenich, Danielle M R; McClelland, David E; Shaddock, Daniel A

    2014-08-01

    Coherent combination of multiple lasers using an optical phased array (OPA) is an effective way to scale optical intensity in the far field beyond the capabilities of single fiber lasers. Using an actively phase locked, internally sensed, 2D OPA we demonstrate over 95% fringe visibility of the interfered beam, λ/120 RMS output phase stability over a 5 Hz bandwidth, and quadratic scaling of intensity in the far field using three emitters. This paper presents a new internally sensed OPA architecture that employs a modified version of digitally enhanced heterodyne interferometry (DEHI) based on code division multiplexing to measure and control the phase of each emitter. This internally sensed architecture can be implemented with no freespace components, offering improved robustness to shock and vibration exhibited by all-fiber devices. To demonstrate the concept, a single laser is split into three channels/emitters, each independently controlled using separate electro-optic modulators. The output phase of each channel is measured using DEHI to sense the small fraction of light that is reflected back into the fiber at the OPA's glass-air interface. The relative phase between emitters is used to derive the control signals needed to stabilize their relative path lengths and maintain coherent combination in the far field. PMID:25090317

  6. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Linden, Derek; Hornby, Greg; Lohn, Jason; Globus, Al; Krishunkumor, K.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  7. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  8. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    PubMed

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model. PMID:18774152

  9. Adhesive defect detection in composite adhesive joints using phased array transducers

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2015-03-01

    Composite materials are widely used in aircraft structures due to their high specific stiffness and strength. The laminated nature of composite structures makes them subject to disbond and delamination. These types of defects will compromise the integrity of the structure and therefore need to be monitored. To monitor aircraft structures, light weight transducers capable of large area coverage are beneficial. Ultrasonic guided waves are able to travel long distance and are sensitive to localized defects. The multi-modal characteristic of propagating guided waves requires optimal mode selection and excitation. Phased array transducers provide good versatility for optimal mode excitation since they can excite different guided wave modes preferentially. Phased array transducers designed for structural health monitoring (SHM) applications are employed in this work to study the interaction between adhesive defects and guided wave modes. Amplitude ratios and wave packet composition are utilized as defect indicators that are uniquely available due to the phased array transducers.

  10. Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations.

    PubMed

    Withington, Stafford; Saklatvala, George; Hobson, Michael P

    2006-06-01

    Phased arrays are of considerable importance for far-infrared, submillimeter-wave, and microwave astronomy; they are also being developed for areas as diverse as optical switching, radar, and radio communications. We present a discretized, modal theory of imaging and interferometric phased arrays. It is shown that the average powers, field correlations, power fluctuations, and correlations between power fluctuations at the output ports of an imaging, or interferometric, phased array can be determined for a source in any state of spatial coherence and polarization, once the synthesized beam patterns are known. It is not necessary to know anything about the internal construction of the beam-forming networks; indeed, the beam patterns can be taken from experimental data. The synthesized beams can be nonorthogonal and even linearly dependent. Our theory leads to many conceptual insights and opens the way to a range of new design and simulation techniques. PMID:16715152

  11. Free space optical communication link using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2015-03-01

    Many components for free space optical communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Non-mechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. In this paper a small-scale silicon photonic optical phased array is demonstrated for both the transmitter and receiver functions in a free space optical link. The device using an array of thermo-optically controlled waveguide phase shifters and demonstrates one-dimensional steering with a single control electrode. Transmission of a digitized video data stream over the link is shown.

  12. Active feed array compensation for reflector antenna surface distortions. Ph.D. Thesis - Akron Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1988-01-01

    The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.

  13. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  14. EVOLUTION OF ANTENNA PERFORMANCE FOR APPLICATIONS IN THERMAL MEDICNE

    PubMed Central

    Stauffer, P.R.; Maccarini, P.F.

    2013-01-01

    This presentation provides an overview of electromagnetic heating technology that has proven useful in clinical applications of hyperthermia therapy for cancer. Several RF and microwave antenna designs are illustrated which highlight the evolution of technology from simple waveguide antennas to spatially and temporally adjustable multiple antenna phased arrays for deep heating, conformal arrays for superficial heating, and compatible approaches for radiometric and magnetic resonance image based non-invasive thermal monitoring. Examples of heating capabilities for several recently developed applicators demonstrate highly adjustable power deposition that has not been possible in the past. PMID:23487445

  15. Self compensating phase control for Venetian blind steering in phased arrays.

    NASA Astrophysics Data System (ADS)

    Pohle, R. H.; Stubbs, D. M.

    1988-10-01

    The term "self compensating phase control" is a name for the approach to use the rotation of each array element (e.g. telescopes) in the phased array to provide most of the large optical path length shift required for phasing during a phased array look angle shift by individual telescope slew (i.e. venetian blind steering). The optical train configuration discussed here provides about 97% of the optical path length compensation required for a slew of ±20 degrees from the array normal. This greatly reduces the amplitude required of the piston control mirror.

  16. Pulse-echo phased array ultrasonic inspection of pultruded rod stitched efficient unitized structure (PRSEUS)

    SciTech Connect

    Johnston, P. H.

    2011-06-23

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading.

  17. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  18. Ultrasonic Phased Array Inspection for an Isogrid Structural Element with Cracks

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Tokars, R. P.; Martin, R. E.; Rauser, R. W.; Aldrin, J. C.; Schumacher, E. J.

    2010-01-01

    In this investigation, a T-shaped aluminum alloy isogrid stiffener element used in aerospace applications was inspected with ultrasonic phased array methods. The isogrid stiffener element had various crack configurations emanating from bolt holes. Computational simulation methods were used to mimic the experiments in order to help understand experimental results. The results of this study indicate that it is at least partly feasible to interrogate this type of geometry with the given flaw configurations using phased array ultrasonics. The simulation methods were critical in helping explain the experimental results and, with some limitation, can be used to predict inspection results.

  19. Antennas for diverse requirements

    NASA Astrophysics Data System (ADS)

    Boukamp, Joachim

    An account is given of a major German aerospace manufacturer's state-of-the-art methods for development, design, construction, testing and certification of a wide variety of civilian and military communications and radar antennas. Attention is given to reflector antennas for very large aperture/wavelength ratios, slotted waveguide arrays in which the radiating aperture is synthesized by guided structures, and both microstrip arrays and active arrays, for the creation of very large area antennas. Antenna tests and measurements are conducted in an anechoic chamber.

  20. In vitro Analysis of Antioxidant, Antimicrobial and Antiproliferative Activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata Extracts

    PubMed Central

    Narasimhan, Manoj Kumar; Pavithra, Shenoy K; Krishnan, Vishnupriya; Chandrasekaran, Muthukumaran

    2013-01-01

    Background Seaweeds are taxonomically diverse benthic algae, which are rich in bioactive compounds. These compounds have a potential application in medicine. Objectives The aim of the study was to investigate the bioactive properties of three seaweed samples, Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata were collected from the shoreline of Mahabalipuram, Tamilnadu. Materials and Methods Bioactive components were extracted by using various solvents. Antioxidant analysis methods like scavenging activity of nitric oxide, hydrogen peroxide, hydroxyl radicals, free radical scavenging (DPPH), FRAP (ferric reducing ability plasma) ability and reducing power were carried out. MTT assay was employed to study the anticancer activity against cancer cell lines Hep-G2, MCF7 and normal VERO cell lines. Results It was found that methanolic extracts elicited higher total phenolic content, higher percentage scavenging activity of nitric oxide, hydrogen peroxide, hydroxyl radicals, free radical scavenging (DPPH), FRAP (ferric reducing ability plasma) ability and reducing power. Different concentrations of crude methanolic extracts of seaweeds showed potential antimicrobial activity by well diffusion method. Crude methanolic extract of G. corticata had significant anticancer activity followed by E. antenna and E. linza on cancer cell lines Hep-G2, MCF7 and normal VERO cell lines by MTT assay. Conclusions The methanolic extracts of seaweeds Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata possess high total phenolic content and shows a good free radical scavenging activity and hence are proven to have better antioxidant activity and they might be good candidates for further investigations in order to develop potential anticancer drugs. PMID:24624206

  1. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  2. A general approach of the active concept of microstrip antennas and arrays based on the loaded scatterer theory

    NASA Astrophysics Data System (ADS)

    Gillard, Raphael; Legay, Herve; Floch, Jean-Marie; Citerne, Jacques

    1991-06-01

    A quantitative and general approach of the active antenna concept concretized in planar type microstrip technologies is proposed using integral equation techniques associated with the multiport representation of loaded scatterers. Two configurations based on this concept, involving an electromagnetically fed microstrip dipole combined with either passive loads simulating a monolithic switch or active loads simulating a monolithic amplifier, are computed to illustrate the extended capacities of this new approach. Theoretical results on matching characteristics are compared to measurements achieved in X band.

  3. Solid-state retrodirective phased array concepts for microwave power transmission from Solar Power Satellite

    NASA Technical Reports Server (NTRS)

    Schroeder, K. G.; Petroff, I. K.

    1980-01-01

    Two prototype solid-state phased array systems concepts for potential use in the Solar Power Satellite are described. In both concepts, the beam is centered on the rectenna by means of phase conjugation of a pilot signal emanating from the ground. Also discussed is on-going solid-state amplifier development.

  4. Through Weld Inspection of Wrought Stainless Steel Piping Using Phased-Array Ultrasonic Probes.

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2004-08-05

    A study was conducted to assess the ability of phased-array ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of these welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, four circumferential welds in 610mm diameter, 36mm thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches range in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through wall to 64% through wall. The welds were examined with two phased-array probes, a 2.0 MHz transmit-receive longitudinal wave array and a 2.0 MHz transmit-receive shear wave array. These examinations showed that both phased-array transducers were able to detect and accurately length-size, but not depth size, all of the notches and flaws through the welds. The phased-array results were not strongly affected by the different welding techniques used in each weld.

  5. Two dimensional thermo-optic beam steering using a silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Mahon, Rita; Preussner, Marcel W.; Rabinovich, William S.; Goetz, Peter G.; Kozak, Dmitry A.; Ferraro, Mike S.; Murphy, James L.

    2016-03-01

    Components for free space optical communication terminals such as lasers, amplifiers, and receivers have all seen substantial reduction in both size and power consumption over the past several decades. However, pointing systems, such as fast steering mirrors and gimbals, have remained large, slow and power-hungry. Optical phased arrays provide a possible solution for non-mechanical beam steering devices that can be compact and lower in power. Silicon photonics is a promising technology for phased arrays because it has the potential to scale to many elements and may be compatible with CMOS technology thereby enabling batch fabrication. For most free space optical communication applications, two-dimensional beam steering is needed. To date, silicon photonic phased arrays have achieved two-dimensional steering by combining thermo-optic steering, in-plane, with wavelength tuning by means of an output grating to give angular tuning, out-of-plane. While this architecture might work for certain static communication links, it would be difficult to implement for moving platforms. Other approaches have required N2 controls for an NxN element phased array, which leads to complexity. Hence, in this work we demonstrate steering using the thermo-optic effect for both dimensions with a simplified steering mechanism requiring only two control signals, one for each steering dimension.

