Science.gov

Sample records for active plasmonic devices

  1. Graphene active plasmonics for terahertz device applications

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Dubinov, Alexander; Ryzhii, Maxim; Boubanga Tombet, Stephane; Satou, Akira; Mitin, Vladimir; Shur, Michael S.; Ryzhii, Victor

    2015-05-01

    This paper reviews recent advances in the double-graphene-layer (DGL) active plasmonic heterostructures for the terahertz (THz) device applications. The DGL consists of a core shell in which a thin tunnel barrier layer is sandwiched by the two GLs being independently connected with the side contacts and outer gate stack layers at both sides. The DGL core shell works as a nano-capacitor, exhibiting inter-GL resonant tunneling (RT) when the band offset between the two GLs is aligned. The RT produces a strong nonlinearity with a negative differential conductance in the DGL current-voltage characteristics. The excitation of the graphene plasmons by the THz radiation resonantly modulates the tunneling currentvoltage characteristics. When the band offset is aligned to the THz photon energy, the DGL structure can mediate photonassisted RT, resulting in resonant emission or detection of the THz radiation. The cooperative double-resonant excitation with structure-sensitive graphene plasmons gives rise to various functionalities such as rectification (detection), photomixing, higher harmonic generation, and self-oscillation, in the THz device implementations.

  2. Tunable surface plasmon devices

    DOEpatents

    Shaner, Eric A.; Wasserman, Daniel

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  3. Novel windows for "solar commodities": a device for CO2 reduction using plasmonic catalyst activation.

    PubMed

    Navarrete, Alexander; Muñoz, Sergio; Sanz-Moral, Luis M; Brandner, Juergen J; Pfeifer, Peter; Martín, Ángel; Dittmeyer, Roland; Cocero, María J

    2015-01-01

    A novel plasmonic reactor concept is proposed and tested to work as a visible energy harvesting device while allowing reactions to transform CO2 to be carried out. Particularly the reverse water gas shift (RWGS) reaction has been tested as a means to introduce renewable energy into the economy. The development of the new reactor concept involved the synthesis of a new composite capable of plasmonic activation with light, the development of an impregnation method to create a single catalyst reactor entity, and finally the assembly of a reaction system to test the reaction. The composite developed was based on a Cu/ZnO catalyst dispersed into transparent aerogels. This allows efficient light transmission and a high surface area for the catalyst. An effective yet simple impregnation method was developed that allowed introduction of the composites into glass microchannels. The activation of the reaction was made using LEDs that covered all the sides of the reactor allowing a high power delivery. The results of the reaction show a stable process capable of low temperature transformations.

  4. Plasmonics for improved photovoltaic devices.

    PubMed

    Atwater, Harry A; Polman, Albert

    2010-03-01

    The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

  5. Metamaterial, plasmonic and nanophotonic devices.

    PubMed

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  6. Metamaterial, plasmonic and nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  7. Noble metal nanowires: from plasmon waveguides to passive and active devices.

    PubMed

    Lal, Surbhi; Hafner, Jason H; Halas, Naomi J; Link, Stephan; Nordlander, Peter

    2012-11-20

    Using chemical synthesis, researchers can produce noble metal nanowires with highly regular, crystalline properties unachievable by alternative, top-down nanofabrication methods. Sitting at the intersection of nanochemistry and nanooptics, noble metal nanowires have generated intense and growing research interest. These nanostructures combine subwavelength transverse dimensions (50-100 nm) and longitudinal dimensions that can reach tens of micrometers or more, which makes them an ideal platform to launch surface plasmon waves by direct illumination of one end of the structure. Because of this property, researchers are using noble metal nanowires as a tool for fundamental studies of subwavelength plasmon-based optics and the properties of surface plasmon guided wave propagation in highly confined geometries below the classical optical diffraction limit. In this Account, we review some of the recent developments in plasmonic nanowire fabrication, nanowire plasmon imaging, and nanowire optical components and devices. The addition of an adjacent nanowire, substrate, or other symmetry-breaking defect can enable the direct coupling of light to and from free space to the guided waves on a nanowire structure. Such structures lead to more complex nanowire-based geometries with multiple optical inputs and outputs. Additional nanowire imaging methods are also possible: plasmon propagation on nanowires produces intense near-field diffraction, which can induce fluorescence in nearby quantum dots or photobleach adjacent molecules. When the nanowire is deposited on a dielectric substrate, the plasmon propagation along chemically synthesized nanowires exceeds 10 μm, which makes these structures useful in nonlocal applications such as remote surface-enhanced Raman spectroscopy (SERS) sensing. Nanowires can be used as passive optical devices, which include, for example, polarization manipulators, linear polarization rotators, or even broadband linear-to-circular polarization

  8. Devices based on surface plasmon interference filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2001-01-01

    Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.

  9. Active quantum plasmonics.

    PubMed

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K; M Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G

    2015-12-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.

  10. Active quantum plasmonics

    PubMed Central

    Marinica, Dana Codruta; Zapata, Mario; Nordlander, Peter; Kazansky, Andrey K.; M. Echenique, Pedro; Aizpurua, Javier; Borisov, Andrei G.

    2015-01-01

    The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics. PMID:26824066

  11. Plasmonic coaxial waveguide-cavity devices.

    PubMed

    Mahigir, Amirreza; Dastmalchi, Pouya; Shin, Wonseok; Fan, Shanhui; Veronis, Georgios

    2015-08-10

    We theoretically investigate three-dimensional plasmonic waveguide-cavity structures, built by side-coupling stub resonators that consist of plasmonic coaxial waveguides of finite length, to a plasmonic coaxial waveguide. The resonators are terminated either in a short or an open circuit. We show that the properties of these waveguide-cavity systems can be accurately described using a single-mode scattering matrix theory. We also show that, with proper choice of their design parameters, three-dimensional plasmonic coaxial waveguide-cavity devices and two-dimensional metal-dielectric-metal devices can have nearly identical transmission spectra. Thus, three-dimensional plasmonic coaxial waveguides offer a platform for practical implementation of two-dimensional metal-dielectric-metal device designs.

  12. Surface plasmon resonance: concept and applications for nano-sensors and optical active devices

    NASA Astrophysics Data System (ADS)

    Popescu, A. A.

    2015-02-01

    In report is made the synthesis of the surface plasmon polariton propagation phenomenon. Methods such as Maxwell equations, Drude model used to describe the light confinement at the interface between two media are analyzed. Simulation techniques such as the transfer matrix formalism and the dispersion equation are examined. Finally are presented the results of our own investigations aiming plasmonic structure containing a film of amorphous chalcogenide material. It is shown the structure is very sensitive to the modifications of the refractive index that may be used for the design of the optical memory.

  13. Microfluidic Devices Integrating Microcavity Surface-Plasmon-Resonance Sensors: Glucose Oxidase Binding-Activity Detection

    PubMed Central

    Amarie, Dragos; Alileche, Abdelkrim; Dragnea, Bogdan; Glazier, James A.

    2010-01-01

    We have developed miniature (≈1 μm diameter) microcavity surface-plasmon-resonance sensors (MSPRS), integrated them with microfluidics and tested their sensitivity to refractive-index changes. We tested their biosensing capability by distinguishing the interaction of glucose oxidase (Mr 160 kDa) with its natural substrate (β-D-glucose, Mr 180 Da) from its interactions with non-specific substrates (L-glucose, D-mannose and 2-deoxy-D-glucose). We ran the identical protocol we had used with the MSPRS on a Biacore 3000 instrument using their bare gold chip. Only the MSPRS was able to detect β-D-glucose binding to glucose oxidase. Each MSPRS can detect the binding to its surface of fewer than 35,000 glucose-oxidase molecules (representing 9.6 fg or 60 zmol of protein), about 106 times fewer than classical surface-plasmon-resonance biosensors. PMID:19968248

  14. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  15. Multicolor Electrochromic Devices Based on Molecular Plasmonics.

    PubMed

    Stec, Grant J; Lauchner, Adam; Cui, Yao; Nordlander, Peter; Halas, Naomi J

    2017-03-28

    Polycyclic aromatic hydrocarbon (PAH) molecules, the hydrogen-terminated, sub-nanometer-scale version of graphene, support plasmon resonances with the addition or removal of a single electron. Typically colorless when neutral, they are transformed into vivid optical absorbers in either their positively or negatively charged states. Here, we demonstrate a low-voltage, multistate electrochromic device based on PAH plasmon resonances that can be reversibly switched between nearly colorless (0 V), olive (+4 V), and royal blue (-3.5 V). The device exhibits highly efficient color change compared to electrochromic polymers and metal oxides, lower power consumption than liquid crystals, and is shown to reversibly switch for at least 100 cycles. We also demonstrate the additive property of molecular plasmon resonances in a single-layer device to display a reversible, transmissive-to-black device. This work illuminates the potential of PAH molecular plasmonics for the development of color displays and large-area color-changing applications due to their processability and ultralow power consumption.

  16. Yttrium hydride nanoantennas for active plasmonics

    NASA Astrophysics Data System (ADS)

    Strohfeldt, Nikolai; Tittl, Andreas; Schäferling, Martin; Neubrech, Frank; Kreibig, Uwe; Griessen, Ronald; Giessen, Harald

    2014-09-01

    A key challenge for the development of active plasmonic nanodevices is the lack of materials with fully controllable plasmonic properties. In this work, we demonstrate that a plasmonic resonance in top-down nanofabricated yttrium antennas can be completely and reversibly turned on and off using hydrogen exposure. We fabricate arrays of yttrium nanorods and optically observe in extinction spectra the hydrogen-induced phase transition between the metallic yttrium dihydride and the insulating trihydride. Whereas the yttrium dihydride nanostructures exhibit a pronounced particle plasmon resonance, the transition to yttrium trihydride leads to a complete vanishing of the resonant behavior. The plasmonic resonance in the dihydride state can be tuned over a wide wavelength range by simply varying the size of the nanostructures. Furthermore, we develop an analytical diffusion model to explain the temporal behaviour of the hydrogen loading and unloading process observed in our experiments and gain information about the thermodynamics of our device. Thus, our nanorod system serves as a versatile basic building block for active plasmonic devices ranging from switchable perfect absorbers to active local heating control elements.

  17. Plasmonic Structures for Sensing and Emitting Devices

    NASA Astrophysics Data System (ADS)

    Floris, Francesco; Fornasari, Lucia; Patrini, Maddalena; Figus, Cristiana; Mura, Andrea; Bongiovanni, Giovanni; Quochi, Francesco; Pellacani, Paola; Valsesia, Andrea; Marabelli, Franco

    2014-12-01

    We report on the study of a plasmonic nanostructure that could be adopted as platform for emitting and sensing applications. Several devices have been prepared and characterized by atomic force microscopy (AFM) and Fourier transform micro-reflectance (FT- pR) techniques. In addition, a modelling via finite-difference time-domain (FDTD) simulations have been developed in order to interpret the morphological shape and the optical response of the considered structures. Until now, remarkable performances as surface plasmon resonance (SPR) based optical sensor have been founded. Moreover, we are performing preliminary trials in order to establish a coupling between photoluminescence (PL) features of suitable emitters with respect to the plasmonic resonances.

  18. Plasmonic nanostructures for electronic designs of photovoltaic devices: plasmonic hot-carrier photovoltaic architectures and plasmonic electrode structures

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Su, Dan; Li, Ruo-Zhou; Wang, Shan-Jiang; Shan, Feng; Xu, Jia-Jia; Zhang, Xiao-Yang

    2016-10-01

    The tunable and amazing properties of plasmonic nanostructures have received significant attentions in the fields of solar energy conversion. Plasmonic nanostructures provide pathways to directly convert solar energy into electric energy by hot-carrier generation. They can also serve as economical electrodes for high-efficient carrier collection. Both have promising potential for manufacturing new generation solar cells. Here, we review recent advances in plasmonic nanostructures for electronic designs of photovoltaic devices and specially focus on plasmonic hot-carrier photovoltaic architectures and plasmonic electrode structures. Technical challenges toward low-cost and high-performance plasmonics-based solar cells are also discussed.

  19. Generation of surface plasmons with compact devices

    NASA Astrophysics Data System (ADS)

    Baron, A.; Lalanne, P.; Gan, C. H.; Hugonin, J. P.

    2013-03-01

    We review the properties of the generation of surface plasmons by subwavelength isolated slits in metal films and by small ensembles of slits. After an introduction, in Section 2, we recall the theoretical modal formalism that allows us to calculate the generation efficiency of SPP from the total field scattered by an indentation on a metal film. We also rapidly discuss the main results known of the SPP generation efficiency by subwavelength tiny slits or grooves. In Section 3, we consider the special case of wavelength-large slits that support two propagative modes and that allow us to dynamically control the direction of generated surface plasmons. In Section 4, we conclude by describing a compact and efficient device capable of launching SPPs in a single direction with a normally incident beam.

  20. Surface plasmon-enhanced photovoltaic device

    DOEpatents

    Kostecki, Robert; Mao, Samuel

    2014-10-07

    Photovoltaic devices are driven by intense photoemission of "hot" electrons from a suitable nanostructured metal. The metal should be an electron source with surface plasmon resonance within the visible and near-visible spectrum range (near IR to near UV (about 300 to 1000 nm)). Suitable metals include silver, gold, copper and alloys of silver, gold and copper with each other. Silver is particularly preferred for its advantageous opto-electronic properties in the near UV and visible spectrum range, relatively low cost, and simplicity of processing.

  1. Active Nanorheology with Plasmonics.

    PubMed

    Jeong, Hyeon-Ho; Mark, Andrew G; Lee, Tung-Chun; Alarcón-Correa, Mariana; Eslami, Sahand; Qiu, Tian; Gibbs, John G; Fischer, Peer

    2016-08-10

    Nanoplasmonic systems are valued for their strong optical response and their small size. Most plasmonic sensors and systems to date have been rigid and passive. However, rendering these structures dynamic opens new possibilities for applications. Here we demonstrate that dynamic plasmonic nanoparticles can be used as mechanical sensors to selectively probe the rheological properties of a fluid in situ at the nanoscale and in microscopic volumes. We fabricate chiral magneto-plasmonic nanocolloids that can be actuated by an external magnetic field, which in turn allows for the direct and fast modulation of their distinct optical response. The method is robust and allows nanorheological measurements with a mechanical sensitivity of ∼0.1 cP, even in strongly absorbing fluids with an optical density of up to OD ∼ 3 (∼0.1% light transmittance) and in the presence of scatterers (e.g., 50% v/v red blood cells).

  2. Charge carrier tuning of mid-infrared plasmonic devices

    NASA Astrophysics Data System (ADS)

    Anglin, Kevin

    There is currently a wide variety of passive plasmonic technologies, with applications in the fields of sensing, security, and optical interconnects and computing. Development of a rapidly and broadly tunable plasmonic device would be an enabling technology, giving active control over these traditionally passive devices. The free charge carrier concentration directly affects the dielectric permittivity of a semiconductor, which in turn determines the plasmonic resonance. Metal-oxide-semiconductor capacitors using n-type substrates permit the modulation of free charge carriers in a semiconductor by applying a bias. In this study, MOS-capacitors were fabricated with an extraordinary optical transmission gratings built into the top gate. Tuning of the optical resonance of an EOT spectrum is shown applying a reverse bias across the semiconductor. The oxide layer used was hafnium dioxide, grown by atomic layer deposition. The electrical properties of the hafnia were studied in order to maximize the capabilities of this design. The samples were processed using standard photolithography and wet etching techniques, and characterized by optical microscopy, probe testing, and transmission spectroscopy. Resonant tuning of 30 nm has been demonstrated. The maximum depletion width in the semiconductor limited the effect and prohibited broader tuning.

  3. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    PubMed

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-07

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  4. Interaction of two plasmon modes in the organic photovoltaic devices with patterned back-electrode

    NASA Astrophysics Data System (ADS)

    Lu, D.; Rengnath, E.; Cui, Y.; Wang, Z.; Ding, Y.; Park, W.

    2013-06-01

    We designed and fabricated silver grating structures on the back-electrodes of organic photovoltaic (OPV) devices to achieve absorption enhancement. The observed enhancement is attributed to several effects, including scattering through corrugated grating surface and surface plasmon modes generated by periodic plasmonic structure. Two plasmon modes are identified in our structure: localized surface plasmon (LSP) and surface plasmon polariton (SPP) modes. The former exists near the absorption edge of the active material and extends the absorption band while the latter provides an absorption pathway in the sub-gap region. Also, LSP is insensitive to active layer thickness and grating period, while the SPP which is excited whenever the momentum matching condition is satisfied shows strong dependence on active layer thickness and grating period. The two modes also exhibit strong interaction as indicated by anti-crossing behavior and thus the interplay between the two modes must be considered for back-electrode design.

  5. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-07-01

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting. Electronic supplementary information (ESI) available: Detailed experimental procedures. See DOI: 10.1039/c2nr30208j

  6. Surface plasmon enhanced P3HT:PCBM photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Zivanovic, Sandra; Thapa, Anil; Koorie, Mark; Animilli, Shravanrakesh; Gunasekaran, A.; Melancon, Justin; Genov, Dentcho

    2012-10-01

    A reduction of material consumption in thin-film photovoltaic devices can make solar energy economically more viable. However, since thin films essentially absorb less light, there is an imminent need for existing technology to improve light harvesting. We present an effective approach of better light absorption, enhanced photocurrent generation and therefore higher quantum efficiency of poly (3-hexylthiophene): 1-(3-methoxycarbonyl) propyl-1-phenyl-[6, 6]-methanofullerene (P3HT:PCBM) bulk heterojunction photovoltaic/photodetector devices. We have integrated a thin semi-continuous gold film (SCGF) (~20nm) sputtered at percolation threshold between the active P3HT:PCBM layer and the indium-tin-oxide (ITO) electrode. At critical metal concentrations, i.e. percolation threshold, the light reaching the SCGF undergoes a broadband trapping with characteristic time of 200 fs, through complex interactions with fractal gold clusters. This thin SCGF together with the ITO serves as an anode. The interface between SCGF and the polymer represents the metaldielectric composite (MDC) that supports broad-band surface plasmon resonances that store electromagnetic radiation at the nanoscale and acts as an effective bulk type of concentrator without the need of increasing the photovoltaic device physical collection area. Here we report a six-fold enhancement in the integral quantum efficiency over the solar spectrum for device employing plasmon-active gold layer. Such enhancement is an important contribution for the future design of more efficient photodetecting/photovoltaic devices. The experimental results are supported by the theoretical modeling of metal-dielectric composites by block elimination method in 3D. The AC and DC responses of MDC, local field distribution, broad optical response and photon trapping in the percolating MDC were numerically calculated.

  7. Surface plasmon amplification and active nonreciprocal gratings

    NASA Astrophysics Data System (ADS)

    Karami Keshmarzi, Elham; Tait, R. Niall; Berini, Pierre

    2015-03-01

    In this paper, we review our recent work on active plasmonic structures composed of optically pumped dye molecules infiltrated in a polymer host as the cladding of long-range surface plasmon polariton (LRSPP) structures. In particular, concepts for distributed Bragg and distributed feedback (DBR/DFB) lasers, and a spatially non-reciprocal Bragg grating (NRBG) are reviewed. The LRSPP Bragg grating is a fundamental element in these devices which is created by stepping the width of a metal stripe to produce modulation of refractive index. The gain medium in all of these active devices is assumed to be a thin film (~1μm) of polymer (poly (methyl methacrylate)) doped with organic laser dye molecules IR- 140. The gain medium is assumed pumped optically through the top of the devices via 10 ns laser pulses at 810 nm with 500 kW/cm2 power intensity to enable stimulated emission at 880 nm. The maximum material gain coefficient of this medium was measured independently as 68 cm-1.

  8. A semi-analytical decomposition analysis of surface plasmon generation and the optimal nanoledge plasmonic device

    PubMed Central

    Zeng, Zheng; Mendis, Madu N.; Waldeck, David H.; Wei, Jianjun

    2016-01-01

    Surface plasmon resonance (SPR) of nanostructured thin metal films (so-called nanoplasmonics) has attracted intense attention due to its versatility for optical sensing and chip-based device integration. Understanding the underlying physics and developing applications of nanoplasmonic devices with desirable optical properties, e.g. intensity of light scattering and high refractive index (RI) sensitivity at the perforated metal film, is crucial for practical uses in physics, biomedical detection, and environmental monitoring. This work presents a semi-analytical model that enables decomposition and quantitative analysis of surface plasmon generation at a new complex nanoledge aperture structure under plane-wave illumination, thus providing insight on how to optimize plasmonic devices for optimal plasmonic generation efficiencies and RI sensitivity. A factor analysis of parameters (geometric, dielectric-RI, and incident wavelength) relevant to surface plasmon generation is quantitatively investigated to predict the surface plasmon polariton (SPP) generation efficiency. In concert with the analytical treatment, a finite-difference time-domain (FDTD) simulation is used to model the optical transmission spectra and RI sensitivity as a function of the nanoledge device’s geometric parameters, and it shows good agreement with the analytical model. Further validation of the analytical approach is provided by fabricating subwavelength nanoledge devices and testing their optical transmission and RI sensitivity. PMID:26977289

  9. Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices

    DOE PAGES

    Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad

    2015-03-10

    We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplifiedmore » model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.« less

  10. Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices

    SciTech Connect

    Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad

    2015-03-10

    We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplified model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.

  11. Optoelectronic devices, plasmonics, and photonics with topological insulators

    NASA Astrophysics Data System (ADS)

    Politano, Antonio; Viti, Leonardo; Vitiello, Miriam S.

    2017-03-01

    Topological insulators are innovative materials with semiconducting bulk together with surface states forming a Dirac cone, which ensure metallic conduction in the surface plane. Therefore, topological insulators represent an ideal platform for optoelectronics and photonics. The recent progress of science and technology based on topological insulators enables the exploitation of their huge application capabilities. Here, we review the recent achievements of optoelectronics, photonics, and plasmonics with topological insulators. Plasmonic devices and photodetectors based on topological insulators in a wide energy range, from terahertz to the ultraviolet, promise outstanding impact. Furthermore, the peculiarities, the range of applications, and the challenges of the emerging fields of topological photonics and thermo-plasmonics are discussed.

  12. Plasmonics in nanostructures.

    PubMed

    Fang, Zheyu; Zhu, Xing

    2013-07-26

    Plasmonics has developed into one of the rapidly growing research topics for nanophotonics. With advanced nanofabrication techniques, a broad variety of nanostructures can be designed and fabricated for plasmonic devices at nanoscale. Fundamental properties for both surface plasmon polaritons (SPP) and localized surface plasmons (LSP) arise a new insight and understanding for the electro-optical device investigations, such as plasmonic nanofocusing, low-loss plasmon waveguide and active plasmonic detectors for energy harvesting. Here, we review some typical functional plasmonic nanostructures and nanosmart devices emerging from our individual and collaborative research works.

  13. Palladium on plastic substrates for plasmonic devices.

    PubMed

    Zuppella, Paola; Pasqualotto, Elisabetta; Zuccon, Sara; Gerlin, Francesca; Corso, Alain Jody; Scaramuzza, Matteo; De Toni, Alessandro; Paccagnella, Alessandro; Pelizzo, Maria Guglielmina

    2015-01-09

    Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been selected as the target of the experiment, since it can be applied to several medical early diagnostic tools, such as different biomarkers of cancers or cystic fibrosis. The results are encouraging for the use of palladium in SPR-based sensors of interest for both the advancement of biodevices and the development of hydrogen sensors.

  14. Plasmonic Biofoam: A Versatile Optically Active Material.

    PubMed

    Tian, Limei; Luan, Jingyi; Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2016-01-13

    Owing to their ability to confine and manipulate light at the nanoscale, plasmonic nanostructures are highly attractive for a broad range of applications. While tremendous progress has been made in the synthesis of size- and shape-controlled plasmonic nanostructures, their integration with other materials and application in solid-state is primarily through their assembly on rigid two-dimensional (2D) substrates, which limits the plasmonically active space to a few nanometers above the substrate. In this work, we demonstrate a simple method to create plasmonically active three-dimensional biofoams by integrating plasmonic nanostructures with highly porous biomaterial aerogels. We demonstrate that plasmonic biofoam is a versatile optically active platform that can be harnessed for numerous applications including (i) ultrasensitive chemical detection using surface-enhanced Raman scattering; (ii) highly efficient energy harvesting and steam generation through plasmonic photothermal heating; and (iii) optical control of enzymatic activity by triggered release of biomolecules encapsulated within the aerogel. Our results demonstrate that 3D plasmonic biofoam exhibits significantly higher sensing, photothermal, and loading efficiency compared to conventional 2D counterparts. The design principles and processing methodology of plasmonic aerogels demonstrated here can be broadly applied in the fabrication of other functional foams.

  15. Dual pitch plasmonic devices for polarization enhanced colour based sensing

    NASA Astrophysics Data System (ADS)

    Langley, D.; Balaur, E.; Sadatnajafi, C.; Abbey, B.

    2016-12-01

    Plasmonic devices provide a unique sensitivity to changes in the permittivity of the immediate, near-surface environment. In this work we explore the use of dual pitch plasmonic devices combined with microfluidics for polarization enhanced colour sensing of a chemicals' refractive index. We demonstrate that the use of cross-shaped apertures can produce polarization tunable color based sensing in the optical regime and show that the spectral variations as a function of the incident polarization can be decomposed into contributions from the two orthogonal modes that characterize the dual pitch plasmonic device. Finally we demonstrate that the use of the full colour spectrum in the visible range in combination with polarization control enables sensing `by-eye' of refractive index changes below 1 × 10-3 RIU.

  16. Implementation of PT symmetric devices using plasmonics: principle and applications.

    PubMed

    Benisty, Henri; Degiron, Aloyse; Lupu, Anatole; De Lustrac, André; Chénais, Sébastien; Forget, Sébastien; Besbes, Mondher; Barbillon, Grégory; Bruyant, Aurélien; Blaize, Sylvain; Lérondel, Gilles

    2011-09-12

    The so-called PT symmetric devices, which feature ε((-x)) = ε((x))* associated with parity-time symmetry, incorporate both gain and loss and can present a singular eigenvalue behaviour around a critical transition point. The scheme, typically based on co-directional coupled waveguides, is here transposed to the case of variable gain on one arm with fixed losses on the other arm. In this configuration, the scheme exploits the full potential of plasmonics by making a beneficial use of their losses to attain a critical regime that makes switching possible with much lowered gain excursions. Practical implementations are discussed based on existing attempts to elaborate coupled waveguide in plasmonics, and based also on the recently proposed hybrid plasmonics waveguide structure with a small low-index gap, the PIROW (Plasmonic Inverse-Rib Optical Waveguide).

  17. Active plasmonics in WDM traffic switching applications.

    PubMed

    Papaioannou, Sotirios; Kalavrouziotis, Dimitrios; Vyrsokinos, Konstantinos; Weeber, Jean-Claude; Hassan, Karim; Markey, Laurent; Dereux, Alain; Kumar, Ashwani; Bozhevolnyi, Sergey I; Baus, Matthias; Tekin, Tolga; Apostolopoulos, Dimitrios; Avramopoulos, Hercules; Pleros, Nikos

    2012-01-01

    With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4×10 Gb/s low-power and fast switching operation. The demonstration of the WDM-enabling characteristics of active plasmonic circuits with an ultra-low power × response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted.

  18. Active plasmonics in WDM traffic switching applications

    PubMed Central

    Papaioannou, Sotirios; Kalavrouziotis, Dimitrios; Vyrsokinos, Konstantinos; Weeber, Jean-Claude; Hassan, Karim; Markey, Laurent; Dereux, Alain; Kumar, Ashwani; Bozhevolnyi, Sergey I.; Baus, Matthias; Tekin, Tolga; Apostolopoulos, Dimitrios; Avramopoulos, Hercules; Pleros, Nikos

    2012-01-01

    With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a “naturally” energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4×10 Gb/s low-power and fast switching operation. The demonstration of the WDM-enabling characteristics of active plasmonic circuits with an ultra-low power × response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted. PMID:22973502

  19. Aluminum infrared plasmonic perfect absorbers for wavelength selective devices

    NASA Astrophysics Data System (ADS)

    Dao, Thang Duy; Ishii, Satoshi; Chen, Kai; Yokoyama, Takahiro; Nabatame, Toshihide; Nagao, Tadaaki

    2016-09-01

    We demonstrate the development of colloidal lithography technique to fabricate large-area plasmonic perfect absorbers using Al, which is an earth abundant low-cost plasmonic material in contrast to Au and Ag. Using numerical electromagnetic simulations, we optimize the geometrical parameters of Al perfect absorbers (AlPAs) with resonances at desired wavelengths depending on the applications. The fabricated AlPAs exhibit narrowband absorptions with high efficiency up to 98 %. By tuning AlPAs parameters, the resonance of AlPAs can be tuned from the visible to the middle infrared region. The AlPAs can be applied for spectrally selective infrared devices such as selective thermal emitters, selective surface-enhanced vibrational spectroscopy (SEIRA) for molecular sensing and selective IR detectors. In this report, we demonstrate applications of AlPAs for selective thermal emitters and SEIRA. The results obtained here reveal a simple technique to fabricate scalable plasmonic perfect absorbers as well as their potential applications in optoelectronic and photonic devices.

  20. High Efficiency Photovoltaic and Plasmonic Devices

    DTIC Science & Technology

    2011-07-01

    analysis is performed for the type I band offsets, carrier lifetime, optical confinement, and modal gain. The carrier lifetime is found to be dominated...the product of the mode confinement factor and the optical gain. The carriers that are responsible for the modal gain are excited by external...provide modal gain of just over 100/cm. In general , active regions consisting of a larger number of QWs are more capable of providing higher modal gains

  1. Graphene active plasmonic metamaterials for new types of terahertz lasers

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  2. Electrical detection of surface plasmon resonance phenomena by a photoelectronic device integrated with gold nanoparticle plasmon antenna

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuya; Fukunishi, Yurie; Zheng, Bin; Uraoka, Yukiharu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2013-02-01

    We have proposed a concept of a photoelectronic hybrid device utilizing gold nanoparticles (GNPs), which are supposed to function not only as the plasmon antenna but also as the sensing part. The photocurrent in the fabricated device, consisting of a transparent Nb-doped TiO2 channel and Au electrodes, was enhanced more than eight times at a specific wavelength with GNP arrays located between the electrodes, indicating that surface plasmon resonance was electrically detected with the hybrid device. This result will open new doors for ultra-small biosensor chips integrated with multi-functional solid-state devices.

  3. Nano plasmon device fabrications using dielectrophoretic (DEP) force

    NASA Astrophysics Data System (ADS)

    Kim, J.; Kang, C.-M.; Kim, S.; Suh, J.-k. F.; Shin, H. J.; Park, J. H.

    2013-09-01

    We propose a fabrication process using dielectrophoretic (DEP) force for plasmonic devices as a light source. The 100nm wide Au nanowires fabricated by e-beam lithography and lift-off were used to trap 25nm diameter cadmium selenide (CdSe) QDs on its end-facet with DEP force. DEP force was induced around the nanowire using 8 Vpp, 3MHz sine wave. An Electric field of 108 V/m order and electric field gradient of 1015 V/m2 order intensity were calculated with COMSOL multiphysics simulation tool. And the values are enough to induce DEP force for QD trapping. Before the QD manipulations, polystyrene bead was used which is more rigid and influenced by DEP force than QD. Concentration of 10-5% order and approximately 120sec reaction time are considered with polystyrene bead and QD manipulations are accomplished with the conditions. Finally, the QDs were manipulated to the nanowires array and `QD on nanowire' nanostructure was formed as a practical plasmonic device using DEP force.

  4. Active tunable plasmonically induced polarization conversion in the THz regime

    NASA Astrophysics Data System (ADS)

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-10-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications.

  5. Active tunable plasmonically induced polarization conversion in the THz regime

    PubMed Central

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-01-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications. PMID:27734912

  6. Engineering photo-plasmonic devices for spectroscopy and sensing applications

    NASA Astrophysics Data System (ADS)

    Pasquale, Alyssa J.

