Science.gov

Sample records for active phorbol esters

  1. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    PubMed

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. PMID:25066610

  2. Characterization of beta2 (CD18) integrin phosphorylation in phorbol ester-activated T lymphocytes.

    PubMed Central

    Valmu, L; Hilden, T J; van Willigen, G; Gahmberg, C G

    1999-01-01

    Integrins are transmembrane proteins involved in cell-cell and cell-extracellular-matrix interactions. The affinity and avidity of integrins for their ligands change in response to cytoplasmic signals. This 'inside-out' activation has been reported to occur also with beta2 integrins (CD18). The beta2 integrin subunit has previously been shown to become phosphorylated in T lymphocytes on cytoplasmic serine and the functionally important threonine residues after treatment with phorbol esters or on triggering of T-cell receptors. We have now characterized the phosphorylation of beta2 integrins in T-cells in more detail. When T-cells were activated by phorbol esters the phosphorylation was mainly on Ser756. After inhibition of serine/threonine phosphatases, phosphorylation was also found in two of the threonine residues in the threonine triplet 758-760 of the beta2 cytoplasmic domain. Activation of T-cells by phorbol esters resulted in phosphorylation in only approx. 10% of the integrin molecules. Okadaic acid increased this phosphorylation to approx. 30% of the beta2 molecules, assuming three phosphorylation sites. This indicates that a strong dynamic phosphorylation exists in serine and threonine residues of the beta2 integrins. PMID:10085235

  3. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium.

    PubMed

    Wang, Jun-Feng; Yang, Sheng-Hui; Liu, Yan-Qun; Li, Din-Xiang; He, Wei-Jun; Zhang, Xiao-Xiao; Liu, Yong-Hong; Zhou, Xiao-Jiang

    2015-05-01

    Five new phorbol esters, (four phorbol diesters, 1-4, and one 4-deoxy-4α-phorbol diester, 5), as well as four known phorbol esters analogues (6-9) were isolated and identified from the branches and leaves of Croton tiglium. Their structures were elucidated mainly by extensive NMR spectroscopic, and mass spectrometric analysis. Among them, compound (1) was the first example of a naturally occurring phorbol ester with the 20-aldehyde group. Compounds 2-5, and 7-9 showed potent cytotoxicity against the K562, A549, DU145, H1975, MCF-7, U937, SGC-7901, HL60, Hela, and MOLT-4 cell lines, with IC50 values ranging from 1.0 to 43 μM, while none of the compounds exhibited cytotoxic effects on normal human cell lines 293T and LX-2, respectively. In addition, compound 3 exhibited moderate COX-1 and COX-2 inhibition, with IC50 values of 0.14 and 8.5 μM, respectively. PMID:25819096

  4. Phorbol ester activation of chloride current in guinea-pig ventricular myocytes.

    PubMed Central

    Shuba, L. M.; Asai, T.; McDonald, T. F.

    1996-01-01

    1. Although earlier studies with phorbol esters indicate that protein kinase C (PKC) may be an important regulator of Cl- current (Icl) in cardiac cells, there is a need for additional quantitative data and investigation of conflicting findings. Our objectives were to measure the magnitude, time course, and concentration-dependence of Icl activated in guinea-pig ventricular myocytes by phorbol 12-myristate 13-acetate (PMA), evaluate its PKC dependence, and examine its modification by external and internal ions. 2. The whole-cell patch clamp technique was used to apply short depolarizing and hyperpolarizing pulses to myocytes superfused with Na(+)-, K(+)-, Ca(2+)-free solution (36 degrees C) and dialysed with Cs+ solution. Stimulation of membrane currents by PMA (threshold < or = 1nM, EC50 approximately equal to 14 nM, maximal 40% increase with > or = 100 nM) plateaued within 6-10 min. 3. PMA-activated current was time-independent, and suppressed by l mM 9-anthracenecarboxylic acid (9-AC). Its reversal potential (Erev) was sensitive to changes in the Cl- gradient, and outward rectification of the current-voltage (I-V) relationship was more pronounced with 30 mM than 140 mM Cl- dialysate. 4. The relative permeability of PMA-activated channels estimated from Erev measurements was I- > Cl- > > aspartate. Channel activation was independent of external Na+. 5. PMA failed to activate Icl in myocytes pretreated with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) or dialysed with pCa 10.5 solution. Lack of response to 4 alpha-phorbol 12, 13-didecanoate (alpha PDD) was a further indication of mediation by PKC. 6. Icl induced by 2 microM forskolin was far larger than that induced by PMA, suggesting that endogenous protein kinase A is a much stronger Cl- channel activator than endogenous PKC in these myocytes. 7. The macroscopic properties of PMA-induced Icl appear to be indistinguishable from those of PKA-activated Icl. We discount stimulation of PKA by PMA as an

  5. Development of a sensitive in vitro assay to quantify the biological activity of pro-inflammatory phorbol esters in Jatropha oil.

    PubMed

    Pelletier, Guillaume; Padhi, Bhaja K; Hawari, Jalal; Sunahara, Geoffrey I; Poon, Raymond

    2015-06-01

    New health safety concerns may arise from the increasing production and use of Jatropha oil, a biodiesel feedstock that also contains toxic, pro-inflammatory, and co-carcinogenic phorbol esters. Based on the exceptional sensitivity of Madin-Darby canine kidney (MDCK) cells to the model phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a robust bioassay was developed to quantify the biological activity of Jatropha phorbol esters directly in oil, without sample extraction. We first verified that the characteristic response of MDCK cells to TPA was also observed following direct exposure to phorbol esters in Jatropha oil. We further confirmed that similarly to TPA, Jatropha oil's phorbol esters can activate protein kinase C (PKC). We then assessed the transcriptional response of MDCK cells to Jatropha oil exposure by measuring the expression of cyclooxygenase-2 (COX-2), a gene involved in inflammatory processes which is strongly upregulated following PKC activation. Based on the parameterization of a TPA dose-response curve, the transcriptional response of MDCK cells to Jatropha oil exposure was expressed in term of TPA toxic equivalent (TEQ), a convenient metric to report the inflammatory potential of complex mixtures. The sensitive bioassay described in this manuscript may prove useful for risk assessment, as it provides a quantitative method and a convenient metric to report the inflammatory potential of phorbol esters in Jatropha oil. This bioassay may also be adapted for the detection of bioactive phorbol esters in other matrices. PMID:25588777

  6. Cytotoxic phorbol esters of Croton tiglium.

    PubMed

    Zhang, Xiao-Long; Wang, Lun; Li, Fu; Yu, Kai; Wang, Ming-Kui

    2013-05-24

    Chemical investigation of the seeds of Croton tiglium afforded eight new phorbol diesters (three phorbol diesters, 1-3, and five 4-deoxy-4α-phorbol diesters, 4-8), together with 11 known phorbol diesters (nine phorbol diesters, 9-17, and two 4-deoxy-4α-phorbol diesters, 18 and 19). The structures of compounds 1-8 were determined by spectroscopic data information and chemical degradation experiments. The cytotoxic activities of the phorbol diesters were evaluated against the SNU387 hepatic tumor cell line, and compound 3 exhibited the most potent activity (IC50 1.2 μM). PMID:23701597

  7. Phorbol ester stimulates secretory activity while inhibiting receptor-activated aminopyrine uptake by gastric glands

    SciTech Connect

    Brown, M.R.; Chew, C.S.

    1986-03-05

    Both cyclic AMP-dependent and -independent secretagogues stimulate pepsinogen release, respiration and H/sup +/ secretory activity (AP uptake) in rabbit gastric glands. 12-O-tetradecanoylphorbol-13-acetate (T), a diacyglycerol analog, activates protein kinase C (PKC) and stimulates secretion in many systems. T stimulated respiration and pepsinogen release by glands and increased AP uptake by both glands and purified parietal cells. However, T reduced AP uptake by glands stimulated with carbachol (C) or histamine (H) with an apparent IC/sub 50/ of 1 nM. Preincubation with T for 30 min produced maximum inhibition which was not reversed by removal of T. T accelerated the decline of the transient C peak while the late steady state response to H was most inhibited. H-stimulated AP uptake was also inhibited by 50 ..mu..g/ml 1-oleoyl-2-acetyl-glycerol, a reported PKC activator, but not by the inactive phorbol, 4..cap alpha..-phorbol-12,13-didecanoate. In contrast, T potentiated AP uptake by glands stimulated with submaximal doses of dibutyryl cyclic AMP. These results suggest inhibition by T is a specific effect of PKC activators. The differing effects of T on secretion indicators may result from a dual action of T on receptor and post-receptor intracellular events.

  8. Phorbol ester phorbol-12-myristate-13-acetate promotes anchorage-independent growth and survival of melanomas through MEK-independent activation of ERK1/2

    SciTech Connect

    Jorgensen, Kjersti; Skrede, Martina; Cruciani, Veronique; Mikalsen, Svein-Ole; Slipicevic, Ana; Florenes, Vivi Ann . E-mail: v.a.florenes@labmed.uio.no

    2005-04-01

    The phorbol ester, phorbol-12-myristate-13-acetate (PMA), an activator of PKCs, is known to stimulate the in vitro growth of monolayer cultures of normal human melanocytes whereas it inhibits the growth of most malignant melanoma cell lines. We examined the effect of PMA on proliferation and survival of melanoma cells grown as multicellular aggregates in suspension (spheroids), and aimed to elucidate downstream targets of PKC signaling. In contrast to monolayer cultures, PMA increased cell proliferation as well as protected melanoma cells from suspension-mediated apoptosis (anoikis). Supporting the importance of PKC in anchorage-independent growth, treatment of anoikis-resistant melanoma cell lines with antisense oligonucleotides against PKC-{alpha}, or the PKC inhibitor Goe6976, strongly induced anoikis. PMA induced activation of ERK1/2, but this effect was not prevented by the MEK inhibitors PD98059 or by U0126. Whereas PD98059 treatment alone led to marked activation of the pro-apoptotic Bim and Bad proteins and significantly increased anoikis, these effects were clearly reversed by PMA. In conclusion, our results indicate that the protective effect of PMA on anchorage-independent survival of melanoma cells at least partly is mediated by MEK-independent activation of ERK1/2 and inactivation of downstream pro-apoptotic effector proteins.

  9. 1,2-diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH/sub 3/ pituitary cells

    SciTech Connect

    Kolesnick, R.N.; Clegg, S.

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH/sub 3/ pituitary cells, the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1.2-Dioctanoylglycerol (200 ..mu..g/ml) reduced cytosolic protein kinase C activity to 67% of control. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. These studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.

  10. Comparison of effects of phorbol esters and glucose on protein kinase C activation and insulin secretion in pancreatic islets.

    PubMed Central

    Easom, R A; Hughes, J H; Landt, M; Wolf, B A; Turk, J; McDaniel, M L

    1989-01-01

    The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion. PMID:2690823

  11. Characterization of the Rac-GAP (Rac-GTPase-activating protein) activity of beta2-chimaerin, a 'non-protein kinase C' phorbol ester receptor.

    PubMed Central

    Caloca, Maria Jose; Wang, HongBin; Kazanietz, Marcelo G

    2003-01-01

    The regulation and function of beta2-chimaerin, a novel receptor for the phorbol ester tumour promoters and the second messenger DAG (diacylglycerol), is largely unknown. As with PKC (protein kinase C) isoenzymes, phorbol esters bind to beta2-chimaerin with high affinity and promote its subcellular distribution. beta2-Chimaerin has GAP (GTPase-activating protein) activity for the small GTP-binding protein Rac1, but for not Cdc42 or RhoA. We show that acidic phospholipids enhanced its catalytic activity markedly in vitro, but the phorbol ester PMA had no effect. beta2-Chimaerin and other chimaerin isoforms decreased cellular levels of Rac-GTP markedly in COS-1 cells and impaired GTP loading on to Rac upon EGF (epidermal growth factor) receptor stimulation. Deletional and mutagenesis analysis determined that the beta2-chimaerin GAP domain is essential for this effect. Interestingly, PMA has a dual effect on Rac-GTP levels in COS-1 cells. PMA increased Rac-GTP levels in the absence of a PKC inhibitor, whereas under conditions in which PKC activity is inhibited, PMA markedly decreased Rac-GTP levels and potentiated the effect of beta2-chimaerin. Chimaerin isoforms co-localize at the plasma membrane with active Rac, and these results were substantiated by co-immunoprecipitation assays. In summary, the novel phorbol ester receptor beta2-chimaerin regulates the activity of the Rac GTPase through its GAP domain, leading to Rac inactivation. These results strongly emphasize the high complexity of DAG signalling due to the activation of PKC-independent pathways, and cast doubts regarding the selectivity of phorbol esters and DAG analogues as selective PKC activators. PMID:12877655

  12. Conformation of the C1 phorbol-ester-binding domain participates in the activating conformational change of protein kinase C.

    PubMed Central

    Ho, C; Slater, S J; Stagliano, B A; Stubbs, C D

    1999-01-01

    The fluorescent phorbol ester 12-N-methylanthraniloylphorbol 13-acetate [sapintoxin D (SAPD)] was used as both the activator and the probe for the activating conformational change of the C1 domain of recombinant protein kinase C (PKC)alpha. Fluorescence emission spectra and steady-state anisotropy measurements of SAPD in fully active membrane-associated PKC show that there is a relatively hydrophobic environment and restricted motional freedom characterizing the phorbol-ester-binding site. SAPD also interacts with the membrane lipids so that it was necessary to resort to time-resolved anisotropy measurements to resolve the signals corresponding to PKC-bound SAPD from that associated with buffer and lipid. In the presence of membrane lipids (unilamellar vesicles of phosphatidylcholine and phosphatidylserine, 4:1 molar ratio) and Ca(2+), at a concentration sufficient to activate the enzyme fully, a long correlation time characteristic of highly restricted motion was observed for PKC-associated SAPD. The fraction of SAPD molecules displaying this restricted motion, in comparison with the total SAPD including that in lipids and in buffer, increased with increasing concentrations of Ca(2+) and paralleled the appearance of enzyme activity, whereas the rotational correlation time remained constant. This could be rationalized as an increase in the number of active PKC conformers in the total population of PKC molecules. It therefore seems that there is a distinct conformation of the C1 activator-binding domain associated with the active form of PKC. The addition of SAPD and dioleoyl-sn-glycerol together produced an activity higher than that achievable by either activator alone both at concentrations that alone induced maximal activity for the respective activator; this higher activity was associated with a further restriction in SAPD motion. Increasing the cholesterol concentration, the phosphatidylethanolamine concentration, the sn-2 unsaturation in phosphatidylcholine

  13. Protein Kinase C Regulates Ionic Conductance in Hippocampal Pyramidal Neurons: Electrophysiological Effects of Phorbol Esters

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Snyder, Solomon H.; Alger, Bradley E.

    1985-04-01

    The vertebrate central nervous system contains very high concentrations of protein kinase C, a calcium-and phospholipid-stimulated phosphorylating enzyme. Phorbol esters, compounds with inflammatory and tumor-promoting properties, bind to and activate this enzyme. To clarify the role of protein kinase C in neuronal function, we have localized phorbol ester receptors in the rat hippocampus by autoradiography and examined the electrophysiological effects of phorbol esters on hippocampal pyramidal neurons in vitro. Phorbol esters blocked a calcium-dependent potassium conductance. In addition, phorbol esters blocked the late hyperpolarization elicited by synaptic stimulation even though other synaptic potentials were not affected. The potencies of several phorbol esters in exerting these actions paralleled their affinities for protein kinase C, suggesting that protein kinase C regulates membrane ionic conductance.

  14. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study.

    PubMed

    Klausen, Thomas Kjaer; Pagani, Alberto; Minassi, Alberto; Ech-Chahad, Abdellah; Prenen, Jean; Owsianik, Grzegorz; Hoffmann, Else Kay; Pedersen, Stine Falsig; Appendino, Giovanni; Nilius, Bernd

    2009-05-14

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4alpha-phorbol esters was investigated by combining information from chemical modification of 4alpha-phorbol-didecanoate (4alpha-PDD, 2a), site-directed mutagenesis, Ca(2+) imaging, and electrophysiology. Binding of 4alpha-phorbol esters occurs in a loop in the TM3-TM4 domain of TRPV4 that is analogous to the capsaicin binding site of TRPV1, and the ester decoration of ring C and the A,B ring junction are critical for activity. The lipophilic ester groups on ring C serve mainly as a steering element, affecting the orientation of the diterpenoid core into the ligand binding pocket, while the nature of the A,B ring junction plays an essential role in the Ca(2+)-dependence of the TRPV4 response. Taken together, our results show that 4alpha-phorbol is a useful template to investigate the molecular details of TRPV4 activation by small molecules and obtain information for the rational design of structurally simpler ligands for this ion channel. PMID:19361196

  15. Repressed PKCδ activation in glycodelin-expressing cells mediates resistance to phorbol ester and TGFβ.

    PubMed

    Hautala, Laura C; Koistinen, Riitta; Koistinen, Hannu

    2016-10-01

    Glycodelin is a glycoprotein mainly expressed in well-differentiated epithelial cells in reproductive tissues. In normal secretory endometrium, the expression of glycodelin is abundant and regulated by progesterone. In hormone-related cancers glycodelin expression is associated with well-differentiated tumors. We have previously found that glycodelin drives epithelial differentiation of HEC-1B endometrial adenocarcinoma cells, resulting in reduced tumor growth in a preclinical mouse model. Here we show that glycodelin-transfected HEC-1B cells have repressed protein kinase C delta (PKCδ) activation, likely due to downregulation of PDK1, and are resistant to phenotypic change and enhanced migration induced by phorbol 12-myristate 13-acetate (PMA). In control cells, which do not express glycodelin, the effects of PMA were abolished by using PKCδ and PDK1 inhibitors, and knockdown of PKCδ, MEK1 and 2, or ERK1 and 2 by siRNAs. Similarly, transforming growth factor β (TGFβ)-induced phenotypic change was only seen in control cells, not in glycodelin-producing cells, and it was mediated by PKCδ. Taken together, these results strongly suggest that PKCδ, via MAPK pathway, is involved in the glycodelin-driven cell differentiation rendering the cells resistant to stimulation by PMA and TGFβ. PMID:27373413

  16. Oxidant-dependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymorphonuclear leukocytes: possible link between inflammation and cancer

    SciTech Connect

    Trush, M.A.; Seed, J.L.; Kensler, T.W.

    1985-08-01

    Oxidants, such as those generated by metabolically activated phagocytes in inflammation, have been implicated in the metabolic activation of carcinogens, and in this study the authors demonstrate that the interaction of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (BP 7,8-dihydrodiol) with phorbol ester-stimulated polymorphonuclear leukocytes (PMNs) results in the generation of both a chemiluminescent intermediate and one that covalently binds to DNA. Concordant with the formation of a carcinogen-DNA adduct, the admixture of BP 7,8-dihydrodiol and phorbol ester-stimulated PMNs elicited mutagenesis in Salmonella typhimurium strain TA100. These results demonstrate that oxidants generated by metabolically stimulated PMNs can activate penultimate polycyclic aromatic hydrocarbons to a genotoxic metabolite and further defines a role for inflammation in carcinogenesis.

  17. Role of phorbol esters in regional cerebral blood flow regulation

    SciTech Connect

    Hanley, D.F.; Uhl, G.R.; Miyabe, M.; Traystman, R.J.

    1986-03-05

    Phorbol esters are known to activate protein kinase C, an intracellular enzyme capable of phosphorylating membrane associated receptors. By using phorbol-12-13-dibutyrate (PDBU), they investigated the presence and function of protein kinase C on canine cerebral vessels. In vitro tissue autoradiographic studies performed on 8 ..mu.. sections of canine cerebral vessels with H/sup 3/-PDBU revealed a 3 to 1 ratio of specific to nonspecific binding. Competitive displacement was demonstrated for 3 physiologically active phorbol esters but could not be demonstrated for 3 physiologically inactive phorbol derivatives. The effect of PDBU on regional cerebral blood flow (rCBF) was then studied in vivo using radiolabelled microspheres in 6 dogs. Measurements were made during control ventriculocisternal CSF infusions and 5,10,15,20 and 25 minutes after infusion of .1 nM/min PDBU. For grey matter regions in contact with the perfusate, caudate nucleus, cortical watershed and cerebellum, blood flow increased from 33 +/- 6 to 45 +/- 7, 20 +/- 2 to 27 +/- 2, and 31 +/- 2 to 42 +/- 5 ml/min/100 gm, respectively. rCBF was unchanged for brainstem, temporal lobe or white matter regions. They conclude (1) PDBU has high affinity binding to canine cerebral vascular smooth muscle, and (2) PDBU produces an increase in rCBF when delivered intraventricularly. These data suggest a possible role for protein kinase C in the regulation of cerebral blood flow.

  18. Effects of phorbol esters in carp (Cyprinus carpio L).

    PubMed

    Becker, K; Makkar, H P

    1998-04-01

    Carp (Cyprinus carpio L) were fed diets containing phorbol esters at concentrations of 0, 3.75, 7.5, 15, 31, 62.5, 125, 250, 500 and 1,000 micrograms/g feed. Phorbol esters were from Jatropha curcas nuts. Jatropha curcas toxicity has been reported in humans, rodents and livestock, and phorbol esters have been identified as the main toxic agent. The adverse effects observed in carp at phorbol esters concentrations of 31 micrograms/g or higher were lower average metabolic growth rate, fecal mucus production and rejection of feed. Average metabolic growth rates (g/kg 0.8/d) in a 7-d experimental period during which diets containing phorbol esters were fed to carp (values with different letters being significantly different) were 15.4a, 14.4a, 12.5ab, 12.4ab, 10.9b, 3.4c, 0.2c, -3.8d, -4.9d and -5.6d, respectively, at the above mentioned concentrations. The values for the recovery phase of 9-d during which phorbol esters were not included in the diet were 16.0a, 15.6a, 14.9a, 15.6a, 5.3b, 1.6b, 4.6bc, 6.3bc, 7.8c and 8.2c, respectively. The adverse effects of phorbol esters were reversible since withdrawal of the esters from the diets led to gain in body mass. None of the fish died at any of the concentrations studied. Incorporation of vitamin C, an antioxidant, at levels of 0.4 and 2% in the feed did not prevent occurrence of the adverse effects of the phorbol esters. The threshold level at which phorbol esters appeared to cause adverse effects in carp was 15 micrograms/g feed or 15 ppm in the diet. Carp were highly sensitive to phorbol esters, thus making them a useful species for bioassay of these compounds. This bioassay together with other analytic procedures could be of immense use in the development of detoxification processes for agro-industrial products containing phorbol esters, such as jatropha meal or jatropha oil, and as a quality control method to monitor successive stages in industrial detoxification processes. PMID:9554059

  19. Pharmaceutical potential of phorbol esters from Jatropha curcas oil.

    PubMed

    Devappa, Rakshit K; Malakar, Chandi C; Makkar, Harinder P S; Becker, Klaus

    2013-01-01

    Phorbol esters (PEs) are diterpenes present in Jatropha curcas L. seeds and have a myriad of biological activities. Since PEs are toxic, they are considered to be futile in Jatropha-based biodiesel production chain. In the present study, the extracted PEs from Jatropha oil were used as a starting material to synthesise pharmacologically important compound, prostratin. The prostratin synthesised from Jatropha showed identical mass with that of the reference standard prostratin, as determined by Nano-LC-ESI-MS/MS. Considering the rapid growth in Jatropha biodiesel industry, potential exists to harness large amount of PEs which can be further utilised to synthesise prostratin as a value added product. PMID:22913490

  20. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C

    SciTech Connect

    Chauhan, A.; Cauhan, V.P.S.; Deshmukh, D.S.; Brokerhoff, H. )

    1989-06-13

    Calcium phospholipid dependent protein kinase C (PKC) is activated by diacylglycerol (DG) and by phorbol esters and is recognized to be the phorbol ester receptor of cells; DG displaces phorbol ester competitively from PKC. A phospholipid, phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), can also activate PKC in the presence of phosphatidylserine (PS) and Ca{sup 2+} with a K{sub PIP{sub 2}} of 0.04 mol %. Preliminary experiments have suggested a common binding site for PIP{sub 2} and DG on PKC. Here, the authors investigate the effect of PIP{sub 2} on phorbol ester binding to PKC in a mixed micellar assay. In the presence of 20 mol % PS, PIP{sub 2} inhibited specific binding of ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) in a dose-dependent fashion up to 85% at 1 mol %. Inhibition of binding was more pronounced with PIP{sub 2} than with DG. Scatchard analysis indicated that the decrease in binding of PDBu in the presence of PIP{sub 2} is the result of an altered affinity for the phorbol ester rather than of a change in maximal binding. The plot of apparent dissociation constants (K{sub d{prime}}) against PIP{sub 2} concentration was linear over a range of 0.01-1 mol % with a K{sub i} of 0.043 mol % and confirmed the competitive nature of inhibition between PDBu and PIP{sub 2}. Competition between PIP{sub 2} and phorbol ester could be determined in a liposomal assay system also. These results indicate that PIP{sub 2}, DG, and phorbol ester all compete for the same activator-receiving region on the regulatory moiety of protein kinase C, and they lend support to the suggestion that PIP{sub 2} is a primary activator of the enzyme.

  1. Oxidant-dependent metabolic activation of polycyclic aromatic hydrocarbons by phorbol ester-stimulated human polymorphonuclear leukocytes: possible link between inflammation and cancer.

    PubMed Central

    Trush, M A; Seed, J L; Kensler, T W

    1985-01-01

    Oxidants, such as those generated by metabolically activated phagocytes in inflammation, have been implicated in the metabolic activation of carcinogens, and in this study we demonstrate that the interaction of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-dihydrodiol) with phorbol ester-stimulated polymorphonuclear leukocytes (PMNs) results in the generation of both a chemiluminescent intermediate and one that covalently binds to DNA. Cu(II)(3,5-diisopropylsalicylic acid)2 (CuDIPS), a biomimetic superoxide dismutase, and azide, a myeloperoxidase inhibitor, inhibited both of these reactions, indicating a dependency on oxygen-derived oxidants in these hydrocarbon-activation processes. Concordant with the formation of a carcinogen-DNA adduct, the admixture of BP 7,8-dihydrodiol and phorbol ester-stimulated PMNs elicited mutagenesis in Salmonella typhimurium strain TA100. 7,8-Dihydro-BP and BP cis-7,8-dihydrodiol were also mutagenic, whereas derivatives lacking a double bond at the 9,10 position were not. These results demonstrate that oxidants generated by metabolically stimulated PMNs can activate penultimate polycyclic aromatic hydrocarbons to a genotoxic metabolite and further defines a role for inflammation in carcinogenesis. PMID:2991910

  2. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones

    PubMed Central

    Rogatsky, Inez; Zarember, Kol A.; Yamamoto, Keith R.

    2001-01-01

    To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein–protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner. PMID:11689447

  3. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones.

    PubMed

    Rogatsky, I; Zarember, K A; Yamamoto, K R

    2001-11-01

    To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein-protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner. PMID:11689447

  4. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis.

    PubMed

    Korinek, Michal; Wagh, Vitthal D; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  5. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis

    PubMed Central

    Korinek, Michal; Wagh, Vitthal D.; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  6. Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding.

    PubMed

    Gopalakrishna, R; Chen, Z H; Gundimeda, U

    1993-12-25

    Since S-nitrosylation of protein thiols is one of the cellular regulatory mechanisms induced by nitric oxide (NO), and since protein kinase C (PKC) has critical thiol residues which influence its kinase activity, we have determined whether NO could regulate this enzyme. Initial studies were carried out with purified PKC and the NO-generating agent S-nitrosocysteine. This agent decreased phosphotransferase activity of PKC in a Ca(2+)- and oxygen-dependent manner with an IC50 of 75 microM. Phorbol ester binding was affected partially only at higher concentrations (> 100 microM) of S-nitrosocysteine. This inactivation of PKC was blocked by the NO scavenger oxyhemoglobin or reversed by dithiothreitol. It is likely that NO initially induced an S-nitrosylation of vicinal thiols, which were then oxidized to form an intramolecular disulfide. Other NO-generating agents such as S-nitroso-N-acetylpenicillamine and sodium nitroprusside, as well as authentic NO gas, induced similar types of PKC modifications. In intact B16 melanoma cells treated with S-nitrosocysteine a rapid decrease in PKC activity in both cytosol and membrane was observed. Unlike in experiments with purified PKC, in intact cells treated with S-nitrosocysteine the phorbol ester binding also decreased to a rate equal to that of PKC activity. These modifications were readily reversed by treating the homogenates with dithiothreitol in test tubes or by removing the NO-generating source from intact cells. To determine whether the limited amounts of NO generated within the intact cells could induce this type of PKC modification, the macrophage cell line IC-21 was treated with lipopolysacharide and Ca2+ ionophore A23187 to induce the NO production. With an increase in generation of NO (3-12-h period) in these cells, a parallel and irreversible decrease in PKC activity and phorbol ester binding was observed. A specific inhibitor for NO synthase, NG-monomethyl-L-arginine, inhibited both the production of NO and PKC

  7. Phorbol esters induce multidrug resistance in human breast cancer cells

    SciTech Connect

    Fine, R.L.; Patel, J.; Chabner, B.A.

    1988-01-01

    Mechanisms responsible for broad-based resistance to antitumor drugs derived from natural products (multidrug resistance) are incompletely understood. Agents known to reverse the multidrug-resistant phenotype (verapamil and trifluoperazine) can also inhibit the activity of protein kinase C. When the authors assayed human breast cancer cell lines for protein kinase C activity, they found that enzyme activity was 7-fold higher in the multidrug-resistance cancer cells compared with the control, sensitive parent cells. Exposure of drug-sensitive cells to the phorbol ester phorbol 12,13-dibutyate (P(BtO)/sub 2/) led to an increase in protein kinase C activity and induced a drug-resistance phenotype, whereas exposure of drug-resistant cells to P(BtO)/sub 2/ further increased drug resistance. In sensitive cells, this increased resistance was accomplished by a 3.5-fold increased phosphorylation of a 20-kDa particulate protein and a 35-40% decreased intracellular accumulation of doxorubicin and vincristine. P(BtO)/sub 2/ induced resistance to agents involved in the multidrug-resistant phenotype (doxorubicin and vincristine) but did not affect sensitivity to an unrelated alkylating agent (melphalan). The increased resistance was partially or fully reversible by the calcium channel blocker verapamil and by the calmodulin-antagonist trifluoperazine. These data suggest that stimulation of protein kinase C playus a role in the drug-transport changes in multidrug-resistant cells. This may occur through modulation of an efflux pump by protein phosphorylation.

  8. Regulation of thyroid peroxidase activity by thyrotropin, epidermal growth factor and phorbol ester in porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Hiraiwa, Masaki; Emoto, Tatsushi; Hattori, Yoshiyuki; Shimoda, Shin-Ichi ); Ohmori, Takeshi; Koizumi, Narumi; Hosoya, Toichiro )

    1989-01-01

    The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03 - 0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor and phorbol 12-myristate 13-acetate completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.

  9. Plasma application for detoxification of Jatropha phorbol esters

    NASA Astrophysics Data System (ADS)

    Kongmany, S.; Matsuura, H.; Furuta, M.; Okuda, S.; Imamura, K.; Maeda, Y.

    2013-06-01

    Atmospheric pressure non-thermal dielectric barrier discharge (DBD) plasma generated by helium gas at high voltage and input power of about 50 W was first applied to detoxification of Jatropha curcas phorbol esters (J. PEs) as well as standard phorbol ester (4β-12-O-tetradecanoyl phorbol-13-acetate, TPA) in water and methanol. Plasma irradiation on the solution sample was conducted for 15 min. In aqueous solution, only 16% of TPA was degraded and complete degradation of J. PEs was observed. On the contrary, complete degradation of both TPA and J. PEs in methanol was achieved by the same plasma irradiation condition. Hydroxyl radical (•OH) generated by plasma irradiation of the solution is expected as the main radical inducing the degradation of PEs.

  10. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    SciTech Connect

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.; Mosimann, W.F.; Yanagihara, N.; Weiner, N.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin are independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.

  11. Calcium ionophore and phorbol ester activation of proliferation and. gamma. -IFN production by neonatal mononuclear cells (MNCs)

    SciTech Connect

    Bryson, Y.J.; Kuhls, T.L.; Pineda, E.

    1986-03-01

    Human neonatal MNCs have a dissociation between prolif. and ..gamma..-IFN prod. Although cord MNCs display normal-high prolif. following lectin stim., ..gamma..-IFN prod. is greatly diminished compared to adult MNCs. Increasing data support a 2-stimuli requirement for human T-cell activation as noted in the T-cell line Jurkat as well as in peripheral T-cells. They have compared prolif. and ..gamma..-IFN responses of cord and adult MNCs to the calcium ionophore A23187, phorbol myristate acetate (PMA), PHA and their combinations. Cord and adult MNCs had similar prolif. responses to A23187, PMA and PHA. PMA alone acted as a weak mitogen compared to PHA. Optimal A23187 alone caused very low amts of prolif. Either PMA or A23187 suppressed PHA-stim. prolif. while A23187 augmented PMA-induced prolif. A23187, PMA or PHA alone prod. ..gamma..-IFN in adult but not cord MNCs. The addition of PMA or A23187 augmented the PHA-induced ..gamma..-IFN prod. in both cord and adult MNCs (6..-->..80 IU vs 240..-->..480 IU resp). When combined, A23187 and PMA stim. optimal and comparable amts of ..gamma..-IFN in adult and cord MNCs (480 IU). From these findings they conclude that although the stimuli for ..gamma..-IFN and prolif. may be similar, there is an absolute requirement for 2 stimuli (PMA/A23187) for ..gamma..-IFN prod. by cord cells and optimal prod. in adult MNCs. The defect of ..gamma..-IFN prod. observed in PHA stim. neonatal MNCs can be corrected using a calcium ionophore and protein kinase C activator.

  12. Phorbol ester stimulates calcium sequestration in saponized human platelets

    SciTech Connect

    Yoshida, K.; Nachmias, V.T.

    1987-11-25

    When platelets are activated by agonists, calcium (Ca2+) is released from an intracellular storage site. Recent studies using fura-2 show that, after thrombin stimulation, the rise in free calcium is transient and returns to base-line levels in 2-3 min, while the transient following ADP stimulation lasts only 15-20 s. We reported previously that the phorbol ester 12,13-phorbol myristate acetate (PMA), added at nanomolar levels after thrombin, immediately accelerated the rate of return of calcium to the base line severalfold. In the present study, we used both intact and saponized platelets to determine whether this is due to stimulation of calcium sequestration. Using fura-2 and intact platelets, we found 1) that PMA stimulated the restoration of free Ca2+ levels after ADP as well as after thrombin, and 2) that H-7, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), slowed the return of Ca2+ to baseline levels. Using saponized platelets, we also found 3) that pretreatment of platelets with PMA before saponin treatment increased the ATP-dependent /sup 45/Ca2+ uptake 2-fold, with a half-maximal effect at 5 nm; 4) that most of the Ca2+ released by ionomycin or by myoinositol 1,4,5-trisphosphate; and 5) that a GTP-binding protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), decreased basal or PMA-stimulated /sup 45/Ca2+ uptake in saponin-treated platelets. Our data suggest that activation of protein kinase C stimulates the sequestration of Ca2+ independently of cAMP or myoinositol 1,4,5-trisphosphate.

  13. Synergistic activation by serotonin and GTP analogue and inhibition by phorbol ester of cyclic Ca2+ rises in hamster eggs.

    PubMed Central

    Miyazaki, S; Katayama, Y; Swann, K

    1990-01-01

    1. Synergistic activation of a GTP-binding protein (G protein) by external serotonin (5-hydroxytryptamine, 5-HT) and internally applied guanosine-5'-O-(3-thiotriphosphate (GTP gamma S) in hamster eggs was demonstrated by the facilitation of repetitive increases in cytoplasmic Ca2+ as measured by their associated hyperpolarizing responses (HRs) and by aequorin luminescence. 2. Rapid application of 70 nM-5-HT caused a single HR of 10-12 s duration and with a delay of 80 s. The critical concentration of 5-HT to cause an HR was 50 nM. 3. With 10 microM-5-HT four to six HRs were often elicited with a delay to the first HR of 8-30 s. HRs disappeared after prolonged or repeated application of 5-HT, indicating an apparent desensitization. 4. 5-HT-induced HRs were completely inhibited by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (TPA) (100 nM). Conversely, the PKC inhibitor sphingosine (2 microM) enhanced the series of HRs by shortening the delay to the first HR (3-9 s) and by causing more HRs. 5. Ionophoretic injection of GTP gamma S into the egg usually produced a large HR with a delay of 120-240 s followed by a series of much smaller HRs. When 5-HT was applied within 1 min of injection of GTP gamma S. 70 nM-5-HT induced a number of large HRs and even 1 nM-5-HT could induce HR(s). In contrast, when 5-HT was applied after the size of GTP gamma S-induced HRs had declined, as much as 10 microM-5-HT could only elicit a single large HR. Thus, GTP gamma S apparently caused a sensitization and then a desensitization of the action of 5-HT. 6. GTP gamma S-induced Ca2+ transients were facilitated when injected in the presence of 5-HT concentrations as low as 0.1 nM. The time delay to the first HR was 65 s in 0.1 nM-5-HT or 4 s in 100 nM-5-HT whereas it was 170 s without 5-HT (mean values). The magnitude as well as frequency of HRs succeeding the first HR was enhanced by 5-HT at concentrations above 0.01 nM. 7. TPA (100 nM) blocked the GTP gamma S-plus-5

  14. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence

    SciTech Connect

    Ono, Yoshitaka; Fujii, Tomoko; Igarashi, Koichi; Kuno, Takayoshi; Tanaka, Chikako; Kikkawa, Ushio; Nishizuka, Yasutomi )

    1989-07-01

    Protein kinase C normally has a tandem repeat of a characteristic cysteine-rich sequence in C{sub 1}, the conserved region of the regulatory domain. These sequences resemble the DNA-binding zinc finger domain. For the {gamma} subspecies of rat brain protein kinase C, various deletion and point mutants in this domain were constructed, and the mutated proteins were expressed in Escherichia coli by using the T7 expression system. Radioactive phorbol 12,13-dibutyrate binding analysis indicated that a cysteine-rich zinc-finger-like sequence was essential for protein kinase C to bind phorbol ester and that one of the two sequences was sufficient for the phorbol ester binding. Conserved region C{sub 2}, another region in the regulatory domain, was apparently needed for the enzyme to require Ca{sup 2+} for phorbol ester binding activity.

  15. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  16. Distinct PKC isoforms mediate the activation of cPLA2 and adenylyl cyclase by phorbol ester in RAW264.7 macrophages

    PubMed Central

    Lin, Wan-W; Chen, Bin C

    1998-01-01

    The modulatory effects of protein kinase C (PKC) on the activation of cytosolic phospholipase A2 (cPLA2) and adenylyl cyclase (AC) have recently been described. Since the signalling cascades associated with these events play critical roles in various functions of macrophages, we set out to investigate the crosstalk between PKC and the cPLA2 and AC pathways in mouse RAW 264.7 macrophages and to determine the involvement of individual PKC isoforms. The cPLA2 and AC pathways were studied by measuring the potentiation by the phorbol ester PMA of ionomycin-induced arachidonic acid (AA) release and prostagladin E1 (PGE1)-stimulated cyclic AMP production, respectively.PMA at 1 μM caused a significant increase in AA release both in the presence (371%) and absence (67%) of ionomycin induction, while exposure of RAW 264.7 cells to PMA increased PGE1 stimulation of cyclic AMP levels by 208%.Treatment of cells with staurosporine and Ro 31-8220 inhibited the PMA-induced potentiation of both AA release and cyclic AMP accumulation, while Go 6976 (an inhibitor of classical PKC isoforms) and LY 379196 (a specific inhibitor of PKCβ) inhibited the AA response but failed to affect the enhancement of the cyclic AMP response by PMA.Long term pretreatment of cells with PMA abolished the subsequent effect of PMA in potentiating AA release, but only inhibited the cyclic AMP response by 42%.Neither PD 98059, an inhibitor of MEK, nor genistein, an inhibitor of tyrosine kinases, had any effect on the ability of PMA to potentiate AA or cyclic AMP production.The potentiation of AA release, but not of cyclic AMP formation, by PMA was sensitive to inhibition by wortmannin. This effect was unrelated to the inhibition of PKC activation as deduced from the translocation of PKC activity to the cell membrane.Western blot analysis revealed the presence of eight PKC isoforms (α, βI, βII, δ, ε, μ λ and ξ) in RAW 264.7 cells and PMA was shown to induce the translocation of the α, βI, βII,

  17. Continuous presence of phorbol ester is required for its IL-1 beta mRNA stabilizing effect.

    PubMed

    Siljander, P; Hurme, M

    1993-01-01

    The protein kinase C (PKC) activating phorbol esters are known to prevent the decay of mRNA of several cytokines and proto-oncogenes. To examine whether the phorbol ester signal is continuously required for this stabilizing effect, THP-1 monocytic cells were stimulated either with phorbol 12,13-dibutyrate (PDBu), which can be removed from the cells by washings, or with the more hydrophobic phorbol 12-myristate 13-acetate (PMA). Both of these stimuli induced high levels of interleukin-1 beta (IL-1 beta) mRNA. When the cells were washed at the peak of the IL-1 beta mRNA expression, this mRNA decayed rapidly in the PDBu stimulated cells while in PMA stimulated cells the mRNA levels were not affected. Moreover, this mRNA degradation induced by the removal of PDBu could be inhibited by readdition of the phorbol ester. This restabilization could be prevented by pharmacologic inhibitors of PKC, but not by inhibiting protein or RNA synthesis. Thus these data suggest that the phorbol ester must be continuously present to exert its mRNA stabilizing effect and that its effect is PKC-mediated but does not require active protein or RNA synthesis. PMID:8416817

  18. Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and a phorbol ester

    SciTech Connect

    Gius, D.; Laimins, L.A.

    1989-02-01

    Several viral trans-activators and a tumor promoter were examined for the ability to activate human papillomavirus type 18 (HPV-18) gene expression. A plasmid containing the HPV-18 noncoding region placed upstream of the chloramphenicol acetyltransferase reporter gene was cotransfected with different herpes simplex virus type 1 (HSV-1) genes into several cell lines. Both HSV-1 TIF and ICPO activated HPV-18 expression; however, activation by TIF was observed only in epithelial cells, while ICPO stimulated expression in a wide variety of cells. The element activated by both TIF and ICOP was mapped to a 229-base-pair fragment which also contains an HPV-18 epithelial cell-preferred enhancer. The inclusion of a papillomavirus E2 trans-activator with TIF and ICOP further increased HPV-18 expression. In contrast, the HSV-1 ICP4 and ICP27 genes, as well as the human T-cell lymphotropic virus type I and human immunodeficiency virus type 1 tat genes, were found to have no effect on HPV-18 expression. In transient assays, the addition of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also activated HPV-18 expression. The region of HPV-18 activated by TPA was localized to a sequence which is homologous to other TPA-responsive elements.

  19. Identification of the phorbol ester receptor in human and avian erythrocytes

    SciTech Connect

    Kramer, C.M.; Sando, J.J.; Speizer, L.A.

    1986-05-01

    The ability of phorbol esters to inhibit the uptake of a fluorescent glucose analogue in goose but not human erythrocytes is consistent with earlier reports that the human red blood cell lacks the phorbol ester receptor. However, they have located specific phorbol 12,13-dibutyrate binding sites in both human and goose erythrocytes. Human and goose red blood cells contain 2 classes of phorbol ester receptors with similar affinities, however the human erythrocyte contains 1/3 as many phorbol ester receptors as does the goose red blood cell. An additional contrast in the binding of phorbol esters to human and goose red blood cells is the temperature-induced enhancement of binding to goose, but not human erythrocytes. Equilibrium phorbol ester binding to goose red blood cells at 37/sup 0/C is enhanced 3.3 +/- 0.4 times that amount bound at 4/sup 0/C. Equilibrium binding of phorbol esters to human erythrocytes is identical at both temperatures. In vivo and in vitro phosphorylation profiles of C-kinase substrates also differ between the human and goose erythrocyte.

  20. Characterization of the membrane receptor of phorbol ester tumor promoters

    SciTech Connect

    Woodward, K.P.

    1985-01-01

    Binding to the membrane receptor for the phorbol ester tumor promoters was characterized in rat epithelial cell lines and in cell lines from rat and human brain, and in solubilized membranes from animal tissues and cell cultures. In inhibition of (/sup 3/H)-PDBu binding was found in membrane extracts from the transformed rat liver epithelial cell line W8, and with a factor present in normal human serum. An esterase which inactivates phorbol esters and is present in mouse liver homogenates has been described by others. The inhibition associated with the extract was reversed by pretreatment with the esterase inhibitor phenyl methyl sulfonyl fluoride (PMSF). The transformation of W8 seems to have been accompanied by the synthesis of this factor since the parental cell line has demonstrable receptors which appear to have been lost by W8 which displays binding only when pretreated with PMSF. The serum factor does not bind (/sup 3/H)-PDBu and inhibits (/sup 3/H)-PDBu binding at 4/sup 0/C. Its inhibitory action is apparent within minutes and is rapidly reversed by washing. The factor reduces the number of available receptors but not their affinity. These studies demonstrate down regulation by the phorboid receptors, and in cell lines derived from brain more binding was seen in cultures with glial characteristic than in those with predominantly neural characteristics. Since there is more binding in brain tissue than in any other tissue, brain should prove important to study to better understand the physiology of this receptor system.

  1. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    SciTech Connect

    Mellas, J.; Hammerman, M.R.

    1986-03-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na/sup +/-H/sup +/ exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using (/sup 14/C)-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 ..gamma.. phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular (Na/sup +/) > intracellular (Na/sup +/), was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na/sup +/-H/sup +/ exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells.

  2. Occular and dermal toxicity of Jatropha curcas phorbol esters.

    PubMed

    Devappa, Rakshit K; Roach, Joy S; Makkar, Harinder P S; Becker, Klaus

    2013-08-01

    Jatropha curcas seeds are a promising feedstock for biodiesel production. However, Jatropha seed oil and other plant parts are toxic due to the presence of phorbol esters (PEs). The ever-increasing cultivation of toxic genotype of J. curcas runs the risk of increased human exposure to Jatropha products. In the present study, effects of J. curcas oil (from both toxic and nontoxic genotypes), purified PEs-rich extract and purified PEs (factors C1, C2, C(3mixture), (C4+C5)) on reconstituted human epithelium (RHE) and human corneal epithelium (HCE) were evaluated in vitro. The PEs were purified from toxic Jatropha oil. In both RHE and HCE, the topical application of PEs containing samples produced severe cellular alterations such as marked oedema, presence of less viable cell layers, necrosis and/or partial tissue disintegration in epithelium and increased inflammatory response (interleukin-1α and prostaglandin E2). When compared to toxic oil, histological alterations and inflammatory response were less evident (P<0.05) in nontoxic oil indicating the severity of toxicity was due to PEs. Conclusively, topical applications of Jatropha PEs are toxic towards RHE and HCE models, which represents dermal and occular toxicity respectively. Data obtained from this study would aid in the development of safety procedures for Jatropha biodiesel industries. It is advised to use protective gloves and glasses when handling PEs containing Jatropha products. PMID:23706600

  3. Estrogen inhibits phorbol ester-induced I kappa B alpha transcription and protein degradation.

    PubMed

    Sun, W H; Keller, E T; Stebler, B S; Ershler, W B

    1998-03-27

    Estrogen (E2) is known to prevent bone loss and the mechanism is, at least in part, mediated by inhibition of expression of cytokines such as interleukin-6 (IL-6). Expression of IL-6 is tightly regulated and the transcription factor NF kappa B can upregulate IL-6 gene expression by binding to its promoter region. NF kappa B is kept in an inactive state by associating with its cytoplasmic inhibitor I kappa B alpha. Upon mitogenic stimulation, I kappa B alpha becomes phosphorylated, followed by a rapid protein degradation. As a result, NF kappa B is released and translocate to the nucleus where DNA binding occurs. It has been shown that E2 treatment downregulates mitogen-induced IL-6 expression by inhibiting NF kappa B activity. Here, we sought to determine whether E2 regulates IL-6 gene expression by modulating the levels of I kappa B alpha. Our results show that E2 treatment almost completely inhibits phorbol ester-induced I kappa B alpha protein degradation. In addition, E2 inhibits phorbol ester-stimulated I kappa B alpha gene expression. Taken together, our results suggest that E2 maintains steady state levels of I kappa B alpha upon mitogen stimulation, resulting in inhibition of NF kappa B activation and IL-6 gene expression. This may explain the protective effect of E2 on bone loss. PMID:9535726

  4. New phorbol and deoxyphorbol esters: isolation and relative potencies in inducing platelet aggregation and erythema of skin.

    PubMed

    Edwards, M C; Taylor, S E; Williamson, E M; Evans, F J

    1983-09-01

    Diester diterpenes based upon phorbol, 4-deoxyphorbol, 4 alpha-deoxyphorbol, 4-deoxy-5-hydroxyphorbol and 4,20-dideoxy-5-hydroxyphorbol were isolated from the fruit oil of Sapium indicum. Corresponding tri- and tetra-esters were produced by acetylation and mono-esters by selective hydrolysis. Twenty-six compounds were tested for production of erythema in vivo and induction of human and rabbit platelet aggregation in vitro. The flatter shape of the AB-ring trans compounds is necessary for interaction of phorbolesters at their receptor in that the cis analogues were inactive. The tertiary C-4 hydroxy group of phorbol was not necessary for activity although the 4-deoxy derivatives were less potent than the 4-hydroxy diterpenes. A primary hydroxy group at C-20 was essential for biological activity because the methyl and aldehyde derivatives of this position were inactive. The C-20 acetates were also inactive on platelets, but they did produce erythema, possibly because of the removal of the ester due to lipase activity in the skin. 5-hydroxy-analogues which undergo intramolecular hydrogen bonding had greatly reduced activities in both systems. Membrane stabilisers, phospholipase A2 and calmodulin inhibitors were antagonists for phorbol esters in platelet aggregation tests, whilst cyclo-oxygenase inhibitors and free radical scavengers had no inhibitory effects. Consequently, one electron withdrawal and free radical formation plays no part in the biological activity of these compounds. PMID:6637507

  5. Phorbol ester-stimulated phosphorylation of basolateral membranes from canine kidney

    SciTech Connect

    Hammerman, M.R.; Rogers, S.; Morrissey, J.J.; Gavin, J.R. III

    1986-06-01

    To determine whether protein kinase C is present in the basolateral membrane of the renal proximal tubular cell, we performed experiments to ascertain whether specific binding of (/sup 3/H)phorbol 12,13-dibutyrate could be demonstrated in basolateral membranes isolated from canine kidney. Specific binding was demonstrable that was half maximal at between 10(-7) and 10(-8) M phorbol 12,13-dibutyrate. Binding was inhibited by 12-O-tetradecanoylphorbol-13-acetate (TPA) and other tumor-promoting phorbol esters, but not by inactive phorbol esters, including 4 alpha-phorbol. Incubation of basolateral membranes with TPA and phorbol 12,13-dibutyrate, but not with 4 alpha-phorbol, in the presence of submicromolar concentrations of free calcium, enhanced phosphorylation of several proteins demonstrable in autoradiograms of sodium dodecyl sulfate-polyacrylamide gels originating from membranes subsequently exposed to (gamma-32P)ATP for 30 s. Dephosphorylation of (/sup 32/P)phosphoproteins was observed in gels from membranes incubated with (gamma-32P)ATP over time. TPA-stimulated phosphorylation of one protein band with Mr 135,000 was quantitated and was found to increase as a function of (TPA). Half-maximal TPA-stimulated phosphorylation of this protein band occurred at slightly less than 10(-9) M TPA. Our findings are consistent with a role for protein kinase C-effected phosphorylation of basolateral membrane proteins in the mediation or modulation of hormonal actions in the proximal tubular cell.

  6. Phorbol esters modulate cyclic AMP accumulation in porcine thyroid cells

    SciTech Connect

    Emoto, T.; Kasai, K.; Hiraiwa, M.; Shimoda, S.

    1988-01-01

    In cultured porcine thyroid cells, during 60 min incubation phorbol 12-myristate 13-acetate (PMA) had no effect on basal cyclic AMP accumulation and slightly stimulated cyclic AMP accumulation evoked by thyroid stimulating hormone (TSH) or forskolin. Cholera toxin-induced cyclic AMP accumulation was significantly stimulated by PMA. On the other hand, cyclic AMP accumulation evoked by prostaglandin E/sub 1/ or E/sub 2/ (PGE/sub 1/ and PGE/sub 2/) was markedly depressed by simultaneous addition of PMA. These opposing effects of PMA on cyclic AMP accumulation evoked by PGE and cholera toxin were observed in a dose-related fashion, with half-maximal effect of around 10/sup -9/ M in either case. The almost same effects of PMA on cyclic AMP accumulation in basal and stimulated conditions were also observed in freshly prepared thyroid cells. The present study was performed in the presence of phosphodiesterase inhibitor, 3-iso-butyl-1-methylxanthine (IBMX), indicating that PMA affected adenylate cyclase activity. Therefore, it is suggested that PMA may modulate the production of cyclic AMP in response to different stimuli, possibly by affecting several sites in the adenylate cyclase complex in thyroid cells.

  7. Biological responsiveness to the phorbol esters and specific binding of (/sup 3/H)phorbol 12,13-dibutyrate in the nematode Caenorhabditis elegans, a manipulable genetic system

    SciTech Connect

    Lew, K.K.; Chritton, S.; Blumberg, P.M.

    1982-01-01

    Because of its suitability for genetic studies, the nematode Caenorhabditis elegans was examined for its responsiveness to the phorbol esters. Phorbol 12-myristate 13-acetate had three effects. It inhibited the increase in animal size during growth; it decreased the yield of progeny; and it caused uncoordinated movement of the adult. The effects on nematode size, progeny yield, and movement were quantitated. Concentrations of phorbol 12-myristate 13-acetate yielding half-maximal responses were 440, 460, and 170 nM, respectively. As was expected from the biological responsiveness of the nematodes, specific, saturable binding of phorbol ester to nematode extracts was found. (/sup 3/H)phorbol 12,13-dibutyrate bound with a dissociation constant of 26.8 +/- 3.9 nM. At saturation, 5.7 +/- 1.4 pmole/mg protein was bound.

  8. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity.

    PubMed

    Czikora, Agnes; Lundberg, Daniel J; Abramovitz, Adelle; Lewin, Nancy E; Kedei, Noemi; Peach, Megan L; Zhou, Xiaoling; Merritt, Raymond C; Craft, Elizabeth A; Braun, Derek C; Blumberg, Peter M

    2016-05-20

    The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation. PMID:27022025

  9. Muscarinic agonists and phorbol esters increase tyrosine phosphorylation of a 40-kilodalton protein in hippocampal slices

    SciTech Connect

    Stratton, K.R.; Worley, P.F.; Huganir, R.L.; Baraban, J.M. )

    1989-04-01

    The authors have used the hippocampal slice preparation to investigate the regulation of protein tyrosine phosphorylation in brain. After pharmacological treatment of intact slices, proteins were separated by electrophoresis, and levels of protein tyrosine phosphorylation were assessed by immunoblotting with specific anti-phosphotyrosine antibodies. Phorbol esters, activators of the serine- and threonine-phosphorylating enzyme protein kinase C, selectively increase tyrosine phosphorylation of a soluble protein with an apparent molecular mass of approximately 40 kilodaltons. Muscarinic agonists such as carbachol and oxotremorine M that strongly activate the inositol phospholipid system also increase tyrosine phosphorylation of this protein. Neurotransmitter activation of the inositol phospholipid system and protein kinase C appears to trigger a cascade leading to increased tyrosine phosphorylation.

  10. The Histone Acetylase PCAF Is a Phorbol-Ester-Inducible Coactivator of the IRF Family That Confers Enhanced Interferon Responsiveness

    PubMed Central

    Masumi, Atsuko; Wang, I-Ming; Lefebvre, Bruno; Yang, Xing-Jiao; Nakatani, Yoshihiro; Ozato, Keiko

    1999-01-01

    Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-α-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-α-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness. PMID:10022868

  11. Phorbol esters potentiate the induction of class I HLA expression by interferon. alpha

    SciTech Connect

    Erusalimsky, J.D.; Kefford, R.F.; Gilmore, D.J.; Milstein, C. )

    1989-03-01

    The authors have studied the effect of phorbol esters on the induction of class I histocompatibility antigen (HLA) expression by interferons (IFNs) in the T-cell line MOLT-4 and in the MOLT-4 mutant YHHH. Addition of IFN-{alpha} to phorbol 12,13-dibutyrate-pretreated MOLT-4 cells causes a >20-fold increase in the expression of class I HLA, as compared to a 4- to 7-fold IFN-{alpha}-induced increase in control cells. Pretreatment with phorbol 12,13-dibutyrate does not alter the class I HLA response to IFN-{gamma} or the responses of other IFN-induced genes. This effect of phorbol 12,13-dibutyrate reproduces in MOLT-4 cells the phenotype of the mutant YHHH, which also displays a selective enhanced class I HLA response to IFN-{alpha}. Pretreatment of YHHH with phorbol 12,13-dibutyrate does not affect any of the responses induced by IFN. These findings suggest the existence of a phorbol ester-sensitive factor, inducible in MOLT-4 and constitutively expressed or modified in YHHH, which operates in the pathway of induction of class I HLA by IFN-{alpha} but not in the pathway used by IFN-{gamma}.

  12. Effects of phorbol esters on adrenergic receptors of DDT MF-2 smooth muscle cells

    SciTech Connect

    Cowlen, M.; Toews, M.

    1986-03-05

    Phorbol esters have been reported to induce redistribution or internalization of several types of cell surface receptors, including beta-adrenergic receptors (BAR) in some cells. They investigated the effects of phorbol esters on adrenergic receptor distribution in DDT/sub 1/ MF-2 smooth muscle cells in suspension culture. Exposure of cells to epinephrine, an agonist for both BAR and alpha-1 adrenergic receptors (AAR), led to a shift of about half of BAR from plasma membrane to light vesicle fractions on sucrose density gradient centrifugation. This change correlates with other evidence for internalization or sequestration of BAR away from the cell surface. AAR distribution remained unaltered following agonist treatment. Pretreatment of cells with phorbol 12-myristate 13-acetate, which caused about 80% inhibition of epinephrine-stimulated turnover of inositol phospholipids, did not lead to redistribution of either BAR or AAR.

  13. Method of phorbol ester degradation in Jatropha curcas L. seed cake using rice bran lipase.

    PubMed

    Hidayat, Chusnul; Hastuti, Pudji; Wardhani, Avita Kusuma; Nadia, Lana Santika

    2014-03-01

    A novel enzymatic degradation of phorbol esters (PE) in the jatropha seed cake was developed using lipase. Cihera rice bran lipase had the highest ability to hydrolyze PE, and reduced PE to a safe level after 8 h of incubation. Enzymatic degradation may be a promising method for PE degradation. PMID:24099956

  14. Stimulation of phospholipid hydrolysis and arachidonic acid mobilization in human uterine decidua cells by phorbol ester.

    PubMed Central

    Schrey, M P; Read, A M; Steer, P J

    1987-01-01

    Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization

  15. Suppressed PHA Activation of T Lymphocytes in Simulated Microgravity is Restored by Direct Activation of Protein Kinase C with Phorbol Ester

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pellis, Neal R.

    1997-01-01

    Various aspects of spaceflight, including microgravity, cosmic radiation, and physiological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. We utilized clinostatic RWV bioreactors that simulate aspects of microgravity to analyze the response of human PBMC to polyclonal activation. PHA responsiveness in the RWV was almost completely diminished. IL-2 and IFN-gamma secretion was reduced whereas IL- 1 beta and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions did not suppress PHA activation. Furthermore, increasing cell density and, therefore, cell-cell interactions in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, submitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  16. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains

    SciTech Connect

    Dugina, V.B.; Svitkina, T.M.; Vasiliev, J.M.; Gelfand, I.M.

    1987-06-01

    The phorbol ester phorbol 12-myristate 13-acetate (PMA) induced reversible alteration of the shape of fibroblastic cells of certain transformed lines-namely, partition of the cells into two types of domains: motile body actively extending large lamellas and stable narrow cytoplasmic processes. Dynamic observations have shown that stable processes are formed from partially retracted lamellas and from contracted tail parts of cell bodies. Immunofluorescence microscopy and electron microscopy of platinum replicas of cytoskeleton have shown that PMA-induced narrow processes are rich in microtubules and intermediate filaments but relatively poor in actin microfilaments; in contrast, lamellas and cell bodies contained numerous microfilaments. Colcemid-induced depolymerization of microtubules led to contraction of PMA-induced processes; cytochalasin B prevented this contraction. It is suggested that PMA-induced separation of cell into motile and stable parts is due to directional movement of actin structures along the microtubular framework. Similar movements may play an important role in various normal morphogenetic processes.

  17. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids.

    PubMed

    Kazanietz, M G; Barchi, J J; Omichinski, J G; Blumberg, P M

    1995-06-16

    Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination. PMID:7782331

  18. Effect of phorbol ester on the release of atrial natriuretic peptide from the hypertrophied rat myocardium.

    PubMed Central

    Kinnunen, P.; Taskinen, T.; Järvinen, M.; Ruskoaho, H.

    1991-01-01

    1. To determine the cellular mechanisms of atrial natriuretic peptide (ANP) release from ventricular cardiomyocytes, the secretory and the cardiac effects of a phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), known to stimulate protein kinase C activity in heart cells, were studied in isolated, perfused heart preparations from 2- and 21-month-old Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats. TPA was added to the perfusion fluid for 30 min at a concentration of 46 nM after removal of atrial tissue. Additionally, atrial and ventricular levels of immunoreactive ANP (IR-ANP) and ANP mRNA, the distribution of ANP within ventricles as well as the relative contribution of atria and ventricles in the release of ANP were studied. 2. Ventricular hypertrophy that gradually developed in hypertensive rats resulted in remarkable augmentation of ANP gene expression, as reflected by elevated levels of immunoreactive ANP and ANP mRNA. The total amount of IR-ANP in the ventricles of the SHR rats increased 41 fold and ANP mRNA levels 12.9 fold from the age of 2 to 21 months. At the age of 21 months, levels of IR-ANP and ANP mRNA in the ventricles of SHR rats were 5.4 fold and 3.7 fold higher, respectively, than in the normotensive WKY rats. Immunohistochemical studies demonstrated ANP granules within the hypertrophic ventricles of the old SHR rats, but not within normal ventricular tissue. 3. In isolated perfused heart preparations, the severely hypertrophied ventricular tissue of SHR rats after atrialectomy secreted more ANP into the perfusate than did the control hearts.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 PMID:1826618

  19. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    PubMed Central

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  20. T-cell response to phorbol ester PMA and calcium ionophore A23187 in Down's syndrome.

    PubMed

    Bertotto, A; Crupi, S; Arcangeli, C; Gerli, R; Scalise, F; Fabietti, G; Agea, E; Vaccaro, R

    1989-11-01

    The proliferative response of purified T cells to anti-CD2 monoclonal antibodies (T112 plus T113) was found to be markedly reduced in 12 subjects with Down's syndrome (DS). The addition of phorbol ester PMA, which activates Ca2+/phospholipid-dependent enzyme protein kinase C, or calcium ionophore A23187, which increases intracytosolic free Ca2+ concentration, enhanced, but did not normalize, the defective anti-CD2-mediated T-cell mitogenesis. In contrast, the proliferation of resting lymphocytes from trisomic patients was comparable to that of the control cells when PMA and A23187 were used as co-blastogenic reagents. Because PMA and A23187 together bypass the early activation pathways and promote T-cell growth through the direct induction of membrane interleukin 2 (IL-2) receptor expression and IL-2 synthesis and secretion, it could reasonably be hypothesized that the faulty DS T-cell activation induced by antigen or mitogen is due to a deranged transmembrane signal transduction, rather than a defect in the later intracellular events. PMID:2573952

  1. Quantitation of protein kinase C by immunoblot-expression in different cell lines and response to phorbol esters

    SciTech Connect

    Stabel, S.; Rodriguez-Pena, A.; Young, S.; Rozengurt, E.; Parker, P.J.