  6. An antenna-biased carboxylesterase is specifically active to plant volatiles in Spodoptera exigua.

    PubMed

    He, Peng; Zhang, Ya-Nan; Yang, Ke; Li, Zhao-Qun; Dong, Shuang-Lin

    2015-09-01

    Odorant-degrading enzymes (ODEs) in sensillar lymph are proposed to play important roles in the maintenance of the sensitivity of the olfactory sensilla, by timely degrading the odorants that have already fulfilled the activation of the odorant receptor (OR). Here we reported the cloning and characterization of an ODE gene (SexiCXE10) from the polyphagous insect pest Spodoptera exigua. SexiCXE10 is a carboxylesterase (CXE) gene, encoding a protein with 538 amino acid residues, and bearing typical characteristics of Carboxyl/cholinesterase (CCE, EC 3.1.1.1.) gene family. Tissue-temporal expression pattern by qPCR revealed that the SexiCXE10 mRNA was highly antenna biased, and maintained at high level throughout the adult stage. Further fluorescence in situ hybridization demonstrated that SexiCXE10 mRNA signal was detected under sensilla basiconica and short and long sensilla trichodea. Finally, enzymatic study using purified recombinant enzyme showed that SexiCXE10 had high activity specifically for ester plant volatiles with 7-10 carbon atoms, while no activity was found with S. exigua sex pheromone components and plant volatiles with more carbon atoms. In addition, SexiCXE10 displayed lower activity at acidic pH (pH 5.0), while higher activity was found at neutral and alkaline conditions (pH 6.5-9.0). Our results suggest that SexiCXE10 may play an important role in the degradation of the host plant volatiles, and thus contributes to the high sensitivity of the olfactory system in S. exigua. Meanwhile, the CXE would be a potential target for developing behavioral antagonists and pesticides against S. exigua. PMID:26267057

  7. Antenna research and development at Ericsson

    NASA Astrophysics Data System (ADS)

    Dahlsjo, Olof

    1992-04-01

    This article gives an overview of the antenna research and development activities at Ericsson Radar Electronics AB, in Molndal, Sweden. The article covers different types of microwave antennas, such as twist-Cassegrain antennas, shaped-reflector antennas, microstrip antennas, dichroic surfaces, slotted-waveguide-array antennas, omnidirectional antennas, and electronically-steered-array antennas. Measurement methods, such as near-field and diagnostic techniques, are also discussed. The applications are for radar and microwave communication systems, for use in ground, naval, airborne, and space environments.

  8. Infinite phased array of microstrip dipoles in two layers

    NASA Astrophysics Data System (ADS)

    Castaneda, Jesus A.

    1989-01-01

    A method has been devised for the analysis of the infinite printed strip dipole array in a two layer microstrip substrate structure. The complete dynamic Green's function appropriate to the two-layer substrate-superstrate structure was used in the formulation of the method of moments solution. In this way all the substrate effects, including the surface wave related phenomena, have been included in the development and solution. The solution provides a means by which the most important performance characteristics of the finite-but-large phase-scanned microstrip array can be studied. Attention has been focused on the characterization of the active input impedance as a function of the equivalent scan angle.

  9. The control of a multi-function phased-array

    NASA Astrophysics Data System (ADS)

    Wardrop, B.; Arnold, C.; van den Broek, C.

    It is pointed out that future defense radar systems must be capable of coping with attacks involving many simultaneous missile engagements in a dense jamming environment. An electronically steered pencil beam radar used in conjunction with software offers a viable, and possibly unique solution to the problems of such a situation. With such a system, both search and tracking can be carried out by the same sensor. In the present investigation, the sensor considered is a planar array employing solid-state active modules in each element for both transmission and reception. The design of the described control structure is to maximize the potential information flow by limiting the constraints on the use of the system to those inherent in the basic system components themselves.

  10. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  11. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming.

    PubMed

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt

    2014-10-01

    This paper demonstrates that synthetic aperture imaging (SAI) can be used to achieve real-time 3-D ultrasound phased-array imaging. It investigates whether SAI increases the image quality compared with the parallel beamforming (PB) technique for real-time 3-D imaging. Data are obtained using both simulations and measurements with an ultrasound research scanner and a commercially available 3.5- MHz 1024-element 2-D transducer array. To limit the probe cable thickness, 256 active elements are used in transmit and receive for both techniques. The two imaging techniques were designed for cardiac imaging, which requires sequences designed for imaging down to 15 cm of depth and a frame rate of at least 20 Hz. The imaging quality of the two techniques is investigated through simulations as a function of depth and angle. SAI improved the full-width at half-maximum (FWHM) at low steering angles by 35%, and the 20-dB cystic resolution by up to 62%. The FWHM of the measured line spread function (LSF) at 80 mm depth showed a difference of 20% in favor of SAI. SAI reduced the cyst radius at 60 mm depth by 39% in measurements. SAI improved the contrast-to-noise ratio measured on anechoic cysts embedded in a tissue-mimicking material by 29% at 70 mm depth. The estimated penetration depth on the same tissue-mimicking phantom shows that SAI increased the penetration by 24% compared with PB. Neither SAI nor PB achieved the design goal of 15 cm penetration depth. This is likely due to the limited transducer surface area and a low SNR of the experimental scanner used. PMID:25265174

  12. Deployable antenna

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Dobbins, Justin A. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Scully, Robert C. (Inventor)

    2006-01-01

    A deployable antenna and method for using wherein the deployable antenna comprises a collapsible membrane having at least one radiating element for transmitting electromagnetic waves, receiving electromagnetic waves, or both.

  13. User Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Cramer, Paul

    1990-01-01

    The following subject areas are covered: (1) impact of frequency change of user and spacecraft antenna gain and size; (2) basic personal terminal antennas (impact of 20/30 GHz frequency separation; parametric studies - gain, size, weight; gain and figure of merit (G/T); design data for selected antenna concepts; critical technologies and development goals; and recommendations); and (3) user antenna radiation safety concerns.

  14. Electrically small, near-field resonant parasitic (NFRP) antennas augmented with passive and active circuit elements to enhance their functionality

    NASA Astrophysics Data System (ADS)

    Zhu, Ning

    Metamaterials have drawn considerable attention because they can exhibit epsilon-negative (ENG) and/or mu-negative (MNG) properties, which in turn can lead to exotic physical effects that can enable interesting, practical applications. For instance, ENG and MNG properties can be engineered to yield double negative (DNG) properties, such as a negative index of refraction, which leads to flat lenses. Similarly, their extreme versions enable cloaking effects. Inspired by such metamaterial properties, a promising methodology has been developed to design electrically small antennas (ESAs). These ESAs use unit cells of metamaterials as their near-field resonant parasitic (NFRP) elements. This new metamaterial-inspired antenna miniaturization method is extended in this dissertation by augmenting the antenna designs with circuits. A rectifying circuit augmentation is used to achieve electrically small, high efficiency rectenna systems. Rectennas are the enabling components of power harvesting and wireless power transmission systems. Electrically small, integrated rectennas have become popular and in demand for several wireless applications including sensor networks and bio-implanted devices. Four global positioning system (GPS) L1 frequency (1.5754 GHz) rectenna systems were designed, fabricated and measured: three resistor-loaded and one supercapacitor-loaded. The simulated and measured results will be described; good agreement between them was obtained. The NFRP ESAs are also augmented with active, non-Foster elements in order to overcome the physical limits of the impedance bandwidth of passive ESA systems. Unlike conventional active external matching network approaches, the non-Foster components are incorporated directly into the NFRP element of the ESA. Three 300 MHz non-Foster circuit-augmented broadband, ESA systems were demonstrated: an Egyptian axe monopole (EAM) antenna, an Egyptian axe dipole (EAD) antenna, and a protractor antenna. The simulated and measured

  15. Reconfigurable antenna pattern verification

    NASA Technical Reports Server (NTRS)

    Drexler, Jerome P. (Inventor); Becker, Robert C. (Inventor); Meyers, David W. (Inventor); Muldoon, Kelly P. (Inventor)

    2013-01-01

    A method of verifying programmable antenna configurations is disclosed. The method comprises selecting a desired antenna configuration from a plurality of antenna configuration patterns, with the selected antenna configuration forming at least one reconfigurable antenna from reconfigurable antenna array elements. The method validates the formation of the selected antenna configuration to determine antenna performance of the at least one reconfigurable antenna.

  16. Design and Validation of Rugged Microwave Photonic Network for Phased-Array Radar

    NASA Astrophysics Data System (ADS)

    Mathur, Manisha; Rai, J. K.; Sridhar, N.

    2015-11-01

    Military radar has the requirement of 24 × 7 operation in harsh environments with a high level of safety and integrity built in for equipment and personnel working with it. This article presents an application of a microwave photonic network for phased-array military radar. The design challenge is to realize faithful reproduction of the input microwave signals over extreme temperature and frequency ranges. Environmental testing has been carried out to validate the performance of the proposed microwave photonic network over 2-4 GHz and a temperature range of -20°C to +55°C. The result shows that the photonic network can be successfully utilized for phased-array radar.

  17. Phased-array ultrasonic system for the inspection of titanium billets

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Lupien, V.; Duffy, T.; Kinney, A.; Khandelwal, P.; Wasan, H. S.

    2002-05-01

    A phased-array ultrasonic system was developed by R/D Tech mainly to improve the probability of detection and reduce the number of probes needed to inspect billets that come in a wide variety of diameters. The dynamic depth focusing (DDF) technique is used to expand the depth of field of the probe and inspect the whole depth of the billet by firing only once. The probes are characterized after manufacturing, and an electronic correction can be made if necessary to correct for non-negligible position errors of the elements. Billets ranging from 5 to 14 in. in diameter were inspected using only two phased-array probes. The results obtained show a high probability of detection of flat-bottom holes and validate the DDF algorithm to improve the inspection speed.

  18. Design and experimental evaluation of an intracavitary ultrasound phased array system for hyperthermia.

    PubMed

    Buchanan, M T; Hynynen, K

    1994-12-01

    For evaluating the feasibility of treating prostate cancer, a 64-element linear ultrasound phased array applicator for intracavitary hyperthermia was designed and constructed. A 64-channel ultrasound driving system including amplifiers, phase shifters, and RF power meters was also developed to drive the array. The design of the array and driving equipment are presented, as are the results of acoustical field measurements and in vitro perfused phantom studies performed with the array. Several techniques for heating realistically sized tumor volumes were also investigated, including single focus scanning and two techniques for producing multiple stationary foci. The results show that the operation of the array correlated closely with the theoretical model. When producing a single stationary focus, the array was able to increase tissue temperature by 12 degrees C in vitro in perfused phantom. With some minor improvements in array design, intracavitary phased arrays could be evaluated in a clinical environment. PMID:7851919

  19. Grating lobes analysis based on blazed grating theory for liquid crystal optical-phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Cui, Guolong; Kong, Lingjiang; Xiao, Feng; Liu, Xin; Zhang, Xiaoguang

    2013-09-01

    The grating lobes of the liquid crystal optical-phased array (LCOPA) based on blazed grating theory is studied. Using the Fraunhofer propagation principle, the analytical expressions of the far-field intensity distribution are derived. Subsequently, we can obtain both the locations and the intensities of the grating lobes. The derived analytical functions that provide an insight into single-slit diffraction and multislit interference effect on the grating lobes are discussed. Utilizing the conventional microwave-phased array technique, the intensities of the grating lobes and the main lobe are almost the same. Different from this, the derived analytical functions demonstrate that the intensities of the grating lobes are less than that of the main lobe. The computer simulations and experiments show that the proposed method can correctly estimate the locations and the intensities of the grating lobes for a LCOPA simultaneously.

  20. A cylindrical-section ultrasound phased-array applicator for hyperthermia cancer therapy.

    PubMed

    Ebbini, E S; Umemura, S I; Ibbini, M; Cain, C A

    1988-01-01

    A phased-array applicator geometry for deep localized hyperthermia is presented. The array consists of rectangular transducer elements forming a section of a cylinder that conforms to the body portals in the abdominal and pelvic regions. Focusing and scanning properties of the cylindrical-section array are investigated in homogeneous lossy media using appropriate computer simulations. The characteristic focus of this array is shown to be spatially limited in both transverse and longitudinal directions with intensity gain values suitable for deep hyperthermia applications. The ability of the cylindrical-section phased array to generate multiple foci using the field conjugation method is examined. The effect of the grating lobes on the power deposition pattern of the scanned field is shown to be minimal. Steady-state temperature distributions are simulated using a three-dimensional thermal model of the normal tissue layers surrounding a tumor of typical volume. The advantages and the limitations of this array configuration are discussed. PMID:18290188

  1. Adaptive multibeam antennas for spacelab. Phase A: Feasibility study

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Applebaum, S. P.; Popowsky, W. J.; Wouch, G.