    The control of light on the nano-scale has driven the development of novel optical devices such as biosensors, antennas and guiding elements. These applications benefit from the distinctive resonant properties of noble metal thin films and nanoparticles. Many optimization parameters exist in order to engineer nanoparticle properties for spectroscopy and sensing applications: for example, the choice of metal, the particle morphology, and the array geometry. By utilizing various designs from simple monomer gratings to more complex engineered arrays, we model and characterize plasmonic arrays for sensing applications. In this thesis, I have focused on the novel paradigm of photonic-plasmonic coupling to design, fabricate, and characterize optimized nanosensors. In particular, nanoplasmonic necklaces, which consist of circular loops of closely spaced gold nanoparticles, are designed using 3D finite-difference time-domain (FDTD) simulations, fabricated with electron-beam lithography, and characterized using dark-field scattering and surface-enhanced Raman spectroscopy (SERS) of p-mercaptoaniline (pMA) monolayers. I show that such necklaces are able to support hybridized dipolar scattering resonances and polarization-controlled electromagnetic hot-spots. In addition, necklaces exhibit strong intensity enhancement when the necklace diameter leads to coupling between the broadband plasmonic resonance and the circular resonator structure of the necklace. Hence, these necklaces lead to stronger field intensity enhancement than nanoparticle monomers and dimers, which are also carefully studied. Furthermore, by embedding a dimer into one or more concentric necklace resonators, I am able to efficiently couple radiation into the dimer hot-spot by utilizing first- and second-order far-field coupling. This nanolensing leads to an order of 6-18 times improvement in Raman enhancement over isolated dimers, which is a promising platform for compact on-chip sensors. Additionally, I

  7. MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices.

    PubMed

    Emboras, Alexandros; Najar, Adel; Nambiar, Siddharth; Grosse, Philippe; Augendre, Emmanuel; Leroux, Charles; de Salvo, Barbara; de Lamaestre, Roch Espiau

    2012-06-18

    We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si(3)N(4) layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.μm(-1)), in good agreement with predictions using ellipsometric optical constants of Cu.

  8. Heat-activated Plasmonic Chemical Sensors for Harsh Environments

    SciTech Connect

    Carpenter, Michael; Oh, Sang-Hyun

    2015-12-01

    A passive plasmonics based chemical sensing system to be used in harsh operating environments was investigated and developed within this program. The initial proposed technology was based on combining technologies developed at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering (CNSE) and at the University of Minnesota (UM). Specifically, a passive wireless technique developed at UM was to utilize a heat-activated plasmonic design to passively harvest the thermal energy from within a combustion emission stream and convert this into a narrowly focused light source. This plasmonic device was based on a bullseye design patterned into a gold film using focused ion beam methods (FIB). Critical to the design was the use of thermal stabilizing under and overlayers surrounding the gold film. These stabilizing layers were based on both atomic layer deposited films as well as metal laminate layers developed by United Technologies Aerospace Systems (UTAS). While the bullseye design was never able to be thermally stabilized for operating temperatures of 500oC or higher, an alternative energy harvesting design was developed by CNSE within this program. With this new development, plasmonic sensing results are presented where thermal energy is harvested using lithographically patterned Au nanorods, replacing the need for an external incident light source. Gas sensing results using the harvested thermal energy are in good agreement with sensing experiments, which used an external incident light source. Principal Component Analysis (PCA) was used to reduce the wavelength parameter space from 665 variables down to 4 variables with similar levels of demonstrated selectivity. The method was further improved by patterning rods which harvested energy in the near infrared, which led to a factor of 10 decrease in data acquisition times as well as demonstrated selectivity with a reduced wavelength data set. The combination of a plasmonic-based energy harvesting

  9. A voltage-controlled silver nanograting device for dynamic modulation of transmitted light based on the surface plasmon polariton effect

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Li, Haibo; Wang, Yi; Xu, Shuping; Xu, Weiqing

    2016-02-01

    An active-controlled plasmonic device is designed and fabricated based on the index-sensitive properties of surface plasmon polaritons (SPPs). We utilize a one-dimensional silver nanograting with a period of 320 nm overlayered with a liquid crystal (LC) layer (50 μm in thickness), to transmit selectively the surface plasmon resonance (SPR) wavelength. This device realizes the active, reversible and continuous control of the transmitted light wavelength by modulating the external voltage signal applied to the LC layer. This voltage-controlled plasmonic filter has a dynamic wavelength modulation range of 17 nm, a fast respond speed of 4.24 ms and a low driving voltage of 1.06 V μm-1. This study opens up a unique way for the design of tunable nanophotonic devices, such as a micro light sources and switches.An active-controlled plasmonic device is designed and fabricated based on the index-sensitive properties of surface plasmon polaritons (SPPs). We utilize a one-dimensional silver nanograting with a period of 320 nm overlayered with a liquid crystal (LC) layer (50 μm in thickness), to transmit selectively the surface plasmon resonance (SPR) wavelength. This device realizes the active, reversible and continuous control of the transmitted light wavelength by modulating the external voltage signal applied to the LC layer. This voltage-controlled plasmonic filter has a dynamic wavelength modulation range of 17 nm, a fast respond speed of 4.24 ms and a low driving voltage of 1.06 V μm-1. This study opens up a unique way for the design of tunable nanophotonic devices, such as a micro light sources and switches. Electronic supplementary information (ESI) available: (1) The general theory of the VCP filter; (2) RI sensitivity; (3) the thickness optimization of the Ag grating sandwiched by photoresist layers; (4) image system; (5) detection systems for transmission and reflection spectra; (6) detection system for the response time of the VCP filter. See DOI: 10.1039/c5nr

  10. Acoustic phonons, surface plasmons and surface acoustic plasmons in a superlattice and their nonreciprocal device applications

    NASA Astrophysics Data System (ADS)

    Derov, John S.

    1987-05-01

    The literature was surveyed to determine potential applications of acoustic and plasma phenomena in superlattices. The use of folded zone acoustic phonons and acoustic surface plasmons in 3 to 5 compounds like AlGaAs/GaAs superlattices is addressed. A dielectric phonon filter is presented and an acoustic resonator is considered. Surface plasmons and surface acoustic plasmons are discussed and a transducer, delay line and mixer are proposed as applications. A 500 GHz isolator utilizing surface magnetoplasmons is also presented.

  11. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    SciTech Connect

    Sun, Rui-Nan; Peng, Kui-Qing Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-06

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  12. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    NASA Astrophysics Data System (ADS)

    Sun, Rui-Nan; Peng, Kui-Qing; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang; Lee, Shuit-Tong

    2015-07-01

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  13. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  14. Control of randomly scattered surface plasmon polaritons for multiple-input and multiple-output plasmonic switching devices

    NASA Astrophysics Data System (ADS)

    Choi, Wonjun; Jo, Yonghyeon; Ahn, Joonmo; Seo, Eunsung; Park, Q.-Han; Jhon, Young Min; Choi, Wonshik

    2017-03-01

    Merging multiple microprocessors with high-speed optical networks has been considered a promising strategy for the improvement of overall computation power. However, the loss of the optical communication bandwidth is inevitable when interfacing between optical and electronic components. Here we present an on-chip plasmonic switching device consisting of a two-dimensional (2D) disordered array of nanoholes on a thin metal film that can provide multiple-input and multiple-output channels for transferring information from a photonic to an electronic platform. In this device, the surface plasmon polaritons (SPPs) generated at individual nanoholes become uncorrelated on their way to the detection channel due to random multiple scattering. We exploit this decorrelation effect to use individual nanoholes as independent antennas, and demonstrated that more than 40 far-field incident channels can be delivered simultaneously to the SPP channels, an order of magnitude improvement over conventional 2D patterned devices.

  15. Control of randomly scattered surface plasmon polaritons for multiple-input and multiple-output plasmonic switching devices

    PubMed Central

    Choi, Wonjun; Jo, Yonghyeon; Ahn, Joonmo; Seo, Eunsung; Park, Q-Han; Jhon, Young Min; Choi, Wonshik

    2017-01-01

    Merging multiple microprocessors with high-speed optical networks has been considered a promising strategy for the improvement of overall computation power. However, the loss of the optical communication bandwidth is inevitable when interfacing between optical and electronic components. Here we present an on-chip plasmonic switching device consisting of a two-dimensional (2D) disordered array of nanoholes on a thin metal film that can provide multiple-input and multiple-output channels for transferring information from a photonic to an electronic platform. In this device, the surface plasmon polaritons (SPPs) generated at individual nanoholes become uncorrelated on their way to the detection channel due to random multiple scattering. We exploit this decorrelation effect to use individual nanoholes as independent antennas, and demonstrated that more than 40 far-field incident channels can be delivered simultaneously to the SPP channels, an order of magnitude improvement over conventional 2D patterned devices. PMID:28262721

  16. Control of randomly scattered surface plasmon polaritons for multiple-input and multiple-output plasmonic switching devices.

    PubMed

    Choi, Wonjun; Jo, Yonghyeon; Ahn, Joonmo; Seo, Eunsung; Park, Q-Han; Jhon, Young Min; Choi, Wonshik

    2017-03-06

    Merging multiple microprocessors with high-speed optical networks has been considered a promising strategy for the improvement of overall computation power. However, the loss of the optical communication bandwidth is inevitable when interfacing between optical and electronic components. Here we present an on-chip plasmonic switching device consisting of a two-dimensional (2D) disordered array of nanoholes on a thin metal film that can provide multiple-input and multiple-output channels for transferring information from a photonic to an electronic platform. In this device, the surface plasmon polaritons (SPPs) generated at individual nanoholes become uncorrelated on their way to the detection channel due to random multiple scattering. We exploit this decorrelation effect to use individual nanoholes as independent antennas, and demonstrated that more than 40 far-field incident channels can be delivered simultaneously to the SPP channels, an order of magnitude improvement over conventional 2D patterned devices.

  17. Plasmonic and electronic device-based integrated circuits and their characteristics

    NASA Astrophysics Data System (ADS)

    Sakai, H.; Okahisa, S.; Nakayama, Y.; Nakayama, K.; Fukuhara, M.; Kimura, Y.; Ishii, Y.; Fukuda, M.

    2016-11-01

    This paper presents a plasmonic circuit that has been monolithically integrated with electronic devices on a silicon substrate and then discusses the concept behind this circuit. To form the proposed circuit, two plasmonic waveguides and a detector are integrated with metal-oxide-semiconductor field-effect transistors (MOSFETs) on the substrate. In the circuit, intensity signals or coherent plasmonic signals are generated by coherent light at an operating wavelength at which silicon is transparent, and these signals propagate along the waveguides before they are converted into electrical signals by the detector. These electrical intensity and coherent signals then drive the MOSFETs during both DC and AC operation. The measured performances of the devices indicate that surface plasmon polaritons propagate on the metal surface at the speed of light and drive the electronic devices without any absorption in the silicon.

  18. Plasmonic Nanostructures for Enhanced ZnO/Si Heterojunction Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Tong, Chong

    The objective of this work focuses on ZnO and Al doped ZnO (AZO) thin film deposition and characterization, and developing reliable ZnO/Si heterojunction thin film optoelectronic devices. Producing and integration of plasmonic nanostructures were also studied for improving device performance with plasmonic light trapping effects. Enhanced ZnO/Si heterojunction metal-semiconductor-metal (MSM) photodetectors with plasmonic Ag nanoparticles (NPs) were realized. Self-assembled Ag NPs with different sizes, densities and distributions were produced on the surface of ZnO/Si MSM photodetector devices. By tuning the characteristic of these NPs, a higher-performance MSM detector has been achieved with photocurrent enhancement up to 680%. The spectral enhancement was broadband from 350 nm to 850 nm. To investigate the nanoplasmonic effects for enhanced solar cell devices, a relatively simple device structure, Si Schottky solar cell with the metal-insulator-semiconductor (MIS) structure, was studied first. By introducing Ag NPs and SiO2 spacer layers on top of Si Schottky solar cells, we demonstrated a positive and tunable light trapping effect introduced by metallic NPs. Enhanced light trapping effects at distinct resonance wavelengths were observed in the optical spectra of the plasmonic-enhanced devices. Electrical measurements confirmed the expected photocurrent improvement at these corresponding wavelengths. It was also revealed that the Ag NPs enhance the carrier generation rate inside of the Si active layer without sacrificing carrier collection efficiency of the device. The short-circuit current density (Jsc) of the best cell we obtained was improved from13.7 mA/cm2 to 19.7 mA/cm2, with an enhancement factor of 43.7%. Periodic nanostructures formed with nanoimprint technique and annealing process were studies to utilize in the Al-ZnO/Si heterojunction solar cell devices. The size, inter-particle distance and shape of these nanostructures can be easily tuned by changing

  19. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices

    PubMed Central

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-01-01

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices. PMID:26347288

  20. Bias field tailored plasmonic nano-electrode for high-power terahertz photonic devices.

    PubMed

    Moon, Kiwon; Lee, Il-Min; Shin, Jun-Hwan; Lee, Eui Su; Kim, Namje; Lee, Won-Hui; Ko, Hyunsung; Han, Sang-Pil; Park, Kyung Hyun

    2015-09-08

    Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

  1. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry

    PubMed Central

    Zheng, Bob Y.; Zhao, Hangqi; Manjavacas, Alejandro; McClain, Michael; Nordlander, Peter; Halas, Naomi J.

    2015-01-01

    The use of surface plasmons, charge density oscillations of conduction electrons of metallic nanostructures, to boost the efficiency of light-harvesting devices through increased light-matter interactions could drastically alter how sunlight is converted into electricity or fuels. These excitations can decay directly into energetic electron–hole pairs, useful for photocurrent generation or photocatalysis. However, the mechanisms behind plasmonic carrier generation remain poorly understood. Here we use nanowire-based hot-carrier devices on a wide-bandgap semiconductor to show that plasmonic carrier generation is proportional to internal field-intensity enhancement and occurs independently of bulk absorption. We also show that plasmon-induced hot electrons have higher energies than carriers generated by direct excitation and that reducing the barrier height allows for the collection of carriers from plasmons and direct photoexcitation. Our results provide a route to increasing the efficiency of plasmonic hot-carrier devices, which could lead to more efficient devices for converting sunlight into usable energy. PMID:26165521

  2. AlGaN/GaN plasmonic terahertz electronic devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael

    2014-03-01

    A very large electron sheet density and a relatively long momentum relaxation time of the two-dimensional electron gas in III-N heterostructures makes this materials system to be very attractive for plasmonic electronics applications.

  3. Surface plasmon-enhanced energy transfer in an organic light-emitting device structure.

    PubMed

    Yang, Ki Youl; Choi, Kyung Cheol; Ahn, Chi Won

    2009-07-06

    We present a surface plasmon-mediated energy transfer based on an organic light-emitting device structure. In order to localize surface plasmons, silver nano clusters were deposited thermally close to the cathode with a 1-nm-thick LiF spacer. It was shown that the surface plasmon formed on the silver nano cluster provides a strong donor decay channel and increases the donor-acceptor dipolar interaction. Thus, photoluminescence results displayed 3.5-fold enhanced acceptor emission intensity, compared with those of sample which has no Ag nano cluster.

  4. Fluorescence lifetime based characterization of active and tunable plasmonic nanostructures.

    PubMed

    Ashry, Islam; Zhang, Baigang; Khalifa, Moataz B; Calderone, Joseph A; Santos, Webster L; Heflin, James R; Robinson, Hans D; Xu, Yong

    2014-08-25

    We report a non-contact method that utilizes fluorescence lifetime (FL) to characterize morphological changes of a tunable plasmonic nanostructure with nanoscale accuracy. The key component of the plasmonic nanostructure is pH-responsive polyelectrolyte multilayers (PEMs), which serve as a dynamically tunable "spacer" layer that separates the plasmonic structure and the fluorescent materials. The validity of our method is confirmed through direct comparison with ellipsometry and atomic force microscopy (AFM) measurements. Applying the FL-based approach, we find that a monolayer polycation film responds to pH changes with significantly less hysteresis than a thicker multilayer film with polyelectrolytes of both charges. Additionally, we characterize an active and tunable plasmonic nanostructure composed of self-assembled fluorescent dye (Texas Red), pH-sensitive PEMs, and gold nanospheres adsorbed on the PEM surface. Our results point towards the possibility of using stimulus-sensitive polymers to construct active and tunable plasmonic nanodevices.

  5. Plasmon enhanced organic devices utilizing highly ordered nanoimprinted gold nanodisks and nitrogen doped graphene.

    PubMed

    Teridi, Mohd Asri Mat; Sookhakian, Mehran; Basirun, Wan Jefrey; Zakaria, R; Schneider, Fabio Kurt; da Silva, Wilson Jose; Kim, Jaeyeon; Lee, Seung Joo; Kim, Hyeong Pil; Yusoff, Abd Rashid bin Mohd; Jang, Jin

    2015-04-28

    High performance organic devices including polymer solar cells (PSCs) and light emitting diodes (PLEDs) were successfully demonstrated with the presence of highly ordered nanoimprinted Au nanodisks (Au NDs) in their solution-processed active/emissive layers, respectively. PSCs and PLEDs were fabricated using a low bandgap polymer and acceptor, nitrogen doped multiwalled carbon nanotubes poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]-thiophenediyl] (n-MWCNTs:PTB7), and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) and (4,4-N,N-dicarbazole) biphenyl (CBP) doped with tris(2-phenylpyridine) iridium(iii) (Ir(ppy)3) as active/emissive layers, respectively. We synthesized nitrogen doped graphene and used it as anodic buffer layer in both devices. The localized surface plasmon resonance (LSPR) effect from Au NDs clearly contributed to the increase in light absorption/emission in the active layers from electromagnetic field enhancement, which originated from the excited LSPR in PSCs and PLEDs. In addition to the high density of LSPR and strong exciton-SP coupling, the electroluminescent (EL) enhancement is ascribed to enhanced spontaneous emission rates. This is due to the plasmonic near-field effect induced by Au NDs. The PSCs and PLEDs exhibited 14.98% (8.08% to 9.29%) under one sun of simulated air mass 1.5 global (AM1.5G) illumination (100 mW cm(-2)) and 19.18% (8.24 to 9.82 lm W(-1)) enhancement in the power conversion efficiencies (PCEs) compared to the control devices without Au NDs.

  6. Plasmon enhanced organic devices utilizing highly ordered nanoimprinted gold nanodisks and nitrogen doped graphene

    NASA Astrophysics Data System (ADS)

    Mat Teridi, Mohd Asri; Sookhakian, Mehran; Basirun, Wan Jefrey; Zakaria, R.; Schneider, Fabio Kurt; da Silva, Wilson Jose; Kim, Jaeyeon; Lee, Seung Joo; Kim, Hyeong Pil; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2015-04-01

    High performance organic devices including polymer solar cells (PSCs) and light emitting diodes (PLEDs) were successfully demonstrated with the presence of highly ordered nanoimprinted Au nanodisks (Au NDs) in their solution-processed active/emissive layers, respectively. PSCs and PLEDs were fabricated using a low bandgap polymer and acceptor, nitrogen doped multiwalled carbon nanotubes poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]-thiophenediyl] (n-MWCNTs:PTB7), and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) and (4,4-N,N-dicarbazole) biphenyl (CBP) doped with tris(2-phenylpyridine) iridium(iii) (Ir(ppy)3) as active/emissive layers, respectively. We synthesized nitrogen doped graphene and used it as anodic buffer layer in both devices. The localized surface plasmon resonance (LSPR) effect from Au NDs clearly contributed to the increase in light absorption/emission in the active layers from electromagnetic field enhancement, which originated from the excited LSPR in PSCs and PLEDs. In addition to the high density of LSPR and strong exciton-SP coupling, the electroluminescent (EL) enhancement is ascribed to enhanced spontaneous emission rates. This is due to the plasmonic near-field effect induced by Au NDs. The PSCs and PLEDs exhibited 14.98% (8.08% to 9.29%) under one sun of simulated air mass 1.5 global (AM1.5G) illumination (100 mW cm-2) and 19.18% (8.24 to 9.82 lm W-1) enhancement in the power conversion efficiencies (PCEs) compared to the control devices without Au NDs.

  7. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  8. Fabrication of novel plasmonics-active substrates

    NASA Astrophysics Data System (ADS)

    Dhawan, Anuj; Gerhold, Michael; Du, Yan; Misra, Veena; Vo-Dinh, Tuan

    2009-02-01

    This paper describes methodologies for fabricating of highly efficient plasmonics-active SERS substrates - having metallic nanowire structures with pointed geometries and sub-5 nm gap between the metallic nanowires enabling concentration of high EM fields in these regions - on a wafer-scale by a reproducible process that is compatible with large-scale development of these substrates. Excitation of surface plasmons in these nanowire structures leads to substantial enhancement in the Raman scattering signal obtained from molecules lying in the vicinity of the nanostructure surface. The methodologies employed included metallic coating of silicon nanowires fabricated by employing deep UV lithography as well as controlled growth of silicon germanium on silicon nanostructures to form diamond-shaped nanowire structures followed by metallic coating. These SERS substrates were employed for detecting chemical and biological molecules of interest. In order to characterize the SERS substrates developed in this work, we obtained SERS signals from molecules such as p-mercaptobenzoic acid (pMBA) and cresyl fast violet (CFV) attached to or adsorbed on the metal-coated SERS substrates. It was observed that both gold-coated triangular shaped nanowire substrates as well as gold-coated diamond shaped nanowire substrates provided very high SERS signals for the nanowires having sub-15 nm gaps and that the SERS signal depends on the closest spacing between the metal-coated silicon and silicon germanium nanowires. SERS substrates developed by the different processes were also employed for detection of biological molecules such as DPA (Dipicolinic Acid), an excellent marker for spores of bacteria such as Anthrax.

  9. Plasmonic devices based on the dual coupled graphene-integrated ring resonators

    NASA Astrophysics Data System (ADS)

    Wang, Jicheng; Xia, Xiushan; Liang, Xiuye; Chen, Jing; Liu, Dongdong

    2015-08-01

    We have proposed a couple of plasmonic devices based on graphene sheets and ring resonators. The highly frequency-tunable multi-mode plasmonically induced transparency (PIT) device based on monolayer graphene and rings for the mid-IR region is presented in theory firstly. The multi-mode transparency windows in the spectral responses and slow light effects can be achieved in plasmonic configuration composed of two graphene resonators coupled with single-layer graphene waveguide. By varying the Fermi energy of the graphene, the multi-mode PIT resonance can be dynamic controlled without reoptimizing the geometric parameters of the structures. Based on the coupled mode theory (CMT) and Fabry-Perot (FP), we numerically investigated direct coupling and indirect coupling in the graphene-integrated PIT systems. In addition, the theoretical plasmonic devices based on graphene sheets and ring resonators are also proposed to perform as 1×2 optical spatial switch or ultra -compact Mach-Zehnder interferometer. The finite element method (FEM) is carried on to verify our designs. Those designs may pave the ways for the further development of the compact high-performance plasmonic communication devices.

  10. Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser

    NASA Astrophysics Data System (ADS)

    Sarychev, Andrey K.; Tartakovsky, Gennady

    2006-08-01

    We consider plasmonic nanoantennas immersed in active host medium. Specifically shaped metal nanoantennas can exhibit strong magnetic properties in the optical spectral range due to the excitation of Magnetic Resonance Plasmons (MRP). A case when a metamaterial comprising such nanoantennas can demonstrate both "left-handiness" and negative permeability in the optical range is considered. We show that high losses predicted for optical "left-handed" materials can be compensated in the gain medium. Gains required to achieve local generation in such magnetic active metamaterials are calculated for real metals

  11. Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths.

    PubMed

    Wei, Zhongchao; Li, Xianping; Yin, Jianjun; Huang, Rong; Liu, Yuebo; Wang, Wei; Liu, Hongzhan; Meng, Hongyun; Liang, Ruisheng

    2016-06-27

    Active plasmonic band-stop filters based on single- and double-layer doped graphene metamaterials at the THz wavelengths are proposed and investigated numerically by using the finite-difference time-domain (FDTD) method. The metamaterial unit cell structure is composed of two parallel graphene nanoscale ribbons. Simulated results exhibit that significant resonance wavelength shifts can be achieved with a slight variation of the doping concentration of the graphene ribbons. Besides, the asymmetry double-layer graphene metamaterial device has two apparent filter dips while the symmetry single-, double-layer and asymmetry single-layer graphene metamaterial devices just only one. The metamaterials with symmetry single-layer and asymmetry double-layer graphene can be used as a high-sensitivity refractive sensor with the sensitivity up to 5100 nm/RIU and a two-circuit switch, respectively. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for THz applications.

  12. Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates.

    PubMed

    Gür, Fatih N; Schwarz, Friedrich W; Ye, Jingjing; Diez, Stefan; Schmidt, Thorsten L

    2016-05-24

    Plasmonic structures allow the manipulation of light with materials that are smaller than the optical wavelength. Such structures can consist of plasmonically active metal nanoparticles and can be fabricated through scalable bottom-up self-assembly on DNA origami templates. To produce functional devices, the precise and high-yield arrangement of each of the nanoparticles on a structure is of vital importance as the absence of a single particle can destroy the functionality of the entire device. Nevertheless, the parameters influencing the yield of the multistep assembly process are still poorly understood. To overcome this deficiency, we employed a test system consisting of a tubular six-helix bundle DNA origami with binding sites for eight oligonucleotide-functionalized gold nanoparticles. We systematically studied the assembly yield as a function of a wide range of parameters such as ionic strength, stoichiometric ratio, oligonucleotide linker chemistry, and assembly kinetics by an automated high-throughput analysis of electron micrographs of the formed heterocomplexes. Our optimized protocols enable particle placement yields up to 98.7% and promise the reliable production of sophisticated DNA-based multiparticle plasmonic devices for applications in photonics, optoelectronics, and nanomedicine.

  13. High harmonic generation by surface plasmon resonance: Design of plasmonic devices and their applications

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Woo

    2010-03-01

    Seung-Woo Kim has been researching femtosecond ultrafast optics for ultraprecision manufacturing technologies including EUV and X-ray generation. Recently, he and his colleagues achieved a novel method of high-harmonic generation by exploiting the local field enhancement in the nanogap induced by resonant plasmons within a metallic nanostructure consisting of bow-tie shaped gold elements on a sapphire substrate. Plasmonic gold elements enhance the pulse intensity enough to induce high harmonic generation with no extra cavities at all. By injection of argon and xenon gas jets onto bow-tie nanostructures, high harmonics up to 21st (38 nm) order were produced while the incident laser intensity remained only 10^11 Wcm-2. Other nanostructures such as tapered cones are now being investigated to construct laptop-sized coherent EUV sources for advanced lithography and high resolution imaging applications.

  14. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    NASA Astrophysics Data System (ADS)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  15. The absorption tunability and enhanced electromagnetic coupling of terahertz-plasmons in grating-gate AlN/GaN plasmonic device.

    PubMed

    Wang, Lin; Chen, Xiaoshuang; Hu, Weida; Yu, Anqi; Wang, Shaowei; Lu, Wei

    2013-05-06

    This paper describes the dynamic interaction between plasmons in a two dimensional electron gas system under electrical tuning to the high density regime in AlN/GaN high electron mobility transistor. The results demonstrate an enhanced resonance when the two plasmons are commonly excited, during which the potentially splitting phenomenon of such resonance is explored in detail. An asymmetrical plasmon possess wide frequency tunability has also been demonstrated in the AlN/GaN system, on the contrary, the results also indicate a finite tunable regime of symmetrical-plasmons as limited by the coupling strength between such plasmons. For the devices with narrow gate-fingers, significant near-field enhancement can be obtained due to the strong cavity pumping of electromagnetic energy. These properties may have important applications including high-responsivity quantum-dot detection systems, THz modulator etc.

  16. Plasmon device design: Conversion from surface to junction plasmons with grating-couplers

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1984-01-01

    Scaling calculations and numerical studies are used to show that grating couplers provide effective energy transfer between surface plasmons and slower modes localized in the tunnel diodes. Within first order perturbation theory in grating amplitude, 90% efficiency energy transfer occurs within micrometers for realistic structures and materials parameters. Scaling laws are derived. Seventy to 90% of the electromagnetic field energy is concentrated in the oxide layer of an MOM diode after the energy is distributed by longer range modes that have less than 0.1% overlap with the tunneling region. The mode conversion allows the requirements separation for energy transport and power production by inelastic tunneling.

  17. Plasmonic nanoring fabrication tuned to pitch: Efficient, deterministic, and large scale realization of ultra-small gaps for next generation plasmonic devices

    SciTech Connect

    Lehr, D.; Dietrich, K.; Siefke, T.; Kley, E.-B.; Alaee, R.; Filter, R.; Lederer, F.; Rockstuhl, C.; Tünnermann, A.

    2014-10-06

    A double-patterning process for scalable, efficient, and deterministic nanoring array fabrication is presented. It enables gaps and features below a size of 20 nm. A writing time of 3 min/cm{sup 2} makes this process extremely appealing for scientific and industrial applications. Numerical simulations are in agreement with experimentally measured optical spectra. Therefore, a platform and a design tool for upcoming next generation plasmonic devices like hybrid plasmonic quantum systems are delivered.

  18. The nonmonotonous shift of quantum plasmon resonance and plasmon-enhanced photocatalytic activity of gold nanoparticles.

    PubMed

    Ding, Si-Jing; Yang, Da-Jie; Li, Jin-Ling; Pan, Gui-Ming; Ma, Liang; Lin, Yong-Jie; Wang, Jia-Hong; Zhou, Li; Feng, Min; Xu, Hongxing; Gao, Shiwu; Wang, Qu-Quan

    2017-03-02

    The surface plasmon resonance (SPR) of metal nanoparticles exhibits quantum behaviors as the size decreases owing to the transitions of quantized conduction electrons, but most studies are limited to the monotonous SPR blue-shift caused by off-resonant transitions. Here, we demonstrate the nonmonotonous SPR red-shift caused by resonant electron transitions and photocatalytic activity enhanced by the quantum plasmon resonance of colloidal gold nanoparticles. A maximal SPR wavelength and the largest photocatalytic activity are observed in the quantum regime for the first time for the gold nanoparticles with a diameter of 3.6 nm. Theoretical analysis based on a quantum-corrected model reveals the evolution of SPR with quantized electron transitions and well explains the nonmonotonous size-dependencies of the SPR wavelength and absorption efficiency. These findings have profound implications for the understanding of the quantum nature of the SPR of metal nanoparticles and their applications in areas ranging from photophysics to photochemistry.

  19. Molecular Plasmonics.

    PubMed

    Lauchner, Adam; Schlather, Andrea E; Manjavacas, Alejandro; Cui, Yao; McClain, Michael J; Stec, Grant J; García de Abajo, F Javier; Nordlander, Peter; Halas, Naomi J

    2015-09-09

    Graphene supports surface plasmons that have been observed to be both electrically and geometrically tunable in the mid- to far-infrared spectral regions. In particular, it has been demonstrated that graphene plasmons can be tuned across a wide spectral range spanning from the mid-infrared to the terahertz. The identification of a general class of plasmonic excitations in systems containing only a few dozen atoms permits us to extend this versatility into the visible and ultraviolet. As appealing as this extension might be for active nanoscale manipulation of visible light, its realization constitutes a formidable technical challenge. We experimentally demonstrate the existence of molecular plasmon resonances in the visible for ionized polycyclic aromatic hydrocarbons (PAHs), which we reversibly switch by adding, then removing, a single electron from the molecule. The charged PAHs display intense absorption in the visible regime with electrical and geometrical tunability analogous to the plasmonic resonances of much larger nanographene systems. Finally, we also use the switchable molecular plasmon in anthracene to demonstrate a proof-of-concept low-voltage electrochromic device.