    1987-01-01

    Antisera have been raised against human protein kinase C and also against a synthetic peptide based on the sequence of the bovine brain enzyme (LLNQEEGEYYNVPIPE). These antibodies react with protein kinase C from a number of species (human, murine, rat, rabbit, bovine), indicating substantial conservation of epitopes. These antisera have been used to quantitate directly protein kinase C by immunoblot analysis. The authors show here that there is a strict correlation between the levels of immunoreactive polypeptide and extractable calcium- and phospholipid-dependent kinase activity for various cell lines. Treatment of murine, rat, and human cells with phorbol dibutyrate was found to deplete levels of immunoreactive protein kinase C severely. A detailed study of the time course of this depletion in Swiss 3T3 cells shows that it follows precisely the loss of extractable activity. On exposure to 400 nM phorbol 12,13-dibutyrate protein kinase C was essentially undetectable by 40 hours; the half-life of this down-regulation was 6.7 hours. This data thus demonstrate that the loss of immunoreactive protein kinase C and of extractable calcium- and phospholipid-dependent kinase activity precisely parallels the phorbol ester induced down-regulation of binding and responsiveness in Swiss 3T3 cells.

  2. Regulation of synthesis and activity of NAD(+)-dependent 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) by dexamethasone and phorbol ester in human erythroleukemia (HEL) cells

    SciTech Connect

    Xun, C.Q.; Ensor, C.M.; Tai, H.H. )

    1991-06-28

    Dexamethasone stimulated 15-PGDH activity in HEL cells in a time and concentration dependent manner. Increase in 15-PGDH activity by dexamethasone was found to be accompanied by an increase in enzyme synthesis as revealed by Western blot and (35S)methionine labeling studies. In addition to dexamethasone, other anti-inflammatory steroids also increased 15-PGDH activity in the order of their glucocorticoid activity. Among sex steroids only progesterone increased significantly 15-PGDH activity. 12-0-Tetradecanoylphorbol-13-acetate (TPA) also induced the synthesis of 15-PGDH but inhibited the enzyme activity. It appears that TPA caused a time dependent inactivation of 15-PGDH by a protein kinase C mediated mechanism.

  3. Tumor-promoting phorbol esters support the in vitro proliferation of murine pluripotent hematopoietic stem cells.

    PubMed Central

    Spivak, J L; Hogans, B B; Stuart, R K

    1989-01-01

    The effect of tumor-promoting phorbol esters on the in vitro proliferation of mouse pluripotent hematopoietic stem cells (CFU-S) was examined using a short-term in vitro culture system and an 11-d spleen colony assay. Phorbol myristate acetate (PMA, 10(-7) M), but not the inert compound phorbol, supported the in vitro survival of day 11 CFU-S for 72 h in a manner similar to IL 3. PMA also enhanced the effect of IL 3 on the in vitro survival of day 11 CFU-S and as little as 1 h of exposure to PMA was sufficient for this purpose. The effect of PMA on CFU-S survival in vitro was not mediated by prostaglandins, did not require an established adherent cell population, and was observed at a concentration of 10(-9) M. PMA alone did not enhance the in vitro survival of day 11 CFU-S at very low concentrations of FCS but was still able to potentiate the effect of IL 3 on these cells. PMA also enhanced the in vitro survival of day 11 CFU-S from mice treated with 5-fluorouracil or from marrow cells exposed to merocyanine 540 and light. The interaction of PMA with day 11 CFU-S was not inhibited by a neutralizing antiserum to IL 3 but was inhibited by the protein kinase inhibitor H-7. Together, the data indicate that tumor-promoting phorbol esters interact with pluripotent hematopoietic stem cells. Like IL 3, their effect appears to be permissive and involves stem cells with marrow repopulating ability. PMID:2463264

  4. INCREASED [3H]-PHORBOL ESTER BINDING IN RAT CEREBELLAR GRANULE CELLS BY POLYCHLORINATED BIPHENYL MIXTURES AND CONGENERS: STRUCTURE-ACTIVITY RELATIONSHIPS

    EPA Science Inventory

    Our previous reports indicate that the neuroactivity of polychlorinated biphenyl (PCB) congeners may be associated with perturbations in cellular Ca2-homeostasis, and protein kinase C (PKC) activation/translocation. e have now studied the structure-activity relationship of severa...

  5. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid.

    PubMed Central

    Leder, A; Kuo, A; Cardiff, R D; Sinn, E; Leder, P

    1990-01-01

    Experimental carcinogenesis has led to a concept that defines two discrete stages in the development of skin tumors: (i) initiation, which is accomplished by using a mutagen that presumably activates a protooncogene, and (ii) promotion, which is a reversible process brought about most commonly by repeated application of phorbol esters. We have created a transgenic mouse strain that carries the activated v-Ha-ras oncogene fused to the promoter of the mouse embryonic alpha-like, zeta-globin gene. Unexpectedly, these animals developed papillomas at areas of epidermal abrasion and, because abrasion can also serve as a tumor-promoting event in mutagen-treated mouse skin, we tested these mice for their ability to respond to phorbol ester application. Within 6 weeks virtually all treated carrier mice had developed multiple papillomas, some of which went on to develop squamous cell carcinomas and, more frequently, underlying sarcomas. We conclude that the oncogene "preinitiates" carrier mice, replacing the initiation/mutagenesis step and immediately sensitizing them to the action of tumor promoters. In addition, treatment of the mice with retinoic acid dramatically delays, reduces, and often completely inhibits the appearance of promoter-induced papillomas. This strain has use in screening tumor promoters and for assessing antitumor and antiproliferative agents. Images PMID:2251261

  6. Screening for toxic phorbol esters in jerky pet treat products using LC-MS.

    PubMed

    Nishshanka, Upul; Jayasuriya, Hiranthi; Chattopadhaya, Chaitali; Kijak, Philip J; Chu, Pak-Sin; Reimschuessel, Renate; Tkachenko, Andriy; Ceric, Olgica; De Alwis, Hemakanthi G

    2016-05-01

    Since 2007, the U.S. FDA's Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats. Jerky used in pet treats contains glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Because some biodiesel is produced using oil from Jatropha curcas, a plant that contains toxic compounds including phorbol esters, CVM developed a liquid chromatography-mass spectrometry (LC-MS) screening method to evaluate investigational jerky samples for the presence of these toxins. Results indicated that the samples analyzed with the new method did not contain Jatropha toxins at or above the lowest concentration tested. PMID:27038400

  7. Phorbol ester suppression of opioid analgesia in rats

    SciTech Connect

    Zhang, L.J.; Wang, X.J.; Han, J.S. )

    1990-01-01

    Protein kinase C (PKC) has been shown to be an important substrate in intracellular signal transduction. Very little is known concerning its possible role in mediating opiate-induced analgesia. In the present study, 12-O-tetradecanoylphorbol 13-acetate (TPA), a selective activator of PKC, was injected intrathecally (ith) to assess its influence on the analgesia induced by intrathecal injection of the mu opioid agonist PL017, the delta agonist DPDPE and the kappa agonist 66A-078. Radiant heat-induced tail flick latency (TFL) was taken as an index of nociception. TPA in the dose of 25-50 ng, which did not affect the baseline TFL, produced a marked suppression of opioid antinociception, with a higher potency in blocking mu and delta than the kappa effect. In addition, mu and delta agonists induced remarkable decreases in spinal cyclic AMP (cAMP) content whereas the kappa effect was weak. The results suggest a cross-talk between the PKC system and the signal transduction pathway subserving opioid analgesia.

  8. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study.

    PubMed

    Thangsunan, Patcharapong; Tateing, Suriya; Hannongbua, Supa; Suree, Nuttee

    2016-07-01

    Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators. PMID:26292580

  9. A new class of simplified phorbol ester analogues: synthesis and binding to PKC and eta PKC-C1B (eta PKC-CRD2).

    PubMed

    Wender, P A; Kirschberg, T A; Williams, P D; Bastiaans, H M; Irie, K

    1999-10-01

    [formula: see text] A unique class of simplified phorbol ester analogues is described for the first time. A highly efficient retro-annelation sequence was developed in order to remove the five-membered ring from the phorbol diterpene core, allowing access to BCD ring analogues of the phorbol esters. The binding of these analogues to protein kinase C (PKC) and the truncated peptide eta PKC-C1B (eta PKC-CRD2) is also reported. PMID:10825954

  10. Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation.

    PubMed

    Sharath, B S; Mohankumar, B V; Somashekar, D

    2014-03-01

    Jatropha seed cake, a byproduct after biodiesel extraction, has several anti-nutrients and toxins. Solid-state fermentation was carried out for the detoxification of the Jatropha seed cake (JSC) using different fungal cultures. The reduction in the anti-nutritional components such as tannins, phytates, saponins, lectin and protease inhibitor, and phorbol esters on 6th, 9th, and 12th day of fermentation was analyzed. The phorbol ester content in the unfermented JSC was 0.83 mg/g, and the maximum degradation of phorbol esters to the extent of 75% was observed in the case of JSC fermented with Cunninghamella echinulata CJS-90. The phytate degradation in the fermented JSC was in the range of 65-96%. There was a gradual reduction of saponin content in the JSC from 6th to 12th day, and the reduction of saponin was in the range of 55-99% after solid-state fermentation. The trypsin inhibitor activity and lectin were 1,680 trypsin inhibitor units (TIU) per gram and 0.32 hemagglutinating unit in the unfermented JSC, respectively. Trypsin inhibitor activity and lectin could not be detected in JSC after 12th day of solid-state fermentation. Tannins accounted for 0.53% in unfermented JSC, and there was a marginal increase of tannins after solid-state fermentation. The results indicate that biological detoxification could be a promising method to reduce anti-nutritional compounds and toxins in the JSC. PMID:24435764

  11. Stimulation of prostaglandin E/sub 2/ production by phorbol esters and epidermal growth factor in porcine thyroid cells

    SciTech Connect

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-07-13

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E/sub 2/ production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E/sub 2/ production by the cells in dose related fashion. PMA stimulated prostaglandin E/sub 2/ production over fifty-fold with the dose of 10/sup -7/ M compared with control. EGF (10/sup -7/ M) also stimulated it about ten-fold. The ED/sub 50/ values of PMA and EGF were respectively around 1 x 10/sup -9/ M and 5 x 10/sup -10/ M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E/sub 2/ production from 1 to 24-h incubation. The release of radioactivity from (/sup 3/H)-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E/sub 2/ production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table.

  12. COLONY FORMATION ENHANCEMENT OF RAT TRACHEAL AND NASAL EPITHELIAL CELLS BY POLYACETATE, INDOLE ALKALOID, AND PHORBOL ESTER TUMOR PROMOTERS

    EPA Science Inventory

    The phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA), teleocidin, and two polyacetate tumor promoters (aplysiatoxin and debromoaplysiatoxin) have been tested for their effect on colony forming efficiency (CFE) of rat tracheal and nasal turbinate epithelial cells. In rat t...

  13. ACE expression in monocytes is induced by cytokines, phorbol ester and steroid

    SciTech Connect

    Lazarus, D.; Lanzillo, J.; Fanburg, B. )

    1991-03-15

    Angiotensin converting enzyme (ACE) levels are elevated in the serum and peripheral blood monocytes (PBM) of patients with granulomatous diseases. However, the role of ACE in (Mo) physiology and the regulation of the inflammatory response is not well understood. Since Mo can be stimulated to form giant cells using phorbol esters, glucocorticoids or certain inflammatory cytokines, the authors examined production of ACE protein by normal PBM, a Mo-like cell line, THP-1, and a macrophage-like cell line, U937 following stimulation with these agents. Using a sensitive ELISA assay, they found that in U937 cells, expression of ACE protein increased by 3.4 fold with dexamethasone, 3.7. fold with phorbol 12-myristate acetate (PMA), and 5.8 fold with the two agents combined. The cytokines IL-4 and GM-CSF substantially increased ACE expression, by 7.6 and 7.7 fold respectively, with maximal effect at 0.01 U/ml, while IFN-{gamma} and TNF-{alpha} had little effect. Similar results were found with PBM and THP-1 cells. The combination of dexamethasone and PMA also induced homotypic cluster formation in PBM, suggesting a correlation between cell adhesion and ACE production. The authors conclude that ACE expression in monocytes and macrophages is stimulated by low concentration of glucocorticoids and certain inflammatory cytokines. ACE may participate in the initiation and propagation of granulomatous inflammatory processes.

  14. Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product.

    PubMed

    Sadubthummarak, Umapron; Parkpian, Preeda; Ruchirawat, Mathuros; Kongchum, Manoch; Delaune, R D

    2013-01-01

    Jatropha seed cake contains high amounts of protein and other nutrients, however it has a drawback due to toxic compounds. The aim of this study was to investigate the methods applied to detoxify the main toxin, phorbol esters in jatropha seed cake, to a safe and acceptable level by maintaining the nutritional values. Phorbol esters are tetracyclic diterpenoids-polycyclic compounds that are known as tumor promoters and hence exhibited the toxicity within a broad range of species. Mismanagement of the jatropha waste from jatropha oil industries would lead to contamination of the environment, affecting living organisms and human health through the food chain, so several methods were tested for reducing the toxicity of the seed cake. The results from this investigation showed that heat treatments at either 120°C or 220°C for 1 hour and then mixing with adsorbing bentonite (10%), nanoparticles of zinc oxide (100 μg/g) plus NaHCO3 at 4%, followed by a 4-week incubation period yielded the best final product. The remaining phorbol esters concentration (0.05-0.04 mg/g) from this treatment was less than that reported for the nontoxic jatropha varieties (0.11-0.27 mg/g). Nutritional values of the seed cake after treatment remained at the same levels found in the control group and these values were crude protein (20.47-21.40 + 0.17-0.25%), crude lipid (14.27-14.68 + 0.13-0.14%) and crude fiber (27.33-29.67 + 0.58%). A cytotoxicity test conducted using L929 and normal human dermal fibroblast cell lines confirmed that most of the toxic compounds, especially phorbol esters, were shown as completely eliminated. The results suggested that the detoxification of phorbol esters residues in the jatropha seed cake was possible while it also retained nutritional values. Therefore, the methods to detoxify phorbol esters are necessary to minimize the toxicity of jatropha seed cake. Further, it is essential to reduce the possible environmental impacts that may be generated

  15. Regulation of osteosarcoma EGF receptor affinity by phorbol ester and cyclic AMP

    SciTech Connect

    Borst, S.E.; Catherwood, B.D. )

    1989-04-01

    We studied the binding and degradation of 125I-labeled epidermal growth factor (EGF) by UMR-106 osteosarcoma cells and the regulation of EGF receptor affinity for EGF by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and by treatments that raise intracellular levels of cyclic AMP. Cell surface binding of (125I)EGF to A431 cells reached a plateau after a 30 minute incubation at 37 degrees C but was undetectable in UMR-106 cells. Degradation of (125I)EGF proceeded at a 50-fold higher rate in A431 cells on a per cell basis, but receptor-bound (125I)EGF was internalized and degraded at a 3.5-fold higher rate by UMR-106 cells on a per receptor basis. At 4 degrees C, (125I)EGF labeled a single class of surface binding sites in the UMR-106 cell. Treatment with TPA at 37 degrees C reduced subsequent cell surface binding of (125I)EGF at 4 degrees C a maximum of 80% with an IC50 of 1.25 ng/ml. Maximal TPA reduction of (125I)EGF binding was observed within 5-15 minutes and was due to a reduction in the affinity of cell surface receptors of (125I)EGF without a change in receptor density. Pretreatment of the cells for 4 h with 30 microM forskolin, 1 mM isobutylmethylxanthine (IBMX) plus 30 microM forskolin, or 1 mM IBMX plus 100 ng/ml parathyroid hormone (PTH) attenuated the loss in (125I)EGF binding caused by a subsequent dose of 10 ng/ml of TPA by 17% (p less than 0.0005), 39% (p less than 0.0002), and 35% (p less than 0.002), respectively.

  16. Phorbol ester-induced inhibition of. beta. -adrenergic - and vasopressin-mediated responses in an established smooth muscle cell line

    SciTech Connect

    Not Available

    1986-03-01

    A-10 cells which are derived from embryonic rat thoracic aorta contain a high density of vasopressin receptors and relatively fewer ..beta..-adrenergic receptors. The effects of vasopressin binding to these cells are two-fold: a) inhibition of isoproterenol-stimulated cAMP accumulation, and; b) stimulation of phosphatidyl inositol turnover. Incubation of these cells with phorbol dibutyrate leads to an attenuation of the responses mediated by ..beta..-adrenergic agonist as well as vasopressin. This effect of phorbol ester is concentration- and time-dependent and can be observed as early as five minutes. The inactive phorbol ester (4 ..cap alpha.. phorbol 12,13-didecanoate) is ineffective in inhibiting ..beta..-adrenergic agonist and vasopressin-mediated responses. Since present evidence indicates that the enzyme protein kinase C (PK-C) is involved in both short-term and long-term regulatory processes such as secretion, smooth muscle contraction and cell growth, these data suggest that both ..beta..-adrenergic and vasopressin receptors and/or some mediator(s) of ..beta..-adrenergic and/or vasopressin responses may be phosphorylated by protein kinase C resulting in an attenuated response of these two hormones.

  17. Phorbol esters modulate the shape of cultured canine vascular smooth muscle cells

    SciTech Connect

    Di Salvo, J.; Kolquist, K.; Semenchuk, L.; Rengstorf, J. )

    1991-03-11

    Marked changes in the shape of vascular smooth muscle cells (VSMC) occur during early development, repair of the vascular wall, and formation of atherosclerotic plaques. Yet, surprisingly little is known about mechanisms which regulate the shape of VSMC. Since protein kinase C (PKC) is involved in regulation of multiple cellular functions including interactions between contractile and cytoskeletal proteins, the authors suspected it might also regulate VSMC shape. Accordingly, the authors studied the influence of a known activator of PKC, phorbol 12-myristate 13-acetate (PMA), on the shape of cultured canine carotid arterial BSMC. PMA produced time and concentration dependent changes from normal elongated shape to pronounced circular forms. Cells recovered normal shape within 24 hrs even though exposure to PMA was continued. Analogs of PMA which do not activate PKC did not alter shape, whereas phorbol 13, 14 diacetate, an analog which activates PKC, did produce changes in shape similar to those produced by PMA. Cycloheximide, an inhibitor of protein synthesis, or actinomycin D, an inhibitor of mRNA synthesis, did not alter PMA-induced changes in morphology. In contrast, however, recovery of normal shape after prolonged exposure to PMA was blocked by either cycloheximide or actinomycin D. These results suggest activation of PKC produces changes in VSMC shape that are independent of transcription or translation, whereas recovery is dependent on both transcription and translation. The results also suggest PKC may modulate in vivo changes in VSMC shape occurring during different pathophysiological states.

  18. Phosphorylation state of the glucose transporter from 3T3-L1 adipocytes: effect of insulin and phorbol ester

    SciTech Connect

    Gibbs, E.M.; Allard, W.J.; Lienhard, G.E.

    1986-05-01

    Polyclonal antibodies against the purified human erythrocyte glucose transporter (GT) were used to study the phosphorylation state of GT in (/sup 32/P)orthophosphate-labeled 3T3-L1 adipocytes that were exposed to insulin or phorbol ester. Conditions were established in which the recovery of GT (identified as a polypeptide of M/sub r/ 51,000) after immunoprecipitation from detergent-solubilized adipocytes was about 50% of total cellular transporter, as quantitated by immunoblot analysis. Exposure of adipocytes to insulin (100 nM) for 10 min after prelabeling in /sup 32/P for 90 min, followed by the addition of phorbol myristate acetate (PMA; 1 ..mu..M) for 20 min elicited a marked phosphorylation of GT. Addition of excess purified human erythrocyte GT completely abolished the immunoprecipitation of the 51 K phosphoprotein; this finding validates the conclusion that this phosphoprotein is GT. Treatment with PMA alone resulted in only 30% of the incorporation of /sup 32/P into the 51 K region of the gel compared to that seen with the combination of PMA and insulin. Insulin alone gave only about 20% /sup 32/P incorporation into this region compared to the combination treatment. It remains to be determined if the phosphorylation into the 51 K region of the gel seen after treatment with either of the two agonists alone is into GT. The authors tentative hypothesis is that GT is not phosphorylated in basal cells, and that insulin causes little or no increase in the phosphorylation state. On the other hand, PMA elicits some phosphorylation of GT that can be increased about 3-fold by prior treatment with insulin. Presumably, this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C.

  19. Rapid isolation and purification of phorbol esters from Jatropha curcas by high-speed countercurrent chromatography.

    PubMed

    Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo

    2015-03-18

    In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum. PMID:25686848

  20. Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA2alpha in phorbol ester-treated non-small cell lung cancer A549 cells.

    PubMed

    Tsou, Jen-Hui; Chang, Kwang-Yu; Wang, Wei-Chiao; Tseng, Joseph T; Su, Wu-Chou; Hung, Liang-Yi; Chang, Wen-Chang; Chen, Ben-Kuen

    2008-01-01

    The expression of cPLA2 is critical for transformed growth of non-small cell lung cancer (NSCLC). It is known that phorbol 12-myristate 13-acetate (PMA)-activated signal transduction pathway is thought to be involved in the oncogene action in NSCLC and enzymatic activation of cPLA2. However, the transcriptional regulation of cPLA2alpha in PMA-activated NSCLC is not clear. In this study, we found that PMA induced the mRNA level and protein expression of cPLA2alpha. In addition, two Sp1-binding sites of cPLA2alpha promoter were required for response to PMA and c-Jun overexpression. Small interfering RNA (siRNA) of c-Jun and nucleolin inhibited PMA induced the promoter activity and protein expression of cPLA2alpha. Furthermore, PMA stimulated the formation of c-Jun/Sp1 and c-Jun/nucleolin complexes as well as the binding of these transcription factor complexes to the cPLA2alpha promoter. Although Sp1-binding sites were required for the bindings of Sp1 and nucleolin to the promoter, the binding of nucleolin or Sp1 to the promoter was independent of each other. Our results revealed that c-Jun/nucleolin and c-Jun/Sp1 complexes play an important role in PMA-regulated cPLA2alpha gene expression. It is likely that nucleolin binding at place of Sp1 on gene promoter could also mediate the regulation of c-Jun/Sp1-activated genes. PMID:18025046

  1. Increased endocytosis and formation of multivesicular bodies in phorbol-ester-stimulated human monoblastic U-937 cells

    SciTech Connect

    Nilsson, M. ); Nilsson, K.; Forsbeck, K. )

    1989-04-01

    The phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is known to arrest mitotic activity and induce macrophage differentiation in the U-937 monoblastic cell line. The acute effect of TPA on ultrastructural morphology and endocytic activity of U-937 cells was studied. TPA induced within 15 minutes {alpha} marked enlargement of multivesicular bodies (MVBs), comprising both volume and number of inclusion vesicles (other organelles appeared unchanged). At this stage the MVBs frequently showed tubular cytoplasmic extensions. Inclusion vesicles accumulated in MVBs with prolonged incubation (60 minutes). Cellular uptake of {sup 125}I-HRP was increased five times the control values already after 5 minutes of TPA stimulation. The uptake increased further with prolonged incubation (60 minutes), but at a slower rate. Together these indicate a TPA-induced transfer by endocytosis of portions of the plasma membrane to the lysosomal system via MVBs. Consideration of MVBs as part of the receptor-mediated endocytic pathway suggests that this effect of TPA might involve down-regulation of cell-surface receptors. The possibility of MVBs as a proton-sequestrating compartment, responsible for the cytoplasmic alkalinization previously reported for TPA-stimulated U-937 monoblastic cells, is discussed.

  2. Cross Talk Mechanism among EMT, ROS, and Histone Acetylation in Phorbol Ester-Treated Human Breast Cancer MCF-7 Cells

    PubMed Central

    Kamiya, Tetsuro; Goto, Aki; Kurokawa, Eri; Hara, Hirokazu; Adachi, Tetsuo

    2016-01-01

    Epithelial-mesenchymal transition (EMT) plays a pivotal role in the progression of cancer, and some transcription factors including Slug and Snail are known to be involved in EMT processes. It has been well established that the excess production of reactive oxygen species (ROS) and epigenetics such as DNA methylation and histone modifications participate in carcinogenesis; however, the cross talk mechanism among EMT, ROS, and epigenetics remains unclear. In the present study, we demonstrated that the treatment of human breast cancer MCF-7 cells with phorbol ester (TPA), a protein kinase C activator, significantly induced cell proliferation and migration, and these were accompanied by the significant induction of Slug expression. Moreover, the TPA-elicited induction of Slug expression was regulated by histone H3 acetylation and NADPH oxidase (NOX) 2-derived ROS signaling, indicating that ROS and histone acetylation are involved in TPA-elicited EMT processes. We herein determined the cross talk mechanism among EMT, ROS, and histone acetylation, and our results provide an insight into the progression of cancer metastasis. PMID:27127545

  3. Sphingolipids inhibit insulin and phorbol ester stimulated uptake of 2-deoxyglucose

    SciTech Connect

    Nelson, D.H.; Murray, D.K.

    1986-07-16

    Studies are presented demonstrating inhibition of both insulin and phorbol myristate acetate stimulated uptake of 2-deoxyglucose uptake by 3T3-L1 fibroblasts. Greatest inhibition of uptake was seen with sphinganine while sphingosine was also potent in this regard. Ceramide inhibited phorbol myristate acetate but not insulin stimulation of uptake. It is suggested that sphingolipid inhibition of glucose transport relates to the previously demonstrated effect of corticosteroids to increase membrane sphingomyelin and inhibit glucose transport.

  4. Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico.

    PubMed

    He, Wei; King, Andrew J; Khan, M Awais; Cuevas, Jesús A; Ramiaramanana, Danièle; Graham, Ian A

    2011-10-01

    Jatropha curcas L. has been promoted as an oilseed crop for use to meet the increased world demand for vegetable oil production, and in particular, as a feedstock for biodiesel production. Seed meal is a protein-rich by-product of vegetable oil extraction, which can either be used as an organic fertilizer, or converted to animal feed. However, conversion of J. curcas seed meal into animal feed is complicated by the presence of toxins, though plants producing "edible" or "non-toxic" seeds occur in Mexico. Toxins present in the seeds of J. curcas include phorbol esters and a type-I ribosome inactivating protein (curcin). Although the edible seeds of J. curcas are known to lack phorbol esters, the curcin content of these seeds has not previously been studied. We analyzed the phorbol ester and curcin content of J. curcas seeds obtained from Mexico and Madagascar, and conclude that while phorbol esters are lacking in edible seeds, both types contain curcin. We also analyzed spatial distribution of these toxins in seeds. Phorbol-esters were most concentrated in the tegmen. Curcin was found in both the endosperm and tegmen. We conclude that seed toxicity in J. curcas is likely to be due to a monogenic trait, which may be under maternal control. We also conducted AFLP analysis and conclude that genetic diversity is very limited in the Madagascan collection compared to the Mexican collection. PMID:21835630

  5. Insulin and phorbol ester stimulate conductive Na/sup +/ transport through a common pathway

    SciTech Connect

    Civan, M.M.; Peterson-Yantorno, K.; O'Brien, T.G.

    1988-02-01

    Insulin stimulates Na/sup +/ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na/sup +/ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na/sup +/ transport across frog skin. In the present work, the authors have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na/sup +/ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na/sup +/ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C.

  6. Diminished Macrophage Apoptosis and Reactive Oxygen Species Generation after Phorbol Ester Stimulation in Crohn's Disease

    PubMed Central

    Palmer, Christine D.; Rahman, Farooq Z.; Sewell, Gavin W.; Ahmed, Afshan; Ashcroft, Margaret; Bloom, Stuart L.; Segal, Anthony W.; Smith, Andrew M.

    2009-01-01

    Background Crohn's Disease (CD) is a chronic relapsing disorder characterized by granulomatous inflammation of the gastrointestinal tract. Although its pathogenesis is complex, we have recently shown that CD patients have a systemic defect in macrophage function, which results in the defective clearance of bacteria from inflammatory sites. Methodology/Principal Findings Here we have identified a number of additional macrophage defects in CD following diacylglycerol (DAG) homolog phorbol-12-myristate-13-acetate (PMA) activation. We provide evidence for decreased DNA fragmentation, reduced mitochondrial membrane depolarization, impaired reactive oxygen species production, diminished cytochrome c release and increased IL-6 production compared to healthy subjects after PMA exposure. The observed macrophage defects in CD were stimulus-specific, as normal responses were observed following p53 activation and endoplasmic reticulum stress. Conclusion These findings add to a growing body of evidence highlighting disordered macrophage function in CD and, given their pivotal role in orchestrating inflammatory responses, defective apoptosis could potentially contribute to the pathogenesis of CD. PMID:19907654

  7. Protection against apoptosis in chicken bursa and thymus cells by phorbol ester in vitro

    SciTech Connect

    Asakawa, J.; Thorbecke, G.J. )

    1991-03-15

    Programmed suicide or apoptosis, due to activation of endogenous nucleases, occurs in immature CD4{sup {minus}}85{sup {minus}} mammalian thymus cells. Like the thymus, the bursa of Fabricius is a site of massive lymphopoiesis accompanied by cell death in vivo. In the present study the authors have, therefore, examined whether chicken bursa and thymus cells exhibit apoptosis. Bursa and thymus cells from SC chickens, 4-10 weeks of age, were incubated for 8-24 hrs with various reagents. Genomic DNA was isolated, electrophoresed in 3% Nusieve agarose gels, and examined for patterns of DNA fragmentation. A laddering of DNA in multiples of 200 base pairs, indicative of apoptosis, was observed with both bursa and thymus cells. These patterns of DNA fragmentation from bursa cells could be prevented by adding phorbol myristic acetate during culture and, more effectively, by PMA plus ionomycin, but not by ionomycin alone or by anti-{mu}. PMA did not affect the patterns of DNA fragmentation seen with spleen cells. Addition of the protein kinase C inhibitor staurosporin inhibited the preventive effect of PMA on apoptosis. PMA also greatly promoted the survival of bursa cells in culture, as assayed by percentage cell death and by {sup 3}H-thymidine incorporation. It is concluded that bursa and thymus cells from the chicken exhibit apoptosis. The data further suggest that protein kinase C activation protects apoptosis in cultured bursa cells.

  8. MAP kinase mediates epidermal growth factor- and phorbol ester-induced prostacyclin formation in cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Rebsamen, M; Church, D J; Vallotton, M B; Lang, U

    1998-05-01

    We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway. PMID:9618234

  9. Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.

    PubMed

    Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2003-01-01

    We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1. PMID:14668059

  10. Insulin and phorbol ester stimulate conductive Na+ transport through a common pathway.

    PubMed Central

    Civan, M M; Peterson-Yantorno, K; O'Brien, T G

    1988-01-01

    Insulin stimulates Na+ transport across frog skin, toad urinary bladder, and the distal renal nephron. This stimulation reflects an increase in apical membrane Na+ permeability and a stimulation of the basolateral membrane Na,K-exchange pump. Considerable indirect evidence has suggested that the apical natriferic effect of insulin is mediated by activation of protein kinase C. However, no direct information has been available documenting that insulin and protein kinase C indeed share a common pathway in stimulating Na+ transport across frog skin. In the present work, we have studied the interaction of insulin and phorbol 12-myristate 13-acetate (PMA), a documented activator of protein kinase C. Preincubation of skins with 1,2-dioctanoylglycerol, another activator of protein kinase C, increases baseline Na+ transport and reduces the subsequent natriferic response to PMA. Preincubation with PMA markedly reduces the subsequent natriferic action of insulin. This effect does not appear to primarily reflect PMA-induced internalization of insulin receptors. The insulin receptors are localized on the basolateral surface of frog skin, but the application of PMA to this surface is much less effective than mucosal treatment in reducing the response to insulin. Preincubation with D-sphingosine, an inhibitor of protein kinase C, also reduces the natriferic action of insulin. The current results provide documentation that insulin and protein kinase C share a common pathway in stimulating Na+ transport across frog skin. The data are consistent with the concept that the natriferic effect of insulin on frog skin is, at least in part, mediated by activation of protein kinase C. Images PMID:3277184

  11. Epidermal growth factor (EGF) stimulated Ca/sup 2 +/ mobilization in hepatocytes is abolished by phorbol esters, pertussis toxin and partial hepatectomy

    SciTech Connect

    Johnson, R.M.; Garrison, J.C.

    1986-05-01

    EGF has been demonstrated to increase free intracellular Ca/sup 2 +/ levels in isolated hepatocytes putatively by generation of the second messenger inositol trisphosphate (IP/sub 3/). Pretreatment of cells with phorbol 12-myristate 13-acetate (PMA) inhibited the EGF (66 nM) stimulated Ca/sup 2 +/ response as measured by quin2. Inhibition by PMA was maximal within 3 min and was concentration dependent (IC/sub 50/ = 13.5 nM). Four other active phorbol ester analogues blocked the Ca/sup 2 +/ response while inactive analogues did not. EGF was unable to increase intracellular Ca/sup 2 +/ levels in hepatocytes isolated from rats treated with pertussis toxin for 72 hrs. Neither PMA nor toxin pretreatment was able to inhibit the Ca/sup 2 +/ response to angiotensin II (Ang II). In hepatocytes isolated 24 hrs after partial hepatectomy, the Ca/sup 2 +/ response to EGF (as measured by phosphorylase activity, EC/sub 50/ = 5 nM) was completely abolished and remained attenuated for 7 days post-hepatectomy. The Ca/sup 2 +/ response to Ang II in this model system was also blunted but required 3 days for development of the full effect and within 7 days full activity is nearly restored. The results suggest that fundamental differences exist in the transduction mechanisms used by these two Ca/sup 2 +/-linked hormones to mobilize intracellular Ca/sup 2 +/ (and putatively increase IP/sub 3/ formation).

  12. Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells.

    PubMed

    Resink, T J; Scott-Burden, T; Weber, E; Bühler, F R

    1990-02-14

    The effect of phorbol ester pretreatment of human vascular smooth muscle cells (hVSMC) was studied with respect to regulation of endothelin (ET)-receptor binding and cellular responses to ET. The capacity of hVSMC to bind ET was decreased (by approximately 50% at maximum) after phorbol exposure, and this reductive effect was both rapid (t 1/2 approximately 10 min.) and sustained (for up to 24 hrs. of chronic phorbol exposure). Phorbol pretreatment inhibited both inositol phosphate and diacylclycerol production responses of hVSMC to ET in a manner that was time-dependent and sustained. Phorbol pretreatment also produced a persistent reduction in the ability of ET to release isotopically-labelled arachidonic and/or its metabolites from hVSMC, but importantly ionomycin-stimulated release was similarly negatively affected. Furthermore, ET-induced accumulation of the phospholipase A2/phospholipase B-derived inositol phospholipid metabolite, glycerophosphoinositol, was not different between control and phorbol-treated hVMSC. The mechanism whereby phorbol exerts differential, but notably sustained inhibitory effects on ET-promoted signal transduction pathways are thus complex and illustrative of the selectivity of protein kinase C in regulating cellular responses. PMID:2154974

  13. Induction of transcription from the long terminal repeat of Moloney murine sarcoma provirus by UV-irradiation, x-irradiation, and phorbol ester

    SciTech Connect

    Lin, C.S.; Goldthwait, D.A.; Samols, D. )

    1990-01-01

    The long terminal repeat (LTR) of Moloney murine sarcoma virus (Mo-MuSV) was used as a model system to study the stress response of mammalian cells to physical carcinogens. The chloramphenicol acetyltransferase (CAT) gene was inserted between two Mo-MuSV LTRs, and the LTR-CAT-LTR construct was used for virus production and was integrated into the genome of NIH 3T3 cells in the proviral form. This construct was used to assure that the integrated CAT gene was driven by the promoter of the LTR. Expression of the CAT gene was stimulated 4-fold by UV irradiation, and the peak of activity was observed at 18 hr. In contrast, stimulation of the CAT expression after x-irradiation was 2-fold and occurred at 6 hr. Phorbol myristate acetate also stimulated CAT activity 4-fold with a peak at 6 hr. Down-regulation of protein kinase C blocked totally the response to x-irradiation but only partially the response to UV. The protein kinase inhibitor H7 blocked the response to treatment by UV, x-ray, and phorbol ester.

  14. (Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration). Progress report. [Methyltransferase activity in Ehrlich ascites tumor cells and effects of phorbol ester on methyltransferase activity

    SciTech Connect

    Borek, E.

    1980-01-01

    Enzyme fractions were isolated from Ehrlich ascites cells which introduced methyl groups into methyl deficient rat liver mRNA and unmethylated vaccinia mRNA. The methyl groups were incorporated at the 5' end into cap 1 structures by the viral enzyme, whereas both cap 0 and cap 1 structures were formed by the Ehrlich ascites cell enzymes. Preliminary results indicate the presence of adenine N/sup 6/-methyltransferase activity in Ehrlich ascites cells. These results indicate that mRNA deficient in 5'-cap methylation and in internal methylation of adenine accumulated in rats on exposure to ethionine. The methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals. Preliminary experiments indicate that single topical application of 17n moles of TPA to mouse skin altered tRNA methyltransferases. The extent of methylation was increased over 2-fold in mouse skin treated with TPA for 48 hours. These changes have been observed as early as 12 hours following TPA treatment. In contrast, the application of initiating dose of DMBA had no effect on these enzymes. It should be emphasized that the changes in tRNA methyltransferases produced by TPA are not merely an increase of the concentration of the enzyme, rather that they represent alterations of specificity of a battery of enzymes. In turn the change in enzyme specificity can produce alterations in the structure of tRNA. (ERB)

  15. Tumor-promoting phorbol ester stimulates tyrosine phosphorylation in U-937 monocytes.

    PubMed Central

    Grunberger, G; Zick, Y; Taylor, S I; Gorden, P

    1984-01-01

    Solubilized lectin-purified extracts from human monocyte-like cells (U-937) and freshly isolated human mononuclear cells preincubated in the presence of phorbol 12-myristate 13-acetate (PMA) stimulated phosphorylation of synthetic tyrosine-containing polymers and of casein. Tyrosine phosphorylation was confirmed by phospho amino acid analysis. PMA stimulated phosphorylation of exogenous substrates in a time- and concentration-dependent manner. This phosphorylation reaction did not require addition of phospholipid, diolein, or calcium. Biologically inactive phorbol compounds did not stimulate phosphorylation in this system. In addition, PMA enhanced phosphorylation of a Mr approximately equal to 140,000 protein as well as several other endogenous proteins in the U-937 extracts. PMA treatment stimulated predominantly phosphorylation on tyrosine residues of the Mr 140,000 protein. Tyrosine phosphorylation, typical of growth-promoting peptides such as insulin or epidermal growth factor, is believed to play a role in regulating normal and disordered cellular growth and proliferation. The demonstration of PMA-stimulated tyrosine phosphorylation might provide a clue to the mechanism of cellular differentiation and proliferation induced by the tumor promoter. Images PMID:6201862

  16. Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes.

    PubMed Central

    Plée-Gautier, E; Grober, J; Duplus, E; Langin, D; Forest, C

    1996-01-01

    Hormone-sensitive lipase (HSL) catalyses the rate-limiting step in adipocyte lipolysis. Short-term hormonal regulation of HSL activity is well characterized, whereas little is known about the control of HSL gene expression. We have measured HSL mRNA content of 3T3-F442A and BFC-1 adipocytes in response to the cAMP analogue 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP) and to the phorbol ester phorbol 12-myristate 13-acetate (PMA) by Northern blot, using a specific mouse cDNA fragment. Treatment of the cells for 12 or 6 h with, respectively, 0.5 mM 8-CPT-cAMP or 1 microM PMA produced a maximal decrease of about 60% in HSL mRNA. These effects were unaffected by the protein-synthesis inhibitor anisomycin, suggesting that cAMP and PMA actions were direct. The reduction in HSL mRNA was accompanied by a reduction in HSL total activity. The intracellular routes that cAMP and PMA follow for inducing such an effect seemed clearly independent. (i) After desensitization of the protein kinase C regulation pathway by a 24 h treatment of the cells with 1 microM PMA, PMA action was abolished whereas cAMP was still fully active. (ii) Treatment with saturating concentrations of both agents produced an additive effect. (iii) The synthetic glucocorticoid dexamethasone had no proper effect on HSL gene expression but potentiated cAMP action without affecting PMA action. cAMP inhibitory action on HSL is unexpected. Indeed, the second messenger of catecholamines is the main activator of HSL by phosphorylation. We envision that a long-term cAMP treatment of adipocytes induces a counter-regulatory process that reduces HSL content and, ultimately, limits fatty acid depletion from stored triacylglycerols. PMID:8836156

  17. Detoxification of Toxic Phorbol Esters from Malaysian Jatropha curcas Linn. Kernel by Trichoderma spp. and Endophytic Fungi

    PubMed Central

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%–99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%–92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%–96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  18. Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi.

    PubMed

    Najjar, Azhar; Abdullah, Norhani; Saad, Wan Zuhainis; Ahmad, Syahida; Oskoueian, Ehsan; Abas, Faridah; Gherbawy, Youssuf

    2014-01-01

    The presence of phorbol esters (PEs) with toxic properties limits the use of Jatropha curcas kernel in the animal feed industry. Therefore, suitable methods to detoxify PEs have to be developed to render the material safe as a feed ingredient. In the present study, the biological treatment of the extracted PEs-rich fraction with non-pathogenic fungi (Trichoderma harzianum JQ350879.1, T. harzianum JQ517493.1, Paecilomyces sinensis JQ350881.1, Cladosporium cladosporioides JQ517491.1, Fusarium chlamydosporum JQ350882.1, F. chlamydosporum JQ517492.1 and F. chlamydosporum JQ350880.1) was conducted by fermentation in broth cultures. The PEs were detected by liquid chromatography-diode array detector-electrospray ionization mass spectrometry (LC-DAD-ESIMS) and quantitatively monitored by HPLC using phorbol-12-myristate 13-acetate as the standard. At day 30 of incubation, two T. harzianum spp., P. sinensis and C. cladosporioides significantly (p < 0.05) removed PEs with percentage losses of 96.9%-99.7%, while F. chlamydosporum strains showed percentage losses of 88.9%-92.2%. All fungal strains could utilize the PEs-rich fraction for growth. In the cytotoxicity assay, cell viabilities of Chang liver and NIH 3T3 fibroblast cell lines were less than 1% with the untreated PEs-rich fraction, but 84.3%-96.5% with the fungal treated PEs-rich fraction. There was no inhibition on cell viability for normal fungal growth supernatants. To conclude, Trichoderma spp., Paecilomyces sp. and Cladosporium sp. are potential microbes for the detoxification of PEs. PMID:24504029

  19. Increased glucose transport in response to phorbol ester growth factors, and insulin: relationship to phosphorylation of the glucose transporter

    SciTech Connect

    Allard, W.J.; Gibbs, E.M.; Witters, L.A.; Lienhard, G.E.

    1986-05-01

    The authors have examined the relationship between the increase in glucose transport induced by phorbol myristate acetate (PMA), EGF, PDGF, and insulin and the phosphorylation state of the glucose transporter in human fibroblasts. To assay transport, cells were cultured in medium with 10% serum for 5 days and then for 2 days in phosphate-free medium with 5% serum. Exposure to each agonist stimulated transport, as measured by the uptake of /sup 3/H-2-deoxyglucose over a 2 min period. Values for maximal percent stimulation, time needed to reach maximal stimulation, and concentration required to achieve half-maximal stimulation were as follows: PMA, 80%, 30 min, 2 nM; EGF, 30%, 10 min, 0.2 nM; Insulin, 45%, 10 min, 17 nM. In the case of PDGF, uptake was stimulated 65% by treatment with 0.7 or 1.4 nM for 20 min. Phosphorylation of the glucose transporter was measured in cells cultured for 5-7 days in medium with 10% serum and exposed to 670 ..mu..Ci/ml /sup 32/P/sub i/ for 100 min. The agonist was then added at a saturating dose for 20 min, and the glucose transporter was immunoprecipitated from cell lysates using a monoclonal antibody. Under these conditions, no basal phosphorylation of the transporter was detected, and only phorbol ester stimulated significant incorporation of phosphate into the transport protein. Experiments are currently in progress to quantitate transporter phosphorylation under conditions identical to those used for the assay of transport. These results suggest that while the transporter is a substrate for protein kinase C in vivo, phosphorylation of the transporter is not required for increased transport in response to growth factors and insulin.

  20. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells.

    PubMed

    Nagashima, Yusuke; Kako, Koichiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2012-11-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced production of HA by HDC. The present study quantified the trace amounts of intracellular HA using ultra-high liquid chromatography in combination with the 6-aminoquinoline carbamate-derivatization technique. To test whether the cellular level of HA is elevated by the induction of HDC in Jurkat cells treated with TPA, the peak corresponding to authentic HA in the cell lysate was fractioned and its molecular weight determined by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. The results of this study show that the HA level is increased by the induction of HDC expression by TPA in Jurkat cells. Therefore, this method is useful in elucidating the physiological significance of HA production. PMID:22940786

  1. Comparison of the hypertrophic effect of phorbol ester, norepinephrine, angiotensin II and contraction on cultured cardiomyocytes

    SciTech Connect

    Allo, S.N.; Carl, L.L.; Morgan, H.E. )

    1991-03-15

    Phorbol 12-myristate 13-acetate (PMA), norepinephrine (NE), angiotensin II (AII) and contraction stimulate cardiomyocyte growth. Differences exist in the time course and extent of protein and RNA accumulation. Cells plated at 4 {times} 10{sup 6} cells/60mm dish and arrested with 50 mM KCl demonstrated no significant growth. Treatment with PMA stimulated growth to a maximum of 17% at 48 h. In contrast, maximal stimulation of growth was 36% at 48 h and 31% at 72 h for contracting and NE treated cells, respectively. Maximal stimulation of the capacity for protein synthesis was 32% for PMA treated cells at 24 h as compared to 59% and 77% for NE treated and contracting cells respectively at 72 h. In support of a primary role for altered capacity in the regulation of protein synthesis, there was a significant correlation between RNA and protein content independent of the stimulus used. AII increased RNA content by 28% at 48h, but had no effect on growth up to 72h. Treatment with staurosporine blocked the stimulation of growth, suggestive of a role for protein kinase C (PKC). However, the inhibition of contraction-induced growth was due in part to a reduction in the rate of contraction. It was concluded that: significant differences existed in the time course of growth stimulation and RNA accumulation, depending on the stimulus; and growth inhibition by staurosporine is suggestive of an important role of PKC in hypertrophic growth induced by these stimuli.

  2. Effects of phorbol esters and cytokines (interleukin-2,-4, and -6) on the proliferation and surface phenotype of Epstein-Barr virus immortalised human B lymphocytes.

    PubMed

    Kosmas, C; Epenetos, A A; Courtenay-Luck, N S

    1992-09-01

    Epstein-Barr virus (EBV)-induced in vitro infection of peripheral blood mononuclear cells (PBMCs) leads to a polyclonal proliferation and immortalisation of B lymphocytes. In the present study we determined the effects of three different cytokines, interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-6 (IL-6), and the tumour promoting phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on EBV-immortalised B lymphocytes. These factors have known activities on normal B cells. IL-4 and IL-6 increased significantly EBV-B cell proliferation after 3 and 5 days of culture, where IL-2 had no effect. The effect of IL-4 and IL-6 on EBV-B cells was abolished after pre-incubation with anti-IL-4 and anti-IL-6 neutralising antisera, respectively. TPA induced a dose dependent inhibition of proliferation both in serum free and 10% fetal calf serum (FCS) supplemented culture medium. Combinations of TPA and interleukins did not restore lymphoblastoid cell proliferation to background levels. All possible combinations of the three cytokines showed no synergistic or antagonistic effect on proliferation. TPA induced significant phenotypic changes of EBV immortalised B lymphocytes, by increasing IL-2 receptor (IL-2R) expression and decreasing CD20 and CD23 antigen expression. Other B cell differentiation antigens; HLA-DR, CD19, and transferrin receptor (CD71), did not demonstrate significant changes. A dose dependent inhibition of CD21 and increase in CD22 expression was observed in 2 out of 3 lymphoblastoid cell lines tested. PMID:1337296

  3. Epidermal growth factor (EGF)-stimulated inositol phosphate formation in hepatocytes is abolished by pertussis toxin and phorbol esters

    SciTech Connect

    Johnson, R.M.; Garrison, J.C.

    1987-05-01

    The EGF-stimulated rise in intracellular Ca/sup 2 +/ (Ca/sup 2 +/)/sub i/ and Ca/sup 2 +/-dependent protein phosphorylation events in isolated hepatocytes are blocked by pertussis toxin and phorbol ester pretreatment. The present study characterized the EGF-stimulated formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P/sub 3/) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P/sub 3/) in hepatocytes using HPLC methodology to separate the InsP/sub 3/ isomers. Both 66 nM EGF and 10 nM angiotensin II (ANG II) caused a rapid increase in the Ins(1,4,5)P/sub 3/ isomer although EGF-stimulated formation was smaller. At a concentration of ANG II (0.1 nM) which gave an equivalent rise in (Ca/sup 2 +/)/sub i/ as 66 nM EGF, the kinetics and magnitude of Ins(1,4,5)P/sub 3/ formation were similar. EGF or ANG II-stimulated formation of the Ins(1,3,4)P/sub 3/ isomer was more gradual and increased beyond the level of Ins(1,4,5)P/sub 3/ after 60 sec. The initial EGF and ANG II-stimulated increase in both InsP/sub 3/ isomers was not affected by removing external Ca/sup 2 +/ with a 10-fold excess of EGTA. Pretreatment of rats with pertussis toxin for 72 hrs blocked the ability of EGF to increase Ins(1,4,5)P/sub 3/ but did not affect the increase due to ANG II. Three main pretreatment of cells with 1 ..mu..g/ml phorbol 12-myristate-13-acetate (PMA) also inhibited the EGF-stimulated Ins(1,4,5)P/sub 3/ formation. PMA slightly attenuated Ins(1,4,5)P/sub 3/ formation stimulated by 0.1 nM ANG II but not enough to affect the Ca/sup 2 +/ signal. These data suggest that the signal transduction system used by EGF receptors to increase Ins (1,4,5)P/sub 3/ in hepatocytes is somehow different from that used by ANG II receptors.

  4. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQ(Q209L)-driven melanoma.

    PubMed

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11(Q209L) in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8A(Flox/Flox); Rosa-CreER(+/)(-) mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQ(Q209L), but not GNAQ(WT) in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQ(Q209L) cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQ(Q209L) cells or host animals grafted with GNAQ(Q209L) cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQ(Q209L) cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQ(Q209L)-driven tumor progression unless a stable human RIC-8A transgene was used to

  5. Ric-8A gene deletion or phorbol ester suppresses tumorigenesis in a mouse model of GNAQQ209L-driven melanoma

    PubMed Central

    Patel, B R; Tall, G G

    2016-01-01

    The heterotrimeric G protein α subunit oncogenes GNAQ or GNA11 carry Q209X or R183X activating mutations and are present with ~90% frequency in human uveal melanomas. Forced expression of GNAQ/11Q209L in melanocytes is sufficient to drive metastatic melanoma in immune-compromised mice. No known drugs directly target these oncogenic G proteins. Ric-8A is the molecular chaperone that selectively folds Gαq/i/13 subunits. Targeting Ric-8A serves as a rational, yet unexplored approach to reduce the functional abundance of oncogenic Gαq/11 in order to blunt cancer signaling. Here, using mouse melanocyte cell graft tumorigenesis models, we determined that Ric-8A genetic ablation attenuated the abundance and melanoma-driving potential of Gαq-Q209L. A new conditional Ric-8AFlox/Flox; Rosa-CreER+/− mouse strain was derived and used as a tissue source to culture an immortalized, tamoxifen-inducible Ric-8A knockout melanocyte cell line that required 12-O-tetradecanoylphorbol-13-acetate (TPA, phorbol ester) for growth. The cell line failed to grow tumors when grafted into immune-compromised mice regardless of Ric-8A expression. Stable expression of human GNAQQ209L, but not GNAQWT in the cell line promoted TPA-independent cell proliferation, and upon cell grafting in mice, the initiation and robust growth of darkly-pigmented melanoma tumors. Deletion of Ric-8A in GNAQQ209L cells restored TPA-dependent growth, reduced Gαq-Q209L below detectable levels and completely mitigated tumorigenesis from primary or secondary cell line grafts. Interestingly, TPA treatment of cultured GNAQQ209L cells or host animals grafted with GNAQQ209L cells also sharply reduced Gαq-Q209L abundance and tumorigenic capacity. Finally, tumorigenesis initiated from GNAQQ209L cell grafts, followed by host mouse systemic tamoxifen treatment to delete Ric-8A in the grafted cells completely abrogated GNAQQ209L-driven tumor progression unless a stable human RIC-8A transgene was used to rescue the floxed

  6. Stimulation of dopamine synthesis and activation of tyrosine hydroxylase by phorbol diesters in rat striatum

    SciTech Connect

    Onali, P.; Olianas, M.C.

    1987-03-23

    In rat striatal synaptosomes, 4..beta..-phorbol 12-myristate 13-acetate (PMA) and 4 ..beta..-phorbol 12,13-dibutyrate (PDBu), two activators of Ca/sup 2 +/-phospholipid-dependent protein kinase (protein kinase C) increased dopamine (DA) synthesis measured by following the release of /sup 14/CO/sub 2/ from L-(1-/sup 14/C) tyrosine. Maximal stimulation (21-28% increase of basal rate) was produced by 0.5 ..mu..M PMA and 1 ..mu..M PDBu. 4 ..beta..-Phorbol and 4 ..beta..-phorbol 13-acetate, which are not activators of protein kinase C, were ineffective at 1 ..mu..M. PMA did not change the release of /sup 14/CO/sub 2/ from L-(1-/sup 14/C)DOPA. Addition of 1 mM EGTA to a Ca/sup 2 +/-free incubation medium failed to affect PMA stimulation. KCl (60 mM) enhanced DA synthesis by 25%. Exposure of synaptosomes to either PMA or PDBu prior to KCl addition resulted in a more than additive increase (80-100%) of DA synthesis. A similar synergistic effect was observed when the phorbol diesters were combined with either veratridine or d-amphetamine but not with forskolin and dibutyryl cyclic AMP. Pretreatment of striatal synaptosomes with phorbol diesters produced an activation of tyrosine hydroxylase (TH) associated with a 60% increase of the Vmax and a decrease of the Km for the pterine cofactor 6-methyl-5,6,7,8-tetrahydropterin. These results indicate that protein kinase C participates in the regulation of striatal TH in situ and that its activation may act synergistically with DA releasing agents in stimulating DA synthesis. 37 references, 3 figures, 3 tables.

  7. EFFECT OF PHORBOL ESTERS ON CLONAL CULTURES OF HUMAN, HAMSTER, AND RAT RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    The effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on the growth of epithelial cells from rat, hamster, and human respiratory tract has been measured by monitoring colony formation in culture. TPA and its active derivatives stimulated colony formation of ...

  8. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  9. Immune phenotype and some enzyme patterns in phorbol ester-induced chronic lymphocytic leukemia cells.

    PubMed

    Babusíková, O; Mesárosová, A; Kusenda, J; Koníková, E; Klobusická, M; Hrivnáková, A

    1995-01-01

    Leukemic cells from 10 patients with B-chronic lymphocytic leukemia (B-CLL) were isolated and cultured in the presence of 12-0-tetradecanoylphorbol 13-acetate (TPA) at a concentration of 8 x 10(-7) mol for 72 hours. Cells were analyzed before cultivation and after 72 h of cultivation with and without TPA for changes in surface membrane (Sm) and cytoplasmic (cyt) markers expression, presence of receptor for mouse rosette forming cells (MRFC) and some enzyme profiles. All B-CLL cases studied showed typical B-cell phenotype. TPA treatment induced hairy cell leukemia (HCL) characteristics, given by the membrane CD22 and CD25 expression and TRAP positivity in the majority of the cases tested. Cells had hairy cell-like morphology with more intensive cytoplasmic immunoglobulin (CIg) fluorescence staining, absent receptor for MRFC and increased activity of purine nucleosidephosphorylase. In common these changes indicate that TPA can induce hairy cell characteristics on B-CLL cells in vitro suggesting the more mature differentiation stage of HCL compared with CLL. Furthermore, we originally demonstrated that the CD22, present in the cell membrane after TPA, could be detected in the majority of unaffected B-CLL cells in their cytoplasm. From the technical point of view some intracellular CD markers and Igs of B-CLL cells in viable cells in suspension assayed by flow cytometry are described in this study. PMID:8552199

  10. Phorbol ester and interferon-gamma modulation of epidermal growth factor receptors on human amniotic (WISH) cells.

    PubMed

    Karasaki, Y; Jaken, S; Komoriya, A; Zoon, K C

    1989-04-15

    In this study we report that pretreatment of human amniotic (WISH) cells with interferon gamma (IFN-gamma) in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the down-modulation of epidermal growth factor (EGF) receptors with respect to both receptor number and affinity. Scatchard analysis of EGF binding in the absence of both IFN-gamma and TPA indicated biphasic binding whereas addition of TPA resulted in the loss of the higher affinity class of sites. Pretreatment with IFN-gamma for 24 h enhanced the TPA-induced inhibition of EGF binding whereas IFN-gamma alone had no effect on binding. Protein kinase C (Ca2+/phospholipid-dependent enzyme) was examined as a possible mediator of IFN-induced EGF-receptor modulation; pretreatment of cells with IFN-gamma affected neither the binding of [3H]phorbol 12,13-dibutyrate to membrane or cytosolic fractions nor the protein kinase C activity, suggesting that IFN-gamma pretreatment did not result in translocation or activation of protein kinase C. PMID:2495278

  11. The effects of phorbol ester, diacylglycerol, phospholipase C and Ca2+ ionophore on protein phosphorylation in human and sheep erythrocytes.

    PubMed Central

    Raval, P J; Allan, D

    1985-01-01

    Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism. Images PMID:4084238

  12. In vivo phosphorylation of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP): CNP in brain myelin is phosphorylated by forskolin- and phorbol ester-sensitive protein kinases.

    PubMed

    Agrawal, H C; Sprinkle, T J; Agrawal, D

    1994-06-01

    2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) was phosphorylated in vivo, in brain slices and in a cell free system. Phosphoamino acid analysis of immunoprecipitated CNP labeled in vivo and in brain slices revealed phosphorylation of phosphoserine (94%) and phosphothreonine (5%) residues. Phosphorylation of CNP increased by 3-fold after brain slices were incubated with forskolin. Similarly, incubation of isolated myelin with [gamma-32]ATP with cAMP (5 microM) and cAMP (5 microM)+catalytic unit of cAMP dependent protein kinase dramatically increased CNP2 phosphorylation by 4- and 6-fold, respectively. It is feasible that CNP2 was predominantly phosphorylated on serine and/or threonine residues of the amino terminal peptide of CNP2, and this phosphorylation was catalyzed by protein kinase A. Phosphorylation of CNP1 and CNP2 increased 2-fold by incubating brain slices with phorbol ester. Forskolin and phorbol ester increased the phosphorylation of single, but distinct, CNP peptides. We present the first biochemical evidence that CNP2, on a protein mass basis, is far more heavily phosphorylated than CNP1, suggesting there are more phosphorylation sites on CNP2 than CNP1 and that at least one site is located on the 20-amino acid terminus of CNP2 and that it is likely a PKA site. PMID:8065530

  13. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity.

    PubMed

    King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A

    2013-10-01

    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring 'nontoxic' provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F₂ mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F₂ plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. PMID:23898859

  14. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    SciTech Connect

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-05-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 ..mu..g/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition.

  15. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity

    PubMed Central

    King, Andrew J; Montes, Luis R; Clarke, Jasper G; Affleck, Julie; Li, Yi; Witsenboer, Hanneke; van der Vossen, Edwin; van der Linde, Piet; Tripathi, Yogendra; Tavares, Evanilda; Shukla, Parul; Rajasekaran, Thirunavukkarasu; van Loo, Eibertus N; Graham, Ian A

    2013-01-01

    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring ‘nontoxic’ provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F2 mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F2 plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties. PMID:23898859

  16. Inhibitory action of sphingosine, sphinganine and dexamethasone on glucose uptake: Studies with hydrogen peroxide and phorbol ester

    SciTech Connect

    Murray, D.K.; Hill, M.E.; Nelson, D.H. )

    1990-01-01

    The mechanism of the inhibitory action of glucocorticoids on glucose uptake is incompletely understood. Treatment with corticosteriods of cells in which glucose uptake is stimulated at insulin postbinding and postreceptor sites may clarify the site of the steroid inhibitory action. Hydrogen peroxide, which has been shown to stimulate the insulin receptor tyrosine kinase, and phorbol myristate acetate (PMA) which stimulates protein kinase C were, therefore, used as stimulators of glucose transport in this study. These studies demonstrate that dexamethasone and the sphingoid bases, sphinganine and sphingosine, inhibit glucose uptake that has been stimulated at either the receptor kinase or protein kinase C level in both 3T3-L1 and 3T3-C2 cells. These data confirm glucocorticoid inhibitory action at a post binding level and support the suggestion that some corticosteriod inhibitory effects may be mediated by an action on sphingolipid metabolism.

  17. 1,25-Dihydroxyvitamin D3 and 12-O-tetradecanoyl phorbol 13-acetate cause differential activation of Ca(2+)-dependent and Ca(2+)-independent isoforms of protein kinase C in rat colonocytes.

    PubMed Central

    Bissonnette, M; Wali, R K; Hartmann, S C; Niedziela, S M; Roy, H K; Tien, X Y; Sitrin, M D; Brasitus, T A

    1995-01-01

    Considerable evidence that alterations in protein kinase C (PKC) are intimately involved in important physiologic and pathologic processes in many cells, including colonic epithelial cells, has accumulated. In this regard, phorbol esters, a class of potent PKC activators, have been found to induce a number of cellular events in normal or transformed colonocytes. In addition, our laboratory has demonstrated that the major active metabolite of vitamin D3, 1,25(OH)2D3, also rapidly (seconds-minutes) activated PKC and increased intracellular calcium in isolated rat colonocytes. These acute responses, however, were lost in vitamin D deficiency and partially restored with the in vivo repletion of 1,25(OH)2D3. The Ca(2+)-independent or novel isoforms of PKC expressed in the rat colon and the isoform-specific responses of PKC to acute treatment with phorbol esters or 1,25(OH)2D3 have not been previously characterized. Moreover, the effects of vitamin D status on PKC isoform expression, distribution, and response to agonists are also unknown. In the present experiments, in addition to PKC-alpha, rat colonocytes were found to express the novel isoforms delta, epsilon, and zeta by Western blotting using isoform-specific PKC antibodies. The tumor-promoting phorbol ester, 12-O-tetradecanoyl phorbol 13-acetate, caused time- and concentration-dependent translocations of all these isoforms except PKC-zeta. In vitamin D deficiency, there were no alterations in colonic PKC isoform expression but significant changes in the subcellular distribution of PKC-alpha, -delta, and -zeta. Acute treatment of colonocytes from D-sufficient, but not D-deficient, rats with 1,25(OH)2D3 caused a rapid transient redistribution of only PKC-alpha from the soluble to the particulate fraction. The alterations in PKC isoform distribution and PKC-alpha responsiveness to 1,25(OH)2D3 in vitamin D deficiency were partially, but significantly, restored with 5-7 d in vivo repletion of this secosteroid. Both 12

  18. Effects of phorbol 12-myristate 13-acetate on triglyceride and cholesteryl ester synthesis in cultured coronary smooth muscle cells and macrophages.