    1976-01-01

    The feasibility was studied of using adaptive multibeam multi-frequency antennas on the spacelab, and to define the experiment configuration and program plan needed for a demonstration to prove the concept. Three applications missions were selected, and requirements were defined for an L band communications experiment, an L band radiometer experiment, and a Ku band communications experiment. Reflector, passive lens, and phased array antenna systems were considered, and the Adaptive Multibeam Phased Array (AMPA) was chosen. Array configuration and beamforming network tradeoffs resulted in a single 3m x 3m L band array with 576 elements for high radiometer beam efficiency. Separate 0.4m x 0.4 m arrays are used to transmit and receive at Ku band with either 576 elements or thinned apertures. Each array has two independently steerable 5 deg beams, which are adaptively controlled.

  2. SNR-optimality of sum-of-squares reconstruction for phased-array magnetic resonance imaging.

    PubMed

    Larsson, Erik G; Erdogmus, Deniz; Yan, Rui; Principe, Jose C; Fitzsimmons, Jeffrey R

    2003-07-01

    We consider the commonly used "Sum-of-Squares" (SoS) reconstruction method for phased-array magnetic resonance imaging with unknown coil sensitivities. We show that the signal-to-noise ratio (SNR) in the image produced by SoS is asymptotically (as the input SNR--> infinity ) equal to that of maximum-ratio combining, which is the best unbiased reconstruction method when the coil sensitivities are known. Finally, we discuss the implications of this result. PMID:12852915

  3. Phased Array Ultrasound: Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Rairigh, Ryan

    2008-01-01

    This slide presentation reviews the development of Phased Array Ultrasound (PAUT) as a non-destructive examination method for Self Reacting Friction Stir Welds (SR-FSW). PAUT is the only NDE method which has been shown to detect detrimental levels of Residual Oxide Defect (ROD), which can result in significant decrease in weld strength. The presentation reviews the PAUT process, and shows the results in comparison with x-ray radiography.

  4. Affordable GaAs Tx/Rx modules for phased array radar

    NASA Astrophysics Data System (ADS)

    Claridge, P. A.; Tench, M. D. R.; Green, C. R.; Lane, A. A.; Gregory, L. I.

    Recent work performed to identify the sensitivity of various elements of the transmit/receive module in phased array radars is discussed. The choice of a module configuration based on the results of a cost sensitivity analysis with a target of 250 pounds sterling for a two-watt module with a four-bit phase control is addressed. Some areas requiring further development to achieve this cost target are considered.

  5. Improved light extraction from white organic light-emitting devices using a binary random phase array

    SciTech Connect

    Inada, Yasuhisa Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki; Matsuzaki, Jumpei

    2014-02-10

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs.

  6. Radiation patterns and reciprocity of whistler mode antennas

    NASA Astrophysics Data System (ADS)

    Urrutia, J. Manuel; Stenzel, Reiner

    2015-11-01

    Whistler modes can be excited and received with magnetic loop antennas. The radiation pattern has been measured in a large laboratory plasma for a low frequency whistler mode (ω ~= 0 . 3ωc <<ωp). The difference in the radiation patterns for group and phase velocities is shown and discussed. Plane waves have been generated using antenna arrays. These are used to measure the antenna patterns of receiving antennas which are usually different. Examples are small loops which radiate along the resonance cone but receive all waves within the resonance cone. The reciprocity of antennas has been investigated. Directional antennas and phased array antennas are not reciprocal. A relative motion between an antenna and a plasma modifies transmitting and receiving properties. When a loop antenna moves rapidly across the dc magnetic field a continuous wave of the source excites wave packets in the form of a whistler wing in the stationary plasma. Moving receiving antennas are subject to frequency shifts by the convective derivative such as Doppler shifts. Motion violates reciprocity, e.g. radiation cannot be received from a downstream source, but transmitted to a downstream receiver. These results are of interest to space and laboratory plasmas. Work supported by NSF/DOE.

  7. The 20 and 30 GHz MMIC technology for future space communication antenna system

    NASA Technical Reports Server (NTRS)

    Anzic, G.; Connolly, D. J.

    1984-01-01

    The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented.

  8. Development of a twin crystal membrane coupled conformable phased array for the inspection of austenitic welds

    SciTech Connect

    Russell, J.; Long, R.; Cawley, P.

    2011-06-23

    The inspection of welded austenitic stainless steel components can be challenging. Austenitic welds contain an anisotropic, inhomogeneous grain structure which causes attenuation, scattering and beam bending. The inspection of components where the weld cap has not been removed is even more difficult due to the irregularity of the surface geometry. A twin crystal membrane coupled device has now been produced containing two linear phased arrays positioned adjacent to one another within the same housing. The arrays are angled relative to one another so that the transducer provides a pseudo-focusing effect at a depth corresponding to the beam crossing point. This type of design is used to improve the signal to noise ratio of the defect response in comparison to simple linear phased array transducer designs and to remove an internal noise signal found in linear phased array devices. Experimental results obtained from the through weld inspection of an austenitic stainless steel component with an undressed weld cap using the twin crystal membrane device are presented. These results demonstrate that small lack of side wall fusion defects can be reliably detected in large complex structures.

  9. Phased-Array Study of Dual-Flow Jet Noise: Effect of Nozzles and Mixers

    NASA Technical Reports Server (NTRS)

    Soo Lee, Sang; Bridges, James

    2006-01-01

    A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.

  10. Optical beam steering using surface micromachined gratings and optical phased arrays

    NASA Astrophysics Data System (ADS)

    Burns, David M.; Bright, Victor M.; Gustafson, Steven C.; Watson, Edward A.

    1997-07-01

    Two categories of optical beam steering micro-electro- mechanical systems (MEMS) were investigated: variable blaze gratings (VBGs) and linear optical phased arrays. All devices were surface micromachined using the multi-user MEMS processes (MUMPs). VBGs use an adjustable blaze angle to direct the majority of reflected light into a selectable diffraction order. Diffraction efficiencies greater than 50% were demonstrated. Linear optical phased arrays use a single row of piston micromirrors to create a far-field pattern with a steerable main lobe along one axis. All devices were constructed of polysilicon and gold and were actuated with electrostatic force. Electrostatic actuation provides high speed operation at a very low drive power. These optical beam steering devices discussed in this work are less optically efficient than a single pivoting mirror, but they require no post-fabrication assembly and can handle large beam diameters. Also, the low individual mass of the elements in surface micromachined VBGs and optical phased arrays yield faster system response times than a single macroscale pivoting mirror.

  11. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  12. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    PubMed

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  13. Ultra-Wideband Tapered Slot Antenna Arrays with Parallel-Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Miyashita, Hiroaki; Takahashi, Toru; Otsuka, Masataka; Konishi, Yoshihiko

    Owing to their ultra-wideband characteristics, tapered slot antennas (TSAs) are used as element antennas in wideband phased arrays. However, when the size of a TSA is reduced in order to prevent the generation of a grating lobe during wide-angle beam scanning, the original ultra-wideband characteristics are degraded because of increased reflections from the ends of the tapered slot aperture. To overcome this difficulty, we propose a new antenna structure in which parallel-plate waveguides are added to the TSA. The advantage of this new structure is that the reflection characteristics of individual antenna elements are not degraded even if the width of the antenna aperture is very small, i.e., approximately one-half the wavelength of the highest operating frequency. In this study, we propose a procedure for designing the new antenna through numerical simulations by using the FDTD method. In addition, we verify the performance of the antenna array by experiments.

  14. More About Lens Antenna For Mobile/Satellite Communication

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Bodnar, D. G.; Rainer, B. K.

    1990-01-01

    Report presents additional details of design of proposed phased-array antenna described in "Lens Antenna for Mobile/Satellite Communication" (NPO-16948). Intended to be compact and to lie flat on top of vehicle on ground. Transmits and receives circularly polarized radiation in frequency ranges of 821 to 825 MHz and 860 to 870 MHz. Transmitting and receiving beams electronically steerable to any of 48 evenly spaced directions to provide complete azimuth coverage, and would be fixed, but wide, in elevation, to provide coverage at elevation angles from 20 degrees to 60 degrees.

  15. Development of a C-Scan phased array ultrasonic imaging system using a 64-element 35MHz transducer

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Hu, Changhong; Zhang, Lequan; Snook, Kevin; Liang, Yu; Hackenberger, Wesley S.; Liu, Ruibin; Geng, Xuecang; Jiang, Xiaoning; Shung, K. Kirk

    2011-04-01

    Phased array imaging systems provide the features of electronic beam steering and dynamic depth focusing that cannot be obtained with conventional linear array systems. This paper presents a system design of a digital ultrasonic imaging system, which is capable of handling a 64-element 35MHz center frequency phased array transducer. The system consists of 5 parts: an analog front-end, a data digitizer, a DSP based beamformer, a computer controlled motorized linear stage, and a computer for post image processing and visualization. Using a motorized linear stage, C-scan images, parallel to the surface of scanned objects may be generated. This digital ultrasonic imaging system in combination a 35 MHz phased array appears to be a promising tool for NDT applications with high spatial resolution. It may also serve as an excellent research platform for high frequency phased array design and testing as well as ultrasonic array signal algorithm developing using system's raw RF data acquisition function.

  16. Effect of surface waves on the characteristics of a linear phased array in the presence of a dielectric layer

    NASA Astrophysics Data System (ADS)

    Kniazev, S. T.; Panchenko, B. A.

    A Green-function approach is taken to the determination of the surface-wave spectrum for a phased array with a dielectric layer, taking into account the relationship between bulk and surface waves. Numerical results are presented on the radiation characteristics of a linear phased array consisting of strip dipoles. Dipole input admittance and bulk-wave admittance are determined as a function of phasing angle.

  17. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  18. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  19. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2012-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  20. Development of a pseudo phased array technique using EMATs for DM weld testing

    SciTech Connect

    Cobb, Adam C. Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu

    2015-03-31

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  1. Simulation of atmospheric turbulence compensation through piston-only phase control of a laser phased array

    NASA Astrophysics Data System (ADS)

    McCrae, Jack E.; Van Zandt, Noah; Cusumano, Salvatore J.; Fiorino, Steven T.

    2013-05-01

    Beam propagation from a laser phased array system through the turbulent atmosphere is simulated and the ability of such a system to compensate for the atmosphere via piston-only phase control of the sub-apertures is evaluated. Directed energy (DE) applications demand more power than most lasers can produce, consequently many schemes for high power involve combining the beams from many smaller lasers into one. When many smaller lasers are combined into a phased array, phase control of the individual sub-apertures will be necessary to create a high-quality beam. Phase control of these sub-apertures could then be used to do more, such as focus, steer, and compensate for atmospheric turbulence. Atmospheric turbulence is well known to degrade the performance of both imaging systems and laser systems. Adaptive optics can be used to mitigate this degradation. Adaptive optics ordinarily involves a deformable mirror, but with phase control on each sub-aperture the need for a deformable mirror is eliminated. The simulation conducted here evaluates performance gain for a 127 element phased array in a hexagonal pattern with piston-only phase control on each element over an uncompensated array for varying levels of atmospheric turbulence. While most simulations were carried out against a 10 km tactical scenario, the turbulence profile was adjusted so performance could be evaluated as a function of the Fried Parameter (r0) and the log-amplitude variance somewhat independently. This approach is demonstrated to be generally effective with the largest percentage improvement occurring when r0 is close to the sub-aperture diameter.