  20. Active directional switching of surface plasmon polaritons using a phase transition material

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Je; Yun, Hansik; Park, Kyungsoo; Hong, Jongwoo; Yun, Jeong-Geun; Lee, Kyookeun; Kim, Joonsoo; Jeong, Sun Jae; Mun, Sang-Eun; Sung, Jangwoon; Lee, Yong Wook; Lee, Byoungho

    2017-03-01

    Active switching of near-field directivity, which is an essential functionality for compact integrated photonics and small optoelectronic elements, has been challenging due to small modulation depth and complicated fabrication methods for devices including active optical materials. Here, we theoretically and experimentally realize a nanoscale active directional switching of surface plasmon polaritons (SPPs) using a phase transition material for the first time. The SPP switching device with noticeable distinction is demonstrated based on the phase transition of vanadium dioxide (VO2) at the telecom wavelength. As the insulator-to-metal phase transition (IMT) of VO2 induces the large change of VO2 permittivity at telecom wavelengths, the plasmonic response of a nanoantenna made of VO2 can be largely tuned by external thermal stimuli. The VO2-insulator-metal (VIM) nanoantenna and its periodic array, the VIM metagrating, are suggested as optical switches. The directional power distinction ratio is designed to change from 8.13:1 to 1:10.56 by the IMT and it is experimentally verified that the ratio changes from 3.725:1 to 1:3.132 as the VIM metagratings are heated up to 90 °C. With an electro-thermally controllable configuration and an optimized resonant design, we expect potential applications of the active switching mechanism for integrable active plasmonic elements and reconfigurable imaging.

  1. Active directional switching of surface plasmon polaritons using a phase transition material

    PubMed Central

    Kim, Sun-Je; Yun, Hansik; Park, Kyungsoo; Hong, Jongwoo; Yun, Jeong-Geun; Lee, Kyookeun; Kim, Joonsoo; Jeong, Sun Jae; Mun, Sang-Eun; Sung, Jangwoon; Lee, Yong Wook; Lee, Byoungho

    2017-01-01

    Active switching of near-field directivity, which is an essential functionality for compact integrated photonics and small optoelectronic elements, has been challenging due to small modulation depth and complicated fabrication methods for devices including active optical materials. Here, we theoretically and experimentally realize a nanoscale active directional switching of surface plasmon polaritons (SPPs) using a phase transition material for the first time. The SPP switching device with noticeable distinction is demonstrated based on the phase transition of vanadium dioxide (VO2) at the telecom wavelength. As the insulator-to-metal phase transition (IMT) of VO2 induces the large change of VO2 permittivity at telecom wavelengths, the plasmonic response of a nanoantenna made of VO2 can be largely tuned by external thermal stimuli. The VO2-insulator-metal (VIM) nanoantenna and its periodic array, the VIM metagrating, are suggested as optical switches. The directional power distinction ratio is designed to change from 8.13:1 to 1:10.56 by the IMT and it is experimentally verified that the ratio changes from 3.725:1 to 1:3.132 as the VIM metagratings are heated up to 90 °C. With an electro-thermally controllable configuration and an optimized resonant design, we expect potential applications of the active switching mechanism for integrable active plasmonic elements and reconfigurable imaging. PMID:28262702

  2. Active directional switching of surface plasmon polaritons using a phase transition material.

    PubMed

    Kim, Sun-Je; Yun, Hansik; Park, Kyungsoo; Hong, Jongwoo; Yun, Jeong-Geun; Lee, Kyookeun; Kim, Joonsoo; Jeong, Sun Jae; Mun, Sang-Eun; Sung, Jangwoon; Lee, Yong Wook; Lee, Byoungho

    2017-03-06

    Active switching of near-field directivity, which is an essential functionality for compact integrated photonics and small optoelectronic elements, has been challenging due to small modulation depth and complicated fabrication methods for devices including active optical materials. Here, we theoretically and experimentally realize a nanoscale active directional switching of surface plasmon polaritons (SPPs) using a phase transition material for the first time. The SPP switching device with noticeable distinction is demonstrated based on the phase transition of vanadium dioxide (VO2) at the telecom wavelength. As the insulator-to-metal phase transition (IMT) of VO2 induces the large change of VO2 permittivity at telecom wavelengths, the plasmonic response of a nanoantenna made of VO2 can be largely tuned by external thermal stimuli. The VO2-insulator-metal (VIM) nanoantenna and its periodic array, the VIM metagrating, are suggested as optical switches. The directional power distinction ratio is designed to change from 8.13:1 to 1:10.56 by the IMT and it is experimentally verified that the ratio changes from 3.725:1 to 1:3.132 as the VIM metagratings are heated up to 90 °C. With an electro-thermally controllable configuration and an optimized resonant design, we expect potential applications of the active switching mechanism for integrable active plasmonic elements and reconfigurable imaging.

  3. All-optical compact surface plasmonic two-mode interference device for optical logic gate operation.

    PubMed

    Gogoi, Nilima; Sahu, Partha Pratim

    2015-02-10

    In this paper, we have proposed an ultra-compact surface plasmonic two-mode interference (SPTMI) coupler having a silicon core, silver upper and lower cladding, and GaAsInP left and right cladding for basic logic gate operations. By modulating the refractive index of the GaAsInP cladding with incidence of optical pulse energy, we have shown coupling characteristics depending on additional phase change ΔΦ(E) between the excited surface plasmon polariton modes propagating through the silicon core. By using applied optical pulse dependent coupling behavior of the proposed SPTMI device, the operations of NOT, AND, and OR logic gates are shown. It is also seen that the coupling length of the proposed device is 32.3 times more compact than that of a multimode interference-directional coupler.

  4. Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices.

    PubMed

    Chuang, Ming-Kai; Lin, Shih-Wei; Chen, Fang-Chung; Chu, Chih-Wei; Hsu, Chain-Shu

    2014-01-01

    In this work, gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites are synthesized and used as anodic buffer layers in organic photovoltaic devices (OPVs). The application of thiol-terminated polyethylene glycol as a capping agent prevents the aggregation of AuNPs on the GO surface and further improves the solubility and stability of these nanomaterials in solutions. When AuNP/GO nanomaterials served as the buffer layers, they introduced localized surface plasmon resonance (LSPR) in the OPVs, leading to noticeable enhancements in the photocurrent and the efficiencies of the OPVs. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the LSPR. We anticipate that this study might open up new avenues for constructing plasmon-enhancing layers on the nanoscale to improve the performance of solar cells.

  5. Plasmonic beaming and active control over fluorescent emission.

    PubMed

    Jun, Young Chul; Huang, Kevin C Y; Brongersma, Mark L

    2011-01-01

    Nanometallic optical antennas are rapidly gaining popularity in applications that require exquisite control over light concentration and emission processes. The search is on for high-performance antennas that offer facile integration on chips. Here we demonstrate a new, easily fabricated optical antenna design that achieves an unprecedented level of control over fluorescent emission by combining concepts from plasmonics, radiative decay engineering and optical beaming. The antenna consists of a nanoscale plasmonic cavity filled with quantum dots coupled to a miniature grating structure that can be engineered to produce one or more highly collimated beams. Electromagnetic simulations and confocal microscopy were used to visualize the beaming process. The metals defining the plasmonic cavity can be utilized to electrically control the emission intensity and wavelength. These findings facilitate the realization of a new class of active optical antennas for use in new optical sources and a wide range of nanoscale optical spectroscopy applications.

  6. Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Kai; Lin, Shih-Wei; Chen, Fang-Chung; Chu, Chih-Wei; Hsu, Chain-Shu

    2014-01-01

    In this work, gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites are synthesized and used as anodic buffer layers in organic photovoltaic devices (OPVs). The application of thiol-terminated polyethylene glycol as a capping agent prevents the aggregation of AuNPs on the GO surface and further improves the solubility and stability of these nanomaterials in solutions. When AuNP/GO nanomaterials served as the buffer layers, they introduced localized surface plasmon resonance (LSPR) in the OPVs, leading to noticeable enhancements in the photocurrent and the efficiencies of the OPVs. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the LSPR. We anticipate that this study might open up new avenues for constructing plasmon-enhancing layers on the nanoscale to improve the performance of solar cells.In this work, gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites are synthesized and used as anodic buffer layers in organic photovoltaic devices (OPVs). The application of thiol-terminated polyethylene glycol as a capping agent prevents the aggregation of AuNPs on the GO surface and further improves the solubility and stability of these nanomaterials in solutions. When AuNP/GO nanomaterials served as the buffer layers, they introduced localized surface plasmon resonance (LSPR) in the OPVs, leading to noticeable enhancements in the photocurrent and the efficiencies of the OPVs. We attribute the primary origin of the improvement in device performance to local field enhancement induced by the LSPR. We anticipate that this study might open up new avenues for constructing plasmon-enhancing layers on the nanoscale to improve the performance of solar cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05077g

  7. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  8. A single-nanoparticle NO2 gas sensor constructed using active molecular plasmonics.

    PubMed

    Chen, Lichan; Wu, Bo; Guo, Longhua; Tey, Ruiwen; Huang, Youju; Kim, Dong-Hwan

    2015-01-25

    A single-nanoparticle plasmonic sensor for the sensitive detection of gas molecules (NO2) has been constructed. Taking advantage of active molecular plasmonics, the analyte selectively triggers a measurable spectral shift of ferrocene-modified single gold nanorods.

  9. A PMMA-metal lamella grating-based surface plasmon resonance device

    NASA Astrophysics Data System (ADS)

    Lim, Yongjun; Choi, Kyongsik; Kim, Hwi; Kim, Seyoon; Han, Seunghoon; Lee, Byoungho

    2006-02-01

    Recently, a lot of interests have been focused on surface plasmon resonance (SPR), generated by the charge density oscillation existing on the interface between dielectric and metal surface. This particular surface wave has been widely used for sub-wavelength scale photonic circuits, fluorescence microscopy, bio-sensing devices, and photonic display applications. Also, it has a lot of potentials from holographic optical devices to holographic display applications. The measurement of SPR can be simply evaluated by the well-known Kretchmann-Raether attenuated total reflection geometry using angle multiplexing of the incident wave. Based on these concepts, we propose and analyze a plasmon-coupled waveguide and a polymethyl-methacrylate (PMMA) metal thin film grating structure for optical beam coupling and splitting applications. For efficient beam coupling and splitting, we analyze the SPR phenomenon and design plasmon-coupled waveguide structures and the grating structures. To form the PMMA-metal lamella grating structure, we inscribe the grating on the PMMA layer by using excimer laser with the wavelength of 244nm. Then, we deposit gold on the PMMA grating. Finally some experimental results, discussion, and its practical photonic applications are provided.

  10. Advance ultra sensitive multi-layered nano plasmonic devices for label free biosensing targeting immunodiagnostics

    NASA Astrophysics Data System (ADS)

    Sharma, Divya; Dwivedi, R. P.

    2016-09-01

    The rapid advancement in technology has envisaged and drafted the use of optical bio-sensing units into label free and multiplexed bio-sensing, exploring the surface plasmon polaritons, which has turned into a gold standard on the commercial basis, but they are bulky and find difficulty in scaling up for the throughput detection. The integration of plasmonic crystals with microfluidics on the bio-sensing frontier offers a multi-level validation of results with the ease of real-time detection and imaging and holds a great promise to develop ultra-sensitive, fast, portable device for the point-of-care diagnostics. The paper describes the fast, low cost approach of designing and simulating label free biosensor using open source MEEP and other software tools targeting Immunodiagnostics.

  11. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.

  12. Chemical and Biological Sensing with a Fiber Optic Surface Plasmon Resonance Device

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yanina

    Fiber biosensors have emerged as an alternative to other optical sensor platforms which utilize bulkier optical elements. Sensors manufactured using optical fiber offer considerable advantages over traditional platforms, such as simple manufacturing process, small size and possibility for in situ and remote measurements. The possibility to manufacture a compact sensor with very few optical elements and package it into a portable hand-held device makes it particularly useful in many biomedical applications. Such applications generate a growing demand for an improved understanding of how fiber sensors function as well as for sensor optimization techniques so later these devices can suit the needs of the applications they are developed for. Research presented in this thesis is focused on a development of a plasmonic fiber biosensor and its application towards biochemical sensing. The fiber sensor used in this study integrates plasmonics with tilted Bragg grating technology, creating a versatile sensing solution. Plasmonics alone is an established phenomenon that is widely employed in many sensing applications. The Bragg grating is also a well-researched optical component that has been extensively applied in telecommunication. By combining both plasmonics and Bragg gratings, it is possible to design a compact and very sensitive chemical sensor. The presented work focuses on the characterization and optimization of the fiber sensor so later it could be applied in biochemical sensing. It also explores several applications including real-time monitoring of polymer adsorption, detection of thrombin and cellular sensing. All applications are focused on studying processes that are very different in their nature and thus the various strengths of the developed sensing platform were leveraged to suit the requirements of these applications.

  13. Evidences of plasmonic effect in an organic-inorganic hybrid photovoltaic device using flower-like ZnO@Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Tong-Sheng; Sharma, Jadab; Chu, Chih-Chien; Tai, Yian

    2014-10-01

    Using flower-like ZnO@Au nanoparticles as external additives in an organic-inorganic hybrid solar cell device, we investigate the surface plasmon resonance (SPR) effect of gold nanoparticles. The active layer of the device consists of a usual polymeric blend of poly(3-hexylthiophene) and surface functionalized ZnO nanorods, which is conventionally known for its poor power conversion efficiency. We present the experimental evidences of improvement over UV-visible absorption properties and photocurrent generation due to the SPR effect. As a result, improvement is reported for short circuit current density and efficiency of the device on addition of flower-like ZnO@Au nanostructures.

  14. Active loaded plasmonic antennas at terahertz frequencies: Optical control of their capacitive-inductive coupling

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tserkezis, C.; Schaafsma, M. C.; Aizpurua, J.; Gómez Rivas, J.

    2015-03-01

    We demonstrate the photogeneration of loaded dipole plasmonic antennas resonating at THz frequencies. This is achieved by the patterned optical illumination of a semiconductor surface using a spatial light modulator. Our experimental results indicate the existence of capacitive and inductive coupling of localized surface plasmon polaritons. By varying the load in the antenna gap we are able to switch between both coupling regimes. Furthermore, we determine experimentally the effective impedance of the antenna load and verify that this load can be effectively expressed as a LC resonance formed by a THz inductor and capacitor connected in a parallel circuit configuration. These findings are theoretically supported by full electrodynamic calculations and by simple concepts of lumped circuit theory. Our results open new possibilities for the design of active THz circuits for optoelectronic devices.

  15. Plasmonic devices and sensors built from ordered nanoporous materials.

    SciTech Connect

    Jacobs, Benjamin W.; Kobayashi, Yoji; Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R.; Robertson, Ian M.; House, Stephen D.; Graham, Dennis D.; Talin, Albert Alec; Chang, Noel N.; El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  16. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays

    NASA Astrophysics Data System (ADS)

    Chu, Hong-Son; How Gan, Choon

    2013-06-01

    An active plasmonic switch based on single- and few-layer doped graphene ribbon array operating in the mid-infrared spectrum is investigated with theoretical and numerical calculations. It is shown that significant resonance wavelength shifts and modulation depths can be achieved with a slight variation of the doping concentration of the graphene ribbon. The few-layer graphene ribbon array device outperforms the single-layer one in terms of the achievable modulation depth. Our simulations reveal that, by modulating the Fermi-energy level between 0.2 eV and 0.25 eV, a four-layer graphene ribbon array device can achieve a modulation depth and resonance wavelength shift of ˜13 dB and 0.94 μm, respectively, compared to ˜2.8 dB and 1.85 μm for a single-layer device. Additionally, simple fitting models to predict the modulation depth and the resonance wavelength shift are proposed. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for infrared and THz applications.

  17. Spatially-resolved in-situ structural study of organic electronic devices with nanoscale resolution: the plasmonic photovoltaic case study.

    PubMed

    Paci, B; Bailo, D; Albertini, V Rossi; Wright, J; Ferrero, C; Spyropoulos, G D; Stratakis, E; Kymakis, E

    2013-09-14

    A novel high spatial resolution synchrotron X-ray diffraction stratigraphy technique has been applied in-situ to an integrated plasmonic nanoparticle-based organic photovoltaic device. This original approach allows for the disclosure of structure-property relations linking large scale organic devices to length scales of local nano/hetero structures and interfaces between the different components.

  18. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices

    PubMed Central

    Tadepalli, Sirimuvva; Kuang, Zhifeng; Jiang, Qisheng; Liu, Keng-Ku; Fisher, Marilee A.; Morrissey, Jeremiah J.; Kharasch, Evan D.; Slocik, Joseph M.; Naik, Rajesh R.; Singamaneni, Srikanth

    2015-01-01

    The sensitivity of localized surface plasmon resonance (LSPR) of metal nanostructures to adsorbates lends itself to a powerful class of label-free biosensors. Optical properties of plasmonic nanostructures are dependent on the geometrical features and the local dielectric environment. The exponential decay of the sensitivity from the surface of the plasmonic nanotransducer calls for the careful consideration in its design with particular attention to the size of the recognition and analyte layers. In this study, we demonstrate that short peptides as biorecognition elements (BRE) compared to larger antibodies as target capture agents offer several advantages. Using a bioplasmonic paper device (BPD), we demonstrate the selective and sensitive detection of the cardiac biomarker troponin I (cTnI). The smaller sized peptide provides higher sensitivity and a lower detection limit using a BPD. Furthermore, the excellent shelf-life and thermal stability of peptide-based LSPR sensors, which precludes the need for special storage conditions, makes it ideal for use in resource-limited settings. PMID:26552720

  19. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices

    NASA Astrophysics Data System (ADS)

    Tadepalli, Sirimuvva; Kuang, Zhifeng; Jiang, Qisheng; Liu, Keng-Ku; Fisher, Marilee A.; Morrissey, Jeremiah J.; Kharasch, Evan D.; Slocik, Joseph M.; Naik, Rajesh R.; Singamaneni, Srikanth

    2015-11-01

    The sensitivity of localized surface plasmon resonance (LSPR) of metal nanostructures to adsorbates lends itself to a powerful class of label-free biosensors. Optical properties of plasmonic nanostructures are dependent on the geometrical features and the local dielectric environment. The exponential decay of the sensitivity from the surface of the plasmonic nanotransducer calls for the careful consideration in its design with particular attention to the size of the recognition and analyte layers. In this study, we demonstrate that short peptides as biorecognition elements (BRE) compared to larger antibodies as target capture agents offer several advantages. Using a bioplasmonic paper device (BPD), we demonstrate the selective and sensitive detection of the cardiac biomarker troponin I (cTnI). The smaller sized peptide provides higher sensitivity and a lower detection limit using a BPD. Furthermore, the excellent shelf-life and thermal stability of peptide-based LSPR sensors, which precludes the need for special storage conditions, makes it ideal for use in resource-limited settings.

  20. Zinc oxide nanostructures with metal particles based on surface plasmons for optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Yu, Jae Su; Ko, Yeong Hwan; Lee, Hee Kwan; Leem, Jung Woo

    2011-02-01

    We fabricate various ZnO (zinc oxide) nanostructures, such as nanorods, nanotips and nanoflowers, as well as ZnO subwavelength grating structures for applications in optoelectronic devices such as solar cells, light emitting diodes, and biosensors. The optical properties are theoretically analyzed using the rigorous coupled-wave analysis method. The fabricated ZnO nanostructures are of wurzite crystal structure. The reflection and absorption characteristics depend strongly on the shape and geometry of Zn nanostructures. The ZnO nanostructures with Au (or Ag) particles, based on surface plasmons, are also investigated.

  1. Surface Plasmon-Assisted Solar Energy Conversion.

    PubMed

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  2. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    NASA Astrophysics Data System (ADS)

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; van de Lagemaat, Jao; Kopidakis, Nikos; Park, Wounjhang

    2014-09-01

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  3. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect

    Rourke, Devin; Ahn, Sungmo; Nardes, Alexandre M.; Lagemaat, Jao van de; Kopidakis, Nikos; Park, Wounjhang

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer:fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent.

  4. Optical activity and circular dichroism of plasmonic nanorod assemblies

    NASA Astrophysics Data System (ADS)

    Khosravi Khorashad, Larousse; Liu, Na; Govorov, Alexander O.

    Plasmonic circular dichroism (CD) has offered an efficient spectroscopy method for the electronic, chemical, and structural properties of different types of light active molecules in the subwavelength regime. Among the different chiral geometries of metal nanoparticles utilized by the plasmonic CD spectroscopy, gold nanorods (AuNRs) have shown strong CD signals in the visible frequency range. In this work, we theoretically study the CD signals of AuNR arrangements in order to mimic structures and chemical bonds of chiral biomolecules. In particular, our twisted three-AuNR geometries resemble a molecular structure of tartaric acid. This molecule played an important role in the discovery of chemical chirality. In our study, we show that the strength of CD signals changes dramatically by tuning the interparticle distances and angles. Since the CD signals are typically weak, we develop reliable computational approaches to calculate the plasmonic CD. Manipulating interparticle distances, size, and molecular bond angles result in full control over peak positions, handedness, and positive and negative bands which are observed in the CD spectra. This work has been supported under the grant from Volkswagen Foundation. We also acknowledge the financial support of Condensed Matter and Surface Science program of Ohio University.

  5. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers.

    PubMed

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio; Esposito, Francesco; Allione, Marco; Coluccio, Maria Laura; Tallerico, Rossana; Valpapuram, Immanuel; Tirinato, Luca; Das, Gobind; Giugni, Andrea; Torre, Bruno; Veltri, Pierangelo; Kruhne, Ulrich; Della Valle, Giuseppe; Di Fabrizio, Enzo

    2016-01-25

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562).

  6. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics.

  7. Hybrid grapheme plasmonic waveguide modulators

    NASA Astrophysics Data System (ADS)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2016-03-01

    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  8. Combined three-dimensional electromagnetic and device modeling of surface plasmon-enhanced organic solar cells incorporating low aspect ratio silver nanoprisms

    NASA Astrophysics Data System (ADS)

    Jiang, Wenjun; Salvador, Michael; Dunham, Scott T.

    2013-10-01

    We investigate silver nanoparticle enhanced organic solar cells by coupling three-dimensional electromagnetic and electronic device simulations. For active layer thicknesses of less than 50 nm, an array of optimized silver nanoprisms with 10 nm edge length, 15 nm thickness, and 17 nm period length can enhance the power conversion efficiency (PCE) by more than 25% when embedded in a bulk heterojunction polymer blend. For thicker layers, optical losses associated with the particles outweigh the increased absorption and reduce the PCE. Additionally, we find that the nanoparticle's work function determines the current-voltage behavior of plasmonic devices.

  9. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.

    PubMed

    Lee, S-H; Bae, J; Lee, S W; Jang, J-W

    2015-11-07

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.

  10. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    SciTech Connect

    Hsun Su, Yen; Hsu, Chia-Yun; Chang, Chung-Chien; Tu, Sheng-Lung; Shen, Yun-Hwei

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  11. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    NASA Astrophysics Data System (ADS)

    Hsun Su, Yen; Hsu, Chia-Yun; Chang, Chung-Chien; Tu, Sheng-Lung; Shen, Yun-Hwei

    2013-08-01

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  12. Integrated optical and electrical modeling of plasmon-enhanced thin film photovoltaics: A case-study on organic devices

    SciTech Connect

    Rourke, D; Ahn, S; Nardes, AM; van de Lagemaat, J; Kopidakis, N; Park, W

    2014-09-21

    The nanoscale light control for absorption enhancement of organic photovoltaic (OPV) devices inevitably produces strongly non-uniform optical fields. These non-uniformities due to the localized optical modes are a primary route toward absorption enhancement in OPV devices. Therefore, a rigorous modeling tool taking into account the spatial distribution of optical field and carrier generation is necessary. Presented here is a comprehensive numerical model to describe the coupled optical and electrical behavior of plasmon-enhanced polymer: fullerene bulk heterojunction (BHJ) solar cells. In this model, a position-dependent electron-hole pair generation rate that could become highly non-uniform due to photonic nanostructures is directly calculated from the optical simulations. By considering the absorption and plasmonic properties of nanophotonic gratings included in two different popular device architectures, and applying the Poisson, current continuity, and drift/diffusion equations, the model predicts quantum efficiency, short-circuit current density, and desired carrier mobility ratios for bulk heterojunction devices incorporating nanostructures for light management. In particular, the model predicts a significant degradation of device performance when the carrier species with lower mobility are generated far from the collecting electrode. Consequently, an inverted device architecture is preferred for materials with low hole mobility. This is especially true for devices that include plasmonic nanostructures. Additionally, due to the incorporation of a plasmonic nanostructure, we use simulations to theoretically predict absorption band broadening of a BHJ into energies below the band gap, resulting in a 4.8% increase in generated photocurrent. (C) 2014 AIP Publishing LLC.

  13. Nanovalve-Controlled Cargo Release Activated by Plasmonic Heating

    PubMed Central

    Croissant, Jonas; Zink, Jeffrey I.

    2012-01-01

    The synthesis and operation of a light-operated nanovalve that controls the pore openings of mesoporous silica nanoparticles containing gold cores nanoparticles is described. The nanoparticles, consisting of 20 nm gold cores inside ~150 nm mesoporous silica spheres, were synthesized using a unique one-pot method. The nanovalves are comprised of cucurbit[6]uril rings encircling stalks that are attached to the ~2 nm pore openings. Plasmonic heating of the gold core raises the local temperature and decreases the ring-stalk binding constant, thereby unblocking the pore and releasing the cargo molecules that were preloaded inside. Bulk heating of the suspended particles to 60 °C is required to release the cargo, but no bulk temperature change was observed in the plasmonic heating release experiment. High intensity irradiation caused thermal damage to the silica particles, but low intensity illumination caused a sufficient local temperature increase to operate the valves without damaging the nanoparticles containers. These light-stimulated, thermally activated mechanized nanoparticles demonstrate a new system with potential utility for on-command drug release. PMID:22540671

  14. Tunable wave plate based on active plasmonic metasurfaces.

    PubMed

    Li, Tianyou; Huang, Lingling; Liu, Juan; Wang, Yongtian; Zentgraf, Thomas

    2017-02-20

    Polarization conversion is highly desired for numerous valuable applications such as remote detection and high-precision measurement. It is conventionally achieved through utilizing bulky birefringent crystals or by delicate tailored anisotropy materials. However, such schemes are not compatible with both dynamic and compact on-chip applications. We propose an active metasurface that can generate tunable ellipticity for arbitrary incident polarization with a non-volatile and reversible modulation method. The metasurface consists of V-shape plasmonic antenna arrays and an interval modulation layer made of the phase change material GST for active phase control. Our approach allows the generation of high-quality arbitrary elliptical polarization states in an ultrathin, non-mechanical, and flexible fashion, representing a significant advance compared with its conventional counterparts.

  15. Single-molecule imaging of telomerase activity via linear plasmon rulers.

    PubMed

    Qian, Guang-Sheng; Zhang, Ting-Ting; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-12

    Plasmon rulers (PRs) exploit the potential of plasmon coupling between individual pairs of noble metal nanoparticles in biological processes, especially single-molecule detection. Herein, for the first time, we report a strategy based on Ag PRs for in situ monitoring of the extension process of telomerase primer (TSP) activated by a single telomerase.

  16. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Bae, J.; Lee, S. W.; Jang, J.-W.

    2015-10-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~ Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times

  17. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  18. Active Electrochemical Plasmonic Switching on Polyaniline-Coated Gold Nanocrystals.

    PubMed

    Lu, Wenzheng; Jiang, Nina; Wang, Jianfang

    2017-02-01

    High-performance electrochemical plasmonic switching is realized on both single-particle and ensemble levels by coating polyaniline on colloidal gold nanocrystals through surfactant-assisted oxidative polymerization. Under small applied potentials, the core@shell nanostructures exhibit reversible plasmon shifts as large as 150 nm, a switching time of less than 10 ms, and a high switching stability.

  19. Oxides in plasmonics and nanophotonics: materials and dynamic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Boltasseva, Alexandra; Kinsey, Nathaniel; Cleirci, Matteo; Ferrera, Marcello; Kim, Jongbum; DeVault, Clayton; Shaltout, Amr M.; Faccio, Daniele; Shalaev, Vladimir

    2016-09-01

    Transparent conducting oxides (TCOs) have long been used in optics and electronics for their unique combination of both high transmission and high electrical conductivity. In recent years, the impact of such TCOs has been felt in the subgenre of nanophotonics and plasmonics.1-3 Specifically, the TCOs provide plasmonic response in the near infrared and infrared region,4 epsilon-near-zero (ENZ) properties in the telecom band, tunable static optical properties through deposition/annealing control,5 and the potential for dynamic control of their properties under electrical or optical biasing.6-8 Due to the combination of these interesting properties, TCOs such as In:SnO (ITO), Al:ZnO (AZO), and Ga:ZnO (GZO) have become leaders in the drive to produce high-performance dynamic and alternative nanophotonic devices and metamaterials. In our work, we have studied the potential for optical control of AZO thin films using both above bandgap and below bandgap excitation, noting strong changes in reflection/transmission with enhancement due to the ENZ as well as ultrafast response times less than 1 ps. Using a photo-modified carrier density and recombination to model above bandgap excitation, we demonstrated 40%/30% change in the reflection/transmission of a 350 nm AZO film with an 88 fs recombination time, corresponding to a modification of the carrier density by 10%.6 Below bandgap excitation has experimentally shown the potential for similar variations in the reflection and transmission under increased fluences with a factor of 8x increase in the normalized ΔR at ENZ. Current efforts are focused to model the material response as well as to investigate electrical modulation of AZO films. In summary, our work has demonstrated the potential for optical control of AZO films both above and below bandgap on an ultrafast timescale which can be enhanced through ENZ. Combining this with traditional nanophotonic and metamaterial devices opens a broad range of high impact studies such

  20. Flexible Near-Infrared Photovoltaic Devices Based on Plasmonic Hot-Electron Injection into Silicon Nanowire Arrays.

    PubMed

    Liu, Dong; Yang, Dong; Gao, Yang; Ma, Jun; Long, Ran; Wang, Chengming; Xiong, Yujie

    2016-03-24

    The development of flexible near-infrared (NIR) photovoltaic (PV) devices containing silicon meets the strong demands for solar utilization, portability, and sustainable manufacture; however, improvements in the NIR light absorption and conversion efficiencies in ultrathin crystalline Si are required. We have developed an approach to improve the quantum efficiency of flexible PV devices in the NIR spectral region by integrating Si nanowire arrays with plasmonic Ag nanoplates. The Ag nanoplates can directly harvest and convert NIR light into plasmonic hot electrons for injection into Si, while the Si nanowire arrays offer light trapping. Taking the wavelength of 800 nm as an example, the external quantum efficiency has been improved by 59 % by the integration Ag nanoplates. This work provides an alternative strategy for the design and fabrication of flexible NIR PVs.

  1. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  2. Active Mediation of Plasmon Enhanced Localized Exciton Generation, Carrier Diffusion and Enhanced Photon Emission.

    PubMed

    Haq, Sharmin; Addamane, Sadhvikas; Kafle, Bijesh; Huang, Danhong; Balakrishnan, Ganesh; Habteyes, Terefe G

    2017-04-13

    Understanding the enhancement of charge carrier generation and their diffusion is imperative for improving the efficiency of optoelectronic devices particularly infrared photodetectors that are less developed than their visible counterpart. Here, using gold nanorods as model plasmonic systems, InAs quantum dots (QDs) embedded in an InGaAs quantum well as an emitter, and GaAs as an active mediator of surface plasmons for enhancing carrier generation and photon emission, the distance dependence of energy transfer and carrier diffusion have been investigated both experimentally and theoretically. Analysis of the QD emission enhancement as a function of distance reveals a Förster radius of 3.85 ± 0.15 nm, a near-field decay length of 4.8 ± 0.1 nm and an effective carrier diffusion length of 64.0 ± 3.0 nm. Theoretical study of the temporal-evolution of the electron-hole occupation number of the excited states of the QDs indicates that the emission enhancement trend is determined by the carrier diffusion and capture rates.