    PubMed

    Moinat, M; Chevey, J M; Muzzin, P; Giacobino, J P; Kossovsky, M

    1990-02-01

    In cultured pig coronary smooth muscle cells phorbol 12-myristate 13-acetate (PMA) stimulated the conversion of [4-14C]cholesterol into cholesteryl esters and the incorporation of [2-3H]glycerol into triglycerides 6.4- and 4.5-fold, respectively. The maximal effects occurred after 3 h of treatment and there was a return to basal values after 72 h. In the presence of 400 microM oleic acid, PMA stimulated the conversion of [4-14C]cholesterol into cholesteryl esters and that of [2-3H]glycerol into triglycerides 5.3- and 2.3-fold, respectively. The stimulatory effects were more sustained (still significant after 72 h) and their maxima were delayed (peaks after 24 h). PMA was also found to increase 2-fold the amount of triglyceride that accumulated in the cells in the presence of oleic acid after 24 h. In macrophages IC-21, the effects of PMA were observed only in the presence of oleic acid. They consisted of a 1.9-fold stimulation in the conversion of [4-14C]cholesterol into cholesteryl esters after 72 h and of a 1.7-fold stimulation in the incorporation of [2-3H]glycerol into triglycerides after 24 h. PMA also increased the amount of triglyceride that accumulated in the cells 1.9-fold after 72 h. It is concluded that PMA, and possibly growth factors, may promote lipid storage in smooth muscle cells and that fatty acids favor long lasting effects of PMA in smooth muscle cells and are necessary for any effect of PMA in macrophages. PMID:2324651

  19. Interactive effects of environmentally relevant polychlorinated biphenyls and dioxins on [3H]phorbol ester binding in rat cerebellar granule cells.

    PubMed Central

    Kodavanti, P R; Ward, T R

    1998-01-01

    Polychlorinated biphenyls (PCBs) are persistent contaminants that exist as complex mixtures in the environment. One problem faced by risk assessors is that the possible interactive effects of specific PCB congeners and related chemicals found in environmental and biological samples have not been systematically investigated. Some PCBs perturb Ca2+ homeostasis and cause protein kinase C (PKC) translocation in neuronal cell cultures and in brain homogenate preparations at concentrations where no cytotoxicity is observed, and these systems are necessary for the growth and normal functioning of neurons. The changes in second messenger systems appear to be associated with the extent of noncoplanarity of the PCB molecule. We studied the interactive effects of selected PCB congeners, a PCB metabolite, and a dioxin on PKC translocation, as determined by [3H]phorbol ester binding in cerebellar granule cells. The binary combinations included coplanar and noncoplanar PCB congeners or PCB congeners with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)/PCB metabolite. In addition, we tested the interactive effects of several PCB congeners (three or more) found in environmental samples such as human milk and blood, contaminated fish, and brain samples from PCB-treated animals. The results indicated that 1) the coplanar congener [3,3',4, 4'-tetrachlorobiphenyl (TeCB)] did not alter the in vitro activity of the noncoplanar (2,2',5,5'-TeCB) or coplanar [4, 4'-dichlorobiphenyl (DCB)] congeners; 2) binary mixtures of active PCB congeners (2,2',4,4'-TeCB and 2,2'-DCB; 2,2'-DCB and 3,5-DCB; 2,2',3,5',6-PeCB and 2,2',4,4',5-PeCB) interact in a dose-additive manner; 3) TCDD did not alter the activity of either coplanar (3,3', 4,4'-TeCB) or noncoplanar (2,2',5,5'-TeCB) congeners; 4) the interaction between the parent PCB congener and hydroxy metabolite of PCB is additive; 5) PCB congener mixtures at the ratios found in environmental samples are biologically active; and 6) there was no indication

  20. A role for protein kinase C subtypes alpha and epsilon in phorbol-ester-enhanced K(+)- and carbachol-evoked noradrenaline release from the human neuroblastoma SH-SY5Y.

    PubMed Central

    Turner, N A; Rumsby, M G; Walker, J H; McMorris, F A; Ball, S G; Vaughan, P F

    1994-01-01

    Protein kinase C (PKC) consists of a family of closely related subtypes which differ in their localization and activation properties. Our previous studies have suggested a role for PKC in the regulation of noradrenaline (NA) release from the human neuroblastoma SH-SY5Y. Here we have used two approaches to characterize the PKC subtypes present in SH-SY5Y cells. Firstly, the PCR was used to show that SH-SY5Y cells contain mRNA encoding PKC subtypes alpha, beta, gamma, delta, epsilon and zeta. Secondly, immunoblotting showed that SH-SY5Y cells express PKC subtypes alpha, epsilon and zeta at the protein level. Prolonged (48 h) exposure of cells to the phorbol ester phorbol 12-myristate 13-acetate (PMA; 100 nM) resulted in a marked decrease in the amounts of PKC-alpha and PKC-epsilon, with no change in levels of PKC-zeta. Prolonged PMA treatment had no significant effect on K(+)-evoked NA release from SH-SY5Y cells, whereas carbachol-evoked release was increased 2.2-fold. However, prolonged exposure to PMA completely inhibited the ability of acute (12 min) PMA treatment to enhance both K(+)- and carbachol-evoked NA release. The specific PKC inhibitor RO 31-7459 (10 microM) was found to inhibit K(+)- and carbachol-evoked release by 27% and 68% respectively. RO 31-7549 also completely inhibited the ability of acute PMA treatment to enhance release. These data suggest that PKC-alpha and/or PKC-epsilon play an essential role in the regulation of PMA-enhanced K(+)- and carbachol-evoked NA release in SH-SY5Y cells. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8297348

  1. The opposing effects of calmodulin, adenosine 5 prime -triphosphate, and pertussis toxin on phorbol ester induced inhibition of atrial natriuretic factor stimulated guanylate cyclase in SK-NEP-1 cells

    SciTech Connect

    Sekiya, M.; Frohlich, E.D.; Cole, F.E. )

    1991-01-01

    In the present study, we investigated the effects of calmodulin, adenosine 5{prime}-triphosphate (ATP) and pertussis toxin (PT) on phorbol ester (PMA) induced inhibition of ANF-stimulated cyclic GMP formation in cells from the human renal cell line, SK-NEP-1. PMA inhibited ANF-stimulated guanylate cyclase activity in particulate membranes by about 65%. Calmodulin reversed this inhibition in a dose dependent manner. ATP potentiated Mg++ but not Mn++ supported guanylate cyclase activity. In PMA treated membranes, ATP potentiating effects were abolished. PMA also inhibited ANF-stimulated cGMP accumulation, but pretreatment with PT prevented this PMA inhibition. PT did not affect basal or ANF-stimulated cGMP accumulation. In conclusion, these results demonstrated that PMA inhibited ANF stimulation of particulate guanylate cyclase in opposition to the activating effects of calmodulin or ATP in SK-NEP-1 cells. The protein kinase C inhibitory effects appeared to be mediated via a PT-sensitive G protein.

  2. Phorbol esters induce death in MCF-7 breast cancer cells with altered expression of protein kinase C isoforms. Role for p53-independent induction of gadd-45 in initiating death.

    PubMed Central

    de Vente, J E; Kukoly, C A; Bryant, W O; Posekany, K J; Chen, J; Fletcher, D J; Parker, P J; Pettit, G J; Lozano, G; Cook, P P

    1995-01-01

    Protein kinase C (PKC) modulates growth, differentiation and apoptosis in a cell-specific fashion. Overexpression of PKC-alpha in MCF-7 breast cancer cells (MCF-7-PKC-alpha cell) leads to expression of a more transformed phenotype. The response of MCF-7 and MCF-7-PKC-alpha cells to phorbol esters (TPA) was examined. TPA-treated MCF-7 cells demonstrated a modest cytostatic response associated with a G1 arrest that was accompanied by Cip1 expression and retinoblastoma hypophosphorylation. While p53 was detected in MCF-7 cells, evidence for TPA-induced stimulation of p53 transcriptional activity was not evident. In contrast, TPA treatment induced death of MCF-7-PKC-alpha cells. Bryostatin 1, another PKC activator, exerted modest cytostatic effects on MCF-7 cells while producing a cytotoxic response at low doses in MCF-7-PKC-alpha cells that waned at higher concentrations. TPA-treated MCF-7-PKC-alpha cells accumulated in G2/M, did not express p53, displayed decreased Cip1 expression, and demonstrated a reduction in retinoblastoma hypophosphorylation. TPA-treated MCF-7-PKC-alpha cells expressed gadd-45 which occurred before the onset of apoptosis. Thus, alterations in the PKC pathway can modulate the decision of a breast cancer cell to undergo death or differentiation. In addition, these data show that PKC activation can induce expression of gadd45 in a p53-independent fashion. Images PMID:7560079

  3. Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serine-1327 as a novel site of phorbol ester-induced phosphorylation.

    PubMed Central

    Coghlan, M P; Pillay, T S; Tavaré, J M; Siddle, K

    1994-01-01

    Rabbit antisera were raised against synthetic phosphopeptides corresponding to defined or putative sites of insulin receptor serine/threonine phosphorylation (Ser-1305, Ser-1327, Thr-1348). All of these antibodies bound specifically to the immunogenic phosphopeptide but not to the non-phosphorylated form of the peptide or to other phosphopeptides, in a microtitre plate competition enzyme-linked immunosorbent assay. Anti-PS1327 antibody reacted well with native insulin receptor prepared from phorbol ester-treated transfected CHO.T cells, but showed little reaction with receptor from untreated cells. Anti-PT1348 antibody in crude form reacted substantially with receptor from both phorbol 12-myristate 13-acetate-treated and untreated cells, but displayed specificity for phosphoreceptor after adsorption to remove antibodies reactive with dephosphopeptide. The ability to discriminate between receptor from cells treated with or without phorbol ester was retained when these antibodies were used to probe denatured receptor on Western blots. Thus anti-PS1327 and anti-PT1348 react with insulin receptor in a site-specific and phosphorylation-state-dependent manner. Anti-PT1348, but not anti-PS1327, also showed increased reactivity with receptor prepared from insulin-treated cells. The third antibody, anti-PS1305, did not react with intact insulin receptor under any conditions. It is concluded that serine 1327 is a major, previously unrecognized, site of phorbol ester-induced receptor phosphorylation, and that anti-phosphopeptide antibodies will be valuable reagents with which to examine the serine/threonine phosphorylation state of receptor extracted from tissues. Images Figure 3 Figure 4 PMID:7980459

  4. Wax ester-synthesizing activity of lipases.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-11-01

    The synthesis/hydrolysis of wax esters was studied in an aqueous solution using purified rat pancreatic lipase, porcine pancreatic carboxylester lipase, and Pseudomonas fluorescens lipase. The equilibrium between wax ester synthesis and hydrolysis favored ester formation at neutral pH. The synthesizing activities were measured using free fatty acid or triacylglycerol as the acyl donor and an equimolar amount of long-chain alcohol as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with these lipases, wax ester was synthesized, in a dose- and time-dependent manner, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was about 0.9/0.1. These lipases catalyzed the hydrolysis of palmityl oleate emulsified with gum arabic, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was also about 0.9/0.1. The apparent equilibrium ratio of wax ester/free fatty acid catalyzed by lipase depended on incubation pH and fatty alcohol chain length. When equimolar amounts of trioleoylglycerol and fatty acyl alcohol were incubated with pancreatic lipase, carboxylester lipase, or P. fluorescens lipase, wax esters were synthesized dose-dependently. These results suggest that lipases can catalyze the synthesis of wax esters from free fatty acids or through degradation of triacylglycerol in an aqueous medium. PMID:10606038

  5. Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription.

    PubMed

    Marek-Bukowiec, K; Aguado, E; Miazek, A

    2016-07-01

    Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position -14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT. PMID:27278128

  6. Phorbol ester-mediated re-expression of endogenous LAT adapter in J.CaM2 cells: a model for dissecting drivers and blockers of LAT transcription

    PubMed Central

    Marek-Bukowiec, K; Aguado, E; Miazek, A

    2016-01-01

    Linker for activation of T cells (LAT) is a raft-associated, transmembrane adapter protein critical for T-cell development and function. LAT expression is transiently upregulated upon T-cell receptor (TCR) engagement, but molecular mechanisms conveying TCR signaling to enhanced LAT transcription are not fully understood. Here we found that a Jurkat subline J.CaM2, initially characterized as LAT deficient, conditionally re-expressed LAT upon the treatment with a protein kinase C activator, phorbol 12-myristate 13-acetate (PMA). We took advantage of the above observation for studying cis-elements and trans-acting factors contributing to the activation-induced expression of LAT. We identified a LAT gene region spanning nucleotide position −14 to +357 relative to the ATG start codon as containing novel cis-regulatory elements that were able to promote PMA-induced reporter transcription in the absence of the core LAT promoter. Interestingly, a point mutation in LAT intron 1, identified in J.CaM2 cells, downmodulated LAT promoter activity by 50%. Mithramycin A, a selective Sp1 DNA-binding inhibitor, abolished LAT expression upon PMA treatment as did calcium ionophore ionomycin (Iono) and valproic acid (VPA), widely used as an anti-epileptic drug. Our data introduce J.CaM2 cells as a model for dissecting drivers and blockers of activation induced expression of LAT. PMID:27278128

  7. Effect of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) upon membrane ionic exchanges in sea urchin eggs

    SciTech Connect

    Ciapa, B.; Payan, P. ); Allemand, D. )

    1989-12-01

    The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive {sup 86}Rb uptake and amiloride-sensitive {sup 24}Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na{sup +}/H{sup +} and Na{sup +}/K{sup +} exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na{sup +}/H{sup +} activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na{sup +}/H{sup +} exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 minutes. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na{sup +} stat, pH stat).

  8. Modulation of muscarinic and micotinic cholinergic receptor mediated catecholamine secretion in guinea pig chromaffin cells by phorbol esters

    SciTech Connect

    Figueiredo, J.C.; Fisher, S.K.; Horowitz, M.I.

    1986-05-01

    Isolated guinea pig chromaffin cells possess both nicotinic (nAChR) and muscarinic (mAChR) cholinergic receptors that are positively coupled to catecholamine (CA) release. Sixty to 70% of CA release is mediated by nAChRs and 30-40% by mAChRs. In the absence of added calcium, nAChR mediated CA release was reduced by 65% whereas the muscarinic response was unaffected. The addition of 100nM 12-0-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC), also resulted in an increased CA release. Temporally and quantitatively, this response resembled that of mAChR activation. Addition of optimal concentrations of nicotine (50..mu..M) and TPA (100nM) induced a synergistic increase in CA release. Addition of muscarine (1mM) and TPA resulted in an additive response despite a 40-60% inhibition of mAChR mediated inositol phosphate release by TPA. Thus, in guinea pig chromaffin cells, it appears that PKC activation alone is a sufficient stimulus for CA release and that activation of both nicotinic and muscarinic receptors may further increase this enzyme's activity.

  9. PKD1 is downregulated in non-small cell lung cancer and mediates the feedback inhibition of mTORC1-S6K1 axis in response to phorbol ester.

    PubMed

    Ni, Yang; Wang, Liguang; Zhang, Jihong; Pang, Zhaofei; Liu, Qi; Du, Jiajun

    2015-03-01

    Protein kinase D1 (PKD1) is increasingly implicated in multiple biological and molecular events that regulate the proliferation or invasiveness in several cancers. However, little is known about the expression and functions of PKD1 in non-small cell lung cancer (NSCLC). In the present study, 34 pairs of human NSCLC and matched normal bronchiolar epitheliums were enrolled and evaluated for PKD1 expression by quantitative real-time PCR. We showed that PKD1 was downregulated in 26 of 34 cancer tissues in comparison with matched normal epitheliums. Moreover, patients with venous invasion or lymph node metastasis showed significant lower expression of PKD1. Exposure of NSCLC A549 and H520 cells to the PKD family inhibitor kb NB 142-70(Kb), at concentrations that inhibited PKD1 activation, strikingly potentiated S6K1 phosphorylation at Thr(389) and S6 phosphorylation at Ser(235/236) in response to phorbol ester (PMA). Knockdown of PKD1 with siRNAs strikingly enhanced S6K1 phosphorylation whereas constitutively active PKD1 resulted in the S6K1 activity inhibition. Furthermore, the PI3K inhibitors LY294002, BKM120 and MEK inhibitors U0126, PD0325901 blocked the enhanced S6K1 activity induced by Kb. Collectively, our results identify decreased expression of the PKD1 as a marker for NSCLC and the loss of PKD1 expression increases the malignant potential of NSCLC cells. This may be due to the function of PKD1 as a negative regulator of mTORC1-S6K1. Our results suggest that re-expression or activation of PKD1 might serve as a potential therapeutic target for NSCLC treatment. PMID:25578563

  10. Net Increase of platelet membrane tyrosine specific-protein kinase activity by phorbol myristate acetate

    SciTech Connect

    Ishihara, Noriko; Sakamoto, Hikaru; Iwama, Minako; Kobayashi, Bonro )

    1990-01-01

    Tyrosine protein kinase (TPK) activity in rabbit platelets after stimulation by phorbol myristate acetate (PMA) or thrombin was directly estimated by {sup 32}P incorporation from ({gamma}-{sup 32})ATP into synthetic peptide angiotensin II. By PMA-treatment a net increase of TPK activity was obtained, while thrombin acted on the TPK quickly but stimulation was limited within the range attained by the control after lengthy incubation. The responsive TPK to these stimulators was localized mainly in membrane but much less in cytosol. The specific activity of the particulate TPK was low in the sonicate of control ice cold platelets but increased about 6-fold when the platelets were incubated at 37{degree}C. On a brief contact of platelets with PMA at 37{degrees}C the TPK was fully activated and reached a maximum value about 130% of the control. Determination of phosphotyrosine phosphatase in the stimulated platelet sonicate revealed that its participation in the above described increase of {sup 32}P-incorporation was meagre. The quick response suggested a possible role of TPK in the signal transduction through the platelet cell membrane.

  11. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    PubMed

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells. PMID:23300800

  12. Differential effects of phorbol ester on growth and protein kinase C isoenzyme regulation in human hepatoma Hep3B cells.

    PubMed Central

    Hsu, S L; Chou, Y H; Yin, S C; Liu, J Y

    1998-01-01

    PMA has both mitogenic and antiproliferative effects on human hepatoma Hep3B cells. In response to low PMA concentration (10 nM), Hep3B cells displayed an increasing proliferation potentiation. At high PMA concentration (1 microM) Hep3B cells exhibited modest cytostatic effects. Determinations of protein kinase C (PKC) activity in PMA-treated cells revealed that alterations in PKC activity are associated with proliferative capacity. The decrease in PKC activity mediated by a high dose of PMA was accompanied by cell growth inhibition. Increases in PKC activity mediated by a low dose of PMA were consistent with proliferation stimulation. Immunoblot analysis showed that there are at least six PKC isoenzymes: alpha, delta, epsilon, mu, zeta and iota/lambda, constitutively expressed in Hep3B cells. Cellular fractionation and immunocytochemical staining results demonstrated that both 10 nM and 1 microM PMA treatments induced a marked translocation of PKC-alpha from cytosol to membrane or nuclear fraction within 5-30 min. At the same time PKC-delta and epsilon were translocated from the membrane to nuclear fraction. In addition, prolonged treatment with 1 microM PMA, but not with 10 nM PMA, selectively mediated the down-regulation of these three PKC isoenzymes. The distinct effects of different concentrations of PMA on cell proliferation and PKC-alpha, delta and epsilon isoenzyme modulation support the involvement of these three PKC isotypes in the mechanism of action of Hep3B cells in cell growth events. PMID:9639562

  13. Phorbol ester-induced sensitisation of adenylyl cyclase type II is related to phosphorylation of threonine 1057.

    PubMed

    Böl, G F; Gros, C; Hülster, A; Bösel, A; Pfeuffer, T

    1997-08-18

    Following up the results from previous studies on chemical fragmentation of TPA-treated, [32P]phosphate labeled adenylyl cyclase type II (AC II) (Böl, G. F., Hülster, A., and Pfeuffer, T. in press) we have replaced serine 871 or threonine 1057 by alanine using site directed mutagenesis. Both mutants had unimpaired catalytic activity, however enhancement by phorbolester TPA was reduced by 60-80 % in the T1057A mutant, but not in the S871A mutant. The stimulation of adenylyl cyclase type II by betagamma subunits of heterotrimeric G-pro teins and that by PKC have been previously shown to be mutually exclusive (Zimmermann and Taussig (1996), J. Biol. Chem. 271, 27161-27166). This is in line with the present findings that AC II expressed in COS-1 cells was only barely stimulated (10%) by coexpressed betagamma-subunits in presence of TPA. Mutation of threonine 1057 to alanine however caused partial regain of betagamma-stimulation in the presence of TPA by 40%, as compared to that of WT adenylyl cyclase type II which was 70% in the absence of TPA. These data strongly implicate the importance of threonine 1057 as phosphate acceptor following PKC-mediated sensitisation of adenylyl cyclase type II. PMID:9268695

  14. Actin stress fiber disruption and tropomysin isoform switching in normal thyroid epithelial cells stimulated by thyrotropin and phorbol esters

    SciTech Connect

    Roger, P.P.; Rickaert, F.; Lamy, F.; Authelet, M.; Dumont, J.E. )

    1989-05-01

    Thyrotropin (TSH), through cyclic AMP, promotes both proliferation and differentiation expression in dog thyroid epithelial cells in primary culture, whereas the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) also stimulates proliferation but antagonizes differentiating effects of TSH. In this study, within 20 min both factors triggered the disruption of actin-containing stress fibers. This process preceded distinct morphological changes: cytoplasmic retraction and arborization in response to TSH and cyclic AMP, cell shape distortion, and increased motility in response to TPA and diacylglycerol. TSH and TPA also induced a marked decrease in the synthesis of three high M{sub r} tropomyosin isoforms, which were not present in dog thyroid tissue but appeared in culture during cell spreading and stress fiber formation. The tropomyosin isoform switching observed here closely resembled similar processes in various cells transformed by oncogenic viruses. However, it did not correlate with differentiation or mitogenic activation. Contrasting with current hypothesis on this process in transformed cells, tropomyosin isoform switching in normal thyroid cells was preceded and thus might be caused by early disruption of stress fibers.

  15. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    SciTech Connect

    Maier, Jana V.; Volz, Yvonne; Berger, Caroline; Schneider, Sandra; Cato, Andrew C.B.

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  16. Phorbol ester stimulates ethanolamine release from the metastatic basal prostate cancer cell line PC3 but not from prostate epithelial cell lines LNCaP and P4E6

    PubMed Central

    Schmitt, J; Noble, A; Otsuka, M; Berry, P; Maitland, N J; Rumsby, M G

    2014-01-01

    Background: Malignancy alters cellular complex lipid metabolism and membrane lipid composition and turnover. Here, we investigated whether tumorigenesis in cancer-derived prostate epithelial cell lines influences protein kinase C-linked turnover of ethanolamine phosphoglycerides (EtnPGs) and alters the pattern of ethanolamine (Etn) metabolites released to the medium. Methods: Prostate epithelial cell lines P4E6, LNCaP and PC3 were models of prostate cancer (PCa). PNT2C2 and PNT1A were models of benign prostate epithelia. Cellular EtnPGs were labelled with [1-3H]-Etn hydrochloride. PKC was activated with phorbol ester (TPA) and inhibited with Ro31-8220 and GF109203X. D609 was used to inhibit PLD (phospholipase D). [3H]-labelled Etn metabolites were resolved by ion-exchange chromatography. Sodium oleate and mastoparan were tested as activators of PLD2. Phospholipase D activity was measured by a transphosphatidylation reaction. Cells were treated with ionomycin to raise intracellular Ca2+ levels. Results: Unstimulated cell lines release mainly Etn and glycerylphosphorylEtn (GPEtn) to the medium. Phorbol ester treatment over 3h increased Etn metabolite release from the metastatic PC3 cell line and the benign cell lines PNT2C2 and PNT1A but not from the tumour-derived cell lines P4E6 and LNCaP; this effect was blocked by Ro31-8220 and GF109203X as well as by D609, which inhibited PLD in a transphosphatidylation reaction. Only metastatic PC3 cells specifically upregulated Etn release in response to TPA treatment. Oleate and mastoparan increased GPEtn release from all cell lines at the expense of Etn. Ionomycin stimulated GPEtn release from benign PNT2C2 cells but not from cancer-derived cell lines P4E6 or PC3. Ethanolamine did not stimulate the proliferation of LNCaP or PC3 cell lines but decreased the uptake of choline (Cho). Conclusions: Only the metastatic basal PC3 cell line specifically increased the release of Etn on TPA treatment most probably by PKC activation of

  17. Identification of cis-acting sequences responsible for phorbol ester induction of human serum amyloid A gene expression via a nuclear factor kB-like transcription factor

    SciTech Connect

    Edbrooke, M.R.; Cheshire, J.K.; Woo, P.; Burt, B.W.

    1989-05-01

    The authors have analyzed the 5'-flanking region of one of the genes coding for the human acute-phase protein, serum amyloid A (SAA). They found that SAA mRNA could be increased fivefold in transfected cells by treatment with phorbol 12-myristate 13-acetate (PMA). To analyze this observation further, they placed a 265-base-pair 5' SAA fragment upstream of the reporter chloramphenicol acetyltransferase (CAT) gene and transfected this construct into HeLa cells. PMA treatment of these transient transfectants resulted in increased CAT expression. Nuclear proteins from PMA-treated HeLa cells bound to this DNA fragment, and methylation interference analysis showed that the binding was specific to the sequence GGGACTTTCC (between -82 and -91), a sequence previously described by others as the binding site for the nuclear factor NF/kappa/B. In a cotransfection competition experiment, they could abolish PMA-induced CAT activity by using cloned human immunodeficiency virus long-terminal-repeat DNA containing the NF/kappa/B-binding sequence. The same long-terminal-repeat DNA containing mutant NF/kappa/B-binding sequences did not affect CAT expression, which suggested that binding by an NF/kappa/B-like factor is required for increased SAA transcription.

  18. Transcriptional and post‐transcriptional regulation of monocyte chemoattractant protein‐3 gene expression in human endothelial cells by phorbol ester and cAMP signalling

    PubMed Central

    Kondo, A; Isaji, S; Nishimura, Y; Tanaka, T

    2000-01-01

    Monocyte chemoattractant protein‐3 (MCP‐3) is one of the most broadly active chemokines, potentially inducing chemotaxis of all leucocytic cells. In the present study, we examined the regulation of MCP‐3 mRNA and protein production in endothelial cells by protein kinase C (PKC) activator, phorbol 12‐myristate 13‐acetate (PMA) and cAMP signalling. On stimulation of endothelial cells with 10 nm PMA, MCP‐3 mRNA increased to 300‐fold the basal level at 3 hr and rapidly declined to 0·2‐fold the basal level at 24 hr. PMA‐induced MCP‐3 mRNA and protein production of human endothelial cells were partially inhibited by pretreatment with the adenylate cyclase activator, forskolin, or membrane‐permeable cAMP derivative. The PMA‐induced MCP‐3 mRNA increase was almost abrogated when cells were pretreated with cycloheximide (CHX). Forskolin inhibited the transcription of PMA‐induced MCP‐3 gene expression. Following PMA stimulation for 3 hr, subsequent addition of actinomycin D suppressed the rapid decay of PMA‐induced MCP‐3 mRNA. These results suggest that PMA induces the transcriptional activation of the MCP‐3 gene through de novo protein synthesis and the rapid decay of PMA‐induced MCP‐3 mRNA through de novo synthesis of adenosine/uridine (AU)‐rich element binding proteins and cAMP signalling inhibits the PMA‐induced transcriptional activation of the MCP‐3 gene expression. PMID:10792504

  19. In vitro beta 2-microglobulin (beta 2m) secretion by normal and leukaemic B-cells: effects of recombinant cytokines and evidence for a differential response to the combined stimulus of phorbol ester and calcium ionophore.

    PubMed Central

    Jones, R. A.; Drexler, H. G.; Gignac, S. M.; Child, J. A.; Scott, C. S.

    1990-01-01

    Due to the increasing therapeutic use of immunoregulatory agents and the potential effects on cellular function, we examined the modulation of in vitro beta 2-microglobulin (beta 2m) production rates by 'normal' tonsil and leukaemic B-cells in response to a number of these agents. Tonsil B-cells responded to phorbol ester (TPA) by an increased beta 2m production rate, which was further enhanced by the combined stimuli of TPA plus the calcium ionophore A23187. In marked contrast, however, lymphocytes from a majority (8/11) of B-cell malignancies showed a suppression of the TPA-induced beta 2m production rate in response to the combined TPA/A23187 stimulus. These different responses of 'normal' and malignant B-cells were not apparent when IgM production rates were examined. The recombinant cytokines IL-1, IL-2, IFN-alpha, IFN-gamma and TNF also enhanced beta 2m production rates of both normal and leukaemic B-cells, but to a considerably lesser extent than did TPA. Bryostatin-1 increased beta 2m production to a level intermediate between that obtained by TPA and the cytokines. It is suggested that beta 2m production rates may correspond to the degree of B-cell differentiation, and/or to the degree of cellular 'activation'. The results further indicate that the in vitro measurement of beta 2m production provides a different index of the cellular response than that obtained by the conventional measurement of IgM production. PMID:2110813

  20. Differential effect of 1{alpha},25-dihydroxyvitamin D{sub 3} on Hsp28 and PKC{beta} gene expression in the phorbol ester-resistant human myeloid HL-525 leukemic cells

    SciTech Connect

    Lee, Yong J.; Galoforo, S.S.; Berns, C.M.

    1997-08-01

    We investigated the effect of 1{alpha},25-dihydroxyvitamin D{sub 3} [1,25-(OH){sub 2}D{sub 3}] on the expression of the 28-kDa heat shock protein gene (hsp28) and the protein kinase C beta gene (PKC{beta}) in the human myeloid HL-60 leukemic cell variant HL-525, which is resistance to phorbol ester-induced macrophage differentiation. Northern and Western blot analysis showed little or no hsp28 gene expression in the HL-60 cell variant, HL-205, which is susceptible to such differentiation, while a relatively high basal level of hps28 gene expression was observed in the HL-525 cells. However, both cell lines demonstrated heat shock-induced expression of this gene. During treatment with 50-300 nM 1,25-(OH){sub 2}D{sub 3}, a marked reduction of hsp28 gene expression was not associated with heat shock transcription factor-heat shock element (HSF-HSE) binding activity. Our results suggest that the differential effect of 1,25-(OH){sub 2}D{sub 3} on hsp28 and PKC{beta} gene expression is due to the different sequence composition of the vitamin D response element in the in the promoter region as well as an accessory factor for each gene or that 1,25-(OH){sub 2}D{sub 3} increases PKC{beta} gene expression, which in turn negatively regulates the expression of the hsp28 gene, or vice versa.

  1. Factors affecting dense and alpha-granule secretion from electropermeabilized human platelets: Ca(2+)-independent actions of phorbol ester and GTP gamma S.

    PubMed Central

    Coorssen, J R; Davidson, M M; Haslam, R J

    1990-01-01

    Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from

  2. Antioxidant and antiradical activities of Manihot esculenta Crantz (Euphorbiaceae) leaves and other selected tropical green vegetables investigated on lipoperoxidation and phorbol-12-myristate-13-acetate (PMA) activated monocytes.

    PubMed

    Tsumbu, Cesar N; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Franck, Thierry; Serteyn, Didier; Mouithys-Mickalad, Ange

    2011-09-01

    Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae), Manihot esculenta Crantz (Euphorbiaceae) and Pteridium aquilinum (Dennstaedtiaceae) leaves are currently consumed as vegetables by migrants from sub-Saharan Africa living in Western Europe and by the people in the origin countries, where these plants are also used in the folk medicine. Manihot leaves are also eaten in Latin America and some Asian countries. This work investigated the capacity of aqueous extracts prepared from those vegetables to inhibit the peroxidation of a linoleic acid emulsion. Short chain, volatile C-compounds as markers of advanced lipid peroxidation were measured by gas chromatography by following the ethylene production. The generation of lipid hydroperoxides, was monitored by spectroscopy using N-N'-dimethyl-p-phenylene-diamine (DMPD). The formation of intermediate peroxyl, and other free radicals, at the initiation of the lipid peroxidation was investigated by electron spin resonance, using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin trap agent. The ability of the extracts to decrease the cellular production of reactive oxygen species (ROS) in "inflammation like" conditions was studied by fluorescence technique using 2',7'-dichlorofluorescine-diacetate as fluorogenic probe, in a cell model of human monocytes (HL-60 cells) activated with phorbol ester. Overall the extracts displayed efficient concentration-dependent inhibitory effects. Their total polyphenol and flavonoid content was determined by classic colorimetric methods. An HPLC-UV/DAD analysis has clearly identified the presence of some polyphenolic compounds, which explains at least partially the inhibitions observed in our models. The role of these plants in the folk medicine by sub-Saharan peoples as well as in the prevention of oxidative stress and ROS related diseases requires further consideration. PMID:22254126

  3. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  4. System-wide analysis of the transcriptional network of human myelomonocytic leukemia cells predicts attractor structure and phorbol-ester-induced differentiation and dedifferentiation transitions

    NASA Astrophysics Data System (ADS)

    Sakata, Katsumi; Ohyanagi, Hajime; Sato, Shinji; Nobori, Hiroya; Hayashi, Akiko; Ishii, Hideshi; Daub, Carsten O.; Kawai, Jun; Suzuki, Harukazu; Saito, Toshiyuki

    2015-02-01

    We present a system-wide transcriptional network structure that controls cell types in the context of expression pattern transitions that correspond to cell type transitions. Co-expression based analyses uncovered a system-wide, ladder-like transcription factor cluster structure composed of nearly 1,600 transcription factors in a human transcriptional network. Computer simulations based on a transcriptional regulatory model deduced from the system-wide, ladder-like transcription factor cluster structure reproduced expression pattern transitions when human THP-1 myelomonocytic leukaemia cells cease proliferation and differentiate under phorbol myristate acetate stimulation. The behaviour of MYC, a reprogramming Yamanaka factor that was suggested to be essential for induced pluripotent stem cells during dedifferentiation, could be interpreted based on the transcriptional regulation predicted by the system-wide, ladder-like transcription factor cluster structure. This study introduces a novel system-wide structure to transcriptional networks that provides new insights into network topology.

  5. A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters.

    PubMed

    Grant, E R; Guttmann, R P; Seifert, K M; Lynch, D R

    2001-09-01

    N-methyl-D-aspartate (NMDA) receptors are modulated by protein kinase C (PKC) in vivo and in heterologous expression systems. In heterologous expression systems, PKC-mediated modulation is subunit specific with NR2A-containing receptors being potentiated by phorbol 12-myristate 13-acetate (PMA), while NR2C-containing receptors are inhibited or unaffected. In the present study we have produced chimeric receptors containing NR2A and NR2C to define the components of NR2A which are sufficient for potentiation by PMA. Amino acids 1105-1400 of NR2A placed onto the C-terminus of NR2C at amino acid 1102 was the minimum region sufficient for producing a PMA-stimulated receptor. This suggests that this region contains structural determinants for PKC-mediated potentiation of NR2A receptors. PMID:11524145

  6. Activated sludge degradation of adipic acid esters.

    PubMed Central

    Saeger, V W; Kalley, R G; Hicks, O; Tucker, E S; Mieure, J P

    1976-01-01

    The biodegradability of three aliphatic adipic acid diesters and a 1,3-butylene glycol adipic acid polyester was determined in acclimated, activated sludge systems. Rapid primary biodegradation from 67 to 99+% was observed at 3- and 13-mg/liter feed levels for di-n-hexyl adipate, di(2-ethylhexyl) adipate, and di(heptyl, nonyl) adipate in 24 h. When acclimated, activated sludge microorganisms were employed as the seed for two carbon dioxide evolution procedures, greater than 75% of the theoretical carbon dioxide was evolved for the three diesters and the polyester in a 35-day test period. The essentially complete biodegradation observed in these studies suggests that these esters would not persist when exposed to similar mixed microbial populations in the environment. PMID:1275494

  7. A nonpromoting phorbol from the samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1.

    PubMed

    Gustafson, K R; Cardellina, J H; McMahon, J B; Gulakowski, R J; Ishitoya, J; Szallasi, Z; Lewin, N E; Blumberg, P M; Weislow, O S; Beutler, J A

    1992-05-29

    Extracts of Homalanthus nutans, a plant used in Samoan herbal medicine, exhibited potent activity in an in vitro, tetrazolium-based assay which detects the inhibition of the cytopathic effects of human immunodeficiency virus (HIV-1). The active constituent was identified as prostratin, a relatively polar 12-deoxyphorbol ester. Noncytotoxic concentrations of prostratin from greater than or equal to 0.1 to greater than 25 microM protected T-lymphoblastoid CEM-SS and C-8166 cells from the killing effects of HIV-1. Cytoprotective concentrations of prostratin greater than or equal to 1 microM essentially stopped virus reproduction in these cell lines, as well as in the human monocytic cell line U937 and in freshly isolated human monocyte/macrophage cultures. Prostratin bound to and activated protein kinase C in vitro in CEM-SS cells and elicited other biochemical effects typical of phorbol esters in C3H10T1/2 cells; however, the compound does not appear to be a tumor promoter. In skin of CD-1 mice, high doses of prostratin induced ornithine decarboxylase only to 25-30% of the levels induced by typical phorbol esters at doses 1/30 or less than that used for prostratin, produced kinetics of edema formation characteristic of the nonpromoting 12-deoxyphorbol 13-phenylacetate, and failed to induce the acute or chronic hyperplasias typically caused by tumor-promoting phorbols at doses of 1/100 or less than that used for prostratin. PMID:1597853

  8. Nineteen-step total synthesis of (+)-phorbol.

    PubMed

    Kawamura, Shuhei; Chu, Hang; Felding, Jakob; Baran, Phil S

    2016-04-01

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from many chemists and biologists owing to its intriguing chemical structure and the medicinal potential of phorbol esters. Access to useful quantities of phorbol and related analogues has relied on isolation from natural sources and semisynthesis. Despite efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies, owing to its complexity and unusual placement of oxygen atoms. Purely synthetic enantiopure phorbol has remained elusive, and biological synthesis has not led to even the simplest members of this terpene family. Recently, the chemical syntheses of eudesmanes, germacrenes, taxanes and ingenanes have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis in which powerful C-C bond constructions and C-H bond oxidations go hand in hand. Here we implement a two-phase terpene synthesis strategy to achieve enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this synthesis route is not to displace isolation or semisynthesis as a means of generating the natural product per se, but rather to enable access to analogues containing unique placements of oxygen atoms that are otherwise inaccessible. PMID:27007853

  9. Cholesteryl ester transfer activity. Localization and role in distribution of cholesteryl ester among lipoproteins in man.

    PubMed

    Groener, J E; Van Rozen, A J; Erkelens, D W

    1984-03-01

    The cholesteryl ester exchange/transfer protein is involved in the transport of cholesteryl ester from high density lipoproteins (HDL) to very low density lipoproteins (VLDL) and low density lipoproteins (LDL). Localization of cholesteryl ester transfer activity (CETA) in plasma was studied by measuring CETA in various delipidated fractions from a single step density ultracentrifugation gradient of plasma. CETA was measured in an in vitro system by calculating the exchange of cholesteryl ester in a standard mixture of [3H]CE-HDL and LDL. The method used for the delipidation of plasmas and fractions to be tested was critical. Optimal results were obtained by delipidation with diisopropylether-butanol (60: 40, v/v) at O degrees C. The bulk of CETA was detected in HDL3 (1.125 less than d less than 1.210 g/ml) when the lipoproteins were separated by single-step density gradient ultracentrifugation and in the 'lipoprotein-free' fraction (d greater than 1.250 g/ml) when the lipoproteins were separated by flotation ultracentrifugation including two washes. To determine whether CETA plays a role in the distribution of cholesteryl ester among the various lipoproteins, it was measured in whole plasma from normal and hyperlipidemic subjects. Plasma was delipidated before the assay in order to prevent bias due to variation of cholesterol content. CETA was higher in delipidated plasma of hyperlipidemic subjects (117.3 +/- 36.5 nmol CE/ml/h) than in delipidated plasma of normolipidemic controls (68.7 +/- 17.6 nmol CE/ml/h) (P less than 0.005). A positive correlation (r = 0.80, P less than 0.005) was found between CETA and (VLDL + LDL) cholesterol levels. A negative correlation (r = 0.57, P less than 0.05) existed between CETA and HDL cholesterol. This correlation was found both in the group as a whole and within the normal and the hyperlipidemic groups separately. The activity of the cholesteryl ester transfer appears to be a regulatory factor in the distribution of cholesteryl

  10. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol. PMID:10578059

  11. Phorbol ester treatment to mice inhibits DNA binding of the TCDD inducible nuclear dioxin-receptor to Cyp1A1 enhancer elements

    SciTech Connect

    Okino, S.T.; Tukey, R.H. )

    1991-03-15

    The treatment of C57BL/6 mice with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in transcriptional activation of the Cyp1A1 and Cyp1A2 genes. Quantitation of mRNA levels and transcription rates demonstrate that post-transcriptional mechanisms are not involved in TCDD induction of the Cyp1A genes. The induction of the Cyp1A genes by TCDD occurs following ligand binding to the dioxin-receptor and accumulation of the ligand-receptor complex in the nucleus. The administration of the tumor promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA) before or in combination with the administration of TCDD inhibits transcriptional activation of the Cyp1A genes. To analyze the mechanism of this inhibition, methods were developed to determine if the DNA binding potential of the nuclear dioxin-receptor was impaired. Using an oligonucleotide covering the Cyp1A1 xenobiotic responsive element (XRE), gel retardation assays demonstrated that within 1 hour, TCDD induces a nuclear DNA binding protein. This bonding is completely inhibited when incubated with excess XRE. Transcriptional increases in the Cyp1A1 and Cyp1A2 gene follow the appearance of the nuclear dioxin-receptor. When TPA is administered together with TCDD, the ligand dependent accumulation of the nuclear dioxin-receptor is abolished. Similar results are observed if TPA is administered prior to treatment with TCDD. These results indicate that TPA inhibits TCDD induced activation of the Cyp1A genes through a receptor mediated mechanism.

  12. Effect of phorbol myristate acetate on secretion of parathyroid hormone

    SciTech Connect

    Morrissey, J.J. )

    1988-01-01

    The influence of phorbol myristate acetate (PMA), an activator of protein kinase c, on the secretion of parathyroid hormone from collagenase-dispersed bovine parathyroid cells was tested. The cells were incubated at low or high concentrations of calcium in the medium, and the hormone secreted into the medium was measured by a radioimmunoassay that recognizes both intact and C-terminal fragments of hormone. A stimulatory effect of PMA at high calcium, seen at PMA concentrations as low as 1.6 nM, did not occur with a biologically inactive 4{alpha}-isomer of phorbol ester, and was independent of changes in cellular adenosine 3{prime},5{prime}-cyclic monophosphate levels. Examination of {sup 32}P-labeled phosphoproteins by two-dimensional gel electrophoresis revealed acidic proteins of {approximately}20,000 and 100,000 Da that were phosphorylated at low and high calcium + 1.6 {mu}M PMA but not at high calcium alone. The protein kinase c activity associated with the membrane fraction of parathyroid cells significantly decreased 40% when the cells were incubated at high vs. low calcium. The data suggest that calcium may regulate parathyroid hormone secretion through changes in protein kinase c activity of the membrane fraction of the cell and protein phosphorylation.

  13. Isolation and pharmacological activity of phenylpropanoid esters from Marrubium vulgare.

    PubMed

    Sahpaz, Sevser; Garbacki, Nancy; Tits, Monique; Bailleul, Francois

    2002-03-01

    The isolation and identification of major phenylpropanoid esters from Marrubium vulgare: (+) (E)-caffeoyl-L-malic acid 1, acteoside 2, forsythoside B 3, arenarioside 4, ballotetroside 5, as well as their anti-inflammatory activity are reported for the first time. We evaluated the inhibitory effects of these five compounds on cyclooxygenase (Cox) catalysed prostaglandin biosynthesis activity. Only the glycosidic phenylpropanoid esters showed an inhibitory activity towards the Cox-2 enzyme and three of them: acteoside 2, forsythoside B 3, arenarioside 4, exhibited higher inhibitory potencies on Cox-2 than on Cox-1. These results are of interest, as Cox-2 is mainly associated with inflammation and the Cox-1 inhibition with adverse side effects often observed with non-steroidal anti-inflammatory drugs. The occurrence of these phenylpropanoid esters could also explain some other pharmacological properties of M. vulgare. PMID:11849848

  14. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2delta and bck1delta), ...

  15. Fungicidal Activities of Dihydroferulic Acid Alkyl Ester Analogs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The natural product dihydroferulic acid (DFA, 1) and the synthesized DFA methyl (4a), ethyl (4b), propyl (4c), hexyl (4d), octyl (4e), and decyl (4f) esters were examined for antifungal activity. Test fungi included Saccharomyces cerevisiae (wild type, and deletion mutants slt2' and bck1'), Aspergil...

  16. The insulin-like effects of phorbol myristate acetate (PMA) in the isolated fat cell

    SciTech Connect

    Solomon, S.S.; Palazzolo, M. )

    1989-01-01

    Recent data from many laboratories suggest that insulin stimulates diacylglycerol formation. Data presented in this manuscript demonstrate an insulin-like effect of PMA, a tumor promoting agent that mimics the action of diacylglycerol, in isolated adipocytes on; (a) glucose oxidation using uniformly labelled, C-1-labelled and C-6-labelled glucose, (b) epinephrine-induced lipolysis and (c) low Km cAMP phosphodiesterase activity. Additionally, a lipolytic effect of PMA is identified when unopposed by epinephrine. These data not only demonstrate an insulin-like effect of phorbol esters in adipose tissue but they lend support to the concept of diacylglycerol involvement in the mechanism of insulin action.

  17. Study on cholesteryl ester transfer activity in coronary heart disease.

    PubMed

    Fujinuma, Y; Tanaka, A; Maezawa, H

    1991-09-01

    The net cholesterol transfer activity from high density lipoprotein (HDL) to low density lipoprotein (LDL) was determined in the patients with coronary heart disease (CHD) to examine its effect on the pathogenesis of arteriosclerosis. Furthermore, in the CHD patients with high HDL cholesterolemia (more than 60 mg/dl), the HDL particle size was measured by high performance liquid chromatography. A significant cholesteryl ester transfer activity (P less than 0.02) was noted in the CHD patients with low HDL cholesterolemia (less than 60 mg/dl). The rate of cholesteryl ester transfer activity (cholesteryl ester transfer activity/hour) inversely correlated with the serum HDL cholesterol value (r = -0.483, P = 0.096) in the patients with CHD. These results suggest that an increase of CETA caused a low HDL cholesterol value in the CHD patients with low HDL cholesterolemia and it may have the risk of causing CHD. However, an increase of the CETA was not found in the CHD patients with high HDL cholesterolemia compared to the normal subjects, the HDL particle size being significantly greater than that in the normal subjects. In the CHD patients with high HDL cholesterolemia, the large size of HDL may have the risk of causing CHD. PMID:1934199

  18. Structure-activity correlations for organophosphorus ester anticholinesterases. Part 2: CNDO/2 calculations applied to ester hydrolysis rates

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1984-01-01

    Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.

  19. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  20. Cross-linking of surface Ig receptors on murine B lymphocytes stimulates the expression of nuclear tetradecanoyl phorbol acetate-response element-binding proteins

    SciTech Connect

    Chiles, T.C.; Liu, J.L.; Rothstein, T.L. )

    1991-03-15

    Cross-linking of sIg on primary B lymphocytes leads to increased nuclear DNA-binding activity specific for the tetradecanoyl phorbol acetate-response element (TRE), as judged by gel mobility shift assays. Stimulation of B cells to enter S phase of the cell cycle by treatment with the combination of phorbol ester plus calcium ionophore also stimulated nuclear TRE-binding activity within 2 h, with maximal expression at 4 h; however, phorbol ester and calcium ionophore were not as effective in stimulating binding activity when examined separately. Stimulated nuclear expression of TRE-binding activity appears to require protein synthesis. Fos- and Jun/AP-1-related proteins participate directly in the identified nucleoprotein complex, as shown by the ability of c-fos- and c-jun-specific antisera to either alter or completely abolish electrophoretic migration of the complex in native gels. Further, UV photo-cross-linking studies identified two major TRE-binding protein species, whose sizes correspond to TRE-binding proteins derived from HeLa cell nuclear extracts. The results suggest that in primary B cells nuclear TRE-binding activity represents a downstream signaling event that occurs subsequent to changes in protein kinase C activity and intracellular Ca2+ but that can be triggered physiologically through sIg.

  1. Synthesis, structure, theoretical calculations and biological activity of sulfonate active ester new derivatives

    NASA Astrophysics Data System (ADS)

    Ghazzali, Mohamed; Khattab, Sherine A. N.; Elnakady, Yasser A.; Al-Mekhlafi, Fahd A.; Al-Farhan, Khalid; El-Faham, Ayman

    2013-08-01

    A series of naphthyl and tolyl sulfonate ester were synthesized and characterized by H NMR. X-ray single crystal diffraction experiments established the molecular structure of three new sulfonate esters derivatives, and spectral data agree with these in solution. The observed hydrogen bonding is discussed on the basis of crystal structural analyses and DFT/MP2 geometry optimization quantum calculations. Antimicrobial activities were screened for selected compounds against three human cancer cell lines and Mosquito Culex pipiens larvae.

  2. Synthesis, Evaluation of Anticancer Activity and QSAR Study of Heterocyclic Esters of Caffeic Acid

    PubMed Central

    Hajmohamad Ebrahim Ketabforoosh, Shima; Amini, Mohsen; Vosooghi, Mohsen; Shafiee, Abbas; Azizi, Ebrahim; Kobarfard, Farzad

    2013-01-01

    Caffeic acid phenethyl ester (CAPE) suppresses the growth of transformed cells such as human breast cancer cells, hepatocarcinoma , myeloid leukemia, colorectal cancer cells, fibrosarcoma, glioma and melanoma. A group of heterocyclic esters of caffeic acid was synthesized using Mitsunobu reaction and the esters were subjected to further structural modification by electrooxidation of the catechol ring of caffeic acid esters in the presence of sodium benzenesulfinate and sodium toluensulfinate as nucleophiles. Both heterocyclic esters of caffeic acid and their arylsulfonyl derivatives were evaluated for their cytotoxic activity against HeLa, SK-OV-3, and HT-29 cancer cell lines. HeLa cells showed the highest sensitivity to the compounds and heterocyclic esters with no substituent on catechol ring showed better activity compared to their substituted counterparts. QSAR studies reemphasized the importance of molecular shape of the compounds for their cytotoxic activity. PMID:24523750

  3. Diet, lipoproteins and cholesteryl ester transfer activity in hyperlipidaemic subjects.

    PubMed

    Groener, J E; Jacobs, D M; van Rozen, A J; Erkelens, D W

    1985-02-01

    In order to study the response of cholesteryl ester transfer activity (CETA) to alteration in diet in humans we carried out a longitudinal study in hyperlipidaemic patients. Five subjects, all hyperlipidaemic, were first given a low fat diet for 7 to 15 days and then a diet high in fat for 7 to 21 days. In four out of five patients both diets were low in energy. The plasma lipoprotein levels and CETA were measured daily. All patients responded on the low fat diet by a decrease in total cholesterol and total triglycerides. No response on the high fat diet was noticed except in the patient for whom the high fat diet was also high in energy. In all patients the changes in CETA ran parallel to changes in (VLDL + LDL) cholesterol. It is concluded that diet induced changes in (VLDL + LDL) cholesterol are accompanied by similar changes in CETA in hyperlipidaemic subjects. PMID:16831701

  4. Rapid ester biosynthesis screening reveals a high activity alcohol-O-acyltransferase (AATase) from tomato fruit.

    PubMed

    Lin, Jyun-Liang; Zhu, Jie; Wheeldon, Ian

    2016-05-01

    Ethyl and acetate esters are naturally produced in various yeasts, plants, and bacteria. The biosynthetic pathways that produce these esters share a common reaction step, the condensation of acetyl/acyl-CoA with an alcohol by alcohol-O-acetyl/acyltransferase (AATase). Recent metabolic engineering efforts exploit AATase activity to produce fatty acid ethyl esters as potential diesel fuel replacements as well as short- and medium-chain volatile esters as fragrance and flavor compounds. These efforts have been limited by the lack of a rapid screen to quantify ester biosynthesis. Enzyme engineering efforts have also been limited by the lack of a high throughput screen for AATase activity. Here, we developed a high throughput assay for AATase activity and used this assay to discover a high activity AATase from tomato fruit, Solanum lycopersicum (Atf-S.l). Atf1-S.l exhibited broad specificity towards acyl-CoAs with chain length from C4 to C10 and was specific towards 1-pentanol. The AATase screen also revealed new acyl-CoA substrate specificities for Atf1, Atf2, Eht1, and Eeb1 from Saccharomyces cerevisiae, and Atf-C.m from melon fruit, Cucumis melo, thus increasing the pool of characterized AATases that can be used in ester biosynthesis of ester-based fragrance and flavor compounds as well as fatty acid ethyl ester biofuels. PMID:26814045

  5. Activation of mouse macrophages causes no change in expression and function of phorbol diesters' receptors, but is accompanied by alterations in the activity and kinetic parameters of NADPH oxidase.

    PubMed Central

    Berton, G; Cassatella, M; Cabrini, G; Rossi, F

    1985-01-01

    Mouse peritoneal macrophages activated in vivo by the injection of Corynebacterium parvum release larger amounts of superoxide anion (O2-) than macrophages from control mice when stimulated with phorbol myristate acetate (PMA). The biochemical bases for this enhanced response of activated macrophages have been investigated by studying the expression and function of receptors for the stimulant, and the activity of the enzyme NADPH oxidase which is responsible for the production of O2- in leucocytes. Studies of binding of phorbol dibutyrate, an agent closely related to PMA, showed that the affinity constants (Kds) and the number of binding sites were the same in resident and activated peritoneal macrophages. The activity of the NADPH oxidase was, however, different in the two macrophage populations which differ in their capacity to release O2-. NADPH oxidase activity was studied in macrophage monolayers after lysis with deoxycholate. The main features of this activity were as follows: stimulation of macrophages with PMA or zymosan caused an increase in NADPH-dependent O2- production; NADPH oxidase activity in the lysates followed the same dose-response curve for different concentrations of PMA as O2- release by intact macrophages; O2- release by intact macrophages could be fully accounted for by NADPH-dependent O2- production by macrophage lysates; activity was strictly substrate-specific, in that NADH could not substitute for NADPH; after stimulation with PMA or zymosan, NADPH oxidase activity was higher in lysates of C. parvum-activated macrophages than in lysates of resident macrophages; NADPH oxidase activities of activated and resident macrophages differed markedly in their kinetic parameters. The NADPH oxidase of macrophages activated by C. parvum or trehalose dimycolate of mycobacterial origin displayed a five to seven times lower Km compared to the enzyme in resident macrophages. PMID:2981767

  6. Liganded Thyroid Hormone Receptor Inhibits Phorbol 12-O-Tetradecanoate-13-Acetate-Induced Enhancer Activity via Firefly Luciferase cDNA

    PubMed Central

    Misawa, Hiroko; Sasaki, Shigekazu; Matsushita, Akio; Ohba, Kenji; Iwaki, Hiroyuki; Matsunaga, Hideyuki; Suzuki, Shingo; Ishizuka, Keiko; Oki, Yutaka; Nakamura, Hirotoshi

    2012-01-01

    Thyroid hormone receptor (TR) belongs to the nuclear hormone receptor (NHR) superfamily and regulates the transcription of its target genes in a thyroid hormone (T3)-dependent manner. While the detail of transcriptional activation by T3 (positive regulation) has been clarified, the mechanism of T3-dependent repression (negative regulation) remains to be determined. In addition to naturally occurring negative regulations typically found for the thyrotropin β gene, T3-bound TR (T3/TR) is known to cause artificial negative regulation in reporter assays with cultured cells. For example, T3/TR inhibits the transcriptional activity of the reporter plasmids harboring AP-1 site derived from pUC/pBR322-related plasmid (pUC/AP-1). Artificial negative regulation has also been suggested in the reporter assay with firefly luciferase (FFL) gene. However, identification of the DNA sequence of the FFL gene using deletion analysis was not performed because negative regulation was evaluated by measuring the enzymatic activity of FFL protein. Thus, there remains the possibility that the inhibition by T3 is mediated via a DNA sequence other than FFL cDNA, for instance, pUC/AP-1 site in plasmid backbone. To investigate the function of FFL cDNA as a transcriptional regulatory sequence, we generated pBL-FFL-CAT5 by ligating FFL cDNA in the 5' upstream region to heterologous thymidine kinase promoter in pBL-CAT5, a chloramphenicol acetyl transferase (CAT)-based reporter gene, which lacks pUC/AP-1 site. In kidney-derived CV1 and choriocarcinoma-derived JEG3 cells, pBL-FFL-CAT5, but not pBL-CAT5, was strongly activated by a protein kinase C activator, phorbol 12-O-tetradecanoate-13-acetate (TPA). TPA-induced activity of pBL-FFL-CAT5 was negatively regulated by T3/TR. Mutation of nt. 626/640 in FFL cDNA attenuated the TPA-induced activation and concomitantly abolished the T3-dependent repression. Our data demonstrate that FFL cDNA sequence mediates the TPA-induced transcriptional activity

  7. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  8. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  9. The estrogenic activity of phthalate esters in vitro.

    PubMed Central

    Harris, C A; Henttu, P; Parker, M G; Sumpter, J P

    1997-01-01

    A large number of phthalate esters were screened for estrogenic activity using a recombinant yeast screen. a selection of these was also tested for mitogenic effect on estrogen-responsive human breast cancer cells. A small number of the commercially available phthalates tested showed extremely weak estrogenic activity. The relative potencies of these descended in the order butyl benzyl phthalate (BBP) > dibutyl phthalate (DBP) > diisobutyl phthalate (DIBP) > diethyl phthalate (DEP) > diisiononyl phthalate (DINP). Potencies ranged from approximately 1 x 10(6) to 5 x 10(7) times less than 17beta-estradiol. The phthalates that were estrogenic in the yeast screen were also mitogenic on the human breast cancer cells. Di(2-ethylhexyl) phthalate (DEHP) showed no estrogenic activity in these in vitro assays. A number of metabolites were tested, including mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mon-n-octyl phthalate; all were wound to be inactive. One of the phthalates, ditridecyl phthalate (DTDP), produced inconsistent results; one sample was weakly estrogenic, whereas another, obtained from a different source, was inactive. analysis by gel chromatography-mass spectometry showed that the preparation exhibiting estrogenic activity contained 0.5% of the ortho-isomer of bisphenol A. It is likely that the presence of this antioxidant in the phthalate standard was responsible for the generation of a dose-response curve--which was not observed with an alternative sample that had not been supplemented with o,p'-bisphenol A--in the yeast screen; hence, DTDP is probably not weakly estrogenic. The activities of simple mixtures of BBP, DBP, and 17beta-estradiol were assessed in the yeast screen. No synergism was observed, although the activities of the mixtures were approximately additive. In summary, a small number of phthalates are weakly estrogenic in vitro. No data has yet been published on whether these are also estrogenic in vitro. No data has

  10. An Update on Oligosaccharides and Their Esters from Traditional Chinese Medicines: Chemical Structures and Biological Activities

    PubMed Central

    Chen, Xiang-Yang; Wang, Ru-Feng; Liu, Bin

    2015-01-01

    A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013. PMID:25861364

  11. Antiallergic activity of rosmarinic acid esters is modulated by hydrophobicity, and bulkiness of alkyl side chain.

    PubMed

    Zhu, Fengxian; Xu, Zhongming; Yonekura, Lina; Yang, Ronghua; Tamura, Hirotoshi

    2015-01-01

    Methyl, propyl and hexyl esters of rosmarinic, caffeic and p-coumaric acids were tested for antiallergic activity, and rosmarinic acid propyl ester exhibited the greatest β-hexosaminidase release suppression (IC50, 23.7 μM). Quadratic correlations between pIC50 and cLogP (r(2) = 0.94, 0.98, and 1.00, respectively) were observed in each acid ester series. The antiallergic activity is modulated by hydrophobicity, and alkyl chain bulkiness. PMID:25686361

  12. Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity.

    PubMed

    Reichenberg, A; Wiesner, J; Weidemeyer, C; Dreiseidler, E; Sanderbrand, S; Altincicek, B; Beck, E; Schlitzer, M; Jomaa, H

    2001-03-26

    The fosmidomycin derivative FR900098 represents an inhibitor of the 1-deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase with potent antimalarial activity. Prodrugs of FR900098 with increased activity after oral administration were obtained by chemical modification of the phosphonate moiety to yield phosphodiaryl esters. One diaryl ester prodrug demonstrated efficacy in mice infected with the rodent malaria parasite Plasmodium vinckei comparable to i.p. drug administration. PMID:11277531

  13. Substrate-competitive activity-based profiling of ester prodrug activating enzymes

    PubMed Central

    Xu, Hao; Majmudar, Jaimeen D.; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H.; Carlson, Heather A.; Showalter, Hollis D.; Martin, Brent R.; Amidon, Gordon L.

    2015-01-01

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating pre-clinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a 4-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse, but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design and preclinical

  14. Triterpene esters and biological activities from edible fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae.

    PubMed

    Fernandes, Caio P; Corrêa, Arthur L; Lobo, Jonathas F R; Caramel, Otávio P; de Almeida, Fernanda B; Castro, Elaine S; Souza, Kauê F C S; Burth, Patrícia; Amorim, Lidia M F; Santos, Marcelo G; Ferreira, José Luiz P; Falcão, Deborah Q; Carvalho, José C T; Rocha, Leandro

    2013-01-01

    Manilkara subsericea (Mart.) Dubard (Sapotaceae) is popularly known in Brazil as "guracica." Studies with Manilkara spp indicated the presence of triterpenes, saponins, and flavonoids. Several activities have been attributed to Manilkara spp such as antimicrobial, antiparasitic and antitumoral, which indicates the great biological potential of this genus. In all, 87.19% of the hexanic extract from fruits relative composition were evaluated, in which 72.81% were beta- and alpha-amyrin esters, suggesting that they may be chemical markers for M. subsericea. Hexadecanoic acid, hexadecanoic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, and octadecanoic acid ethyl ester were also identified. Ethanolic crude extracts from leaves, stems, and hexanic extract from fruits exhibited antimicrobial activity against Staphylococcus aureus ATCC25923. These extracts had high IC50 values against Vero cells, demonstrating weak cytotoxicity. This is the first time, to our knowledge, that beta- and alpha-amyrin caproates and caprylates are described for Manilkara subsericea. PMID:23509702

  15. Triterpene Esters and Biological Activities from Edible Fruits of Manilkara subsericea (Mart.) Dubard, Sapotaceae

    PubMed Central

    Fernandes, Caio P.; Corrêa, Arthur L.; Lobo, Jonathas F. R.; Caramel, Otávio P.; de Almeida, Fernanda B.; Castro, Elaine S.; Souza, Kauê F. C. S.; Burth, Patrícia; Amorim, Lidia M. F.; Santos, Marcelo G.; Ferreira, José Luiz P.; Falcão, Deborah Q.; Carvalho, José C. T.; Rocha, Leandro

    2013-01-01

    Manilkara subsericea (Mart.) Dubard (Sapotaceae) is popularly known in Brazil as “guracica.” Studies with Manilkara spp indicated the presence of triterpenes, saponins, and flavonoids. Several activities have been attributed to Manilkara spp such as antimicrobial, antiparasitic and antitumoral, which indicates the great biological potential of this genus. In all, 87.19% of the hexanic extract from fruits relative composition were evaluated, in which 72.81% were beta- and alpha-amyrin esters, suggesting that they may be chemical markers for M. subsericea. Hexadecanoic acid, hexadecanoic acid ethyl ester, (E)-9-octadecenoic acid ethyl ester, and octadecanoic acid ethyl ester were also identified. Ethanolic crude extracts from leaves, stems, and hexanic extract from fruits exhibited antimicrobial activity against Staphylococcus aureus ATCC25923. These extracts had high IC50 values against Vero cells, demonstrating weak cytotoxicity. This is the first time, to our knowledge, that beta- and alpha-amyrin caproates and caprylates are described for Manilkara subsericea. PMID:23509702

  16. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    PubMed

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. PMID:23673223

  17. Nematicidal activity of natural ester compounds and their analogues against pine wood nematode, Bursaphelenchus xylophilus.