  2. Development of a pseudo phased array technique using EMATs for DM weld testing

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu

    2015-03-01

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  3. Electrically driven optical antennas

    NASA Astrophysics Data System (ADS)

    Kern, Johannes; Kullock, René; Prangsma, Jord; Emmerling, Monika; Kamp, Martin; Hecht, Bert

    2015-09-01

    Unlike radiowave antennas, so far optical nanoantennas cannot be fed by electrical generators. Instead, they are driven by light or indirectly via excited discrete states in active materials in their vicinity. Here we demonstrate the direct electrical driving of an in-plane optical antenna by the broadband quantum-shot noise of electrons tunnelling across its feed gap. The spectrum of the emitted photons is determined by the antenna geometry and can be tuned via the applied voltage. Moreover, the direction and polarization of the light emission are controlled by the antenna resonance, which also improves the external quantum efficiency by up to two orders of magnitude. The one-material planar design offers facile integration of electrical and optical circuits and thus represents a new paradigm for interfacing electrons and photons at the nanometre scale, for example for on-chip wireless communication and highly configurable electrically driven subwavelength photon sources.

  4. Application of adaptive optics to scintillation correction in phased array high-frequency radar

    NASA Astrophysics Data System (ADS)

    Theurer, Timothy E.; Bristow, William A.

    2015-06-01

    At high frequency, diffraction during ionospheric propagation can yield wavefronts whose amplitude and phase fluctuate over the physical dimensions of phased array radars such as those of the Super Dual Auroral Radar Network (SuperDARN). Distortion in the wavefront introduces amplitude and phase scintillation into the geometric beamformed signal while reducing radar performance in terms of angular resolution and achieved array gain. A scintillation correction algorithm based on adaptive optics techniques is presented. An experiment conducted using two SuperDARN radars is presented that quantifies the effect of wavefront distortion and demonstrates a reduction in observed scintillation and improvement in radar performance post scintillation correction.

  5. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  6. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  7. Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2012-01-01

    Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.

  8. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    NASA Astrophysics Data System (ADS)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  9. Continuous Beam Steering From a Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  10. Continuous Beam Steering From A Segmented Liquid Crystal Optical Phased Array

    NASA Technical Reports Server (NTRS)

    Pouch, John; Nguyen, Hung; Miranda, Felix; Titus, Charles M.; Bos, Philip J.

    2002-01-01

    Optical communications to and from deep space probes will require beams possessing divergence on the order of a microradian, and must be steered with sub-microradian precision. Segmented liquid crystal spatial phase modulators, a type of optical phased array, are considered for this ultra-high resolution beam steering. It is shown here that in an ideal device of this type, there are ultimately no restrictions on the angular resolution. Computer simulations are used to obtain that result, and to analyze the influence of beam truncation and substrate flatness on the performance of this type of device.

  11. Optical phased array using high-contrast grating all-pass filters for fast beam steering

    NASA Astrophysics Data System (ADS)

    Yang, Weijian; Sun, Tianbo; Rao, Yi; Chan, Trevor; Megens, Mischa; Yoo, Byung-Wook; Horsley, David A.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2013-03-01

    A novel 8x8 optical phased array based on high-contrast grating (HCG) all-pass filters (APFs) is experimentally demonstrated with high speed beam steering. Highly efficient phase tuning is achieved by micro-electro-mechanical actuation of the HCG to tune the cavity length of the APFs. Using APF phase-shifters allows a large phase shift with an actuation range of only tens of nanometers. The ultrathin HCG further ensures a high tuning speed (0.626 MHz). Both one-dimensional and two-dimensional HCGs are demonstrated as the actuation mirrors of the APF arrays with high beam steering performance.

  12. Phased Arrays Techniques and Split Spectrum Processing for Inspection of Thick Titanium Casting Components

    NASA Astrophysics Data System (ADS)

    Banchet, J.; Sicard, R.; Zellouf, D. E.; Chahbaz, A.

    2003-03-01

    In aircraft structures, titanium parts and engine members are critical structural components, and their inspection crucial. However, these structures are very difficult to inspect ultrasonically because of their large grain structure that increases noise drastically. In this work, phased array inspection setups were developed to detected small defects such as simulated inclusions and porosity contained in thick titanium casting blocks, which are frequently used in the aerospace industry. A Cut Spectrum Processing (CSP)-based algorithm was then implemented on the acquired data by employing a set of parallel bandpass filters with different center frequencies. This process led in substantial improvement of the signal to noise ratio and thus, of detectability.

  13. Power deposition and focusing in a lossy cylinder by a concentric phased array

    NASA Astrophysics Data System (ADS)

    Lumori, Mikaya L. D.; Wait, James R.; Cetas, Thomas C.

    1989-07-01

    We present an analysis of phased array applicators for heating of torso, limbs, and neck. A homogeneous cylindrical model is adopted for the calculations. Four-, eight-, and 16-horn apertures are considered. Focusing of power is demonstrated for an operation frequency of 915 MHz in a cylindrical phantom of radius 5.2 cm, with a conductivity of 1.28 S/m and a relative permittivity of 51. Experimental verification is shown for the case with four-horn applicators. We thus demonstrate that by controlling the relative phases and amplitudes of the aperture sources, it is possible to focus electromagnetic power at desired locations such as tumors.

  14. Image reconstruction from phased-array data based on multichannel blind deconvolution.

    PubMed

    She, Huajun; Chen, Rong-Rong; Liang, Dong; Chang, Yuchou; Ying, Leslie

    2015-11-01

    In this paper we consider image reconstruction from fully sampled multichannel phased array MRI data without knowledge of the coil sensitivities. To overcome the non-uniformity of the conventional sum-of-square reconstruction, a new framework based on multichannel blind deconvolution (MBD) is developed for joint estimation of the image function and the sensitivity functions in image domain. The proposed approach addresses the non-uniqueness of the MBD problem by exploiting the smoothness of both functions in the image domain through regularization. Results using simulation, phantom and in vivo experiments demonstrate that the reconstructions by the proposed algorithm are more uniform than those by the existing methods. PMID:26119418

  15. Metamaterial loading of electrically small patch antennas to enable beam steering up to the horizon

    NASA Astrophysics Data System (ADS)

    Pai Raikar, Vandita Rajiv

    This thesis research has been conducted with an aim of investigating the effects of metamaterials on microstrip patch antennas. Metamaterials exhibit interesting properties such as single negative or simultaneous double negative values of relative permittivity and permeability, due to which they have gained immense popularity. The influence of metamaterials on traditional patch antennas has been a topic of focus throughout this research. Different metamaterial unit cells have been designed to possess satisfactory behavior in terms of permittivity and permeability. The use of metamaterials as a substrate for patch antennas has been explored, highlighting the possibility of designing electrically small patch antennas. Several metamaterial unit cells and modified patch antennas have been designed and modeled in Ansys HFSS, a highly competent full wave electromagnetic solver. On achieving a satisfactory results from a single patch antenna, the same concept has been applied to design a planar phased array patch antenna having 8x8 elements. The planar phased array antenna will be designed to enable beam steering from broadside toward the horizon.

  16. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Montgomery, Edward E.; Lindner, Jeff

    2000-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include an improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  17. Low Frequency Phased Array Application for Crack Detection in Cast Austenitic Piping

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address nondestructive examination (NDE) reliability of inservice inspection (ISI) programs, studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) as related to the ISI of primary piping components in US commercial nuclear power plants. This paper describes progress, recent developments and results from an assessment of a portion of the work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, were used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays were employed in laboratory trials. Results from laboratory studies for assessing detection, localization and length sizing effectiveness are discussed.

  18. Low Frequency Phased Array Techniques for Crack Detection in Cast Austenitic Piping Welds: A Feasibility Study

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington have focused on developing and evaluating the reliability of nondestructive testing (NDT) approaches for coarse-grained stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness and limitation of NDT techniques as related to inservice testing of primary system piping components in pressurized water reactors. We examined cast stainless steel pipe specimens containing thermal and mechanical fatigue cracks located close to the weld roots and having inner and outer diameter surface geometrical conditions that simulate several water reactor primary piping configurations. In addition, segments of vintage centrifugally cast piping were examined to characterize the inherent acoustic noise and scattering caused by grain structures and to determine the consistency of ultrasonic responses when propagating through differing microstructures. Advanced ultrasonic phased array techniques were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies, and composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection effectiveness in cast stainless steel as a function of frequency are discussed in this paper.

  19. Capabilities of Ultrasonic Phased Arrays for Far-Side Examinations of Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately determine the size of flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system austenitic piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements for near side inspection. For this study, four circumferential welds in 610mm (24inch) diameter, 36mm (1.42inch) thick ASTM A-358, Grade 304 vintage austenitic stainless steel pipe were examined. The welds were fabricated with varied welding parameters; both horizontal and vertical pipe orientations were used, with air and water backing, to simulate field welding conditions. A series of saw cuts, electro-discharge machined (EDM) notches, and implanted fatigue cracks were placed into the heat affected zones of the welds. The saw cuts and notches ranged in depth from 7.5% to 28.4% through-wall. The implanted cracks ranged in depth from 5% through-wall to 64% through-wall. The welds were examined with phased array technology at 2.0 MHz, and compared to conventional ultrasonic techniques as a baseline. The examinations showed that phased-array methods were able to detect and accurately length-size, but not depth size, the notches and flaws through the welds. The ultrasonic results were insensitive to the different welding techniques used in each weld.

  20. LOW-FREQUENCY PHASED-ARRAY METHODS FOR CRACK DETECTION IN CAST AUSTENITIC PIPING COMPONENTS

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2008-01-01

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examination (NDE) approaches for inspecting coarse-grained, austenitic stainless steel reactor components. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness, limitations, and reliability of advanced inspection techniques for application on safety-related components in commercial nuclear power plants. This paper describes results from recent assessments using a low-frequency phased-array methodology for detecting cracks in cast austenitic piping welds. Piping specimens that contain thermal and mechanical fatigue cracks located adjacent to welds were examined. The specimens have surface geometrical conditions and weld features that simulate portions of primary piping systems in many U.S. pressurized water reactors (PWRs). In addition, segments of vintage centrifugally cast piping were examined to assess inherent acoustic noise and scattering due to grain structures and determine consistency of ultrasonic (UT) responses from varied circumferential locations. The phased-array UT methods were applied from the outside surface of the specimens using automated scanning devices and water coupling, and employed a modified instrument operating between 500 kHz and 1.0 MHz. Composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection and sizing effectiveness are discussed, including acoustic parameters observed in centrifugally cast piping base materials.

  1. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  2. Phased Array-Based Saft for Defect Sizing on Power Plant Components

    NASA Astrophysics Data System (ADS)

    Brekow, G.; Brackrock, D.; Boehm, R.; Kreutzbruck, M.

    2009-03-01

    Quantitative NDE methods play a key role when it comes to inspect components, which requires high operational safety. UT-SAFT is one of the well-known reconstruction tools, which provides information about the defect size. In this work we studied the use of phased array technique in combination with the SAFT algorithm to inspect power plant components. As a first example we inspected a real-sized mock-up model representing a part of a reactor pressure vessel with a 180 mm-thick ferritic base material followed by a 6 mm-thick austenitic cladding layer. The phased array probe was coupled at the outer ferritic surface. We detected and sized fatigue cracks within the cladding with a depth ranging from 4 mm to 10 mm. Secondly, we investigated a mock-up model resembling a nozzle including a thermo sleeve inlet and a maximum wall thickness of about 37 mm. Artificially inserted notches with a depth of 3 mm could be detected and sized, where the thermo sleeve is welded at the inside of the nozzle.

  3. Fully integrated hybrid silicon free-space beam steering source with 32-channel phased array

    NASA Astrophysics Data System (ADS)

    Hulme, J. C.; Doylend, J. K.; Heck, M. J. R.; Peters, J. D.; Davenport, M. L.; Bovington, J. T.; Coldren, L. A.; Bowers, J. E.