  3. Exploiting the interaction between a semiconductor nanosphere and a thin metal film for nanoscale plasmonic devices.

    PubMed

    Li, H; Xu, Y; Xiang, J; Li, X F; Zhang, C Y; Tie, S L; Lan, S

    2016-12-07

    The interaction of silicon (Si) nanospheres (NSs) with a thin metal film is investigated numerically and experimentally by characterizing their forward scattering properties. A sharp resonant mode and a zero-scattering dip are found to be introduced in the forward scattering spectrum of a Si NS by putting it on a 50-nm-thick gold film. It is revealed that the sharp resonant mode arises from a new magnetic dipole induced by the electric dipole and its mirror image while the zero-scattering dip originates from the destructive interference between the new magnetic dipole and the original one together with its mirror image. A significant enhancement in both electric and magnetic fields is achieved at the contact point between the Si NS and the metal film. More interestingly, the use of a thin silver film can lead to vivid scattering light with different color indices. It is demonstrated that a small change in the surrounding environment of Si NSs results in the broadening of the resonant mode and the disappearance of the zero-scattering dip. Our findings indicate that dielectric-metal hybrid systems composed of semiconductor NSs and thin metal films act as attractive platforms on which novel nanoscale plasmonic devices can be realized.

  4. Plasmonic based light manipulation and applications in AIGaN deep-UV devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Li, Jing; Kang, Junyong

    2016-09-01

    Recently, surface plasmon (SP)-exciton coupling has been wildly applied in nitride semiconductors in order to improve the spontaneous radiative recombination rate [1-3]. However, most works have been focused on the emission enhancement in InGaN-based blue or green light emitting diodes (LEDs). Practically, it is significantly important to improve the emission efficiency in deep-UV AlGaN-base quantum well (QW) structure due to its intrinsically low internal quantum efficiency (IQE) induced by the high defect density in its epitaxy layer [4]. But, the effective SP-exciton coupling with matched energy in deep-UV region is still a challenge issue due to the lack of appropriate metal structures and compatible fabrication techniques. In this work, the Al nanoparticles (NPs) were introduced by the nanosphere lithography (NSL) and deposition techniques into the AlGaN based MQWs with optimized size and structure. Due to the local surface plasmon (LSP) coupling with the excitons in QWs, emission enhancement in deep UV region has been achieved in the Al NPs decorated AlGaN MQWs structure with comparison to the bare MQWs. Theoretical calculations on the energy subbands of AlGaN QWs were further carried out to investigate the corresponding mechanisms, in which the hot carrier transition activated by SP-exciton coupling was believed to be mainly responsible for the enhancement. This work demonstrated a low cost, wafer scale fabrication process, which can be potentially employed to the practical SP-enhanced AlGaN-based deep UV LEDs with high IQEs.

  5. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    SciTech Connect

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  6. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.

    PubMed

    Giannini, Vincenzo; Berrier, Audrey; Maier, Stefan A; Sánchez-Gil, José Antonio; Rivas, Jaime Gómez

    2010-02-01

    Terahertz plasmonic resonances in semiconductor (indium antimonide, InSb) dimer antennas are investigated theoretically. The antennas are formed by two rods separated by a small gap. We demonstrate that, with an appropriate choice of the shape and dimension of the semiconductor antennas, it is possible to obtain large electromagnetic field enhancement inside the gap. Unlike metallic antennas, the enhancement around the semiconductor plasmonics antenna can be easily adjusted by varying the concentration of free carriers, which can be achieved by optical or thermal excitation of carriers or electrical carrier injection. Such active plasmonic antennas are interesting structures for THz applications such as modulators and sensors.

  7. Magnesium as Novel Material for Active Plasmonics in the Visible Wavelength Range.

    PubMed

    Sterl, Florian; Strohfeldt, Nikolai; Walter, Ramon; Griessen, Ronald; Tittl, Andreas; Giessen, Harald

    2015-12-09

    Investigating new materials plays an important role for advancing the field of nanoplasmonics. In this work, we fabricate nanodisks from magnesium and demonstrate tuning of their plasmon resonance throughout the whole visible wavelength range by changing the disk diameter. Furthermore, we employ a catalytic palladium cap layer to transform the metallic Mg particles into dielectric MgH2 particles when exposed to hydrogen gas. We prove that this transition can be reversed in the presence of oxygen. This yields plasmonic nanostructures with an extinction spectrum that can be repeatedly switched on or off or kept at any intermediate state, offering new perspectives for active plasmonic metamaterials.

  8. Synergic combination of the sol-gel method with dip coating for plasmonic devices.

    PubMed

    Figus, Cristiana; Patrini, Maddalena; Floris, Francesco; Fornasari, Lucia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Marabelli, Franco; Mura, Andrea; Bongiovanni, Giovanni; Quochi, Francesco

    2015-01-01

    Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol-gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.

  9. Synergic combination of the sol–gel method with dip coating for plasmonic devices

    PubMed Central

    Patrini, Maddalena; Floris, Francesco; Fornasari, Lucia; Pellacani, Paola; Marchesini, Gerardo; Valsesia, Andrea; Artizzu, Flavia; Marongiu, Daniela; Saba, Michele; Marabelli, Franco; Mura, Andrea; Bongiovanni, Giovanni

    2015-01-01

    Summary Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol–gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip. PMID:25821692

  10. Novel Devices for Plasmonic and Nanophotonic Networks: Exploiting X-ray Wavelengths at Optical Frequencies

    DTIC Science & Technology

    2012-09-01

    fins define a Fabry-Perot nano-cavity that concentrates surface plasmon polaritons at visible frequencies with Q-factors as high as 200. A simple...Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy, J. T. van Wijngaarden... polaritons in metal- insulator-metal waveguides Verhagen, Ewold; Dionne, Jennifer A.; Kuipers, L. (Kobus); H.A. Atwater and A. Polman, NANO LETTERS

  11. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures.

    PubMed

    Christopher, Phillip; Xin, Hongliang; Marimuthu, Andiappan; Linic, Suljo

    2012-12-01

    The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝ intensity(n), with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.

  12. Thickness controlled sol-gel silica films for plasmonic bio-sensing devices

    NASA Astrophysics Data System (ADS)

    Figus, Cristiana; Quochi, Francesco; Artizzu, Flavia; Saba, Michele; Marongiu, Daniela; Floris, Francesco; Marabelli, Franco; Patrini, Maddalena; Fornasari, Lucia; Pellacani, Paola; Valsesia, Andrea; Mura, Andrea; Bongiovanni, Giovanni

    2014-10-01

    Plasmonics has recently received considerable interest due to its potentiality in many fields as well as in nanobio-technology applications. In this regard, various strategies are required for modifying the surfaces of plasmonic nanostructures and to control their optical properties in view of interesting application such as bio-sensing, We report a simple method for depositing silica layers of controlled thickness on planar plasmonic structures. Tetraethoxysilane (TEOS) was used as silica precursor. The control of the silica layer thickness was obtained by optimizing the sol-gel method and dip-coating technique, in particular by properly tuning different parameters such as pH, solvent concentration, and withdrawal speed. The resulting films were characterized via atomic force microscopy (AFM), Fourier-transform (FT) spectroscopy, and spectroscopic ellipsometry (SE). Furthermore, by performing the analysis of surface plasmon resonances before and after the coating of the nanostructures, it was observed that the position of the resonance structures could be properly shifted by finely controlling the silica layer thickness. The effect of silica coating was assessed also in view of sensing applications, due to important advantages, such as surface protection of the plasmonic structure.

  13. Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging.

    PubMed

    Yanase, Yuhki; Hiragun, Takaaki; Yanase, Tetsuji; Kawaguchi, Tomoko; Ishii, Kaori; Hide, Michihiro

    2012-02-15

    Basophil activation in response to antigen may represent specificities of type I allergy of individuals and their reactions in the body. We previously demonstrated that surface plasmon resonance (SPR) sensor could detect the activation of human basophils in response to antigens. In this study, we further developed a technique based on SPR imaging (SPRI) system to detect reactions of individual basophils isolated from human blood, and investigated the potential of this sensor as a tool for diagnosis of type I allergy. To detect the change of refractive index (RI) in individual basophils, human basophils were isolated by negative selection with antibodies conjugated with magnetic beads, fixed on a gold film with anti-basophil antibody and stimulated with various antigens under the measurement of SPRI. The sensor could detect the reactions of individual basophils in response to specific antigens as well as non-specific activators. Moreover, the sensor well allocated two spots of basophils on a sensor chip and detected individual reactions to antigen. Thus, the technique developed in this study can visualize the effect of various stimuli or inhibitors on basophils as change of intracellular RI distribution at the single cell level. In combination with a device to rapidly isolate basophils from peripheral blood, this technique may be a useful tool as a high throughput screening system in clinical diagnosis for type I allergy.

  14. Probing a Device's Active Atoms.

    PubMed

    Studniarek, Michał; Halisdemir, Ufuk; Schleicher, Filip; Taudul, Beata; Urbain, Etienne; Boukari, Samy; Hervé, Marie; Lambert, Charles-Henri; Hamadeh, Abbass; Petit-Watelot, Sebastien; Zill, Olivia; Lacour, Daniel; Joly, Loïc; Scheurer, Fabrice; Schmerber, Guy; Da Costa, Victor; Dixit, Anant; Guitard, Pierre André; Acosta, Manuel; Leduc, Florian; Choueikani, Fadi; Otero, Edwige; Wulfhekel, Wulf; Montaigne, François; Monteblanco, Elmer Nahuel; Arabski, Jacek; Ohresser, Philippe; Beaurepaire, Eric; Weber, Wolfgang; Alouani, Mébarek; Hehn, Michel; Bowen, Martin

    2017-03-13

    Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.

  15. Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality.

    PubMed

    Karimullah, Affar S; Jack, Calum; Tullius, Ryan; Rotello, Vincent M; Cooke, Graeme; Gadegaard, Nikolaj; Barron, Laurence D; Kadodwala, Malcolm

    2015-10-07

    Development of low-cost disposable plasmonic substrates is vital for the applicability of plasmonic sensing. Such devices can be made using injection-molded templates to create plasmonic films. The elements of these plasmonic films are hybrid nanostructures composed of inverse and solid structures. Tuning the modal coupling between the two allows optimization of the optical properties for nanophotonic applications.

  16. Plasmonic nanorod metamaterials for biosensing

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G. A.; Atkinson, R.; Pollard, R.; Podolskiy, V. A.; Zayats, A. V.

    2009-11-01

    Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events. Despite undisputed advantages, including spectral tunability, strong enhancement of the local electric field and much better adaptability to modern nanobiotechnology architectures, localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts. Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.

  17. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  18. Platelet actively cooled thermal management devices

    NASA Astrophysics Data System (ADS)

    Mueggenburg, H. H.; Hidahl, J. W.; Kessler, E. L.; Rousar, D. C.

    1992-07-01

    An overview of 28 years of actively-cooled platelet thermal management devices design and development history is presented. Platelet devices are created by bonding together thin metal sheets (platelets) which contain chemically-etched coolant pasages. The bonding process produces an intricate and precise matrix of coolant passages and structural walls contained within a monolithic structure. Thirteen specific applications for platelet thermal management devices are described. These devices are cooled using convective, film, and transpiration cooling techniques. Platelet thermal management devices have been fabricated from a variety of metals, cooled with a variety of fluids, and operated at heat fluxes up to 200 Btu/sq in.-sec.

  19. Active 2D and carbon-based materials: physics and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sorger, Volker J.

    2016-09-01

    In nanophotonics we create material-systems, which are structured at length scales smaller than the wavelength of light. When light propagates inside such effective materials numerous novel physics phenomena emerge including thresholdless lasing, atto-joule per bit efficient modulators, and exciton-polariton effects. However, in order to make use of these opportunities, synergistic device designs have to be applied to include materials, electric and photonic constrains - all at the nanoscale. In this talk, I present our recent progress in exploring 2D and TCO materials for active optoelectronics. I highlight nanoscale device demonstrations including their physical operation principle and performance benchmarks. Details include epsilon-bear-zero tuning of thin-film ITO, Graphene electro-static gating via Pauli-blocking, plasmonic electro-optic modulation, and hetero-integrated III-V and carbon-based plasmon lasers on Silicon photonics.

  20. Plasmonic band-pass filter device using coupled asymmetric cross-shaped cavity

    NASA Astrophysics Data System (ADS)

    Geng, Xiao-Meng; Mi, Si-Chen; Wang, Tie-Jun; He, Lin-Yan; Wang, Chuan

    2017-01-01

    In this paper, a novel plasmonic band-pass filter by using the system consisting four waveguides and an asymmetric cross-shaped resonator is proposed. The plasmonic system is based on the metal-insulator-metal (MIM) structure which could overcome the diffraction limit and exhibit various promising applications. Here, we investigate the transmission spectra of the cross-shaped resonator by using finite-different-time-domain (FDTD) method and we find that the peak-wavelength on different ports show redshift or blueshift behaviors which are linearly changed with the length of cavity or the coupling distance. Moreover, the wavelength filter could be achieved and further applied in optical signal integrated circuits.

  1. Plasmonics for extreme light concentration and manipulation

    NASA Astrophysics Data System (ADS)

    Schuller, Jon A.; Barnard, Edward S.; Cai, Wenshan; Jun, Young Chul; White, Justin S.; Brongersma, Mark L.

    2010-03-01

    The unprecedented ability of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes has propelled their use in a vast array of nanophotonics technologies and research endeavours. Plasmonic light concentrators can elegantly interface diffraction-limited dielectric optical components with nanophotonic structures. Passive and active plasmonic devices provide new pathways to generate, guide, modulate and detect light with structures that are similar in size to state-of-the-art electronic devices. With the ability to produce highly confined optical fields, the conventional rules for light-matter interactions need to be re-examined, and researchers are venturing into new regimes of optical physics. In this review we will discuss the basic concepts behind plasmonics-enabled light concentration and manipulation, make an attempt to capture the wide range of activities and excitement in this area, and speculate on possible future directions.

  2. From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties

    PubMed Central

    Byers, Chad P.; Zhang, Hui; Swearer, Dayne F.; Yorulmaz, Mustafa; Hoener, Benjamin S.; Huang, Da; Hoggard, Anneli; Chang, Wei-Shun; Mulvaney, Paul; Ringe, Emilie; Halas, Naomi J.; Nordlander, Peter; Link, Stephan; Landes, Christy F.

    2015-01-01

    The optical properties of metallic nanoparticles are highly sensitive to interparticle distance, giving rise to dramatic but frequently irreversible color changes. By electrochemical modification of individual nanoparticles and nanoparticle pairs, we induced equally dramatic, yet reversible, changes in their optical properties. We achieved plasmon tuning by oxidation-reduction chemistry of Ag-AgCl shells on the surfaces of both individual and strongly coupled Au nanoparticle pairs, resulting in extreme but reversible changes in scattering line shape. We demonstrated reversible formation of the charge transfer plasmon mode by switching between capacitive and conductive electronic coupling mechanisms. Dynamic single-particle spectroelectrochemistry also gave an insight into the reaction kinetics and evolution of the charge transfer plasmon mode in an electrochemically tunable structure. Our study represents a highly useful approach to the precise tuning of the morphology of narrow interparticle gaps and will be of value for controlling and activating a range of properties such as extreme plasmon modulation, nanoscopic plasmon switching, and subnanometer tunable gap applications. PMID:26665175

  3. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2014-01-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn(2+) and Cu(4+) selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  4. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  5. Simultaneous enhancement of photo- and electroluminescence in white organic light-emitting devices by localized surface plasmons of silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Jingting; Zhu, Wenqing; Shi, Guanjie; Zhai, Guangsheng; Qian, Bingjie; Li, Jun

    2017-02-01

    White organic light-emitting devices (WOLEDs) with enhanced current efficiency and negligible color shifting equipped with an internal color conversion layer (CCL) were fabricated. They were attained by embedding a single layer of silver nanoclusters (SNCs) between the CCL and light-emitting layer (EML). The simultaneous enhancement of the photoluminescence (PL) of the CCL and electroluminescence (EL) of the EML were realized by controlling the thickness and size of the SNCs to match the localized surface plasmon resonance spectrum with the PL spectrum of the CCL and the EL spectrum of the EML. The WOLED with optimal SNCs demonstrated a 25.81% enhancement in current efficiency at 60 mA cm‑2 and good color stability over the entire range of current density.

  6. On the controllable optical beam direction by means of nanopatterened plasmonic device

    NASA Astrophysics Data System (ADS)

    Bovino, F.; Benedetti, A.; Veroli, A.; Sibilia, C.

    2014-05-01

    Our main goal is to describe the basic steps for the emission control of the electromagnetic field leaving a tailored slit on a gold film, combined with a plasmonic grating designed on the output face, in order to make the emitted beam acquire the desired irradiation diagram (ID). A suitable numerical tool developed for a fast evaluation of the slit-grating system's ID allows to spare time in the definition of the selected configurations. The customization of the ID is a primary step for the design of more complex structures with potential useful capabilities for the manipulation of impinging light waves and the consequent rise of interesting electromagnetic patterns.

  7. Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by Blu-ray disc recordable and Blu-ray disc grating structures.

    PubMed

    Nootchanat, Supeera; Pangdam, Apichat; Ishikawa, Ryousuke; Wongravee, Kanet; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao; Ekgasit, Sanong; Baba, Akira

    2017-04-13

    In this work, we studied the performance enhancement of organic thin-film solar cells (OSCs) originating from the presence of diffraction gratings on the surface of the active layer. Two types of diffraction gratings, periodic gratings (Blu-ray disc recordable: BD-R) and quasi-random gratings (Blu-ray disc: BD), were employed as master templates for grating structures. The grating structures were introduced to the surfaces of poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) films, which were the active layers of the solar cells. The addition of the grating structures led to an increase of light absorption in the absorption region of P3HT:PCBM induced by light scattering. Furthermore, the grating-coupled surface plasmon resonance generated additional light absorption peaks. With illumination of non-polarized light at a normal incident angle, the short-circuit current densities of the BD-R and BD solar cells improved by 11.05% and 10.6%, respectively. Efficiency improvements of 19.28% and 3.21% were also observed for the BD-R and BD devices, respectively. Finally, the finite-difference time-domain simulation results revealed an enhanced electric field in the P3HT:PCBM layer, especially in the BD-R OSC devices.

  8. All-optical switching of localized surface plasmon resonance in single gold nanosandwich using GeSbTe film as an active medium

    SciTech Connect

    Hira, T.; Homma, T.; Uchiyama, T.; Kuwamura, K.; Kihara, Y.; Saiki, T.

    2015-01-19

    Localized surface plasmon resonance (LSPR) switching was investigated in a Au/GeSbTe/Au nanosandwich as a key active element for plasmonic integrated circuits and devices. Near-infrared single-particle spectroscopy was conducted to examine the interaction of a Au nanorod (AuNR) and Au film, between which a GeSbTe layer was incorporated as an active phase-change media. Numerical calculation revealed that hybridized modes of the AuNR and Au film exhibit a significant change of scattering intensity with the phase change. In particular, the antisymmetric (magnetic resonance) mode can be modulated effectively by the extinction coefficient of GST, as well as its refractive index. Experimental demonstration of the switching operation was performed by alternate irradiation with a picosecond pulsed laser for amorphization and a continuous wave laser for crystallization. Repeatable modulation was obtained by monitoring the scattering light around the LSPR peak at λ = 1070 nm.

  9. Self-Assembly of Chiral Plasmonic Nanostructures.

    PubMed

    Lan, Xiang; Wang, Qiangbin

    2016-12-01

    Plasmonic chiroptical effects have attracted significant attention for their widespread potential applications in negative-refractive-index materials, advanced light-polarization filters, and ultrasensitive sensing devices, etc. As compared to top-down fabrication methods, the bottom-up self-assembly strategy provides nanoscale resolution, parallel production, and isotropic optical response, and therefore plays an indispensable role in the fabrication of chiral plasmonic nanostructures. The optical properties of these chiral structures can be predicted based on the near-field coupling of localized surface plasmons in structural components, which offers a route to tune or enhance optical activity by selecting building blocks and designing structural configurations. To date, three main types of chiral plasmonic nanostructures, i.e., chiral "plasmonic molecules", chiral superstructures, and chiral-molecule-metal hybrid complexes, are usually assembled, in which metal nanoparticles with various sizes, shapes, and compositions, and/or chiral molecules are employed as building blocks. Here, recent achievements in the self-assembly of chiral plasmonic nanostructures are highlighted and perspectives on the future directions of chiral plasmonics integrated with bottom-up self-assembly are presented, showing three typical examples, including chiral plasmonic switches, chiral nanoparticles, and chiral metamaterials.

  10. Magnetic nanoparticle (MNP) enhanced biosensing by surface plasmon resonance (SPR) for portable devices

    NASA Astrophysics Data System (ADS)

    Wang, Jianlong; Zhu, Zanzan; Munir, Ahsan; Zhou, H. Susan

    2010-04-01

    The use of magnetic nanparticles in microfluidic systems is emerging and is receiving growing attention due to the synergistic advantages of microfluidics and magnetic nanoparticles. Biomagnetic separation techniques based on magnetic nanoparticles are becoming increasingly important with a wide range of possible applications. However, the separation products are difficult to be detected by general method due to the small size of MNPs. Here, we demonstrate magnetic nanoparticles can greatly enhance the signal of surface plasmon resonance spectroscopy (SPR). Features of MNPs-aptamer conjugates as a powerful amplification reagent for ultrasensitive immunoassay are explored for the first time. Our results confirm that MNPs is a powerful sandwich element and an excellent amplification reagent for SPR based sandwich immunoassay and SPR has a great potential for the detection of magnetic nanoparticles-based separation products.

  11. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates

    PubMed Central

    2015-01-01

    We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be modulated by mechanical stretching. Next we fabricate stretchable arrays of gold pyramids and demonstrate a modulation of the wavelength of light resonantly scattered from the tip of the pyramid by stretching the underlying PDMS film. The use of a flexible transfer layer also enables template stripping using a cylindrical roller as a substrate. As an example, we demonstrate roller template stripping of metallic nanoholes, nanodisks, wires, and pyramids onto the cylindrical surface of a glass rod lens. These nonplanar metallic structures produced via template stripping with flexible and stretchable films can facilitate many applications in sensing, display, plasmonics, metasurfaces, and roll-to-roll fabrication. PMID:26402066

  12. Plasmonic photocatalysis.

    PubMed

    Zhang, Xuming; Chen, Yu Lim; Liu, Ru-Shi; Tsai, Din Ping

    2013-04-01

    Plasmonic photocatalysis has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible light irradiation, increasing the prospect of using sunlight for environmental and energy applications such as wastewater treatment, water splitting and carbon dioxide reduction. Plasmonic photocatalysis makes use of noble metal nanoparticles dispersed into semiconductor photocatalysts and possesses two prominent features-a Schottky junction and localized surface plasmonic resonance (LSPR). The former is of benefit to charge separation and transfer whereas the latter contributes to the strong absorption of visible light and the excitation of active charge carriers. This article aims to provide a systematic study of the fundamental physical mechanisms of plasmonic photocatalysis and to rationalize many experimental observations. In particular, we show that LSPR could boost the generation of electrons and holes in semiconductor photocatalysts through two different effects-the LSPR sensitization effect and the LSPR-powered bandgap breaking effect. By classifying the plasmonic photocatalytic systems in terms of their contact form and irradiation state, we show that the enhancement effects on different properties of photocatalysis can be well-explained and systematized. Moreover, we identify popular material systems of plasmonic photocatalysis that have shown excellent performance and elucidate their key features in the context of our proposed mechanisms and classifications.

  13. Surface plasmonic effects on organic solar cells.

    PubMed

    Uddin, Ashraf; Yang, Xiaohan

    2014-02-01

    Most high-performance organic photovoltaic (OPV) devices reported in the literature have been fabricated using the bulk heterojunction (BHJ) concept. Typically, the optimum thickness of the active layer for an OPV device is around 100 nm, or possibly less; such a thin layer can lead to low absorption of light. A thicker layer, however, inevitably increases the device resistance, due to the low carrier mobilities and short exciton diffusion lengths in organic materials. This situation imposes a trade-off between light absorption and charge transport efficiencies in OPV devices, motivating the development of a variety of light-trapping techniques. Metallic nanoparticles (NPs) such as Ag, Au, etc. and other metallic nanostructures are potential candidates for improving the light absorption due to the localized surface plasmon resonance (LSPR). LSPR contributes to the significant enhancement of local electromagnetic fields and improves the optical properties of the nanostructure devices. The excitation of LSPR is achieved when the frequency of the incident light matches its resonance peak, resulting in unique optical properties; selective light extinction as well as local enhancement of electromagnetic fields near the surface of metallic NPs. The resonance peak of LSPR depends strongly on the size, shape, and the dielectric environment of the metallic NPs. In this review article, progress on plasmonic enhanced OPV device performance is examined. The concepts of surface plasmonics for OPV devices, suitable plasmonic materials, location, optimum size and concentration of NP materials within the device are explored.

  14. Neutronics activities for next generation devices

    SciTech Connect

    Gohar, Y.

    1985-01-01

    Neutronic activities for the next generation devices are the subject of this paper. The main activities include TFCX and FPD blanket/shield studies, neutronic aspects of ETR/INTOR critical issues, and neutronics computational modules for the tokamak system code and tandem mirror reactor system code. Trade-off analyses, optimization studies, design problem investigations and computational models development for reactor parametric studies carried out for these activities are summarized.

  15. The bright side of plasmonic gold nanoparticles; activation of Nrf2, the cellular protective pathway

    NASA Astrophysics Data System (ADS)

    Goldstein, Alona; Soroka, Yoram; Frušić-Zlotkin, Marina; Lewis, Aaron; Kohen, Ron

    2016-06-01

    Plasmonic gold nanoparticles (AuNPs) are widely investigated for cancer therapy, due to their ability to strongly absorb light and convert it to heat and thus selectively destroy tumor cells. In this study we shed light on a new aspect of AuNPs and their plasmonic excitation, wherein they can provide anti-oxidant and anti-inflammatory protection by stimulating the cellular protective Nrf2 pathway. Our study was carried out on cells of the immune system, macrophages, and on skin cells, keratinocytes. A different response to AuNPs was noted in the two types of cells, explained by their distinct uptake profiles. In keratinocytes, the exposure to AuNPs, even at low concentrations, was sufficient to activate the Nrf2 pathway, without any irradiation, due to the presence of free AuNPs inside the cytosol. In contrast, in macrophages, the plasmonic excitation of the AuNPs by a low, non-lethal irradiation dose was required for their release from the constraining vesicles. The mechanism by which AuNPs activate the Nrf2 pathway was studied. Direct and indirect activation were suggested, based on the inherent ability of the AuNPs to react with thiol groups and to generate reactive oxygen species, in particular, under plasmonic excitation. The ability of AuNPs to directly activate the Nrf2 pathway renders them good candidates for treatment of disorders in which the up-regulation of Nrf2 is beneficial, specifically for topical treatment of inflammatory skin diseases.

  16. Double active control of the plasmonic resonance of a gold nanoparticle array

    NASA Astrophysics Data System (ADS)

    de Sio, Luciano; Cunningham, Alastair; Verrina, Vanessa; Tone, Caterina Maria; Caputo, Roberto; Bürgi, Thomas; Umeton, Cesare

    2012-11-01

    A two-fold active control of the plasmonic resonance of randomly distributed gold nanoparticles (GNPs) has been achieved. GNPs have been immobilized on an Indium Tin Oxide (ITO) coated glass substrate and then covered with a liquid crystalline compound. The system has been investigated by means of atomic force and scanning electron microscopy, revealing the presence of isolated and well distributed GNPs. The application of an external electric field to the sample has a two-fold consequence: the re-orientation of the hybrid-aligned liquid crystal layer and the formation of a carrier accumulation layer in the proximity of the ITO substrate. The refractive indices of both liquid crystal and accumulation layers are influenced by the applied field in a competitive way and produce a ``dancing behavior'' of the GNP's plasmonic resonance spectral position.

  17. [Batteries Used in Active Implantable Medical Devices].

    PubMed

    Ma, Bozhi; Hao, Hongwei; Li, Luming

    2015-03-01

    In recent years active implantable medical devices(AIMD) are being developed rapidly. Many battery systems have been developed for different AIMD applications. These batteries have the same requirements which include high safety, reliability, energy density and long service life, discharge indication. History, present and future of batteries used in AIMD are introduced in the article.

  18. Optical near-field effects for submicron patterning and plasmonic optical devices

    NASA Astrophysics Data System (ADS)

    Battula, Arvind Reddy

    Metallic films with narrow and deep subwavelength gratings or holes having a converging-diverging channel (CDC) can exhibit enhanced transmission resonances for wavelengths larger than the periodicity of the grating or hole. Using the finite element method, it is shown that by varying the gap size at the throat of a CDC, the spectral locations of the transmission resonance bands can be shifted close to each other and have high transmittance in a very narrow energy band. Additionally, the transmission of light can be influenced by the presence of the externally applied magnetic field H. The spectral locations of the transmission peak resonances depend on the magnitude and the direction of H. The transmission peaks have blue-shift with the increase in H. A new multilayer thermal emitter has been analyzed in the visible wavelength range. The proposed emitter has large temporal and spatial coherence extending into the far field. The thermal emitter is made up of a cavity that is surrounded by a thin silver grating having a CDC on one side and a one-dimensional (1D) photonic crystal (PhC) on the other side. The large coherence length is achieved by making use of the coherence properties of the surface waves. Due to the nature of surface waves the new multilayer structure can attain the spectral and directional control of emission with only p-polarization. The resonance condition inside the cavity is extremely sensitive to the wavelength, which would then lead to high emission in a very narrow wavelength band. In addition a new tunable plasmonic crystal (tPLC) was proposed, where the plasmonic or polaritonic mode of a metallic array can be combined with the photonic mode of a hole array in a dielectric slab for achieving negative refraction and still posses an extra degree of freedom for tuning the tPLC as a superlens to operate at different frequencies. The tunability of the single planar tPLC slab is demonstrated numerically for subwavelength imaging (FWHM 0.38lambda

  19. Plasmonic lens enhanced mid-infrared quantum cascade detector

    SciTech Connect

    Harrer, Andreas Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-10-27

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  20. Plasmonics Resonance Enhanced Active Photothermal Effects of Aluminum and Iron Nanoparticles.

    PubMed

    Chong, Xinyuan; Abboud, Jacques; Zhang, Zhili

    2015-03-01

    Localized Surface Plasmonics Resonance (LSPR) enhanced active photothermal effects of both aluminum nanoparticles (Al NPs) and iron nanoparticles (Fe NPs) are experimentally observed. Photothermally activated motion and ignition by low-energy xenon flash are quantitatively measured. For nanoparticles of comparable sizes, photothermally activated motion height of Fe NPs is about 60% lower than that of Al NPs, while photothermal Minimum Ignition Energy (MIE) of Fe NPs is about 50% lower than that of Al NPs. Joule heating by LSPR enhanced photothermal effects among nanoparticles and subsequently triggered oxidation reactions are found responsible for the motion and ignition of the nanoparticles.

  1. Coherent phenomena in terahertz 2D plasmonic structures: strong coupling, plasmonic crystals, and induced transparency by coupling of localized modes

    NASA Astrophysics Data System (ADS)

    Dyer, Gregory C.; Aizin, Gregory R.; Allen, S. James; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.

    2014-05-01

    The device applications of plasmonic systems such as graphene and two dimensional electron gases (2DEGs) in III-V heterostructures include terahertz detectors, mixers, oscillators and modulators. These two dimensional (2D) plasmonic systems are not only well-suited for device integration, but also enable the broad tunability of underdamped plasma excitations via an applied electric field. We present demonstrations of the coherent coupling of multiple voltage tuned GaAs/AlGaAs 2D plasmonic resonators under terahertz irradiation. By utilizing a plasmonic homodyne mixing mechanism to downconvert the near field of plasma waves to a DC signal, we directly detect the spectrum of coupled plasmonic micro-resonator structures at cryogenic temperatures. The 2DEG in the studied devices can be interpreted as a plasmonic waveguide where multiple gate terminals control the 2DEG kinetic inductance. When the gate tuning of the 2DEG is spatially periodic, a one-dimensional finite plasmonic crystal forms. This results in a subwavelength structure, much like a metamaterial element, that nonetheless Bragg scatters plasma waves from a repeated crystal unit cell. A 50% in situ tuning of the plasmonic crystal band edges is observed. By introducing gate-controlled defects or simply terminating the lattice, localized states arise in the plasmonic crystal. Inherent asymmetries at the finite crystal boundaries produce an induced transparency-like phenomenon due to the coupling of defect modes and crystal surface states known as Tamm states. The demonstrated active control of coupled plasmonic resonators opens previously unexplored avenues for sensitive direct and heterodyne THz detection, planar metamaterials, and slow-light devices.