    PubMed

    Seo, Seon-Mi; Kim, Junheon; Koh, Sang-Hyun; Ahn, Young-Joon; Park, Il-Kwon

    2014-09-17

    In this study, we evaluated the nematicidal activity of natural ester compounds against the pine wood nematode, Bursaphelenchus xylophilus, to identify candidates for the development of novel, safe nematicides. We also tested the nematicidal activity of synthesized analogues of these ester compounds to determine the structure-activity relationship. Among 28 ester compounds tested, isobutyl 2-methylbutanoate, 3-methylbutyl 2-methylbutanoate, 3-methylbutyl tiglate, 3-methyl-2-butenyl 2-methylbutanoate, and pentyl 2-methylbutanoate showed strong nematicidal activity against the pine wood nematode at a 1 mg/mL concentration. The other ester compounds showed weak nematicidal activity. The LC50 values of 3-methylbutyl tiglate, isobutyl 2-methylbutanoate, 3-methylbutyl 2-methylbutanoate, 3-methyl-2-butenyl 2-methylbutanoate, and pentyl 2-methylbutanoate were 0.0218, 0.0284, 0.0326, 0.0402, and 0.0480 mg/mL, respectively. The ester compounds described herein merit further study as potential nematicides for pine wood nematode control. PMID:25153339

  18. Synthesis and Antifeedant Activities of Rosin-Based Esters Against Armyworm.

    PubMed

    Li, Liu; Xinyan, Yan; Yanqing, Gao; Xiao-Ping, Rao

    2016-01-01

    A series of rosin based esters have been synthesized from dehydroabietic acid and maleopimaric acid, respectively. Their structures were confirmed by FT-IR, (1)H NMR, (13)C NMR and single crystal X-ray diffraction. Their antifeedant activities against armyworm were examined by leaf plate method. Methyl ester of dehydroabietic acid and maleopimaric acid were crystallized in orthorhombic system with cell dimensions of a = 26.352 [5] Å, b = 6.1020 [12] Å, c = 11.812 [2] Å and a = 7.9216 [11] Å, b = 11.9912 [16] Å, c = 23.425 [3] Å, respectively. They contained classic tricyclic hydrophenanthrene skeleton. The antifeedant results indicated that most rosin-based esters exhibited significant antifeedant activities at a concentration of 0.01 g mL(-1). Their feeding deterrence values were above 70% after 24h. The antifeedant activities for rosin-based esters increased with the growth of chain length of alcohol except (Ia). Some armyworm were found dead during the antifeedant activity test, by which we speculated that these synthetic rosinbased esters had stomach poison activities against armyworm. PMID:26791346

  19. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  20. Long-acting contraceptive agents: structure activity relationships in a series of norethisterone and levonorgestrel esters.

    PubMed

    Bialy, G; Blye, R P; Enever, R P; Naqvi, R H; Lindberg, M C

    1983-03-01

    A large number of esters of norethisterone (17 alpha-ethynyl-17 beta-hydroxyestr-4-en-3-one) and levonorgestrel (D-(-)-13 beta-ethyl-17 alpha-ethynyl-17 beta-hydroxygon-4-en-3-one) were synthesized and tested for biological activity. The test employed in these studies was the duration of estrus suppression in cycling mature rats. In the norethisterone series several esters exhibited duration of activity comparable to that of norethisterone enanthate. In the levonorgestrel series the butanoic, cyclobutylcarboxylic and cyclopropylcarboxylic esters were longer acting than medroxyprogesterone acetate (17 alpha-acetoxy-6 alpha-methylpregn-4-ene-3,20-dione) when prepared as aqueous microcrystalline suspensions. PMID:6419411

  1. A density functional theory model of mechanically activated silyl ester hydrolysis

    SciTech Connect

    Pill, Michael F.; Schmidt, Sebastian W.; Beyer, Martin K.; Clausen-Schaumann, Hauke; Kersch, Alfred

    2014-01-28

    To elucidate the mechanism of the mechanically activated dissociation of chemical bonds between carboxymethylated amylose (CMA) and silane functionalized silicon dioxide, we have investigated the dissociation kinetics of the bonds connecting CMA to silicon oxide surfaces with density functional calculations including the effects of force, solvent polarizability, and pH. We have determined the activation energies, the pre-exponential factors, and the reaction rate constants of candidate reactions. The weakest bond was found to be the silyl ester bond between the silicon and the alkoxy oxygen atom. Under acidic conditions, spontaneous proton addition occurs close to the silyl ester such that neutral reactions become insignificant. Upon proton addition at the most favored position, the activation energy for bond hydrolysis becomes 31 kJ mol{sup −1}, which agrees very well with experimental observation. Heterolytic bond scission in the protonated molecule has a much higher activation energy. The experimentally observed bi-exponential rupture kinetics can be explained by different side groups attached to the silicon atom of the silyl ester. The fact that different side groups lead to different dissociation kinetics provides an opportunity to deliberately modify and tune the kinetic parameters of mechanically activated bond dissociation of silyl esters.

  2. Quorum Sensing Inhibition and Structure-Activity Relationships of β-Keto Esters.

    PubMed

    Forschner-Dancause, Stephanie; Poulin, Emily; Meschwitz, Susan

    2016-01-01

    Traditional therapeutics to treat bacterial infections have given rise to multi-drug resistant pathogens, which pose a major threat to human and animal health. In several pathogens, quorum sensing (QS)-a cell-cell communication system in bacteria-controls the expression of genes responsible for pathogenesis, thus representing a novel target in the fight against bacterial infections. Based on the structure of the autoinducers responsible for QS activity and other QS inhibitors, we hypothesize that β-keto esters with aryl functionality could possess anti-QS activity. A panel of nineteen β-keto ester analogs was tested for the inhibition of bioluminescence (a QS-controlled phenotype) in the marine pathogen Vibrio harveyi. Initial screening demonstrated the need of a phenyl ring at the C-3 position for antagonistic activity. Further additions to the phenyl ring with 4-substituted halo groups or a 3- or 4-substituted methoxy group resulted in the most active compounds with IC50 values ranging from 23 µM to 53 µM. The compounds additionally inhibit green fluorescent protein production by E. coli JB525. Evidence is presented that aryl β-keto esters may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. Expansion of the β-keto ester panel will enable us to obtain more insight into the structure-activity relationships needed to allow for the development of novel anti-virulence agents. PMID:27463706

  3. Okadaic acid: An additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter

    SciTech Connect

    Suganuma, Masami; Fujiki, Hirota; Suguri, Hiroko; Yoshizawa, Shigeru; Hirota, Mitsuru; Nakayasu, Michie ); Ojika, Makoto; Wakamatsu, Kazumasa; Yamada, Kiyoyuki ); Sugimura, Takashi )

    1988-03-01

    Okadaic acid is a polyether compound of a C{sub 38} fatty acid, isolated from a black sponge, Halichondria okadai. Previous studies showed that okadaic acid is a skin irritant and induces ornithine decarboxylase in mouse skin 4 hr after its application to the skin. This induction was strongly inhibited by pretreatment of the skin with 13-cis-retinoic acid. A two-stage carcinogenesis experiment in mouse skin initiated by a single application of 100 {mu}g of 7,12-dimethylbenz(a)anthracene (DMBA) and followed by application of 10 {mu}g of okadaic acid twice a week revealed that okadaic acid is a potent additional tumor promoter: tumors developed in 93% of the mice treated with DMBA and okadaic acid by week 16. In contrast, tumors were found in only one mouse each in the groups treated with DMBA alone or okadaic acid alone. An average of 2.6 tumors per mouse was found in week 30 in the group treated with DMBA and okadaic acid. Unlike phorbol 12-tetradecanoate 13-acetate (TPA), teleocidin, and aplysiatoxin, okadaic acid did not inhibit the specific binding of ({sup 3}H)TPA to a mouse skin particulate fraction when added up to 100 {mu}M or activate calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in vitro when added up to 1.2 {mu}M. Therefore, the actions of okadaic acid and phorbol ester may be mediated in different ways. These results show that okadaic acid is a non-TPA-type tumor promoter in mouse skin carcinogenesis.

  4. Blumeaenes A-J, sesquiterpenoid esters from Blumea balsamifera with NO inhibitory activity.

    PubMed

    Chen, Ming; Qin, Jiang-Jiang; Fu, Jian-Jun; Hu, Xiao-Jia; Liu, Xiao-Hua; Zhang, Wei-Dong; Jin, Hui-Zi

    2010-06-01

    Chemical examination of the ethanol extract of the aerial parts of Blumea balsamifera led to the isolation of ten new sesquiterpenoid esters, blumeaenes A-J (1- 10), with 13 known flavonoids. Their structures were determined mainly by use of 1D and 2D NMR spectroscopic techniques. All sesquiterpenoid esters were tested for their inhibitory activity against LPS-induced NO production in RAW264.7 macrophages. Compounds 1, 4 and 5 showed slight inhibitory effect on the production of NO with IC(50) values of 40.06, 46.35 and 57.80 microg/mL, respectively. PMID:20101563

  5. Improved estimation of cholesteryl ester transfer/exchange activity in serum or plasma

    SciTech Connect

    Groener, J.E.; Pelton, R.W.; Kostner, G.M.

    1986-02-01

    This simple, routine assay for measuring cholesteryl ester transfer/exchange activity in human plasma is based on the removal of interfering lipoproteins--very-low-density (VLDL) and low-density lipoproteins (LDL)--by precipitation with polyethylene glycol. High-density lipoproteins (HDL) in the samples do not affect the results. The supernate after precipitation is mixed with (/sup 14/C)cholesteryl ester-labeled LDL as donor and with HDL as the acceptor for the cholesteryl ester. After incubation for 16 h at 37 degrees C, LDL is separated from HDL by precipitation with dextran sulfate and the radioactivity measured in the supernate, which contains the HDL. The assay is applicable to samples containing as much as 10 mmol of triglycerides per liter. The within-assay CV was 2.7%, the day-to-day CV 6.8%. Results compared well with those by conventional procedures.

  6. PHORBOL ESTER ACTIVATION OF AN NHE-LIKE ELECTRONEUTRAL NA+/H+ ANTIPORTER IN ISOLATED E-CELLS OF LOBSTER (HOMARUS AMERICANUS) HEPATOPANCREAS. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Circulating plasma cholesteryl ester transfer protein activity and blood pressure tracking in the community

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical trials using cholesteryl ester transfer protein (CETP) inhibitors to raise high-density lipoprotein cholesterol (HDL-C) concentrations reported an 'off-target' blood pressure (BP) raising effect. We evaluated the relations of baseline plasma CETP activity and longitudinal BP change. One tho...

  8. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  9. Esterification and Transesterification of greases to fatty acid methyl esters with highly active diphenylamine salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the fr...

  10. Synthesis and antimalarial activity of chain substituted pivaloyloxymethyl ester analogues of Fosmidomycin and FR900098.

    PubMed

    Kurz, Thomas; Schlüter, Katrin; Kaula, Uwe; Bergmann, Bärbel; Walter, Rolf D; Geffken, Detlef

    2006-08-01

    Fosmidomycin is a promising antimalarial drug candidate with a unique chemical structure and a novel mode of action. Chain substituted pivaloyloxymethyl ester derivatives of Fosmidomycin and its acetyl analogue FR900098 have been synthesized and their in vitro antimalarial activity versus the Chloroquine sensitive strain 3D7 of Plasmodium falciparum has been determined. PMID:16679022

  11. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum

    PubMed Central

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S.

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  12. Evaluation of Mosquito Repellent Activity of Isolated Oleic Acid, Eicosyl Ester from Thalictrum javanicum.

    PubMed

    Gurunathan, Abinaya; Senguttuvan, Jamuna; Paulsamy, S

    2016-01-01

    To evaluate the traditional use, the mosquito repellent property of Thalictrum javanicum and to confirm the predicted larvicidal activity of the isolated compound, oleic acid, eicosyl ester from its aerial parts by PASS software, the present study was carried out using 4th instar stage larvae of the mosquitoes, Aedes aegypti (dengue vector) and Culex quinquefasciatus (filarial vector). Insecticidal susceptibility tests were conducted and the mortality rate was observed after 24 h exposure. The chitinase activity of isolated compound was assessed by using purified β-N-acetyl glucosaminidase (chitinase). Ecdysone 20-monooxygenase assay (radioimmuno assay) was made using the same larval stage of A. aegyptiand C. quinquefasciatus. The results were compared with the crude methanol extract of the whole plant. The isolated compound, oleic acid, eicosyl ester was found to be the most effective larvicide against A. aegypti (LC50/24 h -8.51 ppm) and C. quinquefasciatus (LC50/24 h - 12.5 ppm) than the crude methanol extract (LC50/24 h - 257.03 ppm and LC50/24 h - 281.83 ppm, respectively). The impact of oleic acid, eicosyl ester on reducing the activity of chitinase and ecdysone 20-monooxygenase was most prominent in both the target species, A. aegyptiand C. quinquefasciatus than the control. The results therefore suggest that the compound, oleic acid, eicosyl ester from Thalictrum javanicum may be considered as a potent source of mosquito larvicidal property. PMID:27168688

  13. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    SciTech Connect

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition of PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.

  14. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    SciTech Connect

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L.

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  15. ''Custom'' synthesis of radioligands for RIA through activated esters. I. Testosterone

    SciTech Connect

    Tantchou, J.K.; Slaunwhite, W.R. Jr.

    1980-01-01

    The current method labeling small molecules for radioimmunoassay by coupling iodohistamine to haptens through a mixed anhydride reaction is unacceptable to clinical laboratories. Therefore, we propose the use of a simple two-step procedure: treatment of /sup 125/I-2-iodohistamine with the activated ester of a small molecule followed by thin layer chromatography to remove unlabeled ligand. Only one radioactive substance, /sup 125/I-2-iodohistamine, need be stocked, and the availability of labeled ligands is limited only by the number of nonradioactive activated esters. This principle is illustrated by the use of testosterone. N-Hydroxysuccinimidyl esters of testosterone hemisuccinate and of testosterone-3-carboxymethyloxime were coupled to 2-iodohistamine, /sup 125/I-2-iodohistamine or to /sup 125/I-2,5-diiodohistamine. Optimum conditions required reaction of 20-50 fold molar excess of ester in 75 microL of tetrahydrofuran with iodohistamine in 75 microL of buffer at pH 8.5 for 30 min at 4 degrees. The reaction mixture was applied directly to a pre-absorbent TLC plate coated with silica gel and run in the system, benzene:ethanol:acetic acid, 75:24:1 (v:v:v). The desired radioligand was eluted in 85% yield.

  16. Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters.

    PubMed

    Puterka, Gary J; Farone, William; Palmer, Tracy; Barrington, Anthony

    2003-06-01

    Synthetic sugar esters are a relatively new class of insecticidal compounds that are produced by reacting sugars with fatty acids. The objective of this research was to determine how systematic alterations in sugar or fatty acid components of sugar ester compounds influenced their insecticidal properties. Sucrose octanoate, sorbitol octanoate, sorbitol decanoate, sorbitol caproate, xylitol octanoate, xylitol decanoate and xylitol dodecanoate were synthesized and evaluated against a range of arthropod pests. Dosage-mortality studies were conducted on pear psylla (Cacopsylla pyricola Foerster) on pear, tobacco aphid (Myzus nicotianae) Blackman and tobacco hornworm (Manduca sexta [Johannson]) on tobacco, and twospotted spider mite (Tetranychus urticae Koch) on apple in laboratory bioassays. These sugar esters were compared with insecticidal soap (M-Pede, Dow AgroSciences L.L.C., San Diego, CA), to determine how toxicologically similar these materials were against the arthropod pests. Substitutions in either the sugar or fatty acid component led to significant changes in the physical properties and insecticidal activity of these compounds. The sugar esters varied in their solubility in water and in emulsion stability, yet, droplet spread upon pear leaves occurred at low concentrations of 80-160 ppm and was strongly correlated with psylla mortalities (R2 = 0.73). Sequentially altering the sugar or fatty acid components from lower to higher numbers of carbon chains, or whether the sugar was a monosaccharide or disaccharide did not follow a predictable relationship to insecticidal activity. Intuitively, changing the hydrophile from sorbitol (C6) to xylitol (C5) would require a decrease in lipophile chain length to maintain hydrophilic-lipophilic balance (HLB) relationships, yet an increase in lipophile chain length was unexpectedly needed for increasing insecticidal activity. Thus, the HLB of these materials did not correlate with pear psylla mortalities. Initial insect

  17. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    PubMed

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  18. The adjuvant activity of fatty acid esters. The role of acyl chain length and degree of saturation.

    PubMed Central

    Bomford, R

    1981-01-01

    Water-in-oil emulsions of metabolizable fatty acid esters, with the non-toxic surfactant Pluronic L122 as emulsifying agent, potentiated the humoral response to bovine serum albumin and staphylococcal toxoid in the mouse. Adjuvant activity was increased by changing the chemical nature of the esters as follows: (i) using a series of ethyl esters, adjuvant activity appeared when the acyl chain length of the fatty acid component was 16 or greater; (ii) isobutyl and isopropyl esters of palmitic acid (C16:0) were superior to ethyl; (iii) the ethyl esters of oleic (C18:1) and linoleic (C18:2) acids were better than stearic (C18:0). Since emulsions prepared with longer chain saturated esters are very viscous or solid at room temperature, and unsaturated esters are chemically reactive, emulsions were prepared with differing proportions of ethyl caprate (C10:0) and butyl stearate. At a ratio of 9:1 the emulsions possessed the low viscosity of ethyl caprate, but gained the adjuvant activity of butyl stearate. 125I-labelled BSA was retained in the footpad to a significantly greater extent than with a caprate emulsion, but reasons are given for believing that slow release of antigen is not the only mechanism of adjuvant activity. The ester emulsions caused more acute but less chronic local inflammation (footpad swelling) than Freund's incomplete adjuvant. PMID:7275184

  19. A Comparison Between Phorbol 12 Myristate 13 Acetate and Phorbol 12, 13 Dibutyrate in Human Melanocyte Culture

    PubMed Central

    Padma, Divya

    2016-01-01

    Introduction Melanocyte culture is an integral part of the studies of skin biology and cosmetic applications. After the introduction of selective medium for the culture of human melanocyte using Phorbol 12-myristate13-acetate (PMA) in 1982, a lot of methods of culturing were tried but till date PMA is a preferred mitogen because of its cost effectiveness compared to growth factors. We have tried to preliminarily evaluate the efficacy of another phorbol ester, Phorbol 12, 13-dibutyrate (PDBu) in melanocyte culture because of its less hydrophobic nature compared to PMA. This property minimizes the trace amount of mitogen in cell culture after washing off and hence does not interfere in other biological assays. Aim To evaluate the differences in the melanocyte survival rate, morphology and mitotic index when grown in media supplemented with PMA and PDBu. Materials and Methods Foreskins were collected from children undergoing circumcision. Epidermal cells were isolated from foreskin and cultured using PMA and PDBu. Melanocytes in culture were monitored for the better establishment and documented. In proliferative assay, melanocytes were treated with PMA and PDBu for 24, 48 and 72 hours and proliferation was measured using 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay method. Results When cultured, melanocytes acquired proliferative status and bipolar morphology quicker in PDBu medium than in PMA medium. Keratinocytes survived as contamination in PMA medium whereas PDBu medium had minimal keratinocytes. MTT assay showed that PDBu has higher proliferative induction capacity than PMA. In even lower concentration of PDBu in medium, melanocytes survived till 72 hours without significant cell loss in compared to PMA medium. Conclusion PDBu can be a valuable replacement for PMA in human melanocyte culture. Higher proliferation induction, unfavourable to keratinocyte survival and less hydrophobicity make PDBu a promising alternative for quicker

  20. An improvement of Barter's method for assaying plasma cholesterol ester transfer activity: experimental and clinical applications.

    PubMed

    Harvengt, C; Desager, J P; Mailleux, P; Heller, F R

    1989-01-01

    The use of a discontinuous density gradient and of a vertical rotor to separate plasma lipoproteins are modifications of Barter's described method for assaying cholesteryl ester transfer activity (CETA) in plasma. The original feature of our approach is the fast preparation of the labeled substrate by a physiologic-like process, which renders the assay easy and suitable for measurement of this activity in both man and animals. PMID:2730951

  1. Alkoxycarbonyloxyethyl ester prodrugs of FR900098 with improved in vivo antimalarial activity.

    PubMed

    Ortmann, Regina; Wiesner, Jochen; Reichenberg, Armin; Henschker, Dajana; Beck, Ewald; Jomaa, Hassan; Schlitzer, Martin

    2005-07-01

    FR900098 represents a derivative of the new antimalarial drug fosmidomycin with enhanced activity. The mechanism of action is the inhibition of the 1-desoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase, an essential enzyme of the mevalonate independent pathway of isoprenoid biosynthesis. Prodrugs with increased oral activity in mice infected with the rodent malaria parasite Plasmodium vinckei were obtained by masking the phosphonate moiety of FR900098 as alkoxycarbonyloxyethyl esters. PMID:15996004

  2. Acyloxyalkyl ester prodrugs of FR900098 with improved in vivo anti-malarial activity.

    PubMed

    Ortmann, Regina; Wiesner, Jochen; Reichenberg, Armin; Henschker, Dajana; Beck, Ewald; Jomaa, Hassan; Schlitzer, Martin

    2003-07-01

    FR900098 represents an improved derivative of the new antimalarial drug fosmidomycin and acts through inhibition of the 1-deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase, an essential enzyme of the mevalonate independent pathway of isoprenoid biosynthesis. Prodrugs with increased activity after oral administration were obtained by chemical modification of the phosphonate moiety to yield acyloxyalkyl esters. The most successful compound demonstrated 2-fold increased activity in mice infected with the rodent malaria parasite Plasmodium vinckei. PMID:12798327

  3. Aroma-active ester profile of ale beer produced under different fermentation and nutritional conditions.

    PubMed

    Hiralal, Lettisha; Olaniran, Ademola O; Pillay, Balakrishna

    2014-01-01

    A broad range of aroma-active esters produced during fermentation are vital for the complex flavour of beer. This study assessed the influence of fermentation temperature, pH, and wort nutritional supplements on the production of yeast-derived ester compounds and the overall fermentation performance. The best fermentation performance was achieved when wort was supplemented with 0.75 g/l l-leucine resulting in highest reducing sugar and FAN (free amino nitrogen) utilization and ethanol production. At optimum fermentation pH of 5, 38.27% reducing sugars and 35.28% FAN was utilized resulting in 4.07% (v/v) ethanol. Wort supplemented with zinc sulphate (0.12 g/l) resulted in 5.01% ethanol (v/v) production and 54.32% reducing sugar utilization. Increase in fermentation temperature from 18°C to room temperature (± 22.5°C) resulted in 17.03% increased ethanol production and 14.42% and 62.82% increase in total acetate ester concentration and total ethyl ester concentration, respectively. Supplementation of worth with 0.12 g/l ZnSO4 resulted in 2.46-fold increase in both isoamyl acetate and ethyl decanoate concentration, while a 7.05-fold and 1.96-fold increase in the concentration of isoamyl acetate and ethyl decanoate, respectively was obtained upon 0.75 g/l l-leucine supplementation. Wort supplemented with l-leucine (0.75 g/l) yielded the highest beer foam head stability with a rating of 2.67, while highest yeast viability was achieved when wort was supplemented with 0.12 g/l zinc sulphate. Results from this study suggest that supplementing wort with essential nutrients required for yeast growth and optimizing the fermentation conditions could be an effective way of improving fermentation performance and controlling aroma-active esters in beer. PMID:23845914

  4. Effect of unesterified cholesterol on the activity of cholesteryl ester transfer protein.

    PubMed Central

    Rajaram, O V; Chan, R Y; Sawyer, W H

    1994-01-01

    Cholesteryl ester transfer protein (CETP) catalyses the transfer of cholesteryl ester from high-density lipoprotein to triacylglycerol-rich lipoproteins and the transfer of triacylglycerols in the reverse direction. The activity of CETP has been studied using a continuous fluorescence assay which measures the excimer fluorescence of cholesteryl 1-pyrene decanoate in a synthetic donor microemulsion as the indicator of cholesteryl ester transfer. Emulsions were composed of cholesteryl oleate and egg phosphatidylcholine and had an average particle size of 14 +/- 1 nm as calculated from the molar volume of the components. The effect of changing the physical state of the emulsion surface was examined by including unesterified cholesterol in the donor and acceptor particles. The rate of CETP-induced transfer of the fluorescent cholesteryl ester between microemulsion particles increased when unesterified cholesterol was present at concentrations up to 17 mol% relative to phospholipid. The presence of cholesterol also changed the exchange kinetics from an apparent single-exponential to a double-exponential phenomenon. Binding of CETP to the emulsion surface was accompanied by an enhancement of fluorescence which was used to measure the binding equilibria. The enhancement of exchange due to the presence of cholesterol did not correlate with any increased binding of CETP to the emulsion surface. The presence of unesterified cholesterol in the donor did not affect the rate of transfer of the fluorescent cholesteryl ester when unlabelled emulsion was replaced by high-density lipoprotein as the acceptor. The studies demonstrate the use of microemulsions of defined size and composition for the study of the mechanism of action of CETP. PMID:7998976

  5. Sphingosine inhibits sphingomyelinase-induced cholesteryl ester formation in cultured fibroblasts.

    PubMed

    Härmälä, A S; Pörn, M I; Slotte, J P

    1993-12-01

    We have in this study examined the effects of sphingosine, a possible secondary degradation product following sphingomyelin hydrolysis, on cholesterol homeostasis in cultured human fibroblasts treated with sphingomyelinase. The activation of cholesterol esterification, which resulted from the degradation of plasma membrane sphingomyelin (by sphingomyelinase), was observed to be effectively blocked by sphingosine (half-maximal dose 6-7 microM). The inhibitory action of sphingosine could not be reproduced with other amines (e.g., dodecyl amine or imipramine). The onset of inhibition of cholesteryl ester formation by sphingosine was rapid (maximal effect within 15 min). Sphingosine itself had no spontaneous effects on the distribution of cellular cholesterol. At concentrations below 10 microM, sphingosine was not cytotoxic, as determined by cellular trypan blue permeability. The inhibitory action of sphingosine on cholesteryl ester formation apparently did not result from a direct inhibition of acyl-CoA cholesterol acyltransferase (ACAT), since the activity of this enzyme was unaffected by sphingosine (10 microM) in a cell-free homogenate, using [14C]oleoyl-CoA as a co-substrate. Sphingosine was also unable to prevent the formation of activated fatty acids (oleoyl-CoA), since acyl-CoA synthetase activity in a cell-free homogenate was not inhibited by sphingosine (at 5 microM). The cellular cholesteryl ester cycle (i.e., the neutral cholesteryl ester hydrolase) was unaffected by sphingosine (at 5 microM). Down-regulation of PKC activity (24 h exposure of cells to 100 nM (62 ng/ml) phorbol ester) did not affect the sphingomyelinase-induced stimulation of [3H]cholesteryl ester formation. In addition, the sphingosine-induced inhibition of [3H]cholesteryl ester formation was not reversed in the presence of phorbol ester (short-term exposures), suggesting that the effect of sphingosine was not mediated via PKC. In conclusion, we have shown that sphingosine is an inhibitor

  6. Antioxidant activity of oligosaccharide ester extracted from Polygala tenuifolia roots in senescence-accelerated mice.

    PubMed

    Liu, Ping; Hu, Yuan; Guo, Dai-Hong; Lu, Bao-Rong; Rahman, Khalid; Mu, Li-Hua; Wang, Dong-Xiao

    2010-07-01

    The constituents of the ethanol extract from the root of Polygala tenuifolia Willd. (Polygalaceae) were investigated for antioxidant activity in senescence-accelerated mice. Consequently, two relevant samples were obtained, a fraction separated by macroporous resin (YZ-OE), and a major pure crystal of 3,6'-disinapoyl sucrose (DISS). Based on HPLC-ESI-MS analysis, the most constituents in the YZ-OE fraction from the extract of P. tenuifolia were oligosaccharide esters. The antioxidant activities of these two samples were evaluated using the accelerated senescence-prone, short-lived mice (SAMP) in vivo. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased significantly in SAMP mice fed oligosaccharide esters (YZ-OE 50 mg/kg) and its constituents (DISS 50 mg/kg). However, the content of malondialdehyde (MDA) was increased in the blood and liver of SAMP mice. But when given YZ-OE, it could be decreased, by 44.3% and 47.5%, respectively, compared with the SAMP model. Results from the analyses indicated that the oligosaccharide esters (YZ-OE) from roots of P. tenuifolia had a high in vivo antioxidant activity. PMID:20645784

  7. Biological activity and ESI MS study of oxaalkyl and hydroksyoxaalkyl lasalocid esters

    NASA Astrophysics Data System (ADS)

    Pankiewicz, Radosław; Remlein-Starosta, Dorota; Schroeder, Grzegorz; Brzezinski, Bogumił

    2006-02-01

    Eight lasalocid esters (Las1)-(Las8) have been synthesised and their complex formation with Mg 2+ and Ca 2+ cations has been studied by ESI MS and PM5 semiempirical method. The ESI MS spectra of the complexes have shown that Las1-8 forms stable 1:1 complexes with Mg 2+ and Ca 2+ cations. The ESI MS spectra at higher cone voltage values have revealed the m/ z peaks characteristic of the abstraction of one proton from the complex molecule. The calculated structures of Las1-8 with Mg 2+ and Ca 2+ cations are compared with those of the respective 1:1 complexes with monovalent cations. The biological activity of the esters on pathogenic bacteria Ervinia carotovora and fungus Fusariumoxysporum has been studied in vitro and some biological active compounds have been identified. This result can be very important for future applications in agriculture.

  8. Caffeic acid phenethyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity.

    PubMed

    Cui, Kunqiang; Lu, Weiqiang; Zhu, Lili; Shen, Xu; Huang, Jin

    2013-05-31

    Helicobacter pylori (H. pylori) is a major causative factor for gastrointestinal illnesses, H. pylori peptide deformylase (HpPDF) catalyzes the removal of formyl group from the N-terminus of nascent polypeptide chains, which is essential for H. pylori survival and is considered as a promising drug target for anti-H. pylori therapy. Propolis, a natural antibiotic from honeybees, is reported to have an inhibitory effect on the growth of H. pylori in vitro. In addition, previous studies suggest that the main active constituents in the propolis are phenolic compounds. Therefore, we evaluated a collection of phenolic compounds derived from propolis for enzyme inhibition against HpPDF. Our study results show that Caffeic acid phenethyl ester (CAPE), one of the main medicinal components of propolis, is a competitive inhibitor against HpPDF, with an IC50 value of 4.02 μM. Furthermore, absorption spectra and crystal structural characterization revealed that different from most well known PDF inhibitors, CAPE block the substrate entrance, preventing substrate from approaching the active site, but CAPE does not have chelate interaction with HpPDF and does not disrupt the metal-dependent catalysis. Our study provides valuable information for understanding the potential anti-H. pylori mechanism of propolis, and CAPE could be served as a lead compound for further anti-H. pylori drug discovery. PMID:23611786

  9. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    PubMed

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  10. Synthesis and biological activity of arylspiroborate salts derived from caffeic Acid phenethyl ester.

    PubMed

    Hébert, Martin J G; Flewelling, Andrew J; Clark, Trevor N; Levesque, Natalie A; Jean-François, Jacques; Surette, Marc E; Gray, Christopher A; Vogels, Christopher M; Touaibia, Mohamed; Westcott, Stephen A

    2015-01-01

    Two novel boron compounds containing caffeic acid phenethyl ester (CAPE) derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE. PMID:25834744

  11. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    PubMed Central

    Hébert, Martin J. G.; Flewelling, Andrew J.; Clark, Trevor N.; Jean-François, Jacques; Surette, Marc E.; Gray, Christopher A.; Vogels, Christopher M.; Touaibia, Mohamed; Westcott, Stephen A.

    2015-01-01

    Two novel boron compounds containing caffeic acid phenethyl ester (CAPE) derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE. PMID:25834744

  12. Regulation of cholesteryl ester transfer activity in adipose tissue: comparison between hamster and rat species.

    PubMed

    Shen, G X; Angel, A

    1995-07-01

    The present study demonstrates cholesteryl ester transfer activity (CETA) in cultured hamster and rat adipose tissue. Cultured hamster and rat adipose tissue fragments released CETA into the conditioned medium, and this was associated with a reciprocal decrease in adipose tissue CETA. Regional variations in adipose CETA were observed. The levels of CETA released from cultured hamster and rat adipocytes were higher than those from adipose tissue fragments. In hamsters but not in rats, the secretion of CETA from cultured adipose tissue was increased by insulin and inhibited by EDTA in a dose-dependent fashion. Monoclonal antibodies against human cholesteryl ester transfer protein inhibited the CETA secreted from hamster adipose tissue but not that from rat adipose tissue. Fasting for 24 h and a high-cholesterol saturated fat-rich diet increased adipose CETA in hamsters and rats, and this was associated with an elevation of plasma CETA only in hamsters. This supports the view that, in hamsters, adipose CETA has in situ and intravascular functions, whereas in rats the role of adipose CETA is restricted to tissue-specific functions. Hamster cholesteryl ester transfer protein may differ from rat adipose-associated CETA in the structure of the active site and the regulatory mechanism for its secretion. PMID:7631784

  13. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia.

    PubMed

    Koizumi, J; Mabuchi, H; Yoshimura, A; Michishita, I; Takeda, M; Itoh, H; Sakai, Y; Sakai, T; Ueda, K; Takeda, R

    1985-12-01

    Lipoprotein patterns and cholesteryl ester transfer activity (CETA) were examined in 2 patients with familial hyperalphalipoproteinaemia (FHALP). The proband was a healthy 58-year-old Japanese male who had an HDL cholesterol of 7.83 mmol/l (301 mg/dl). His sister's HDL cholesterol was 4.52 mmol/l (174 mg/dl), which suggested that both were homozygous carriers of FHALP. In both subjects HDL showed a high cholesterol/apo A-I ratio and appeared to be a larger-sized particle than normal HDL on agarose gel chromatography. Two of the proband's children showed higher HDL cholesterol levels (1.74 mmol/l, 2.16 mmol/l) than normal, but another 2 children showed normal levels (1.48 mmol/l, 1.40 mmol/l). However, the ratios of HDL cholesterol to total cholesterol and to apo A-I in all children were higher than normal. These data suggest, but do not prove, that all his children were heterozygotes. Apo B levels in all of the family members studied were lower than normal (47-80 mg/dl). Deceased members of the same family had not died from cardiovascular disease. Cholesteryl-ester transfer activity was studied in both patients. When serum or lipoprotein deficient serum (d greater than 1.21) and [3H]cholesteryl ester labelled HDL3 were incubated in the presence of an LCAT inhibitor, there was no evidence of cholesteryl ester transfer from HDL to VLDL and/or LDL, unlike normal subjects. The deficiency of CETA in these patients with FHALP presumably accounted for the increase in particle size and cholesterol enrichment of HDL. PMID:3937535

  14. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids.

    PubMed

    Reddy, Yasa Sathyam; Kaki, Shiva Shanker; Rao, Bala Bhaskara; Jain, Nishant; Vijayalakshmi, Penumarthy

    2016-01-01

    The present study describes the synthesis, characterization and evaluation of antiproliferative activity of novel diisopropylphenyl esters of alpha-linolenic acid (ALA), valproic acid (VA), butyric acid (BA) and 2-ethylhexanoic acid (2-EHA). These esters were chemically synthesized by the esterification of fatty acids with 2,6-diisopropylphenol and 2,4-diisopropylphenol (propofol). The structure of new conjugates viz. propofol-(alpha-linolenic acid) (2,6P-ALA and 2,4P-ALA), propofol-valproic acid (2,6P-VA and 2,4P-VA), propofol-butyric acid (2,6P-BA and 2,4P-BA) and propofol-(2-ethylhexanoic acid) (2,6P2-EHA and 2,4P-2-EHA) were characterized by FT-IR, NMR ((1)H, (13)C) and mass spectral data. The synthesized conjugates having more lipophilic character were tested for antiproliferative in vitro studies on A549, MDA-MB-231, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. All the conjugates showed specific growth inhibition on studied cancer cell lines. Among the synthesized esters, the conjugates synthesized from BA, VA and 2-EHA exhibited prominent growth inhibition against A549, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. The preliminary results suggest that the entire novel conjugates possess antiproliferative properties that reduce the proliferation of cancer cells in vitro. PMID:26666272

  15. Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids.

    PubMed

    Wang, Jie; Qin, Tian; Chen, Tie-Gen; Wimmer, Laurin; Edwards, Jacob T; Cornella, Josep; Vokits, Benjamin; Shaw, Scott A; Baran, Phil S

    2016-08-01

    A transformation analogous in simplicity and functional group tolerance to the venerable Suzuki cross-coupling between alkyl-carboxylic acids and boronic acids is described. This Ni-catalyzed reaction relies upon the activation of alkyl carboxylic acids as their redox-active ester derivatives, specifically N-hydroxy-tetrachlorophthalimide (TCNHPI), and proceeds in a practical and scalable fashion. The inexpensive nature of the reaction components (NiCl2 ⋅6 H2 O-$9.5 mol(-1) , Et3 N) coupled to the virtually unlimited commercial catalog of available starting materials bodes well for its rapid adoption. PMID:27380912

  16. Double ester prodrugs of FR900098 display enhanced in-vitro antimalarial activity.

    PubMed

    Wiesner, Jochen; Ortmann, Regina; Jomaa, Hassan; Schlitzer, Martin

    2007-12-01

    Fosmidomycin and FR900098 are inhibitors of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR; IspC), a key enzyme of the mevalonate-independent isoprenoid biosynthesis pathway. We have determined the in-vitro antimalarial activity of two double ester prodrugs 2, 3 in direct comparison with the unmodified FR900098 1 against intraerythrocytic forms of Plasmodium falciparum. Temporarily masking the polar properties of the phosphonate moiety of the DXR inhibitor FR900098 1 enhanced not only its oral bioavailability but also the intrinsic activity of this series against the parasites. PMID:17994601

  17. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    SciTech Connect

    Ramachandran, M.; Nair, C.N.; Abraham, E.C.

    1987-05-01

    The biological receptor for tumor-promoting phorbol esters has been identified as the CaS /phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular CaS is allowed to rise. Since cellular CaS in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of TH-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated TSP incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition.

  18. Effects of protein kinase C activators on germinal vesicle breakdown and polar body emission of mouse oocytes

    SciTech Connect

    Bornslaeger, E.A.; Poueymirou, W.T.; Mattei, P.; Schultz, R.M.

    1986-01-01

    Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, oocytes were treated with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4..beta..-phorbol, 12,13-didecanoate (4..beta..-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC/sub 8/). An inactive phorbol ester, 4a-phorbol 12,13-didecanoate (4..cap alpha..-PDD), did not inhibit GVBD. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of a cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC/sub 8/ partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis.

  19. Sucrose esters from Physalis peruviana calyces with anti-inflammatory activity.

    PubMed

    Franco, Luis A; Ocampo, Yanet C; Gómez, Harold A; De la Puerta, Rocío; Espartero, José L; Ospina, Luis F

    2014-11-01

    Physalis peruviana is a native plant from the South American Andes and is widely used in traditional Colombian medicine of as an anti-inflammatory medicinal plant, specifically the leaves, calyces, and small stems in poultice form. Previous studies performed by our group on P. peruviana calyces showed potent anti-inflammatory activity in an enriched fraction obtained from an ether total extract. The objective of the present study was to obtain and elucidate the active compounds from this fraction and evaluate their anti-inflammatory activity in vivo and in vitro. The enriched fraction of P. peruviana was purified by several chromatographic methods to obtain an inseparable mixture of two new sucrose esters named peruviose A (1) and peruviose B (2). Structures of the new compounds were elucidated using spectroscopic methods and chemical transformations. The anti-inflammatory activity of the peruvioses mixture was evaluated using λ-carrageenan-induced paw edema in rats and lipopolysaccharide-activated peritoneal macrophages. Results showed that the peruvioses did not produce side effects on the liver and kidneys and significantly attenuated the inflammation induced by λ-carrageenan in a dosage-dependent manner, probably due to an inhibition of nitric oxide and prostaglandin E2, which was demonstrated in vitro. To our knowledge, this is the first report of the presence of sucrose esters in P. peruviana that showed a potent anti-inflammatory effect. These results suggest the potential of sucrose esters from the Physalis genus as a novel natural alternative to treat inflammatory diseases. PMID:25338213

  20. Chemical Composition of Blumea lacera Essential Oil from Nepal. Biological Activities of the Essential Oil and (Z)-Lachnophyllum Ester.

    PubMed

    Satyal, Prabodh; Chhetri, Bhuwan K; Dosoky, Noura S; Shrestha, Samon; Poudel, Ambika; Setzer, William N

    2015-10-01

    The essential oil from the aerial parts of Blumea lacera collected from Biratnagar, Nepal, has been obtained by hydrodistillation and analyzed by gas chromatography - mass spectrometry. The major component from the oil, (Z)-lachnophyllum ester, was isolated by preparative silica gel chromatography. B. lacera oil was dominated by (Z)-lachnophyllum ester (25.5%), (Z)-lachnophyllic acid (17.0%), germacrene D (11.0%), (E)-β-farnesene (10.1%), bicyclogermacrene (5.2%), (E)-caryophyllene (4.8%), and (E)-nerolidol (4.2%). Also detected in the oil were (E)-lachnophyllic acid (3.3%) and (E)-lachnophyllum ester (1.7%). (Z)-Lachnophyllum ester exhibited cytotoxic activity against MDA-MD-231, MCF-7, and 5637 human tumor cells, as well as antibacterial and antifungal activity. PMID:26669117

  1. Andrographolide suppresses thymic stromal lymphopoietin in phorbol myristate acetate/calcium ionophore A23187-activated mast cells and 2,4-dinitrofluorobenzene-induced atopic dermatitis-like mice model

    PubMed Central

    Li, Chun-xiao; Li, Hua-guo; Zhang, Hui; Cheng, Ru-hong; Li, Ming; Liang, Jian-ying; Gu, Yan; Ling, Bo; Yao, Zhi-rong; Yu, Hong

    2016-01-01

    Background Atopic dermatitis (AD) is one of the most common inflammatory cutaneous diseases. Thymic stromal lymphopoietin (TSLP) has been demonstrated to be an important immunologic factor in the pathogenesis of AD. The production of TSLP can be induced by a high level of intracellular calcium concentration and activation of the receptor-interacting protein 2/caspase-1/NF-κB pathway. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone, has been found to exert anti-inflammatory effects in gastrointestinal inflammatory disorders through suppressing the NF-κB pathway. Objective To explore the effect of ANDRO on the production of TSLP in human mast cells and AD mice model. Methods We utilized enzyme-linked immunosorbent assay, real-time reverse transcription polymerase chain reaction analysis, Western blot analysis, and immunofluorescence staining assay to investigate the effects of ANDRO on AD. Results ANDRO ameliorated the increase in the intracellular calcium, protein, and messenger RNA levels of TSLP induced by phorbol myristate acetate/calcium ionophore A23187, through the blocking of the receptor-interacting protein 2/caspase-1/NF-κB pathway in human mast cell line 1 cells. ANDRO, via oral or local administration, also attenuated clinical symptoms in 2,4-dinitrofluorobenzene-induced AD mice model and suppressed the levels of TSLP in lesional skin. Conclusion Taken together, ANDRO may be a potential therapeutic agent for AD through suppressing the expression of TSLP. PMID:26929603

  2. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters.

    PubMed

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-03-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25-30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200-21 000 units g(-1) protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0-55 000 units g(-1) protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available. PMID:24418210

  3. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters

    PubMed Central

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200–21 000 units g−1 protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0–55 000 units g−1 protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available. PMID:24418210

  4. Practical Ni-Catalyzed Aryl–Alkyl Cross-Coupling of Secondary Redox-Active Esters

    PubMed Central

    2016-01-01

    A new transformation is presented that enables chemists to couple simple alkyl carboxylic acids with aryl zinc reagents under Ni-catalysis. The success of this reaction hinges on the unique use of redox-active esters that allow one to employ such derivatives as alkyl halides surrogates. The chemistry exhibits broad substrate scope and features a high degree of practicality. The simple procedure and extremely inexpensive nature of both the substrates and pre-catalyst (NiCl2·6H2O, ca. $9.5/mol) bode well for the immediate widespread adoption of this method. PMID:26835704

  5. Practical Ni-Catalyzed Aryl-Alkyl Cross-Coupling of Secondary Redox-Active Esters.

    PubMed

    Cornella, Josep; Edwards, Jacob T; Qin, Tian; Kawamura, Shuhei; Wang, Jie; Pan, Chung-Mao; Gianatassio, Ryan; Schmidt, Michael; Eastgate, Martin D; Baran, Phil S

    2016-02-24

    A new transformation is presented that enables chemists to couple simple alkyl carboxylic acids with aryl zinc reagents under Ni-catalysis. The success of this reaction hinges on the unique use of redox-active esters that allow one to employ such derivatives as alkyl halides surrogates. The chemistry exhibits broad substrate scope and features a high degree of practicality. The simple procedure and extremely inexpensive nature of both the substrates and pre-catalyst (NiCl2·6H2O, ca. $9.5/mol) bode well for the immediate widespread adoption of this method. PMID:26835704

  6. Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17 alpha-esters containing a functional group.

    PubMed

    Ueno, H; Maruyama, A; Miyake, M; Nakao, E; Nakao, K; Umezu, K; Nitta, I

    1991-08-01

    A series of 21-desoxy-21-chlorocorticosteroids that contain a functionalized ester group at 17 alpha has been prepared and examined to separate their systemic activity from topical antiinflammatory activity. Introduction of the functionalized ester group at 17 alpha was carried out by an acid-catalyzed formation of cyclic ortho esters with 17 alpha,21-hydroxyl groups of corticosteroids and subsequent acid-catalyzed hydrolysis. As for the functional group, chloro, methoxy, acetoxy, cyano, cyclopropyl, or alkoxycarbonyl group was introduced at the terminal carbon atom of the 17 alpha-alkanoate group. The topical antiinflammatory activity and systemic activity of these compounds were examined and found to be significantly dependent on the functionalities in the 17 alpha-esters. Among these derivatives, a series of 17 alpha-(alkoxycarbonyl)alkanoates (17 alpha-OCO(CH2)nCOOR) showed an excellent separation of the systemic activity from topical activity. The effects of the number of methylene groups (n) and of the alkyl groups of the ester (R) on either topical or systemic activity of the corticosteroid derivatives were also investigated. PMID:1875343

  7. Synthesis, antitumor activity, and mechanism of action of 6-acrylic phenethyl ester-2-pyranone derivatives.

    PubMed

    Fang, Sai; Chen, Lei; Yu, Miao; Cheng, Bao; Lin, Yongsheng; Morris-Natschke, Susan L; Lee, Kuo-Hsiung; Gu, Qiong; Xu, Jun

    2015-04-28

    Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. In particular, compound showed potent cytotoxic activity (IC50 = 0.50-3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADMET properties were also calculated in silico, and compound showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound is a promising compound as an antitumor agent. PMID:25800703

  8. Synthesis, Antitumor Activity, and Mechanism of Action of 6-Acrylic Phenethyl Ester-2-pyranone Derivatives

    PubMed Central

    Fang, Sai; Chen, Lei; Yu, Miao; Cheng, Bao; Lin, Yongsheng; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung; Gu, Qiong; Xu, Jun

    2015-01-01

    Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. Particularly, compound 5o showed potent cytotoxic activity (IC50 = 0.50 – 3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that 5o induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADME properties were also calculated in silico, and compound 5o showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound 5o is a promising compound as an antitumor agent. PMID:25800703

  9. Evaluation of the antiaggregant activity of ascorbyl phenolic esters with antioxidant properties.

    PubMed

    Lopez, Esther; del Carmen Ortega-Liébana, María; Salido, Sofía; Salido, Ginés M; Altarejos, Joaquín; Rosado, Juan A; Redondo, Pedro C

    2015-09-01

    Beneficial effects of the antioxidant L-ascorbic acid (Asc) in human health are well known. Its particular role in hemostasis deserves further consideration, since it has been described a dose-dependent effect of Asc in platelet activity. Contrary, it has been demonstrated that phenolic compounds have inhibitory effects on platelet aggregation stimulated by the physiological agonist thrombin (Thr). Here, we have evaluated the actions of three synthetic phenolic esters of Asc: L-ascorbyl 6-protocatechuate (Prot Asc), L-ascorbyl 6-gallate (Gal Asc), and L-ascorbyl 6-caffeate (Caf Asc). All these Asc derivatives exhibited greater radical scavenging activity than Asc, and in experiments using human platelets from healthy subjects, they do not evoke changes in platelet viability upon their administration. Nevertheless, these compounds altered platelet calcium homeostasis in response to Thr, although Prot Asc induced a smaller effect than Gal Asc, Caf Asc, and Asc. As a consequence, platelet aggregation was also impaired by these compounds, reporting Prot Asc and Caf Asc a weaker antiaggregant action than Gal Asc and Asc. Treatments with Gal Asc and Caf Asc altered in larger extent the phosphorylation pattern of pp60(Src) and mammalian target of rapamycin (mTOR) evoked by stimulating human platelets with Thr. Summarizing, Prot Asc is the ascorbyl phenolic ester with the strongest antioxidant properties and weakest antiaggregant actions, and its use as antioxidant may be safer than the rest of derivatives in order to prevent thrombotic alteration in patients that need treatment with antioxidant therapies. PMID:26081024

  10. How Anacetrapib Inhibits the Activity of the Cholesteryl Ester Transfer Protein? Perspective through Atomistic Simulations

    PubMed Central

    Äijänen, Tarja; Koivuniemi, Artturi; Javanainen, Matti; Rissanen, Sami; Rog, Tomasz; Vattulainen, Ilpo

    2014-01-01

    Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases. PMID:25412509

  11. Divergence in the Enzymatic Activities of a Tomato and Solanum pennellii Alcohol Acyltransferase Impacts Fruit Volatile Ester Composition.

    PubMed

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2014-10-29

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species S. pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrates preferences that explain variations observed in the volatiles. Together, the results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of synthesis and degradation of esters. PMID:25355057

  12. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition.

    PubMed

    Goulet, Charles; Kamiyoshihara, Yusuke; Lam, Nghi B; Richard, Théo; Taylor, Mark G; Tieman, Denise M; Klee, Harry J

    2015-01-01

    Tomato fruits accumulate a diverse set of volatiles including multiple esters. The content of ester volatiles is relatively low in tomato fruits (Solanum lycopersicum) and far more abundant in the closely related species Solanum pennellii. There are also qualitative variations in ester content between the two species. We have previously shown that high expression of a non-specific esterase is critical for the low overall ester content of S. lycopersicum fruit relative to S. pennellii fruit. Here, we show that qualitative differences in ester composition are the consequence of divergence in enzymatic activity of a ripening-related alcohol acyltransferase (AAT1). The S. pennellii AAT1 is more efficient than the tomato AAT1 for all the alcohols tested. The two enzymes have differences in their substrate preferences that explain the variations observed in the volatiles. The results illustrate how two related species have evolved to precisely adjust their volatile content by modulating the balance of the synthesis and degradation of esters. PMID:25578279

  13. Sensitive, coupled assay for plasminogen activator using a thiol ester substrate for plasmin

    SciTech Connect

    Coleman, P L; Green, G D.J.

    1980-01-01

    Several assays for plasminogen activator employ a direct assay method. These are remarkably sensitive methods, yet they suffer in comparison to the sensitivity of coupled methods. Coupling the assay with plasminogen not only amplifies the sensitivity by the multiplicative effect of plasmin, but insures that only those proteases specific for plasminogen are assayed. The choice of substrate for plasmin is critical. A thiol ester substrate, thiobenzyl benzyloxy-carbonyl-L-lysinate (Z-Lys-SBzl), has been synthesized which combines high k/sub cat/ with alkaline stability. In an effort to characterize the plasminogen activator from hepatoma tissue culture (HTC) and its hormonally-controlled inhibitor, Z-Lys-SBzl was used in a coupled approach providing an assay which is superior to the /sup 125/I-fibrinolytic assay. It is also extremely sensitive to plasminogen activator and can be used for routine analysis of purification as well as kinetic and binding studies. (ERB)

  14. Poly(anhydride-esters) comprised exclusively of naturally occurring antimicrobials and EDTA: antioxidant and antibacterial activities.

    PubMed

    Carbone-Howell, Ashley L; Stebbins, Nicholas D; Uhrich, Kathryn E

    2014-05-12

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways. PMID:24702678

  15. Effect of dietary vitamin E supplements on cholesteryl ester transfer activity in hamster adipose tissue.

    PubMed

    Shen, G X; Novak, C; Angel, A

    1996-08-01

    Increased concentration of cholesteryl ester transfer protein (CETP) in plasma favours a lipoprotein profile characterized by a reduced high density lipoprotein (HDL) cholesterol. Previous studies have demonstrated that a diet high in cholesterol and saturated fat (HCSF) is associated with elevated plasma CETP and increased release of cholesterol ester transfer activity (CETA) from hamster adipose tissue incubated in vitro. The present study investigated the effects of vitamin E (Vit.E) ingestion on plasma CETP activity and adipose tissue CETA in Syrian Golden hamsters. A regular diet supplemented by the addition of 1% cholesterol and 10% coconut oil (w/w) was associated with a time-dependent increase in plasma CETP activity and increased release of adipose CETA following incubation of fragments of perirenal adipose tissue. Vit.E ingestion (100 mg/kg body weight per day for 8 weeks) suppressed 85% of the increase of CETA released from cultured hamster adipose tissue and 70% of the increase of plasma CETP activity induced by the HCSF diet. Significant decreases in plasma total and LDL cholesterol and an increase in HDL cholesterol were found in hamsters receiving the HCSF diet plus Vit.E compared to the animals on the HCSF diet alone. In the hamsters on regular chow, Vit.E ingestion alone did not significantly alter adipose tissue CETA, plasma CETP activity or plasma lipoproteins. The results indicate that Vit.E prevents the HCSF diet-induced increase in plasma CETP activity, probably via a reduction of CETA secretion from hamster adipose tissue. This suggests that Vit.E supplementation may help to ameliorate the dyslipidemia caused by a HCSF diet through its inhibitory influence on CETP production in adipose tissue. PMID:8830934

  16. Plant-based hydrocarbon esters from Tragia involucrata possess antimicrobial and anti-inflammatory activities.

    PubMed

    Samy, Ramar Perumal; Sethi, Gautam; Chow, Vincent T K; Stiles, Bradley G

    2013-04-01

    Antimicrobial and anti-inflammatory activities of hydrocarbon esters obtained from Tragia involucrata were evaluated by disk-diffusion (250 µg/ml), and broth-dilution (500-7.8 µg/ml), methods against bacteria. Among the compounds, shellsol showed the most potent activity against Burkholderia pseudomallei (KHW), Aeromonas hydrophila, Staphylococcus aureus, Bacillus subtilis, Streptococcus pyogenes, Klebsiella pneumoniae, Proteus mirabilis, and Streptococcus pneumoniae. Interestingly, vinyl hexylether was active against food-spoilage bacteria (Bacillus cereus and Proteus vulgaris), 2, 4-methyl hexane also exerted antimicrobial activity against K. pneumoniae, S. pyogenes, B. pseudomallei, Alcaligens viscolactis, and Pseudomonas aeruginosa. 2-methylnonane and 2, 6-dimethyl heptane showed only weak activity. For example, shellsol showed bacteriostatic effect (MIC of 7.8 µg/ml) against A. hydrophila, vinyl hexylether (MIC of 15.6 µg/ml) against P. mirabilis, and 2, 4-methyl hexane (MIC of 31.25 µg/ml) on B. pseudomallei. Cytotoxic effects of compounds were assayed in human skin and monkey kidney cells (62.5-2000 µg/ml) by an XTT assay. The vinyl hexylether, 2, 4-dimethyl hexane and shellsol did not show any toxicity up to 1000 µg/ml concentrations. The 2-methylnonane and 2, 6-dimethyl heptane induced morphological changes (e.g. cell disintegration and lysis) of both cell types at a 2000 µg/ml. The vinyl hexylether, 2, 4-dimethyl hexane and shellsol were devoid of toxic effects; however, 2-methylnonane induced weight loss and severe necrosis as evidenced by histopathological and serum biochemical analysis in rats. Interestingly, shellsol showed the maximum inhibition of carrageenan-induced, paw oedema in rats. In conclusion, findings of this study clearly indicate that biologically active hydrocarbon esters, such as shellsol, vinyl hexylether, and 2, 4-dimethyl hexane isolated from T. involucrata, may effectively control the growth of certain food-borne and food

  17. gamma-Aminobutyric acid uptake inhibition and anticonvulsant activity of nipecotic acid esters.

    PubMed

    Crider, A M; Wood, J D; Tschappat, K D; Hinko, C N; Seibert, K

    1984-11-01

    n-Alkyl esters of nipecotic acid were prepared by Fischer esterification, and the esters were evaluated against bicuculline-induced seizures in mice. Evaluation of the alkyl esters for inhibition of gamma-aminobutyric acid uptake into mouse whole brain mini-slices revealed that the order of potency was proportional to chain length. The octyl ester inhibited gamma-aminobutyric acid and beta-alanine uptakes by apparently nonspecific mechanisms. A variety of phenyl esters of nipecotic acid were also synthesized utilizing either dicyclohexylcarbodiimide or 1,1'-carbonyldiimidazole as the condensing agent. Most of the phenyl esters were potent inhibitors of gamma-aminobutyric acid uptake. The uptake inhibition appeared to involve specific and nonspecific (detergent-like) mechanisms. The m-nitrophenyl and p-nitrophenyl esters were particularly potent against bicuculline-induced seizures in mice. PMID:6520765

  18. Bryostatins activate protein kinase C in intact human platelets

    SciTech Connect

    Smith, J.B.; Tallant, E.A.; Pettit, G.R.; Wallace, R.W.

    1986-05-01

    Bryostatins, macrocyclic lactones isolated from a marine bryozoan, have antineoplastic activity in the P388 lymphocytic leukemia system. These compounds also stimulate growth in Swiss 3T3 cells, induce secretion in leukocytes, inhibit phorbol dibutyrate binding to a high affinity receptor, and activate the C-kinase in vitro. In human platelets, phorbol esters induce aggregation and activate protein kinase C, resulting in phosphorylation of a 47K protein and the 20K myosin light chain. The authors now show that bryostatin 7 (B-7) triggers platelet aggregation to the same rate and extent as phorbol 12-myristate 13-acetate (PMA). B-7 also causes the in vivo activation of the C-kinase, resulting in phosphorylation of both the 47K and the 20K proteins; the time courses and dose-responses of these B-7-induced phosphorylations were similar to those found with PMA. In addition, B-7 increases the level of /sup 32/P-incorporation into the platelet polyphosphoinositides, which also occurs in response to PMA. Bryostatin 3 (B-3), which has been shown to be much less potent than B-7 in mimicking other PMA effects, was much less effective than PMA or B-7 in inducing platelet aggregation and in stimulating /sup 32/P-incorporation into both proteins and the phosphoinositides. These results demonstrate that, intact human platelets, bryostatins mimic the phorbol esters tumor promoters and directly activate protein kinase C.

  19. Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella).

    PubMed

    Zangerl, Arthur R; Liao, Ling-Hsiu; Jogesh, Tania; Berenbaum, May R

    2012-02-01

    As a specialist on the reproductive structures of Pastinaca sativa and species in the related genus Heracleum, the parsnip webworm (Depressaria pastinacella) routinely encounters a distinctive suite of phytochemicals in hostplant tissues. Little is known, however, about the detoxification mechanisms upon which this species relies to metabolize these compounds. In this study, larval guts containing hostplant tissues were homogenized, and metabolism was determined by incubating reactions with and without NADPH and analyzing for substrate disappearance and product appearance by gas chromatography-mass spectrometry. Using this approach, we found indications of carboxylesterase activity, in the form of appropriate alcohol metabolites for three aliphatic esters in hostplant tissues-octyl acetate, octyl butyrate, and hexyl butyrate. Involvement of webworm esterases in hostplant detoxification subsequently was confirmed with metabolism assays with pure compounds. This study is the first to implicate esterases in lepidopteran larval midgut metabolism of aliphatic esters, ubiquitous constituents of flowers and fruits. In addition, this method confirmed that webworms detoxify furanocoumarins and myristicin in their hostplants via cytochrome P450-mediated metabolism, and demonstrated that these enzymes also metabolize the coumarin osthol and the fatty acid derivative palmitolactone. PMID:22350520

  20. Cholesteryl ester transfer proteins from different species do not have equivalent activities.

    PubMed

    Morton, Richard E; Izem, Lahoucine

    2014-02-01

    Site-specific changes in the amino acid composition of human cholesteryl ester transfer protein (CETP) modify its preference for triglyceride (TG) versus cholesteryl ester (CE) as substrate. CETP homologs are found in many species but little is known about their activity. Here, we examined the lipid transfer properties of CETP species with 80-96% amino acid identity to human CETP. TG/CE transfer ratios for recombinant rabbit, monkey, and hamster CETPs were 1.40-, 1.44-, and 6.08-fold higher than human CETP, respectively. In transfer assays between VLDL and HDL, net transfers of CE into VLDL by human and monkey CETPs were offset by equimolar net transfers of TG toward HDL. For hamster CETP this process was not equimolar but resulted in a net flow of lipid (TG) into HDL. When assayed for the ability to transfer lipid to an acceptor particle lacking CE and TG, monkey and hamster CETPs were most effective, although all CETP species were able to promote this one-way movement of neutral lipid. We conclude that CETPs from human, monkey, rabbit, and hamster are not functionally equivalent. Most unique was hamster CETP, which strongly prefers TG as a substrate and promotes the net flow of lipid from VLDL to HDL. PMID:24293641

  1. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms

    PubMed Central

    Huang, Chifu B.; George, Brian; Ebersole, Jeffery L.

    2010-01-01

    Objective This study is to assess the antibacterial activity of omega-6, -7, -9 (n-6, n-7, n-9) fatty acids against various oral microorganisms. Methods The n-6, n-7, n-9 fatty acids, such as γ-linoleic acid (GLA), linoleic acid (LA), arachidonic acid (ARA), palmitoleic acid (PA), and oleic acid (OA), their fatty acid ethyl esters, GLA-EE, LA-EE, ARA-EE, PA-EE, OA-EE, and their fatty acid methyl esters, GLA-ME, LA-ME, ARA-ME, PA-ME, OA-ME were investigated for antimicrobial activity against oral pathogens Streptococcus mutans, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. Various concentrations of the fatty acids, their methyl and ethyl esters were tested against various oral pathogens in 96-well plates and blood-agar plate. The plates were incubated anaerobically or aerobically at 37°C for 48 hours, and the colony forming units (CFU) were determined. Results The data demonstrated that select n-6, n-7, n-9 fatty acids and their esters exhibited strong antimicrobial activity against these oral microorganisms, demonstrating some specificity for individual microbial species. Conclusion The potential use or the combinations of the n-6, n-7, n-9 fatty acids and/or their esters, provided in a local delivery vehicle to infected sites in the oral cavity, could be considered as an additional therapeutic approach to improving oral health. PMID:20541177

  2. Semisynthesis of Esters of Fraxinellone C4/10-Oxime and Their Pesticidal Activities.

    PubMed

    Li, Qin; Huang, Xiaobo; Li, Shaochen; Ma, Jingchun; Lv, Min; Xu, Hui

    2016-07-13

    A total of 20 esters of fraxinellone C4/10-oxime were synthesized and determined by melting points, optical rotation, infrared spectra, proton nuclear magnetic resonance spectra, and high-resolution mass spectrometry spectra. Two steric configurations of compounds 7i and 8i were unambiguously confirmed by X-ray crystallography. Additionally, their pesticidal activities were assessed on two typical lepidopteran pests, Mythimna separata Walker and Plutella xylostella Linnaeus. Generally, all compounds exhibited less potent oral toxicity than toosendanin against third-instar larvae of P. xylostella. However, all compounds showed the growth inhibitory property against early third-instar larvae of M. separata. Notably, compounds 7m, 8b, 8k, 9, and 11 displayed more potent pesticidal activity than toosendanin. This demonstrated that introducing the C-4 carbonyl or oxime group on fraxinellone resulted in more promising derivatives than those bearing a C-10 carbonyl or oxime substituent. PMID:27338830

  3. Cholesterol ester hydrolase in pig liver is activated by cyclic AMP-dependent protein kinase

    SciTech Connect

    Chen, J.J.S.; Dubin, E.; Margolis, S.