    2014-03-01

    Free-space beam steering using optical phased arrays is a promising method for implementing free-space communication links and Light Detection and Ranging (LIDAR) without the sensitivity to inertial forces and long latencies which characterize moving parts. Implementing this approach on a silicon-based photonic integrated circuit adds the additional advantage of working with highly developed CMOS processing techniques. In this work we discuss our progress in the development of a fully integrated 32 channel PIC with a widely tunable diode laser, a waveguide phased array, an array of fast phase modulators, an array of hybrid III-V/silicon amplifiers, surface gratings, and a graded index lens (GRIN) feeding an array of photodiodes for feedback control. The PIC has been designed to provide beam steering across a 15°x5° field of view with 0.6°x0.6° beam width and background peaks suppressed 15 dB relative to the main lobe within the field of view for arbitrarily chosen beam directions. Fabrication follows the hybrid silicon process developed at UCSB with modifications to incorporate silicon diodes and a GRIN lens.

  4. Application of a 3d Smart Flexible Phased-Array to Piping Inspection

    NASA Astrophysics Data System (ADS)

    Toullelan, G.; Casula, O.; Abittan, E.; Dumas, P.

    2008-02-01

    The piping inspection in nuclear power plants is mainly performed in contact with ultrasonic wedge transducers. During the scanning, the fixed shape of the wedges cannot conform to the irregular surfaces and complex geometries of the components (butt weld, nozzle, elbow). The surface irregularities lead to thickness variations of the coupling medium that result in beam distortions and losses of sensitivity. A 3-D ultrasonic flexible phased-array is presented here and applied to the ultrasonic inspection of a welded pipe. This example of a complex geometry inspection is typical of the field of application for such sensor. The phased-array probe is flexible to conform to a complex profile and to minimize the thickness of the coupling layer. The independent piezoelectric elements composing the radiating surface are mechanically assembled to build an articulated structure. A profilometer, embedded in the transducer, measures the local surface distortion allowing to compute in real-time the optimized delay laws and to compensate the distortions of the 2D or 3D profiles. Those delay laws transferred to the UT-acquisition system are applied in real-time to the piezoelectric elements. The experiments presented here aim to determine the detection abilities of this technique using multi-shot configurations (e.g. angular scanning, several points focusing).

  5. Phased Array Technology with Phase and Amplitude Controlled Magnetron for Microwave Power Transmission

    NASA Astrophysics Data System (ADS)

    Shinohara, N.; Matsumoto, H.

    2004-12-01

    We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.

  6. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  7. Experimental characterization of Polaroid ultrasonic sensors in single and phased array configuration

    NASA Astrophysics Data System (ADS)

    Cao, Alex; Borenstein, Johann

    2002-07-01

    Many mobile robots use Polaroid ultrasonic sensors for obstacle avoidance. This paper describes the experimental characterization of these sensors using a unique, fully automated testbed system. Using this testbed, we gathered large data sets of 5,000-16,000 data points in every experiment for characterization purposes; in a repeatable fashion and without human supervision. In the experimental characterization reported in this paper we focused on a comparison of the beamwidth of a single sonar with that of a dual sonar phased array. For the single sonar we found that flat walls trigger echo signals up to an angle of +/- 42 degree(s), which is well beyond the traditional assumed beamwidth of +/- 15 degree(s). We determined that these echoes result from the secondary and tertiary lobe of the well known multi-lobed propagation patterns of Polaroid ultrasonic sensors. In contrast, with the dual sonar phased array echo signals were triggered only up to beamwidths of 4-6 degree(s). The results in this paper were obtained for two test targets: a specular surface and a cylindrical object.

  8. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary

    2012-01-01

    Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases. 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump. 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases. 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time. 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it. 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement. 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.

  9. Recent Enhancements of the Phased Array Mirror Extendible Large Aperture (PAMELA) Telescope Testbed at MSFC

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    Recent incremental upgrades to the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope testbed have enabled the demonstration of phasing (with a monochromatic source) of clusters of primary mirror segments down to the diffraction limit. PAMELA upgrades include in improved Shack-Hartmann wavefront sensor, passive viscoelastic damping treatments for the voice-coil actuators, mechanical improvement of mirror surface figures, and optical bench baffling. This report summarizes the recent PAMELA upgrades, discusses the lessons learned, and presents a status of this unique testbed for wavefront sensing and control. The Marshall Space Flight Center acquired the Phased Array Mirror Extendible Large Aperture (PAMELA) telescope in 1993 after Kaman Aerospace was unable to complete integration and testing under the limited SDIO and DARPA funding. The PAMELA is a 36-segment, half-meter aperture, adaptive telescope which utilizes a Shack-Hartmann wavefront sensor, inductive coil edge sensors, voice coil actuators, imaging CCD cameras and interferometry for figure alignment, wavefront sensing and control. MSFC originally obtained the PAMELA to supplement its research in the interactions of control systems with flexible structures. In August 1994, complete tip, tilt and piston control was successfully demonstrated using the Shack-Hartmann wavefront sensor and the inductive edge sensors.

  10. Considerations for Using Phased Array Ultrasonics in a Fully Automated Inspection System

    NASA Astrophysics Data System (ADS)

    Kramb, V. A.; Olding, R. B.; Sebastian, J. R.; Hoppe, W. C.; Petricola, D. L.; Hoeffel, J. D.; Gasper, D. A.; Stubbs, D. A.

    2004-02-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and constructed a fully automated ultrasonic inspection system for the detection of embedded defects in rotating gas turbine engine components. The system performs automated inspections using the "scan plan" concept developed for the Air Force sponsored "Retirement For Cause" (RFC) automated eddy current system. Execution of the scan plan results in a fully automated inspection process producing engine component accept/reject decisions based on probability of detection (POD) information. Use of the phased-array ultrasonic instrument and probes allows for optimization of both the sensitivity and resolution for each inspection through electronic beamforming, scanning, and focusing processes. However, issues such as alignment of the array probe, calibration of individual elements and overall beam response prior to the inspection have not been addressed for an automated system. This paper will discuss current progress in the development of an automated alignment and calibration procedure for various phased array apertures and specimen geometries.

  11. Saft-reconstruction in ultrasonic immersion technique using phased array transducers

    NASA Astrophysics Data System (ADS)

    Kitze, J.; Prager, J.; Boehm, R.; Völz, U.; Montag, H.-J.

    2012-05-01

    The two main preconditions for the application of the Synthetic Aperture Focusing Technique (SAFT) are: (i) a large divergence of the sound beam of the transducer and (ii) an exact knowledge about the sound propagation path. These requirements are easily fulfilled for point sources directly mounted on the surface of the specimen. In many cases, however, the transducer is wedge mounted and/or coupled using a water delay line, e.g. in immersion technique. These delay lines change the beam index and the propagation path has to be evaluated for each pixel separately considering Fermat's principle. Using phased array transducers, a sector scan can improve the divergence of the sound beam. The introduced method combines the advantages of using a phased array transducer in immersion technique to improve SAFT reconstruction. An algorithm is presented accounting the influence of the delay line on the reconstruction method. The applicability of the algorithm is shown by validation with simulated echo responses and with experimental results collected from a specimen with artificial flaws.

  12. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    PubMed

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371

  13. Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays

    PubMed Central

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371

  14. Vehicle antenna for the mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Peng, Sheng Y.; Chung, H. H.; Leggiere, D.; Foy, W.; Schaffner, G.; Nelson, J.; Pagels, W.; Vayner, M.; Faller, H. L.; Messer, L.

    1988-01-01

    A low profile, low cost, printed circuit, electronically steered, right hand circularly polarized phase array antenna system has been developed for the Mobile Satellite Experiment (MSAT-X) Program. The success of this antenna is based upon the development of a crossed-slot element array and detailed trade-off analyses for both the phased array and pointing system design. The optimized system provides higher gain at low elevation angles (20 degrees above the horizon) and broader frequency coverage (approximately 8 1/2 percent bandwidth) than is possible with a patch array. Detailed analysis showed that optimum performance could be achieved with a 19 element array of a triangular lattice geometry of 3.9 inch element spacing. This configuration has the effect of minimizing grating lobes at large scan angles plus it improves the intersatellite isolation. The array has an aperture 20 inches in diameter and is 0.75 inch thick overall, exclusive of the RF and power connector. The pointing system employs a hybrid approach that operates with both an external rate sensor and an internal error signal as a means of fine tuning the beam acquisition and track. Steering the beam is done electronically via 18, 3-bit diode phase shifters. A nineteenth phase shifter is not required as the center element serves as a reference only. Measured patterns and gain show that the array meets the stipulated performance specifications everywhere except at some low elevation angles.

  15. Technique for Radiometer and Antenna Array Calibration - TRAAC

    NASA Technical Reports Server (NTRS)

    Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James

    2012-01-01

    Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.

  16. Antenna system for MSAT mission

    NASA Technical Reports Server (NTRS)

    Karlsson, Ingmar; Patenaude, Yves; Stipelman, Leora

    1988-01-01

    Spar has evaluated and compared several antenna concepts for the North American Mobile Satellite. The paper describes some of the requirements and design considerations for the antennas and demonstrates the performance of antenna concepts that can meet them. Multiple beam reflector antennas are found to give best performance and much of the design effort has gone into the design of the primary feed radiators and beam forming networks to achieve efficient beams with good overlap and flexibility. Helices and cup dipole radiators have been breadboarded as feed element candidates and meausured results are presented. The studies and breadboard activities have made it possible to proceed with a flight program.

  17. Partially Adaptive Phased Array Fed Cylindrical Reflector Technique for High Performance Synthetic Aperture Radar System

    NASA Technical Reports Server (NTRS)

    Hussein, Z.; Hilland, J.

    2001-01-01

    Spaceborne microwave radar instruments demand a high-performance antenna with a large aperature to address key science themes such as climate variations and predictions and global water and energy cycles.

  18. Spacecraft Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul

    1990-01-01

    Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.

  19. Study of Electrical Activity in Martian Dust Storms with the Deep Space Network antennas

    NASA Astrophysics Data System (ADS)

    Martinez, S.; Kuiper, T. B. H.; Majid, W. A.; Garcia-Miro, C.; Tamppari, L. K.; Renno, N. O.; Ruf, C.; Trinh, J. T.

    2012-09-01

    Evidence for non-thermal emission produced by electrostatic discharges in a deep Martian dust storm has been reported by Ruf et al. 2009 [1]. Such discharges had been detected with an innovative kurtosis detector installed in a 34m radio telescope of the Deep Space Network (DSN) in June of 2006. The kurtosis (the fourth central moment of the signal normalized by the square of the second central moment) is extremely sensitive to the presence of non-thermal radiation, but is insensitive to variations in the intensity of the thermal radiation and instrument gain. The non-thermal radiation was detected while a 35 Km deep Martian dust storm was within the field of view of the radio telescope and presented signatures of modulation by the Martian Schumann Resonance. Encouraged by this discovery, several attempts have been made within the DSN to confirm the detection using the R&D antenna (DSS-13) and other antennas in the Madrid and Goldstone complexes, but using a very limited receiver, in terms of recorded data rates, the Very Long Baseline Interferometry (VLBI) Science Receiver (VSR). We are planning to initiate an extensive monitoring of Mars emission in a noninterfering basis while our antennas are tracking various Mars probes, using the Wideband Very Long Baseline Interferometry (VLBI) Science Receiver (WVSR). The WVSR is a very flexible open-loop digital backend that is used for radio science and spacecraft navigation support in the DSN. This instrument allows us to sample a larger bandwidth than with previously used detectors. The processing to look for the kurtosis signature will be performed in software, limited only by the computer capacity. Additionally there are plans to develop an even more powerful custom-built detector based in CASPER technology and Graphic Processing Units for enhance computational power. This contribution will describe how we plan to select the target Mars tracking passes from the DSN schedule. An automated process will generate

  20. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments

    PubMed Central

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4–8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic). PMID:21243106

  1. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  2. Development of a Microphone Phased Array Capability for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Brooks, Thomas F.; Bahr, Christopher J.; Spalt, Taylor B.; Bartram, Scott M.; Culliton, William G.; Becker, Lawrence E.