  2. Plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors

    NASA Astrophysics Data System (ADS)

    Lyu, Hong-Kun; Park, Young-Jin; Cho, Hui-Sup; Jo, Sung-Hyun; Lee, Hee-Ho; Shin, Jang-Kyoo

    2014-09-01

    In this paper, we proposed the plasmonic color filters to decrease ambient light errors on active type dual band infrared image sensors for a large-area multi-touch display system. Although the strong point of the touch display system in the area of education and exhibition there are some limits of the ambient light. When an unexpected ambient light incidents into the display the touch recognition system can make errors classifying the touch point in the unexpected ambient light area. We proposed a new touch recognition image sensor system to decrease the ambient light error and investigated the optical transmission properties of plasmonic color filters for IR image sensor. To find a proper structure of the plasmonic color filters we used a commercial computer simulation tool utilizing finite-difference time-domain (FDTD) method as several thicknesses and whit the cover passivation layer or not. Gold (Au) applied for the metal film and the dispersion information associated with was derived from the Lorentz-Drude model. We also described the mechanism applied the double band filter on the IR image sensors.

  3. An Au/AgBr-Ag heterostructure plasmonic photocatalyst with enhanced catalytic activity under visible light.

    PubMed

    Purbia, Rahul; Paria, Santanu

    2017-01-17

    This study reports an easy synthesis protocol of a novel bimetallic silver halide (Au/AgBr-Ag) plasmonic heterostructure as a visible light induced photocatalyst. In this process, first CTAB capped Au NPs were coated with AgBr, and then Ag nanoparticles were formed on the surface of AgBr by photoreduction, while exposing to daylight at room temperature. The presence of Au and Ag improves the visible absorption ability of NPs and avoids charge recombination of the semiconductor AgBr during photoexcitation, which in turn enhances 16 and 8.9 fold the photocatalytic efficiency of Rhodamine B dye degradation under visible light irradiation compared to that of pure AgBr and AgBr/Ag, respectively. The recycling tests of the photocatalyst show only ∼8.7% decrease in efficiency after the 5(th) cycle of reuse without changing the morphology. During the photocatalytic process, active superoxide radicals (O2˙(-)) play a major role, proved through scavenger trapping and photoluminescence experiments. The presence of two plasmonic metals (Au and Ag) in the heterostructure helps to improve visible light absorption as well as avoid charge recombination of the semiconductor AgBr to act as a better photocatalyst. Since this heteronanostructure can be easily synthesized by a one-step method, this study could provide a new approach for the development of efficient bimetallic/semiconductor halide plasmonic photocatalysts with enhanced visible absorption and better charge separation.

  4. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.

    PubMed

    Qu, Yongquan; Cheng, Rui; Su, Qiao; Duan, Xiangfeng

    2011-10-26

    We report the plasmonic enhancement of the photocatalytic properties of Pt/n-Si/Ag photodiode photocatalysts using Au/Ag core/shell nanorods. We show that Au/Ag core/shell nanorods can be synthesized with tunable plasmon resonance frequencies and then conjugated onto Pt/n-Si/Ag photodiodes using well-defined chemistry. Photocatalytic studies showed that the conjugation with Au/Ag core/shell nanorods can significantly enhance the photocatalytic activity by more than a factor of 3. Spectral dependence studies further revealed that the photocatalytic enhancement is strongly correlated with the plasmonic absorption spectra of the Au/Ag core/shell nanorods, unambiguously demonstrating the plasmonic enhancement effect.

  5. Enhancement of the power conversion efficiency for inverted organic photovoltaic devices due to the localized surface plasmonic resonant effect of Au nanoparticles embedded in ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Yong Hun; Kim, Dae Hun; Lee, Dea Uk; Li, Fushan; Kim, Tae Whan

    2015-07-01

    The absorption spectra and input photon-to-converted current efficiency curves showed that Au nanoparticles increased the plasmonic broadband light absorption, thereby enhancing the short-circuit current density of the inverted organic photovoltaic (OPV) cells with a Au-ZnO nanocomposite electron transport layer (ETL). The power conversion efficiency of the inverted OPV cell fabricated with a Au-ZnO nanocomposite ETL was higher by 40% than that of the inverted OPV cell fabricated with a ZnO nanoparticle ETL, which could be attributed to the enhanced photon absorption in the active layer due to the localized surface plasmonic resonance of the Au nanoparticles.

  6. Plasmonic graphene transparent conductors.

    PubMed

    Xu, Guowei; Liu, Jianwei; Wang, Qian; Hui, Rongqing; Chen, Zhijun; Maroni, Victor A; Wu, Judy

    2012-03-08

    Plasmonic graphene is fabricated using thermally assisted self-assembly of silver nanoparticles on graphene. The localized surface-plasmonic effect is demonstrated with the resonance frequency shifting from 446 to 495 nm when the lateral dimension of the Ag nanoparticles increases from about 50 to 150 nm. Finite-difference time-domain simulations are employed to confirm the experimentally observed light-scattering enhancement in the solar spectrum in plasmonic graphene and the decrease of both the plasmonic resonance frequency and amplitude with increasing graphene thickness. In addition, plasmonic graphene shows much-improved electrical conductance by a factor of 2-4 as compared to the original graphene, making the plasmonic graphene a promising advanced transparent conductor with enhanced light scattering for thin-film optoelectronic devices.

  7. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  8. Active Optical Devices and Applications. Volume 228

    DTIC Science & Technology

    1980-04-01

    obscuration, 5-cm-thick solid, segmented (6 petals) Zerodur . Mirror A is near the limit of what can be fabricated with current technology. The honeycomb...DEW Descriptors, Keywords: Active Optical Device Application Large Optics Adaptive Technology Wavefront Sensor Deformable Mirror Performance...Cuneo, Jr., U.S. Air Force, NASA Headquarters 228-01 Wavefront sensors and deformable mirrors for visible wavelengths 4 Noah Bareket, Lockheed

  9. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas

    PubMed Central

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F. Javier

    2016-01-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1–5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation. PMID:27561789

  10. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas

    NASA Astrophysics Data System (ADS)

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F. Javier

    2016-08-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1–5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation.

  11. Solution-processed nanocomposites containing molybdenum oxide and gold nanoparticles as anode buffer layers in plasmonic-enhanced organic photovoltaic devices.

    PubMed

    Tan, Kim-Shih; Chuang, Ming-Kai; Chen, Fang-Chung; Hsu, Chain-Shu

    2013-12-11

    Solution-processed nanocomposites containing molybdenum oxide (MoO3) and gold nanoparticles (Au NPs) have been used as anode buffer layers in organic photovoltaic devices (OPVs). The resulting devices exhibit a remarkable enhancement in power conversion efficiency after Au NPs were incorporated into the device. Such enhancements can be attributed to the localized surface plasmon resonance induced by the metallic nanostructures. We have also found that the rate of exciton generation and the probability of exciton dissociation were increased. Furthermore, the devices made of the MoO3 buffer layer containing Au NPs exhibited superior stability. This work opens up the possibility of fabricating OPVs with both high efficiency and a prolonged lifetime.

  12. Terahertz plasmonic excitations in Bi2Se3 topological insulator.

    PubMed

    Autore, M; Di Pietro, P; Di Gaspare, A; D'Apuzzo, F; Giorgianni, F; Brahlek, Matthew; Koirala, Nikesh; Oh, Seangshik; Lupi, S

    2017-05-10

    After the discovery of Dirac electrons in condensed matter physics, more specifically in graphene and its derivatives, their potentialities in the fields of plasmonics and photonics have been readily recognized, leading to a plethora of applications in active and tunable optical devices. Massless Dirac carriers have been further found in three-dimensional topological insulators. These exotic quantum systems have an insulating gap in the bulk and intrinsic Dirac metallic states at any surface, sustaining not only single-particle excitations but also plasmonic collective modes. In this paper we will review the plasmon excitations in different microstructures patterned on Bi2Se3 topological insulator thin films as measured by terahertz spectroscopy. We discuss the dependence of the plasmon absorption versus the microstructure shape, wavevector, and magnetic field. Finally we will discuss the topological protection of both the Dirac single-particle and plasmon excitations.

  13. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared.

    PubMed

    Fischer, Marco P; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-22

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  14. A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Wei; Liu, Jia; Zhang, Lei; Huang, Wei; Huo, Fengwei; Tian, Danbi

    2015-03-01

    A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response ranging from 0.025 to 4 mg mL-1 and a detection limit of the lipase as low as 3.47 μg mL-1 were achieved. This strategy circumvents the problems encountered by general enzyme assays that require sophisticated instruments and complicated assembling steps. The methodology can benefit the assays of heterogeneous-catalyzed enzymes.A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response

  15. Optical Activation of Germanium Plasmonic Antennas in the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Fischer, Marco P.; Schmidt, Christian; Sakat, Emilie; Stock, Johannes; Samarelli, Antonio; Frigerio, Jacopo; Ortolani, Michele; Paul, Douglas J.; Isella, Giovanni; Leitenstorfer, Alfred; Biagioni, Paolo; Brida, Daniele

    2016-07-01

    Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

  16. Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications.

    PubMed

    Zhao, Meng; Zhang, Jie; Gao, Nengyue; Song, Peng; Bosman, Michel; Peng, Bo; Sun, Baoquan; Qiu, Cheng-Wei; Xu, Qing-Hua; Bao, Qiaoliang; Loh, Kian Ping

    2016-04-01

    Hexagonal Bi2 Te3 nanoplates support visible-range surface plasmons, of which the resonance energy is tuned as wide as 400 nm by Se doping and the resonance intensity is modulated by utilizing the phase change between the crystalline and amorphous states. The potential of Bi2 Te3 for reconfigurable plasmonics, plasmon-enhanced solar cells, and photoluminescence is demonstrated.

  17. Plasmonic-induced inhibition and enhancement of the electrocatalytic activity of Pd-Au hetero-nanoraspberries for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Qiyu; Zheng, Weitao; Chen, Hong; Zhang, Bingsen; Su, Dangsheng; Cui, Xiaoqiang

    2016-06-01

    Plasmonic modulation of the catalytic performances of metallic nanostructures shows great potential in the development of novel materials for catalysis. In addition to the challenges of devising new catalysts with high activity while maintaining controllable plasmonic properties, the mechanisms underlying the enhancement of the activity by surface plasmon resonance (SPR) are still under exploration. Here, we design a Pd-Au bimetallic hetero structure and use the well-defined SPR property of the core Au NPs to tune its surface electro catalytic activity. The hot electrons are transferred into the Pd nanopetals from the Au core with visible-light irradiation, resulting in an enhancement of the electrocatalytic oxidation of ethanol on Au concurrent with an inhibition on Pd. The anti-poisoning and stability of the as-prepared heterostructures is also enhanced by visible-light irradiation.

  18. Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs.

    PubMed

    Wang, Lei; Cai, Wei; Luo, Weiwei; Ma, Zenghong; Du, Chenglin; Zhang, Xinzheng; Xu, Jingjun

    2014-12-29

    The control of coherent phenomena in graphene structures is proposed. Specifically, plasmon induced transparency (PIT) effect is investigated in a kind of simple graphene structures - graphene ribbon pairs. The transparency effect are understood by the mode coupling between dipolar and quadrupole plasmons modes in graphene ribbons. By using bias voltage tuning or geometry parameters changing, the PIT effect can be effectively controlled, which is based on the frequency tuning of dipolar or quadrupole modes in ribbons. These properties make these structures possess applications in two-dimensional plasmonics devices in mid-infrared range. In addition, the tuning of PIT in graphene ribbon pairs opens an avenue for active coherent control in plasmonics.

  19. Transformation plasmonics

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Guenneau, Sébastien; Enoch, Stefan; Huidobro, Paloma A.; Martín-Moreno, Luis; García-Vidal, Francisco J.; Renger, Jan; Quidant, Romain

    2012-07-01

    Surface plasmons polaritons (SPPs) at metal/dielectric interfaces have raised lots of expectations in the on-going quest towards scaling down optical devices. SPP optics offers a powerful and flexible platform for real two-dimensional integrated optics, capable of supporting both light and electrons. Yet, a full exploitation of the features of SPPs is conditioned by an accurate control of their flow. Most efforts have so far focused on the extrapolation of concepts borrowed from guided optics. This strategy has already led to many important breakthroughs but a fully deterministic control of SPP modes remains a challenge. Recently, the field of optics was stimulated by a novel paradigm, transformation optics, which offers the capability to control light flow in any desired fashion. While it has already significantly contributed to the design of metamaterials with unprecedented optical properties, its versatility offers new opportunities towards a fully deterministic control of SPPs and the design of a new class of plasmonic functionalities. Here, we review recent progress in the application of transformation optics to SPPs. We first briefly describe the theoretical formalism of transformation plasmonics, focusing on its specificities over its three-dimensional optical counterpart. Numerical simulations are then used to illustrate its capability to tame SPP flows at a metal interface patterned with a dielectric load. Finally, we review recent experimental implementations leading to unique SPP functionalities at optical frequencies.

  20. Dual-frequency plasmon lasing modes in active three-layered bimetallic Ag/Au nanoshells

    NASA Astrophysics Data System (ADS)

    Wu, DaJian; Wu, XueWei; Cheng, Ying; Jin, BiaoBing; Liu, XiaoJun

    2015-11-01

    The optical properties of three-layered silver-gold-silica (SGS) nanoshells with gain have been investigated theoretically by using Mie theory. Surface plasmon amplification by stimulated emission of radiation (spaser) phenomena can be observed at two plasmon modes of the active SGS nanoshell in the visible region. It is found with the decrease in the radius of the inner Ag core that the critical value of ɛg″(ωg ) for the super-resonance of the low-energy mode increases first and then decreases while that for the high-energy mode decreases. An interesting overlap between the two curves for the critical value of ɛg″(ωg ) can be found at a special core radius. At this point, two super-resonances can be achieved concurrently at the low- and high-energy modes of the active SGS nanoshell with the same gain coefficient. This dual-frequency spaser based on the bimetallic Ag/Au nanoshell may be an efficient candidate for designing the nanolaser.

  1. Low-Power All-Optical Bistable Device of Twisted-Nematic Liquid Crystal Based on Surface Plasmons in a Metal-Insulator-Metal Structure

    NASA Astrophysics Data System (ADS)

    Tien Thanh, Pham; Tanaka, Daisuke; Fujimura, Ryushi; Takanishi, Yoichi; Kajikawa, Kotaro

    2013-01-01

    A low-power all-optical bistable device of twisted-nematic liquid crystal (TN-LC) is reported, on the basis of coupled surface plasmons (SPs) in a metal-insulator-metal (MIM) structure. The lowest threshold switching illumination was 0.3 mW/mm2, which is much lower than the value we previously reported for a similar all-optical TN-LC device based on the coupled SPs in a gold grating. The threshold illumination is lower at higher temperature up to the phase transition. The TN-LC device is promising for two-dimensional optical memories or spatial light modulators, since the structure is simple and free from electronic circuits.

  2. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.

    PubMed

    Lee, Sangjun; Mason, Daniel R; In, Sungjun; Park, Namkyoo

    2014-06-30

    We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

  3. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    PubMed

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  4. Nano-Engineering of Active Metamaterials

    DTIC Science & Technology

    2014-10-29

    follows for silicon-organic hybrid (SOH) and plasmonic silicon-organic hybrid (PSOH) devices: For SOH devices, the following performance has been...H. Steier, Harold R. Fetterman, Pierre Berini, and Larry R. Dalton, “Active Plasmonic and Metamaterials and Devices,” Proc SPIE, 7754, 775403 1-10...Embedded Plasmonic Metal-Slotted Polymer Electro-Optic Waveguide Modulator,” Proc. 2011 Conf. on Laser and Electro-Optics, pp. 1-3 (2011). 24. H. Figi

  5. Double plasmonic profile of tryptophan-silver nano-crystals—Temperature sensing and laser induced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Roy, Sarita; Basak, Soumen; Ray, Pulak; Dasgupta, Anjan Kr.

    2012-10-01

    Surface plasmon resonance (SPR) for spherical shaped silver nanoparticles showing double maxima at ∼390 nm and ∼520 nm respectively is reported. Self assembly of silver nanoparticles grown on tryptophan template leads to emergence of equal intensity double plasmon resonance (EIDPR). While for rod shaped nano-forms such double plasmon is explainable but for spherical shaped forms, such double plasmon can be explained on the basis of bidirectional formation of silver cluster in which attachment of silver at two nitrogen atom locations of tryptophan molecule seems to be obligatory. The absence of double resonance in case of silver nanoclusters formed with other amino acids or N-acetyl L-tryptophanamide (NATA), where bidirectional sbnd NH2 attachment is not possible, validates the proposed EIDPR mechanism. Electron micrograph of EIDPR particle indicates a bi-periodic fringe pattern indicating unusual crystalline property. Apart from sensing tryptophan, the double plasmon peaks are sensitive to temperature. Furthermore, the particle can be used as a smart killing agent showing bactericidal activity only upon exposure to low power laser.

  6. Compact nanomechanical plasmonic phase modulators

    SciTech Connect

    Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; Lopez, D.; Blumberg, G.; Aksyuk, V. A.

    2015-03-30

    Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

  7. Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared

    PubMed Central

    Willhammar, Tom; Sentosun, Kadir; Mourdikoudis, Stefanos; Goris, Bart; Kurttepeli, Mert; Bercx, Marnik; Lamoen, Dirk; Partoens, Bart; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Liz-Marzán, Luis M.; Bals, Sara; Van Tendeloo, Gustaaf

    2017-01-01

    Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals can be determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations. PMID:28358039

  8. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  9. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  10. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  11. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  12. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  13. 21 CFR 890.5050 - Daily activity assist device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Daily activity assist device. 890.5050 Section 890.5050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5050 Daily...

  14. 2010 PLASMONICS GORDON RESEARCH CONFERENCE/GORDON-KENAN GRADUATE STUDENT SEMINAR, JUNE 13-18

    SciTech Connect

    Naomi Halas

    2010-06-18

    The field of plasmonics lies at the forefront of current revolutionary developments in optics at nanoscale dimensions, with broad applications in the fields of biology, chemistry, and engineering. Advancing these applications will require an enhanced focus on the fundamental science of plasmonics in new and exotic regimes. This 2010 Gordon Conference on Plasmonics will focus on recent advances in fundamental and applied plasmonics. As with past conferences, this meeting will bring together top researchers and future leaders for substantial interactions between students, young speakers, and senior figures in the field. Participants should expect lively discussion during the sessions, intermingled with unstructured time where ideas move, collaborations form, and connections are made. Invited talks will cover a diverse range of topics, including active devices, coherence effects, metamaterials and cloaking, quantum optical phenomena, and plasmons in exotic media and in new wavelength regimes. At the conclusion of the conference, our final session will look forward and begin defining upcoming challenges and opportunities for plasmonics.

  15. Graphene-protected copper and silver plasmonics.

    PubMed

    Kravets, V G; Jalil, R; Kim, Y-J; Ansell, D; Aznakayeva, D E; Thackray, B; Britnell, L; Belle, B D; Withers, F; Radko, I P; Han, Z; Bozhevolnyi, S I; Novoselov, K S; Geim, A K; Grigorenko, A N

    2014-07-01

    Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics.

  16. Graphene-protected copper and silver plasmonics

    PubMed Central

    Kravets, V. G.; Jalil, R.; Kim, Y.-J.; Ansell, D.; Aznakayeva, D. E.; Thackray, B.; Britnell, L.; Belle, B. D.; Withers, F.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Novoselov, K. S.; Geim, A. K.; Grigorenko, A. N.

    2014-01-01

    Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics. PMID:24980150

  17. Photothermal activation of astrocyte cells using localized surface plasmon resonance of gold nanorods.

    PubMed

    Eom, Kyungsik; Hwang, Seoyoung; Yun, Seunghyeon; Byun, Kyung Min; Jun, Sang Beom; Kim, Sung June

    2017-04-01

    Although it has been revealed that astrocytes, generally known as star-shaped glial cells, play critical roles in the functions of central nervous system, there have been few efforts to directly modulate their activities and responses. In this study, an optical stimulation strategy for producing intracellular Ca(2+) transients of astrocytes is demonstrated using near-infrared (NIR) light and localized surface plasmon resonance. It is presented that NIR stimulation of micro-second duration combined with gold nanorods (GNRs) efficiently produces stronger Ca(2+) transients of astrocytes, which seems to be associated with a local heat generation by photothermal effects of GNRs. Since the proposed scheme can directly activate astrocytes with a high reliability, it is expected that GNR-mediated NIR stimulation could be utilized to facilitate minimally invasive physiological studies on the astrocyte functions. Photos of intracellular Ca(2+) transient of astrocytes with membrane-bound GNRs after optical stimulation at 30 s.

  18. Plasmonics: visit the past to know the future

    NASA Astrophysics Data System (ADS)

    Hayashi, Shinji; Okamoto, Takayuki

    2012-10-01

    Surface plasmons are collective oscillations of free electrons localized at surfaces of structures made of metals. Since the surface plasmons induce fluctuations of electric charge at surfaces, they are accompanied by electromagnetic oscillations. Electromagnetic fields associated with surface plasmons are localized at surfaces of metallic structures and significantly enhanced compared with the excitation field. These two characteristics are ingredients for making good use of surface plasmons in plasmonics. Plasmonics is a rapidly growing and well-established research field, which covers various aspects of surface plasmons towards realization of a variety of surface-plasmon-based devices. In this paper, after summarizing the fundamental aspects of surface plasmons propagating on planar metallic surfaces and localized at metallic nanoparticles, recent progress in plasmonic waveguides, plasmonic light-emitting devices and plasmonic solar cells is reviewed.

  19. Plasmonic Devices and Materials

    DTIC Science & Technology

    2005-06-30

    2003) 12. "Nanocrystal research targets optoelectronic components" Walters RJ, Biteen JS, Bourianoff GI, Atwater HA Laser Focus World 40 (9): 77-80...2004) 7 13. "Silicon optical nanocrystal memory" Walters RJ, Kik PG, Casperson JD, Atwater HA, Lindstedt R, Giorgi M, Bourianoff G, APPLIED PHYSICS...MRS Bulletin 30 (5): 385-389 May (2005) 20. "Field-effect electroluminescence in silicon nanocrystals", R..J. Walters, G.I. Bourianoff , H.A. Atwater HA

  20. Highly Active TiO2-Based Visible-Light Photocatalyst with Nonmetal Doping and Plasmonic Metal Decoration

    SciTech Connect

    Zhang, Qiao; Lima, Diana Q.; Chi, Miaofang; Yin, Yadong

    2011-01-01

    A sandwich-structured photocatalyst shows an excellent performance in degradation reactions of a number of organic compounds under UV, visible light, and direct sunlight (see picture). The catalyst was synthesized by a combination of nonmetal doping and plasmonic metal decoration of TiO2 nanocrystals, which improves visible-light activity and enhances light harvesting and charge separation, respectively.

  1. Industrial fabrication of an optical security device for document protection using plasmon resonant transmission through a thin corrugated metallic film embedded on a plastic foil

    NASA Astrophysics Data System (ADS)

    Sauvage-Vincent, Jean; Jourlin, Yves; Tonchev, Svetlen; Veillas, Colette; Claude, Pedri; Parriaux, Olivier

    2012-06-01

    Known since a long time in polymer banknotes and presented in the few years in paper banknotes, the principle of windowed documents has been currently extended to ID documents. We present an innovative solution which combines resonant transmission and Zero Order Device technologies and which is dedicated to improve windows in terms of the overt security level. With this R&D program, Hologram Industries targeted to obtain an overt visual security device that should be readily checked in transmission in the same manner as the established paper watermark. The proposed solution is based on the propagation of resonant modes in a thin continuous corrugated metallic layer embedded (encapsulated) between two dielectric layers of near equal refractive index. The mode of most interest is the Long Range Plasmon Mode. The coupling condition to the Long Range Mode is principally related to the corrugation, the metal layer thickness and the index of the two dielectric layers. If the condition of the mode excitation through the grating is fulfilled, a predetermined wavelength will be coupled to the Long Range Plasmon Mode. This mode will propagate at each metal/dielectric interface with a low loss and will concentrate the electric field inside the metal layer. This effect of coupling enables the transmission of a peak at this wavelength through the metallic layer. It defines the so called "extraordinary resonant transmission".

  2. Antifungal activity of antimicrobial-impregnated devices.

    PubMed

    Darouiche, R O; Mansouri, M D; Kojic, E M

    2006-04-01

    The in-vitro and in-vivo efficacy against Candida albicans and Candida krusei of devices impregnated with chlorhexidine and chloroxylenol was examined. The impregnated devices produced large zones of inhibition against both organisms (mean size, 39 mm and 38 mm, respectively). In a rabbit model in which segments of silicone catheters were placed percutaneously, non-impregnated devices were twice as likely as impregnated devices to become colonised with either C. albicans or C. krusei. Impregnated devices also had significantly lower colony counts of C. albicans (58 vs. 1361 CFU; p 0.008) and C. krusei (19 vs. 764 CFU; p 0.008).

  3. Weak value amplification of an off-resonance Goos-Hänchen shift in a Kretschmann-Raether surface plasmon resonance device.

    PubMed

    Parks, A D; Spence, S E

    2015-06-20

    During the past two decades there has been increased interest in the optical excitation of surface plasmon resonance (SPR) at a metal-dielectric interface. This is due in large part to its potential applications in such areas as medical diagnostics and pharmaceutical research. Also occurring during this time has been a growing recognition by the quantum physics community that weak value amplification (WVA) can serve as a valuable metrological research resource. Recently WVA has been used to amplify very small optical Goos-Hänchen (GH) shifts in glass and it has also been shown that SPR can greatly enhance optical GH shifts at the metal/air interface in Kretschmann-Raether (KR) devices. This paper demonstrates experimentally the WVA of an off-resonance GH shift in a KR device and explains why WVA of sufficiently SPR enhanced optical GH shifts cannot be achieved.

  4. Integrated optical gyroscope using active long-range surface plasmon-polariton waveguide resonator.

    PubMed

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-24

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10(-4) deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide.

  5. Integrated optical gyroscope using active Long-range surface plasmon-polariton waveguide resonator

    PubMed Central

    Zhang, Tong; Qian, Guang; Wang, Yang-Yang; Xue, Xiao-Jun; Shan, Feng; Li, Ruo-Zhou; Wu, Jing-Yuan; Zhang, Xiao-Yang

    2014-01-01

    Optical gyroscopes with high sensitivity are important rotation sensors for inertial navigation systems. Here, we present the concept of integrated resonant optical gyroscope constructed by active long-range surface plasmon-polariton (LRSPP) waveguide resonator. In this gyroscope, LRSPP waveguide doped gain medium is pumped to compensate the propagation loss, which has lower pump noise than that of conventional optical waveguide. Peculiar properties of single-polarization of LRSPP waveguide have been found to significantly reduce the polarization error. The metal layer of LRSPP waveguide is electro-optical multiplexed for suppression of reciprocal noises. It shows a limited sensitivity of ~10−4 deg/h, and a maximum zero drift which is 4 orders of magnitude lower than that constructed by conventional single-mode waveguide. PMID:24458281

  6. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity.

    PubMed

    Sun, Hang; Zeng, Shan; He, Qinrong; She, Ping; Xu, Kongliang; Liu, Zhenning

    2017-03-21

    A facile approach for the preparation of spiky TiO2/Au nanorod (NR) plasmonic photocatalysts has been demonstrated, which is through in situ nucleation and growth of spiky TiO2 onto AuNRs. Different aspect ratios of AuNRs in 2.5, 2.7, 4.1 and 4.5 have been applied to prepare spiky TiO2/AuNR nanohybrids to achieve tunable and broad localized surface plasmon resonance (LSPR) bands. All spiky TiO2/AuNR nanohybrids exhibit enhanced light harvesting by extending visible light absorption range by both transverse and longitudinal LSPR bands and decreasing light reflectance by their unique spiky structures. Compared to the bare AuNRs, commercial TiO2 (P25) and spiky TiO2/Au nanosphere photocatalysts, the spiky TiO2/AuNR photocatalysts exhibit significantly enhanced visible light photocatalytic activity in Rhodamine B (RhB) degradation due to their simultaneous enhancement in the light harvesting, charge utilization efficiency, and substrate accessibility. In particular, the spiky TiO2/AuNR-685 photocatalysts show the best photocatalytic activity with ∼98.9% of the RhB degraded within 90 min under the irradiation of 420-780 nm, which could be ascribed to the most extended visible light absorption range and sufficient photon energy of TiO2/AuNR-685 photocatalysts within this irradiation region. The bio-inspired nanostructure, as well as the facile and scalable fabrication approach, will open a new avenue for the rational design and preparation of high-performance photocatalysts for pollutant removal and water splitting.

  7. Polymeric photovoltaics with various metallic plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei; Gan, Qiaoqiang; Kafafi, Zakya H.; Bartoli, Filbert J.

    2013-02-01

    Broadband light absorption enhancement is numerically investigated for the active light harvesting layer of an organic photovoltaic (OPV), which consists of a blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Periodic plasmonic nanostructures placed above and below the active layer incorporate Ag, Al, Au, or a combination of two different metals. Three dimensional (3D) full-field electromagnetic simulations are applied to determine the effect of varying the metal employed in the plasmonic nanostructures on the absorption enhancement of the OPV. In addition, the geometric parameters (e.g., film thickness, period, and diameter) of the symmetrically distributed top and bottom metal (Ag, Al, or Au) nanostructures were varied to optimize the device structure and delineate the mechanism(s) leading to the absorption enhancement. A spectrally broadband, polarization-insensitive, and wide-angle absorption enhancement is obtained using a double plasmonic nanostructure and is attributed to the combined excitation of localized and single-interface surface plasmon polariton modes. The total photon absorption of the OPV with the optimized double plasmonic Ag nanostructures was found to be enhanced by as much as 82.8% and 80.4% under normal (0°) and 60° light incidence, respectively.

  8. Optical nano-imaging of gate-tunable graphene plasmons.

    PubMed

    Chen, Jianing; Badioli, Michela; Alonso-González, Pablo; Thongrattanasiri, Sukosin; Huth, Florian; Osmond, Johann; Spasenović, Marko; Centeno, Alba; Pesquera, Amaia; Godignon, Philippe; Elorza, Amaia Zurutuza; Camara, Nicolas; García de Abajo, F Javier; Hillenbrand, Rainer; Koppens, Frank H L

    2012-07-05

    The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.

  9. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices (Postprint)

    DTIC Science & Technology

    2015-11-10

    exponential decay of the sensitivity from the surface of the plasmonic nanotransducer calls for the careful consideration in its design with a particular...nanostructures are dependent on the geometrical features and the local dielectric environment. The exponential decay of the sensitivity from the surface of the...of the seed solution changed from yellow to brown. Growth solution was prepared by mixing 95 ml of CTAB (0.1 M), 0.5 ml of silver nitrate (10 mM

  10. Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Sheng; Du, Hong; Wang, Rui-Xia; Wen, Tao; Xu, An-Wu

    2013-03-01

    A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high efficiencies of the photocatalytic activity and the improved stability. With the assistance of Ag3PO4/AgBr/Ag heterostructures, only 8 min and 12 min are taken to completely decompose MO and MB molecules under visible-light irradiation, respectively. Furthermore, the photodegradation rate does not show an obvious decrease during ten successive cycles, indicating that our heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts are extremely stable under visible-light irradiation.A heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst was prepared by a rational in situ ion exchange reaction between Ag3PO4 micro-cubes and Br- in aqueous solution followed by photoreduction. The photocatalytic activities of obtained photocatalysts were measured by the degradation of methyl orange (MO) and methylene blue (MB) under visible light irradiation (λ >= 400 nm). Compared to AgBr/Ag, Ag3PO4/AgBr heterocrystals and pure Ag3PO4 crystals, the heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalysts exhibit much higher photocatalytic activity and stability. This enhanced photocatalytic activity suggests that the synergetic effects of the heterostructured Ag3PO4/AgBr/Ag and the strong SPR of Ag NPs on the surface result in the high

  11. INSERTION DEVICE ACTIVITIES FOR NSLS-II.

    SciTech Connect

    TANABE,T.; HARDER, D.A.; HULBERT, S.; RAKOWSKI, G.; SKARITKA, J.