    1986-05-01

    To examine whether hepatic neutral cholesterol ester hydrolase (CEH) is regulated by phosphorylation, the authors have assayed CEH activity from pig liver cytosol by measuring /sup 14/C-oleate release from labeled cholesteryl oleate at pH 7.4. When pig liver cytosol was incubated with 2 mM Mg and 0.5 mM ATP, CEH activity was increased (141 +/- 8% of control, mean +/- SEM). Addition of 25..mu..M cyclic AMP (cAMP) further activated CEH activity (164 +/- 4% of control) as compared to incubation with Mg and ATP (p < 0.02). In the presence of 5 mM EDTA or in the absence of either Mg or ATP, no activation of CEH was observed. The activation was completely abolished by further incubation of activated cytosol with E. coli alkaline phosphatase. Activation of CEH activity was partially prevented by the addition of protein kinase inhibitor (p < 0.02) and this effect was completely reversed in the presence of exogenous cAMP-dependent protein kinase (p < 0.05). To examine further the role of the cAMP-dependent protein kinase, CEH activity was purified 240-fold by 35% (NH/sub 4/)/sub 2/SO/sub 4/ precipitation and Sepharose 4B chromatography. Incubation of partially purified CEH fractions with Mg, ATP and cAMP did not increase CEH activity. Addition of exogenous cAMP-dependent protein kinase activated CEH activity of partially purified fractions. The authors observations indicate that pig liver CEH is activated by phosphorylation mediated by cAMP-dependent protein kinase.

  4. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.

    PubMed

    Cui, Caixia; Guan, Nan; Xing, Chen; Chen, Biqiang; Tan, Tianwei

    2016-10-01

    In this work, phytosterol ester was synthesized using Yarrowia lipolytica lipase Ylip2 that had been immobilized on inorganic support in a solvent-free system and reacted in a computer-aided water activity controlled bioreactor. The immobilization of Ylip2 on celite led to a remarkable increase in the phytosterol conversion compared to that of free lipase. An investigation of the reaction conditions were oleic acid as the fatty acid variety, 10,000U/g substrate, and a temperature of 50°C for phytosterol ester synthesis. Controlling of the water activity at a set point was accomplished by the introduction of dry air through the reaction medium at a digital feedback controlled flow rate. For the esterification of phytosterol ester, a low (15%) water activity resulted in a considerable improvement in phytosterol conversion (91.1%) as well as a decreased reaction time (78h). Furthermore, Ylip2 lipase immobilized on celite retained 90% esterification activity for the synthesis of phytosterol oleate after reused 8 cycles, while free lipase was only viable for 5 batches with 90% esterification activity remained. Finally, the phytosterol oleate space time yield increased from 1.65g/L/h with free lipase to 2.53g/L/h with immobilized lipase. These results illustrate that the immobilized Yarrowia lipolytica lipase Ylip2 in a water activity controlled reactor has great potential for the application in phytosterol esters synthesis. PMID:27416561

  5. Redox-Active Esters in Fe-Catalyzed C–C Coupling

    PubMed Central

    2016-01-01

    Cross-couplings of alkyl halides and organometallic species based on single electron transfer using Ni and Fe catalyst systems have been studied extensively, and separately, for decades. Here we demonstrate the first couplings of redox-active esters (both isolated and derived in situ from carboxylic acids) with organozinc and organomagnesium species using an Fe-based catalyst system originally developed for alkyl halides. This work is placed in context by showing a direct comparison with a Ni catalyst for >40 examples spanning a range of primary, secondary, and tertiary substrates. This new C–C coupling is scalable and sustainable, and it exhibits a number of clear advantages in several cases over its Ni-based counterpart. PMID:27548696

  6. [A case of hyperalphalipoproteinemia with complete deficiency of cholesteryl ester transfer activity].

    PubMed

    Umemori, Y; Moriyama, T; Takeda, S; Hosokawa, H; Nobuoka, M; Makino, M; Matuhashi, H; Eto, M; Sakai, N; Chiba, H

    1992-09-01

    A 68-year-old male patient with benign hypertension shows high levels of high density lipoprotein cholesterol (HDL-C) of 171 mg/dl. The serum total cholesterol was 240 mg/dl. An abnormal slow alpha band and polydisperse low density lipoprotein (LDL) bands were detected by agarose gel and polyacrylamide gel electrophoresis. The slow alpha band was considered as an apo E-rich HDL. A peak of large HDL particle and a peak of abnormal high-molecular-LDL particle were observed in the patient's serum by gel permeation high performance liquid chromatography. Cholesteryl ester transfer activity (CETA) of the patient's serum was completely deficient (0.0%/10 microliters/18 hr). From these results, it is strongly suggested that patient's hyper-HDL-cholesterolemia caused by a complete deficiency of CETA. PMID:1434039

  7. Marathon runners presented lower serum cholesteryl ester transfer activity than sedentary subjects.

    PubMed

    Serrat-Serrat, J; Ordóñez-Llanos, J; Serra-Grima, R; Gómez-Gerique, J A; Pellicer-Thoma, E; Payés-Romero, A; González-Sastre, F

    1993-06-01

    Acute exercise promotes raised HDL cholesterol concentrations by lipolysis stimulation, but this effect is insufficient to explain the more permanent HDL increases seen during regular exercise. During training periods in a group of marathon runners, we measured lipid transfer protein I (LTP-I)-mediated cholesteryl ester transfer activity (CETA) and its relationship to their HDL concentrations. Runners of both sexes showed significantly lower CETA values than those of sedentary controls. Male runners also had significantly lower serum concentrations of triglyceride, VLDL cholesterol and apolipoprotein B, and significantly higher concentrations of HDL cholesterol and apolipoprotein A-I than male controls. Results indicate that regular practice of aerobic exercise promotes modifications of lipoprotein metabolism related not only to lipolysis, but also to lower CETA. Such modifications are associated with reduced risk of atherosclerosis. PMID:8216501

  8. Novel sulfamides and sulfamates derived from amino esters: Synthetic studies and anticonvulsant activity.

    PubMed

    Villalba, Maria L; Enrique, Andrea V; Higgs, Josefina; Castaño, Rocío A; Goicoechea, Sofía; Taborda, Facundo D; Gavernet, Luciana; Lick, Ileana D; Marder, Mariel; Bruno Blanch, Luis E

    2016-03-01

    We report herein the design and optimization of a novel series of sulfamides and sulfamates derived from amino esters with anticonvulsant properties. The structures were designed based on the pharmacophoric pattern previously proposed, with the aim of improving the anticonvulsant action. The compounds were obtained by a new synthetic procedure with microwave assisted heating and the use of adsorbents in the isolation process. All the derivatives showed protection against the maximal electroshock seizure test (MES test) in mice at the lowest dose tested (30mg/kg) but they did not show significant protection against the chemical induced convulsion by pentylenetetrazole. These results verify the ability of the computational model for designing new anticonvulsants structures with anti-MES activity. Additionally, we evaluated the capacity of the synthesized structures to bind to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutiric acid receptor (GABAA receptor). Some of them showed medium to low affinity for the BDZ-bs. PMID:26849942

  9. Decreased serum cholesteryl-ester transfer activity in a patient with familial hyperalphalipoproteinemia.

    PubMed

    Takegoshi, T; Haba, T; Kitoh, C; Tokuda, T; Mabuchi, H

    1988-08-01

    Lipoprotein patterns and cholesteryl-ester transfer activity (CETA) were examined in a patient with familial hyperalphalipoproteinemia (FHALP). The proband was a 41-year-old Japanese male. He was found to have hypercholesterolemia, with a serum total cholesterol level of 382 mg/dl and a HDL-cholesterol level of 177 mg/dl. HDL showed a high cholesterol/Apo AI ratio. His father, all of his siblings and one of his children showed high HDL-cholesterol levels (91, 100, 70, 108, 75 and 98 mg/dl, respectively). These data suggest that all members of his family were heterozygotes. He had neither cutaneous or tendinous xanthomas nor any clinical signs of atherosclerosis. The proband appears to have only one-tenth of the normal level of CETA. However, the level of lipid-transfer protein I (LTP-I) activity was near normal. Thus, this patient is most likely to have an exaggerated level of LTP-I inhibitor(s). Effects of probucol on serum lipoprotein and apolipoprotein levels were studied in our patient. Treatment with 250 mg of probucol twice daily reduced total serum cholesterol, low density lipoprotein (LDL) and HDL-cholesterol levels by 33.32 and 33%, respectively. Apo AI, B and E levels decreased by 22, 16 and 35% respectively. HDL-cholesterol/Apo AI ratio decreased from 0.9 to 0.76. CETA showed no significant changes. However, cholesterol ester mass transfer increased from 10.8 to 14.9% after treatment with probucol. These results suggest that probucol appears to be a useful drug for FHALP. PMID:3193660

  10. Translocation and activation of protein kinase C by the plasma cell tumor-promoting alkane pristane.

    PubMed

    Janz, S; Gawrisch, K; Lester, D S

    1995-02-01

    Pristane (2,6,10,14-tetramethylpentadecane) is a C19-isoalkane that promotes the development of plasmacytomas in genetically susceptible BALB/c mice. Similarities between the effects of pristane and protein kinase C (PKC)-activating phorbol esters suggested that the tumor promoting activity of pristane might involve the activation of PKC. Here we show that up to 5 mol% of pristane can be homogeneously incorporated into phosphatidylcholine/phosphatidylserine bilayers. Membrane-incorporated pristane partially activated PKC and increased phorbol ester binding to the bilayer by more than 50%. Pristane (50 microM) delivered as an inclusion complex with beta-cyclodextrin to promyelocytic HL-60 leukemia cells induced a partial long-term translocation of PKC to the cell membrane. This was accompanied by differentiation of HL-60 cells into macrophage-like cells. It is concluded that activation of PKC may comprise an important aspect of the tumor promoting potential of pristane. PMID:7834620

  11. Gas chromatographic determination of microamounts of glycols and their esters in aqueous medium using adsorption on activated charcoal

    SciTech Connect

    Begunov, G.A.; Titovskaya, V.N.; Galenko, A.V.

    1987-11-10

    Rapid growth of production of glycols and their derivatives, especially methyl and ethyl esters, and wide use of these substances in various branches of the national economy (1) inevitably necessitate analytical monitoring of their content in waste waters and various water bodies. The authors studied the scope of gas-chromatographic determination of microamounts of glycols and their esters in aqueous media at the sanitary standards level (10/sup -5/%) using activated charcoal for their adsorption concentration from aqueous solutions, desorption from the charcoal by ethanol, and evaporationconcentration of the alcoholic solutions. The quantitative concentration characteristics were studied with reference to ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethyleneglycol, tripropylene glycol, tetraethylene glycol, ethylcellosolve, ethyl carbitol, and monoethyl ester of triethylene glycol.

  12. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    PubMed

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed. PMID:25165993

  13. Antimicrobial profile of some novel keto esters: Synthesis, crystal structures and structure-activity relationship studies.

    PubMed

    Khan, Imtiaz; Saeed, Aamer; Arshad, Mohammad Ifzan; White, Jonathan Michael

    2016-01-01

    Rapid increase in bacterial resistance has become a major public concern by escalating alongside a lack of development of new anti-infective drugs. Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed. So, in this context, the present work is towards the investigation of antimicrobial efficacy of some novel keto ester derivatives, which are prepared by the condensation of substituted benzoic acids with various substituted phenacyl bromides in dimethylformamide at room temperature using triethylamine as a catalyst. The structural build-up of the target compounds was accomplished by spectroscopic techniques including FTIR, (1)H and (13)C NMR spectroscopy and mass spectrometry. The purity of the synthesized compounds was ascertained by elemental analysis. The molecular structures of compounds (4b) and (4l) were established by X-ray crystallographic analysis. The prepared analogues were evaluated for their antimicrobial activity against Gram-positive (Staphylococcus aureus, Micrococcus leuteus) and Gram-negative (Pseudomonas picketti, Salmonella setuball) bacteria and two fungal pathogenic strains (Aspergillus niger, Aspergillus flavus), respectively. Among the screened derivatives, several compounds were found to possess significant activity but (4b) and (4l) turned out to be lead molecules with remarkable antimicrobial efficacy. The structure-activity relationship analysis of this study also revealed that structural modifications on the basic skeleton affected the antimicrobial activity of the synthesized compounds. PMID:26826838

  14. Myosin light chain phosphorylation in sup 32 P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine

    SciTech Connect

    Singer, H.A.; Oren, J.W.; Benscoter, H.A. )

    1989-12-15

    The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.

  15. In vitro assessment of thyroid hormone receptor activity of four organophosphate esters.

    PubMed

    Ren, Xiaomin; Cao, Linying; Yang, Yu; Wan, Bin; Wang, Sufang; Guo, Lianghong

    2016-07-01

    Previous animal experiments have implied that organophosphate esters (OPEs) have a disruption effect on the thyroid endocrine system. However, knowledge of the toxicological mechanism remains limited. In this study, the activities of four OPEs have been characterized against the thyroid hormone (TH) nuclear receptor (TR) using two in vitro models, with the aim of evaluating their toxicity mechanisms towards the TR. The results of a TH-dependent cell proliferation assay showed that tris(2-chloro-1-(chloromethyl)ethyl)phosphate (TDCPP) could induce cell growth, while the other three OPEs had no effect. The results of a luciferase reporter gene assay revealed that all four of the OPEs tested in the current study showed agonistic activity towards TRβ, with TDCPP being the most potent one. Moreover, molecular docking revealed that all the tested OPEs could fit into the ligand binding pocket of TRβ, with TDCPP binding more effectively than the other three OPEs. Taken together, these data suggest that OPEs might disrupt the thyroid endocrine system via a mechanism involving the activation of TR. PMID:27372132

  16. Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis.

    PubMed

    Rao, A Ranga; Sarada, R; Shylaja, M D; Ravishankar, G A

    2015-10-01

    Effect of isolated astaxanthin (ASX) and astaxanthin esters (ASXEs) from green microalga-Haematococcus pluvialis on hepatotoxicity and antioxidant activity against carbon tetrachloride (CCl4) induced toxicity in rats was compared with synthetic astaxanthin (SASX). ASX, ASXEs, and SASX, all dissolved in olive oil, fed to rats with 100 and 250 μg/kg b.w for 14 days. They were evaluated for their hepatoprotective and antioxidant activity by measuring appropriate enzymes. Among the treated groups, the SGPT, SGOT and ALP levels were decreased by 2, 2.4, and 1.5 fold in ASXEs treated group at 250 μg/Kg b.w. when compared to toxin group. Further, antioxidant enzymes catalase, glutathione, superoxide dismutase and lipid peroxidase levels were estimated in treated groups, their levels were reduced by 30-50 % in the toxin group, however these levels restored by 136.95 and 238.48 % in ASXEs treated group at 250 μg/kg. The lipid peroxidation was restored by 5.2 and 2.8 fold in ASXEs and ASX treated groups at 250 μg/kg. The total protein, albumin and bilirubin contents were decreased in toxin group, whereas normalized in ASXEs treated group. These results indicates that ASX and ASXEs have better hepatoprotection and antioxidant activity, therefore can be used in pharmaceutical and nutraceutical applications and also extended to use as food colorant. PMID:26396419

  17. Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein

    PubMed Central

    Duwensee, Kristina; Schwaiger, Stefan; Tancevski, Ivan; Eller, Kathrin; van Eck, Miranda; Markt, Patrick; Linder, Tobias; Stanzl, Ursula; Ritsch, Andreas; Patsch, Josef R.; Schuster, Daniela; Stuppner, Hermann; Bernhard, David; Eller, Philipp

    2011-01-01

    Objective Cholesteryl ester transfer protein (CETP) plays a central role in the metabolism of high-density lipoprotein particles. Therefore, we searched for new drugs that bind to CETP and modulate its activity. Methods A preliminary pharmacophore-based parallel screening approach indicated that leoligin, a major lignan of Edelweiss (Leontopodium alpinum Cass.), might bind to CETP. Therefore we incubated leoligin ex vivo at different concentrations with human (n = 20) and rabbit plasma (n = 3), and quantified the CETP activity by fluorimeter. Probucol served as positive control. Furthermore, we dosed CETP transgenic mice with leoligin and vehicle control by oral gavage for 7 days and measured subsequently the in vivo modulation of CETP activity (n = 5 for each treatment group). Results In vitro, leoligin significantly activated CETP in human plasma at 100 pM (p = 0.023) and 1 nM (p = 0.042), respectively, whereas leoligin concentrations of 1 mM inhibited CETP activity (p = 0.012). The observed CETP activation was not species specific, as it was similar in magnitude for rabbit CETP. In vivo, there was also a higher CETP activity after oral dosage of CETP transgenic mice with leoligin (p = 0.015). There was no short-term toxicity apparent in mice treated with leoligin. Conclusion CETP agonism by leoligin appears to be safe and effective, and may prove to be a useful modality to alter high-density lipoprotein metabolism. PMID:21820657

  18. Unidirectional transfer in vivo of high-density lipoprotein cholesteryl esters to lower-density lipoproteins in the pig, an animal species without plasma cholesteryl ester transfer activity.

    PubMed

    Terpstra, A H; Stucchi, A F; Foxall, T L; Shwaery, G T; Vespa, D B; Nicolosi, R J

    1993-12-01

    The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesteryl esters (CE) was studied in the pig, an animal species without plasma cholesteryl ester transfer activity (CETA). In the first series of experiments, LDL and HDL from normocholesterolemic pigs were radiolabeled with cholesteryl (1-14C)oleate and intravenously administered to two groups of four normocholesterolemic pigs. Radioactive tracer in LDL remained associated with the LDL fraction, and there was no transfer of LDL-CE to HDL. The transport rate (which represents the production and disposal rate) of LDL-CE in normocholesterolemic pigs was 39 mumol CE/h/L. However, radiolabeled HDL-CE were transferred to LDL (25%), and 36% of the LDL-CE mass was derived from the HDL. The transport rate of HDL-CE was 54 mumol CE/h/L, and the flux of HDL-CE to LDL was 14 mumol CE/h/L. There was no accumulation of radiolabeled HDL-CE in very-low-density lipoprotein (VLDL), which suggests that there was no transfer to VLDL. However, this does not rule out the possibility that either the very low levels of VLDL-CE (< 0.09 mmol/L) or the rapid turnover rate of the VLDL pool might have prevented the accumulation of substantial amounts of tracer in VLDL. Therefore, in a second set of experiments, the kinetics of HDL-CE were studied in high-fat-and high-cholesterol-fed pigs with elevated VLDL-CE concentrations (1.92 mmol/L). Hypercholesterolemia was associated with increased transport rates of LDL-CE (165 mumol/h/L) and HDL-CE (78 mumol/h/L) and with an increased flux of HDL-CE to LDL (78 mumol/h/L).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8246765

  19. Fatty acid ethyl ester-synthesizing activity of lipoprotein lipase from rat postheparin plasma.

    PubMed

    Tsujita, T; Okuda, H

    1994-02-25

    Lipoprotein lipase (LPL) was obtained from rat postheparin plasma by chromatographies on heparin-Sepharose and hydroxyapatite. The enzyme was associated with fatty acid ethyl ester synthase (FAEE synthase) as judged by their co-elution profiles and identical profiles of inhibition by diisopropyl fluorophosphate. Only one polypeptide of molecular weight 57,000 in purified LPL fraction was labeled by affinity labeling with [3H]-diisopropyl fluorophosphate. The FAEE synthase activity of LPL was not affected by addition of apolipoprotein C-II. Digestion of the enzyme with trypsin resulted in almost complete loss of the triolein-hydrolyzing activity without change in FAEE synthase activity. The tributyrin-hydrolyzing activity of LPL was also not affected by addition of apolipoprotein C-II or trypsin digestion. On addition at progressively higher concentrations, bovine serum albumin increased FAEE synthesis to a maximum at 2 mg/ml and at higher concentrations inhibited its activity. On incubation of purified LPL with chylomicrons in an ethanol/water mixture, FAEE was formed in the presence of a high concentration of bovine serum albumin. The specific activity of FAEE synthesis from chylomicrons was about 65 times that from oleic acid. Triolein/gum arabic emulsion was used for identification of reaction products. We propose the following mechanism of FAEE formation from chylomicrons by LPL. The enzyme attacks chylomicrons forming an acyl-enzyme intermediate, and during the deacylation process, ethanol binds to fatty acids as an acceptor. These results suggest that LPL contributes to nonoxidative ethanol metabolism (FAEE formation) through degradation of triglyceride-rich lipoproteins such as chylomicrons. PMID:8119932

  20. Cholesteryl ester transfer activity in hamster plasma: increase by fat and cholesterol rich diets.

    PubMed

    Stein, Y; Dabach, Y; Hollander, G; Stein, O

    1990-01-16

    We investigated the presence of cholesteryl ester transfer activity (CETA) in plasma of hamsters kept on various dietary regimens. In hamsters kept on a regular diet, CETA activity was about 5 units/4 mg protein of d greater than 1.21 g/ml fraction of plasma, as compared to about 35 units present in human d greater than 1.21 g/ml fraction. Addition of 15% margarine or butter alone or together with 2% cholesterol resulted in a 2-3-fold increase in plasma CETA. The increase in plasma CETA was correlated with plasma cholesterol levels (r = 0.78; P less than 0.001) and plasma triacylglycerol levels (r = 0.56, P less than 0.001). Hamsters consuming the cholesterol + butter-supplemented diets had the highest plasma CETA, cholesterol and triacylglycerol levels, while CETA in plasma of rats and mice remained nondetectable even after 4 weeks on the diet. The causal relation between hypercholesterolemia, hypertriglyceridemia and evaluation in CETA in hamsters remains to be elucidated. PMID:2297517

  1. Poly(ester-urethane) scaffolds: effect of structure on properties and osteogenic activity of stem cells.

    PubMed

    Kiziltay, Aysel; Marcos-Fernandez, Angel; San Roman, Julio; Sousa, Rui A; Reis, Rui L; Hasirci, Vasif; Hasirci, Nesrin

    2015-08-01

    The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300 °C. In vitro tests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells. PMID:24376070

  2. In vivo activity of benzoyl ester clerodane diterpenoid derivatives from Dodonaea polyandra.

    PubMed

    Simpson, Bradley S; Claudie, David J; Gerber, Jacobus P; Pyke, Simon M; Wang, Jiping; McKinnon, Ross A; Semple, Susan J

    2011-04-25

    Four new benzoyl ester clerodane diterpenoids, 15,16-epoxy-8α-(benzoyloxy)methylcleroda-3,13(16),14-trien-18-oic acid (1), 15,16-epoxy-8α-(benzoyloxy)methyl-2α-hydroxycleroda-3,13(16),14-trien-18-oic acid (2), 15,16-epoxy-8α-(benzoyloxy)methyl-2-oxocleroda-3,13(16),14-trien-18-oic acid (3), and 15,16-epoxy-2α-benzoyloxycleroda-3,13(16),14-trien-18-oic acid (4), have been isolated from the leaves and stems of Dodonaea polyandra. The anti-inflammatory activities of compounds 1, 2, and 4 were evaluated by means of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. Compounds 2 and 4 exhibited maximum inhibition of inflammation (70-76%) at doses of 0.22 and 0.9 μmol/ear, respectively. Modest activity (~45% inhibition) was maintained at nanomole/ear doses. PMID:21381684

  3. Surface activity of a fluorinated carbohydrate ester in water/carbon dioxide emulsions.

    PubMed

    Favrelle, Audrey; Boyère, Cédric; Tran, Kien My; Alaimo, David; Calvignac, Brice; Paquot, Michel; Boury, Frank; Jérôme, Christine; Debuigne, Antoine

    2013-05-15

    The water/carbon dioxide (W/CO2) interfacial activity and emulsifying capacity of hydrocarbon and fluorinated carbohydrate esters are investigated of the first time and compared to the performance of sodium-bis(2-ethylhexyl)sulfosuccinate (AOT). The reduction of the W/CO2 interfacial tension was measured using a pendant drop tensiometer equipped with a cell view pressurized with CO2 at 80 bar and 45°C. It was found that the interface stabilization improved in the order AOT<6-O-myristoyl mannose<6-O-(2H,2H,3H,3H-perfluoroundecanoyl)-D-mannose. In the latter case, a drastic reduction of the W/CO2 interfacial tension was observed (85% reduction, interfacial tension at the equilibrium=3.6 mN/m), which emphasizes the advantage of using a fluorinated CO2-philic tail and the potential of sugars as hydrophilic head. The formulation of stable W/CO2 emulsions was also achieved using the fluorinated mannose derivative. This study paves the way to the design of a novel class of competitive surface active agents for W/CO2 emulsions. PMID:23497920

  4. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation.

    PubMed

    Cuadrado, Irene; Cidre, Florencia; Herranz, Sandra; Estevez-Braun, Ana; de las Heras, Beatriz; Hortelano, Sonsoles

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE(2) production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE(2) in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. PMID:22036724

  5. Polyoxygenated Cholesterol Ester Hydroperoxide Activates TLR4 and SYK Dependent Signaling in Macrophages

    PubMed Central

    Choi, Soo-Ho; Yin, Huiyong; Ravandi, Amir; Armando, Aaron; Dumlao, Darren; Kim, Jungsu; Almazan, Felicidad; Taylor, Angela M.; McNamara, Coleen A.; Tsimikas, Sotirios; Dennis, Edward A.; Witztum, Joseph L.; Miller, Yury I.

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major causative mechanisms in the development of atherosclerosis. In previous studies, we showed that minimally oxidized LDL (mmLDL) induced inflammatory responses in macrophages, macropinocytosis and intracellular lipid accumulation and that oxidized cholesterol esters (OxCEs) were biologically active components of mmLDL. Here we identified a specific OxCE molecule responsible for the biological activity of mmLDL and characterized signaling pathways in macrophages in response to this OxCE. Using liquid chromatography – tandem mass spectrometry and biological assays, we identified an oxidized cholesteryl arachidonate with bicyclic endoperoxide and hydroperoxide groups (BEP-CE) as a specific OxCE that activates macrophages in a TLR4/MD-2-dependent manner. BEP-CE induced TLR4/MD-2 binding and TLR4 dimerization, phosphorylation of SYK, ERK1/2, JNK and c-Jun, cell spreading and uptake of dextran and native LDL by macrophages. The enhanced macropinocytosis resulted in intracellular lipid accumulation and macrophage foam cell formation. Bone marrow-derived macrophages isolated from TLR4 and SYK knockout mice did not respond to BEP-CE. The presence of BEP-CE was demonstrated in human plasma and in the human plaque material captured in distal protection devices during percutaneous intervention. Our results suggest that BEP-CE is an endogenous ligand that activates the TLR4/SYK signaling pathway. Because BEP-CE is present in human plasma and human atherosclerotic lesions, BEP-CE-induced and TLR4/SYK-mediated macrophage responses may contribute to chronic inflammation in human atherosclerosis. PMID:24376657

  6. 12-O-tetradecanoyl-phorbol-13-acetate down-regulates the Huntingtin promoter at Sp1 sites.

    PubMed

    Coles, R; Birdsall, M; Wyttenbach, A; Rubinsztein, D C

    2000-09-28

    We have studied the effects of the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on Huntington's disease (HD) gene transcription in neuronal and non-neuronal cell lines, to investigate pathways regulating HD gene expression. TPA reduced transcription from the HD gene promoter in SK-N-SH (neuroblastoma) and HeLa cells but not in JEG3 (choriocarcinoma) cells. In SK-N-SH cells, the responsible cis-acting promoter sequences comprise the tandemly duplicated Sp1 sites in the region from -213 to -174, relative to the translation start site. The TPA-down-regulating region in HeLa cells was mapped to the sequence from -141 to -126. In conclusion, this demonstrates that HD gene transcription can be down-regulated in vitro in a cell-specific manner. PMID:11043541

  7. A family of homozygous familial hyperalphalipoproteinemia with complete deficiency of cholesteryl ester transfer activity.

    PubMed

    Eto, M; Miyata, O; Noda, K; Makino, I

    1990-01-01

    The propositus was a 43-year-old Japanese male with a plasma total cholesterol (chol) level of 252 mg/dl and a high density lipoprotein (HDL)-chol of 169 mg/dl. His brother also had a markedly higher HDL-chol level of 149 mg/dl. In addition, his mother, sister and all 3 children had higher HDL-chol levels of 75-91 mg/dl. These data suggest that the propositus and his brother were homozygous for familial hyperalphalipoproteinemia (FHALP), whereas his mother, sister and 3 children were heterozygous for FHALP. None had any clinical signs of atherosclerosis. The propositus and his brother (homozygous FHALP) also showed markedly higher levels of apo AI (greater than or equal to 190 mg/dl) and E (greater than 16 mg/dl). Ultracentrifugal analysis disclosed an increase of HDL2-chol in the propositus. Cholesteryl ester transfer activity (CETA) was completely absent in the propositus (0.0% transfer/5 microliters/18 hr) and his brother (0.3% transfer/5 microliters/18 hr). It is concluded that this case is a family of homozygous FHALP probably caused by complete deficiency of CETA. PMID:2360880

  8. [Correlations of lipoprotein metabolism indicators in persons with low and high cholesterol ester transport activity].

    PubMed

    Tvorogova, M G; Rozhkova, T A; Kukharchuk, V V; Titov, V N

    1999-01-01

    For clarifying the role of plasma cholesterol ester transfer activity (CETA) in forming hyperlipoproteinemia (HLP) and determination of high density lipoproteins cholesterol (Ch HDL) level, lipoprotein metabolism indicators were compared for individuals with high and low CETA. 257 subjects were investigated: 195 patients with different forms of hereditary HLP and individuals without HLP: 34 healthy and 28 with coronary heart disease (CHD). Lipids were determined enzymatically, apoproteins content by immunoturbodimetric and immunodiffusion methods. CETA and cholesterol esterification rate (CER) were measured through autological methods. Selected groups of patients with high and low CETA were significantly distinguished only by plasma Ch level (average Ch > 6.2 mmol/l in both groups), free Ch HDL and CER. The groups were not significantly different by men-women ratio (chi 2 = 0.016, p = 0.9) and CHD patients share (chi 2 = 0.126, p = 0.723). The correlation between CETA and Ch levels was significant for healthy individuals only. The data does not correspond to assumption of exclusively atherogenic influence of high CETA: 1) no correlation between CETA and atherogenic parameters of LP metabolism among different HLP forms was found; 2) Ch HDL levels were not distinguished at high and low CETA; 3) no domination of CHD patients among the subjects with high CETA was found. PMID:10547884

  9. From The Cover: Poly- amino ester-containing microparticles enhance the activity of nonviral genetic vaccines

    NASA Astrophysics Data System (ADS)

    Little, Steven R.; Lynn, David M.; Ge, Qing; Anderson, Daniel G.; Puram, Sidharth V.; Chen, Jianzhu; Eisen, Herman N.; Langer, Robert

    2004-06-01

    Current nonviral genetic vaccine systems are less effective than viral vaccines, particularly in cancer systems where epitopes can be weakly immunogenic and antigen-presenting cell processing and presentation to T cells is down-regulated. A promising nonviral delivery method for genetic vaccines involves microencapsulation of antigen-encoding DNA, because such particles protect plasmid payloads and target them to phagocytic antigen-presenting cells. However, conventional microparticle formulations composed of poly lactic-co-glycolic acid take too long to release encapsulated payload and fail to induce high levels of target gene expression. Here, we describe a microparticle-based DNA delivery system composed of a degradable, pH-sensitive poly- amino ester and poly lactic-co-glycolic acid. These formulations generate an increase of 3-5 orders of magnitude in transfection efficiency and are potent activators of dendritic cells in vitro. When used as vaccines in vivo, these microparticle formulations, unlike conventional formulations, induce antigen-specific rejection of transplanted syngenic tumor cells.

  10. Further in vitro biological activity evaluation of amino-, thio- and ester-derivatives of avarol.

    PubMed

    Tommonaro, Giuseppina; Pejin, Boris; Iodice, Carmine; Tafuto, Antonietta; De Rosa, Salvatore

    2016-08-01

    The acetylcholinesterase inhibitory and/or antitumour activities of amino-, thio- and ester-derivatives of avarol selected were evaluated for the first time at in vitro conditions. Avarol-3',4'-dithioglycol (1) and avarol-4'-(3)mercaptopropionic acid (3) were shown to be the best inhibitors of the enzyme tested (0.50 µg and IC50 0.05 mM and 0.50 µg and IC50 0.12 mM, respectively), while 4'-tryptamine-avarone (9) and avarol-3'-(3)mercaptopropionic acid (2) exhibited the highest cytotoxicity against the human breast T-47D cancer cell line (IC50 0.66 µg/mL and 1.25 µg/mL, respectively). According to experimental data obtained, the sesquiterpenoid hydroquinone structure of bioactive avarol derivatives may inspire development of new pharmacologically useful substances to be used in the treatment of Alzheimer's disease and/or human breast tumour. PMID:26114310

  11. Synthesis and characterization of new optically active poly(azo-ester-imide)s via interfacial polycondensation

    PubMed Central

    Zahmatkesh, Saeed; Roosta, Parniyan; Ruoho, Arnold E.

    2015-01-01

    N,N′-Pyromelliticdiimido-di-L-amino acids (1a–1d) were prepared from the reaction of pyromellitic dianhydride with the corresponding L-amino acids in a solution of glacial acetic acid/pyridine (3:2) at refluxing temperature. 4,4′-sulfonyl bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, 4,4′-oxy bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol and 4,4′-methylene bis(4,1-phenylene) bis(diazene-2,1-diyl) diphenol, were prepared from 4,4′-diamino diphenyl sulfone, 4,4′-diamino diphenyl ether, 4,4′-diamino diphenyl methane, sodium nitrite and phenol following the general procedure of diazo coupling. Interfacial polycondensation method was used to prepare the corresponding poly(azo-ester-imid)s (PAEI1–12) in biphasic solution of water/dichloromethane. The resulting polymers (PAEIs) have been obtained in high yields having good inherent viscosities (0.32–0.57 dl g−1), optical activities and thermal stabilities. PMID:18563518

  12. Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis Benth. (Asteraceae)

    PubMed Central

    Toyang, Ngeh J.; Krause, Michael A.; Fairhurst, Rick M.; Tane, Pierre; Bryant, Joseph; Verpoorte, Rob

    2013-01-01

    Ethnopharmacological relevance Aqueous preparations of Vernonia guineensis Benth. (Asteraceae) are used in Cameroonian folk medicine as a general stimulant and to treat various illnesses and conditions including malaria, bacterial infections and helminthic infestations. Materials and methods 10-g samples of the leaf and tuber powders of V. guineensis were extracted separately using dichloromethane, methanol and distilled water. The extracts were dried in vacuo and used in bioassays. These extracts and three compounds previously isolated from V. guineensis [vernopicrin (1), vernomelitensin (2) and pentaisovalerylsucrose (3)] were screened for antiplasmodial activity against chloroquine (CQ)-sensitive (Hb3) and CQ-resistant (Dd2) Plasmodium falciparum lines. Results Crude extracts and pure compounds from V. guineensis showed antiplasmodial activity against both Hb3 and Dd2. The IC50 values of extracts ranged from 1.64 – 27.2 μg/ml for Hb3 and 1.82 – 30.0 μg/ml for Dd2; those for compounds 1, 2 and 3 ranged from 0.47 – 1.62 μg/ml (1364 – 1774 nM) for Hb3 and 0.57 – 1.50 μg/ml (1644 – 2332 nM) for Dd2. None of the crude extracts or pure compounds was observed to exert toxic effects on the erythrocytes used to cultivate the P. falciparum lines. Conclusion In Cameroonian folk medicine, V. guineensis may be used to treat malaria in part due to the antiplasmodial activity of sesquiterpene lactones (1, 2), a sucrose ester (3) and perhaps other compounds present in crude plant extracts. Exploring the safety and antiplasmodial efficacy of these compounds in vivo requires further study. PMID:23542146

  13. Consecutive visible-light photoredox decarboxylative couplings of adipic acid active esters with alkynyl sulfones leading to cyclic compounds.

    PubMed

    Li, Jingjing; Tian, Hua; Jiang, Min; Yang, Haijun; Zhao, Yufen; Fu, Hua

    2016-07-01

    Novel and efficient consecutive photoredox decarboxylative couplings of adipic acid active esters (bis(1,3-dioxoisoindolin-2-yl)-substituted hexanedioates) with substituted 1-(2-arylethynylsulfonyl)benzenes have been developed under visible-light photocatalysis. The successive photoredox decarboxylative C-C bond formation at room temperature afforded the corresponding cyclic compounds in good yields with tolerance of some functional groups. PMID:27345832

  14. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    SciTech Connect

    Cuadrado, Irene; Estevez-Braun, Ana; Heras, Beatriz de las

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  15. Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides

    PubMed Central

    Bachan, Stewart; Fantini, Jacques; Joshi, AnJali; Garg, Himanshu; Mootoo, David R.

    2011-01-01

    Inspired by the anti-human immunodeficiency virus (HIV) activity of analogues of β-galactosylceramide (GalCer), a set of mono- and di- saccharide fatty acid esters were designed as GalCer mimetics and their binding to the V3 loop peptide of HIV-1 and anti-HIV activity evaluated. 1,1-linked Gal-Man and Glu-Man disaccharides with an ester on the Man subunit bound the V3 loop peptide and inhibited HIV infectivity in single round infection assays with the TZM-bl cell line. IC50's were in the 50 μM range with no toxicity to the cells at concentrations up to 200 μM. These compounds appear to inhibit virus entry at early steps in viral infection since they were inactive if added post viral entry. Although these compounds were found to bind to the V3 loop peptide of gp120, it is not clear that this interaction is responsible for their anti-HIV activity because the relative binding affinity of closely related analogues did not correlate with their antiviral behavior. The low cytotoxicity of these 1,1-linked disaccharide fatty acid esters, combined with the easy accessibility to structurally diverse analogues make these molecules attractive leads for new topical anti-viral agents. PMID:21783371

  16. Isolation of coniferyl esters from Capsicum baccatum L., and their enzymatic preparation and agonist activity for TRPV1.

    PubMed

    Kobata, Kenji; Tate, Hitomi; Iwasaki, Yusaku; Tanaka, Yoshiyuki; Ohtsu, Keigo; Yazawa, Susumu; Watanabe, Tatsuo

    2008-03-01

    Coniferyl esters--capsiconiate and dihydrocapsiconiate--were isolated from the fruits of the pepper, Capsicum baccatum L. var. praetermissum. Their structures were determined by spectroscopic methods to be coniferyl (E)-8-methyl-6-nonenoate (capsiconiate) and coniferyl 8-methylnonanoate (dihydrocapsiconiate). This finding was further confirmed by the lipase-catalyzed condensation of coniferyl alcohol with its corresponding fatty acid derivative. The agonist activity of the esters for transient receptor potential vanilloid 1 (TRPV1) was evaluated by conducting an analysis of the intracellular calcium concentrations in TRPV1-expressing HEK293 cells. The EC50 values of capsiconiate and dihydrocapsiconiate were 3.2 and 4.2 microM, respectively. PMID:18190936

  17. Phosphatidic acid mobilized by phospholipase D is involved in the phorbol 12-myristate 13-acetate-induced G2 delay of A431 cells.

    PubMed Central

    Kaszkin, M; Richards, J; Kinzel, V

    1996-01-01

    This study was aimed at gaining an understanding of metabolic events responsible for the inhibition of cells in G2 phase, a known physiological restriction site in the cell cycle of multicellular organisms. In an earlier study, phosphatidic acid was proposed as an inhibitory mediator in the epidermal growth factor (EGF)-induced inhibition of A431 cells in G2 phase via the phospholipase C pathway [Kaszkin, Richards and Kinzel (1992) Cancer Res. 52, 5627-5634]. We show here that the phorbol ester phorbol 12-myristate 13-acetate (PMA) induces a reversible inhibition of the G2/M transition in A431 cells under conditions of phospholipase D-catalysed phosphatidic acid formation. Such PMA-induced inhibition in G2 phase is largely attenuated in the presence of 1-propanol (but not of 2-propanol). In this case the amount of phosphatidic acid is reduced to almost control levels, and instead phosphatidylpropanol is formed. In the case of EGF-induced activation of a phospholipase D the amount of phosphatidic acid is only slightly decreased in the presence of a primary alcohol. Under these conditions the EGF-induced G2 delay was not affected. The correlation between the formation of phosphatidic acid and the G2 delay induced by PMA, as well as by an exogenous bacterial phospholipase D (from Streptomyces chromofuscus), could be supported by using synchronized cells in order to increase the population of cells in G2 phase. This study indicates that the formation of substantial amounts of phosphatidic acid immediately before entry into mitosis seems to be important for establishing a delay in the cell cycle at the G2/M border by exogenous ligands. PMID:8660273

  18. Effect of 17alpha-ethinylestradiol on activity of rat liver enzymes for synthesis and hydrolysis of cholesterol esters

    SciTech Connect

    Nikitin, Yu.P.; Dushkin, M.I.; Dolgov, A.V.; Gordienko, I.A.

    1987-01-01

    Administration of estrogens is known to lower the concentration of cholesterol esters in the blood vessel wall and may delay the development of arteriosclerosis. It is also known that under the influence of estrogens the redistribution of concentrations of free cholesterol and cholesterol esters takes place in rats between the blood and liver as a result of the intensification of receptor-dependent uptake of low-density lipoproteins by the hepatocytes. The mechanisms of this intracellular redistribution, however, have been inadequately studied. The purpose of this paper is to study the effects of 17alpha-ethinylestradiol on the activity of lysosomal and cytoplasmic cholesterol esterases, acyl-CoA-cholesterol-O-acyltransferase, lysosomal acid phosphatase, and beta-D-galactosidase. The activity was measured by using cholesterol (1-C 14)-oleate as the substrate. The influence of the estradiol is found to be based on cholesterol redistribution between the blood and liver. Accumulation of free cholesterol in the liver under these conditions stimulates bile acid formation. Depression of cholesterol ester synthesis as a result of direct inhibition of the acyltransferase by the estradiol is found to possibly contribute to the fall in the cholesterol level in the body. Liquid scintillation counting was used to measure distribution and accumulation.

  19. Comparison of the intravascular metabolism of cholesteryl esters and apoproteins of plasma low- and high-density lipoproteins in the rat (Rattus norvegicus), an animal species without plasma cholesteryl ester transfer activity.

    PubMed

    Terpstra, A H

    1993-12-01

    1. The intravascular metabolism of the cholesteryl esters (CE) and apoproteins of low density lipoproteins (LDL) and high density lipoproteins (HDL) was compared in the rat, an animal species without plasma cholesteryl ester transfer activity (CETA). 2. The apoproteins and the CE of LDL had identical catabolic rates, and there was no transfer of LDL CE to other lipoprotein classes. 3. The CE of the HDL, however, had higher catabolic rates than the apoproteins, and there was transfer of HDL CE to LDL but not to very low density lipoproteins. PMID:8299346

  20. Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi-Interlocked Molecular Machines.

    PubMed

    Legigan, Thibaut; Riss-Yaw, Benjamin; Clavel, Caroline; Coutrot, Frédéric

    2016-06-20

    The efficient synthesis and very easy isolation of dibenzo[24]crown-8-based [2]pseudorotaxane building blocks that contain an active ester motif at the extremity of the encircled molecular axle and an ammonium moiety as a template for the dibenzo[24]crown-8 is reported. The active ester acts both as a semistopper for the [2]pseudorotaxane species and as an extensible extremity. Among the various investigated active ester moieties, those that allow for the slippage process are given particular focus because this strategy produces fewer side products. Extension of the selected N-hydroxysuccinimide ester based pseudorotaxane building block by using either a mono- or a diamino compound, both containing a triazolium moiety, is also described. These provide a pH-dependent two-station [2]rotaxane molecular machine and a palindromic [3]rotaxane molecular machine, respectively. Molecular machinery on both interlocked compounds through variation of pH was studied and characterized by means of NMR spectroscopy. PMID:27239975

  1. Degradation of phorbol 12,13-diacetate in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Kongmany, Santi; Furuta, Masakazu; Matsuura, Hiroto; Okuda, Shuichi; Imamura, Kiyoshi; Maeda, Yasuaki

    2014-12-01

    Phorbol esters (PEs) are highly toxic compounds that cause skin irritation, inflammation, and tumor promotion upon contact with humans or animals. These compounds are naturally present in Jatropha curcas L. To promote the use of J. curcas seed oil in bio-diesel production industries and reduce environmental concerns, it is necessary to find methods of degrading PEs. In this study, the degradation of phorbol 12,13-diacetate (PDA), as a representative PE, in aqueous solution at a concentration of 10 mg/L by 60Co-γ-irradiation was investigated. The results demonstrate that PDA was effectively degraded by this treatment and the degradation efficiency increased with the absorbed dose within the range of 0.5-3 kGy. Complete degradation of PDA was achieved at a dose of 3 kGy. In the presence of radical scavengers (i.e., methanol, tert-butanol, 2-propanol), reactive species from water radiolysis were scavenged, and significant inhibition of PDA degradation was observed at absorbed doses less than 1 kGy. In the presence of nitrous oxide, the generation of hydroxyl radicals (rad OH) was promoted during gamma irradiation and PDA degradation was drastically enhanced.

  2. Structure-activity relationships of vanillic acid ester analogs in inhibitory effect of antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells.

    PubMed

    Ishimata, Nao; Ito, Hideyuki; Tai, Akihiro

    2016-08-01

    Methyl vanillate (1) showed strong degranulation inhibitory activity among vanillin derivatives tested. In order to find structure-activity relationships for developing anti-allergic agents with simple structures and potent activity, we synthesized several vanillic acid (VA) ester derivatives with C1-C4 and C8 alkyl chains and evaluated their degranulation inhibitory activities. The most active compound of VA ester derivatives was derivative 5 with a C4 straight alkyl chain, and derivative 5 exhibited approximately three-fold greater inhibitory activity than that of 1. Moreover, we designed 8 types of analogs based on 5, and we found that the minimum structure for potent degranulation inhibitory activity requires direct connection of the butyl ester moiety on the benzene ring and at least one hydroxyl group on the benzene ring. Butyl meta or para hydroxyl benzoate (10 or 11) has a simpler structure than that of 5 and exhibited more potent degranulation inhibitory activity than that of 5. PMID:27324979

  3. Antinociceptive and Smooth Muscle Relaxant Activity of Croton tiglium L Seed: An In-vitro and In-vivo Study.

    PubMed

    Liu, Zhen; Gao, Wenyuan; Zhang, Jingze; Hu, Jing

    2012-01-01

    The seed of Croton tiglium L. (SCT) is a well known folk medicine. In China, it has used to treat gastrointestinal disorders, intestinal inflammation, rheumatism, and so on. Previous studies established its purgative and inflammation properties. In addition, the effects of essential oil of SCT on intestinal transit and gastrointestinal tract has been studied. In the present study, we evaluated the antinociceptive effect of SCT through the writhing test in mice, investigated the effects of it on spontaneous smooth muscle contractions of isolated rabbit jejunum and examined the in-vitro results through the in-vivo small intestine propulsion. We further investigated the possible compounds using HPLC-MS, and six compounds were tentatively identified as phorbol esters. Furthermore, the possible fragmentation pathways of phorbol esters were proposed, and we also detected the possible compounds in the active parts. PMID:24250486

  4. Effect of phorbol derivatives and staurosporine on gravitropic response of primary root of maize

    SciTech Connect

    Mulkey, T.J.; Kim, S.Y. ); Lee, J.S. )

    1991-05-01

    Time-lapse videography and computer-based, video image digitization were used to examine the effects of phorbol derivatives (phorbol 12-myristate 13-acetate, TPA; phorbol 12-myristate 13-acetate 4-O-methyl ether, mTPA) and staurosporine on the kinetics of gravicurvature of primary roots of maize (Zea mays L., Pioneer 3343 and Golden Cross Bantam). Pretreatment of roots with TPA (3 hr, 1 {mu}M) decreases the time lag prior to induction of positive gravicurvature in horizontally-oriented roots by > 60%. The rate of curvature is not significantly different than the rate observed in control roots. Wrongway curvature which is observed in 30-40% of control roots is not observed in TPA-pretreated roots. Oscillatory movements observed in control roots after completion of gravitropic reorientation is completely dampened in TPA-pretreated roots. Pretreatment of roots with mTPA(3hr,1{mu}M), the inactive analog of TPA, does not significantly alter the kinetics of gravicurvature of primary roots of maize. Staurosporine (10{sup {minus}8}M), a microbial alkaloid which has been reported to have antifungal activity and to inhibit phospholipid/Ca{sup ++} dependent protein kinase, completely inhibits TPA-induced alteration of the kinetics of gravitropism. DAG (1-oleoyl-2-acetyl-rac-glycerol), a synthetic diglyceride activator of protein kinase C, exhibits similar activity to TPA. TPA-induced alterations in tissue response to auxin are presented.

  5. Enhanced Antitumor Activity of Monophosphate Ester Prodrugs of Gemcitabine: In Vitro and In Vivo Evaluation.

    PubMed

    Qi, Huixin; Lu, Jia; Li, Jiajun; Wang, Meiyu; Xu, Yunting; Wang, Yedong; Zhang, Hongjian

    2016-09-01

    The prodrug strategy has been explored frequently for a number of marked drugs to obtain better pharmaceutical properties and efficacy and safety profiles. For gemcitabine, a nucleoside analog that has been used widely as a chemotherapeutic agent for the treatment of a variety of cancers, the protection of the amino group from extensive deamination and increase of permeability have been used for oral prodrug development. In the present study, several novel and proprietary monophosphate ester prodrugs of gemcitabine representing different "tail" structures were evaluated for their antiproliferation activities in various tumor cell lines. As compared to LY2334737, a prototype oral prodrug of gemcitabine, the monophosphate ester prodrugs exhibited superior in vitro antiproliferation activity. Among those, compound-3 emerged as a promising prodrug candidate. Data revealed that cellular concentrations of compound-3 were correlated well with its antiproliferation activity and its cellular uptake did not involve human equilibrative nucleoside transporter, suggesting a potential to treat gemcitabine resistant tumors. Compound-3 demonstrated equal or better antitumor efficacy after oral administration as compared to intraperitoneally injected gemcitabine. Taken together, compound-3 has the potential for further development as an orally active antitumor agent. PMID:26994559

  6. [An 88-year-old female case of hyperalphalipoproteinemia associated with deficiency of cholesteryl-ester transfer activity].

    PubMed

    Miyashita, Y; Morimoto, S; Fukuo, K; Ogihara, T

    1992-09-01

    An 88-year-old female was admitted to our hospital for examination of hyperalphalipoproteinemia. The high level of her serum high-density lipoprotein cholesterol (HDL-C, 148 mg/dl) was due to cholesterol amount of HDL2-C but not HDL3-C, and serum cholesteryl ester transfer activity (CETA) was at a non-detectable level. Despite her age, apparent atherosclerotic changes were not observed. She may be the oldest case of hyperalphalipoproteinemia, possibly due to deficiency of serum CETA. PMID:1434063

  7. Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters.

    PubMed

    Suárez-Quiroz, M L; Alonso Campos, A; Valerio Alfaro, G; González-Ríos, O; Villeneuve, P; Figueroa-Espinoza, M C

    2013-01-01

    The antifungal activities of 5-O-caffeoyl quinic acid (5-CQA) and of methyl, butyl, octyl, and dodecyl esters or 5-CQA, were tested on five toxigenic moulds from the Aspergillus genus (Aspergillus flavus, Aspergillus nomius, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus westerdijkiae). These mycotoxin producers' moulds may contaminate many types of food crops throughout the food chain posing serious health hazard to animals and humans. The use of chemical methods to decrease mycotoxin producer moulds contamination on food crops in the field, during storage, and/or during processing, has been proved to be efficient. In this work, the antifungal effect of 5-CQA and a homologous series of 5-CQA esters (methyl, butyl, octyl, dodecyl), was investigated using the microdilution method and the minimum inhibitory concentrations (MIC50 and MIC80). All molecules presented antifungal activity, and two esters showed a MIC for all fungi: octyl (MIC50 ≤ 0.5-0.75 mg/mL, MIC80 = 1.0-1.5 mg/mL) and dodecyl (MIC50 = 0.75-1.25 mg/mL) chlorogenates. Dodecyl chlorogenate showed a MIC80 (1.5 mg/mL) only for A. parasiticus. The maximum percent of growth inhibition on aspergillii was observed with octyl (78.4-92.7%) and dodecyl (54.5-83.7%) chlorogenates, being octyl chlorogenate the most potent antifungal agent. It was thus concluded that lipophilization improved the antifungal properties of 5-CQA, which increased with the ester alkyl chain length, exhibiting a cut-off effect at 8 carbons. As far as we know, it is the first report demonstrating that lipophilization may improve the antifungal activity of 5-CQA on five toxigenic moulds from the Aspergillus genus. Lipophilization would be a novel way to synthesize a new kind of antifungal agents with a good therapeutic value or a potential use as preservative in food or cosmetics. PMID:23684728

  8. Synthesis and Structure-Activity Studies of Benzyl Ester Meperidine and Normeperidine Derivatives as Selective Serotonin Transporter Ligands

    PubMed Central

    Gu, Xiaobo; Izenwasser, Sari; Wade, Dean; Housman, Amy; Gulasey, Gerard; Rhoden, Jill B.; Savoie, Christopher D.; Mobley, David L.; Lomenzo, Stacey A.; Trudell, Mark L.

    2013-01-01

    A series of benzyl esters of meperidine and normeperidine were synthesized and evaluated for binding affinity at serotonin, dopamine and norepinephrine transporters. The 4-methoxybenzyl ester 8b and 4-nitrobenzyl ester 8c in the meperidine series and 4-methoxybenzyl ester 14a in the normeperidine series exhibited low nanomolar binding affinities at the SERT (Ki values < 2 nM) and high SERT selectivity (DAT/SERT >1500 and NET/SERT > 1500). PMID:20980153

  9. Synthesis and Biological Evaluation of a Valinomycin Analog Bearing a Pentafluorophenyl Active Ester Moiety.

    PubMed

    D'Accolti, Lucia; Denora, Nunzio; La Piana, Gianluigi; Marzulli, Domenico; Siwy, Zuzanna S; Fusco, Caterina; Annese, Cosimo

    2015-12-18

    A valuable analog of the K(+)-ionophore valinomycin (1), bearing a pentafluorophenyl ester moiety, has been obtained by selective reaction between the tertiary hydroxyl moiety of analog 2 (available from valinomycin hydroxylation) and the isocyanate group of pentafluorophenyl N-carbonyl glycinate (3) catalyzed by bis(N,N-dimethylformamide)dichlorodioxomolybdenum(VI). LC-HRMS studies show that analog 4 undergoes easy derivatization under mild conditions by reaction with OH- and NH2-containing compounds. Mitochondrial depolarization assays suggest that 4 acts as a K(+)-ionophore, provided that the glycine carboxyl group is appropriately masked. PMID:26566090

  10. Benzoyl-L-arginine methyl ester (BAME)-esterase activity in human plasma during the gravidic-puerperal cycle.

    PubMed

    Salles Meirelles, R

    1977-01-01

    Benzoyl-L-arginine methyl ester (BAME)-esterase activity of plasma was measured in women going through the gravidic-puerperal cycle and compared with plasma of non-pregnant women. Plasma from women in the 36th to 40th week of pregnancy hydrolyzes BAME two times more rapidly than that from non-pregnant women. During pregnancy, BAME-esterase activity in plasma increases progressively up to the 40th week, decreases during labor, and after delivery reaches the same level as in non-pregnant women. The BAME-esterase activity of plasma was affected by the storage temperature, with differences demonstrable between -20 and -4 C and between pregnant and non-pregnant women. PMID:754510

  11. A review of quantitative structure activity relationships (QSARs) for assessing the ecotoxicity of phthalate esters

    SciTech Connect

    Parkerton, T.F.

    1995-12-31

    Dialkyl phthalate esters represent an important class of high production volume, industrial chemicals spanning a wide range of chemical properties. Over the last two decades, numerous studies have been conducted to characterize the ecotoxicity of phthalate esters. The purpose of this presentation is to provide a synthesis of the available ecotoxicity literature using a QSAR paradigm. Results from this analysis provide several important insights. First, a mechanistic explanation is provided to account for the general lack of ecotoxicity observed for higher molecular weight phthalates possessing alkyl chains of six or more carbons. Second, studies that appear as outliers are identified due to either experimental artifacts (e.g., physical effects on daphnids due to testing at concentrations exceeding water solubility) or questionable experimental methods (e.g., toxicity tests based on nominal concentrations). Lastly, differences in ecotoxicity between species appear to be due, in part, to differences in test organisms biotransformation capacities. The utility of adopting a QSAR-based approach for risk assessment will be discussed.

  12. Synthesis and Utility of Dihydropyridine Boronic Esters.

    PubMed

    Panda, Santanu; Coffin, Aaron; Nguyen, Q Nhu; Tantillo, Dean J; Ready, Joseph M

    2016-02-01

    When activated by an acylating agent, pyridine boronic esters react with organometallic reagents to form a dihydropyridine boronic ester. This intermediate allows access to a number of valuable substituted pyridine, dihydropyridine, and piperidine products. PMID:26694785

  13. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  14. New orally active diphenylmethyl-based ester analogues of dihydroartemisinin: Synthesis and antimalarial assessment against multidrug-resistant Plasmodium yoelii nigeriensis in mice.

    PubMed

    Chaudhary, Sandeep; Naikade, Niraj K; Tiwari, Mohit K; Yadav, Lalit; Shyamlal, Bharti Rajesh K; Puri, Sunil K

    2016-03-15

    A new series of ester analogues of artemisinin 8a-f, incorporating diphenylmethyl as pharmacologically privileged substructure, and 8g-j have been prepared and evaluated for their antimalarial activity against multidrug-resistant (MDR) Plasmodium yoelii nigeriensis in Swiss mice via oral route. These diphenylmethyl-based ester analogues 8a-f were found to be 2-4 folds more active than the antimalarial drugs β-arteether 4 and artesunic acid 5. Ester 8a, the most active compound of the series, provided complete protection to the infected mice at 24 mg/kg × 4 days as well as 12 mg/kg × 4 days, respectively. In this model β-arteether provided 100% and 20% protection at 48 mg/kg × 4 days and 24 mg/kg × 4 days, respectively. PMID:26898813

  15. Structure-activity relationship studies of new rifamycins containing l-amino acid esters as inhibitors of bacterial RNA polymerases.

    PubMed

    Czerwonka, Dominika; Domagalska, Joanna; Pyta, Krystian; Kubicka, Marcelina M; Pecyna, Paulina; Gajecka, Marzena; Przybylski, Piotr

    2016-06-30

    New rifamycins (1-12) combined with different l-amino acids, containing methyl, ethyl, tert-butyl and benzyl groups at the ester part, via amine linkage, were synthesized and their structures in solution were determined by spectroscopic FT-IR and 1D and 2D NMR methods as well as visualized by DFT calculations. Two types of rifamycin structures were detected in solution: a zwitterionic one with the transferred proton from O(8)H phenol to secondary N(38) atom and a pseudocyclic structure stabilized via formation of intramolecular H-bond within the protonated basic C(3)-substituent. The presence of these rifamycins' structures influenced physico-chemical (logP, solubility) parameters and antibacterial properties. The bulkiness at the ester substituent of new rifamycins containing aromatic l-amino acids was found to be an important factor, besides the solubility, to achieve relatively high antibacterial activity against reference S. epidermidis and reference S. aureus and MRSA strains (MICs 0.016-0.063 μg/mL), comparable to that of rifampicin. SAR for the novel derivatives was discussed in view of the calculated structures of rifamycin-RNAP complexes. PMID:27061985

  16. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds

    NASA Astrophysics Data System (ADS)

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-08-01

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  17. Synthesis of 13-β-elemene ester derivatives and evaluation of their antioxidant activity in human umbilical vein endothelial cells.

    PubMed

    Chen, Ji-Chao; Duan, Wen-Li; Bai, Ren-Ren; Yao, He-Quan; Wu, Xiao-Ming; Shang, Jing; Xu, Jin-Yi

    2015-08-01

    In the present study, a series of 13-β-elemene ester derivatives were designed and prepared, and their antioxidant activity was investigated in the H2O2-treated human umbilical vein endothelial cells (HUVECs). Among the test compounds, the dimer compounds 5v and 5w exhibited the most potent antioxidant activity with significant ROS suppression being observed. Both compounds markedly inhibited the H2O2-induced changes in various biochemical substances, such as superoxide dismutase (SOD), malonyldialdehyde (MDA), nitric oxide (NO), and lactic dehydrogenase (LDH), which were superior to that of the positive control vitamin E. Further more, they did not produce any obvious cytotoxicity, but increased the viability of HUVECs injured by H2O2 in a dose-dependent manner. Additionally, compound 5w, designed as a prodrug-like compound, showed improved stability relative to compound 4 in vitro. PMID:26253495

  18. Antifungal Activity of Narceine Methyl Ester and Narceine Isolated from Corydalis longipes Against Some Phytopathogenic Fungi

    PubMed Central

    Chowdhury, Dibyendu; Maurya, S.; Pandey, M. B.; Pandey, V. B.; Sarma, B. K.

    2005-01-01

    Narceine methyl ester and narceine are potent alkaloids which were isolated from Corydalis longipes were found effective in vitro at very low concentration, i.e., 100~500 ppm against spore germination of some test plant pathogenic fungi (Alternaria solani, A. tagetica, Cercospora abelmoschi, Curvularia maculans, Erysiphe cichoracearum, E. pisi, Fusarium udum, Helminthosporium oryzae, H. penniseti, Ustilago cynodontis). Among the test, phytopathogens the spores of F. udum, C. maculans and H. penniseti were highly sensitive at 200 ppm. However, spores of E. pisi, A. solani and A. tagetica were less sensitive at low concentration followed by other test fungi. Most of the fungi showed zero or nearly zero percent spore germination at 400 and 500 ppm. PMID:24049502

  19. New lipophilic tyrosyl esters. Comparative antioxidant evaluation with hydroxytyrosyl esters.

    PubMed

    Mateos, Raquel; Trujillo, Mariana; Pereira-Caro, Gema; Madrona, Andrés; Cert, Arturo; Espartero, José Luis

    2008-11-26

    New lipophilic esters of tyrosol, a naturally occurring phenol with interesting biological properties, have been synthesized in good yields by a chemoselective procedure, using lipase from Candida antarctica or p-toluenesulfonic acid as catalysts. Their antioxidant activities have been evaluated by the Rancimat test in lipophilic food matrices, as well as by FRAP and ABTS assays in methanolic solutions, and compared with those of previously synthesized hydroxytyrosyl esters. Free tyrosol, hydroxytyrosol, butylhydroxytoluene, and alpha-tocopherol were used as standards. All methods used for the antioxidant activity evaluation emphasized the high influence of the ortho-diphenolic structure on the antioxidant capacity, tyrosol and its derivatives being less active than hydroxytyrosol and its analogues and even less than BHT and alpha-tocopherol. In addition, the Rancimat test revealed a lower activity for ester derivatives than for their respective reference compounds (HTy or Ty), in agreement with the polar paradox. On the other hand, FRAP and ABTS methods reported an opposite behavior between the synthetic esters and their respective references. Thus, hydroxytyrosyl esters were more active than HTy, whereas tyrosyl esters were less active than Ty. The length and nature of the acyl side chain did not seem to play an important role in the antioxidant activity of either the hydroxytyrosyl or tyrosyl ester series, since no significant differences were observed among them. PMID:18983160

  20. Vitamin E supplementation increases the resistance of both LDL and HDL to oxidation and increases cholesteryl ester transfer activity.