    2014-01-01

    A new aeroacoustic measurement capability has been developed for use in open-jet testing in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 tunnel). A suite of instruments has been developed to characterize noise source strengths, locations, and directivity for both semi-span and full-span test articles in the facility. The primary instrument of the suite is a fully traversable microphone phased array for identification of noise source locations and strengths on models. The array can be mounted in the ceiling or on either side of the facility test section to accommodate various test article configurations. Complementing the phased array is an ensemble of streamwise traversing microphones that can be placed around the test section at defined locations to conduct noise source directivity studies along both flyover and sideline axes. A customized data acquisition system has been developed for the instrumentation suite that allows for command and control of all aspects of the array and microphone hardware, and is coupled with a comprehensive data reduction system to generate information in near real time. This information includes such items as time histories and spectral data for individual microphones and groups of microphones, contour presentations of noise source locations and strengths, and hemispherical directivity data. The data acquisition system integrates with the 14x22 tunnel data system to allow real time capture of facility parameters during acquisition of microphone data. The design of the phased array system has been vetted via a theoretical performance analysis based on conventional monopole beamforming and DAMAS deconvolution. The performance analysis provides the ability to compute figures of merit for the array as well as characterize factors such as beamwidths, sidelobe levels, and source discrimination for the types of noise sources anticipated in the 14x22 tunnel. The full paper will summarize in detail the design of the instrumentation

  3. Observation of EHO in NSTX and theoretical study of its active control using HHFW antenna

    NASA Astrophysics Data System (ADS)

    Park, J.-K.; Goldston, R. J.; Crocker, N. A.; Fredrickson, E. D.; Bell, M. G.; Maingi, R.; Tritz, K.; Jaworski, M. A.; Kubota, S.; Kelly, F.; Gerhardt, S. P.; Kaye, S. M.; Menard, J. E.; Ono, M.

    2014-04-01

    Two important topics for tokamak edge-localized modes (ELM) control, based on non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: experimental observations of the edge harmonic oscillation (EHO) in NSTX (with lower frequency than EHOs in DIII-D and elsewhere), and theoretical study of its external drive using the high-harmonic fast wave (HHFW) antenna as a 3D field coil. EHOs were observed particularly clearly in NSTX ELM-free operation with very low n core modes. A number of diagnostics have confirmed n = 4-6 edge-localized and coherent oscillations in the 2-8 kHz frequency range. These oscillations seem to have a favoured operational window in rotational shear, similar to EHOs in DIII-D quiescent H modes. However, in NSTX, they are not observed to provide significant particle or impurity transport, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4-6 while minimizing n = 1-3. Also, ideal perturbed equilibrium code calculations show that the optimized configuration with only 1 kAt current can produce comparable or larger displacements than the observed internal modes. Thus it may be possible to use externally driven EHOs to relax the edge pressure gradient and control ELMs in NSTX-U and future devices. Fine and external control over the edge pressure gradient would be a very valuable tool for tokamak control.

  4. Observation of EHO in NSTX and Theoretical Study of its Active Control Using HHFW Antenna

    SciTech Connect

    J.-K. Park, et. al.

    2013-01-14

    Two important topics in the tokamak ELM control, using the non-axisymmetric (3D) magnetic perturbations, are studied in NSTX and combined envisioning ELM control in the future NSTX-U operation: Experimental observations of the edge harmonic oscillation in NSTX (not necessarily the same as EHOs in DIII-D), and theoretical study of its external drive using the high harmonic fast wave (HHFW) antenna as a 3D field coil. Edge harmonic oscillations were observed particularly well in NSTX ELM-free operation with low n core modes, with various diagnostics confirming n = 4 ~ 6 edge-localized and coherent oscillations in 2 ~ 8kHz frequency range. These oscillations seem to have a favored operational window in rotational shear, similarly to EHOs in DIII-D QH modes . However, in NSTX, they are not observed to provide particle or impurity control, possibly due to their weak amplitudes, of a few mm displacements, as measured by reflectometry. The external drive of these modes has been proposed in NSTX, by utilizing audio-frequency currents in the HHFW antenna straps. Analysis shows that the HHFW straps can be optimized to maximize n = 4 ~ 6 while minimizing n = 1 ~ 3. Also, IPEC calculations show that the optimized configuration with only 1kAt current can produce comparable or larger displacements than the observed internal modes. If this optimized external drive can be constructively combined, or further resonated with the internal modes, the edge harmonic oscillations in NSTX may be able to produce sufficient particle control to modify ELMs.

  5. Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region

    SciTech Connect

    Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.

    2011-10-01

    In this investigation, non-destructive and destructive testing were used to evaluate potential boric acid leakage paths around an Alloy 600 CRDM penetration (Nozzle 63) from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2003. For this investigation, Nozzle 63 was examined using phased array ultrasonic testing. Prior to examining Nozzle 63, a CRDM penetration mockup with known notches and boric acid deposits was used to assess probe sensitivity, resolution and calibration. Following the non-destructive testing of Nozzle 63, the nozzle was destructively examined to visually assess the leak paths. These destructive and nondestructive results are compared and results are presented. The results of this investigation may be used by NRC to evaluate licensees’ volumetric leak path assessment methodologies and to support regulatory inspection requirements.

  6. Methods for Characterizing the System Functions of Ultrasonic Linear Phased Array Inspection Systems

    NASA Astrophysics Data System (ADS)

    Huang, Ruiju; Schmerr, Lester W.

    2008-02-01

    This work characterizes all the electrical and electromechanical aspects of a linear phased array system, using a matrix of system functions that are obtained from the measured response of the array elements in a simple reference experiment. It is shown that for the arrays tested all these system functions are essentially identical, allowing one to use a single system function to characterize the entire array, as done for an ordinary single element transducer. The variation of this single system function with the number of elements firing in the array or with changes of the delay law used is described. It is also demonstrated that once such a single system function is obtained for an array, it can be used in a complete ultrasonic measurement model to accurately predict the array response measured from of a reference reflector in an immersion setup.

  7. Design and development of an advanced technology light weight receiver for phase array applications

    NASA Astrophysics Data System (ADS)

    Bayar, Esen

    1987-10-01

    A light weight L-band receiver for application to spacecraft multiple beam phased array front ends is discussed, with emphasis on the design of the low noise amplifiers and the RF filter. The receiver is designed to operate in the Inmarsat frequency band of 1626.5-1656.5 MHz, with a single down conversion to an intermediate frequency of 250 MHz. Performance parameters include an overall noise figure of 1.5 dB with an associated gain of 60 dB and a multicarrier C/I3 of 90 dB over an acceptance temperature range of -5 C to 55 C. The mass target of 200 g should be achievable.

  8. Through-Weld Ultrasonic Phased Array Inspection Using Full Matrix Capture

    NASA Astrophysics Data System (ADS)

    Long, R.; Russell, J.; Cawley, P.

    2010-02-01

    Rolls-Royce and Imperial College are developing phased array inspections for welded stainless steel piping with an undressed weld cap. An inspection that proves particularly challenging requires ultrasonic waves to propagate across the irregular weld-cap profile, and through the structurally complex weld material. Simulations of ultrasonic wave propagation through the weld region were obtained using the CIVA software to predict the effect on inspection performance. Simulated and experimental data was collected as Full Matrix Capture (FMC) which was then processed using our own software with results then displayed in a Beta version of CIVA. An investigation was conducted to confirm the principle of updating delay laws for variations in material properties.

  9. Insonation of fixed porcine kidney by a prototype sector-vortex-phased array applicator.

    PubMed

    Umemura, S I; Holmes, K R; Frizzell, L A; Cain, C A

    1992-01-01

    The sector-vortex applicator, an ultrasound phased array with a geometric focus having multiple sectors and tracks, can directly synthesize, without scanning, diffuse focal patterns useful for hyperthermia. A perfused tissue phantom, consisting of an alcohol-fixed porcine kidney with thermocouples placed in the cortex, is insonated by a prototype sector-vortex applicator with 16 sectors and two tracks at an ultrasound frequency of 750 kHz. Steady-state temperature distributions are measured for a wide range of perfusion rates. Results demonstrate that the radius of the heated region can be controlled effectively by choosing the focal mode of the applicator as it is predicted by theoretical analysis. PMID:1479208

  10. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoit

    2015-03-01

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  11. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    PubMed Central

    Zhang, Jitao; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-01-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue. PMID:27274097

  12. Experimental analysis of beam pointing system based on liquid crystal optical phase array

    NASA Astrophysics Data System (ADS)

    Shi, Yubin; Zhang, Jianmin; Zhang, Zhen

    2016-06-01

    In this paper, we propose and demonstrate an elementary non-mechanical beam aiming and steering system with a single liquid crystal optical phase array (LC-OPA) and charge-coupled device (CCD). With the conventional method of beam steering control, the LC-OPA device can realize one dimensional beam steering continuously. An improved beam steering strategy is applied to realize two dimensional beam steering with a single LC-OPA. The whole beam aiming and steering system, including an LC-OPA and a retroreflective target, is controlled by the monitor. We test the feasibility of beam steering strategy both in one dimension and in two dimension at first, then the whole system is build up based on the improved strategy. The experimental results show that the max experimental pointing error is 56 µrad, and the average pointing error of the system is 19 µrad.

  13. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    NASA Astrophysics Data System (ADS)

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert

    2015-03-01

    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  14. Full-matrix capture and USB3.0 for open platform phased array instruments

    NASA Astrophysics Data System (ADS)

    Dao, Gavin; Lallement, Rémi; Carcreff, Ewen; Braconnier, Dominique

    2016-02-01

    Nondestructive evaluation (NDE) using ultrasonic waves is an efficient technique to assess industrial component integrity. The use of array probes enables inspection flexibility and advanced imaging techniques such as the total focusing method (TFM). In particular, the TFM imaging approach tremendously increases the quantity of data compared to conventional ultrasonic testing. Data transfer rates from the ultrasonic equipment to the computer are therefore continuously increasing due to large quantities of data and high speed inspections. In this work, we propose to use a USB 3.0 communication protocol for high speed throughput in a phased array device. To our knowledge, such protocol has not be proposed before for such an equipment. In this paper, we show that this protocol offers high transfer rates and is suitably adapted to ultrasonic inspection with array probes.

  15. Ultrasonic Phased Array Implementation of the Inside Diameter Creeping Wave Sizing Method

    SciTech Connect

    Timothy R. McJunkin; J. Mark Davis; Dennis C. Kunerth; Arthur D. Watkins

    2006-05-01

    This paper describes a technique for implementing the ultrasonic inside diameter (ID) creeping wave technique for detection and sizing ID connected defects using a phased array ultrasonic system. The technique uses multiple focal laws to produce the examination modes. The first focal law is designed to create a shear wave nominally at the critical angle for mode conversion to a longitudinal wave at the ID of a part, thus creating a creeping wave. This focal law is focused at the ID to improve sensitivity. The rest of the laws are designed to create tandem sound paths that progress up a vertical surface directly above the focal point of the creeping wave generation point. When a defect on the inner surface is detected with the creeping wave, the height of the defect can be measured from the response of a set of tandem laws without readjusting the position of the probe. Results from standard one-inch long notches of varying depths are presented.