    2007-06-25

    National Synchrotron Light Source-II (NSLS-II) will be a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also used as broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based elliptically polarized undulators (EPUs) for variable polarization devices for soft X-ray. 6T superconducting wiggler with minimal fan angle will be installed in the second phase as well as quasi-periodic EPU for VUV and possibly high-temperature superconducting undulator. R&D plans have been established to pursue the performance enhancement of the baseline devices and to design new types of insertion devices. A new insertion device development laboratory will also be established.

  12. Subwavelength plasmonics for graded-index optics on a chip.

    PubMed

    Grajower, Meir; Lerman, Gilad M; Goykhman, Ilya; Desiatov, Boris; Yanai, Avner; Smith, David R; Levy, Uriel

    2013-09-15

    Planar plasmonic devices are becoming attractive for myriad applications, owing to their potential compatibility with standard microelectronics technology and the capability for densely integrating a large variety of plasmonic devices on a chip. Mitigating the challenges of using plasmonics in on-chip configurations requires precise control over the properties of plasmonic modes, in particular their shape and size. Here we achieve this goal by demonstrating a planar plasmonic graded-index lens focusing surface plasmons propagating along the device. The plasmonic mode is manipulated by carving subwavelength features into a dielectric layer positioned on top of a uniform metal film, allowing the local effective index of the plasmonic mode to be controlled using a single binary lithographic step. Focusing and divergence of surface plasmons is demonstrated experimentally. The demonstrated approach can be used for manipulating the propagation of surface plasmons, e.g., for beam steering, splitting, cloaking, mode matching, and beam shaping applications.

  13. Surface Plasmon Based Spectrometer

    NASA Astrophysics Data System (ADS)

    Wig, Andrew; Passian, Ali; Boudreaux, Philip; Ferrell, Tom

    2008-03-01

    A spectrometer that uses surface plasmon excitation in thin metal films to separate light into its component wavelengths is described. The use of surface plasmons as a dispersive medium sets this spectrometer apart from prism, grating, and interference based variants and allows for the miniaturization of this device. Theoretical and experimental results are presented for two different operation models. In the first case surface plasmon tunneling in the near field is used to provide transmission spectra of different broad band-pass, glass filters across the visible wavelength range with high stray-light rejection at low resolution as well as absorption spectra of chlorophyll extracted from a spinach leaf. The second model looks at the far field components of surface plasmon scattering.

  14. Aluminum plasmonic photocatalysis

    PubMed Central

    Hao, Qi; Wang, Chenxi; Huang, Hao; Li, Wan; Du, Deyang; Han, Di; Qiu, Teng; Chu, Paul K.

    2015-01-01

    The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications. PMID:26497411

  15. Cognitive Inference Device for Activity Supervision in the Elderly

    PubMed Central

    2014-01-01

    Human activity, life span, and quality of life are enhanced by innovations in science and technology. Aging individual needs to take advantage of these developments to lead a self-regulated life. However, maintaining a self-regulated life at old age involves a high degree of risk, and the elderly often fail at this goal. Thus, the objective of our study is to investigate the feasibility of implementing a cognitive inference device (CI-device) for effective activity supervision in the elderly. To frame the CI-device, we propose a device design framework along with an inference algorithm and implement the designs through an artificial neural model with different configurations, mapping the CI-device's functions to minimise the device's prediction error. An analysis and discussion are then provided to validate the feasibility of CI-device implementation for activity supervision in the elderly. PMID:25405211

  16. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage

    NASA Astrophysics Data System (ADS)

    Hu, Hai; Zhai, Feng; Hu, Debo; Li, Zhenjun; Bai, Bing; Yang, Xiaoxia; Dai, Qing

    2015-11-01

    The electrostatic tunability of graphene is vital in the field of active plasmons and would be beneficial in tunable infrared and terahertz optical element applications. The key to realizing broad tunability is achieving high carrier densities in graphene. Here we use an ion-gel, currently one of the most efficient dielectrics with ultra-high capacitance, to realize broadly tunable graphene plasmons (~1270 cm-1) with low voltage modulation (~4 V shifted from the Dirac point). We further explore the coupling between graphene plasmons and the molecular vibration modes of the ion-gel, since strong plasmon-phonon coupling can split the plasmon resonance peak into multi-peaks and reduce their tunability. Our experiments demonstrate weak plasmon-phonon coupling in the graphene/ion-gel system, which has limited effects on plasmon properties. These properties make ion-gels an effective dielectric for broadly tunable graphene plasmonic devices, such as new optical modulators, filters and wavelength multiplexers.The electrostatic tunability of graphene is vital in the field of active plasmons and would be beneficial in tunable infrared and terahertz optical element applications. The key to realizing broad tunability is achieving high carrier densities in graphene. Here we use an ion-gel, currently one of the most efficient dielectrics with ultra-high capacitance, to realize broadly tunable graphene plasmons (~1270 cm-1) with low voltage modulation (~4 V shifted from the Dirac point). We further explore the coupling between graphene plasmons and the molecular vibration modes of the ion-gel, since strong plasmon-phonon coupling can split the plasmon resonance peak into multi-peaks and reduce their tunability. Our experiments demonstrate weak plasmon-phonon coupling in the graphene/ion-gel system, which has limited effects on plasmon properties. These properties make ion-gels an effective dielectric for broadly tunable graphene plasmonic devices, such as new optical modulators

  17. Electrical Control of Optical Plasmon Resonance with Graphene

    DTIC Science & Technology

    2012-10-01

    at optical frequencies.10 Here we achieve efficient control of near- infrared plasmon resonance in a hybrid graphene-gold nanorod system. Exploiting...quality factor of gold nanorod plasmon. Our analysis shows that the plasmon− graphene coupling is remarkably strong: even a single electron in...events. KEYWORDS: Graphene, plasmon resonance, metamaterials, active plasmonics, gold nanorod , charge transfer sensor Surface plasmon resonance in

  18. Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor.

    PubMed

    Shoji, Atsushi; Kabeya, Mitsutaka; Sugawara, Masao

    2011-12-01

    We describe a simple method for real-time monitoring of matrix metalloproteinase-9 (MMP-9) collagenolytic activity for native triple helical collagen IV with a surface plasmon resonance (SPR) biosensor. The proteolytic activity of MMP-9 is measured as a decrease in the SPR signal resulting from the cleavage of collagen IV immobilized on the sensor surface. The kinetic parameters of full-length MMP-9 and its catalytic domain-catalytic constant (k(cat)), association rate constant (k(a)), and dissociation rate constant (k(d))-were estimated by the SPR method. The presence of sodium chloride and a nonionic detergent Brij-35 in a reaction solution led to the lower collagenolytic activity of MMP-9, whereas they suppressed the nonspecific interaction between MMP-9 and a cysteamine-modified chip. The comparison of kinetic parameters between MMP-9 and its catalytic domain revealed that the association constant of MMP-9 is much larger than that of the catalytic domain, suggesting that the interplay among hemopexin-like domain, fibronectin type II repeats motif, and linker region (O-glycosylated domain) plays an important role in recognizing collagen IV.

  19. Bayesian Estimation of the Active Concentration and Affinity Constants Using Surface Plasmon Resonance Technology.

    PubMed

    Feng, Feng; Kepler, Thomas B

    2015-01-01

    Surface plasmon resonance (SPR) has previously been employed to measure the active concentration of analyte in addition to the kinetic rate constants in molecular binding reactions. Those approaches, however, have a few restrictions. In this work, a Bayesian approach is developed to determine both active concentration and affinity constants using SPR technology. With the appropriate prior probabilities on the parameters and a derived likelihood function, a Markov Chain Monte Carlo (MCMC) algorithm is applied to compute the posterior probability densities of both the active concentration and kinetic rate constants based on the collected SPR data. Compared with previous approaches, ours exploits information from the duration of the process in its entirety, including both association and dissociation phases, under partial mass transport conditions; do not depend on calibration data; multiple injections of analyte at varying flow rates are not necessary. Finally the method is validated by analyzing both simulated and experimental datasets. A software package implementing our approach is developed with a user-friendly interface and made freely available.

  20. Wavefront Engineering of Quantum Cascade Lasers Using Plasmonics

    NASA Astrophysics Data System (ADS)

    Yu, Nanfang; Capasso, Federico

    2012-12-01

    We review recent work on beam shaping of mid-infrared and far-infrared (terahertz) quantum cascade lasers using plasmonics. Essentials of quantum cascade lasers (QCLs) are discussed; these include the operating principle based on bandstructure engineering, and beam quality problems associated with laser waveguide design. We explain how metal and semiconductor microstructures can effectively tailor the dispersion properties of mid- and far-infrared surface plasmon polaritons, and therefore can be used as important building blocks for optical devices in these frequencies. The physical principles of three structures are discussed: plasmonic Bragg gratings, designer (spoof) surface plasmon polariton structures, and channel polariton structures. We demonstrate the effectiveness of these structures by realizing various functionalities in QCLs, ranging from beam collimation, polarization control, to multibeam emission, and spatial wavelength demultiplexing. Plasmonics offers a monolithic, compact, and low-loss solution to the problem of poor beam quality of QCLs and may have a large impact on applications such as sensing, light detection and ranging (LIDAR), free-space optical communication, and heterodyne detection of chemicals. The plasmonic designs are scalable and applicable to near-infrared active or passive optical devices.

  1. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

    PubMed

    Song, Jibin; Huang, Peng; Duan, Hongwei; Chen, Xiaoyuan

    2015-09-15

    Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous

  2. EDITORIAL: Focus on Plasmonics FOCUS ON PLASMONICS

    NASA Astrophysics Data System (ADS)

    Bozhevolnyi, Sergey; García-Vidal, Francisco

    2008-10-01

    Plasmonics is an emerging field in optics dealing with the so-called surface plasmons whose extraordinary properties are being both analyzed from a fundamental point of view and exploited for numerous technological applications. Surface plasmons associated with surface electron density oscillations decorating metal-dielectric interfaces were discovered by Rufus Ritchie in the 1950s. Since the seventies, the subwavelength confinement of electromagnetic fields as well as their enhancement inherent to the surface plasmon excitation has been widely used for spectroscopic purposes. Recent advances in nano-fabrication, characterization and modelling techniques have allowed unique properties of these surface electromagnetic modes to be explored with respect to subwavelength field localization and waveguiding, opening the path to truly nanoscale plasmonic optical devices. This area of investigation also has interesting links with research on photonic band gap materials and the field of optical metamaterials. Nowadays, plasmonics can be seen as a mature interdisciplinary area of research in which scientists coming from different backgrounds (chemistry, physics, optics and engineering) strive to discover and exploit new and exciting phenomena associated with surface plasmons. The already made and forthcoming discoveries will have impacts in many fields of science and technology, including not only photonics and materials science but also computation, biology and medicine, among others. This focus issue of New Journal of Physics is intended to cover all the aforementioned capabilities of surface plasmons by presenting a current overview of state-of-the-art advances achieved by the leading groups in this field of research. The below list of articles represents the first contributions to the collection and further additions will appear soon. Focus on Plasmonics Contents Nanoantenna array-induced fluorescence enhancement and reduced lifetimes Reuben M Bakker, Vladimir P Drachev

  3. Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells.

    PubMed

    Liu, Xinfeng; Wu, Bo; Zhang, Qing; Yip, Jing Ngei; Yu, Guannan; Xiong, Qihua; Mathews, Nripan; Sum, Tze Chien

    2014-10-28

    The origins of performance enhancement in hybrid plasmonic organic photovoltaic devices are often embroiled in a complex interaction of light scattering, localized surface plasmon resonances, exciton-plasmon energy transfer and even nonplasmonic effects. To clearly deconvolve the plasmonic contributions from a single nanostructure, we herein investigate the influence of a single silver nanowire (NW) on the charge carriers in bulk heterojunction polymer solar cells using spatially resolved optical spectroscopy, and correlate to electrical device characterization. Polarization-dependent photocurrent enhancements with a maximum of ∼ 36% over the reference are observed when the transverse mode of the plasmonic excitations in the Ag NW is activated. The ensuing higher absorbance and light scattering induced by the electronic motion perpendicular to the NW long axis lead to increased exciton and polaron densities instead of direct surface plasmon-exciton energy transfer. Finite-difference time-domain simulations also validate these findings. Importantly, our study at the single nanostructure level explores the fundamental limits of plasmonic enhancement achievable in organic solar cells with a single plasmonic nanostructure.

  4. Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles.

    PubMed

    Ding, Si-Jing; Nan, Fan; Liu, Xiao-Li; Hao, Zhong-Hua; Zhou, Li; Zeng, Jie; Xu, Hong-Xing; Zhang, Wei; Wang, Qu-Quan

    2017-03-07

    Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.

  5. Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ding, Si-Jing; Nan, Fan; Liu, Xiao-Li; Hao, Zhong-Hua; Zhou, Li; Zeng, Jie; Xu, Hong-Xing; Zhang, Wei; Wang, Qu-Quan

    2017-03-01

    Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer.

  6. Plasmon-Modulated Excitation-Dependent Fluorescence from Activated CTAB Molecules Strongly Coupled to Gold Nanoparticles

    PubMed Central

    Ding, Si-Jing; Nan, Fan; Liu, Xiao-Li; Hao, Zhong-Hua; Zhou, Li; Zeng, Jie; Xu, Hong-Xing; Zhang, Wei; Wang, Qu-Quan

    2017-01-01

    Excitation-dependent fluorophores (EDFs) have been attracted increasing attention owing to their high tunability of emissions and prospective applications ranging from multicolor patterning to bio-imaging. Here, we report tunable fluorescence with quenching dip induced by strong coupling of exciton and plasmon in the hybrid nanostructure of CTAB* EDFs and gold nanoparticles (AuNPs). The quenching dip in the fluorescence spectrum is tuned by adjusting excitation wavelength as well as plasmon resonance and concentration of AuNPs. The observed excitation-dependent emission spectra with quenching dip are theoretically reproduced and revealed to be induced by resonant energy transfer from multilevel EDFs with wider width channels to plasmonic AuNPs. These findings provide a new approach to prepare EDF molecules and a strategy to modulate fluorescence spectrum via exciton-to-plasmon energy transfer. PMID:28266619

  7. Hot electron pump: a plasmonic rectifying antenna (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yanik, Ahmet A.; Hossain, Golam I.

    2015-09-01

    Plasmonic nanostructures have been widely explored to improve absorption efficiency of conventional solar cells, either by employing them as a light scatterer, or as a source of local field enhancement. Unavoidable ohmic loss associated with the plasmonic metal nanostructures in visible spectrum, limits the efficiency improvement of photovoltaic devices by employing this local photon density of states (LDOS) engineering approach. Instead of using plasmonic structures as efficiency improving layer, recently, there has been a growing interest in exploring plasmoinc nanoparticle as the active medium for photovoltaic device. By extracting hot electrons that are created in metallic nanoparticles in a non-radiative Landau decay of surface plasmons, many novel plasmonic photovoltaic devices have been proposed. Moreover, these hot electrons in metal nanoparticles promises high efficiency with a spectral response that is not limited by the band gap of the semiconductors (active material of conventional solar cell). In this work, we will show a novel photovoltaic configuration of plasmonic nanoparticle that acts as an antenna by capturing free space ultrahigh frequency electromagnetic wave and rectify them through an ultrafast hot electron pump and eventually inject DC current in the contact of the device. We will introduce a bottom-up quantum mechanical approach model to explain fundamental physical processes involved in this hot electron pump rectifying antenna and it's ultrafast dynamics. Our model is based on non-equilibrium Green's function formalism, a robust theoretical framework to investigate transport and design nanoscale electronic devices. We will demonstrate some fundamental limitations that go the very foundations of quantum mechanics.

  8. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices.

    PubMed

    Gogurla, Narendar; Sinha, Arun Kumar; Santra, Sumita; Manna, Santanu; Ray, Samit Kumar

    2014-09-26

    In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm.

  9. Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices

    PubMed Central

    Gogurla, Narendar; Sinha, Arun Kumar; Santra, Sumita; Manna, Santanu; Ray, Samit Kumar

    2014-01-01

    In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm. PMID:25255700

  10. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  11. Double-shelled plasmonic Ag-TiO{sub 2} hollow spheres toward visible light-active photocatalytic conversion of CO{sub 2} into solar fuel

    SciTech Connect

    Feng, Shichao; Wang, Meng; Li, Ping; Tu, Wenguang; Zhou, Yong; Zou, Zhigang

    2015-10-01

    Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO{sub 2} nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO{sub 2} nanoparticle shell. The plasmonic Ag-TiO{sub 2} hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO{sub 2} into renewable hydrocarbon fuel (CH{sub 4}) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

  12. Double-shelled plasmonic Ag-TiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel

    NASA Astrophysics Data System (ADS)

    Feng, Shichao; Wang, Meng; Zhou, Yong; Li, Ping; Tu, Wenguang; Zou, Zhigang

    2015-10-01

    Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO2 nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO2 nanoparticle shell. The plasmonic Ag-TiO2 hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO2 into renewable hydrocarbon fuel (CH4) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

  13. Engineering Localized Surface Plasmon Interactions in Gold by Silicon Nanowire for Enhanced Heating and Photocatalysis.

    PubMed

    Agarwal, Daksh; Aspetti, Carlos O; Cargnello, Matteo; Ren, MingLiang; Yoo, Jinkyoung; Murray, Christopher B; Agarwal, Ritesh

    2017-03-08

    The field of plasmonics has attracted considerable attention in recent years because of potential applications in various fields such as nanophotonics, photovoltaics, energy conversion, catalysis, and therapeutics. It is becoming increasing clear that intrinsic high losses associated with plasmons can be utilized to create new device concepts to harvest the generated heat. It is therefore important to design cavities, which can harvest optical excitations efficiently to generate heat. We report a highly engineered nanowire cavity, which utilizes a high dielectric silicon core with a thin plasmonic film (Au) to create an effective metallic cavity to strongly confine light, which when coupled with localized surface plasmons in the nanoparticles of the thin metal film produces exceptionally high temperatures upon laser irradiation. Raman spectroscopy of the silicon core enables precise measurements of the cavity temperature, which can reach values as high as 1000 K. The same Si-Au cavity with enhanced plasmonic activity when coupled with TiO2 nanorods increases the hydrogen production rate by ∼40% compared to similar Au-TiO2 system without Si core, in ethanol photoreforming reactions. These highly engineered thermoplasmonic devices, which integrate three different cavity concepts (high refractive index core, metallo-dielectric cavity, and localized surface plasmons) along with the ease of fabrication demonstrate a possible pathway for designing optimized plasmonic devices with applications in energy conversion and catalysis.

  14. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  15. Antimicrobial activity of antiseptic-coated orthopaedic devices.

    PubMed

    Darouiche, R O; Green, G; Mansouri, M D

    1998-04-01

    Antimicrobial coating of medical devices, including fracture fixation devices, has evolved as a potentially effective method for preventing device-related infections. We examined the in vitro antimicrobial activity of titanium cylinders coated with the antiseptic combination of chlorhexidine and chloroxylenol. The coated devices provided zones of inhibition against Staphylococcus epidermidis, S. aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, at baseline and up to 8 weeks after incubation of the coated cylinders in human serum at 37 degrees C. This durable antimicrobial activity was attributed to the relatively slow leaching of chlorhexidine and chloroxylenol from the coated cylinders as measured by high-performance liquid chromatography. These results suggest that antiseptic-coated orthopaedic devices may provide broad-spectrum and durable antimicrobial protection against device-related infection.

  16. Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.

    PubMed

    Koch, R J; Fryska, S; Ostler, M; Endlich, M; Speck, F; Hänsel, T; Schaefer, J A; Seyller, Th

    2016-03-11

    Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well.

  17. MMIC devices for active phased array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1985-01-01

    Considerable progress has been made in the calculation and measurement of the scattering parameters of printed circuit discontinuities. These discontinuities occur in a variety of structures, such as transitions between rectangular waveguide and printed circuits, junctions between circuits of different dielectric constants, and filters and impedance matching circuits. Because of the variety of devices in which these discontinuities occur, it is very useful to understand them in as great a detail as possible. Both theoretical and experimental studies of discontinuities were considered. The theoretical studies have focused on finding ways to predict the scattering from discontinuities. The experimental studies have concentrated on developing measurement techniques for determining the scattering parameters of these discontinuities.

  18. Open active cloaking and illusion devices for the Laplace equation

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Yang, Fan; Jin, Tian Yu; Lei Mei, Zhong; Cui, Tie Jun

    2016-04-01

    We propose open active cloaking and illusion devices for the Laplace equation. Compared with the closed configurations of active cloaking and illusion devices, we focus on improving the distribution schemes for the controlled sources, which do not have to surround the protected object strictly. Instead, the controlled sources can be placed in several small discrete clusters, and produce the desired voltages along the controlled boundary, to actively hide or disguise the protected object. Numerical simulations are performed with satisfactory results, which are further validated by experimental measurements. The open cloaking and illusion devices have many advantages over the closed configurations in various potential applications.

  19. Low latency, area, and energy efficient Hybrid Photonic Plasmonic on-chip Interconnects (HyPPI)

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Badaway, Abdel-Hameed A.; Narayana, Vikram; El-Ghazawi, Tarek; Sorger, Volker J.

    2016-03-01

    In this paper we benchmark various interconnect technologies including electrical, photonic, and plasmonic options. We contrast them with hybridizations where we consider plasmonics for active manipulation devices, and photonics for passive propagation integrated circuit elements, and further propose another novel hybrid link that utilizes an on chip laser for intrinsic modulation thus bypassing electro-optic modulation. Link benchmarking proves that hybridization can overcome the shortcomings of both pure photonic and plasmonic links. We show superiority in a variety of performance parameters such as point-to-point latency, energy efficiency, capacity, ability to support wavelength division multiplexing, crosstalk coupling length, bit flow density and Capability-to-Latency-Energy-Area Ratio.

  20. Plasmonic Periodic Nanodot Arrays via Laser Interference Lithography for Organic Photovoltaic Cells with >10% Efficiency.

    PubMed

    Oh, Yulin; Lim, Ju Won; Kim, Jae Geun; Wang, Huan; Kang, Byung-Hyun; Park, Young Wook; Kim, Heejun; Jang, Yu Jin; Kim, Jihyeon; Kim, Dong Ha; Ju, Byeong-Kwon

    2016-11-22

    In this study, we demonstrate a viable and promising optical engineering technique enabling the development of high-performance plasmonic organic photovoltaic devices. Laser interference lithography was explored to fabricate metal nanodot (MND) arrays with elaborately controlled dot size as well as periodicity, allowing spectral overlap between the absorption range of the active layers and the surface plasmon band of MND arrays. MND arrays with ∼91 nm dot size and ∼202 nm periodicity embedded in a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer remarkably enhanced the average power conversion efficiency (PCE) from 7.52% up to 10.11%, representing one of the highest PCE and degree of enhancement (∼34.4%) levels compared to the pristine device among plasmonic organic photovoltaics reported to date. The plasmonic enhancement mechanism was investigated by both optical and electrical analyses using finite difference time domain simulation and conductive atomic force microscopy studies.

  1. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  2. Nanobump assembly for plasmonic organic solar cells

    NASA Astrophysics Data System (ADS)

    Song, Hyung-Jun; Jung, Kinam; Lee, Gunhee; Ko, Youngjun; Lee, Jong-Kwon; Choi, Mansoo; Lee, Changhee

    2014-10-01

    We demonstrate novel plasmonic organic solar cells (OSCs) by embedding an easy processible nanobump assembly (NBA) for harnessing more light. The NBA is consisted of precisely size-controlled Ag nanoparticles (NPs) generated by an aerosol process at atmospheric pressure and thermally deposited molybdenum oxide (MoO3) layer which follows the underlying nano structure of NPs. The active layer, spin-casted polymer blend solution, has an undulated structure conformably covering the NBA structure. To find the optimal condition of the NBA structure for enhancing light harvest as well as carrier transfer, we systematically investigate the effect of the size of Ag NPs and the MoO3 coverage on the device performance. It is observed that the photocurrent of device increases as the size of Ag NP increases owing to enhanced plasmonic and scattering effect. In addition, the increased light absorption is effectively transferred to the photocurrent with small carrier losses, when the Ag NPs are fully covered by the MoO3 layer. As a result, the NBA structure consisted of 40 nm Ag NPs enclosed by 20 nm MoO3 layer leads to 18% improvement in the power conversion efficiency compared to the device without the NBA structure. Therefore, the NBA plasmonic structure provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of organic solar cells.

  3. Standing wave plasmon modes interact in an antenna-coupled nanowire

    NASA Astrophysics Data System (ADS)

    Day, Jared; Large, Nicolas; Nordlander, Peter; Halas, Naomi

    2015-03-01

    In a standing wave optical cavity, the coupling of cavity modes, e.g. through a nonlinear medium, results in a rich variety of nonlinear dynamical phenomena, such as frequency pushing and pulling, mode-locking and pulsing, and modal instabilities. Metallic nanowires of finite length support a hierarchy of longitudinal surface plasmon modes with standing wave properties: the plasmonic analog of a Fabry-Pérot cavity. Here we show that positioning the nanowire within the gap of a plasmonic nanoantenna introduces a passive, hybridization-based coupling of the standing-wave nanowire plasmon modes with the antenna structure, mediating an interaction between the nanowire plasmon modes themselves. Frequency pushing and pulling, and the enhancement and suppression of specific plasmon modes, can be controlled and manipulated by nanoantenna position and shape. Dark-field spectroscopy, CL spectroscopy and imaging, and finite-difference time-domain calculations are performed to investigate these surface plasmon ``drift.'' Near-field coupling of nanoantennas to nanowire optical cavities shows that plasmon hybridization is a powerful strategy for controlling the radiative LDOS of nanowires, and could ultimately enable strategies for active control of emission properties in nanowire-based devices. Work funded by the Welch Foundation (C-1220, C-1222), the NSSEFF (N00244-09-1-0067), the ONR (N00014-10-1-0989), and the NSF (ECCS-1040478, CNS-0821727).

  4. Controlling optical absorption in metamaterial absorbers for plasmonic solar cells

    NASA Astrophysics Data System (ADS)

    Adams, Wyatt; Vora, Ankit; Gwamuri, Jephias; Pearce, Joshua M.; Güney, Durdu Ö.

    2015-08-01

    Metals in the plasmonic metamaterial absorbers for photovoltaics constitute undesired resistive heating. However, tailoring the geometric skin depth of metals can minimize resistive losses while maximizing the optical absorbance in the active semiconductors of the photovoltaic device. Considering experimental permittivity data for InxGa1-xN, absorbance in the semiconductor layers of the photovoltaic device can reach above 90%. The results here also provides guidance to compare the performance of different semiconductor materials. This skin depth engineering approach can also be applied to other optoelectronic devices, where optimizing the device performance demands minimizing resistive losses and power consumption, such as photodetectors, laser diodes, and light emitting diodes.

  5. Development of novel active transport membrande devices

    SciTech Connect

    Laciak, D.V.

    1994-11-01

    Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

  6. Geometric investigation of a gaming active device

    NASA Astrophysics Data System (ADS)

    Menna, Fabio; Remondino, Fabio; Battisti, Roberto; Nocerino, Erica

    2011-07-01

    3D imaging systems are widely available and used for surveying, modeling and entertainment applications, but clear statements regarding their characteristics, performances and limitations are still missing. The VDI/VDE and the ASTME57 committees are trying to set some standards but the commercial market is not reacting properly. Since many new users are approaching these 3D recording methodologies, clear statements and information clarifying if a package or system satisfies certain requirements before investing are fundamental for those users who are not really familiar with these technologies. Recently small and portable consumer-grade active sensors came on the market, like TOF rangeimaging cameras or low-cost triangulation-based range sensor. A quite interesting active system was produced by PrimeSense and launched on the market thanks to the Microsoft Xbox project with the name of Kinect. The article reports the geometric investigation of the Kinect active sensors, considering its measurement performances, the accuracy of the retrieved range data and the possibility to use it for 3D modeling application.

  7. Flexible transformation plasmonics using graphene.

    PubMed

    Lu, Wei Bing; Zhu, Wei; Xu, Hong Ju; Ni, Zhen Hua; Dong, Zheng Gao; Cui, Tie Jun

    2013-05-06

    The flexible control of surface plasmon polaritons (SPPs) is important and intriguing due to its wide application in novel plasmonic devices. Transformation optics (TO) offers the capability either to confine the SPP propagation on rigid curved/uneven surfaces, or to control the flow of SPPs on planar surfaces. However, TO has not permitted us to confine, manipulate, and control SPP waves on flexible curved surfaces. Here, we propose to confine and freely control flexible SPPs using TO and graphene. We show that SPP waves can be naturally confined and propagate on curved or uneven graphene surfaces with little bending and radiation losses, and the confined SPPs are further manipulated and controlled using TO. Flexible plasmonic devices are presented, including the bending waveguides, wave splitter, and Luneburg lens on curved surfaces. Together with the intrinsic flexibility, graphene can be served as a good platform for flexible transformation plasmonics.

  8. Organic photosensitive devices

    DOEpatents

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  9. Molecular plasmonics for biology and nanomedicine.

    PubMed

    Zheng, Yue Bing; Kiraly, Brian; Weiss, Paul S; Huang, Tony Jun

    2012-05-01

    The optical excitation of surface plasmons in metal nanoparticles leads to nanoscale spatial confinement of electromagnetic fields. The confined electromagnetic fields can generate intense, localized thermal energy and large near-field optical forces. The interaction between these effects and nearby molecules has led to the emerging field known as molecular plasmonics. Recent advances in molecular plasmonics have enabled novel optical materials and devices with applications in biology and nanomedicine. In this article, we categorize three main types of interactions between molecules and surface plasmons: optical, thermal and mechanical. Within the scope of each type of interaction, we will review applications of molecular plasmonics in biology and nanomedicine. We include a wide range of applications that involve sensing, spectral analysis, imaging, delivery, manipulation and heating of molecules, biomolecules or cells using plasmonic effects. We also briefly describe the physical principles of molecular plasmonics and progress in the nanofabrication, surface functionalization and bioconjugation of metal nanoparticles.

  10. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    SciTech Connect

    Azad, Abul Kalam; Chen, Hou - Tong; Taylor, Antoinette; O' Hara, John

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  11. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    NASA Astrophysics Data System (ADS)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  12. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces

    NASA Astrophysics Data System (ADS)

    Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis

    2015-06-01

    Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.

  13. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces

    PubMed Central

    Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis

    2015-01-01

    Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375

  14. Thermal phenomena in quantum plasmonics (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sarychev, Andrey K.; Tartakovsky, Gennady; Vergeles, Sergey; Parfenyev, Vladimir

    2015-09-01

    Plasmon nanolasers, also known as SPASERs, were suggested by Bergman and Stockman in 2003. Quantum plasmonics attract much attention in recent years due to the numerous potential applications in the plasmonics. We consider thermal effects in the metal nanoresonator immersed in the active, laser medium. The size of the resonator is much less than the wavelength. The plasmon field inside the nanoresonator operates as a quantum object. Due to the nanosize of the resonator, the internal plasmon electric field is about the atomic field even for few plasmon quants. The coupling between the plasmon field and plasmon resonator is anomalous strong. We develop the quantum dynamics of the plasmon field and show that the SPASER may be the subject of thermal instability. The loss in SPASER increases with increasing the temperature when the average number of the plasmons is maintained at the stationary level. Therefore, the heat generation increases with increasing the temperature. This positive feedback results in the thermal instability. When the energy, accumulated in the plasmon nanoresonator, exceeds the instability threshold the temperature increases exponentially. We find the increment of the temperature growth and lifetime as function of the loss in metal and the structure of the plasmon resonator. We consider how the thermal instability influences the luminescence and find how the lasing threshold is changed. The coherence of the light emitted by the plasmon laser is also considered. The thermal stability of the nanolaser is crucial for any practical application.