    PubMed

    Arrol, S; Mackness, M I; Durrington, P N

    2000-05-01

    There is increasing evidence that lipid peroxidation and oxidative modification of low density lipoprotein (LDL) is important in atherogenesis. Evidence that antioxidant therapy decreases mortality is, however, inconclusive. We have examined the effects of vitamin E on the susceptibility of LDL and high density lipoprotein (HDL) to oxidation, and on cholesteryl ester heteroexchange in an in vitro system using autologous serum lipoproteins. Vitamin E in doses of 200 and 400 mg/day were administered orally to 21 healthy volunteers (12 females and nine males) aged between 23 and 50 years, and to 16 healthy volunteers (eight females and eight males) aged between 22 and 51 years for 50 days, respectively. Fasting serum lipoproteins, susceptibility of lipoproteins to oxidation and cholesteryl ester transfer activity (CETA) were measured before and after vitamin E supplementation. Serum lipoprotein and lipid concentrations did not change significantly in either group. The LDL-conjugated diene (CD) lag phase during incubation with Cu(2+) was increased by 157% (110-232%) (median (interquartile range)) (P<0.05) on vitamin E (200 mg/day) and by 235% (185-259%) (P<0.0001) on 400 mg/day. The lag phases for LDL-lipid peroxide (LPO) generation were also significantly increased by 146% (122-192%) (P<0.005) and 177% (101-267%) (P<0.005), respectively. The HDL-CD lag phase also increased on both doses 140% (115-169%) (P<0.005) and 171% (122-192%) (P<0.005), as did the HDL-LPO lag phase by 123% (104-153%) (P<0.05) on 200 mg/day and 240% (97-360%) (P<0.005) on 400 mg daily. Cholesteryl ester transfer activity from HDL to very low and low density lipoproteins significantly increased from 12. 7+/-2.6 (mean+/-SEM) to 16+/-3.4 nmol/ml/h (P<0.05) on 200 mg/daily and 10.4+/-2.0 to 19.2+/-3.3 nmol/ml/h (P<0.005) on vitamin E, 400mg day. Thus, vitamin E (200 and 400mg daily) significantly decreased the susceptibility of LDL and HDL to oxidation in vitro. However, the increase in CETA

  1. Relation between low serum cholesteryl-ester transfer activity and abdominal aortic calcification in normolipidemic elderly subjects.

    PubMed

    Miyashita, Y; Morimoto, S; Fukuo, K; Masuyama, T; Yasuda, O; Koh, E; Tamatani, M; Nakahashi, T; Ogihara, T

    1993-01-01

    We studied the relation between cholesteryl-ester transfer activity (CETA) and abdominal aortic calcification in elderly subjects. Compared with 10 young healthy subjects (mean +/- S.D. age, 27 +/-2 years) and to 26 elderly subjects without abdominal aortic calcification (79 +/- 7 years), 16 elderly patients with abdominal aortic calcification (82 +/- 6 years) had significantly lower levels of serum CETA. However, there were no differences in the levels of serum lipids and apolipoproteins, including total cholesterol, triglycerides, high density lipoprotein cholesterol, low density lipoprotein cholesterol and apolipoproteins A-I, A-II, B, C-II and E, between the two elderly groups. When the two groups of elderly subjects were considered together, the level of serum CETA did not correlate significantly with any lipids and apolipoproteins. These results provide evidence that CETA may prevent the development of aortic calcification in normolipidemic elderly people. PMID:15374350

  2. Sesquiterpene esters from Celastrus orbiculatus and their structure-activity relationship on the modulation of multidrug resistance.

    PubMed

    Kim, S E; Kim, H S; Hong, Y S; Kim, Y C; Lee, J J

    1999-05-01

    Six new (1-6) and three known (7-9) sesquiterpene esters were isolated from the roots of Celastrus orbiculatus. The structures of the new compounds were elucidated as 1beta-acetoxy-6alpha-furoyloxy-9alpha-benzoyl oxydihydro-beta-agarofur an (1), 1beta-acetoxy-6alpha-benzoyloxy-9alpha-furoyloxydih ydro-beta-agarofur an (2), 1beta-acetoxy-6alpha, 9alpha-difuroyloxydihydro-beta-agarofuran (3), 1beta, 2beta-diacetoxy-6alpha-furoyloxy-9alpha-benzo yloxydihydro-beta-agarof uran (4), 1beta-acetoxy-2beta, 6alpha-difuroyloxy-9alpha-benzoyloxydihydro-beta -agarofuran (5), and 1beta-acetoxy-2beta,6alpha, 9alpha-tribenzoyloxydihydro-beta-agarofuran (6). Compounds 4, 5, and 7-9 were shown to be more active than verapamil in reversing vinblastine resistance in multidrug-resistant KB-V1 cells. PMID:10346948

  3. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    SciTech Connect

    Liu, Z.; Gosser, Y; Baker, P; Ravee, Y; Li, H; Butterfoss, G; Kong, X; Gross, R; Montclare, J; et al.

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.

  4. Synthesis, DFT and antimicrobial activity assays in vitro for novel cis/trans-but-2-enedioic acid esters

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Long; Zhou, Ru-Jin; Zeng, Xing-Ye; An, Ya-Xiong; Qiu, Song-Shan; Nie, Li-Jun

    2014-04-01

    Six novel cis/trans-but-2-enedioic acid esters had been synthesized to discover the new bioactive molecules that could kill food-related bacteria and fungi. Their structures were analyzed by melting point, LC-MS, 1H NMR and 13C NMR. 4-(Methoxycarbonyl) phenyl ethyl fumarate (6b) was also characterized by single-crystal X-ray diffraction. Their antimicrobial activities were evaluated in vitro by measuring the minimal inhibitory concentration (MIC). Compared with the single monomethyl fumarate and methyl 4-hydroxybenzoate, these compounds had stronger antimicrobial activity against all the eight microorganisms. Among the antibacterial and antifungal compounds, 4-(methoxycarbonyl) phenyl methyl fumarate (6a) showed the best antimicrobial activity. The electronic properties of these compounds were calculated by the density functional theory (DFT) method with 6-31G (d, p) basis set. DFT studies indicated that molecular electrostatic potential (MEP) map, ELUMO, energy gap, electronegativity and electrophilicity index could be helpful to understand the various antimicrobial activities among these compounds. The antimicrobial activity of compound 6a was evaluated in vitro against Salmonellacholeraesuis subsp. choleraesuis, Lactococcus lactis subsp. lactis and Saccharomyces cerevisiae by time-kill, and it was found that compound 6a exhibited significant microbiocidal activity against the three microorganisms.

  5. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester

    PubMed Central

    Krämer, Christina E. M.; Singh, Abhijeet; Helfrich, Stefan; Grünberger, Alexander; Wiechert, Wolfgang; Nöh, Katharina; Kohlheyer, Dietrich

    2015-01-01

    Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non

  6. The effect of phorbols on metabolic cooperation between human fibroblasts

    SciTech Connect

    Mosser, D.D.; Bols, N.C.

    1982-01-01

    Autoradiography has been used to study the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA), 4-O-methyl TPA, and phorbol on metabolic cooperation between human diploid fibroblasts. When the donors, hypoxanthine-guanine phosphoribosyl transferase+ (HGPRT+) cells, and recipients, HGPRT- cells, were plated together in the presence of (/sup 3/H)hypoxanthine and either 4-O-methyl TPA or phorbol, nearly all interactions that developed in 4 h were positive for metabolic cooperation whereas when high concentrations of TPA were used, the number of positive interactions was significantly less than the control. If the phorbol analogs were added after the donors and recipients had made contact, the number of positive interactions was the same as the control in all cases. However, although primary recipients in the cultures that had been treated with phorbol had the same number of grains as those in the control, primary recipients in cultures that had been treated with TPA or high concentrations of 4-O-methyl TPA had significantly fewer grains than those in the control. TPA treatment for 4 h had no effect on total (/sup 3/H)hypoxanthine incorporation or incorporation into acid-soluble and acid-insoluble fractions. Thus, the effect of TPA on metabolic cooperation is interpreted as a reduction in the transfer of (/sup 3/H)nucleotides and is an indication of an interference with intercellular communication.

  7. Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages[S

    PubMed Central

    Uda, Sabrina; Spolitu, Stefano; Angius, Fabrizio; Collu, Maria; Accossu, Simonetta; Banni, Sebastiano; Murru, Elisabetta; Sanna, Francesca; Batetta, Barbara

    2013-01-01

    Infections share with atherosclerosis similar lipid alterations, with accumulation of cholesteryl esters (CEs) in activated macrophages and concomitant decrease of cholesterol-HDL (C-HDL). Yet the precise role of HDL during microbial infection has not been fully elucidated. Activation of P388D1 by lipopolysaccharide (LPS) triggered an increase of CEs and neutral lipid contents, along with a remarkable enhancement in 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate-HDL uptake. Similar results were found in human monocyte-derived macrophages and monocytes cocultured with phytohemagglutinin-activated lymphocytes. Inhibition of cholesterol esterification with Sandoz-58035 resulted in 80% suppression of CE biosynthesis in P388D1. However, only a 35% decrease of CE content, together with increased scavenger receptor class B member 1 (SR-B1) protein expression, was found after 72 h and thereafter up to 16 passages of continuous ACAT suppression. Chronic inhibition blunted the effect of LPS treatment on cholesterol metabolism, increased the ratio of free cholesterol/CE content and enhanced interleukin 6 secretion.These results imply that, besides de novo biosynthesis and acquisition by LDL, HDL contributes probably through SR-B1 to the increased CE content in macrophages, partly explaining the low levels of C-HDL during their activation. Our data suggest that in those conditions where more CEs are required, HDL rather than removing, may supply CEs to the cells. PMID:23956443

  8. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays

    PubMed Central

    Elnager, Abuzar; Hassan, Rosline; Idris, Zamzuri; Mustafa, Zulkifli; Wan-Arfah, Nadiah; Sulaiman, S. A.; Gan, Siew Hua; Abdullah, Wan Zaidah

    2015-01-01

    Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted. PMID:25664321

  9. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase.

    PubMed

    Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik

    2016-05-15

    Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. PMID:27060751

  10. Enzymatic synthesis of theanine from glutamic acid γ-methyl ester and ethylamine by immobilized Escherichia coli cells with γ-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-11-01

    Theanine (γ-glutamylethylamide) is the main amino acid component in green tea. The demand for theanine in the food and pharmaceutical industries continues to increase because of its special flavour and multiple physiological effects. In this research, an improved method for enzymatic theanine synthesis is reported. An economical substrate, glutamic acid γ-methyl ester, was used in the synthesis catalyzed by immobilized Escherichia coli cells with γ-glutamyltranspeptidase (GGT) activity. The results show that GGT activity with glutamic acid γ-methyl ester as substrate was about 1.2-folds higher than that with glutamine as substrate. Reaction conditions were optimized by using 300 mmol/l glutamic acid γ-methyl ester, 3,000 mmol/l ethylamine, and 0.1 g/ml of immobilized GGT cells at pH 10 and 50°C. Under these conditions, the immobilized cells were continuously used ten times, yielding an average glutamic acid γ-methyl ester to theanine conversion rate of 69.3%. Bead activity did not change significantly the first six times they were used, and the average conversion rate during the first six instances was 87.2%. The immobilized cells exhibited favourable operational stability. PMID:20238131

  11. Toxic essential oils. Part III: identification and biological activity of new allylmethoxyphenyl esters from a Chamomile species (Anthemis segetalis Ten.).

    PubMed

    Radulović, Niko S; Mladenović, Marko Z; Blagojević, Polina D; Stojanović-Radić, Zorica Z; Ilic-Tomic, Tatjana; Senerovic, Lidija; Nikodinovic-Runic, Jasmina

    2013-12-01

    To determine the exact structure of previously tentatively identified minor essential-oil constituents of a Chamomile species (Antemis segetalis Ten. (Asteraceae)), we have synthesized a small combinatorial library of 54 regioisomeric allylmethoxyphenyl pentanoates and 2-pentenoates (49 completely new compounds). GC-MS in combination with 1D- and 2D-NMR analyses of the library compounds provided unambiguous data that led to a straightforward identification of the mentioned A. segetalis constituents as eugenyl angelate, 2-methylbutanoate and 3-methylbutanoate (0.21, 0.22, and 0.13 mg/100 g of fresh plant material, respectively). To assess the safety and potential beneficial pharmacological uses of these naturally occurring esters and several other library compounds (these were tested to provide relevant data for a SAR (structure-activity relationship) analysis), we have studied the effect of these compounds in several models of toxicity (acute toxicity against Artemia salina, cytotoxicity against two cell lines (fibroblast and melanoma)), as well as their acetylcholinesterase inhibitory and antibacterial activities. Anthemis segetalis constituents showed low to moderate activity in all tests. The obtained results suggest that the intake of these compounds in naturally available amounts, on their own, would probably not represent a risk to human health but the possible adverse interactions with the plant matrix should not be neglected. PMID:24055768

  12. Potent α-amino-β-lactam carbamic acid ester as NAAA inhibitors. Synthesis and structure-activity relationship (SAR) studies.

    PubMed

    Nuzzi, Andrea; Fiasella, Annalisa; Ortega, Jose Antonio; Pagliuca, Chiara; Ponzano, Stefano; Pizzirani, Daniela; Bertozzi, Sine Mandrup; Ottonello, Giuliana; Tarozzo, Glauco; Reggiani, Angelo; Bandiera, Tiziano; Bertozzi, Fabio; Piomelli, Daniele

    2016-03-23

    4-Cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate (3b) is a potent, selective and systemically active inhibitor of intracellular NAAA activity, which produces profound anti-inflammatory effects in animal models. In the present work, we describe structure-activity relationship (SAR) studies on 3-aminoazetidin-2-one derivatives, which have led to the identification of 3b, and expand these studies to elucidate the principal structural and stereochemical features needed to achieve effective NAAA inhibition. Investigations on the influence of the substitution at the β-position of the 2-oxo-3-azetidinyl ring as well as on the effect of size and shape of the carbamic acid ester side chain led to the discovery of 3ak, a novel inhibitor of human NAAA that shows an improved physicochemical and drug-like profile relative to 3b. This favourable profile, along with the structural diversity of the carbamic acid chain of 3b, identify this compound as a promising new tool to investigate the potential of NAAA inhibitors as therapeutic agents for the treatment of pain and inflammation. PMID:26866968

  13. Antiproliferative activity of long chain acylated esters of quercetin-3-O-glucoside in hepatocellular carcinoma HepG2 cells.

    PubMed

    Sudan, Sudhanshu; Rupasinghe, Hp Vasantha

    2015-11-01

    Despite their strong role in human health, poor bioavailability of flavonoids limits their biological effects in vivo. Enzymatically catalyzed acylation of fatty acids to flavonoids is one of the approaches of increasing cellular permeability and hence, biological activities. In this study, six long chain fatty acid esters of quercetin-3-O-glucoside (Q3G) acylated enzymatically and were used for determining their antiproliferative action in hepatocellular carcinoma cells (HepG2) in comparison to precursor compounds and two chemotherapy drugs (Sorafenib and Cisplatin). Fatty acid esters of Q3G showed significant inhibition of HepG2 cell proliferation by 85 to 90% after 6 h and 24 h of treatment, respectively. The cell death due to these novel compounds was associated with cell-cycle arrest in S-phase and apoptosis observed by DNA fragmentation, fluorescent microscopy and elevated caspase-3 activity and strong DNA topoisomerase II inhibition. Interestingly, Q3G esters showed significantly low toxicity to normal liver cells than Sorafenib (P < 0.05), a chemotherapy drug for hepatocellular carcinoma. Among all, oleic acid ester of Q3G displayed the greatest antiproliferation action and a high potential as an anti-cancer therapeutic. Overall, the results of the study suggest strong antiproliferative action of these novel food-derived compounds in treatment of cancer. PMID:25681471

  14. Phorbol 12-myristate 13-acetate up-regulates the transcription of MUC2 intestinal mucin via Ras, ERK, and NF-kappa B.

    PubMed

    Lee, Hae-Wan; Ahn, Dae-Ho; Crawley, Suzanne C; Li, Jian-Dong; Gum, James R; Basbaum, Carol B; Fan, Nancy Q; Szymkowski, David E; Han, Sang-Young; Lee, Bong H; Sleisenger, Marvin H; Kim, Young S

    2002-09-01

    MUC2 is a secretory mucin normally expressed by goblet cells of the intestinal epithelium. It is overexpressed in mucinous type colorectal cancers but down-regulated in colorectal adenocarcinoma. Phorbol 12-myristate 13-acetate (PMA) treatment of colon cancer cell lines increases MUC2 expression, so we have undertaken a detailed analysis of the effects of PMA on the promoter activity of the 5'-flanking region of the MUC2 gene using stably and transiently transfected promoter reporter vectors. Protein kinase C inhibitors (bisindolylmaleimide, calphostin C) and inhibitors of mitogen-activated protein/extracellular signal regulated kinase kinase (MEK) (PD98059 and U0126) suppressed up-regulation of MUC2. Src tyrosine kinase inhibitor PP2, a protein kinase A inhibitor (KT5720), and a p38 inhibitor (SB 203580) did not affect transcription. Western blotting and reverse transcription-PCR analysis confirmed these results. In addition, co-transfections with mutants of Ras, Raf, and MEK showed that the induction of MUC2 promoter activity by PMA required these three signaling proteins. Our results demonstrate that PMA activates protein kinase C, stimulating MAP kinase through a Ras- and Raf-dependent mechanism. An important role for nuclear factor kappaB (NF-kappaB) was also demonstrated using the inhibitor caffeic acid phenethyl ester and electrophoretic mobility shift assays. Such identification of pathways involved in MUC2 up-regulation by PMA in the HM3 colon cancer cell line may serve as a model for the effects of cytokines and growth factors, which regulate MUC2 expression during the progression of colorectal cancer. PMID:12077118

  15. Phorbol diesters and transferrin modulate lymphoblastoid cell transferrin receptor expression by two different mechanisms

    SciTech Connect

    Alcantara, O.; Phillips, J.L.; Boldt, D.H.

    1986-12-01

    Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation was reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.

  16. Hepatic expression of inflammatory genes and microRNAs in pigs with high "cholesteryl ester transfer protein" (CETP) activity.

    PubMed

    Cirera, Susanna; Tørsleff, Benedicte C Juul; Ritz, Christian; Fredholm, Merete; Heegaard, Peter M H; Skovgaard, Kerstin

    2016-10-01

    Human obesity and obesity-related diseases (ORD) are growing health problems worldwide and represent a major public health challenge. Most of these diseases are complex conditions, influenced by many genes (including microRNAs) and environmental factors. Many metabolic perturbations are associated with obesity; e.g., low levels of high-density lipoproteins (HDL) are high risk factors of cardiovascular events. A number of genetic, lifestyle, and environmental factors have been shown to contribute to the lowering of HDL-cholesterol. One of these factors is cholesteryl ester transfer protein (CETP) promoting the redistribution of cholesteryl esters, triglycerides, and phospholipids between plasma proteins. Moreover, obesity and ORD are often linked with chronic low-grade inflammation leading to insulin resistance and endothelial and microvascular dysfunctions. The aim of this study was to detect differences in the hepatic expression of genes involved in low-grade inflammation and of obesity- and cholesterol-related microRNAs in two mixed breed populations of pigs (Yorkshire-Göttingen minipig, YM and Duroc-Göttingen minipig, DM) including males and females, with extreme phenotypes for CETP activity levels (designated as CETP-high and CETP-low, respectively). Furthermore, breed and gender differences were also investigated. We found significant difference (P < 0.05) in hepatic expression levels of several mRNAs and microRNAs between the CETP-high and -low groups (C5, IL1RN, IL18, and miR-223-5p); between the two mixed breeds (IL1RAP and miR-140-5p); and between gender (APOA1, IL1RN, and FBLN1). Furthermore, when taking breed into account we show that the transcriptional levels of TNF, miR20a, miR33b, and miR130a differed between the two CETP groups. We conclude that increased CETP activity is accompanied by a modest differential hepatic expression of several microRNAs and inflammatory-related genes. Furthermore, our study demonstrates that when modeling the analysis

  17. High activity of an indium alkoxide complex toward ring opening polymerization of cyclic esters.

    PubMed

    Quan, Stephanie M; Diaconescu, Paula L

    2015-06-14

    An indium complex supported by a ferrocene-derived Schiff base ligand has an unprecedented high activity toward ε-caprolactone, δ-valerolactone, and β-butyrolactone. l-Lactide, d,l-lactide, and trimethylene carbonate polymerizations also showed moderate to high activity. PMID:25973852

  18. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors.

    PubMed

    Stribny, Jiri; Gamero, Amparo; Pérez-Torrado, Roberto; Querol, Amparo

    2015-07-16

    Higher alcohols and acetate esters are important flavour and aroma components in the food industry. In alcoholic beverages these compounds are produced by yeast during fermentation. Although Saccharomyces cerevisiae is one of the most extensively used species, other species of the Saccharomyces genus have become common in fermentation processes. This study analyses and compares the production of higher alcohols and acetate esters from their amino acidic precursors in three Saccharomyces species: Saccharomyces kudriavzevii, Saccharomyces uvarum and S. cerevisiae. The global volatile compound analysis revealed that S. kudriavzevii produced large amounts of higher alcohols, whereas S. uvarum excelled in the production of acetate esters. Particularly from phenylalanine, S. uvarum produced the largest amounts of 2-phenylethyl acetate, while S. kudriavzevii obtained the greatest 2-phenylethanol formation from this precursor. The present data indicate differences in the amino acid metabolism and subsequent production of flavour-active higher alcohols and acetate esters among the closely related Saccharomyces species. This knowledge will prove useful for developing new enhanced processes in fragrance, flavour, and food industries. PMID:25886016

  19. THE SEARCH OF COMPOUNDS WITH ANTIAGGREGATION ACTIVITY AMONG S-ESTERS OF THIOSULFONIC ACIDS.

    PubMed

    Halenova, T I; Nikolaeva, I V; Nakonechna, A V; Bolibrukh, K B; Monka, N Y; Lubenets, V I; Savchuk, O M; Novikov, V P; Ostapchenko, L I

    2015-01-01

    According to the current understanding, the hyperactivation of platelets may lead to increased intravascular coagulation and thrombosis. Today a relevant issue is the search for new anti-thrombotic agents that are able to modulate the activity of platelet receptors, thus, influence the processes of activation and aggregation of platelets. The aim of this study was to investigate the effects of newly synthesized thiosulfonate derivatives on platelet aggregation. The activity of the compounds was tested in vitro using platelet-rich plasma. As a result of the screening test, structural formulas of four agents with high antiaggregative activity were established. These compounds inhibited ADP- and collagen-induced platelet aggregation in a dose-dependent manner. Two of these compounds were shown to be more effective inhibitors of aggregation induced by ADP (IC50 - 8-10 μM), as well as collagen (IC50 - 1.5-2.0 μM). PMID:26717599

  20. Aza-Morita-Baylis-Hillman reactions and cyclizations of conjugated dienes activated by sulfone, ester, and keto groups.

    PubMed

    Sorbetti, Jovina M; Clary, Kristen N; Rankic, Danica A; Wulff, Jeremy E; Parvez, Masood; Back, Thomas G

    2007-04-27

    The aza-Morita-Baylis-Hillman reactions of aldimines 2 with several activated conjugated dienes were found to proceed smoothly in DMF in the presence of 3-hydroxyquinuclidine (HQD). Imines 2 reacted with 1-(p-toluenesulfonyl)-1,3-butadiene (3), methyl 2,4-pentadienoate (6), hexa-3,5-dien-2-one (7), and 1-phenylpenta-2,4-dien-1-one (8) to afford adducts 4, 13, 14, and 15, respectively. While products 4, 13, and 15 were formed as E,Z mixtures, adducts 14 were obtained as essentially pure E-isomers. Cyclization of the E-isomers of the products derived from the dienyl sulfone 3 and the dienoate ester 6 occurred via intramolecular conjugate addition under base-catalyzed conditions to afford functionalized piperidines 5 and 16, respectively. The aza-Morita-Baylis-Hillman reaction and subsequent cyclization of the imine 2a with 3 were also carried out as a one-pot reaction, while the reaction mixture was simultaneously irradiated at 300 nm to effect the photoisomerization of the unreactive Z-adduct of the corresponding 4 to the more reactive E-isomer. PMID:17381156

  1. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE. PMID:25842314

  2. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    PubMed Central

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  3. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO. PMID:14643171

  4. Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity dependent on photoactivation

    NASA Astrophysics Data System (ADS)

    Berkovitch, G.; Nudelman, A.; Ehenberg, B.; Rephaeli, A.; Malik, Z.

    2009-06-01

    New approaches to PDT using multifunctional 5-aminolevulinic acid (ALA) based prodrugs activating mutual routes of toxicity are described. We investigated the mutual anti-cancer activity of ALA prodrugs which upon metabolic hydrolysis by unspecific esterases release ALA, formaldehyde or acetaldehye and the histone deacetylase inhibitor (HDACI) butyric acid. The most potent prodrug in this study was butyryloxyethyl 5-amino-4-oxopentanoate (AN-233) that stimulated a rapid biosynthesis of protoporphyrin IX (PpIX) in human glioblastoma U-251 cells and generated an efficient photodynamic destruction. AN-233 induced a considerable high level of intracellular ROS in the cells following light irradiation, reduction of mitochondrial activity, dissipation of the mitochondrial membrane potential resulting in necrotic and apoptotic cell death. The main advantage of AN-233 over ALA stems from its ability to induce photodamage at a significantly lower dose than ALA.

  5. Comparing the effect of immobilization methods on the activity of lipase biocatalysts in ester hydrolysis.

    PubMed

    Costa, L; Brissos, V; Lemos, F; Ribeiro, F Ramôa; Cabral, J M S

    2008-06-01

    The activity of various lipases was compared, in both free and immobilized forms, using the kinetics of the hydrolysis reaction of p-nitrophenyl butyrate, which was followed with in situ UV/Vis diode array spectrophotometry. Several enzymes were used to catalyze the reaction, namely Candida antarctica lipase B and Fusarium solani pisi cutinase wildtype and three single-mutation variants. The enzymes were tested in three different forms: free, immobilized as cross-linked aggregates and supported on zeolite NaY. A simple kinetic model was used to allow a quantitative comparison of the behavior of the different catalysts. It was concluded that although immobilization reduces the activity of the enzyme, the zeolite offers a much higher specific activity when compared to the cross-linked aggregates, thus supplying a heterogeneous catalyst with promising catalytic properties. PMID:17940805

  6. Synthesis, characterization and antimicrobial activity of novel Schiff base tethered boronate esters of 1,2-O-isopropylidene-α-d-xylofuranose.

    PubMed

    Reddy, Eda Rami; Trivedi, Rajiv; Sudheer Kumar, Buddana; Sirisha, Katukuri; Sarma, Akella Venkata Subrahmanya; Sridhar, Balasubramanian; Prakasham, Reddy Shetty

    2016-08-01

    A series of twenty one Schiff bases based on boronate ester of 1,2-O-isopropylidene-α-d-xylofuranose scaffold were designed and synthesized by condensation of formyl or amino phenyl boronate esters with substituted anilines or 2-hydroxybenzaldehydes, respectively. All the imines are remarkably stable crystalline solids and were obtained in good yields. All the products were fully characterized by FT-IR, multinuclear NMR ((1)H, (13)C and (11)B) spectroscopy, and elemental analysis. Furthermore, the molecular structures of two of the Schiff bases were established by single crystal X-ray diffraction analysis. All the compounds have been screened for in vitro antimicrobial activity against various Gram-positive and Gram-negative bacterial and fungal strains. They exhibited moderate to good inhibitory activity against most of the tested organisms in comparison with standard drugs. PMID:27353535

  7. Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: synthesis, antiviral activity and decomposition study.

    PubMed

    Roux, Loïc; Priet, Stéphane; Payrot, Nadine; Weck, Clément; Fournier, Maëlenn; Zoulim, Fabien; Balzarini, Jan; Canard, Bruno; Alvarez, Karine

    2013-05-01

    9-[2-(Thiophosphonomethoxy)ethyl]adenine [S-PMEA, 8] and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine [S-PMPA, 9] are acyclic nucleoside thiophosphonates we described recently that display the same antiviral spectrum (DNA viruses) as approved and potent phosphonates PMEA and (R)-PMPA. Here, we describe the synthesis, antiviral activities in infected cell cultures and decomposition study of bis(pivaloyloxymethoxy)-S-PMEA [Bis-POM-S-PMEA, 13] and bis(isopropyloxymethylcarbonyl)-S-PMPA [Bis-POC-S-PMPA, 14] as orally bioavailable prodrugs of the S-PMEA 8 and S-PMPA 9, in comparison to the equivalent "non-thio" derivatives [Bis-POM-PMEA, 11] and [Bis-POC-PMPA, 12]. Compounds 11, 12, 13 and 14 were evaluated for their in vitro antiviral activity against HIV-1-, HIV-2-, HBV- and a broad panel of DNA viruses, and found to exhibit moderate to potent antiviral activity. In order to determine the decomposition pathway of the prodrugs 11, 12, 13 and 14 into parent compounds PMEA, PMPA, 8 and 9, kinetic data and decomposition pathways in several media are presented. As expected, bis-POM-S-PMEA 13 and bis-POC-S-PMPA 14 behaved as prodrugs of S-PMEA 8 and S-PMPA 9. However, thiophosphonates 8 and 9 were released very smoothly in cell extracts, in contrast to the release of PMEA and PMPA from "non-thio" prodrugs 11 and 12. PMID:23603046

  8. Synthesis of theanine from glutamic acid gamma-methyl ester and ethylamine catalyzed by Escherichia coli having gamma-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-08-01

    Glutamic acid gamma-methyl ester (GAME) was used as substrate for theanine synthesis catalyzed by Escherichia coli cells possessing gamma-glutamyltranspeptidase activity. The yield was about 1.2-fold higher than with glutamine as substrate. The reaction was optimal at pH 10 and 45 degrees C, and the optimal substrate ratio of GAME to ethylamine was 1:10 (mol/mol). With GAME at 100 mmol, 95 mmol theanine was obtained after 8 h. PMID:20383735

  9. Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents.

    PubMed

    Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya

    2016-07-13

    In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). PMID:27237837

  10. Regulation of ATP-sensitive K sup + channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP

    SciTech Connect

    De Weille, J.R.; Schmid-Antomarchi, H.; Fosset, M.; Lazdunski, M. )

    1989-04-01

    The actions of somatostatin and of the phorbol ester 4{beta}-phorbol 12-myristate 13-acetate (PMA) were studied in rat insulinoma (RINm5F) cells by electrophysiological and {sup 86}Rb{sup +} flux techniques. Both PMA and somatostatin hyperpolarize insulinoma cells by activating ATP-sensitive K{sup +} channels. The presence of intracellular GTP is required for the somatostatin effects. PMA- and somatostatin-induced hyperpolarization and channel activity are inhibited by the sulfonylurea glibenclamide. Glibenclamide-sensitive {sup 86}Rb{sup +} efflux from insulinoma cells is stimulated by somatostatin in a dose-dependent manner (half maximal effect at 0.7 nM) and abolished by pertussis toxin pretreatment. Mutual roles of a GTP-binding protein, of protein kinase C, and of cAMP in the regulation of ATP-sensitive K{sup +} channels are discussed.

  11. Derivatives of iminomalonic ester

    SciTech Connect

    Prosyanik, A.V.; Fedoseenko, D.V.; Markov, V.I.

    1986-01-10

    The synthesis of (alkylimino)malonic esters was realized by the reaction of alkylamines with mesoxalic or dibromomalonic ester. (Halogenoimino)malonic esters were obtained for the first time by the reaction of aminomalonic ester with tert-butyl hypochlorite or sodium hypobromite. A new method was developed for the synthesis of (acylimino)malonic esters by the successive bromination and dehydrobromination of (acylamino)malonic esters. The addition of various nucleophiles (water, amines, formamide) at the C=N bond of (acylimino)malonic esters was studied.

  12. X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin-benzotriazole intermediate ester

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Antoszczak, Michał; Stefańska, Joanna; Brzezinski, Bogumil

    2012-08-01

    The unexpectedly stable benzotriazole ester of salinomycin (SAL-HOBt) - an intermediate product of the amidation reaction of salinomycin has been isolated and structurally characterised (using a single crystal) by X-ray, FT-IR, NMR and semiempirical methods. The results of the X-ray and spectroscopic studies demonstrated that this intermediate ester exist in the solid state and in solution exclusively as the stable O-acyl form. The molecular structure of SAL-HOBt is stabilised by relatively weak intramolecular hydrogen bonds. The PM5 calculation of possible structures of SAL-HOBt has shown that the O-acyl form is more energetically favourable than its N-oxide-N-acyl isomers. The antimicrobial tests show that SAL-HOBt is active against Gram-positive bacteria and clinical isolates methicillin-resistant Staphylococcus aureus (MIC = 1-2 μg/ml).

  13. Participation of decreased serum cholesteryl ester transfer activity, independent of increased serum lipoprotein(a), in angina pectoris in normolipemic elderly subjects.

    PubMed

    Miyashita, Y; Morimoto, S; Fukuo, K; Imanaka, S; Koh, E; Tamatani, M; Ogihara, T

    1992-01-01

    The cholesteryl ester transfer activity (CETA) is a measurement of the transfer of cholesteryl ester from HDL to VLDL, LDL or peripheral cells. Its role in the development of early coronary heart disease is not clear. In the present study, serum levels of CETA, lipoprotein(a) [Lp(a)] and other lipid-related factors were compared in 10 normal young subjects, 28 healthy elderly subjects and 14 normolipemic elderly patients with angina pectoris. Compared to the young normals and healthy elderly subjects, the elderly patients with angina pectoris showed significantly decreased mean serum CETA levels, and significantly increased mean serum levels of Lp(a) and apoprotein B. These results may indicate that decreased serum values of CETA participate in the development of angina pectoris in normolipemic elderly patients. PMID:1427124

  14. Phosphonate ester hydrolysis catalyzed by two lanthanum ions. Intramolecular nucleophilic attack of coordinated hydroxide and lewis acid activation

    SciTech Connect

    Tsubouchi, A.; Bruice, T.C.

    1995-07-19

    (8-Hydroxy-2-quinolyl)methyl (8-hydroxy-2-quinolyl)methyl phosphonate (I) has been synthesized as a model compound and investigated in terms of catalysis of hydrolysis by two metal ions in concert. Removal of one of two 8-hydroxyquinoline ligands of I to provide (8-hydroxy-2-quinolyl)methylmethylphosphonate (II) leads to the formation of the 1:1 complex (II)La, which is hydrolytically inert but subject to catalysis by free La{sup 3+}. From thermodynamic studies of metal ion complexation and comparison of the kinetics of hydrolysis of I and II in the presence of metal ions, we conclude the following. The phosphonate ester I forms a hydrolytically active 1:2 complex (I)La{sub 2} with La{sup 3+} but inert 1:1 complexes with Zn{sup 2+}, Ni{sup 2+}, Co{sup 2+}, Cu{sup 2+}, and Al{sup 3+}. The La{sup 3+} in the (I)La{sub 2} complex serve to (i) facilitate the formation of metal ligated hydroxide as an intramolecule nucleophile; (ii) stabilize the transition state of the hydrolysis by neutralization of the phosphonate negative charge; and (iii) interact with an incipient oxyanion of the leaving alcohol. The two La{sup 3+} functions operate in concert and provide nearly 10{sup 13} rate enhancement. Consequently the 1:2 complex (I)La{sub 2}(OH{sub 2}){sub n-1}(OH) may serve as a model for the 3`-5` exonuclease reaction of E. coli DNA polymerase I. 39 refs., 7 figs., 3 tabs.

  15. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid.

    PubMed

    Farhoosh, Reza; Johnny, Saeed; Asnaashari, Maryam; Molaahmadibahraseman, Najme; Sharif, Ali

    2016-03-01

    Anti-DPPH radical effect as well as anti-peroxide activity of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid in a bulk fish oil system and its O/W emulsion were investigated. Electronic phenomena, intra- and/or intermolecular hydrogen bonds, interfacial properties, and chemical reaction of the solvent molecules with phenolic compounds were considered to be mainly involved in the antiradical activities observed. Antioxidant activity of the phenolic acids derivatives as a function of these factors was variously affected by the environmental conditions which may occur in practice. PMID:26471535

  16. Plasma phospholipid mass transfer rate: relationship to plasma phospholipid and cholesteryl ester transfer activities and lipid parameters.

    PubMed

    Cheung, M C; Wolfbauer, G; Albers, J J

    1996-09-27

    Human plasma phospholipid transfer protein (PLTP) has been shown to facilitate the transfer of phospholipid from liposomes or isolated very low and low density lipoproteins to high density lipoproteins. Its activity in plasma and its physiological function are presently unknown. To elucidate the role of PLTP in lipoprotein metabolism and to delineate factors that may affect the rate of phospholipid transfer between lipoproteins, we determined the plasma phospholipid mass transfer rate (PLTR) in 16 healthy adult volunteers and assessed its relationship to plasma lipid levels, and to phospholipid transfer activity (PLTA) and cholesteryl ester transfer activity (CETA) measured by radioassays. The plasma PLTR in these subjects was 27.2 +/- 11.8 nmol/ml per h at 37 degrees C (mean +/- S.D.), and their PLTA and CETA were 13.0 +/- 1.7 mumol/ml per h and 72.8 +/- 15.7 nmol/ml per h, respectively. Plasma PLTR was correlated directly with total, non-HDL, and HDL triglyceride (rs = 0.76, P < 0.001), total and non-HDL phospholipid (rs > 0.53, P < 0.05), and inversely with HDL free cholesterol (rs = -0.54, P < 0.05), but not with plasma PLTA and CETA. When 85% to 96% of the PLTA in plasma was removed by polyclonal antibodies against recombinant human PLTP, phospholipid mass transfer from VLDL and LDL to HDL was reduced by 50% to 72%, but 80% to 100% of CETA could still be detected. These studies demonstrate that PLTP plays a major role in facilitating the transfer of phospholipid between lipoproteins, and suggest that triglyceride is a significant modulator of intravascular phospholipid transport. Furthermore, most of the PLTP and CETP in human plasma is associated with different particles. Plasma PLTA and CETA were also measured in mouse, rat, hamster, guinea pig, rabbit, dog, pig, and monkey. Compared to human, PLTA in rat and mouse was significantly higher and in rabbit and guinea pig was significantly lower while the remaining animal species had PLTA similar to humans. No

  17. Esters of Pyrazinoic Acid Are Active against Pyrazinamide-Resistant Strains of Mycobacterium tuberculosis and Other Naturally Resistant Mycobacteria In Vitro and Ex Vivo within Macrophages.

    PubMed

    Pires, David; Valente, Emília; Simões, Marta Filipa; Carmo, Nuno; Testa, Bernard; Constantino, Luís; Anes, Elsa

    2015-12-01

    Pyrazinamide (PZA) is active against major Mycobacterium tuberculosis species (M. tuberculosis, M. africanum, and M. microti) but not against M. bovis and M. avium. The latter two are mycobacterial species involved in human and cattle tuberculosis and in HIV coinfections, respectively. PZA is a first-line agent for the treatment of human tuberculosis and requires activation by a mycobacterial pyrazinamidase to form the active metabolite pyrazinoic acid (POA). As a result of this mechanism, resistance to PZA, as is often found in tuberculosis patients, is caused by point mutations in pyrazinamidase. In previous work, we have shown that POA esters and amides synthesized in our laboratory were stable in plasma (M. F. Simões, E. Valente, M. J. Gómez, E. Anes, and L. Constantino, Eur J Pharm Sci 37:257-263, 2009, http://dx.doi.org/10.1016/j.ejps.2009.02.012). Although the amides did not present significant activity, the esters were active against sensitive mycobacteria at concentrations 5- to 10-fold lower than those of PZA. Here, we report that these POA derivatives possess antibacterial efficacy in vitro and ex vivo against several species and strains of Mycobacterium with natural or acquired resistance to PZA, including M. bovis and M. avium. Our results indicate that the resistance probably was overcome by cleavage of the prodrugs into POA and a long-chain alcohol. Although it is not possible to rule out that the esters have intrinsic activity per se, we bring evidence here that long-chain fatty alcohols possess a significant antimycobacterial effect against PZA-resistant species and strains and are not mere inactive promoieties. These findings may lead to candidate dual drugs having enhanced activity against both PZA-susceptible and PZA-resistant isolates and being suitable for clinical development. PMID:26438493

  18. STRUCTURE ACTIVITY RELATIONSHIP OF PHTHALATE ESTERS TO INHIBITED FETAL TESTICULAR TESTOSTERONE PRODUCTION IN THE SPRAGUE DAWLEY RAT

    EPA Science Inventory

    Several of the phthalate esters (widely used as plasticizers of polyvinyl chloride and other applications) have been shown to inhibit fetal testicular testosterone (T) production and Insl3 mRNA in the laboratory rat. The current study was designed to define the dose response of 7...

  19. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  20. Structure-activity relationships of new analogues of arecaidine propargyl ester at muscarinic M1 and M2 receptor subtypes.

    PubMed Central

    Moser, U.; Lambrecht, G.; Wagner, M.; Wess, J.; Mutschler, E.

    1989-01-01

    1. The potency of arecaidine propargyl ester (APE) and of several analogues containing a modified ester side chain has been assessed at M1 and M2 muscarinic receptor subtypes. APE was shown to act as a potent agonist at ganglionic M1 receptors in the pithed rat, at M2 receptors in guinea-pig isolated atria (-log EC50 = 8.22) and ileum (-log EC50 = 7.77). 2. The arecaidine 2-butynyl and 2-pentynyl esters were approximately equipotent with APE at M1 and M2 receptors, whereas the 2-hexynyl derivative was found to be less potent than APE in atria (-log EC50 = 6.80) and ileum (-log EC50 = 6.70) by about one order of magnitude. The 2-heptynyl and 3-phenyl propargyl esters exhibited no agonist actions in atria and ileum. 3. Shifting the triple bond from the 2 to the 3 position and introducing a bulky group at position 1 of the ester side chain of APE and analogues resulted in competitive antagonists (pA2 ranging from 4.9 to 7.3). 4. APE and its 2-butynyl analogue showed some agonistic selectivity for cardiac M2 receptors (potency ratio, ileum/atria = 2.8 and 4.6 respectively). All antagonists in this series of compounds were not selective in terms of affinity since their pA2 values at cardiac and ileal M2 receptors were similar (potency ratios, ileum/atria = 0.4 to 1.2). PMID:2924082

  1. Chemoselective Boronic Ester Synthesis by Controlled Speciation**

    PubMed Central

    Fyfe, James W B; Seath, Ciaran P; Watson, Allan J B

    2014-01-01

    Control of boronic acid solution speciation is presented as a new strategy for the chemoselective synthesis of boronic esters. Manipulation of the solution equilibria within a cross-coupling milieu enables the formal homologation of aryl and alkenyl boronic acid pinacol esters. The generation of a new, reactive boronic ester in the presence of an active palladium catalyst also facilitates streamlined iterative catalytic C=C bond formation and provides a method for the controlled oligomerization of sp2-hybridized boronic esters. PMID:25267096

  2. Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters.

    PubMed

    Elend, C; Schmeisser, C; Hoebenreich, H; Steele, H L; Streit, W R

    2007-07-15

    We report on the isolation and biochemical characterization of a novel, cold-active and metagenome-derived lipase with a high stereo-selectivity for pharmaceutically important substrates. The respective gene was isolated from a cosmid library derived from oil contaminated soil and designated lipCE. The deduced aa sequence indicates that the protein belongs to the lipase family l.3, with high similarity to Pseudomonas fluorescens lipases containing a C-terminal secretion signal for ABC dependent transport together with possible motifs for Ca(2+)-binding sites. The overexpressed protein revealed a molecular weight of 53.2kDa and was purified by refolding from inclusion bodies after expression in Escherichia coli. The optimum temperature of LipCE was determined to be 30 degrees C. However, the enzyme still displayed 28% residual activity at 0 degrees C and 16% at -5 degrees C. Calcium ions strongly increased activity and thermal stability of the protein. Further detailed biochemical characterization of the recombinant enzyme showed an optimum pH of 7 and that it retained activity in the presence of a range of metal ions and solvents. A detailed analysis of the enzyme's substrate spectrum with more than 34 different substrates indicated that the enzyme was able to hydrolyze a wide variety of substrates including the conversion of long chain fatty acid substrates with maximum activity for pNP-caprate (C(10)). Furthermore LipCE was able to hydrolyze stereo-selectively ibuprofen-pNP ester with a high preference for the (R) enantiomer of >91% ee and it demonstrated selectivity for esters of primary alcohols, whereas esters of secondary or tertiary alcohols were nearly not converted. PMID:17601620

  3. Hepatitis B virus X protein activates transcription factor NF-kappa B without a requirement for protein kinase C.

    PubMed Central

    Lucito, R; Schneider, R J

    1992-01-01

    The hepatitis B virus X protein stimulates transcription from a variety of promoter elements, including those activated by transcription factor NF-kappa B. A diverse group of extra- and intracellular agents, including growth factors and the human immunodeficiency virus tat protein, have been shown to require a functional protein kinase C (PKC) system to achieve activation of NF-kappa B. In this study we have investigated the molecular mechanism by which X protein activates NF-kappa B. We demonstrate that in hepatocytes, X protein induces a maximal activation of NF-kappa B corresponding to the sequestered pool of factor, which is also activated by phorbol esters. To determine whether X protein requires activation of PKC to stimulate transcription by NF-kappa B, we attempted to prevent transactivation by X protein in the presence of the PKC inhibitors calphostin C and H7. We show that PKC inhibitors do not block X protein activation of NF-kappa B, whereas they largely impair activation by phorbol esters. In addition, activation of PKC is correlated with its translocation from the cytoplasm to the plasma membrane. The subcellular distribution of PKC was investigated by introducing X protein from a replication-defective adenovirus vector, followed by immunochemical detection of PKC in cell fractions. These data also indicate that X protein stimulates transcription by NF-kappa B without the activation and translocation of PKC. Images PMID:1309924

  4. Effect of ozone on platelet-activating factor production in phorbol-differentiated HL60 cells, a human bronchial epithelial cell line (BEAS S6), and primary human bronchial epithelial cells

    SciTech Connect

    Samet, J.M.; Noah, T.L.; Devlin, R.B.; Yankaskas, J.R.; McKinnon, K.; Dailey, L.A.; Friedman, M. )

    1992-11-01

    Platelet-activating factor (PAF) is a phospholipid with a wide spectrum of pro-inflammatory properties. In the lung, PAF induces airway hyperresponsiveness, neutrophil sequestration, and increased vascular permeability. The alveolar macrophage and the bronchial epithelium are tissues that are exposed to inhaled ozone (O3). We studied the effect of an in vitro O3 exposure on PAF production in a macrophage-like HL60 human cell line (dHL60), a human bronchial epithelial cell line (BEAS S6), and also in primary human bronchial epithelial cells. PAF was quantified by thin-layer chromatographic separation of lipid extracts from cells radiolabeled with [3H]lysoPAF and by radioimmunoassay. In vitro exposure of dHL60 cells to 0.05 to 1.0 ppm O3 for 15 to 120 min was found to significantly increase PAF levels above air control values at all exposure levels and time points (average increase of 92%). Similarly, BEAS S6 cells grown on collagen-coated filter supports and exposed to 0.05 to 1.0 ppm O3 for 60 min released an average increase in PAF of 626% above control values. Primary human bronchial epithelial cells also demonstrated significant increases in [3H]PAF release (average increase of 289% after exposure to 1.0 ppm O3 for 60 min) compared with paired air controls. These findings suggest that some of the effects of O3 inhalation may be mediated by PAF.

  5. Naringin lauroyl ester inhibits lipopolysaccharide-induced activation of nuclear factor κB signaling in macrophages.

    PubMed

    Hattori, Hiromi; Tsutsuki, Hiroyasu; Nakazawa, Masami; Ueda, Mitsuhiro; Ihara, Hideshi; Sakamoto, Tatsuji

    2016-07-01

    Naringin (Nar) has antioxidant and anti-inflammatory properties. It was recently reported that enzymatic modification of Nar enhanced its functions. Here, we acylated Nar with fatty acids of different sizes (C2-C18) using immobilized lipase from Rhizomucor miehei and investigated the anti-inflammatory effects of these molecules. Treatment of murine macrophage RAW264.7 cells with Nar alkyl esters inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production, with Nar lauroyl ester (Nar-C12) showing the strongest effect. Furthermore, Nar-C12 suppressed the LPS-induced expression of inducible NO synthase by blocking the phosphorylation of inhibitor of nuclear factor (NF)-κB-α as well as the nuclear translocation of NF-κB subunit p65 in macrophage cells. Analysis of Nar-C12 uptake in macrophage cells revealed that Nar-C12 ester bond was partially degraded in the cell membrane and free Nar was translocated to the cytosol. These results indicate that Nar released from Nar-C12 exerts anti-inflammatory effects by suppressing NF-κB signaling pathway. PMID:26967587

  6. Pyridine and p-Nitrophenyl Oxime Esters with Possible Photochemotherapeutic Activity: Synthesis, DNA Photocleavage and DNA Binding Studies.

    PubMed

    Pasolli, Milena; Dafnopoulos, Konstantinos; Andreou, Nicolaos-Panagiotis; Gritzapis, Panagiotis S; Koffa, Maria; Koumbis, Alexandros E; Psomas, George; Fylaktakidou, Konstantina C

    2016-01-01

    Compared to standard treatments for various diseases, photochemotherapy and photo-dynamic therapy are less invasive approaches, in which DNA photocleavers represent promising tools for novel "on demand" chemotherapeutics. A series of p-nitrobenzoyl and p-pyridoyl ester conjugated aldoximes, amidoximes and ethanone oximes were subjected to UV irradiation at 312 nm with supercoiled circular plasmid DNA. The compounds which possessed appropriate properties were additionally subjected to UVA irradiation at 365 nm. The ability of most of the compounds to photocleave DNA was high at 312 nm, whereas higher concentrations were required at 365 nm as a result of their lower UV absorption. The affinity of selected compounds to calf-thymus (CT) DNA was studied by UV spectroscopy, viscosity experiments and competitive studies with ethidium bromide (EB) revealing that all compounds interacted with CT DNA. The fluorescence emission spectra of the pre-treated EB-DNA exhibited a moderate to significant quenching in the presence of the compounds indicating the binding of the compounds to CT DNA via intercalation as concluded also by DNA-viscosity experiments. For the oxime esters the DNA photocleavage and affinity studies aimed to clarify the role of the oxime nature (aldoxime, ketoxime, amidoxime) and the role of the pyridine and p-nitrophenyl moieties both as oxime substituents and ester conjugates. PMID:27376258

  7. Synthesis, cytotoxicity and structure-activity relationships between ester and amide functionalities in novel acridine-based platinum(II) complexes.

    PubMed

    Bouyer, Florence; Moretto, Johnny; Pertuit, David; Szollosi, Anna; Lacaille-Dubois, Marie-Aleth; Blache, Yves; Chauffert, Bruno; Desbois, Nicolas

    2012-05-01

    In order to improve the pharmacological profile of the anticancer drug cisplatin, several new acridine-based tethered (ethane-1,2-diamine)platinum(II) complexes connected by a polymethylene chain were synthetized. Activity-structure relationship between amide or ester functionalities was explored by changing acridine-9-carboxamide into acridine-9-carboxylate chromophore. The in vitro cytotoxicity of these new complexes was assessed in human colic HCT 116, SW480 and HT-29 cancer cell lines. Series of complexes bearing the acridine-9-carboxylate chromophore displayed higher cytotoxic effect than acridine-9-carboxamide complexes, with gradual effect according to the size of the polymethylene linker. PMID:22459174

  8. FT-IR and Raman spectroscopic and DFT studies of anti-cancer active molecule N-{(meta-ferrocenyl) Benzoyl} - L-Alanine - Glycine ethyl ester

    NASA Astrophysics Data System (ADS)

    Xavier, T. S.; Kenny, Peter T. M.; Manimaran, D.; Joe, I. Hubert

    2015-06-01

    FT-Raman and FT-IR spectra of N-{(meta-ferrocenyl) Benzoyl} - L-alanine - glycine ethyl ester were recorded in solid phase. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering intensities were calculated by using density functional method(B3LYP) with 6-31G(d, p) basis set. Vibrational assignment of the molecule was done by using potential energy distribution analysis. Natural bond orbital analysis, Mulliken charge analysis and HOMO-LUMO energy were used to elucidate the reasons for intra molecular charge transfer. Docking studies were conducted to predict its anticancer activity.

  9. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice.

    PubMed

    Masic, Anita; Valencia Hernandez, Ana Maria; Hazra, Sudipta; Glaser, Jan; Holzgrabe, Ulrike; Hazra, Banasri; Schurigt, Uta

    2015-01-01

    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. PMID:26554591

  10. Cinnamic Acid Bornyl Ester Derivatives from Valeriana wallichii Exhibit Antileishmanial In Vivo Activity in Leishmania major-Infected BALB/c Mice

    PubMed Central

    Hazra, Sudipta; Glaser, Jan; Holzgrabe, Ulrike; Hazra, Banasri; Schurigt, Uta

    2015-01-01

    Human leishmaniasis covers a broad spectrum of clinical manifestations ranging from self-healing cutaneous leishmaniasis to severe and lethal visceral leishmaniasis caused among other species by Leishmania major or Leishmania donovani, respectively. Some drug candidates are in clinical trials to substitute current therapies, which are facing emerging drug-resistance accompanied with serious side effects. Here, two cinnamic acid bornyl ester derivatives (1 and 2) were assessed for their antileishmanial activity. Good selectivity and antileishmanial activity of bornyl 3-phenylpropanoate (2) in vitro prompted the antileishmanial assessment in vivo. For this purpose, BALB/c mice were infected with Leishmania major promastigotes and treated with three doses of 50 mg/kg/day of compound 2. The treatment prevented the characteristic swelling at the site of infection and correlated with reduced parasite burden. Transmitted light microscopy and transmission electron microscopy of Leishmania major promastigotes revealed that compounds 1 and 2 induce mitochondrial swelling. Subsequent studies on Leishmania major promastigotes showed the loss of mitochondrial transmembrane potential (ΔΨm) as a putative mode of action. As the cinnamic acid bornyl ester derivatives 1 and 2 had exhibited antileishmanial activity in vitro, and compound 2 in Leishmania major-infected BALB/c mice in vivo, they can be regarded as possible lead structures for the development of new antileishmanial therapeutic approaches. PMID:26554591

  11. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  12. Trimerization of Phenyl Cyanate Ester

    NASA Astrophysics Data System (ADS)

    Pallaka, Madhusudhan Reddy; Simon, Sindee L.

    2015-03-01

    The kinetics of phenyl cyanate ester trimerization is studied in the bulk using differential scanning calorimetry. Dynamic experiments for different heating rates are analyzed for the activation energy using the model-free Kissinger-Akahira-Sunose(KAS) isoconversion method. The activation energy and other kinetic parameters are also obtained by fitting the dynamic data to a first order autocatalytic reaction model, which well describes the experimental data. The activation energy obtained from the KAS isoconversion method (70.1 kJ/mol) is in good agreement with that obtained from the kinetic model (73.2 kJ/mol) and is much lower than the more bulky cyanate esters studied in our laboratory, which have activation energies of approximately 95 kJ/mol. In addition, the rate constant for the phenyl cyanate ester is one to two orders higher than the bulkier cyanate esters in the temperature range of 200 to 300°C. Further elucidation of the dynamic experiments revealed a strong dependence of the reaction kinetics on the sample weight. Future work aims to understand this finding.

  13. Synthesis of the vitamin E amino acid esters with an enhanced anticancer activity and in silico screening for new antineoplastic drugs.

    PubMed

    Gagic, Zarko; Ivkovic, Branka; Srdic-Rajic, Tatjana; Vucicevic, Jelica; Nikolic, Katarina; Agbaba, Danica

    2016-06-10

    Tocopherols and tocotrienols belong to the family of vitamin E (VE) with the well-known antioxidant properties. For certain α-tocopherol and γ-tocotrienol derivatives used as the lead compounds in this study, antitumor activities against various cancer cell types have been reported. In the course of the last decade, structural analogs of VE (esters, ethers and amides) with an enhanced antiproliferative and proapoptotic activity against various cancer cells were synthesized. Within the framework of this study, seven amino acid esters of α-tocopherol (4a-d) and γ-tocotrienol (6a-c) were prepared using the EDC/DMAP reaction conditions and their ability to inhibit proliferation of the MCF-7 and MDA-MB-231 breast cancer cells and the A549 lung cancer cells was evaluated. Compound 6a showed an activity against all three cell lines (IC50: 20.6μM, 28.6μM and 19μM for the MCF-7, MDA-MB-231 and A549 cells, respectively), while compound 4a inhibited proliferation of the MCF-7 (IC50=8.6μM) and A549 cells (IC50=8.6μM). Ester 4d exerted strong antiproliferative activity against the estrogen-unresponsive, multi-drug resistant MDA-MB-231 breast cancer cell line, with IC50 value of 9.2μM. Compared with the strong activity of compounds 4a, 4d and 6a, commercial α-tocopheryl succinate and γ-tocotrienol showed only a limited activity against all three cell lines, with IC50 values >50μM. Investigation of the cell cycle phase distribution and the cell death induction confirmed an apoptosis of the MDA-MB-231 cells treated with 4d, as well as a synergistic effect of 4d with the known anticancer drug doxorubicin. This result suggests a possibility of a combined therapy of breast cancer in order to improve the therapeutic response and to lower the toxicity associated with a high dose of doxorubicin. The stability study of 4d in human plasma showed that ca. 83% initial concentration of this compound remains in plasma in the course of six hours incubation. The ligand based

  14. Increasing the reaction rate of hydroxynitrile lyase from Hevea brasiliensis toward mandelonitrile by copying active site residues from an esterase that accepts aromatic esters.

    PubMed

    von Langermann, Jan; Nedrud, David M; Kazlauskas, Romas J

    2014-09-01

    The natural substrate of hydroxynitrile lyase from rubber tree (HbHNL, Hevea brasiliensis) is acetone cyanohydrin, but synthetic applications usually involve aromatic cyanohydrins such as mandelonitrile. To increase the activity of HbHNL toward this unnatural substrate, we replaced active site residues in HbHNL with the corresponding ones from esterase SABP2 (salicylic acid binding protein 2). Although this enzyme catalyzes a different reaction (hydrolysis of esters), its natural substrate (methyl salicylate) contains an aromatic ring. Three of the eleven single-amino-acid-substitution variants of HbHNL reacted more rapidly with mandelonitrile. The best was HbHNL-L121Y, with a kcat 4.2 times higher and high enantioselectivity. Site-saturation mutagenesis at position 121 identified three other improved variants. We hypothesize that the smaller active site orients the aromatic substrate more productively. PMID:25044660

  15. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity.

    PubMed

    MacDonald, Marybeth C; Arivalagan, Pugazhendhi; Barre, Douglas E; MacInnis, Judith A; D'Cunha, Godwin B

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  16. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity

    PubMed Central

    MacDonald, Marybeth C.; Arivalagan, Pugazhendhi; Barre, Douglas E.; MacInnis, Judith A.; D’Cunha, Godwin B.

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  17. A feasible approach to evaluate the relative reactivity of NHS-ester activated group with primary amine-derivatized DNA analogue and non-derivatized impurity.

    PubMed

    Dou, Shuping; Virostko, John; Greiner, Dale L; Powers, Alvin C; Liu, Guozheng

    2015-01-01

    Synthetic DNA analogues with improved stability are widely used in life science. The 3'and/or 5' equivalent terminuses are often derivatized by attaching an active group for further modification, but a certain amount of non-derivatized impurity often remains. It is important to know to what extent the impurity would influence further modification. The reaction of an NHS ester with primary amine is one of the most widely used options to modify DNA analogues. In this short communication, a 3'-(NH2-biotin)-derivatized morpholino DNA analogue (MORF) was utilized as the model derivatized DNA analogue. Inclusion of a biotin concomitant with the primary amine at the 3'-terminus allows for the use of streptavidin to discriminate between the products from the derivatized MORF and non-derivatized MORF impurity. To detect the MORF reaction with NHS ester, S-acetyl NHS-MAG3 was conjugated to the DNA analogue for labeling with (99m)Tc, a widely used nuclide in the clinic. It was found that the non-derivatized MORF also reacted with the S-acetyl NHS-MAG3. Radiolabeling of the product yielded an equally high labeling efficiency. Nevertheless, streptavidin binding indicated that under the conditions of this investigation, the non-derivatized MORF was five times less reactive than the amine-derivatized MORF. PMID:25621701

  18. Inhibitory activities of propolis and its promising component, caffeic acid phenethyl ester, against amyloidogenesis of human transthyretin.

    PubMed

    Yokoyama, Takeshi; Kosaka, Yuto; Mizuguchi, Mineyuki

    2014-11-13

    Transthyretin (TTR) is a homotetrameric serum protein associated with amyloidoses such as familial amyloid polyneuropathy and senile systemic amyloidosis. The amyloid fibril formation of TTR can be inhibited through stabilization of the TTR tetramer by the binding of small molecules. In this study, we examined the inhibitory potency of caffeic acid phenethyl ester (CAPE) and its derivatives. Thioflavin T assay showed that CAPE suppressed the amyloid fibril formation of TTR. Comparative analysis of the inhibitory potencies revealed that phenethyl ferulate was the most potent among the CAPE derivatives. The binding of phenethyl ferulate and the selected compounds to TTR were confirmed by the 8-anilino-1-naphthalenesulfonic acid displacement and X-ray crystallography. It was also demonstrated that Bio 30, which is a CAPE-rich commercially available New Zealand propolis, inhibited TTR amyloidogenesis and stabilized the TTR tetramer. These results suggested that a propolis may be efficient for preventing TTR amyloidosis. PMID:25314129

  19. Radiolabeled cholesteryl ethers trace LDL cholesteryl esters but not HDL cholesteryl esters in the rat.

    PubMed

    Terpstra, A H

    1995-01-01

    The intravascular metabolism of cholesteryl [1-14C]oleoyl ester and [1,2-3H(N)]cholesteryl palmityl ether was compared in the rat, an animal species without plasma cholesteryl ester transfer activity (CETA). The tracers had identical plasma disappearance rates when they were incorporated into human or rat low density lipoproteins (LDL). Fractional catabolic rates (FCR) were 0.081 +/- 0.014 h-1 and 0.080 +/- 0.013 h-1 for human LDL ester and ether and 0.098 +/- 0.007 h-1 and 0.101 +/- 0.007 h-1 for rat LDL ester and ether, respectively. In contrast, the ether had plasma disappearance rates that were 24%-25% lower than the ester when they were incorporated into human or rat high density lipoproteins (HDL). FCR were 0.230 +/- 0.020 and 0.173 +/- 0.030 h-1 for human HDL ester and ether and 0.131 +/- 0.020 h-1 and 0.100 +/- 0.017 h-1 for rat HDL ester and ether respectively. Biological screening of the rat HDL preparations did not affect these differences. The results of these studies indicate that in the absence of plasma CETA, cholesteryl ethers can be used to trace LDL cholesteryl esters but not to trace HDL cholesteryl esters. PMID:7772060

  20. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    NASA Technical Reports Server (NTRS)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  1. Effects of an endogenous nitric oxide synthase inhibitor on phorbol myristate acetate-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Wang, David; Chen, Hsing I; Hsu, Kang

    2003-01-01

    1. In the present study, we determined whether the endogenous nitric oxide (NO) synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) could ameliorate the acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in rat isolated lung. 2. Typical ALI was induced successfully by PMA during 60 min of observation. At 2 micro g/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/bodyweight ratio, pulmonary arterial pressure (PAP) and protein concentration of bronchoalveolar lavage fluid. 3. Pretreatment with the NOS inhibitor l-NAME (5 mmol/L) significantly attenuated ALI. None of the parameters reflective of lung injury showed significant increase, except for PAP (P < 0.001). The addition of l-arginine (4 mmol/L) blocked the protective effective of l-NAME. Pretreatment with l-arginine exacerbated PMA-induced lung injury. 4. These data suggest that l-NAME significantly ameliorates ALI induced by PMA in rats, indicating that endogenous NO plays a key role in the development of lung oedema in PMA-induced lung injury. PMID:12859432

  2. Ester-directed Ru-catalyzed C-O activation/C-C coupling reaction of ortho-methoxy naphthoates with organoboroneopentylates.