  16. Analysis of regional left ventricular wall movement by phased array echocardiography.

    PubMed Central

    Gibson, D G; Brown, D J; Logan-Sinclair, R B

    1978-01-01

    Images from standard two-dimensional echocardiographs do not lend themselves to the study of regional left ventricular wall movement because of poor definition of endocardium. An alternative method, based on a wide-angle phased array sector scanner has, therefore, been devised. Once the appropriate region of the heart has been identified, the scan rate is increased, and an array of 41 M-mode scans is produced, resulting in improved frequency response and endocardial definition. Each scan is digitised separately, and since their spatial orientation is known, the left ventricular image can be reconstituted by computer, and isometric or contour displays produced. Preliminary results, based on 40 patients, are presented showing examples of left ventricular wall movement. Regional abnormalities of amplitude or timing can be displayed with results similar to those of angiography, while disturbances of septal motion or wall thickness can be observed in greater detail than with other methods. Images PMID:737090

  17. Application of Phased-array Vibrator System in shallow oil shale exploration

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Lin, J.; Xu, X.

    2011-12-01

    Due to the huge oil and gas demands in China, exploration of unconventional oil shale at shallow depths becomes more critical. 52.83% of the identified reserves in China are from Jilin province and Nong'an is one of the main areas of oil shale in Jilin. The average buried depth of oil shale in Nong'an is between 300m and 800m. Since explosive sources are not allowed to operate in civil area and the inconvenience of vibroseis, Phased-array Vibrator System (PAVS) is applied in the exploration of oil shale in Nong'an. We have developed a series electromagnetic Portable High-frequency Vibrator System (PHVS), including single, combination, and phased-array modes. Single mode is the simplest mode, with output force less than 500N, and thus is only suitable for engineering seismic prospecting. Combination mode is a source array, which uses a controller to synchronize all vibrator units and let them work consistently with each other. Thus, it can increase output force than single case. The field test indicates that it can improve signal-to-noise ratio (SNR) of reflected waves in deep layer significantly. However, it contributes little for signals from shallow layers and sometimes it can even deteriorate shallow reflected signals than single source. This is because for signals reflected from shallow depths, the assumption in combination mode that seismic waves propagate along vertical rays is no longer valid. Therefore, they are not stacked constructively. Phased-array mode belongs to a new source array, whose key part is so-called delay/phase controller. By coordinating the signal of each unit using the controller, the seismic waves can be beamed into any interested direction, based on the underground structure and the depth of interested reflected layer. In this case, SNR of the concerned reflected wave can be improved apparently. PHVS in phased-array mode is called PAVS. We made two field tests to evaluate the performance of PAVS. In the first test, we compare PAVS with

  18. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    SciTech Connect

    Le Bourdais, Florian Marchand, Benoit

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  19. Using Phased Array Ultrasonic Testing in Lieu of Radiography for Acceptance of Carbon Steel Piping Welds

    SciTech Connect

    Moran, Traci L.; Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Nove, Carol A.

    2014-08-01

    The Pacific Northwest National Laboratory (PNNL) is conducting studies for the U.S. Nuclear Regulatory Commission (NRC) to assess the capability, effectiveness, and reliability of ultrasonic testing (UT) as a replacement method for radiographic testing (RT) for volumetric examination of nuclear power plant (NPP) components. This particular study focused on evaluating the use of UT on carbon steel plate welds. Welding fabrication flaws included a combination of planar and volumetric types, e.g., incomplete fusion, lack of penetration, cracks, porosity, and slag inclusions. The examinations were conducted using phased-array (PA) UT techniques applied primarily for detection and flaw type characterization. This paper will discuss the results of using UT in lieu of RT for detection and classification of fabrication flaws in carbon steel plate welds.

  20. Influence of phase delay profile on diffraction efficiency of liquid crystal optical phased array

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Zhang, Jian; Wu, Li Ying

    2009-06-01

    The hardware structure and driving voltage of liquid crystal optical phased array (LCOPA) devices determine the produced phase delay characteristics. The phase delay profile influences directly the device's diffraction efficiency. In this paper, a sawtooth-shaped phase delay model of LCOPA was proposed to analyze quantitatively the influence factors of diffraction efficiency employing Fourier optics theory. Analysis results show that flyback region size is the main factor that affects diffraction efficiency. The influence extent varies with different maximum-phase-delays and grating periods. There exists an optimized curve between maximum-phase-delay and flyback region, and between maximum-phase-delay and grating period, individually. The smaller the grating period is or the larger the flyback region is, the more evident the optimization effect becomes, and the maximum increase ratio is up to 16%. Some feasible experiments were done to test theoretical analysis, and the experimental results agreed with the analysis results.

  1. A Hybrid Computational Model for Ultrasound Phased-Array Heating in Presence of Strongly Scattering Obstacles

    PubMed Central

    Botros, Youssry Y.; VanBaren, Philip; Ebbini, Emad S.

    2010-01-01

    A computationally efficient hybrid ray–physical optics (HRPO) model is presented for the analysis and synthesis of multiple-focus ultrasound heating patterns through the human rib cage. In particular, a ray method is used to propagate the ultrasound fields from the source to the frontal plane of the rib cage. The physical-optics integration method is then employed to obtain the intensity pattern inside the rib cage. The solution of the matrix system is carried out by using the pseudo inverse technique to synthesize the desired heating pattern. The proposed technique guides the fields through the intercostal spacings between the solid ribs and, thus, minimal intensity levels are observed over the solid ribs. This simulation model allows for the design and optimization of large-aperture phased-array applicator systems for noninvasive ablative thermal surgery in the heart and liver through the rib cage. PMID:9353983

  2. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  3. V-band pseudomorphic HEMT MMIC phased array components for space communications

    NASA Technical Reports Server (NTRS)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Hu, M.; Downey, Alan N.

    1992-01-01

    Recent advances in pseudomorphic high-electron-mobility transistor (PMHEMT) monolithic microwave integrated circuit (MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. The development of V-band PMHEMT/MMIC components including power amplifiers and phase shifters is described. For the single-stage MMIC power amplifier employing a 200 micron PMHEMT, we achieved 151.4 mW output power (757.0 mW/mm) with 1.8 dB associated gain and 26.4 percent power-added efficiency at 60 GHz. A two-stage MMIC amplifier utilizing the same devices demonstrated small-signal gain as high as 15 dB at 58 GHz. And, for the phase shifter, a four-bit phase shifter with less than 8 dB insertion loss from 61 to 63 GHz was measured.

  4. Enhancement of Phased Array Ultrasonic Signal in Composite Materials using TMST Algorithm

    NASA Astrophysics Data System (ADS)

    Abdessalem, Benammar; Redouane, Drai; Ahmed, Kechida; Lyamine, Dris; Farid, Chibane

    In this paper, we apply a new technique for the ultrasonic phased array signal enhancement. It is based on the threshold modified S-transform (TMST). The signal processing algorithms generally give very satisfactory results on synthetic signals verifying the implicit or explicit hypotheses on which they are constructed. The obtained performances on the real signals can be however different radically. Time-frequency analysis methods are mainly used to improve the defects detection resolution. Significant performance enhancement is confirmed when the proposed approach is tested with the simulation of the B-scan signals contain a closer delamination to the front face. The experimental results show that the TMST Algorithm can enhance the quality of image provided by composite materials contained delamination defect.

  5. Optimization of Compact Array Configurations to Minimize Side-lobes for Two Cases: The LWA Phased-array Station and the New E-configuration for the EVLA

    NASA Astrophysics Data System (ADS)

    Kogan, Leonid; Owen, F.; Ott, J.; Cohen, A.

    2011-01-01

    An optimization algorithm designed by Leonid Kogan ( L. Kogan, Optimizing a Large Array Configuration to Minimize the Side lobes, IEEE Transactions on Antennas and Propagation, vol 48, NO 7, July 2000, p 1075) to minimize side-lobes in the point-spread response has been applied in the design of two new radio-interferometric arrays: (1) the most compact (E) configuration of EVLA and (2) the phased-array station for the Long Wavelength Array (LWA). Scientific programs for the EVLA's E-configuration includes galactic and Local HII, molecular gas, cosmic web, radio continum, radio lobes, SZ effect, cosmology and pulsar searches. The LWA will operate at frequencies from 10-88 MHz and will study a wide range of scientific programs including clusters of galaxies, high-redshift radio galaxies, pulsars, SNR's, extra-solar planets, solar physics and ionospheric physics. Both arrays need to be compact and to have the smallest side lobes possible. The E-configuration was designed to minimizes cost by requiring only one new railroad track in addition to the existing EVLA infrastructure. The shadowing factor achieved is reasonably good for a wide range of hour angles and declinations. The achieved side-lobe levels in the synthesized beam are no greater than 12% within the antenna primary beam for any operating VLA wavelength. For comparison, the VLA-D configuration has side-lobes near 60%. For the LWA station configuration, the sidelobes are never greater than 1.6% at any point in the sky regardless of phased direction or operating wavelength. Such small sidelobes for both arrays promise very high image fidelity for maximum scientific results.

  6. MRI-compatible ultrasound heating system with ring-shaped phased arrays for breast tumor thermal therapy.

    PubMed

    Chen, Hung-Nien; Chen, Guan-Ming; Lin, Bo-Sian; Lien, Pi-Hsien; Chen, Yung-Yaw; Chen, Gin-Shin; Lin, Win-Li

    2013-01-01

    Therapeutic ultrasound transducers can carry out precise and efficient power deposition for tumor thermal therapy under the guidance of magnetic resonance imaging. For a better heating, organ-specific ultrasound transducers with precision location control system should be developed for tumors located at various organs. It is feasible to perform a better heating for breast tumor thermal therapy with a ring-shaped ultrasound phased-array transducer. In this study, we developed ring-shaped phased-array ultrasound transducers with 1.0 and 2.5 MHz and a precision location control system to drive the transducers to the desired location to sonicate the designated region. Both thermo-sensitive hydrogel phantom and ex vivo fresh pork were used to evaluate the heating performance of the transducers. The results showed that the ring-shaped phased array ultrasound transducers were very promising for breast tumor heating with the variation of heating patterns and without overheating the ribs. PMID:24110540

  7. An Automated Dosing Method for a HIFU Device Containing Multiple Phased Arrays

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaozheng Jenny; Barnes, Steve; Sekins, K. Michael

    2010-03-01

    A device containing multiple 2D therapeutic and imaging ultrasound phased arrays is proposed for acoustic hemostasis applications. An automated dosing algorithm selects the optimal combination of therapeutic phased arrays and calculates the acoustic power required of each array. Simulations demonstrate that therapeutic temperatures (70° C

  8. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models

    NASA Astrophysics Data System (ADS)

    Bakker, J. F.; Paulides, M. M.; Obdeijn, I. M.; van Rhoon, G. C.; van Dongen, K. W. A.

    2009-05-01

    The objective of this theoretical study is to design an ultrasound (US) cylindrical phased array that can be used for hyperthermia (40-44 °C) treatment of tumours in the intact breast. Simultaneously, we characterize the influence of acoustic and thermal heterogeneities on the specific absorption rate (SAR) and temperature patterns to determine the necessity of using heterogeneous models for a US applicator design and treatment planning. Cylindrical configurations of monopole transducers are studied on their ability to generate interference patterns that can be steered electronically to the location of the target region. Hereto, design parameters such as frequency, number of transducers per ring, ring distance and number of rings are optimized to obtain a small primary focus, while suppressing secondary foci. The models account for local heterogeneities in both acoustic (wave velocity and absorption) and thermal (blood perfusion rate, heat capacity and conductivity) tissue properties. We used breast models with a central tumour (30 × 20 × 38 mm3) and an artificial thorax tumour (sphere with a radius of 25 mm) to test the design. Simulations predict that a US cylindrical phased array, consisting of six rings with 32 transducers per ring, a radius of 75 mm and 66 mm distance between the first and sixth transducer ring, operating at a frequency of 100 kHz, can be used to obtain 44 °C in the centre of tumours located anywhere in the intact breast. The dimensions of the volumes enclosed by the 41 °C iso-temperature are 19 × 19 × 21 mm3 and 21 × 21 × 32 mm3 for the central and the thorax tumours, respectively. It is demonstrated that acoustic and thermal heterogeneities do not disturb the SAR and temperature patterns.