  15. Active multiple plasmon-induced transparencies with detuned asymmetric multi-rectangle resonators

    NASA Astrophysics Data System (ADS)

    Liu, Dongdong; Wang, Jicheng; Lu, Jian

    2016-11-01

    The phenomenon of plasmon-induced transparency (PIT) is realized in surface plasmon polariton waveguide at the visible and near-infrared ranges. By adding one and two resonant cavities, the PIT peak(s) was (were) achieved due to destructive interference between the side-coupled rectangle cavity and the bus waveguide. The proposed structures were demonstrated by the finite element method. The simulation results showed that for three rectangle resonators system, not only can we manipulate each single PIT window, but also the double PIT windows simultaneously by adjusting one of the geometrical parameters of the system; for four rectangle resonators system, by changing the widths, the lengths and the refractive index of three cavities simultaneously, we would realize treble PIT peaks and induce an off-to-on PIT optical response. Our novel plasmonic structures and the findings pave the way for new design and engineering of highly integrated optical circuit such as nanoscale optical switching, nanosensor and wavelength-selecting nanostructure.

  16. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  17. Improved Monodispersity of Plasmonic Nanoantennas via Centrifugal Processing

    SciTech Connect

    Tyler, Timothy P.; Henry, A.I.; Van Duyne, Richard P.; Hersam, Mark C.

    2011-02-03

    Noble metal nanoparticle clusters underlie a variety of plasmonic devices and measurements including surface-enhanced Raman spectroscopy (SERS). Because of the strong dependence of plasmonic properties on nanoparticle cluster aggregation state, the elimination of non-SERS-active structures and the refinement of the nanoparticle cluster population are critical to realizing uniform and reproducible structures for plasmonic nanoantenna applications such as SERS-based sensors. In this Letter, we report a centrifugal sorting technique for gold core/silica shell nanoparticles that host SERS reporter molecules at the gold/silica interface. The relatively massive nanoparticle clusters are sorted by sedimentation coefficient via centrifugation in a high-viscosity density gradient medium, iodixanol, which yields solutions that contain a preponderance of one aggregation state and a diminished monomer population, as determined by transmission electron microscopy, extinction spectroscopy, and SERS. A quantitative analysis of the nanoparticle sedimentation coefficients is presented, thus allowing this approach to be predictably generalized to other nanoparticle systems.

  18. Optical design of organic solar cell with hybrid plasmonic system

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Choy, Wallace C. H.; Chen, Yongpin P.; Chew, Weng Cho

    2011-08-01

    We propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell's equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics.

  19. Optical design of organic solar cell with hybrid plasmonic system.

    PubMed

    Sha, Wei E I; Choy, Wallace C H; Chen, Yongpin P; Chew, Weng Cho

    2011-08-15

    We propose a novel optical design of organic solar cell with a hybrid plasmonic system, which comprises a plasmonic cavity coupled with a dielectric core-metal shell nanosphere. From a rigorous solution of Maxwell's equations, called volume integral equation method, optical absorption of the active polymer material has a four-fold increase. The significant enhancement mainly attributes to the coupling of symmetric surface wave modes supported by the cavity resonator. The dispersion relation of the plasmonic cavity is characterized by solving an 1D eigenvalue problem of the air/metal/polymer/metal/air structure with finite thicknesses of metal layers. We demonstrate that the optical enhancement strongly depends on the decay length of surface plasmon waves penetrated into the active material. Furthermore, the coherent interplay between the cavity and the dielectric core-metal shell nanosphere is undoubtedly confirmed by our theoretical model. The work offers detailed physical explanations to the hybrid plasmonic cavity device structure for enhancing the optical absorption of organic photovoltaics.

  20. Active MMI devices: concept, proof, and recent progress

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kiichi; Jiang, Haisong

    2015-09-01

    Multi-mode interference (MMI) couplers (waveguides) are widely studied and developed as key components of photonic integrated circuits, including power coupler/dividers, and others. Furthermore, another possibility utilizing MMI has been investigated on active devices so far. Owing to the wider area of the multi-mode waveguide section compared with that of the regular single-mode waveguide, MMI may result in higher performance (high power, low power consumption, and others) rather than conventional active devices while maintaining regular single-mode output. Thus, active multi-mode interferometer (active-MMI) devices, including laser diodes (LDs), super-luminescent light emitting diodes (SLEDs), and semiconductor optical amplifiers (SOAs) have been studied. Moreover, they have been also exploited to bi-stable LDs and single wavelength emitters, and others using the interference inside the MMI section. In this paper, we review and summarize the recent progress in active MMI devices. We provide proof of MMI phenomena in active waveguides and discuss the results.

  1. Synergistic concurrent enhancement of charge generation, dissociation, and transport in organic solar cells with plasmonic metal-carbon nanotube hybrids.

    PubMed

    Lee, Ju Min; Lim, Joonwon; Lee, Nayeun; Park, Hyung Il; Lee, Kyung Eun; Jeon, Taewoo; Nam, Soo Ah; Kim, Jehan; Shin, Jonghwa; Kim, Sang Ouk

    2015-03-04

    Plasmonic nanostructures are synthesized by decorating B- or N-doped carbon nanotubes (CNTs) with Au nanoparticles. While the plasmonic nanoparticles promote exciton generation and dissociation, the B- and N-doped CNTs enable charge-selective transport enhancement in the organic active layer. Such concurrent enhancements of all the principal energy-harvesting steps improve the device efficiency up to 9.98% for organic single-junction solar cells.

  2. Plasmonic Encoding

    DTIC Science & Technology

    2014-10-06

    AFRL-OSR-VA-TR-2014-0291 PLASMONIC ENCODING Chad Mirkin NORTHWESTERN UNIVERSITY Final Report 10/06/2014 DISTRIBUTION A: Distribution approved for...2014 4.  TITLE AND SUBTITLE PLASMONIC ENCODING 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-09-1-0294 5c.  PROGRAM ELEMENT NUMBER 6.  AUTHOR(S) Chad...called Nanoflares. 15.  SUBJECT TERMS plasmonic , encoding 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT UU 18.  NUMBER        OF

  3. Understanding complex chiral plasmonics.

    PubMed

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-11-07

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.

  4. Ultrafast nonlinear plasmonic response of a single metal nano-object (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vallee, Fabrice; Del Fatti, Natalia; Crut, Aurélien; Maioli, Paolo

    2016-09-01

    The surface plasmon resonances (SPR) of metallic layers and localized SPR of metallic nano-objects have been extensively investigated during the last decade, opening the way to development of optical plasmon-based devices. As SPRs are associated to electromagnetic local field enhancement, they also lead to enhancement of the system optical nonlinearity, which can be exploited to investigate fundamental processes at nanoscale (e.g., electron and lattice kinetics), and for designing active plasmonic devices. Understanding and modelling the optical nonlinearities of plasmonic systems are thus of both fundamental and technological interests. With the advance of single nanoparticle spectroscopy methods, the nonlinear optical response of a single nano-object can now be addressed, which, associated to determination of its morphology by electron microscopy, opens the way to detailed modeling of the optical nonlinearity of metallic confined system. In this context we discuss experimental and theoretical investigations of the ultrafast response of individual model metallic nano-objects, either formed by a single particle or by two interacting particles at a nanometric distance (Fano resonance regime). The results show that their specific third-order nonlinear response can be fully associated to enhancement of the bulk metal nonlinear response by plasmonic effects. This paves the way toward quantitative modelling of ultrafast active plasmonic, and investigation of energy and charge exchanges in multi-material nano-objects by ultrafast nonlinear spectroscopy.

  5. Free-Standing Optically Switchable Chiral Plasmonic Photonic Crystal Based on Self-Assembled Cellulose Nanorods and Gold Nanoparticles.

    PubMed

    Chu, Guang; Wang, Xuesi; Yin, Hang; Shi, Ying; Jiang, Haijing; Chen, Tianrui; Gao, Jianxiong; Qu, Dan; Xu, Yan; Ding, Dajun

    2015-10-07

    Photonic crystals incorporating with plasmonic nanoparticles have recently attracted considerable attention due to their novel optical properties and potential applications in future subwavelength optics, biosensing and data storage device. Here we demonstrate a free-standing chiral plasmonic film composed of entropy-driven self-co-assembly of gold nanoparticles (GNPs) and rod-like cellulose nanocrystals (CNCs). The CNCs-GNPs composite films not only preserve the photonic ordering of the CNCs matrix but also retain the plasmonic resonance of GNPs, leading to a distinct plasmon-induced chiroptical activity and a strong resonant plasmonic-photonic coupling that is confirmed by the stationary and ultrafast transient optical response. Switchable optical activity can be obtained by either varying the incidence angle of lights, or by taking advantage of the responsive feature of the CNCs matrix. Notably, an angle-dependent plasmon resonance in chiral nematic hybrid film has been observed for the first time, which differs drastically from that of the GNPs embed in three-dimensional photonic crystals, revealing a close relation with the structure of the host matrix. The current approach for fabricating device-scale, macroscopic chiral plasmonic materials from abundant CNCs with robust chiral nematic matrix may enable the mass production of functional optical metamaterials.

  6. Tailoring terahertz plasmons with silver nanorod arrays

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Song, Chunyuan; Lanier, Thomas E.; Singh, Ranjan; O'Hara, John F.; Dennis, William M.; Zhao, Yiping; Zhang, Weili

    2013-05-01

    Plasmonic materials that strongly interact with light are ideal candidates for designing subwavelength photonic devices. We report on direct coupling of terahertz waves in metallic nanorods by observing the resonant transmission of surface plasmon polariton waves through lithographically patterned films of silver nanorod (100 nm in diameter) micro-hole arrays. The best enhancement in surface plasmon resonant transmission is obtained when the nanorods are perfectly aligned with the electric field direction of the linearly polarized terahertz wave. This unique polarization-dependent propagation of surface plasmons in structures fabricated from nanorod films offers promising device applications. We conclude that the anisotropy of nanoscale metallic rod arrays imparts a material anisotropy relevant at the microscale that may be utilized for the fabrication of plasmonic and metamaterial based devices for operation at terahertz frequencies.

  7. Development of Surface Plasmons/Electro Optic Devices for Active Control of Optical Characteristics

    DTIC Science & Technology

    2008-12-01

    at 800nm, the actual data [ Palik ] is fitted using the set of parameters: ,( , )=(0.06, 6.73)pω ωγ ω . The incident magnetic field was assumed to be... Palik , "Handbook of Optical Constants of Solids", Academic Press, London-New York (1985). [11] R.W. Ziolkowski, "Pulsed and CW Gaussian beam

  8. Effect of Interface energy and electron transfer on shape, plasmon resonance and SERS activity of supported surfactant-free gold nanoparticles

    SciTech Connect

    Giangregorio, Maria M.; Dastmalchi, Babak; Suvorova, Alexandra; Bianco, Giuseppe V.; Hingerl, Kurt; Bruno, Giovanni; Losurdo, Maria

    2014-01-01

    For device integration purposes plasmonic metal nanoparticles must be supported/deposited on substrates. Therefore, it is important to understand the interaction between surfactant-free plasmonic metal nanoparticles and different substrates, as well as to identify factors that drive nanoparticles nucleation and formation. Here we show that for nanoparticles grown directly on supports, the substrate/nanoparticle interfacial energy affects the equilibrium shape of nanoparticles. Therefore, oblate, spherical and prolate Au nanoparticles (NPs) with different shapes have been deposited by radiofrequency sputtering on substrates with different characteristics, namely a dielectric oxide Al2O3 (0001), a narrow bandgap semiconductor Si (100), and a polar piezoelectric wide bandgap semiconductor 4H–SiC (0001). We demonstrate that the higher the substrate surface energy, the higher the interaction with the substrate, resulting in flat prolate Au nanoparticles. The resulting localized surface plasmon resonance characteristics of Au NPs/Al2O3, Au NPs/Si and Au NPs/SiC have been determined by spectroscopic ellipsometry and correlated with their structure and shape studied by transmission electron microscopy. Finally, we have demonstrated the diverse response of the tailored plasmonic substrates as ultrasensitive SERS chemical sensors. Flat oblates Au NPs on SiC result in an enhanced and more stable SERS response. The experimental findings are validated by numerical simulations of electromagnetic fields.

  9. Plasmonics the missing link between nanoelectronics and microphotonics

    NASA Astrophysics Data System (ADS)

    Brongersma, M. L.; Zia, R.; Schuller, J. A.

    2007-11-01

    Plasmonics is an exciting new device technology that has recently emerged. It exploits the unique optical properties of metallic nanostructures to enable routing and manipulation of light at the nanoscale. A tremendous synergy can be attained by integrating plasmonic, electronic, and conventional dielectric photonic devices on the same chip and taking advantage of the strengths of each technology. We will provide a perspective on future directions and possibilities for integrating plasmonic devices on a Si chip.

  10. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  11. Aluminium plasmonics

    NASA Astrophysics Data System (ADS)

    Gérard, Davy; Gray, Stephen K.

    2015-05-01

    We present an overview of ‘aluminium plasmonics’, i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  12. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  13. Thermoelectric detection and imaging of propagating graphene plasmons

    NASA Astrophysics Data System (ADS)

    Lundeberg, Mark B.; Gao, Yuanda; Woessner, Achim; Tan, Cheng; Alonso-González, Pablo; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Hillenbrand, Rainer; Koppens, Frank H. L.

    2016-09-01

    Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems, our device converts the natural decay product of the plasmon--electronic heat--directly into a voltage through the thermoelectric effect. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.

  14. Thermoelectric detection and imaging of propagating graphene plasmons.

    PubMed

    Lundeberg, Mark B; Gao, Yuanda; Woessner, Achim; Tan, Cheng; Alonso-González, Pablo; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Hillenbrand, Rainer; Koppens, Frank H L

    2017-02-01

    Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems, our device converts the natural decay product of the plasmon-electronic heat-directly into a voltage through the thermoelectric effect. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.

  15. Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons.

    PubMed

    Bousseksou, A; Babuty, A; Tetienne, J-P; Moldovan-Doyen, I; Braive, R; Beaudoin, G; Sagnes, I; De Wilde, Y; Colombelli, R

    2012-06-18

    While freely propagating photons cannot be focused below their diffraction limit, surface-plasmon polaritons follow the metallic surface to which they are bound, and can lead to extremely sub-wavelength energy volumes. These properties are lost at long mid-infrared and THz wavelengths where metals behave as quasi-perfect conductors, but can in principle be recovered by artificially tailoring the surface-plasmon dispersion. We demonstrate - in the important mid-infrared range of the electromagnetic spectrum - the generation onto a semiconductor chip of plasmonic excitations which can travel along long distances, on bent paths, to be finally focused into a sub-wavelength volume. The demonstration of these advanced functionalities is supported by full near-field characterizations of the electromagnetic field distribution on the surface of the active plasmonic device.

  16. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates

    NASA Astrophysics Data System (ADS)

    Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur

    2013-10-01

    We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon - exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed ``transparency dips'' correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature.

  17. Plasmon-induced optical anisotropy in hybrid graphene-metal nanoparticle systems.

    PubMed

    Gilbertson, Adam M; Francescato, Yan; Roschuk, Tyler; Shautsova, Viktoryia; Chen, Yiguo; Sidiropoulos, Themistoklis P H; Hong, Minghui; Giannini, Vincenzo; Maier, Stefan A; Cohen, Lesley F; Oulton, Rupert F

    2015-05-13

    Hybrid plasmonic metal-graphene systems are emerging as a class of optical metamaterials that facilitate strong light-matter interactions and are of potential importance for hot carrier graphene-based light harvesting and active plasmonic applications. Here we use femtosecond pump-probe measurements to study the near-field interaction between graphene and plasmonic gold nanodisk resonators. By selectively probing the plasmon-induced hot carrier dynamics in samples with tailored graphene-gold interfaces, we show that plasmon-induced hot carrier generation in the graphene is dominated by direct photoexcitation with minimal contribution from charge transfer from the gold. The strong near-field interaction manifests as an unexpected and long-lived extrinsic optical anisotropy. The observations are explained by the action of highly localized plasmon-induced hot carriers in the graphene on the subresonant polarizability of the disk resonator. Because localized hot carrier generation in graphene can be exploited to drive electrical currents, plasmonic metal-graphene nanostructures present opportunities for novel hot carrier device concepts.

  18. Electrochemically Programmable Plasmonic Antennas.

    PubMed

    Dong, Shi; Zhang, Kai; Yu, Zhiping; Fan, Jonathan A

    2016-07-26

    Plasmonic antennas are building blocks in advanced nano-optical systems due to their ability to tailor optical response based on their geometry. We propose an electrochemical approach to program the optical properties of dipole antennas in a scalable, fast, and energy-efficient manner. These antennas comprise two arms, one serving as an anode and the other a cathode, separated by a solid electrolyte. As a voltage is applied between the antenna arms, a conductive filament either grows or dissolves within the electrolyte, modifying the antenna load. We probe the dynamics of stochastic filament formation and their effects on plasmonic mode programming using a combination of three-dimensional optical and electronic simulations. In particular, we identify device operation regimes in which the charge-transfer plasmon mode can be programmed to be "on" or "off." We also identify, unexpectedly, a strong correlation between DC filament resistance and charge-transfer plasmon mode frequency that is insensitive to the detailed filament morphology. We envision that the scalability of our electrochemical platform can generalize to large-area reconfigurable metamaterials and metasurfaces for on-chip and free-space applications.

  19. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis

    NASA Astrophysics Data System (ADS)

    Naldoni, Alberto; Riboni, Francesca; Guler, Urcan; Boltasseva, Alexandra; Shalaev, Vladimir M.; Kildishev, Alexander V.

    2016-06-01

    Photocatalysis uses semiconductors to convert sunlight into chemical energy. Recent reports have shown that plasmonic nanostructures can be used to extend semiconductor light absorption or to drive direct photocatalysis with visible light at their surface. In this review, we discuss the fundamental decay pathway of localized surface plasmons in the context of driving solar-powered chemical reactions. We also review different nanophotonic approaches demonstrated for increasing solar-to-hydrogen conversion in photoelectrochemical water splitting, including experimental observations of enhanced reaction selectivity for reactions occurring at the metalsemiconductor interface. The enhanced reaction selectivity is highly dependent on the morphology, electronic properties, and spatial arrangement of composite nanostructures and their elements. In addition, we report on the particular features of photocatalytic reactions evolving at plasmonic metal surfaces and discuss the possibility of manipulating the reaction selectivity through the activation of targeted molecular bonds. Finally, using solar-to-hydrogen conversion techniques as an example, we quantify the efficacy metrics achievable in plasmon-driven photoelectrochemical systems and highlight some of the new directions that could lead to the practical implementation of solar-powered plasmon-based catalytic devices.

  20. Compact magnetic antennas for directional excitation of surface plasmons.

    PubMed

    Liu, Yongmin; Palomba, Stefano; Park, Yongshik; Zentgraf, Thomas; Yin, Xiaobo; Zhang, Xiang

    2012-09-12

    Plasmonics is considered as one of the most promising candidates for implementing the next generation of ultrafast and ultracompact photonic circuits. Considerable effort has been made to scale down individual plasmonic components into the nanometer regime. However, a compact plasmonic source that can efficiently generate surface plasmon polaritons (SPPs) and deliver SPPs to the region of interest is yet to be realized. Here, bridging the optical antenna theory and the recently developed concept of metamaterials, we demonstrate a subwavelength, highly efficient plasmonic source for directional generation of SPPs. The designed device consists of two nanomagnetic resonators with detuned resonant frequencies. At the operating wavelength, incident photons can be efficiently channeled into SPP waves modulated by the electric field polarization. By tailoring the relative phase at resonance and the separation between the two nanoresonators, SPPs can be steered to predominantly propagate along one specific direction. This novel magnetic nanoantenna paves a new way to manipulate photons in the near-field, and also could be useful for SPP-based nonlinear applications, active modulations, and wireless optical communications.

  1. Subwavelength surface plasmons based on novel structures and metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Ruoxi

    With the rapid development of nanofabrication technology and powerful computational tools over the last decade, nanophotonics has enjoyed tremendous innovation and found wide applications in ultrahigh-speed data transmission, sensitive optical detection, manipulation of ultra-small objects, and visualization of nanoscale patterns. Surface plasmon-based photonics (or plasmonics) merges electronics and photonics at the nanoscale, creating the ability to combine the superior technical advantages of photonics and electronics on the same chip. Plasmonics focuses on the innovation of photonic devices by exploiting the optical property of metals. In particular, the oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of a metal surface and potentially result in extreme light confinement, which may beat the diffraction limit faced by conventional photonic devices and enable greatly enhanced light-matter interactions at the deep subwavelength scale. The objective of this dissertation is to develop subwavelength or deep subwavelength plasmonic waveguides and explore their integration on conventional dielectric platforms for multiple applications. Three novel structures (or mechanisms) are employed to develop and integrate nanoplasmonic waveguides; each consists of one part of the dissertation. The first part of this dissertation covers the design, fabrication, and demonstration of two-dimensional and three-dimensional metal-insulator-metal plasmonic couplers for mode transformation between photonic and nanoplasmonic domains on the silicon-on-insulator platform. In particular, deep subwavelength plasmonic modes under 100-nm are achieved via end-fire coupling and adiabatic mode transformation at telecom wavelengths. The second part studies metallic gratings as spoof plasmonic waveguides hosting deep subwavelength surface propagation modes. Metallic gratings under different dielectric coatings are

  2. Laser-activated shape memory polymer intravascular thrombectomy device

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV; Wilson, Thomas S.; Benett, William J.; Loge, Jeffrey M.; Maitland, Duncan J.

    2005-10-01

    A blood clot (thrombus) that becomes lodged in the arterial network supplying the brain can cause an ischemic stroke, depriving the brain of oxygen and often resulting in permanent disability. As an alternative to conventional clot-dissolving drug treatment, we are developing an intravascular laser-activated therapeutic device using shape memory polymer (SMP) to mechanically retrieve the thrombus and restore blood flow to the brain. Thermal imaging and computer simulation were used to characterize the optical and photothermal behavior of the SMP microactuator. Deployment of the SMP device in an in vitro thrombotic vascular occlusion model demonstrated the clinical treatment concept.

  3. Tunable Terahertz Hybrid Metal-Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; Sushkov, Andrei B; Myers-Ward, Rachael L; Boyd, Anthony K; Daniels, Kevin M; Gaskill, D Kurt; Fuhrer, Michael S; Drew, H Dennis; Murphy, Thomas E

    2015-10-14

    We report here a new type of plasmon resonance that occurs when graphene is connected to a metal. These new plasmon modes offer the potential to incorporate a tunable plasmonic channel into a device with electrical contacts, a critical step toward practical graphene terahertz optoelectronics. Through theory and experiments, we demonstrate, for example, anomalously high resonant absorption or transmission when subwavelength graphene-filled apertures are introduced into an otherwise conductive layer. These tunable plasmon resonances are essential yet missing ingredients needed for terahertz filters, oscillators, detectors, and modulators.

  4. Surface plasmon polariton amplification in metal-semiconductor structures.

    PubMed

    Fedyanin, Dmitry Yu; Arsenin, Aleksey V

    2011-06-20

    We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

  5. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates

    NASA Astrophysics Data System (ADS)

    Richardson, Beau J.; Zhu, Leize; Yu, Qiuming

    2017-04-01

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC’s than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  6. Design and development of plasmonic nanostructured electrodes for ITO-free organic photovoltaic cells on rigid and highly flexible substrates.

    PubMed

    Richardson, Beau J; Zhu, Leize; Yu, Qiuming

    2017-04-21

    Indium tin oxide (ITO) is the most common transparent electrode used in organic photovoltaics (OPVs), yet limited indium reserves and poor mechanical properties make it non-ideal for large-scale OPV production. To replace ITO, we designed, fabricated, and deployed plasmonic nanostructured electrodes in inverted OPV devices. We found that active layer absorption is significantly impacted by ZnO thickness which affects the optical field distribution inside the resonant cavity formed between the plasmonic nanostructured electrode and top electrode. High quality Cr/Au nanostructured electrodes were fabricated by nanoimprint lithography and deployed in ITO-free inverted devices on glass. Devices with thinner ZnO showed a PCE as high as 5.70% and higher J SC's than devices on thicker ZnO, in agreement with finite-difference time-domain simulations. In addition, as the active layer was made optically thin, ITO-based devices showed diminished J SC while the resonant cavity effect from plasmonic nanostructured electrodes retained J SC. Preliminary ITO-free, flexible devices on PET showed a PCE of 1.82% and those fabricated on ultrathin and conformable Parylene substrates yielded an initial PCE over 1%. The plasmonic electrodes and device designs in this work show promise for developing highly functioning conformable devices that can be applied to numerous needs for lightweight, ubiquitous power generation.

  7. Nonlinear Terahertz Absorption of Graphene Plasmons.

    PubMed

    Jadidi, Mohammad M; König-Otto, Jacob C; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2016-04-13

    Subwavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, subwavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a terahertz pump-terahertz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by 2 orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results. The model shows that the observed strong linearity is caused by an unexpected red shift of plasmon resonance together with a broadening and weakening of the resonance caused by the transient increase in electron temperature. The model further predicts that even greater resonant enhancement of the nonlinear response can be expected in high-mobility graphene, suggesting that nonlinear graphene plasmonic devices could be promising candidates for nonlinear optical processing.

  8. Gold nanodisk array surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Tian, Xueli

    Surface plasmon resonances in periodic metal nanostructures have been investigated for sensing applications over the last decade. The resonance wavelengths of the nanostructures are usually measured in the transmission or reflection spectrum for chemical and biological sensing. In this thesis, I introduce a nanoscale gap mediated surface plasmon resonance nanodisk array for displacement sensing and a super-period gold nanodisk grating enabled surface plasmon resonance spectrometer sensor. The super-period gold nanodisk grating has a small subwavelength period and a large diffraction grating period. Surface plasmon resonance spectra are measured in the first order diffraction spatial profiles captured by a charge-coupled device (CCD). A surface plasmon resonance sensor for the bovine serum albumin (BSA) protein nanolayer bonding is demonstrated by measuring the surface plasmon resonance shift in the first order diffraction spatial intensity profiles captured by the CCD.

  9. Enhancement of Light via Surface Plasmon Coupling in the Visible

    NASA Astrophysics Data System (ADS)

    Ray, Emily A.

    The incidence of light with momentum components outside the light cone on the surface of a negative permittivity material results in the excitation of a surface plasmon polariton and the enhancement of the incident signal when there is momentum and energy conservation. This process has an impact across many fields including imaging, optical computing, signaling, and photovoltaic devices, among others. I examine the role and tunability of light-surface plasmon interactions in several applications. I demonstrate a tuned metamaterial grating system that allows the signal from evanescent waves to be detected in the far field in the visible regime. I fabricate a metamaterial that is tuned to support surface plasmons that couple to visible light across a wide range of wavelengths. I characterize the plasmonic response through a simple technique wherein a the reflection from a subwavelength grating on a metamaterial indicates surface plasmon coupling when its intensity dips. With this I demonstrate that the reflection trends match well with simulation, indicating that coupling of light to surface plasmons occurs at the expected crossing points. The strength of coupling (denoted by the drop in reflection) however, is less than expected. Transmission measurements reveal a depolarizing effect that accounts for the decrease in evanescent light enhancement by the surface plasmons and is due to the surface roughness at the interfaces between the metal and dielectric. I also use a tuned metamaterial perforated with a subwavelength array of circular apertures to exhibit extraordinary transmission in the visible. I compare the transmission of the metamaterial to that of a thin film of Ag with equivalent thickness that has fewer plasmon modes and a resonance position in the UV to find that for 400 nm, both thin films exhibit a transmission minimum at 650 nm. Both film spectra have plasmon-aided extraordinary transmission peaks where there is momentum and energy conservation between

  10. Plasmon-Enhanced Enzymatic Reactions 2:Optimization of Enzyme Activity by Surface Modification of Silver Island Films with Biotin-Poly (Ethylene-glycol)-Amine.

    PubMed

    Abel, Biebele; Aslan, Kadir

    2012-01-01

    Surface modification of silver island films (SIFs) was carried out with Biotin-Poly (Ethylene-glycol)-Amine (BEA), which acts as a cross-linker between the silver surface and horse radish peroxidase (HRP) enzyme for optimum plasmon-enhanced enzymatic activity. SIFs-deposited blank glass slides and SIFs-deposited 3-Aminopropyltriethoxysilane(APTES)-coated glass slides were used as our plasmonic surfaces.In this regard, three different extent of loading of SIFs were also prepared (low, medium and high) on APTES-coated glass slides. Streptavidin-linked HRP enzyme was attached to SIFs-deposited blank glass slides and SIFs-deposited APTES-coated glass slides through the well-known biotin-streptavidin interactions. The characterization of these surfaces was done using optical absorption spectroscopy. The loading of SIFs on glass slides was observed to have significant effect on the efficiency of plasmon-enhanced enzymatic activity, where an enhancement of 200% in the enzymatic activity was observed when compared to our previously used strategies for enzyme immobilization in our preceding work[1]. In addition, SIFs-deposited on APTES-coated glass slides were found to be re-usable for plasmon-enhanced enzymatic reactions unlike SIFs deposited on to blank glass slides.

  11. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.

    PubMed

    Luan, Qingfen; Xue, Ying; Yao, Xin; Lu, Wu

    2010-02-01

    Using hairpin DNA probe self-structure change during DNA ligation process, a sensitive, label-free and simple method of E. coli DNA ligase assay via a home-built high-resolution surface plasmon resonance (SPR) instrument was developed. The DNA ligation process was monitored in real-time and the effects of single-base mutation on the DNA ligation process were investigated. Then an assay of E. coli DNA ligase was completed with a lower detection limit (0.6 nM), wider concentration range and better reproducibility. Moreover, the influence of Quinacrine on the activity of E. coli DNA ligase was also studied, which demonstrated that our method was useful for drug screening.

  12. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits.

    PubMed

    Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee

    2016-11-28

    The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.

  13. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits

    PubMed Central

    Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee

    2016-01-01

    The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ∼200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ∼32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of∼190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits. PMID:27892463

  14. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee

    2016-11-01

    The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ~200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ~32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of~190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.

  15. Multi-band terahertz active device with complementary metamaterial

    SciTech Connect

    Qiao, Shen; Zhang, Yaxin Sun, Linlin; Sun, Han; Xu, Gaiqi; Zhao, Yuncheng; Yang, Ziqiang; Liang, Shixiong

    2015-09-28

    We describe a multi-band terahertz-active device using a composite structure made of complementary metamaterial and doped silicon that can be dynamically controlled. This special complementary metamaterial exhibits three resonances that produce three pass-bands. The pass-bands can be uniformly manipulated by exploiting the photoinduced characteristics of the doped silicon. Simulations were performed to analyze the magnetic field and surface current distributions. The simulation results agree well with experimental results obtained from terahertz time-domain spectroscopy. Using an 808-nm-wavelength laser beam, a modulation depth of up to 80% was obtained. In numerical simulations, we used a conductivity mode to characterize photoinduction. The development of multi-band terahertz-active devices has many potential applications, for example, in filters, modulators, switches, and sensors.

  16. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  17. Plasmon Field Effect Transistor for Plasmon to Electric Conversion and Amplification.

    PubMed

    Shokri Kojori, Hossein; Yun, Ju-Hyung; Paik, Younghun; Kim, Joondong; Anderson, Wayne A; Kim, Sung Jin

    2016-01-13

    Direct coupling of electronic excitations of optical energy via plasmon resonances opens the door to improving gain and selectivity in various optoelectronic applications. We report a new device structure and working mechanisms for plasmon resonance energy detection and electric conversion based on a thin film transistor device with a metal nanostructure incorporated in it. This plasmon field effect transistor collects the plasmonically induced hot electrons from the physically isolated metal nanostructures. These hot electrons contribute to the amplification of the drain current. The internal electric field and quantum tunneling effect at the metal-semiconductor junction enable highly efficient hot electron collection and amplification. Combined with the versatility of plasmonic nanostructures in wavelength tunability, this device architecture offers an ultrawide spectral range that can be used in various applications.