    PubMed

    Zhao, Yigang; Snieckus, Victor

    2016-01-28

    A new, catalytic and general synthetic methodology for the construction of biaryls and heterobiaryls by the cross-coupling of ortho-methoxy naphthoates with organoboroneopentylates is disclosed. The reaction proceeds under RuH2(CO)(PPh3)3-catalyzed conditions driven by unreactive C-O bond activation of a proximate ester directing group (DG)-catalyst chelation. This one-step synthesis of 2-aryl and -heteroaryl-1-naphthoates has the features of operational simplicity, minimum waste and convenient scale-up. The hierarchy of C(O)Me > CONEt2 > CO2Me coordination-assisted reactivity, of potential value in chemoselective synthesis, is also established. PMID:26661919

  3. 2-[(1H-Benzimidazol-2-ylmethyl)-amino]-benzoic acid methyl ester: Crystal structure, DFT calculations and biological activity evaluation

    NASA Astrophysics Data System (ADS)

    Ghani, Nour T. Abdel; Mansour, Ahmed M.

    2011-10-01

    In the present study, structural properties of 2-[(1H-benzimidazol-2-ylmethyl)-amino]-benzoic acid methyl ester have been studied extensively by spectral methods and X-ray crystallography. Quantum mechanical calculations of energies, geometries, vibrational wavenumbers, NMR and electronic transitions were carried out by DFT using B3LYP functional combined with 6-31G(d) basis set. Natural bond orbitals (NBO) analysis and frontier molecular orbitals were performed at the same level of theory. DFT calculations showed good agreement between the theoretical and experimental values of optimized and X-ray structure as well as between the vibrational and NMR spectroscopy. The title compound was screened for its antibacterial activity referring to Tetracycline as standard antibacterial agent.

  4. Multianalyte Microphysiometry of Macrophage Responses to Phorbol Myristate Acetate, Lipopolysaccharide, and Lipoarabinomannan

    PubMed Central

    Kimmel, Danielle W.; Meschievitz, Mika E.; Hiatt, Leslie A.; Cliffel, David E.

    2015-01-01

    This study examined the hypothesis that mycobacterial antigens generate different metabolic responses in macrophages as compared to gram-negative effectors and macrophage activators. The metabolic activation of macrophages by PMA is a useful tool for studying virulent agents and can be compared to other effectors. While phorbol myristate acetate (PMA) is commonly used to study macrophage activation, the concentration used to create this physiological response varies. The response of RAW-264.7 macrophages is concentration-dependent, where the metabolic response to high concentrations of PMA decreases suggesting deactivation. The gram-negative effector, lipopolysaccharide (LPS), was seen to promote glucose and oxygen production which were used to produce a delayed onset of oxidative burst. Pre-incubation with interferon-γ (IFN-γ) increased the effect on cell metabolism, where the synergistic effects of IFN-γ and LPS immediately initiated oxidative burst. These studies exhibited a stark contrast with lipoarabinomannan (LAM), an antigenic glycolipid component associated with the bacterial genus Mycobacterium. The presence of LAM effectively inhibits any metabolic response preventing consumption of glucose and oxygen for the promotion of oxidative burst and to ensure pathogenic proliferation. This study demonstrates for the first time the immediate inhibitory metabolic effects LAM has on macrophages, suggesting implications for future intervention studies with Mycobacterium tuberculosis. PMID:25798034

  5. Effects of two different fibric acid derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in type IIb hyperlipoproteinaemia.

    PubMed

    Durrington, P N; Mackness, M I; Bhatnagar, D; Julier, K; Prais, H; Arrol, S; Morgan, J; Wood, G N

    1998-05-01

    We have investigated the effects of two fibric acid derivatives, bezafibrate mono (400 mg daily) and gemfibrozil (600 mg b.d.), in 29 patients with type IIb hyperlipoproteinaemia. All patients received placebo and each drug for 8 weeks in randomised order in a double-blind, cross-over study designed to evaluate any different effects of the drugs on serum lipoproteins, cholesteryl ester transfer protein (CETP), cholesteryl ester transfer activity (CETA), plasma fibrinogen, plasminogen activator inhibitor-I (PAI-1) or paraoxonase. Serum cholesterol decreased (P < 0.05) with gemfibrozil, but the effect of bezafibrate on serum cholesterol did not achieve statistical significance (placebo 8.34 +/- 1.05 (mean +/- S.D.), gemfibrozil 7.70 +/- 1.23 and bezafibrate 7.8 +/- 1.37 mmol/l). Both drugs decreased the serum triglyceride concentration (both P < 0.001) (placebo 4.39 (3.13-5.75) (median (interquartile range)), bezafibrate 2.26 (1.89-3.89) and gemfibrozil 2.00 (1.30-3.30) mmol/l) and very low density lipoprotein (VLDL) cholesterol (both P < 0.001) (placebo 1.18 (0.74-2.30), bezafibrate 0.59 (0.34-0.85) and gemfibrozil 0.48 (0.34-0.68) mmol/l). Discontinuous gradient ultracentrifugation (DGU) revealed that Sf 60-400 (large VLDL) decreased by more than 50% and Sf 20-60 (small VLDL) by more than 30% with each of the drugs (both P < 0.001), neither of which affected the composition of these lipoproteins. Gemfibrozil decreased the concentration of Sf 12-20 lipoprotein (intermediate density lipoprotein; IDL) by 23% (P < 0.01), whereas the effect of bezafibrate on this lipoprotein did not achieve statistical significance. Neither drug altered the concentration of apolipoprotein B or of total Sf 0-12 lipoproteins (low density lipoprotein, (LDL)). Both, however, significantly increased the quantity of free cholesterol in Sf 0-12 lipoproteins (P < 0.05). Overall the concentration of triglycerides decreased significantly in all lipoproteins isolated by DGU (Sf 0-12, Sf 12-20, Sf

  6. Females with angina pectoris have altered lipoprotein metabolism with elevated cholesteryl ester transfer protein activity and impaired high-density lipoproteins-associated antioxidant enzymes

    PubMed Central

    PARK, JUNGHO; KIM, JAE-RYONG; SHIN, DONG-GU; CHO, KYUNG-HYUN

    2012-01-01

    In order to investigate non-invasive biomarkers for angina pectoris (AP), we analyzed the lipid and protein composition in individual lipoproteins from females with angina pectoris (n=22) and age- and gender-matched controls (n=20). In the low-density lipoprotein (LDL) fraction, the triglycerides (TG) and protein content increased in the AP group compared to the control group. The AP group had lower total cholesterol (TC) and elevated TG in the high-density lipoprotein (HDL) fraction. In the AP group, cholesteryl ester transfer protein (CETP) activity was enhanced in HDL and LDL, while lecithin:cholesterol acyltransferase (LCAT) activity in HDL3 was almost depleted. Antioxidant activity was significantly decreased in the HDL3 fraction, with a decrease in the HDL2 particle size. In the HDL3 fraction, paraoxonase and platelet activating factor-acetylhydrolase (PAF-AH) activity were much lower and the levels of CETP and apoC-III were elevated in the AP group. The LDL from the AP group was more sensitive to cupric ion-mediated oxidation with faster mobility. In conclusion, the lipoprotein fractions in the AP group had impaired antioxidant activity and increased TG and apoC-III with structural and functional changes. PMID:22211242

  7. Antileishmanial lead structures from nature: analysis of structure-activity relationships of a compound library derived from caffeic Acid bornyl ester.

    PubMed

    Glaser, Jan; Schultheis, Martina; Hazra, Sudipta; Hazra, Banasri; Moll, Heidrun; Schurigt, Uta; Holzgrabe, Ulrike

    2014-01-01

    Bioassay-guided fractionation of a chloroform extract of Valeriana wallichii (V. wallichii) rhizomes lead to the isolation and identification of caffeic acid bornyl ester (1) as the active component against Leishmania major (L. major) promastigotes (IC50 = 48.8 µM). To investigate the structure-activity relationship (SAR), a library of compounds based on 1 was synthesized and tested in vitro against L. major and L. donovani promastigotes, and L. major amastigotes. Cytotoxicity was determined using a murine J774.1 cell line and bone marrow derived macrophages (BMDM). Some compounds showed antileishmanial activity in the concentration range of pentamidine and miltefosine which are the standard drugs in use. In the L. major amastigote assay compounds 15, 19 and 20 showed good activity with relatively low cytotoxicity against BMDM, resulting in acceptable selectivity indices. Molecules with adjacent phenolic hydroxyl groups exhibited elevated cytotoxicity against murine cell lines J774.1 and BMDM. The Michael system seems not to be essential for antileishmanial activity. Based on the results compound 27 can be regarded as new lead structure for further structure optimization. PMID:24473204

  8. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions.

    PubMed

    Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z

    2016-10-01

    Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions. PMID:25365228

  9. PKC activation increases Ca2+ sensitivity of permeabilized lymphatic muscle via myosin light chain 20 phosphorylation-dependent and -independent mechanisms

    PubMed Central

    Dougherty, Patrick J.; Nepiyushchikh, Zhanna V.; Chakraborty, Sanjukta; Wang, Wei; Davis, Michael J.; Zawieja, David C.

    2014-01-01

    The contractile activity of muscle cells lining the walls of collecting lymphatics is responsible for generating and regulating flow within the lymphatic system. Activation of PKC signaling contributes to the regulation of smooth muscle contraction by enhancing sensitivity of the contractile apparatus to Ca2+. It is currently unknown whether PKC signaling contributes to the regulation of lymphatic muscle contraction. We hypothesized that the activation of PKC signaling would increase the sensitivity of the lymphatic myofilament to Ca2+. To test this hypothesis, we determined the effects of PKC activation with phorbol esters [PMA or phorbol dibutyrate (PDBu)] on the contractile behavior of α-toxin-permeabilized rat mesenteric and cervical lymphatics or the thoracic duct. The addition of PMA or PDBu induced a significant increase in the contractile force of submaximally activated α-toxin-permeabilized lymphatic muscle independent of a change in intracellular Ca2+ concentration, and the Ca2+-force relationship of lymphatic muscle was significantly left shifted, indicating greater myofilament Ca2+ sensitivity. Phorbol esters increased the maximal rate of force development, whereas the rate of relaxation was reduced. Western blot and immunohistochemistry data indicated that the initial rapid increase in tension development after stimulation by PDBu was associated with myosin light chain (MLC)20 phosphorylation; however, the later, steady-state Ca2+ sensitization of permeabilized lymphatic muscle was not associated with increased phosphorylation of MLC20 at Ser19, 17-kDa C-kinase-potentiated protein phosphatase-1 inhibitor at Thr38, or caldesmon at Ser789. Thus, these data indicate that PKC-dependent Ca2+ sensitization of lymphatic muscle may involve MLC20 phosphorylation-dependent and -independent mechanism(s). PMID:24414065

  10. Correction: Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-12-28

    Correction for 'Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry' by Hongchang Shi et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp02914g. PMID:26583937

  11. 5-formylfurfuryl esters from Duabanga grandiflora.

    PubMed

    Kaweetripob, Wirongrong; Mahidol, Chulabhorn; Prachyawarakorn, Vilailak; Prawat, Hunsa; Ruchirawat, Somsak

    2012-04-01

    5-Formylfurfuryl esters, duabanganals A-D, together with sixteen known compounds, a known 5-formylfurfuryl ester, latifolinal, eight pentacyclic triterpenes, a benzofuran derivative, an ellagic acid derivative, vanillin, β-sitosterol, β-sitosterol glucoside, 3-hydroxy-4-methoxycinnamaldehyde, and 5-formylfurfurol, were isolated from the stem bark of Duabanga grandiflora. The structures of these compounds were elucidated on the basis of spectroscopic analysis. Several of these metabolites were evaluated for cytotoxic activities against six cancer cell lines. PMID:22317905

  12. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  13. Serine proteinase inhibition by the active site titrant N alpha-(N, N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester. A comparative study.

    PubMed

    Ascenzi, P; Balliano, G; Gallina, C; Polticelli, F; Bolognesi, M

    2000-02-01

    Kinetics for the hydrolysis of the chromogenic active-site titrant N alpha-(N,N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester (Dmc-azaOrn-ONp) catalysed by bovine beta-trypsin, bovine alpha-thrombin, bovine Factor Xa, human alpha-thrombin, human Factor Xa, human Lys77-plasmin, human urinary kallikrein, Mr 33 000 and Mr 54 000 species of human urokinase, porcine pancreatic beta-kallikrein-A and -B and Ancrod (the coagulating serine proteinase from the Malayan pit viper Agkistrodon rhodostoma venom) have been obtained between pH 6.0 and 8.0, at 21.0 degrees C, and analysed in parallel with those for the enzymatic cleavage of N alpha-(N,N-dimethylcarbamoyl)-alpha-azalysine p-nitrophenyl ester (Dmc-azaLys-ONp). The enzyme kinetics are consistent with the minimum three-step catalytic mechanism of serine proteinases, the rate-limiting step being represented by the deacylation process. Bovine beta-trypsin kinetics are modulated by the acid-base equilibrium of the His57 catalytic residue (pKa approximately 6.9). Dmc-azaOrn-ONp and Dmc-azaLys-ONp bind stoichiometrically to the serine proteinase active site, and allow the reliable determination of the active enzyme concentration between 1.0 x 10-6 M and 3.0 x 10-4 M. The affinity and the reactivity for Dmc-azaOrn-ONp (expressed by Ks and k+2/Ks, respectively) of the serine proteinases considered are much lower than those for Dmc-azaLys-ONp. The very different affinity and reactivity properties for Dmc-azaOrn-ONp and Dmc-azaLys-ONp have been related to the different size of the ornithine/lysine side chains, and to the ensuing different positioning of the active-site titrants upon binding to the enzyme catalytic centre (i.e. to P1-S1 recognition). These data represent the first detailed comparative investigation on the catalytic properties of serine proteinases towards an ornithine derivative (i. e. Dmc-azaOrn-ONp). PMID:10672036

  14. Fumaric acid esters in dermatology

    PubMed Central

    Wollina, Uwe

    2011-01-01

    Fumaric acid esters (FAE) are substances of interest in dermatology. FAE exert various activities on cutaneous cells and cytokine networks. So far only a mixture of dimethylfumarate (DMF) and three salts of monoethylfumarate (MEF) have gained approval for the oral treatment of moderate-to-severe plaque-type psoriasis in Germany. DMF seems to be the major active component. There is evidence that FAE are not only effective and safe in psoriasis but granulomatous non-infectious diseases like granuloma annulare, necrobiosis lipoidica and sarcoidosis. In vitro and animal studies suggest some activity in malignant melanoma as well. PMID:23130241

  15. Modulation of mitogen-activated protein kinases (MAPK) activity in response to different immune stimuli in haemocytes of the common periwinkle Littorina littorea.

    PubMed

    Iakovleva, Nadya V; Gorbushin, Alexander M; Storey, Kenneth B

    2006-09-01

    The modulation of mitogen-activated protein kinase (MAPK) activity in haemocytes of the common periwinkle (Littorina littorea) in response to immune challenges by lipopolysaccharide from Echerichia coli (LPS), mannan from baker's yeast Saccharomyces cerevisiae and secretory-excretory products (SEP) of trematodes Himasthla elongata (Echinostomatidae) or after the treatment with phorbol ester (PMA) has been studied by Western blotting using affinity purified rabbit polyclonal antibodies. Exposure of the cells in suspension to PMA, LPS and mannan triggered an activation of p38 and ERK2. The JNK-mediated cascade was modulated differently by the elicitors examined. PMA treatment caused a transient activation of the JNK54 isoform, LPS exposure resulted in a decrease in activity of JNK46, and mannan had no effect on JNK phosphorylation status. Incubation of periwinkle haemocytes in culture medium containing trematode SEP did not affect the activity of any MAPK. PMID:16533608

  16. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Wang, Liming; Bai, Ru; Zhang, Tianlu; Chen, Chunying

    2015-09-01

    Monocytes/macrophages are important constituents of the innate immune system. Monocyte-macrophage differentiation is not only crucial for innate immune responses, but is also related to some cardiovascular diseases. Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials because of their broad-spectrum antimicrobial properties. However, the effect of AgNPs on the functions of blood monocytes is scarcely reported. Here, we report the impedance effect of AgNPs on THP-1 monocyte differentiation, and that this effect was mediated by autophagy blockade and lysosomal impairment. Firstly, AgNPs inhibit phorbol 12-myristate 13-acetate (PMA)-induced monocyte differentiation by down-regulating both expression of surface marker CD11b and response to lipopolysaccharide (LPS) stimulation. Secondly, autophagy is activated during PMA-induced THP-1 monocyte differentiation, and the autophagy inhibitor chloroquine (CQ) can inhibit this process. Thirdly, AgNPs block the degradation of the autophagy substrate p62 and induce autophagosome accumulation, which demonstrates the blockade of autophagic flux. Fourthly, lysosomal impairments including alkalization and decrease of lysosomal membrane stability were observed in AgNP-treated THP-1 cells. In conclusion, we demonstrate that the impedance of monocyte-macrophage differentiation by AgNPs is mediated by autophagy blockade and lysosomal dysfunction. Our results suggest that crosstalk exists in different biological effects induced by AgNPs.

  17. Effects of PMA (PHORBOL-12-MYRISTATE-13-ACETATE) on the Developing Rodent Brain.

    PubMed

    Dzietko, Mark; Hahnemann, Maria; Polley, Oliver; Sifringer, Marco; Felderhoff-Mueser, Ursula; Bührer, Christoph

    2015-01-01

    Perinatal infections have a negative impact on brain development. However, the underlying mechanisms leading to neurological impairment are not completely understood and reliable models of inflammation are urgently needed. Using phorbol-myristate-acetate as an activator of inflammation, we investigated the effect on the developing rodent brain. Neonatal rats and mice deficient in IL-18 or IRAK-4 were exposed to PMA. Brains were assessed for regulation of pro- and anti-inflammatory cytokines and cell death 24 hrs, 7 and 14 days after treatment. PMA induced an inflammatory response and caused widespread neurodegeneration in the brains of 3- and 7-day-old rats. In contrast, 14-day-old rats were resistant to the neurotoxic effect of PMA. Histological evaluation at the age of 14 and 21 days revealed a destruction of the cortical microstructure with decreased numerical density of neuronal cells. Mice deficient in IL-18 or IRAK-4 were protected against PMA induced brain injury. PMA treatment during a vulnerable period can alter brain development. IL-18 and IRAK-4 appear to be important for the development of PMA induced injury. PMID:25918710

  18. Phorbol 12-myristate 13-acetate promotes nuclear translocation of hepatic steroid response element binding protein-2.

    PubMed

    Wong, Tsz Yan; Tan, Yan Qin; Lin, Shu-Mei; Leung, Lai K

    2016-06-01

    Sterol regulatory element-binding protein (SREBP)-2 is a pivotal transcriptional factor in cholesterol metabolism. Factors interfering with the proper functioning of SREBP-2 potentially alter plasma lipid profiles. Phorbol 12-myristate 13-acetate (PMA), which is a common protein kinase C (PKC) activator, was shown to promote the post-translational processing and nuclear translocation of SREBP-2 in hepatic cells in the current study. Following SREBP-2 translocation, the transcripts of its target genes HMGCR and LDLR were upregulated as demonstrated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Electrophoretic mobility shift assays (EMSA) also demonstrated an induced DNA-binding activity on the sterol response element (SRE) domain under PMA treatment. The increase of activated Srebp-2 without the concurrent induced mRNA expression was also observed in an animal model. As the expression of SREBP-2 was not increased by PMA, the activation of PKC was the focus of investigation. Specific PKC isozyme inhibition and overexpression supported that PKCβ was responsible for the promoting effect. Further studies showed that the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), but not 5' adenosine monophosphate-activated protein kinase (AMPK), were the possible downstream signaling proteins of PKCβ. In conclusion, this study illustrated that PKCβ increased SREBP-2 nuclear translocation in a pathway mediated by MEK/ERK and JNK, rather than the one dictated by AMPK. These results revealed a novel signaling target of PKCβ in the liver cells. PMID:27032751

  19. Caffeic acid phenethyl ester activates pro-apoptotic and epithelial-mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis.

    PubMed

    Gherman, Claudia; Braicu, Ovidiu Leonard; Zanoaga, Oana; Jurj, Anca; Pileczki, Valentina; Maralani, Mahafarin; Drigla, Flaviu; Braicu, Cornelia; Budisan, Liviuta; Achimas-Cadariu, Patriciu; Berindan-Neagoe, Ioana

    2016-02-01

    Ovarian cancer is a highly aggressive pathology, displaying a poor prognosis and chemoresistance to classical therapy. The present study was conducted to evaluate the effect of caffeic acid phenethyl ester (CAPE) on survival of ovarian cancer cell lines, A2780 (sensitive to cisplatin) and A2780cis (resistant to cisplatin). MTT assay was used to evaluate cell viability, while the apoptotic processes were examined by flow cytometry and qRT-PCR. A reduction of cell proliferation and activation of the apoptosis was observed in both cell lines. qRT-PCR evaluation demonstrated the activation of the pro-apoptotic genes (BAD, CASP8, FAS, FADD, p53) in both cell lines. The limited therapeutic effect in A2780 cells is explained by the activation of epithelial-mesenchymal transition-related genes (ZEB1, ZEB2, or TGFBB1) as displayed by Ingenuity Network analysis. Overall data suggest that CAPE can be used as an alternative in sensitizing cells to chemotherapy. PMID:26838168

  20. Synthesis and in vitro antitumor activity of water soluble sulfonate- and ester-functionalized silver(I) N-heterocyclic carbene complexes.

    PubMed

    Gandin, Valentina; Pellei, Maura; Marinelli, Marika; Marzano, Cristina; Dolmella, Alessandro; Giorgetti, Marco; Santini, Carlo

    2013-12-01

    The novel N-heterocyclic carbene ligand precursor NaHIm(PrSO3) (sodium 3,3'-(1H-imidazole-3-ium-1,3-diyl)dipropane-1-sulfonate) and the related silver carbene complex [Na4(Im(PrSO3))2]AgCl have been synthesized and characterized. Recrystallization of the analogous [Im(AcEt)]AgCl complex allowed the development of X-ray analysis which led to achieve relevant structural information concerning this silver(I) derivative. Both sulfonate- and ester-functionalized silver(I) N-heterocyclic carbenes (NHCs) were evaluated for their antiproliferative activities in a wide panel of human cancer cells. Complex [Na4(Im(PrSO3))2]AgCl showed a significant in vitro antiproliferative activity that was correlated with its strong ability to inhibit thioredoxin reductase. The inhibition of this selenoenzyme determined an alteration of the cellular redox environment thus leading to the induction of the apoptotic cell death through the activation of the ASK-1 pathway. PMID:24121303

  1. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae.

    PubMed

    Silva, Lilian N D; Ribeiro-Neto, José A; Valadares, Jéssica M M; Costa, Mariana M; Lima, Luciana A R S; Grillo, Luciano A M; Cortes, Vanessa F; Santos, Herica L; Alves, Stênio N; Barbosa, Leandro A

    2016-08-01

    Culex quinquefasciatus is the main vector of lymphatic filariasis and combating this insect is of great importance to public health. There are reports of insects that are resistant to the products currently used to control this vector, and therefore, the search for new products has increased. In the present study, we have evaluated the effects of fatty acid methyl esters (FAMEs) that showed larvicidal activity against C. quinquefasciatus, on glucose, total protein, and triacylglycerol contents and Na(+)/K(+)-ATPase activity in mosquito larvae. The exposure of the fourth instar larvae to the compounds caused a decrease in the total protein content and an increase in the activity of the Na(+)/K(+)-ATPase. Furthermore, the direct effect of FAMEs on cell membrane was assessed on purified pig kidney Na(+)/K(+)-ATPase membranes, erythrocyte ghost membranes, and larvae membrane preparation. No modifications on total phospholipids and cholesterol content were found after FAMEs 20 min treatment on larvae membrane preparation, but only 360 µg/mL FAME 2 was able to decrease total phospholipid of erythrocyte ghost membrane. Moreover, only 60 and 360 µg/mL FAME 3 caused an activation of purified Na(+)/K(+)-ATPase, that was an opposite effect of FAMEs treatment in larvae membrane preparation, and caused an inhibition of the pump activity. These data together suggest that maybe FAMEs can modulate the Na(+)/K(+)-ATPase on intact larvae for such mechanisms and not for a direct effect, one time that the direct effect of FAMEs in membrane preparation decreased the activity of Na(+)/K(+)-ATPase. The biochemical changes caused by the compounds were significant and may negatively influence the development and survival of C. quinquefasciatus larvae. PMID:26993642

  2. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity.

    PubMed

    Ieda, Naoya; Yamada, Sota; Kawaguchi, Mitsuyasu; Miyata, Naoki; Nakagawa, Hidehiko

    2016-06-15

    Histone deacetylases (HDACs) are involved in epigenetic control of the expression of various genes by catalyzing deacetylation of ε-acetylated lysine residues. Here, we report the design, synthesis and evaluation of the (7-diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid (AC-SAHA) as a caged HDAC inhibitor, which releases the known pan-HDAC inhibitor SAHA upon cleavage of the photolabile (7-diethylaminocoumarin-4-yl)methyl protecting group in response to photoirradiation. A key advantage of AC-SAHA is that the caged derivative itself shows essentially no HDAC-inhibitory activity. Upon photoirradiation, AC-SAHA decomposes to SAHA and a 7-diethylaminocoumarin derivative, together with some minor products. We confirmed that AC-SAHA inhibits HDAC in response to photoirradiation in vitro by means of chemiluminescence assay. AC-SAHA also showed photoinduced inhibition of proliferation of human colon cancer cell line HCT116, as determined by MTT assay. Thus, AC-SAHA should be a useful tool for spatiotemporally controlled inhibition of HDAC activity, as well as a candidate chemotherapeutic reagent for human colon cancer. PMID:27143132

  3. Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia.

    PubMed

    Kim, Jae-Yong; Seo, Juyi; Cho, Kyung-Hyun

    2011-11-01

    Although many artificial sweeteners (AS) have safety issues, the AS have been widely used in industry. To determine the physiologic effect of AS in the presence of hyperlipidemia, zebrafish were fed aspartame or saccharin with a high-cholesterol diet (HCD). After 12 days, 30% of zebrafish, which consumed aspartame and HCD, died with exhibiting swimming defects. The aspartame group had 65% survivability, while the control and saccharin groups had 100% survivability. Under HCD, the saccharin-fed groups had the highest increase in the serum cholesterol level (599 mg/dL). Aspartame-fed group showed a remarkable increase in serum glucose (up to 125 mg/dL), which was 58% greater than the increase in the HCD alone group. The saccharin and HCD groups had the highest cholesteryl ester transfer protein (CETP) activity (52% CE-transfer), while the HCD alone group had 42% CE-transfer. Histologic analysis revealed that the aspartame and HCD groups showed more infiltration of inflammatory cells in the brain and liver sections. Conclusively, under presence of hyperlipidemia, aspartame-fed zebrafish exhibited acute swimming defects with an increase in brain inflammation. Saccharin-fed zebrafish had an increased atherogenic serum lipid profile with elevation of CETP activity. PMID:21855599

  4. Active site titration of bovine beta-trypsin by N alpha-(N,N-dimethylcarbamoyl)-alpha-aza-lysine p-nitrophenyl ester: kinetic and crystallographic analysis.

    PubMed

    Sartori, P; Djinovic Carugo, K; Ferraccioli, R; Balliano, G; Milla, P; Ascenzi, P; Bolognesi, M

    1995-01-16

    Kinetics of bovine beta-trypsin (trypsin) with the N alpha-(N,N-dimethylcarbamoyl)-alpha-aza-lysine p-nitrophenyl ester (Dmc-azaLys-ONp) was obtained at pH 6.2 and 21.0 degrees C. Dmc-azaLys-ONp shows the characteristics of an optimal active site titrant in that it (i) gives titrations in a short time, (ii) is a stable and soluble compound with a stoichiometric reaction that is easily and directly detectable, and (iii) allows titrations over a wide range of enzyme concentration. Moreover, the three-dimensional structure of the trypsin.N alpha-(N,N-dimet hylcarbamoyl)-alpha-aza-lysine acyl.enzyme adduct has been solved by X-ray crystallography at 2.0 A resolution (R = 0.145). The Dmc-azaLys moiety of the active site titrant is sited in the serine proteinase reaction center, and is covalently linked to the OG atom of the Ser195 catalytic residue. PMID:7821429

  5. Stimulation of cell proliferation by glutathione monoethyl ester in aged bone marrow stromal cells is associated with the assistance of TERT gene expression and telomerase activity.

    PubMed

    Aminizadeh, Najmeh; Tiraihi, Taki; Mesbah-Namin, Seyed Alireza; Taheri, Taher

    2016-08-01

    The proliferation and differentiation potential of aged bone marrow stromal cells (BMSCs) are significantly reduced. In order to improve the performance of the aged BMSCs, these cells were treated with 2 mM glutathione monoethyl ester (GSH-MEE) for 24 h. Proliferation rate, telomerase activity, telomere length, and differentiation to cholinergic neuron-like cells (CNLCs) were observed to increase. Though, the expression level of telomerase reverse transcriptase gene increased, but CTC1 and TEN1 genes from Ctc1-Stn1-Ten1 complex encoding proteins with regulatory function significantly decreased. Trypan blue exclusion assay was used to analyze the proliferation and, while telomere length, its several related gene expressions, and telomerase activity were measured using the real time reverse transcription-polymerase chain reaction and polymerase chain reaction enzyme-linked immunosorbent assay techniques, respectively. CNLCs differentiation potential was evaluated by estimating the percentage of choline acetyltransferase immunereactive cells.The results suggested that GSH-MEE could improve aged rat BMSC properties and would be of potential benefit for enhancing the performance of aged people's BMSCs. PMID:27251157

  6. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    PubMed

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed. PMID:24384752

  7. Phosphatidylinositol kinase is activated in membranes derived from cells treated with epidermal growth factor.

    PubMed Central

    Walker, D H; Pike, L J

    1987-01-01

    The ability of epidermal growth factor (EGF) to stimulate phosphatidylinositol (PtdIns) kinase activity in A431 cells was examined. The incorporation of 32P from [gamma-32P]ATP into PtdIns by A431 membranes was increased in membranes prepared from cells that had been pretreated with EGF. Demonstration of a stimulation of the PtdIns kinase activity by EGF required the use of subconfluent cultures and was dependent on the inclusion of protease inhibitors in the buffers used to prepare the membranes. Stimulation of the PtdIns kinase activity was rapid. The activation peaked 2 min after the addition of EGF and declined slowly thereafter. Half-maximal stimulation of the PtdIns kinase occurred at 7 nM EGF. Kinetic analyses of the reaction indicated that treatment of the cells with EGF resulted in a decrease in the Km for PtdIns with no change in the Vmax. The kinetic parameters for the utilization of ATP were unchanged in the EGF-treated membranes compared to the control membranes. Pretreatment of the cells with the phorbol ester phorbol 12-myristate 13-acetate blocked the ability of EGF to stimulate PtdIns kinase activity. These findings demonstrate that a PtdIns kinase activity in A431 cells is regulated by EGF and provide a good system for examining the mechanism by which EGF stimulates the activity of this intracellular enzyme. PMID:2823265

  8. Conservative tryptophan mutants of the protein tyrosine phosphatase YopH exhibit impaired WPD-loop function and crystallize with divanadate esters in their active sites.

    PubMed

    Moise, Gwendolyn; Gallup, Nathan M; Alexandrova, Anastassia N; Hengge, Alvan C; Johnson, Sean J

    2015-10-27

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  9. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  10. Comparative study of human intestinal and hepatic esterases as related to enzymatic properties and hydrolizing activity for ester-type drugs.

    PubMed

    Inoue, M; Morikawa, M; Tsuboi, M; Ito, Y; Sugiura, M

    1980-08-01

    In attempts to determine the exact role of intestinal esterase in the body, we purified esterases from human intestinal mucosa and liver, and compared the enzymatic properties and substrate specificities with those of purified esterases. Esterase from human liver was purified 58-fold, by treatment with butanol, DE-52 and DEAE Sephadex A-50 column chromatographies, Sephadex G-200 gel filtration, and isoelectric focusing. The purified preparation showed a single band by polyacylamide gel electrophoresis. The molecular weights of intestinal and hepatic esterases were determined to be 53,000-55,000 and 180,000, respectively, by gel filtration on Sephadex G-200. The activity of the purified intestinal and hepatic esterases was strongly inhibited by diethyl-p-nitrophenyl phosphate and diisopropyl fluorophosphate, and was not inhibited by eserine sulfate and p-chloromercuribenzoate. Moreover, the purified esterases hydrolyzed ester-type drugs such as aspirin, clofibrate, indanyl carbenicillin and procaine. Hepatic esterase had properties similar to those of intestinal esterase with respect to the sensitivity to organophosphate and the substrate specificity. However, the two purified esterases differed in properties such as molecular weight, isoelectric point, thermostability and optimal pH. PMID:7206363

  11. Design, synthesis and evaluation of the multidrug resistance-reversing activity of pyridine acid esters of podophyllotoxin in human leukemia cells.

    PubMed

    Zhang, Lei; Chen, Fan; Zhang, Zeguo; Chen, Yongzheng; Lin, Ya; Wang, Jing

    2016-09-15

    Multidrug resistance (MDR) is the main cause for chemotherapeutic failure in cancer treatment. To overcome MDR, a serious of pyridine acid esters of podophyllotoxin was synthesized and their antiproliferation activities were evaluated against two human chronic myeloid leukemia cell lines in vitro. Most of them exhibited potent growth inhibition with IC50 values in the nanomolar range as well as markedly reduced resistance factors. The most potent compound, Y8 exhibited an IC50 of 0.046±0.003μM against resistance K562/ADR cells, showing more significant than that of adriamycin and etoposide, respectively. Furthermore, Y8 efficiently triggered cell cycle arrest at S phase and simultaneously induced apoptosis in K562/ADR cells. Meanwhile, Y8 also regulated the expression levels of cell cycle- and apoptosis-related proteins. Additionally, Y8 stimulated the ERK1/2 signalling and reduced the expression of Pgp protein. Finally, on the basis of results obtained using U0126, an ERK1/2 inhibitor, the ERK1/2 signalling pathway was proposed for the multidrug resistance-reversing effect of Y8 in K562/ADR cells. Together, Y8 could be a novel potential MDR reversal agent for the treatment of drug-resistant leukemia. PMID:27503681

  12. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6.

    PubMed

    Alhouayek, Mireille; Masquelier, Julien; Cani, Patrice D; Lambert, Didier M; Muccioli, Giulio G

    2013-10-22

    Proinflammatory macrophages are key mediators in several pathologies; thus, controlling their activation is necessary. The endocannabinoid system is implicated in various inflammatory processes. Here we show that in macrophages, the newly characterized enzyme α/β-hydrolase domain 6 (ABHD6) controls 2-arachidonoylglycerol (2-AG) levels and thus its pharmacological effects. Furthermore, we characterize a unique pathway mediating the effects of 2-AG through its oxygenation by cyclooxygenase-2 to give rise to the anti-inflammatory prostaglandin D2-glycerol ester (PGD2-G). Pharmacological blockade of cyclooxygenase-2 or of prostaglandin D synthase prevented the effects of increasing 2-AG levels by ABHD6 inhibition in vitro, as well as the 2-AG-induced increase in PGD2-G levels. Together, our data demonstrate the physiological relevance of the interaction between the endocannabinoid and prostanoid systems. Moreover, we show that ABHD6 inhibition in vivo allows for fine-tuning of 2-AG levels in mice, therefore reducing lipopolysaccharide-induced inflammation, without the characteristic central side effects of strong increases in 2-AG levels obtained following monoacylglycerol lipase inhibition. In addition, administration of PGD2-G reduces lipopolysaccharide-induced inflammation in mice, thus confirming the biological relevance of this 2-AG metabolite. This points to ABHD6 as an interesting therapeutic target that should be relevant in treating inflammation-related conditions, and proposes PGD2-G as a bioactive lipid with potential anti-inflammatory properties in vivo. PMID:24101490

  13. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  14. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  15. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    SciTech Connect

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  16. Probing the active center of benzaldehyde lyase with substitutions and the pseudo-substrate analog benzoylphosphonic acid methyl ester

    PubMed Central

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2009-01-01

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438

  17. Synthesis of bioreductive esters from fungal compounds.

    PubMed

    Weerapreeyakul, Natthida; Anorach, Rutchayaporn; Khuansawad, Thidarut; Yenjai, Chavi; Isaka, Masahiko

    2007-06-01

    Four new bioreductive esters (7-10) have been synthesized. Their structures composed of trimethyl lock containing quinone propionic acid with an ester linkage to the fungal cytotoxic compounds; preussomerin G (1), preussomerin I (2), phaseolinone (3) and phomenone (4). The synthesized esters are aimed to act via reductive activation specifically at the cancer cells, resulting from hypoxia and overexpression of reductases. Hence, the toxicity will be lessened during distribution across the normal cells. The anticancer activity was determined in cancer cell lines with reported reductase i.e., BC-1 cells and NCI-H187 as well as in non-reductase containing cancer cells; KB cells. When considering each cell lines, result showed that structure modification giving to 7-10 led to less cytotoxicity than their parent compounds (1-4). Both 7 and 8 were strongly cytotoxic (IC50 < or = 5 microg/ml) to NCI-H187, whereas 9 and 10 were moderately cytotoxic (IC50 = 6-10 microg/ml) to BC-1 cells. Additional study of stability of represented phenolic ester (8) and an alcoholic ester (9) were performed. Result illustrated that both 8 and 9 were stable in the presence of esterase. Therefore, the cytotoxicity of the synthesized compounds (8-10) might be due to partial bioreductive activation in the cancer cells. PMID:17541198

  18. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway.

    PubMed

    Lin-Holderer, Jiemeng; Li, Lexiao; Gruneberg, Daniel; Marti, Hugo H; Kunze, Reiner

    2016-06-01

    Oxidative stress is a hallmark of ischemic stroke pathogenesis causing neuronal malfunction and cell death. Up-regulation of anti-oxidative genes through activation of the NF-E2-related transcription factor 2 (Nrf2) is one of the key mechanisms in cellular defense against oxidative stress. Fumaric acid esters (FAEs) represent a class of anti-oxidative and anti-inflammatory molecules that are already in clinical use for multiple sclerosis therapy. Purpose of this study was to investigate whether FAEs promote neuronal survival upon ischemia, and analyze putative underlying molecular mechanisms in neurons. Murine organotypic hippocampal slice cultures, and two neuronal cell lines were treated with dimethyl fumarate (DMF) and monomethyl fumarate (MMF). Ischemic conditions were generated by exposing cells and slice cultures to oxygen-glucose deprivation (OGD), and cell death was determined through propidium iodide staining. Treatment with both DMF and MMF immediately after OGD during reoxygenation strongly reduced cell death in hippocampal cultures ex vivo. Both DMF and MMF promoted neuronal survival in HT-22 and SH-SY5Y cell lines exposed to ischemic stress. DMF but not MMF activated the anti-oxidative Nrf2 pathway in neurons. Accordingly, Nrf2 knockdown in murine neurons abrogated the protective effect of DMF but not MMF. Moreover, FAEs did not activate the hypoxia-inducible factor (HIF) pathway suggesting that this pathway may not significantly contribute to FAE mediated neuroprotection. Our results may provide the basis for a new therapeutic approach to treat ischemic pathologies such as stroke with a drug that already has a broad safety record in humans. PMID:26801077

  19. Self-Motion Depending on the Physicochemical Properties of Esters as the Driving Force

    ERIC Educational Resources Information Center

    Nakata, Satoshi; Matsuo, Kyoko; Kirisaka, Junko

    2007-01-01

    The self-motion of an ester boat is investigated depending on the physicochemical properties of the surface-active substance. The results show that the ester boat moves towards the higher surface tension generating as the driving force.

  20. Photodynamic action of LED-activated pyropheophorbide-α methyl ester in cisplatin-resistant human ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Xu, C. S.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; He, Y.; Leung, A. W. N.

    2009-04-01

    Cisplatin-resistance is a major obstacle for the successful therapy to ovarian cancer, and exploring novel approach to deactivate cisplatin-resistant ovarian cells will improve the clinical outcomes. Our present study showed that there was no dark cytotoxicity of MPPa in the COC1/DDP cells at the dose of 0.25 - 4 μM, and LED-activated MPPa resulted in drug dose- and light-dependent cytotoxicity. Apoptotic rate 6 h after LED-activated MPPa (2 μM) increased to 16.71% under the light energy of 1 J/cm2. Confocal laser scanning microscopy showed that MPPa mainly localized in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria in the COC1/DDP cells. Mitochondrial membrane potential (ΔΨm) was collapsed when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. These data demonstrated that LED-activated MPPa significantly deactivated cisplatin-resistant ovarian cell line COC1/DDP cells and enhanced apoptosis and decreased ΔΨm, which suggests LED is an efficient light source for PDT and LED-activated MPPa can be developed as new modality for treating cisplatin-resistant ovarian.

  1. Tumor promoter-like activity of the molluscicidal latex of 'Crown-of-Thorns' (Euphorbia milii var. hislopii) in the V79 metabolic cooperation assay.

    PubMed

    Cruz, C M; Kasper, P; Cataldo, A; Zamith, H P; Paumgartten, F J

    1996-11-01

    The latex of 'Crown-of-Thorns' (Euphorbia milii var. hislopii, syn. E. splendens) has been shown to be a potent plant molluscicide that could be used against the snails which are intermediate hosts of Schistosoma trematodes. However, a comprehensive toxicological evaluation of the latex is necessary before its large-scale use in schistosomiasis control becomes possible. In fact, one cause for concern is the presence of tumor-promoting phorbol esters in several plants of the Euphorbiaceae family. Phorbol esters as well as a number of other known tumor promoters share the common property of inhibiting metabolic cooperation (i.e., exchange of low molecular weight molecules via gap junctions) between Chinese hamster V79 cells in monolayer cultures. The present study was undertaken to determine if latex of E. milii presents tumor promoter-like activity is this short-term in vitro assay. Samples of lyophilized E. milii latex were tested at a noncytotoxic concentration range (1, 10, 50 and 100 micrograms/ml) in three independent experiments. 12-O-Tetradecanoylphorbol-13-acetate (10 ng/ml) was used as positive control. In all three assays, E. milii latex consistently inhibited metabolic cooperation between V79 cells at concentrations > or = 10 micrograms/ml. These results that E. milii latex contains tumor-promoting substances. These findings suggest that the use of crude latex as a molluscicide may pose a carcinogenic hazard to people who are continuously exposed to the product. PMID:9196556

  2. Mitochondrial toxicity of phthalate esters.

    PubMed Central

    Melnick, R L; Schiller, C M

    1982-01-01

    The effects of mono- and dibutyl phthalate and mono- and di(2-ethylhexyl) phthalate on energy-dependent K+ uptake, respiration rates, and succinate cytochrome c reductase activities of isolated rat liver mitochondria were evaluated. The energy-coupling processes, active K+ transport and oxidative phosphorylation, were affected most by di-n-butyl phthalate and mono(2-ethylhexyl) phthalate. Mono-n-butyl phthalate had a moderate effect on energy coupling and di(2-ethylhexyl) phthalate had no apparent effect. The potency of inhibition of succinate cytochrome c reductase activity was mono(2-ethylhexyl) phthalate greater than di-n-butyl phthalate greater than mono-n-butyl phthalate = di(2-ethylhexyl) phthalate. It is concluded that phthalate esters affect mitochondrial activities by altering the permeability properties of the inner membrane and by inhibiting succinate dehydrogenase activity. PMID:7140696

  3. Steroidal esters from Ferula sinkiangensis.

    PubMed

    Li, Guangzhi; Li, Xiaojin; Cao, Li; Shen, Liangang; Zhu, Jun; Zhang, Jing; Wang, Junchi; Zhang, Lijing; Si, Jianyong

    2014-09-01

    Two new steroidal esters with an unusual framework, Sinkiangenorin A and B, a new organic acid glycoside, Sinkiangenorin C, and four known lignin compounds were isolated from the seeds of Ferula sinkiangensis. The structures of these compounds were established by spectroscopic analysis and single-crystal X-ray diffraction. All of the isolated compounds were tested against Hela, K562 and AGS human cancer cell lines. Sinkiangenorin C showed cytotoxic activity against AGS cells with an IC50 of 36.9 μM. PMID:24979220

  4. Phthalate esters as peroxisome proliferator carcinogens.

    PubMed Central

    Warren, J R; Lalwani, N D; Reddy, J K

    1982-01-01

    The phthalate ester di(2-ethylhexyl) phthalate is both a peroxisome proliferator and a hepatic carcinogen. Peroxisome proliferators as a class are hepatocarcinogenic in rodent species. However, none of the peroxisome proliferators tested to date including the phthalate esters and related alcohol and acid analogs have demonstrated mutagenic or DNA-damaging activity in the in vitro Salmonella typhimurium/microsomal or the lymphocyte 3H-thymidine assays. A working hypothesis is proposed that peroxisome proliferation itself initiates neoplastic transformation of hepatic parenchymal cells by increasing intracellular rates of DNA-damaging reactive oxygen production. Evidence which supports such a hypothesis includes increased fatty acid beta-oxidation, elevated H2O2 levels, accumulation of peroxidized lipofuscin, disproportionately small increase in catalase, and elevated peroxisomal uricase activity which accompany peroxisome proliferation in hepatocytes. Direct testing of this hypothesis will provide insight into mechanisms of phthalate ester carcinogenicity and cytotoxicity. Images FIGURE 1. PMID:6754363

  5. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents.

    PubMed

    Qin, Tian; Cornella, Josep; Li, Chao; Malins, Lara R; Edwards, Jacob T; Kawamura, Shuhei; Maxwell, Brad D; Eastgate, Martin D; Baran, Phil S

    2016-05-13

    Alkyl carboxylic acids are ubiquitous in all facets of chemical science, from natural products to polymers, and represent an ideal starting material with which to forge new connections. This study demonstrates how the same activating principles used for decades to make simple C-N (amide) bonds from carboxylic acids with loss of water can be used to make C-C bonds through coupling with dialkylzinc reagents and loss of carbon dioxide. This disconnection strategy benefits from the use of a simple, inexpensive nickel catalyst and exhibits a remarkably broad scope across a range of substrates (>70 examples). PMID:27103669

  6. Acid-catalyzed carboxylic acid esterification and ester hydrolysis mechanism: acylium ion as a sharing active intermediate via a spontaneous trimolecular reaction based on density functional theory calculation and supported by electrospray ionization-mass spectrometry.

    PubMed

    Shi, Hongchang; Wang, Yilei; Hua, Ruimao

    2015-11-11

    By DFT calculation, we found that acid-catalyzed carboxylic acid esterification and ester hydrolysis are brief two-step reactions. First, the carboxylic acid hydroxyl-oxygen or ester alkyl-oxygen is protonated, which generates a highly active acylium ion. The protonation requires an activation energy (Ea) of 4-10 kcal mol(-1), and is the rate-controlling step of the esterification or hydrolysis. Sequentially, the acylium ion spontaneously reacts with two alcohol or two water molecules to form a neutral product molecule; this is a trimolecular reaction. The acylium ion is the highly active intermediate shared by esterification and hydrolysis. ESI-MS data for several typical carboxylic acids confirmed that their acylium ions are easily generated. For 2,4,6-trialkylbenzoic acid and its ester, the two unsubstituted carbons in the benzene ring are very easily protonated, and we have thus revealed the root of the success of Newman's method. Based on these results, the popular esterification and hydrolysis mechanism in organic chemistry textbooks is incorrect. PMID:26445892

  7. Oxidation of methionine residues in proteins of activated human neutrophils.

    PubMed Central

    Fliss, H; Weissbach, H; Brot, N

    1983-01-01

    A simple assay for the detection of 35S-labeled methionine sulfoxide residues in proteins is described. The assay, which is based on the ability of CNBr to react with methionine but not with methionine sulfoxide, requires the prelabeling of cellular proteins with [35S]methionine. The assay was used to study the extent of methionine oxidation in newly synthesized proteins of both activated and quiescent human neutrophils. In cells undergoing a phorbol 12-myristate 13-acetate-induced respiratory burst, about 66% of all methionine residues in newly synthesized proteins were oxidized to the sulfoxide derivative, as compared with 9% in cells not treated with the phorbol ester. In contrast, quantitation of methionine sulfoxide content in the total cellular protein by means of amino acid analysis showed that only 22% of all methionine residues were oxidized in activated cells as compared with 9% in quiescent cells. It is proposed that methionine residues in nascent polypeptide chains are more susceptible to oxidation than those in completed proteins. PMID:6580633

  8. Activation of bone marrow phagocytes following benzene treatment of mice.

    PubMed Central

    Laskin, D L; MacEachern, L; Snyder, R

    1989-01-01

    Techniques in flow cytometry/cell sorting were used to characterize the effects of benzene and its metabolites on subpopulations of bone marrow cells. Treatment of male Balb/c mice with benzene (880 mg/kg) or a combination of its metabolites, hydroquinone and phenol (50 mg/kg), resulted in a 30 to 40% decrease in bone marrow cellularity. Flow cytometric analysis revealed two subpopulations of bone marrow cells that could be distinguished by their size and density or granularity. The larger, more dense subpopulation was found to consist predominantly of macrophages and granulocytes as determined by monoclonal antibody binding and by cell sorting. Benzene treatment had no selective cytotoxic effects on subpopulations of bone marrow cells. To determine if benzene treatment activated bone marrow phagocytes, we quantified production of hydrogen peroxide by these cells using the fluorescent indicator dye, 2',7'-dichlorofluorescein diacetate. We found that macrophages and granulocytes from bone marrow of treated mice produced 50% more hydrogen peroxide in response to the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate than did cells from control animals. It is hypothesized that phagocyte activation and production of cytotoxic reactive oxygen intermediates may contribute to hematotoxicity induced by benzene. PMID:2676504

  9. Human neutrophil adhesion to bovine aortic endothelium. Evidence for endothelial lipoxygenase activity.

    PubMed

    Damtew, B; Goldsmith, G; Tserng, K Y; Spagnuolo, P J

    1993-06-01

    We examined the effect of phorbol myristate acetate on cultured bovine aortic endothelial cells to determine the role of endothelial cells in neutrophil-endothelial cell adhesive interactions. Confluent endothelial cells were preincubated with phorbol myristate acetate and other inflammatory signals including N-formylmethionyl-leucyl-phenylalanine (f-Met-Leu-Phe), the ionophore A23187, and thrombin; washed extensively; and incubated with 51Cr-labeled neutrophils. Preincubation of endothelium with A23187, phorbol ester, or thrombin increased adherence of neutrophils by 3.1-, 5.7-, and 3.7-fold over baseline. In contrast, f-Met-Leu-Phe preincubation failed to increase adhesion over baseline. Supernatants from endothelium preincubated with phorbol failed to augment adherence of untreated endothelial cells. Preincubation of endothelium with lipoxygenase inhibitors nordihydroguaiaretic acid (50 microM), 5,8,11,14-eicosatetraenoic acid (50 microM), and BW755C (50 microM) inhibited the effect of phorbol preincubation of endothelium significantly by 55, 27, and 22%, respectively. In contrast, inhibitors of cyclooxygenase and thromboxane synthase or thromboxane receptor antagonists had no effect on phorbol-induced adhesion. Specific desensitization of neutrophil adhesion to phorbol-treated endothelium could be demonstrated by prior exposure of neutrophils to low concentrations of leukotriene B4 (3.8 x 10(-10) M). Endothelium preincubated with phorbol but not f-Met-Leu-Phe or thrombin produced several fatty acid peaks at 280 nm, one of which comigrated with authentic leukotriene B4 (LTB4). This peak, isolated and purified, increased endothelial cell adherence in a temporal fashion in the same way as LTB4 and was demonstrated to be LTB4 by ultraviolet spectroscopy, high-performance liquid chromatography, and mass spectroscopy. These data demonstrate that endothelial cell-derived lipoxygenase metabolites, in particular LTB4, are involved, in part, in the acute regulation of

  10. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of catonic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrogen hydrolysis rate constant.

  11. Off-Target Vascular Effects of Cholesteryl Ester Transfer Protein Inhibitors Involve Redox-Sensitive and Signal Transducer and Activator of Transcription 3-Dependent Pathways.

    PubMed

    Rios, Francisco J; Lopes, Rheure A; Neves, Karla B; Camargo, Livia L; Montezano, Augusto C; Touyz, Rhian M

    2016-05-01

    Elevated blood pressure was an unexpected outcome in some cholesteryl ester transfer protein (CETP) inhibitor trials, possibly due to vascular effects of these drugs. We investigated whether CETP inhibitors (torcetrapib, dalcetrapib, anacetrapib) influence vascular function and explored the putative underlying molecular mechanisms. Resistance arteries and vascular smooth muscle cells (VSMC) from rats, which lack the CETP gene, were studied. CETP inhibitors increased phenylephrine-stimulated vascular contraction (logEC50 (:) 6.6 ± 0.1; 6.4 ± 0.06, and 6.2 ± 0.09 for torcetrapib, dalcetrapib, and anacetrapib, respectively, versus control 5.9 ± 0.05). Only torcetrapib reduced endothelium-dependent vasorelaxation. The CETP inhibitor effects were ameliorated by N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, and by S3I-201 [2-hydroxy-4-[[2-(4-methylphenyl)sulfonyloxyacetyl]amino]benzoic acid], a signal transducer and activator of transcription 3 (STAT3) inhibitor. CETP inhibitors increased the phosphorylation (2- to 3-fold) of vascular myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1) (procontractile proteins) and stimulated ROS production. CETP inhibitors increased the phosphorylation of STAT3 (by 3- to 4-fold), a transcription factor important in cell activation. Activation of MLC was reduced by NAC, GKT137831 [2-(2-chlorophenyl)-4-[3-(dimethylamino)phenyl]-5-methyl-1H-pyrazolo[4,3-c]pyridine-3,6-dione] (Nox1/4 inhibitor), and S3I-201. The phosphorylation of STAT3 was unaffected by NAC and GKT137831. CETP inhibitors did not influence activation of mitogen-activated proteins kinases (MAPK) or c-Src. Our data demonstrate that CETP inhibitors influence vascular function and contraction through redox-sensitive, STAT3-dependent, and MAPK-independent processes. These phenomena do not involve CETP because the CETP gene is absent in rodents. Findings from our study indicate that CETP inhibitors have vasoactive properties, which

  12. Kenaf methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  13. Kapok oil methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  14. meso-Ester Corroles.

    PubMed

    Canard, Gabriel; Gao, Di; D'Aléo, Anthony; Giorgi, Michel; Dang, Florian-Xuan; Balaban, Teodor Silviu

    2015-05-18

    The introduction of ester groups on the 5- and 15-meso positions of corroles stabilizes them against oxidation and induces a redshift of their absorption and emission spectra. These effects are studied through the photophysical and electrochemical characterization of up to 16 different 5,15-diester corroles, in which the third meso position is free or occupied by an aryl group, a long alkyl chain, or an ester moiety. Single-crystal X-ray structure analysis of five 5,15-diestercorroles and DFT and time-dependent DFT calculations show that the strong electron-withdrawing character of the 5,15 ester substituents is reinforced by their π overlap with the macrocyclic aromatic system. The crystal packing of corroles 2, 4, 6, 9, and 15 features short distances between chromophores that are stacked into columns thanks to the low steric hindrance of meso-ester groups. This close packing is partially due to intermolecular interactions that involve inner hydrogen and nitrogen atoms, and thereby, stabilize a single, identical corrole tautomeric form. PMID:25786789

  15. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  16. Lipid transfer protein I facilitated transfer of cyclosporine from low- to high-density lipoproteins is only partially dependent on its cholesteryl ester transfer activity.

    PubMed

    Wasan, K M; Ramaswamy, M; Wong, W; Pritchard, P H

    1998-02-01

    The purpose of this study was to determine if lipid transfer protein (LTP I) regulates the plasma lipoprotein distribution of cyclosporine (CSA). Experimental strategies that involved the supplementation and inhibition of LTP I were used to test these hypotheses. Incubation of CSA with human plasma supplemented with exogenous LTP I resulted in a significantly greater percentage of CSA recovered in the high-density lipoprotein (HDL)/lipoprotein deficient plasma (LPDP) fraction than in the low-density lipoprotein (LDL)/very low-density lipoprotein (VLDL) fraction compared to plasma which had no exogenous LTP I added. Incubation of radiolabeled cholesteryl ester (CE) or CSA-enriched HDL or LDL in T150 buffer supplemented with LTP I resulted in a significantly greater percentage of CE than CSA being transferred from HDL to LDL and LDL to HDL. However, the percent transfer from LDL to HDL was significantly lower for CE than CSA when these particles were incubated in LPDP that contained endogenous LTP I. The percent transfer of CE from HDL to LDL and LDL to HDL was significantly decreased in the presence of TP2, a monoclonal antibody directed against LTP I, compared to controls. The percent transfer of CSA from LDL to HDL was significantly decreased in the presence of TP2. However, the percent transfer of CSA from HDL to LDL in the presence of TP2 was not significantly different compared to controls. These findings suggest that the transfer of CSA between HDL and LDL is only partially facilitated through LTP I CE transfer activity. PMID:9454803

  17. Possible involvement of brain prostaglandin E2 and prostanoid EP3 receptors in prostaglandin E2 glycerol ester-induced activation of central sympathetic outflow in the rat.

    PubMed

    Shimizu, Takahiro; Tanaka, Kenjiro; Nakamura, Kumiko; Taniuchi, Keisuke; Yawata, Toshio; Higashi, Youichirou; Ueba, Tetsuya; Dimitriadis, Fotios; Shimizu, Shogo; Yokotani, Kunihiko; Saito, Motoaki

    2014-07-01

    We recently reported that intracerebroventricularly administered 2-arachidonoylglycerol elevated plasma noradrenaline and adrenaline by brain monoacylglycerol lipase- (MGL) and cyclooxygenase-mediated mechanisms in the rat. These results suggest that 2-arachidonoylglycerol is hydrolyzed by MGL to free arachidonic acid, which is further metabolized to prostaglandins (PGs) by cyclooxygenase in the brain, thereby elevating plasma noradrenaline and adrenaline. On the other hand, 2-arachidonoylglycerol can be also metabolized by cyclooxygenase to PG glycerol esters (PG-Gs), which seems to be hydrolyzed by MGL to free PGs. Here, we examined the involvement of brain PG-Gs in the elevation of plasma noradrenaline and adrenaline regarding PGE2-G and prostanoid EP receptors using anesthetized male Wistar rats. Intracerebroventricularly administered PGE2-G (1.5 and 3 nmol/animal) dose-dependently elevated plasma noradrenaline but not adrenaline. PGE2-G also elevated systolic, mean and diastolic blood pressure and heart rate. The PGE2-G-induced elevation of plasma noradrenaline was attenuated by JZL184 (MGL inhibitor). Intracerebroventricularly administered PGE2 (0.3 and 1.5 nmol/animal) and sulprostone (0.1 and 0.3 nmol/animal) (EP1/EP3 agonist) also elevated plasma noradrenaline but not adrenaline in a dose-dependent manner. The sulprostone-induced elevation was attenuated by L-798,106 (EP3 antagonist), but not by SC-51322 (EP1 antagonist). L-798,106 also attenuated the PGE2-G- and PGE2-induced elevation of plasma noradrenaline, while PF-04418948 (EP2 antagonist) and L-161,982 (EP4 antagonist) had no effect on the PGE2-G-induced response. These results suggest a possibility that brain PGE2-G produced from 2-arachidonoylglycerol can be hydrolyzed to free PGE2, thereby activating central sympathetic outflow by brain prostanoid EP3 receptor-mediated mechanisms in the rat. PMID:24657150

  18. Lysine-tagged peptide coupling onto polylactide nanoparticles coated with activated ester-based amphiphilic copolymer: a route to highly peptide-functionalized biodegradable carriers.

    PubMed

    Handké, Nadège; Ficheux, Damien; Rollet, Marion; Delair, Thierry; Mabrouk, Kamel; Bertin, Denis; Gigmes, Didier; Verrier, Bernard; Trimaille, Thomas

    2013-03-01

    Efficient biomolecule conjugation to the surface of biodegradable colloidal carriers is crucial for their targeting efficiency in drug/vaccine delivery applications. We here propose a potent strategy to drastically improve peptide immobilization on biodegradable polylactide (PLA) nanoparticles (NPs). Our approach particularly relies on the use of an amphiphilic block copolymer PLA-b-poly(N-acryloxysuccinimide-co-N-vinylpyrrolidone) (PLA-b-P(NAS-co-NVP)) as NP surface modifier, whose the N-succinimidyl (NS) ester functions of the NAS units along the polymer chain ensure N-terminal amine peptide coupling. The well-known immunostimulatory peptide sequence derived from the human interleukin 1β (IL-1β), VQGEESNDK, was coupled on the NPs of 169 nm mean diameter in phosphate buffer (pH 8, 10 mM). A maximum amount of 2 mg immobilized per gram of NPs (i.e. 0.042 peptidenm(-2)) was obtained. Introduction of a three lysine tag at the peptide N-terminus (KKKVQGEESNDK) resulted in a dramatic improvement of the immobilized peptide amounts (27.5 mg/g NP, i.e. 0.417 peptidenm(-2)). As a comparison, the density of tagged peptide achievable on surfactant free PLA NPs of similar size (140 nm), through classical EDC or EDC/NHS activation of the surface PLA carboxylic end-groups, was found to be 6 mg/g NP (i.e. 0.075 peptidenm(-2)), showing the decisive impact of the P(NAS-co-NVP)-based hairy corona for high peptide coupling. These results demonstrate that combined use of lysine tag and PLA-b-P(NAS-co-NVP) surfactant represents a valuable platform to tune and optimize surface bio-functionalization of PLA-based biodegradable carriers. PMID:23277324

  19. Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP.

    PubMed Central

    Monfar, M; Lemon, K P; Grammer, T C; Cheatham, L; Chung, J; Vlahos, C J; Blenis, J

    1995-01-01

    Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain. PMID:7528328

  20. Fumaric acid esters prevent the NLRP3 inflammasome-mediated and ATP-triggered pyroptosis of differentiated THP-1 cells.

    PubMed

    Miglio, Gianluca; Veglia, Eleonora; Fantozzi, Roberto

    2015-09-01

    Fumaric acid esters (FAEs) exert therapeutic effects in patients with psoriasis and multiple sclerosis, however their mode of action remains elusive. Pyroptosis is a caspase-1-dependent pro-inflammatory form of programmed cell death, mediated by the activation of inflammasomes. To understand the pharmacological basis of the therapeutic effects of FAEs, the anti-pyroptotic activity of dimethyl fumarate (DMF) and its hydrolysis metabolite monomethyl fumarate (MMF) was studied in a model of NLRP3 inflammasome-mediated pyroptosis of human macrophages. Phorbol myristate acetate-differentiated THP-1 cells were exposed to lipopolysaccharide (5 μg/ml; 4h), then pulsed with ATP (5mM; 1h). MMF, DMF, or parthenolide (positive control) were added 1h before the ATP pulse. The pyroptotic cell death was evaluated by morphological examination and quantified by measuring the lactate dehydrogenase leakage. The ATP-triggered death of THP-1 cells (60.4 ± 4.0%) was significantly (P<0.01) prevented by DMF, in a time- and concentration-dependent manner (pIC50 and maximal effect were 6.6 and 67.6 ± 1.2%, respectively). MMF was less efficacious than DMF. These effects were accompanied by a decreased intracellular activation of caspase-1 and interleukin-1β release from ATP-treated cells, thus suggesting that FAEs antagonise the effects of ATP by preventing the activation of the pyroptotic molecular cascade leading to cell death. These results indicate that FAEs are endowed with anti-pyroptotic activity, which may contribute to their therapeutic effects. PMID:26096886

  1. PPh3O as an Activating Reagent for One-Pot Stereoselective Syntheses of Di- and Polybrominated Esters from Simple Aldehydes.