  9. DE-STAR: Phased-array laser technology for planetary defense and other scientific purposes

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Bible, Johanna; Bublitz, Jesse; Arriola, Josh; Motta, Caio; Suen, Jon; Johansson, Isabella; Riley, Jordan; Sarvian, Nilou; Wu, Jane; Milich, Andrew; Oleson, Mitch; Pryor, Mark

    2013-09-01

    Current strategies for diverting threatening asteroids require dedicated operations for every individual object. We propose a stand-off, Earth-orbiting system capable of vaporizing the surface of asteroids as a futuristic but feasible approach to impact risk mitigation. We call the system DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation). DE-STAR is a modular phased array of laser amplifiers, powered by solar photovoltaic panels. Lowcost development of test systems is possible with existing technology. Larger arrays could be tested in sub-orbital demonstrations, leading eventually to an orbiting system. Design requirements are established by seeking to vaporize the surface of an asteroid, with ejected material creating a reaction force to alter the asteroid's orbit. A proposed system goal would be to raise the surface spot temperature to <3,000K, evaporating all known substances. Engagement distance required for successful diversion depends on the asteroid's mass, composition and approach velocity. Distance to focus and desired surface spot temperature then determine laser array size. Volatile-laden objects (such as comets) ~100m wide and approaching at 5km/s could be diverted by initiating engagement at ~0.05AU, requiring a laser array of ~100m side length. Phased array configuration allows multiple beams, so a single DE-STAR of sufficient size would be capable of targeting several threats simultaneously. An orbiting DE-STAR could serve diverse scientific objectives, such as propulsion of kinetic asteroid interceptors or other interplanetary spacecraft. Vaporization of debris in Earth orbit could be accomplished with a ~10m array. Beyond the primary task of Earth defense, numerous functions are envisioned.

  10. Acoustic investigation of wall jet over a backward-facing step using a microphone phased array

    NASA Astrophysics Data System (ADS)

    Perschke, Raimund F.; Ramachandran, Rakesh C.; Raman, Ganesh

    2015-02-01

    The acoustic properties of a wall jet over a hard-walled backward-facing step of aspect ratios 6, 3, 2, and 1.5 are studied using a 24-channel microphone phased array at Mach numbers up to M=0.6. The Reynolds number based on inflow velocity and step height assumes values from Reh = 3.0 ×104 to 7.2 ×105. Flow without and with side walls is considered. The experimental setup is open in the wall-normal direction and the expansion ratio is effectively 1. In case of flow through a duct, symmetry of the flow in the spanwise direction is lost downstream of separation at all but the largest aspect ratio as revealed by oil paint flow visualization. Hydrodynamic scattering of turbulence from the trailing edge of the step contributes significantly to the radiated sound. Reflection of acoustic waves from the bottom plate results in a modulation of power spectral densities. Acoustic source localization has been conducted using a 24-channel microphone phased array. Convective mean-flow effects on the apparent source origin have been assessed by placing a loudspeaker underneath a perforated flat plate and evaluating the displacement of the beamforming peak with inflow Mach number. Two source mechanisms are found near the step. One is due to interaction of the turbulent wall jet with the convex edge of the step. Free-stream turbulence sound is found to be peaked downstream of the step. Presence of the side walls increases free-stream sound. Results of the flow visualization are correlated with acoustic source maps. Trailing-edge sound and free-stream turbulence sound can be discriminated using source localization.

  11. Antenna theory and design

    NASA Astrophysics Data System (ADS)

    Stutzman, W. L.; Thiele, G. A.

    Antenna fundamentals and definitions are examined, taking into account electromagnetic fundamentals, the solution of Maxwell's equations for radiation problems, the ideal dipole, the radiation pattern, directivity and gain, reciprocity and antenna pattern measurements, antenna impedance and radiation efficiency, antenna polarization, antennas in communication links and radar, and the receiving properties of antennas. Some simple radiating systems are considered along with arrays, line sources, wire antennas, broadband antennas, moment methods, and aperture antennas. High-frequency methods and aspects of antenna synthesis are discussed, giving attention to geometrical optics, physical optics, wedge diffraction theory, the ray-fixed coordinate system, the cylindrical parabolic antenna, and linear array methods.

  12. Thermal therapy for breast tumors by using a cylindrical ultrasound phased array with multifocus pattern scanning: a preliminary numerical study

    NASA Astrophysics Data System (ADS)

    Ho, Cheng-Shiao; Ju, Kuen-Cheng; Cheng, Tze-Yuan; Chen, Yung-Yaw; Lin, Win-Li

    2007-08-01

    The purpose of this study is to investigate the feasibility of using a 1 MHz cylindrical ultrasound phased array with multifocus pattern scanning to produce uniform heating for breast tumor thermal therapy. The breast was submerged in water and surrounded by the cylindrical ultrasound phased array. A multifocus pattern was generated and electrically scanned by the phased array to enlarge the treatment lesion in single heating. To prevent overheating normal tissues, a large planning target volume (PTV) would be divided into several planes with several subunits on each plane and sequentially treated with a cooling phase between two successive heatings of the subunit. Heating results for different target temperatures (Ttgt), blood perfusion rates and sizes of the PTV have been studied. Furthermore, a superficial breast tumor with different water temperatures was also studied. Results indicated that a higher target temperature would produce a slightly larger thermal lesion, and a higher blood perfusion rate would not affect the heating lesion size but increase the heating time significantly. The acoustic power deposition and temperature elevations in ribs can be minimized by orienting the acoustic beam from the ultrasound phased array approximately parallel to the ribs. In addition, a large acoustic window on the convex-shaped breast surface for the proposed ultrasound phased array and the cooling effect of water would prevent the skin overheating for the production of a lesion at any desired location. This study demonstrated that the proposed cylindrical ultrasound phased array can provide effective heating for breast tumor thermal therapy without overheating the skin and ribs within a reasonable treatment time.

  13. Hybrid optical antenna with high directivity gain.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2013-08-01

    Coupling of a far-field optical mode to electronic states of a quantum absorber or emitter is a crucial process in many applications, including infrared sensors, single molecule spectroscopy, and quantum metrology. In particular, achieving high quantum efficiency for a system with a deep subwavelength quantum absorber/emitter has remained desirable. In this Letter, a hybrid optical antenna based on coupling of a photonic nanojet to a metallo-dielectric antenna is proposed, which allows such efficient coupling. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ³/170. Despite the weak optical absorption coefficient of 2000 cm(-1) in the long infrared wavelength of ~8 μm, very strong far-field coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB below of theoretical limit. Unlike the common phased array antenna, this structure does not require coherent sources to achieve a high directivity. The quantum efficiency and directivity gain are more than an order of magnitude higher than existing metallic, dielectric, or metallo-dielectric optical antenna. PMID:23903124

  14. Antenna induced range smearing in MST radars

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.; Johnston, P. E.

    1984-01-01

    There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.

  15. Holographic processing of wideband antenna data

    NASA Astrophysics Data System (ADS)

    Lebreton, G.; de Bazelaire, E.

    1980-10-01

    To utilize the real-time two-dimensional coherent imaging devices for antenna data processing, the properties of a raster-scanned wideband signal are studied. To extend the processed bandwidth-duration product widely over the recording capability of a single line on the imaging device, the time signal is displayed on several lines of the raster. The time-Doppler ambiguity function of the resulting 2-D signal is defined, leading to the possibility of two-dimensional processing. For a 2-D or 3-D phased-array antenna with any geometry, the received signals from each channel can be raster scanned and spatially multiplexed, enabling the performance of the array-pattern synthesis in every direction simultaneously, with the theoretical directivity of the antenna. Holographic filters are designed to perform either the matched filtering of a rastered signal with many Doppler replicas, or the array-pattern synthesis, or these two operations simultaneously with a single hologram. The complete processing is demonstrated for the case of a sonar-Doppler circular-array antenna.

  16. System overview on electromagnetic compensation for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This

  17. Phased-array ultrasound technology enhances accuracy of dual frequency ultrasound measurements - towards improved ultrasound bone diagnostics.

    PubMed

    Linder, Hans; Malo, Markus K H; Liukkonen, Jukka; Jurvelin, Jukka S; Töyräs, Juha

    2016-08-01

    Overlying soft tissues attenuate ultrasound backscattered from bone, complicating diagnostics of osteoporosis at the most important fracture sites. Dual-frequency ultrasound technique (DFUS) has been proposed to solve this problem through determination of thickness and composition of overlying soft tissue. This study applies DFUS technique for the first time with a phased-array transducer to investigate if the thickness of two interfering layers (oil and water) can be accurately determined in a variety of configurations. Results indicate that DFUS may be used with phased-array ultrasound systems, making them a suitable combination to consider in future development of clinical in vivo ultrasound methodologies. PMID:27187271

  18. Automatic detection and tracking of the weld area on erw pipes using phased-array inspection technology

    NASA Astrophysics Data System (ADS)

    Zottig, Federico; Zhang, Jinchi; Imbert, Christophe

    2012-05-01

    This paper presents a phased-array method for tracking the scarfing area on ERW pipes. The time-of-flight C-Scan image generated by the phased-array system is processed by an algorithm that detects the center of the scarfing area. The weld centerline, which is of interest to the inspection, is identified and tracked. The information relative to the position of the weld line is used to control the position of the PA probes, which automatically track the weld seam during flaw inspection. If loss of detection occurs, the algorithm disengages tracking of the weld, and the operator is prompted to continue the task manually.

  19. Three-element phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Sassaroli, Angelo; Zucker, Max A.; Fantini, Sergio

    2005-02-01

    We present a multielement phased-array approach to diffuse optical imaging based on postprocessing of continuous-wave data for the improvement of spatial resolution. In particular, we present a theoretical and experimental analysis of the performance of a three-element source array in the study of an optically turbid medium with two embedded cylindrical inclusions. We find that the proposed phased-array approach is able to resolve two cylinders with side-to-side separation of 10 mm that are not resolved by the intensity associated with a single light source.

  20. Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas

    NASA Astrophysics Data System (ADS)

    Inza, L. A.; Métaxian, J. P.; Mars, J. I.; Bean, C. J.; O'Brien, G. S.; Macedo, O.; Zandomeneghi, D.

    2014-01-01

    A series of 16 vulcanian explosions occurred at Ubinas volcano between May 24 and June 14, 2009. The intervals between explosions were from 2.1 h to more than 6 days (mean interval, 33 h). Considering only the first nine explosions, the average time interval was 7.8 h. Most of the explosions occurred after a short time interval (< 8 h) and had low energy, which suggests that the refilling time was not sufficient for large accumulation of gas. A tremor episode followed 75% of the explosions, which coincided with pulses of ash emission. The durations of the tremors following the explosions were longer for the two highest energy explosions. To better understand the physical processes associated with these eruptive events, we localized the sources of explosions using two seismic antennas that were composed of three-component 10 and 12 sensors. We used the high-resolution MUSIC-3C algorithm to estimate the slowness vector for the first waves that composed the explosion signals recorded by the two antennas assuming propagation in a homogeneous medium. The initial part of the explosions was dominated by two frequencies, at 1.1 Hz and 1.5 Hz, for which we identified two separated sources located at 4810 m and 3890 m +/- 390 altitude, respectively. The position of these two sources was the same for the full 16 explosions. This implies the reproduction of similar mechanisms in the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of these two sources as the limits of the conduit portion that was involved in the fragmentation process. Seismic data and ground deformation recorded simultaneously less than 2 km from the crater showed a decompression movement 2 s prior to each explosion. This movement can be interpreted as gas leakage at the level of the cap before its destruction. The pressure drop generated in the conduit could be the cause of the fragmentation process that propagated deeper. Based on these