    PubMed

    Yu, Tian-Yang; Wei, Hao; Luo, Yong-Chun; Wang, Yao; Wang, Zhu-Yin; Xu, Peng-Fei

    2016-04-01

    An efficient one-pot method for the syntheses of di- and polybrominated esters from readily available aldehydes is reported. The direct use of the in situ generated byproduct PPh3O in the following reactions greatly improves the efficiency of the cascade. Also, the substrate scope of the reaction is proved to be broad. PMID:26975436

  2. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    SciTech Connect

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-04-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive YWRb uptake, a measure of the activity of the Na /K pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt2) also enhanced ouabain sensitive YWRb uptake and amiloride-sensitive SSNa influx. Prolonged treatment (40 hr) of 3T3 cells with PBt2 at a saturating dose, which reduces the number of PBt2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt2. They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na /H antiport activity, which, in turn, leads to Na influx, intracellular pH modulation, and stimulation of the Na /K pump.

  3. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain. PMID:7852311

  4. The ESTER project

    NASA Astrophysics Data System (ADS)

    Rieutord, M.; Dintrans, B.; Lignières, F.; Corbard, T.; Pichon, B.

    2005-12-01

    The ESTER project aims at building a stellar evolution code in two dimensions of space for the study of effects of rotation. The numerical scheme is based on spectral methods with a spherical harmonic decomposition in the horizontal direction and a Chebyshev polynomial expansion in the vertical direction. Coordinates adapted to the centrifugally distorted shape are mapped to spherical coordinates. First tests on rotating polytropes are presented.

  5. Inhibition of Apoptosis in Prostate Cancer Cells by Androgens Is Mediated through Downregulation of c-Jun N-terminal Kinase Activation1

    PubMed Central

    Lorenzo, Petra Isabel; Saatcioglu, Fahri

    2008-01-01

    Androgen deprivation induces the regression of prostate tumors mainly due to an increase in the apoptosis rate; however, the molecular mechanisms underlying the antiapoptotic actions of androgens are not completely understood. We have studied the antiapoptotic effects of androgens in prostate cancer cells exposed to different proapoptotic stimuli. Terminal deoxynucleotidyl transferase-mediated nick-end labeling and nuclear fragmentation analyses demonstrated that androgens protect LNCaP prostate cancer cells from apoptosis induced by thapsigargin, the phorbol ester 12-O-tetradecanoyl-13-phorbol-acetate, or UV irradiation. These three stimuli require the activation of the c-Jun N-terminal kinase (JNK) pathway to induce apoptosis and in all three cases, androgen treatment blocks JNK activation. Interestingly, okadaic acid, a phosphatase inhibitor that causes apoptosis in LNCaP cells, induces JNK activation that is also inhibited by androgens. Actinomycin D, the antiandrogen bicalutamide or specific androgen receptor (AR) knockdown by small interfering RNA all blocked the inhibition of JNK activation mediated by androgens indicating that this activity requires AR-dependent transcriptional activation. These data suggest that the crosstalk between AR and JNK pathways may have important implications in prostate cancer progression and may provide targets for the development of new therapies. PMID:18472959

  6. Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase.

    PubMed

    Kolar, Matthew J; Kamat, Siddhesh S; Parsons, William H; Homan, Edwin A; Maher, Tim; Peroni, Odile D; Syed, Ismail; Fjeld, Karianne; Molven, Anders; Kahn, Barbara B; Cravatt, Benjamin F; Saghatelian, Alan

    2016-08-23

    A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs. PMID:27509211

  7. Activation of protein kinase Ceta triggers cortical granule exocytosis in Xenopus oocytes.

    PubMed

    Gundersen, Cameron B; Kohan, Sirus A; Chen, Qian; Iagnemma, Joseph; Umbach, Joy A

    2002-03-15

    Previous work has shown that phorbol esters or diacylglycerol trigger cortical granule exocytosis in Xenopus oocytes. We sought to identify the isoform(s) of protein kinase C (PKC) that mediate(s) this regulated secretory event. Because this process is initiated by lipid activators of PKC but is independent of calcium ions, we focused on the family of novel (calcium-independent) PKCs. Pharmacological investigations using Gö6976 and Gö6983 tended to exclude PKCdelta, epsilon and mu as secretory triggers. Subcellular fractionation and immunoblot data revealed that these oocytes expressed all five members of the novel PKC family, but it was only PKCeta that colocalized with cortical granules. Finally, expression of wild type or constitutively active forms of PKCdelta and eta strongly supported the conclusion that it is PKCeta that initiates cortical granule exocytosis in these cells. These observations represent an important step in identifying the mechanism of secretory triggering in this system. PMID:11884530

  8. Esters of some non-steroidal anti-inflammatory drugs with cinnamyl alcohol are potent lipoxygenase inhibitors with enhanced anti-inflammatory activity.

    PubMed

    Theodosis-Nobelos, Panagiotis; Kourti, Malamati; Tziona, Paraskevi; Kourounakis, Panos N; Rekka, Eleni A

    2015-11-15

    Novel esters of non steroidal anti-inflammatory drugs, α-lipoic acid and indol-3-acetic acid with cinnamyl alcohol were synthesised by a straightforward method and at high yields (60-98%). They reduced acute inflammation more than the parent acids and are potent inhibitors of soybean lipoxygenase. Selected structures decreased plasma lipidemic indices in Triton-induced hyperlipidemia to rats. Therefore, the synthesised compounds may add to the current knowledge about agents acting against various inflammatory disorders. PMID:26494261

  9. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  10. Facile routes of manufacturing silicon quantum dots on a silicon wafer and their surface activation by esters of N-hydroxysuccinimide.

    PubMed

    Liu, Xiang; Cheng, Heming; Zhao, Tiantian; Zhang, Changchang

    2014-07-15

    Fluorescent silicon quantum dots (SiQDs) could be prepared by reduction of hydrogen silsesquioxane, etching of silicon powers with wetting chemistry techniques or electrolysis of a wafer catalyzed by polyoxometalates. Chemical modifications are indispensable for the stability of the SiQDs photoluminescence and wider applications of SiQDs. Facile routes of manufacturing SiQDs derived from a silicon wafer and its surface functionalization by N-hydroxysuccinimide (NHS) esters were described in this work in detail. Firstly, the porous silicon chip was prepared by nanosilver-assisted electroless chemical etching. Then the chip was etched successively with hydrofluoric acid/nitric acid solutions until it emitted dazzling red fluorescence which claimed the achieved SiQDs on silicon substrates (SiQDs/Si). Finally, surface NHS esters were fabricated on such an SiQDs/Si chipthrough stepwise modifications, which were tested by the amidation between the NHS esters and n-octylamine. The fluorescence emission of the SiQDs/Si chip almost remained unchanged during the successively chemical modifications, which indicated the SiQDs had capabilities of enduring the sustained high temperature and organic media. Meanwhile, the SiQDs did not leave from the silicon substrate during the surface tuning. The SiQDs obtained by ultrasonication of an SiQDs/Si chip in water were investigated by transmission electron and atomic force microscopies. PMID:24863773

  11. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. PMID:22766489

  12. Design and synthesis of phosphonoacetic acid (PPA) ester and amide bioisosters of ribofuranosylnucleoside diphosphates as potential ribonucleotide reductase inhibitors and evaluation of their enzyme inhibitory, cytostatic and antiviral activity.

    PubMed

    Manfredini, Stefano; Solaroli, Nicola; Angusti, Angela; Nalin, Federico; Durini, Elisa; Vertuani, Silvia; Pricl, Sabrina; Ferrone, Marco; Spadari, Silvio; Focher, Federico; Verri, Annalisa; De Clercq, Erik; Balzarini, Jan

    2003-07-01

    Continuing our investigations on inhibitors of ribonucleotide reductase (RNR), the crucial enzyme that catalyses the reduction of ribonucleotides to deoxyribonucleotides, we have now prepared and evaluated 5'-phosphonoacetic acid, amide and ester analogues of adenosine, uridine and cytidine with the aim to verify both substrate specificity and contribution to biological activity of diphosphate mimic moieties. A molecular modelling study has been conducted on the RNR R1 subunit, in order to verify the possible interaction of the proposed bioisosteric moieties. The study compounds were finally tested on the recombinant murine RNR showing a degree of inhibition that ranged from 350 microM for the UDP analogue 5'-deoxy-5'-N-(phosphon-acetyl)uridine sodium salt (amide) to 600 microM for the CDP analogue 5'-O-[(diethyl-phosphon)acetyl]cytidine (ester). None of the tested compounds displayed noteworthy cytostatic activity at 100-500 microM concentrations, whereas ADP analogue 5'-N-[(diethyl-phosphon) acetyl]adenosine (amide) and 5'-deoxy-5'-N-(phosphon-acetyl)adenosine sodium salt (amide) showed a moderate inhibitory activity (EC50: 48 microM) against HSV-2 and a modest inhibitory activity (EC50: 110 microM) against HIV-1, respectively. PMID:14582847

  13. Differential effects of nylon fibre adherence on the production of superoxide anion by human polymorphonuclear neutrophilic granulocytes stimulated with chemoattractants, ionophore A23187 and phorbol myristate acetate.

    PubMed Central

    Kownatzki, E; Uhrich, S

    1987-01-01

    Human polymorphonuclear neutrophilic granulocytes were made adherent by passing them over protein-coated nylon fibre columns and compared with suspended cells for their production of superoxide anion as measured by cytochrome C reduction. The cells were stimulated with chemotactic factors, the ionophore A 23187, and the tumour promoter phorbol myristate acetate. There was no increased O2-. production by adherent cells in the absence of a stimulus. Adherent cells produced considerably higher amounts of superoxide than suspended cells when stimulated with formyl-methionyl-leucyl-phenylalanine, ionophore A 23187, C5a, C5adesArg, and the platelet activating factor 1-o-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine. In contrast, stimulation with phorbol myristate acetate did not result in higher superoxide release from adherent than from suspended cells, and leukotriene B4 and a mononuclear cell-derived chemotaxin did not stimulate either cell to release significant amounts of superoxide. It is suggested that the augmented production of oxygen radicals with certain stimuli contributes to inflammatory symptoms in situations involving adherent granulocytes. PMID:2820637

  14. Acaricidal activity of four fractions and octadecanoic acid-tetrahydrofuran-3,4-diyl ester isolated from chloroform extracts of neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi larvae in vitro.

    PubMed

    Du, Yong-Hua; Li, Jin-Liang; Jia, Ren-Yong; Yin, Zhong-Qiong; Li, Xu-Ting; Lv, Cheng; Ye, Gang; Zhang, Li; Zhang, Yu-Qun

    2009-07-01

    Four fractions obtained from chloroform extracts of neem (Azadirachta indica) oil by column chromatography were investigated for acaricidal activity against Sarcoptes scabiei var. cuniculi larvae in vitro. Octadecanoic acid-tetrahydrofuran-3,4-diyl ester was isolated from an active fraction of the chloroform extract and its toxicity against S. scabiei larvae was tested in vitro. A complementary log-log model was used to analyse the toxicity data. Activity was found in the third fraction, with 100% corrected mortality after 4.5 h of exposure at a concentration of 200 mg ml(-1). This fraction was repeatedly re-crystallised in acetone to yield a white amorphous powder, identified as octadecanoic acid-tetrahydrofuran-3,4-diyl ester, with a median lethal concentration (LC(50)) of 0.1 mg ml(-1) at 24 h post-treatment. The median lethal time (LT(50)) for this compound was 15.3 h at a concentration of 7.5 mg ml(-1). PMID:19443124

  15. Highly Enantioselective, Intermolecular Hydroamination of Allenyl Esters Catalyzed by Bifunctional Phosphinothioureas

    PubMed Central

    2015-01-01

    Bifunctional phosphinothiourea catalysts have been developed successfully for the highly regio- and enantioselective γ-hydroamination of allenyl and propargyl esters with N-methoxy carbamate nucleophiles to yield α,β-unsaturated γ-amino acid ester products. In the case of propargyl ester substrates, the reaction proceeds through reversible phosphinothiourea-catalyzed isomerization to the corresponding allenyl ester. The high enantioselectivity of the process is attributed to a cooperative conjugate addition of a thiourea-bound carbamate anion to a vinyl phosphonium ion resulting from covalent activation of the allenyl ester substrate. PMID:25496451

  16. Treatment of mouse melanoma cells with phorbol 12-myristate 13-acetate counteracts mannosylerythritol lipid-induced growth arrest and apoptosis.

    PubMed

    Zhao, X; Geltinger, C; Kishikawa, S; Ohshima, K; Murata, T; Nomura, N; Nakahara, T; Yokoyama, K K

    2000-07-01

    Mannosylerythritol lipid (MEL), an extracellularglycolipid from yeast, induces the differentiation ofHL-60 promyelocytic leukemia cells towardsgranulocytes. We show here that MEL is also a potentinhibitor of the proliferation of mouse melanoma B16cells. Flow-cytometric analysis of the cell cycle ofMEL-treated B16 cells revealed the accumulation ofcells in the sub-G(0)/G(1) phase, which is a hallmark ofcells undergoing apoptosis. Treatment of B16 cellsfor 24 h with phorbol 12-myristate 13-acetate (PMA),an activator of protein kinase C (PKC), did notinterfere with the growth and survival of the cells,but it effectively counteracted the MEL-induced growtharrest and apoptosis. The activity of PKC was reducedin B16 cells treated with MEL at a concentration atwhich MEL induced apoptosis. However, incubation withPMA in addition to MEL reversed this reduction in theactivity of PKC. These results suggest thatconverging signaling pathways are triggeredindependently by MEL and PMA and that the signalsmight both be mediated by PKC. PMID:19002819

  17. Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyldiacylglycerol stimulate inositol trisphosphate dephosphorylation in human platelets

    SciTech Connect

    Molina y Vedia, L.M.; Lapetina, E.G.

    1986-08-15

    Inositol trisphosphate (IP3) is formed in response to specific agonists that cause activation of phospholipase C and degradation of phosphatidylinositol bisphosphate. IP3 is a second messenger that releases Ca/sup 2 +/ from the dense tubular system to the cytosol in stimulated platelets. Our present information indicates that (/sup 3/H)IP3 is dephosphorylated to (/sup 3/H)inositol bisphosphate (IP2) and (/sup 3/H)inositol monophosphate (IP) by human platelets treated with 0.05-0.10% Triton X-100. This dephosphorylation of (/sup 3/H)IP3 to (/sup 3/H)IP2 and (/sup 3/H)IP is also observed when platelets are permeabilized by electrical stimulation or by 20 micrograms/ml saponin. These detergents or electropermeabilization allow IP3 to access cytosolic IP3 phosphatase. Pretreatment of intact platelets with phorbol dibutyrate and 1-oleyl-2-acetyldiacylglycerol for 30 s, at concentrations that maximally activate protein kinase C, stimulates the conversion of IP3 to IP2 and IP. This suggests a role for protein kinase C in the regulation of IP3 degradation.

  18. Regulation of protein kinase C activity in neuronal differentiation induced by the N-ras oncogene in PC-12 cells.

    PubMed Central

    Lacal, J C; Cuadrado, A; Jones, J E; Trotta, R; Burstein, D E; Thomson, T; Pellicer, A

    1990-01-01

    Expression of the N-ras oncogene under the control of the glucocorticoid-responsive promoter in the pheochromocytoma cell line UR61, a subline of PC-12 cells, has been used to investigate the differentiation process to neuronal cells triggered by ras oncogenes (I. Guerrero, A. Pellicer, and D. E. Burstein, Biochem. Biophys. Res. Commun. 150:1185-1192, 1988). Using ras-inducible cell lines, we observed that expression of the oncogenic N-ras p21 protein interferes with the ability of phorbol esters to induce downregulation of protein kinase C. This effect was associated with the appearance of immunologically detectable protein kinase C as well as the activity of the enzyme as analyzed either by binding of [3H]phorbol-12,13-dibutyrate in intact cells or by in vitro kinase activity. These results indicate a relationship between ras p21 and protein kinase C in neuronal differentiation in this model system. Comparison to the murine fibroblast system suggests that this relationship may be functional. Images PMID:2188105

  19. Lipoate ester multifunctional lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven lipoate esters were synthesized by esterification of lipoic acid with different structures of alcohols in the presence of a solid acid catalyst and without solvent. The esters were obtained in good yield, characterized using 1H NMR and GPC; and their physical properties investigated. Four of t...

  20. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  1. Mechanism of protein kinase C activation by phosphatidylinositol 4,5-bisphosphate

    SciTech Connect

    Lee, Myungho; Bell, R.M. )

    1991-01-29

    The mechanism of protein kinase C (PKC) activation by phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol (PI) was investigated by using Triton X-100 mixed micellar methods. The activation of PKC by PIP{sub 2}, for which maximal activity was 60% of that elicited by sn-1,2-diacylglycerol (DAG), was similar to activation by DAG in several respects: (1) activation by PIP{sub 2} and DAG required phosphatidylserine (PS) as a phospholipid cofactor, (2) PIP{sub 2} and DAG reduced the concentration of Ca{sup 2+} and PS required for activation, (3) the concentration dependences of activation by PIP{sub 2} and DAG depended on the concentration of PS, and (4) PIP{sub 2} and DAG complemented one another to achieve maximal activation. On the other hand, PIP{sub 2} activation of the PKC differed from activation by DAG in several respects. With increasing concentrations of PIP{sub 2}, (1) the optimal concentration of PS required was constant at 12 mol%, (2) the maximal activity at 12 mol% PS increased, and (3) the cooperativity for PS decreased. PIP{sub 2} did not inhibit ({sup 3}H)phorbol 12,13-dibutyrate (PDBu) binding of PKC at saturating levels of PS; however, at subsaturating levels of PS, PIP{sub 2} enhanced ({sup 3}H)PDBu binding by acting as a phospholipid cofactor. PIP did not function as an activator but served as a phospholipid cofactor in the presence of PS. These data establish that PIP{sub 2}, PIP, and PI can function to spare, in part, the PS phospholipid cofactor requirement of PKC, and they demonstrate that PIP{sub 2} but not PIP and PI can function as a lipid activator of PKC by mechanisms distinct from those of DAG and phorbol esters.

  2. The phase behavior of cholesteryl esters in intracellular inclusions.

    PubMed

    Snow, J W; Glick, J M; Phillips, M C

    1992-09-15

    Differential scanning calorimetry and polarizing light microscopy have been used to investigate kinetic and thermodynamic properties of the phase behavior of cholesteryl ester contained in Fu5AH rat hepatoma cells and J774 murine macrophages. These cultured cells store cholesteryl esters as cytoplasmic inclusions of approximately 1-micron diameter and thus are models of the foam cells characteristic of atherosclerotic plaque. Simple binary mixtures of cholesteryl palmitate and cholesteryl oleate, the predominant cholesteryl esters in cellular inclusions in both cell types serve as models to explain important aspects of the phase behavior of these inclusions. Although inclusions should exist as stable crystals at 37 degrees C under conditions of thermodynamic equilibrium, microscopic examination of cells indicates that inclusions exist as metastable liquid crystals at 37 degrees C for extended periods of time. Using an analytical model based on nucleation theory, we predict that the cholesteryl ester inclusions should be liquid-crystalline in the cytoplasm of living cells. This may not be true either for lysosomal cholesteryl ester or for extracellular cholesteryl ester present in advanced atherosclerotic plaque where fusion of droplets can enhance the possibility of crystallization. The enhanced metastability of the relatively fluid liquid-crystalline state in cellular inclusions should result in increased activity of the neutral cholesteryl ester hydrolase in living cells. PMID:1326528

  3. Structure-activity relationships studies in a series of N,N-bis(alkanol)amine aryl esters as P-glycoprotein (Pgp) dependent multidrug resistance (MDR) inhibitors.

    PubMed

    Martelli, Cecilia; Coronnello, Marcella; Dei, Silvia; Manetti, Dina; Orlandi, Francesca; Scapecchi, Serena; Novella Romanelli, Maria; Salerno, Milena; Mini, Enrico; Teodori, Elisabetta

    2010-02-25

    As a continuation of a previous research, a series of N,N-bis(alkanol)amine aryl esters, as Pgp-dependent MDR inhibitors, was designed and synthesized. The aromatic ester portions are suitably modulated, and new aryl rings (Ar(1) and Ar(2)) were combined with trans-3-(3,4,5-trimethoxyphenyl)vinyl, 3,4,5-trimethoxybenzyl and anthracene moieties that were present in the most potent previously studied compounds. The new compounds showed a wide range of potencies and efficacies on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Selected compounds (5, 6, 8, 9, and 21) were further studied, evaluating their action on doxorubicin cytotoxicity potentiation on K562 cells; they significantly enhanced doxorubicin cytotoxicity on K562/DOX cells, confirming the results obtained with pirarubicin. Compound 9 shows the most promising properties as it was able to nearly completely reverse Pgp-dependent pirarubicin extrusion at nanomolar doses and increased the cytotoxicity of doxorubicin with a reversal fold (RF) of 19.1 at 3 microM dose. PMID:20104851

  4. Phorbol 12-myristate 13-acetate prevents isoproterenol-induced morphological change in cultured vascular smooth muscle cells

    SciTech Connect

    Nabika, Toru; Chaldakov, G.N.; Nara, Yasuo; Endo, Jiro; Yamori, Yukio )

    1988-10-01

    The effect of phorbol 12-myristate 13-acetate (PMA) on isoproterenol (ISO)- and dibutyryl cAMP (dBcAMP)-induced morphological change and cytoskeletal reorganization was studied in cultured vascular smooth muscle cells (VSMC) using the fluorescence staining of actin and microtubules. The treatment of VSMC with 1.0 {mu}M of ISO or with 1.0 mM of dBcAMP for 90 min induced the disruption of actin-containing stress fibers followed by cytoplasmic arborization. The addition of 100 nM of PMA prevented both the destruction of actin fibers and cell arborization induced either by ISO or by dBcAMP. These results indicated that the inhibition of arborization by PMA was mediated through the activation of protein kinase C. Colchicine at 5.0 {mu}M also had an inhibitory effect on ISO- and dBcAMP-induced cell arborization. However, immunofluorescence studies revealed that colchicine but not PMA elicited the reorganization of microtubules, suggesting that the effect of PMA was mediated through a mechanism different from that of colchicine. The observations indicated that the morphology of VSMC was regulated through the alteration of cytoskeletal organization induced by cAMP-mediated and by protein kinase C-dependent systems.

  5. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    SciTech Connect

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. )

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  6. Phorbol myristate acetate, but not CD40L, induces the differentiation of CLL B cells into Ab-secreting cells

    PubMed Central

    Ghamlouch, Hussein; Ouled-Haddou, Hakim; Guyart, Aude; Regnier, Aline; Trudel, Stéphanie; Claisse, Jean-François; Fuentes, Vincent; Royer, Bruno; Marolleau, Jean-Pierre; Gubler, Brigitte

    2014-01-01

    In this study, we investigated the capacity of chronic lymphocytic leukemia (CLL) B cells to undergo terminal differentiation into Ig-secreting plasma cells in T cell-independent and T cell-dependent responses. We used a two-step model involving stimulation with phorbol myristate acetate (PMA) and CD40L, together with cytokines (PMA/c and CD40L/c), for 7 days. We describe immunophenotypic modifications, changes in the levels of mRNA and protein for transcription factors and morphological and functional events occurring during the differentiation of CLL B cells into antibody-secreting cells (ASCs). The induction of differentiation differed significantly between the CD40L/c and PMA/c culture systems. The PMA/c culture system allowed CLL B cells to differentiate into IgM-secreting cells with an immunophenotype and molecular profile resembling those of preplasmablasts. By contrast, CD40L/c-stimulated cells had a phenotype and morphology similar to those of activated B cells and resembling those of the CLL B cells residing in the lymph node and bone marrow. These data suggest that the CLL B cells are not frozen permanently at a stage of differentiation and are able to differentiate into ASCs as appropriate stimulation are provided. The data presented here raise questions about the molecular processes and stimulation required for CLL B-cell differentiation and about the inability of CD40 ligand to induce differentiation of the CLL B cells. PMID:24797583

  7. Phorbol 12,13-dibutyrate-induced, protein kinase C-mediated contraction of rabbit bladder smooth muscle.

    PubMed

    Wang, Tanchun; Kendig, Derek M; Trappanese, Danielle M; Smolock, Elaine M; Moreland, Robert S

    2012-01-01

    Contraction of bladder smooth muscle is predominantly initiated by M(3) muscarinic receptor-mediated activation of the G(q/11)-phospholipase C β-protein kinase C (PKC) and the G(12/13)-RhoGEF-Rho kinase (ROCK) pathways. However, these pathways and their downstream effectors are not well understood in bladder smooth muscle. We used phorbol 12,13-dibutyrate (PDBu), and 1,2-dioctanoyl-sn-glycerol (DOG), activators of PKC, in this investigation. We were interested in dissecting the role(s) of PKC and to clarify the signaling pathways in bladder smooth muscle contraction, especially the potential cross-talk with ROCK and their downstream effectors in regulating myosin light chain phosphatase activity and force. To achieve this goal, the study was performed in the presence or absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850) myosin phosphatase target subunit (MYPT1) were measured during PDBu or DOG stimulation using site specific antibodies. PDBu-induced contraction in bladder smooth muscle involved both activation of PKC and PKC-dependent activation of ROCK. CPI-17 as a major downstream effector, is phosphorylated by PKC and ROCK during PDBu and DOG stimulation. Our results suggest that Thr(696) and Thr(850)-MYPT1 phosphorylation are not involved in the regulation of a PDBu-induced contraction. The results also demonstrate that bladder smooth muscle contains a constitutively active isoform of ROCK that may play an important role in the regulation of bladder smooth muscle basal tone. Together with the results from our previous study, we developed a working model to describe the complex signaling pathways that regulate contraction of bladder smooth muscle. PMID:22232602

  8. OX1 orexin/hypocretin receptor activation of phospholipase D

    PubMed Central

    Jäntti, MH; Putula, J; Somerharju, P; Frohman, MA; Kukkonen, JP

    2012-01-01

    BACKGROUND AND PURPOSE Orexin receptors potently signal to lipid messenger systems, and our previous studies have suggested that PLD would be one of these. We thus wanted to verify this by direct measurements and clarify the molecular mechanism of the coupling. EXPERIMENTAL APPROACH Orexin receptor-mediated PLD activation was investigated in CHO cells stably expressing human OX1 orexin receptors using [14C]-oleic acid-prelabelling and the transphosphatidylation assay. KEY RESULTS Orexin stimulation strongly increased PLD activity – even more so than the phorbol ester TPA (12-O-tetradecanoyl-phorbol-13-acetate), a highly potent activator of PLD. Both orexin and TPA responses were mediated by PLD1. Orexin-A and -B showed approximately 10-fold difference in potency, and the concentration–response curves were biphasic. Using pharmacological inhibitors and activators, both orexin and TPA were shown to signal to PLD1 via the novel PKC isoform, PKCδ. In contrast, pharmacological or molecular biological inhibitors of Rho family proteins RhoA/B/C, cdc42 and Rac did not inhibit the orexin (or the TPA) response, nor did the molecular biological inhibitors of PKD. In addition, neither cAMP elevation, Gαi/o nor Gβγ seemed to play an important role in the orexin response. CONCLUSIONS AND IMPLICATIONS Stimulation of OX1 receptors potently activates PLD (probably PLD1) in CHO cells and this is mediated by PKCδ but not other PKC isoforms, PKDs or Rho family G-proteins. At present, the physiological significance of orexin-induced PLD activation is unknown, but this is not the first time we have identified PKCδ in orexin signalling, and thus some specific signalling cascade may exist between orexin receptors and PKCδ. PMID:21718304

  9. Synthesis and structure activity relationship studies of 3-biaryl-8-oxa-bicyclo[3.2.1]octane-2-carboxylic acid methyl esters

    PubMed Central

    Torun, Lokman; Madras, Bertha K.; Meltzer, Peter C.

    2012-01-01

    Stille cross coupling protocols were utilized for the synthesis of 3-(biaryl)-8-oxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid methyl esters, which furnished products in high yields where in some cases Suzuki coupling under the conditions utilized provided complex reaction mixture. Samarium iodide reduction of the resulting coupling products produced both of the 2β-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers and the 2α-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers. Among the series synthesized, the benzothiophene substituted compounds demonstrated significant binding profiles of inhibition of WIN 35,438 with 177 fold selectivity for DAT vs. SERT. PMID:22398259

  10. Impact of Association Colloids on Lipid Oxidation in Triacylglycerols and Fatty Acid Ethyl Esters.

    PubMed

    Homma, Rika; Suzuki, Karin; Cui, Leqi; McClements, David Julian; Decker, Eric A

    2015-11-25

    The impact of association colloids on lipid oxidation in triacylglycerols and fatty acid ethyl esters was investigated. Association colloids did not affect lipid oxidation of high oleic safflower and high linoleic safflower triacylglycerols, but were prooxidative in fish triacylglycerols. Association colloids retarded aldehyde formation in stripped ethyl oleate, linoleate, and fish oil ethyl esters. Interfacial tension revealed that lipid hydroperoxides were surface active in the presence of the surfactants found in association colloids. The lipid hydroperoxides from ethyl esters were less surface active than triacylglycerol hydroperoxides. Stripping decreased iron and copper concentrations in all oils, but more so in fatty acid ethyl esters. The combination of lower hydroperoxide surface activity and low metal concentrations could explain why association colloids inhibited lipid oxidation in fatty acid ethyl esters. This research suggests that association colloids could be used as an antioxidant technology in fatty acid ethyl esters. PMID:26506263

  11. Oncogene transcription in normal human IMR-90 fibroblasts: induction by serum and tetradecanoyl phorbol acetate

    SciTech Connect

    Bower, E.A.; Kaji, H.

    1988-01-01

    The authors report studies of oncogene transcription induced by the addition of serum to quiescent cultures of human IMR-90 fibroblasts. Oncogene messenger RNAs for c-myc, c-erbB and c-ras were increased in a specific temporal sequence after the addition of serum. Compounds that are proposed to exert their actions by the stimulation of cell growth were tested for their effect on oncogene transcription in IMR-90 fibroblasts. The tumor promoter tetradecanoyl phorbol acetate (TPA) was found to selectively induce the transcription of c-myc without observable effect on the transcription of the other oncogenes studied, and without inducing cell division. The inactive analog, phorbol didecanoate (PDD), and two complete carcinogens dimethylbenzanthracene (DMBA) and 4-nitro quinoline-1-oxide (4NQO) were without effect on the transcription of the genes studied. These results suggest that the complete ordered sequence of gene transcription is necessary to achieve the physiologic response of cell division, and that classical promoters and complete carcinogens achieve their effects through different pathways.

  12. Alternating Poly(ester-anhydride) by Insertion Polycondensation.

    PubMed

    Haim-Zada, Moran; Basu, Arijit; Hagigit, Tal; Schlinger, Ron; Grishko, Michael; Kraminsky, Alexander; Hanuka, Ezra; Domb, Abraham J

    2016-06-13

    We report on a synthetic method where polyanhydride is used as starting material and the ester monomers are inserted through complete esterification, leading to an alternating ester-anhydride copolymer. The molar ratio of ricinoleic acid (RA) and sebacic acid (SA) was optimized until polysebacic acid is completely converted to carboxylic acid-terminated RA-SA and RA-SA-RA ester-dicarboxylic acids. These dimers and trimers were activated with acetic anhydride, polymerized under heat and vacuum to yield alternating RA-SA copolymer. The resulting alternating poly(ester-anhydride) have the RA at regular intervals. The regular occurrences of RA side chains prevent anhydride interchange, enhancing hydrolytic stability, which allows storage of the polymer at room temperature. PMID:27198864

  13. Differences in Substrate Specificities of Five Bacterial Wax Ester Synthases

    PubMed Central

    Wahlen, Bradley D.; Garner, EmmaLee; Wei, Jiashi; Seefeldt, Lance C.

    2012-01-01

    Wax esters are produced in certain bacteria as a potential carbon and energy storage compound. The final enzyme in the biosynthetic pathway responsible for wax ester production is the bifunctional wax ester synthase/acyl-coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT), which utilizes a range of fatty alcohols and fatty acyl-CoAs to synthesize the corresponding wax ester. We report here the isolation and substrate range characterization for five WS/DGAT enzymes from four different bacteria: Marinobacter aquaeolei VT8, Acinetobacter baylyi, Rhodococcus jostii RHA1, and Psychrobacter cryohalolentis K5. The results from kinetic studies of isolated enzymes reveal a differential activity based on the order of substrate addition and reveal subtle differences between the substrate selectivity of the different enzymes. These in vitro results are compared to the wax ester and triacylglyceride product profiles obtained from each organism grown under neutral lipid accumulating conditions, providing potential insights into the role that the WS/DGAT enzyme plays in determining the final wax ester products that are produced under conditions of nutrient stress in each of these bacteria. Further, the analysis revealed that one enzyme in particular from M. aquaeolei VT8 showed the greatest potential for future study based on rapid purification and significantly higher activity than was found for the other isolated WS/DGAT enzymes. The results provide a framework to test prospective differences between these enzymes for potential biotechnological applications such as high-value petrochemicals and biofuel production. PMID:22685145

  14. Kinetics and subcellular localization of specific [3H]phorbol 12, 13-dibutyrate binding by mouse brain.

    PubMed

    Dunphy, W G; Kochenburger, R J; Castagna, M; Blumberg, P M

    1981-07-01

    The specific binding of [3H]phorbol 12,13-dibutyrate ([3H]-PDBU) to particulate preparations from mouse brain has been further characterized. Kinetic analysis, using a filtration assay to measure binding, yielded a second-order rate constant at 23 degrees of 3.75 X 10(7) M-1 min-1 and a first-order dissociation rate constant of 0.21 min-1. The Kd of 5.6 nM calculated from the kinetic data agreed well with the value determined previously in equilibrium binding studies. The Kd for [3H]PDBU binding varied only slightly with temperature. From its temperature dependence, [3H]PDBU binding appeared to be associated with a small increase in enthalpy (delta H degrees = +0.4 kcal/mol) and a large increase in entropy (delta S degrees = +38 e.u.). Such values are characteristic for hydrophobic interactions. The dissociation rate constant for binding, in contrast to the Kd, varied dramatically with temperature. The half-time for release ranged from 1.75 min at 30 degrees to 62 min at 4 degrees. The Kd for binding was Ca2+ sensitive; chelation of Ca2+ by ethyleneglycolbis(beta-aminoethyl ether)N,N'-tetraacetic acid increased the Kd 2.4-fold. Upon subcellular fractionation, the specific [3H]PDBU binding activity was exclusively particulate; no binding to cytosol was detectable. Binding clearly did not correlate with nuclear or mitochondrial markers. On the other hand, a broader distribution of binding activity was seen on sucrose density gradients than for either Na+-K+-adenosine triphosphatase activity or binding of quinuclidinyl benzilate (a muscarinic cholinergic antagonist). The localization of specific [3H]PDBU binding to the plasma membrane therefore remains uncertain. PMID:6941848

  15. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  16. Production of platelet-activating factor is a component of the angiotensin II-protein kinase C activation pathway in bovine adrenocortical cells.

    PubMed

    Pelosin, J M; Keramidas, M; Chambaz, E M

    1991-08-15

    Lyso-platelet-activating factor (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) enzyme activity was characterized for the first time in bovine adrenocortical tissue. It was found to be associated with the microsomal membrane fraction, in which it exhibited a specific activity of 0.4 nmol/min per mg of protein and catalytic properties similar to those described in other cell types. The adrenocortical acetyltransferase activity was increased by 2-3-fold on incubation of the preparation with purified protein kinase C (PKC) under phosphorylating condition. This activation was optimal after 5 min of incubation and paralleled an increase in PKC-catalysed 32P incorporation into microsomal proteins. Both acetyltransferase activation and protein phosphorylation were dependent on the presence of Ca2+ and phospholipids, and were blocked in the presence of the potent PKC inhibitor H-7. In the intact adrenocortical cell, angiotensin II and a potent phorbol ester (phorbol 12-myristate 13-acetate) were able to rapidly induce an increase in the biosynthesis of PAF, which was mostly released into the extracellular medium. These data suggest that bovine adrenocortical lyso-PAF acetyltransferase may be regulated by a PKC-dependent activation pathway, whereas no evidence for an additional adrenocorticotropin/cyclic AMP-dependent stimulation process was obtained in this cell type. Bovine adrenocortical cell membrane preparations were shown to possess high-affinity PAF-binding sites (Kd approximately 0.5 nM). Altogether, these observations suggest that PAF production and release may play a role in the autocrine or paracrine control of adrenocortical cell activation. PMID:1883337

  17. N-Acetylanthranilate Amidase from Arthrobacter nitroguajacolicus Rü61a, an α/β-Hydrolase-Fold Protein Active towards Aryl-Acylamides and -Esters, and Properties of Its Cysteine-Deficient Variant▿ †

    PubMed Central

    Kolkenbrock, Stephan; Parschat, Katja; Beermann, Bernd; Hinz, Hans-Jürgen; Fetzner, Susanne

    2006-01-01

    N-acetylanthranilate amidase (Amq), a 32.8-kDa monomeric amide hydrolase, is involved in quinaldine degradation by Arthrobacter nitroguajacolicus Rü61a. Sequence analysis and secondary structure predictions indicated that Amq is related to carboxylesterases and belongs to the α/β-hydrolase-fold superfamily of enzymes; inactivation of (His6-tagged) Amq by phenylmethanesulfonyl fluoride and diethyl pyrocarbonate and replacement of conserved residues suggested a catalytic triad consisting of S155, E235, and H266. Amq is most active towards aryl-acetylamides and aryl-acetylesters. Remarkably, its preference for ring-substituted analogues was different for amides and esters. Among the esters tested, phenylacetate was hydrolyzed with highest catalytic efficiency (kcat/Km = 208 mM−1 s−1), while among the aryl-acetylamides, o-carboxy- or o-nitro-substituted analogues were preferred over p-substituted or unsubstituted compounds. Hydrolysis by His6Amq of primary amides, lactams, N-acetylated amino acids, azocoll, tributyrin, and the acylanilide and urethane pesticides propachlor, propham, carbaryl, and isocarb was not observed; propanil was hydrolyzed with 1% N-acetylanthranilate amidase activity. The catalytic properties of the cysteine-deficient variant His6AmqC22A/C63A markedly differed from those of His6Amq. The replacements effected some changes in Kms of the enzyme and increased kcats for most aryl-acetylesters and some aryl-acetylamides by factors of about three to eight while decreasing kcat for the formyl analogue N-formylanthranilate by several orders of magnitude. Circular dichroism studies indicated that the cysteine-to-alanine replacements resulted in significant change of the overall fold, especially an increase in α-helicity of the cysteine-deficient protein. The conformational changes may also affect the active site and may account for the observed changes in kinetic properties. PMID:17041061

  18. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9. PMID:25518925

  19. Concerted Amidation of Activated Esters: Reaction Path and Origins of Selectivity in the Kinetic Resolution of Cyclic Amines via N-Heterocyclic Carbenes and Hydroxamic Acid Cocatalyzed Acyl Transfer

    PubMed Central

    2015-01-01

    The N-heterocyclic carbene and hydroxamic acid cocatalyzed kinetic resolution of cyclic amines generates enantioenriched amines and amides with selectivity factors up to 127. In this report, a quantum mechanical study of the reaction mechanism indicates that the selectivity-determining aminolysis step occurs via a novel concerted pathway in which the hydroxamic acid plays a key role in directing proton transfer from the incoming amine. This modality was found to be general in amide bond formation from a number of activated esters including those generated from HOBt and HOAt, reagents that are broadly used in peptide coupling. For the kinetic resolution, the proposed model accurately predicts the faster reacting enantiomer. A breakdown of the steric and electronic control elements shows that a gearing effect in the transition state is responsible for the observed selectivity. PMID:25050843

  20. Destruction of Leishmania mexicana amazonensis amastigotes within macrophages by lysosomotropic amino acid esters

    PubMed Central

    1986-01-01

    Leishmania amastigotes parasitize almost exclusively the mononuclear phagocytes of mammals. The organisms survive and multiply within acidified vacuoles (parasitophorous vacuoles; p.v.) akin to phagolysosomes. Certain amino acid esters are known to accumulate in and disrupt lysosomes. We postulated that, since Leishmania possess lysosome-like organelles, they may be susceptible to the potentially high ester concentrations attained in the p.v. We report here that L- amino acid esters can rapidly destroy intracellular Leishmania at concentrations that do not appear to damage the host cells. L-leu-OMe, which cured greater than or equal to 90% of infected macrophages at 0.8 mM concentrations, was used in most of the experiments. L-leu-OMe was only active after infection, implying inefficient transfer from secondary lysosomes to the p.v. Parasite destruction had several features in common with lysosomal and leukocyte damage induced by the esters, i.e., inactivity of D-amino acid esters, a marked pH dependence and increased killing after ester pulses at lower temperatures. Killing depended on the amino acid and on the ester substitution. The most active of the methyl esters assayed was that of leucine, followed by those of tryptophan, glutamic acid, methionine, phenylalanine, and tyrosine. Methyl esters of seven other amino acids were inactive when tested at up to 10 mM concentrations. Among leucine esters studied, benzyl ester was sixfold more active than the methyl homolog. The dipeptide L-leu-leu-OMe produced 90% cure at 0.08 mM concentrations. Leishmanicidal activity could be related to penetration of the parasites by the esters or to toxic ester hydrolysis products released in the p.v. The first hypothesis is supported by the pH-dependent destruction of isolated amastigotes by the esters. Furthermore, relatively high concentrations of L-leucine, methanol, or benzyl alcohol were not demonstrably toxic to the amastigotes. We postulate that ester concentrations

  1. Phorbol 12-myristate 13-acetate induces protein kinase ceta-specific proliferative response in astrocytic tumor cells.

    PubMed

    Hussaini, I M; Karns, L R; Vinton, G; Carpenter, J E; Redpath, G T; Sando, J J; VandenBerg, S R

    2000-07-21

    Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity. PMID:10806212

  2. Transport of Glutathione Diethyl Ester Into Human Cells

    NASA Astrophysics Data System (ADS)

    Levy, Ellen J.; Anderson, Mary E.; Meister, Alton

    1993-10-01

    Glutathione monoesters in which the carboxyl group of the glycine residue is esterified were previously found, in contrast to glutathione itself, to be effectively transported into various types of cells and to be converted intracellularly into glutathione. Glutathione monoesters are thus useful for prevention of oxidative stress, certain toxicities, and for treatment of glutathione deficiency. Glutathione diethyl ester is rapidly split to the glutathione monoethyl ester by mouse plasma glutathione diester α-esterase activity. Thus, as expected, glutathione mono- and diesters have similar effects on cellular glutathione levels in mice. However, human plasma lacks glutathione diester α-esterase thus, it became of interest to compare the transport properties of glutathione mono- and diesters in human cells. We found that human cells (erythrocytes, peripheral blood mononuclear cells, fibroblasts, ovarian tumor cells, and purified T cells) transport glutathione diethyl ester much more effectively than the corresponding monoethyl (glycyl) ester. Human cells rapidly convert glutathione diethyl ester to the monoester, whose intracellular levels rise to levels that are significantly higher than levels found after application of the monoester to the cells. High levels of the monoester provide the cells with a means of producing glutathione over a period of time. We conclude that glutathione diethyl ester is highly effective as a delivery agent for glutathione monoester, and thus for glutathione, in human cells and therefore could serve to decrease oxidative stress and toxicity. Hamster (and certain other animals) also lack plasma glutathione diester α-esterase and therefore would be suitable animal models. Previously reported toxicity of certain glutathione ester preparations appears to reflect the presence of impurities rather than effects of the esters.

  3. Metabolism of dibasic esters by rat nasal mucosal carboxylesterase.

    PubMed

    Bogdanffy, M S; Kee, C R; Hinchman, C A; Trela, B A

    1991-01-01

    Inhalation exposure of rats to dibasic esters revealed lesions of the nasal olfactory epithelium similar to those observed with other ester solvents. Female rats are more sensitive to these effects than are male rats. It has been proposed that carboxylesterase conversion of inhaled esters within nasal tissues to organic acids may be a critical biochemical step in converting these chemicals to toxic substances. These experiments measured the kinetic parameters Vmax, KM, Ksi, and V/K for the hydrolysis of the dibasic esters in the target nasal tissue, olfactory mucosa, and nontarget tissue, respiratory mucosa. It was determined that under the conditions of these experiments, diacid metabolites are not formed. Esterase activity was inhibited by pretreatment with bis p-nitrophenyl phosphate. Vmax values for the three dibasic esters were 5- to 13-fold greater in olfactory mucosa than respiratory mucosa for male or female rats. V/K values were 4- to 11-fold greater in olfactory mucosa than respiratory mucosa for male or female rats. V/K was similar between male and female olfactory mucosa when dimethyl glutarate was used as the substrate. With dimethyl succinate or dimethyl adipate as the substrate, V/K for female olfactory tissue was 0.5- or 2-fold that of males, respectively. Differences in V/K were mainly due to decreases in KM associated with increasing carbon chain length. Substrate inhibition was observed at dibasic ester concentrations greater than approximately 25 mM, which are unlikely to be achieved in vivo. These results lend further support to the hypothesis that organic acid accumulation in the target tissue, olfactory mucosa, plays a significant role in the pathogenesis of dibasic ester-induced nasal lesions. This mechanism may be applicable to a wide range of inhaled esters. PMID:1673384

  4. Cu(II), Ni(II), and Zn(II) Complexes of Salan-Type Ligand Containing Ester Groups: Synthesis, Characterization, Electrochemical Properties, and In Vitro Biological Activities

    PubMed Central

    Jeslin Kanaga Inba, P.; Annaraj, B.; Thalamuthu, S.; Neelakantan, M. A.

    2013-01-01

    A salen ligand on reduction and N-alkylation affords a novel [N2O2] chelating ligand containing ester groups [L = diethyl-2,2′-(propane-1,3-diylbis((2-hydroxy-3-methoxy benzyl)azanediyl))diacetate]. The purity of the ligand was confirmed by NMR and HPLC chromatograms. Its Cu(II), Ni(II), and Zn(II) complexes were synthesized and characterized by a combination of elemental analysis, IR, NMR, UV-Vis, and mass spectral data, and thermogravimetric analysis (TG/DTA). The magnetic moments, UV-Vis, and EPR spectral studies support square planar geometry around the Cu(II) and Ni(II) ions. A tetrahedral geometry is observed in four-coordinate zinc with bulky N-alkylated salan ligand. The redox properties of the copper complex were examined in DMSO by cyclic voltammetry. The voltammograms show quasireversible process. The interaction of metal complexes with CT DNA was investigated by UV-Vis absorption titration, ethidium bromide displacement assay, cyclic voltammetry methods, and agarose gel electrophoresis. The apparent binding constant values suggest moderate intercalative binding modes between the complexes and DNA. The in vitro antioxidant and antimicrobial potentials of the synthesized compounds were also determined. PMID:23983672

  5. Synthesis, spectral characterization, thermal behaviour, antibacterial activity and DFT calculation on N'-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide and N'-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester.

    PubMed

    Bharty, M K; Dani, R K; Kushawaha, S K; Prakash, Om; Singh, Ranjan K; Sharma, V K; Kharwar, R N; Singh, N K

    2015-06-15

    Two new compounds N'-[bis(methylsulfanyl) methylene]-2-hydroxybenzohydrazide {Hbmshb (1)} and N'-(4-methoxy benzoyl)-hydrazinecarbodithioic acid ethyl ester {H2mbhce (2)} have been synthesized and characterized with the aid of elemental analyses, IR, NMR and single crystal X-ray diffraction data. Compounds 1 and 2 crystallize in orthorhombic and monoclinic systems with space group Pna21 and P21/n, respectively. Inter and intra molecular hydrogen bonding link two molecules and provide linear chain structure. In addition to this, compound 2 is stabilized by CH⋯π and NH⋯π interactions. Molecular geometry from X-ray analysis, geometry optimization, charge distribution, bond analysis, frontier molecular orbital (FMO) analysis and non-linear optical (NLO) effects have been performed using the density functional theory (DFT) with the B3LYP functional. The bioefficacy of compounds has been examined against the growth of bacteria to evaluate their anti-microbial potential. Compounds 1 and 2 are thermally stable and show NLO behaviour better than the urea crystal. PMID:25767993

  6. Requirement of catalytic-triad and related amino acids for the acyltransferase activity of Tanacetum cinerariifolium GDSL lipase/esterase TcGLIP for ester-bond formation in pyrethrin biosynthesis.

    PubMed

    Kikuta, Yukio; Yamada, Gen; Mitsumori, Tomonori; Takeuchi, Takayuki; Nakayama, Koji; Katsuda, Yoshio; Hatanaka, Akikazu; Matsuda, Kazuhiko

    2013-01-01

    We have recently discovered that a GDSL lipase/esterase (TcGLIP) in Tanacetum cinerariifolium catalyzed acyltransferase activity to form an ester bond in the natural insecticide, pyrethrin. TcGLIP contained Ser40 in Block I, Gly64 in Block II, Asn168 in Block III and Asp318 and His321 in Block V, suggesting underlying hydrolase activity, although little is known about their role in acyltransferase activity. We expressed TcGLIP here in Esherichia coli as a fusion with maltose-binding protein (MBP), part of the fusion being cleaved with a protease to obtain MBP-free TcGLIP. A kinetic analysis revealed that the MBP moiety scarcely influenced the kinetic parameters. The effects on acyltransferase activity of mutations of Gly64, Asn168, Asp318 and His321 were investigated by using MBP-fused TcGLIP. Mutations of these amino acids markedly reduced the acyltransferase activity, suggesting their critical role in the production of pyrethrins. PMID:24018659

  7. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    SciTech Connect

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR, specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.

  8. Antiinflammatory, gastrosparing, and antiplatelet properties of new NO-donor esters of aspirin.

    PubMed

    Cena, Clara; Lolli, Marco L; Lazzarato, Loretta; Guaita, Elena; Morini, Giuseppina; Coruzzi, Gabriella; McElroy, Stuart P; Megson, Ian L; Fruttero, Roberta; Gasco, Alberto

    2003-02-27

    A new series of NSAIDs in which aspirin is joined by an ester linkage to furoxan moieties, with different ability to release NO, were synthesized and tested for NO-releasing, antiinflammatory, antiaggregatory, and ulcerogenic properties. Related furazan derivatives, aspirin, its propyl ester, and its gamma-nitrooxypropyl ester were taken as references. All the products described present an antiinflammatory trend, maximized in derivatives 12, 16, and 17, they are devoid of acute gastrotoxicity, principally due to their ester nature, and show an antiplatelet activity primarily determined by their ability to release NO. They do not behave as aspirin prodrugs in human serum. PMID:12593655

  9. Chemistry for Kids. Ester, What's in My Food?

    ERIC Educational Resources Information Center

    Clarke, Michele; And Others

    1986-01-01

    Describes three teaching activities used in the Chemistry for Kids program which focus on how esters are chemicals partially responsible for the flavor of foods. Includes a discussion of a demonstration involving role-playing, a set of taste tests, and an activity using chewing gum to investigate odors in food. (TW)

  10. Inhibition of bovine beta-trypsin by the active site titrant N alpha-(N,N-dimethylcarbamoyl)-alpha-azaornithine p-nitrophenyl ester: a kinetic and X-ray crystallographic study.

    PubMed

    Ascenzi, P; Balliano, G; Milla, P; Ferraccioli, R; Sartori, P; Djinovic-Carugo, K; Bolognesi, M

    1995-12-14

    Kinetics of the bovine beta-trypsin (trypsin) reaction with the active site titrant N alpha-(N,N-dimethylcarbamoyl)- alpha-aza-ornithine p-nitrophenyl ester (Dmc-azaOrn-ONp) was obtained at pH 6.2 and 21.0 degrees C. The results are consistent with the minimum three-step catalytic mechanism of serine proteinases involving a stable acyl.enzyme adduct. Dmc-azaOrn-ONp binds stoichiometrically to trypsin and allows the reliable determination of the active enzyme concentration between 1.0 x 10(-6) M and 3.0 x 10(-4) M. The three-dimensional structure of the trypsin.Dmc-azaOrn acyl.enzyme adduct has been solved by X-ray crystallography at 1.8 A resolution (R = 0.153). The Dmc-azaOrn moiety of the active site titrant is accommodated in the serine proteinase active center, occupying the S1 specificity subsite, and is covalently linked to the OG atom of the Ser195 catalytic residue. PMID:7503719

  11. Fiberite 954: cyanate ester systems

    NASA Astrophysics Data System (ADS)

    Almen, G. R.; Mackenzie, P. D.; Malhotra, Vinay; Maskell, R. K.

    1992-09-01

    Cost and weight savings achieved by the use of composites have allowed these materials to displace their metal counterparts in space applications. Epoxy matrix based carbon fiber reinforced composites, such as Fiberite 934, have been used for a number of years. Relative to these systems, cyanate esters offer a number of unique attributes such as excellent hydrophobicity and electrical properties, reduced residual stress and better microcrack resistance, and improved radiation resistance. The significant reduction in water sorption and the low response to uptake make it possible to achieve much improved dimensional stability and reduced outgassing. These features may be used to advantage in electro-optical applications in space. ICI Fiberite has developed cyanate ester based prepreg systems that are penetrating the satellite, military radome and structural aerospace markets. Features of these systems will be presented and the properties of the cyanate ester based prepreg, Fiberite 954- 3, will be compared to those of Fiberite 934.

  12. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  13. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  14. Growth rates and water stability of 2D boronate ester covalent organic frameworks.

    PubMed

    Smith, Brian J; Hwang, Nicky; Chavez, Anton D; Novotney, Jennifer L; Dichtel, William R

    2015-05-01

    We examine the growth rates, activation energies, and hydrolytic stability of multiple 2D boronate ester covalent organic frameworks by turbidity measurements, observing a 200-fold range in stability. The rate-determining step in boronate ester 2D COF growth is not in-solution condensation, but rather interlayer polymer stacking through a nucleation-elongation process. PMID:25848654

  15. Lipoprotein products of lecithin: cholesterol acyltransferase and cholesteryl ester transfer.

    PubMed

    Rose, H G; Ellerbe, P

    1982-09-14

    High-density lipoprotein substrates and products of human plasma lecithin: cholesterol acyltransferase have been labelled with radioisotopic cholesteryl esters in order to facilitate identification. [3H]Cholesteryl esters were formed by endogenous HDL3/VHDL enzyme (d greater than 1.125 g/ml) following incubation with mixed vesicles of phosphatidylcholine, unesterified cholesterol and 3H-labelled unesterified cholesterol. Transfer of labelled esters to acceptor lipoproteins (VLDL+LDL, d less than 1.063 g/ml) was employed to distinguish a hypothetical transfer complex. Separation of labelled HDL3/VHDL was by gel-permeation chromatography. The results indicate that a subpopulation of labelled HDL3/VHDL cholesteryl esters (43-61% of total) were removed by VLDL/LDL during a 3 h transfer period and these derive from the smaller lipoproteins of the spectrum. HDL carrying non-transferable [3H]cholesteryl esters localize to the larger HDL3. Transfer rates were proportional to ratios of acceptor to donor lipoproteins. Net transfer of cholesteryl esters from the smaller HDL3 also occurred, but was smaller in magnitude (about 10.5% of total). Acyltransferase assays indicated that enzyme distribution is skewed to larger-sized HDL3, suggesting that the non-transferable components might be lecithin: cholesterol acyltransferase-containing parent complexes, while the smaller transfer products contain little acyltransferase. The results fit the hypothesis that a parent HDL3-lecithin: cholesterol acyltransferase complex generates a smaller-sized lipoprotein product which is active in cholesteryl ester transport. PMID:7126623

  16. Removal of cholesteryl ester from hepatic reticuloendothelial cells in vivo is not enhanced by plasma cholesteryl ester transfer protein.

    PubMed

    Stein, O; Dabach, Y; Hollander, G; Stein, Y

    1991-01-28

    The putative role of cholesteryl ester transfer protein (CETP) in the removal of cholesteryl ester from hepatic reticuloendothelial cells in vivo was studied in hamsters. The parameter tested was retention of [3H]cholesteryl linoleyl ether ([3H]CLE), a nonhydrolysable analog of cholesteryl ester, in the liver after injection of [3H]CLE labeled acetylated LDL, which is targetted to nonparenchymatous littoral cells. In hamsters fed laboratory chow, plasma cholesteryl ester transfer activity (CETA) was 10.6 +/- 0.9 units and the retention of [3H]CLE in the liver 28 days after injection was 86% of the 4 h value. It was about 55% in rats fed the same diet, in which CETA was not detectable. When the diet was supplemented with 2% cholesterol and 15% margarine, CETA activity in hamsters increased 2-fold, yet no change in retention of [3H]CLE in liver was seen after 28 days. In rats, the retention of [3H]CLE in the liver was also not changed by the dietary fat supplementation. These results do not support the role of CETP in vivo in removal of cholesteryl ester from intact reticuloendothelial cells. PMID:1998742

  17. REPRODUCTIVE TOXICITY OF PHTHALATE ESTERS

    EPA Science Inventory

    Phthalate esters display several modes of toxicity in mammalian species. In the rat, in utero exposure at relatively low dosage levels disrupts development of the reproductive system of the male rat by altering fetal testis hormone production. This presentation is a review of t...

  18. Biodiesel With Optimized Fatty Ester Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is largely composed of the mono-alkyl esters, usually methyl esters, of vegetable oils or animal fats with its fatty acid profile corresponding to that of the parent oil or fat. The different fatty esters have varying properties of relevance to biodiesel. The feedstock-dependent variatio...

  19. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  20. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  1. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  2. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  3. Palladium-Catalyzed α-Arylation of Zinc Enolates of Esters: Reaction Conditions and Substrate Scope

    PubMed Central

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F.

    2013-01-01

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching lithium enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2. PMID:23931445

  4. Upregulation of cAMP-specific PDE-4 activity following ligation of the TCR complex on thymocytes is blocked by selective inhibitors of protein kinase C and tyrosyl kinases.

    PubMed

    Michie, A M; Rena, G; Harnett, M M; Houslay, M D

    1998-01-01

    We have previously shown that the major cAMP phosphodiesterase (PDE) isoforms present in murine thymocytes are the cGMP-stimulated PDE activity (PDE-2) and the cAMP-specific PDE activity (PDE-4), and that these isoforms are differentially regulated following ligation of the TCR (Michie, A.M., Lobban, M. D., Mueller, T., Harnett, M. M., and Houslay, M.D. [1996] Cell. Signalling 8, 97-110). We show here that the anti-CD3-stimulated elevation in PDE-4 activity in murine thymocytes is dependent on protein tyrosine kinase and protein kinase C (PKC)-mediated signals as the TCR-coupled increase in PDE-4 activity can be abrogated by both the tyrosine kinase inhibitor, genistein, and the PKC selective inhibitors chelerythrine and staurosporine. Moreover, the PKC-activating phorbol ester, phorbol-12-myristate, 13-acetate (PMA) caused an increase in PDE-4 activity, similar to that observed in cells challenged with anti-CD3 monoclonal antibodies and which was not additive with cochallenge using anti-CD3 antibodies. Both the PMA- and the anti-CD3 antibody-mediated increases in PDE-4 activity were blocked by treatment with either cycloheximide or actinomycin D. Despite the upregulation of PDE-4 activity consequent to TCR ligation, intracellular cAMP levels increased on challenge of thymocytes with anti-CD3 antibody, indicating that adenylate cyclase activity was also increased by TCR ligation. It is suggested that the anti-CD3-mediated increase in PDE-4 activity was owing to a rapid PKC-dependent induction of PDE-4 activity following crosslinking of the TCR complex. This identifies "crosstalk" occurring between the PKA and PKC signaling pathways initiated by ligation of the antigen receptor in murine thymocytes. That both adenylate cyclase and PDE-4 activities were increased may indicate the presence of compartmentalized cAMP responses present in these cells. PMID:9515165

  5. Combining Pear Ester with Codlemone Improves Management of Codling Moth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several management approaches utilizing pear ester combined with codlemone have been developed in the first 10 years after the discovery of this ripe pear fruit volatile’s kairomonal activity for larvae and both sexes of codling moth. These include a lure that consistently outperforms other high loa...

  6. PHORBOL ESTER ACTRIVATION OF AN NHE-LIKE ELECTRONEUTRAL NA+/H+ ANTIPORTER IN ISOLATED E-CELLS FROM THE ATLANTIC LOBSTER. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. EFFECTS OF PCB 84 ATROPISOMERS ON [3H]-PHORBOL ESTER BINDING IN RAT CEREBELLAR GRANULE CELLS AND 45CA2+-UPTAKE IN RAT CEREBELLUM.

    EPA Science Inventory

    There is evidence that Polychlorinated biphenyl (PCB) congeners with ortho substituents have potential to cause neurotoxicity. Many PCB congeners implicated in these neurotoxic effects are chiral. It is currently unknown if the enantiomers of a chiral PCB congeners have differe...

  8. Distribution of Spinal Sensitization Evoked by Inflammatory Pain Using Local Spinal Cord Glucose Utilization Combined with 3H-Phorbol 12,13-Dibutyrate Binding in Rats

    PubMed Central

    Seiko, Yasuda; Kozo, Ishikawa; Yoshihiro, Matsumoto; Toru, Ariyoshi; Hironori, Sasaki; Yuika, Ida; Yasutake, Iwanaga; Hae-Kyu, Kim; Osamu, Nakanishi; Toshizo, Ishikawa

    2013-01-01

    Aims. Hyperalgesia following tissue injury is induced by plasticity in neurotransmission. Few investigators have considered the ascending input which activates the superficial of spinal cord. The aim was to examine neurotransmission and nociceptive processing in the spinal cord after mustard-oil (MO) injection. Both in vitro and in vivo autoradiographs were employed for neuronal activity and transmission in discrete spinal cord regions using the 14C-2-deoxyglucose method and 3H-phorbol 12,13-dibutyrate (3H-PDBu) binding sites. Methods. To quantify the hyperalgesia evoked by MO, the flinching was counted for 60 min after MO (20%, 50 μL) injection in Wistar rats. Simultaneous determination of 14C-2-deoxyglucose and 3H-PDBu binding was used for a direct observation of neuronal/metabolic changes and intracellular signaling in the spinal cord. Results. MO injection evoked an increase in flinching for 60 min. LSCGU significantly increased in the Rexed I-II with 3H-PDBu binding in the ipsilateral side of spinal cord. Discussion. We clearly demonstrated that the hyperalgesia is primarily relevant to increased neuronal activation with PKC activation in the Rexed I-II of the spinal cord. In addition, functional changes such as “neuronal plasticity” may result in increased neuronal excitability and a central sensitization. PMID:27335874

  9. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    PubMed

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats. PMID:15298545

  10. In vitro enhancement of lactate esters on the percutaneous penetration of drugs with different lipophilicity.

    PubMed

    Zhang, Jianhua; Liu, Mei; Jin, Hongjian; Deng, Liandong; Xing, Jinfeng; Dong, Anjie

    2010-06-01

    Lactate esters are widely used as food additives, perfume materials, medicine additives, and personal care products. The objective of this work was to investigate the effect of a series of lactate esters as penetration enhancers on the in vitro skin permeation of four drugs with different physicochemical properties, including ibuprofen, salicylic acid, dexamethasone and 5-fluorouracil. The saturated donor solutions of the evaluated drugs in propylene glycol were used in order to keep a constant driving force with maximum thermodynamic activity. The permeability coefficient (K(p)), skin concentration of drugs (SC), and lag time (T), as well as the enhancement ratios for K(p) and SC were recorded. All results indicated that lactate esters can exert a significant influence on the transdermal delivery of the model drugs and there is a structure-activity relationship between the tested lactate esters and their enhancement effects. The results also suggested that the lactate esters with the chain length of fatty alcohol moieties of 10-12 are more effective enhancers. Furthermore, the enhancement effect of