  18. Evaluation of cathepsin B activity for degrading collagen IV using a surface plasmon resonance method and circular dichroism spectroscopy.

    PubMed

    Shoji, Atsushi; Kabeya, Mitsutaka; Ishida, Yuuki; Yanagida, Akio; Shibusawa, Yoichi; Sugawara, Masao

    2014-07-01

    Evaluation of cathepsin B activities for degrading collagen IV and heat-denatured collagen IV (gelatin) were performed by surface plasmon resonance (SPR) and circular dichroism (CD) measurements. The optimal pH of cathepsin B activity for degrading each substrate was around 4.0. The ΔRU(15 min), which is a decrease in the SPR signal at 15 min after injection of cathepsin B, was smaller for collagen IV than for heat-denatured collagen IV owing to the presence of triple-helical conformation. An unstable nature of the triple-helical conformation of collagen IV at pH 4.0 was shown by the CD study. Degrading collagen IV by cathepsin B was facilitated owing to a local unwinding of the triple-helical conformation caused by proteolytic cleavage of the non-helical region. The concentration dependence of the initial velocity for degrading collagen IV by cathepsin B at pH 4.0 was biphasic, showing that cathepsin B at low concentration exhibits exopeptidase activity, while the enzyme at high concentration exhibits endopeptidase activity. The kinetic parameters for the exopeptidase activity of cathepsin B toward collagen IV and heat-treated collagen IV were evaluated and discussed in terms of the protease mechanism.

  19. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    PubMed

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  20. Plasmonics in Biology and Plasmon-Controlled Fluorescence.

    PubMed

    Lakowicz, Joseph R

    2006-03-01

    Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow

  1. Plasmonics in Biology and Plasmon-Controlled Fluorescence

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow

  2. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  3. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  4. Light-induced self-assembly of active rectification devices.

    PubMed

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E

    2016-04-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics-a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or "rectified") by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured "primordial soup" of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath.

  5. A microfluidic paper-based device to assess acetylcholinesterase activity.

    PubMed

    Liu, Chunye; Gomez, Frank A

    2017-04-01

    Neurotransmitters play key roles in cell-to-cell communication. These chemical messengers are involved in many functional processes, including growth, reproduction, memory, and behavior. In this communication, we describe a novel microfluidic paper-based analytical device (μPAD) to detect acetylcholinesterase (AChE) activity and inhibitor screening through a colorimetric analysis. The μPAD is easily fabricated via a wax printing process whereby wax is deposited onto the surface of chromatographic paper, and heated to create a hydrophobic barrier. Separate solutions of 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and samples containing AChE and acetylthiocholine iodide (ATC) (or cysteine, Cys), respectively, are directly spotted onto the μPAD. DTNB and AChE/ATC (or Cys) flow towards each other where a reaction occurs to form the yellow colored 2-nitro-5-thiobenzoic acid anion (TNB(2-) ). The device is dried, scanned, and analyzed yielding a linear range of average inverse yellow intensities versus substrate concentration. An IC50 value (0.045 nM) with a known inhibitor, neostigmine bromide (NB), is obtained on the device. μPADs are low cost and easy to fabricate and have great potential to quantify neurotransmitter activity.

  6. Light-induced self-assembly of active rectification devices

    PubMed Central

    Stenhammar, Joakim; Wittkowski, Raphael; Marenduzzo, Davide; Cates, Michael E.

    2016-01-01

    Self-propelled colloidal objects, such as motile bacteria or synthetic microswimmers, have microscopically irreversible individual dynamics—a feature they share with all living systems. The incoherent behavior of individual swimmers can be harnessed (or “rectified”) by microfluidic devices that create systematic motions that are impossible in equilibrium. We present a computational proof-of-concept study showing that such active rectification devices could be created directly from an unstructured “primordial soup” of light-controlled motile particles, solely by using spatially modulated illumination to control their local propulsion speed. Alongside both microscopic irreversibility and speed modulation, our mechanism requires spatial symmetry breaking, such as a chevron light pattern, and strong interactions between particles, such as volume exclusion, which cause a collisional slowdown at high density. Together, we show how these four factors create a novel, many-body rectification mechanism. Our work suggests that standard spatial light modulator technology might allow the programmable, light-induced self-assembly of active rectification devices from an unstructured particle bath. PMID:27051883

  7. Coupling characteristics between slot plasmonic mode and dielectric waveguide mode

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Liu, Fang; Wan, Ruiyuan; Huang, Yidong

    2010-12-01

    A hybrid coupler composed of a slot plasmonic waveguide and a dielectric waveguide is proposed and its coupling characteristics are analyzed. The simulation results show that the ultra-small mode of the slot plasmonic waveguide can be excited efficiently by the dielectric waveguide mode within the coupling length of just several microns, which provides an interface between the slot plasmonic devices and dielectric devices. Meanwhile, based on this hybrid the coupler, a highly integrated refractive index sensor could be realized.

  8. Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides

    NASA Astrophysics Data System (ADS)

    Hou, Haowen; Teng, Jinghua; Palacios, Tomás; Chua, Soojin

    2016-07-01

    Graphene nano-ribbon waveguides with ultra-short plasmon wavelength are a promising candidate for nanoscale photonic applications. Graphene edge plasmons are the fundamental and lowest losses mode. Through finite element method, edge plasmons show large effective refractive index and strong field confinement on nanoscale ribbons. The edge plasmons follow a k1/2 dispersion relation. The wavelengths of the edge plasmons and center plasmons differ by a fixed factor. The width of edge plasmon is inversely proportional to wave vector of edge plasmon kedge. Edge defects associate with graphene nano-ribbon induce extra losses and reduce the propagation length. Cut-off width of edge plasmons reduces with increasing frequency. Cut-off width of center plasmon is enlarged by edge component but the enlargement effect diminishing with the increase of kedge. The results are important for the application of graphene plasmon towards ultra-compact photonic devices.

  9. Graphene-plasmon polaritons: From fundamental properties to potential applications

    NASA Astrophysics Data System (ADS)

    Xiao, Sanshui; Zhu, Xiaolong; Li, Bo-Hong; Mortensen, N. Asger

    2016-04-01

    With unique possibilities for controlling light in nanoscale devices, graphene plasmonics has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. In this paper, we briefly review the recent exciting progress in graphene plasmonics. We begin with a general description of the optical properties of graphene, particularly focusing on the dispersion of graphene-plasmon polaritons. The dispersion relation of graphene-plasmon polaritons of spatially extended graphene is expressed in terms of the local response limit with an intraband contribution. With this theoretical foundation of graphene-plasmon polaritons, we then discuss recent exciting progress, paying specific attention to the following topics: excitation of graphene plasmon polaritons, electron-phonon interactions in graphene on polar substrates, and tunable graphene plasmonics with applications in modulators and sensors. Finally, we address some of the apparent challenges and promising perspectives of graphene plasmonics.

  10. Toxin activity assays, devices, methods and systems therefor

    DOEpatents

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  11. Integration of active devices on smart polymers for neural interfaces

    NASA Astrophysics Data System (ADS)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  12. Hybrid photon-plasmon nanowire lasers.

    PubMed

    Wu, Xiaoqin; Xiao, Yao; Meng, Chao; Zhang, Xining; Yu, Shaoliang; Wang, Yipei; Yang, Chuanxi; Guo, Xin; Ning, C Z; Tong, Limin

    2013-01-01

    Metallic and plasmonic nanolasers have attracted growing interest recently. Plasmonic lasers demonstrated so far operate in hybrid photon-plasmon modes in transverse dimensions, rendering it impossible to separate photonic from plasmonic components. Thus only the far-field photonic component can be measured and utilized directly. But spatially separated plasmon modes are highly desired for applications including high-efficiency coupling of single-photon emitters and ultrasensitivity optical sensing. Here, we report a nanowire (NW) laser that offers subdiffraction-limited beam size and spatially separated plasmon cavity modes. By near-field coupling a high-gain CdSe NW and a 100 nm diameter Ag NW, we demonstrate a hybrid photon-plasmon laser operating at 723 nm wavelength at room temperature, with a plasmon mode area of 0.008λ(2). This device simultaneously provides spatially separated photonic far-field output and highly localized coherent plasmon modes, which may open up new avenues in the fields of integrated nanophotonic circuits, biosensing, and quantum information processing.

  13. Wedge Waveguides and Resonators for Quantum Plasmonics.

    PubMed

    Kress, Stephan J P; Antolinez, Felipe V; Richner, Patrizia; Jayanti, Sriharsha V; Kim, David K; Prins, Ferry; Riedinger, Andreas; Fischer, Maximilian P C; Meyer, Stefan; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2015-09-09

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light-matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (~90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ~0.004λvac(3) in an exposed single-mode waveguide-resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light-matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon-matter coupling.

  14. The Use of Multiple Slate Devices to Support Active Reading Activities

    ERIC Educational Resources Information Center

    Chen, Nicholas Yen-Cherng

    2012-01-01

    Reading activities in the classroom and workplace occur predominantly on paper. Since existing electronic devices do not support these reading activities as well as paper, users have difficulty taking full advantage of the affordances of electronic documents. This dissertation makes three main contributions toward supporting active reading…

  15. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  16. Active control of excessive sound emission on a mobile device.

    PubMed

    Jeon, Se-Woon; Youn, Dae Hee; Park, Young-cheol; Lee, Gun-Woo

    2015-04-01

    During a phone conversation, loud vocal emission from the far-end to the near-end space can disturb nearby people. In this paper, the possibility of actively controlling such unwanted sound emission using a control source placed on the mobile device is investigated. Two different approaches are tested: Global control, minimizing the potential energy measured along a volumetric space surface, and local control, minimizing the squared sound pressure at a discrete point on the phone. From the test results, both approaches can reduce the unwanted sound emission by more than 6 dB in the frequency range up to 2 kHz.

  17. Device for measuring oxygen activity in liquid sodium

    DOEpatents

    Roy, P.; Young, R.S.

    1973-12-01

    A composite ceramic electrolyte in a configuration (such as a closed end tube or a plate) suitable to separate liquid sodium from a reference electrode with a high impedance voltmeter connected to measure EMF between the sodium and the reference electrode as a measure of oxygen activity in the sodium is described. The composite electrolyte consists of zirconiacalcia with a bonded layer of thoria-yttria. The device is used with a gaseous reference electrode on the zirconia-calcia side and liquid sodium on the thoria-yttria side of the electrolyte. (Official Gazette)

  18. Surface plasmon polaritons in artificial metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  19. Infrared micro-thermography of an actively heated preconcentrator device

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, C. A.; Stepnowski, Stanley V.; Mott, David R.; McGill, R. Andrew

    2008-03-01

    We report infrared micro-thermography measurements and analysis of static and transient temperature maps of an actively heated micro-fabricated preconcentrator device that incorporates a dual serpentine platinum heater trace deposited on a perforated polyimide membrane and suspended over a silicon frame. The sorbent coated perforated membrane is used to collect vapors and gases that flow through the preconcentrator. After heating, a concentrated pulse of analyte is released into the detector. Due to its small thermal mass, precise thermal management of the preconcentrator is critical to its performance. The sizes of features, the semi-transparent membrane, the need to flow air through the device, and changes in surface emissivity on a micron scale present many challenges for traditional infrared micro-thermography. We report an improved experimental test-bed. The hardware incorporates a custom-designed miniature calibration oven which, in conjunction with spatial filtering and a simple calibration algorithm, allows accurate temperature maps to be obtained. The test-bed incorporates a micro-bolometer array as the infrared imager. Instrumentation design, calibration and image processing algorithms are discussed and analyzed. The procedure does not require prior knowledge of the emissivity. We show that relatively inexpensive uncooled bolometers arrays can be used in certain radiometric applications. Heating profiles were examined with both uniform and non-uniform air flow through the device. The conclusions from this study provide critical information for optimal integration of the preconcentrator within a detection system, and in the design of the heater trace layout to achieve a more even temperature distribution across the device.

  20. Sub-wavelength plasmon laser

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  1. Understanding complex chiral plasmonics

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  2. Surface-plasmon-enhanced photoconversion in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Morfa, Anthony John

    In this thesis, the benefits of including surface-plasmon-active materials into organic photovoltaics are investigated. First, the effect of discontinuous silver thin-films formed by physical vapor deposition at the transparent front electrode of the device is explored. A reproducible near doubling in efficiency is seen in these devices which arises from a near doubling of the short-circuit current. Analysis of the wavelength-dependence of the increase in current shows that the increase in current is due to surface-plasmon-enhanced optical absorption in the active layer of the devices. Additionally, these results are shown to be reproducible over several trials when using a fabrication routine that employs a low-temperature annealing step that retains the surface-plasmon activity of the substrate and prevents delamination of the active layers. The relative dielectric function of the active-layer material was determined at optical frequencies using variable-angle spectroscopic ellipsometry. A Huang-Rhys vibronic progression is used to model the peak energies of excitonic transitions in the film and the resulting parameters are found to be in excellent agreement with previously reported values. Theoretical calculations of the surface-plasmon enhancement are performed using the aforementioned dielectric function. The theoretical calculation of the skin depth of the surface plasmon is shown to be consistent with the observed wavelength dependence of the plasmonically enhanced current in organic photodiodes. In order to better understand the enhancement process and the fate of photogenerated holes and electrons, additional work was done to explore the electronic structure of the organic films using impedance spectroscopy. The results of this work indicate the presence of a Schottky diode at the metal/organic interface in standard device geometries. This result has several implications on charge extraction for standard devices and those including silver thin-films. It is

  3. Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications.

    PubMed

    Vitol, Elina A; Friedman, Gary; Gogotsi, Yury

    2014-04-01

    We discuss the relationship between the shape of plasmonic nanoparticles and the biological surface-enhanced Raman spectroscopy (SERS) applications which they can enable. As a step forward in developing SERS-active substrates adapted to a particular application, we demonstrate that a modification of the widely used protocol for the sodium citrate mediated reduction of chloroauric acid, which is typically employed only for obtaining spherical gold nanoparticles, can yield flat polygonal nanoparticles at room temperature and a decreased amount of the reducing agent. The significant advantage of the described approach is that it allows for synthesis of nanoparticles with different geometries using a well-established synthesis protocol without the need for any additional chemicals or special synthesis apparatus. By contrasting spherical and anisotropically shaped nanoparticles, we demonstrate that multifaceted nanoparticles with sharp edges are better suitable for SERS analysis of low concentration analytes requiring strong SERS enhancement. On the other hand, gold nanoparticles with isotropic shapes, while giving a smaller enhancement, can provide a more reproducible SERS signal. This is important for analytical applications of complex biological systems where large SERS enhancement may not always be required, whereas data reproducibility and minimal false positive rate are imperative. Using a SERS-active substrate comprising isotropically shaped gold nanoparticles, we demonstrate the differences between Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, attributable to the outer membrane and peptidoglycan layer, with the level of detail which has not been previously reported with optical spectroscopic techniques.

  4. Nonlinear graphene plasmonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  5. h-BN nanosheets as simple and effective additives to largely enhance the activity of Au/TiO2 plasmonic photocatalysts.

    PubMed

    Ide, Y; Nagao, K; Saito, K; Komaguchi, K; Fuji, R; Kogure, A; Sugahara, Y; Bando, Y; Golberg, D

    2016-01-07

    The activity of Au nanoparticle-loaded P25 TiO2 (Au/P25) plasmonic photocatalysts, evaluated by the oxidative decomposition of formic acid in water under visible light irradiation, was enhanced up to 3 times by simply mixing Au/P25 with photocatalytically inactive h-BN nanosheets as a result of electron transfer from photoexcited Au/TiO2 to the h-BN nanosheets and retardation of the charge recombination.

  6. Inferring Human Activity in Mobile Devices by Computing Multiple Contexts.

    PubMed

    Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei

    2015-08-28

    This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user's mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution.

  7. Inferring Human Activity in Mobile Devices by Computing Multiple Contexts

    PubMed Central

    Chen, Ruizhi; Chu, Tianxing; Liu, Keqiang; Liu, Jingbin; Chen, Yuwei

    2015-01-01

    This paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g., a local time tag, a time difference between geographical locations, or a timespan; a spatiotemporal context is defined as a dwelling length at a particular spatial context; and a user context includes user-related information that can be the user’s mobility contexts, environmental contexts, psychological contexts or social contexts. Using the measurements of the built-in sensors and radio signals in mobile devices, we can snapshot a contextual tuple for every second including aforementioned contexts. Giving a contextual tuple, the framework evaluates the posteriori probability of each candidate activity in real-time using a Naïve Bayes classifier. A large dataset containing 710,436 contextual tuples has been recorded for one week from an experiment carried out at Texas A&M University Corpus Christi with three participants. The test results demonstrate that the multi-context solution significantly outperforms the spatial-context-only solution. A classification accuracy of 61.7% is achieved for the spatial-context-only solution, while 88.8% is achieved for the multi-context solution. PMID:26343665

  8. Plasmonic Enhancement Mechanisms in Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Cushing, Scott K.

    possible: i) increasing light absorption in the semiconductor by light trapping through scattering, ii) transferring hot carriers from metal to semiconductor after light absorption in the metal, and iii) non-radiative excitation of interband transitions in the semiconductor by plasmon-induced resonant energy transfer (PIRET). The effects of the metal on charge transport and carrier recombination were also revealed. Next, it has been shown that the strength and balance of the three enhancement mechanisms is rooted in the plasmon's dephasing time, or how long it takes the collective electron oscillations to stop being collective. The importance of coherent effects in plasmonic enhancement is also shown. Based on these findings, a thermodynamic balance framework has been used to predict the theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions. These calculations have revealed how plasmonics is best used to address the different light absorption problems in semiconductors, and that not taking into account the plasmon's dephasing is the origin of low plasmonic enhancement Finally, to prove these guidelines, each of the three enhancement mechanisms has been translated into optimal device geometries, showing the plasmon's potential for solar energy harvesting. This dissertation identifies the three possible plasmonic enhancement mechanisms for the first time, discovering a new enhancement mechanism (PIRET) in the process. It has also been shown for the first time that the various plasmon-semiconductor interactions could be rooted in the plasmon's dephasing. This has allowed for the first maximum efficiency estimates which have combined all three enhancement mechanisms to be performed, and revealed that changes in the plasmon's dephasing leads to the disparity in reported plasmonic enhancements. These findings are combined to create optimal device design guidelines, which are proven by fabrication of several devices with top

  9. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  10. Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology

    SciTech Connect

    Urbanczyk, Adam; Noetzel, Richard

    2012-12-15

    We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

  11. Integrating plasmonic diagnostics and microfluidics.

    PubMed

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-09-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics.

  12. Integrating plasmonic diagnostics and microfluidics

    PubMed Central

    Niu, Lifang; Zhang, Nan; Liu, Hong; Zhou, Xiaodong; Knoll, Wolfgang

    2015-01-01

    Plasmonics is generally divided into two categories: surface plasmon resonance (SPR) of electromagnetic modes propagating along a (noble) metal/dielectric interface and localized SPRs (LSPRs) on nanoscopic metallic structures (particles, rods, shells, holes, etc.). Both optical transducer concepts can be combined with and integrated in microfluidic devices for biomolecular analyte detections, with the benefits of small foot-print for point-of-care detection, low-cost for one-time disposal, and ease of being integrated into an array format. The key technologies in such integration include the plasmonic chip, microfluidic channel fabrication, surface bio-functionalization, and selection of the detection scheme, which are selected according to the specifics of the targeting analytes. This paper demonstrates a few examples of the many versions of how to combine plasmonics and integrated microfluidics, using different plasmonic generation mechanisms for different analyte detections. One example is a DNA sensor array using a gold film as substrate and surface plasmon fluorescence spectroscopy and microscopy as the transduction method. This is then compared to grating-coupled SPR for poly(ethylene glycol) thiol interaction detected by angle interrogation, gold nanohole based LSPR chip for biotin-strepavidin detection by wavelength shift, and gold nanoholes/nanopillars for the detection of prostate specific antigen by quantum dot labels excited by the LSPR. Our experimental results exemplified that the plasmonic integrated microfluidics is a promising tool for understanding the biomolecular interactions and molecular recognition process as well as biosensing, especially for on-site or point-of-care diagnostics. PMID:26392832

  13. Fano coil-type resonances: a plasmonic tool for magnetic field enhancement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Panaro, Simone; Proietti Zaccaria, Remo; Toma, Andrea

    2016-09-01

    Spintronics and spin-based technology rely on the ultra-fast unbalance of the electronic spin population in quite localized spatial regions. However, as a matter of fact, the low susceptibility of conventional materials at high frequencies strongly limits these phenomena, rendering the efficiency of magnetically active devices insufficient for application purposes. Among the possible strategies which can be envisaged, plasmonics offers a direct approach to increase the effect of local electronic unbalancing processes. By confining and enhancing free radiation in nm-size spatial regions, plasmonic nano-assemblies have demonstrated to support very intense electric and magnetic hot-spots. In particular, very recent studies have proven the fine control of magnetic fields in Fano resonance condition. The near-field-induced out-of-phase oscillation of localized surface plasmons has manifested itself with the arising of magnetic sub-diffractive hot-spots. Here, we show how this effect can be further boosted in the mid-infrared regime via the introduction of higher order plasmonic modes. The investigated system, namely Moon Trimer Resonator, combines the high efficiency of a strongly coupled nano-assembly in Fano interferential condition with the elevated tunability of the quadrupolar resonance supported by a moon-like geometry. The fine control of the apical gap in this unique nanostructure, characterizes a plasmonic device able to tune its resonance without any consequence on the magnetic hot-spot size, thus enabling an efficient squeezing in the infrared.

  14. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    PubMed

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  15. Explosives Detection in a Lasing Plasmon Nanocavity

    DTIC Science & Technology

    2014-08-01

    Explosives detection in a lasing plasmon nanocavity Ren-Min Ma1†, Sadao Ota1†, Yimin Li1, Sui Yang1 and Xiang Zhang1,2* Perhaps the most successful...application of plasmonics to date has been in sensing, where the interaction of a nanoscale loca- lized field with analytes leads to high-sensitivity... plasmon sensors with active excitation (gain-enhanced) can achieve much higher sensitivities due to the amplification of the surface plasmons10–12. Here

  16. Semiconductor plasmonic nanolasers: current status and perspectives

    NASA Astrophysics Data System (ADS)

    Gwo, Shangjr; Shih, Chih-Kang

    2016-08-01

    Scaling down semiconductor lasers in all three dimensions holds the key to the development of compact, low-threshold, and ultrafast coherent light sources, as well as integrated optoelectronic and plasmonic circuits. However, the minimum size of conventional semiconductor lasers utilizing dielectric cavity resonators (photonic cavities) is limited by the diffraction limit. To date, surface plasmon amplification by stimulated emission of radiation (spaser)-based plasmonic nanolaser is the only photon and plasmon-emitting device capable of this remarkable feat. Specifically, it has been experimentally demonstrated that the use of plasmonic cavities based on metal-insulator-semiconductor (MIS) nanostructures can indeed break the diffraction limit in all three dimensions. In this review, we present an updated overview of the current status for plasmonic nanolasers using the MIS configuration and other related metal-cladded semiconductor microlasers. In particular, by using composition-varied indium gallium nitride/gallium nitride core-shell nanorods, it is possible to realize all-color, single-mode nanolasers in the full visible wavelength range with ultralow continuous-wave (CW) lasing thresholds. The lasing action in these subdiffraction plasmonic cavities is achieved via a unique auto-tuning mechanism based on the property of weak size dependence inherent in plasmonic nanolasers. As for the choice of metals in the plasmonic structures, epitaxial silver films and giant colloidal silver crystals have been shown to be the superior constituent materials for plasmonic cavities due to their low plasmonic losses in the visible and near-infrared (NIR) spectral regions. In this review, we also provide some perspectives on the challenges and opportunities in this exciting new research frontier.

  17. Analysis of immunoreceptor tyrosine-based activation motif (ITAM) binding to ZAP-70 by surface plasmon resonance.

    PubMed

    Vély, F; Nunès, J A; Malissen, B; Hedgecock, C J

    1997-11-01

    The signaling function of the T cell antigen receptor (TCR) is mediated via CD3 polypeptides, the cytoplasmic sequences of which bear conserved immunoreceptor tyrosine-based activation motifs (ITAM). ITAM are defined by two YxxL/I sequences separated by a six-eight amino acid long spacer. Upon antigen recognition, ITAM become phosphorylated on both tyrosine residues, creating a high affinity binding site for the tandem SH2 domains found in the protein tyrosine kinase ZAP-70. Using surface plasmon resonance, we further dissected the sequences required for the binding of ZAP-70 to each TCR-associated ITAM. First, we generated protein tyrosine phosphatase-resistant ITAM peptide analogs, in which difluorophosphonomethyl phenylalanyl (F2p) replaced both phosphotyrosines, and showed that those protein tyrosine phosphatase-resistant analogs bind ZAP-70 with high affinity, establishing a rational strategy for the design of novel pharmacological tools capable of interfering with TCR signaling function. Second, we substituted the five amino acids separating the two YxxL/I sequences of the CD3 zeta 1 ITAM with a non-peptidic linker made up of gamma-amino butyric acid units and demonstrated that the length of this intervening sequence rather than its chemical composition is essential for high affinity binding of phosphorylated ITAM to the ZAP-70 SH2 domains.

  18. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  19. Free-standing chiral plasmonics

    NASA Astrophysics Data System (ADS)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  20. Terahertz optoelectronics with surface plasmon polariton diode.

    PubMed

    Vinnakota, Raj K; Genov, Dentcho A

    2014-05-09

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics.

  1. Imaging and controlling plasmonic interference fields at buried interfaces

    NASA Astrophysics Data System (ADS)

    Lummen, Tom T. A.; Lamb, Raymond J.; Berruto, Gabriele; Lagrange, Thomas; Dal Negro, Luca; García de Abajo, F. Javier; McGrouther, Damien; Barwick, B.; Carbone, F.

    2016-10-01

    Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ~0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

  2. Surface plasmon-mediated energy transfer of electrically-pumped excitons

    DOEpatents

    An, Kwang Hyup; Shtein, Max; Pipe, Kevin P.

    2015-08-25

    An electrically pumped light emitting device emits a light when powered by a power source. The light emitting device includes a first electrode, a second electrode including an outer surface, and at least one active organic semiconductor disposed between the first and second electrodes. The device also includes a dye adjacent the outer surface of the second electrode such that the second electrode is disposed between the dye and the active organic semiconductor. A voltage applied by the power source across the first and second electrodes causes energy to couple from decaying dipoles into surface plasmon polariton modes, which then evanescently couple to the dye to cause the light to be emitted.

  3. Measurement of active shoulder proprioception: dedicated system and device.

    PubMed

    Lubiatowski, Przemyslaw; Ogrodowicz, Piotr; Wojtaszek, Marcin; Kaniewski, Ryszard; Stefaniak, Jakub; Dudziński, Witold; Romanowski, Leszek

    2013-02-01

    Proprioception is an essential part of shoulder stability and neuromuscular control. The purpose of the study was the development of a precise system of shoulder proprioception assessment in the active mode (Propriometr). For that purpose, devices such as the electronic goniometer and computer software had been designed. A pilot study was carried out on a control group of 27 healthy subjects, the average age being 23.8 (22-29) in order to test the system. The result of the assessment was the finding of the error of active reproduction of the joint position (EARJP). EARJP was assessed for flexion, abduction, external and internal rotation. For every motion, reference positions were used at three different angles. The results showed EARJP to range in 3-6.1°. The proprioception evaluation system (propriometr) allows a precise measurement of active joint position sense. The designed system can be used to assess proprioception in both shoulder injuries and treatment. In addition, all achieved results of normal shoulders may serve as reference to be compared with the results of forthcoming studies.

  4. Plasmon Enhanced Hetero-Junction Solar Cell

    NASA Astrophysics Data System (ADS)

    Long, Gen; Ching, Levine; Sadoqi, Mostafa; Xu, Huizhong

    2015-03-01

    Here we report a systematic study of plasmon-enhanced hetero-junction solar cells made of colloidal quantum dots (PbS) and nanowires (ZnO), with/without metal nanoparticles (Au). The structure of solar cell devices was characterized by AFM, SEM and profilometer, etc. The power conversion efficiencies of solar cell devices were characterized by solar simulator (OAI TriSOL, AM1.5G Class AAA). The enhancement in the photocurrent due to introduction of metal nanoparticles was obvious. We believe this is due to the plasmonic effect from the metal nanoparticles. The correlation between surface roughness, film uniformity and device performance was also studied.

  5. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides.

    PubMed

    Duffin, Thorin J; Nielsen, Michael P; Diaz, Fernando; Palomba, Stefano; Maier, Stefan A; Oulton, Rupert F

    2016-01-01

    Silicon-based plasmonic waveguides show high confinement well beyond the diffraction limit. Various devices have been demonstrated to outperform their dielectric counterparts at micrometer scales, such as linear modulators, capable of generating high field confinement and improving device efficiency by increasing access to nonlinear processes, limited by ohmic losses. By using hybridized plasmonic waveguide architectures and nonlinear materials, silicon-based plasmonic waveguides can generate strong nonlinear effects over just a few wavelengths. We have theoretically investigated the nonlinear optical performance of two hybrid plasmonic waveguides (HPWG) with three different nonlinear materials. Based on this analysis, the hybrid gap plasmon waveguide (HGPW), combined with the DDMEBT nonlinear polymer, shows a four-wave mixing (FWM) conversion efficiency of -16.4  dB over a 1 μm propagation length, demonstrating that plasmonic waveguides can be competitive with standard silicon photonics structures over distances three orders of magnitude shorter.

  6. Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction

    NASA Astrophysics Data System (ADS)

    Trinh, T. Thuy; Sato, Ryota; Sakamoto, Masanori; Fujiyoshi, Yoshifumi; Haruta, Mitsutaka; Kurata, Hiroki; Teranishi, Toshiharu

    2015-07-01

    Photocatalytic conversion of solar energy to chemical energy is an efficient process in green chemistry because it facilitates room temperature chemical transformations by generating electronically excited states in photocatalysts. We report here on the robust synthesis, detailed structural characterization, and especially photocatalytic properties of plasmonic Pd hexagonal nanoplates for chemical reactions. The Pd hexagonal nanoplates are twin crystals, and composed of the top and bottom faces enclosed by the {111} planes with stacking faults and the side surfaces bound by mixed six {111} and six {100} planes. The Pd hexagonal nanoplates with well-defined and tunable longitudinal localized surface plasmon resonance (LSPR) have enabled the direct harvesting of visible to near-infrared light for catalytic cross coupling reactions. Upon plasmon excitation, the catalytic Suzuki coupling reactions of iodobenzene and phenylboronic acid accelerate by a plasmonic photocatalytic effect of plasmon induced hot electrons. The turnover frequency (TOF) of the Pd hexagonal nanoplates in a reaction illuminated with a λ = 300-1000 nm Xenon lamp at 176 mW cm-2 was 2.5 and 2.7 times higher than that of non-plasmonic {111}-enclosed Pd nanooctahedra and {100}-enclosed Pd nanocubes, respectively, and 1.7 times higher than the TOF obtained when the reaction was thermally heated to the same temperature.Photocatalytic conversion of solar energy to chemical energy is an efficient process in green chemistry because it facilitates room temperature chemical transformations by generating electronically excited states in photocatalysts. We report here on the robust synthesis, detailed structural characterization, and especially photocatalytic properties of plasmonic Pd hexagonal nanoplates for chemical reactions. The Pd hexagonal nanoplates are twin crystals, and composed of the top and bottom faces enclosed by the {111} planes with stacking faults and the side surfaces bound by mixed six {111

  7. Plasmon-phonon coupling in graphene-hyperbolic bilayer heterostructures

    NASA Astrophysics Data System (ADS)

    Yin, Ge; Yuan, Jun; Jiang, Wei; Zhu, Jianfei; Ma, Yungui

    2016-11-01

    Polar dielectrics are important optical materials enabling the subwavelength manipulation of light in infrared due to their capability to excite phonon polaritons. In practice, it is highly desired to actively modify these hyperbolic phonon polaritons (HPPs) to optimize or tune the response of the device. In this work, we investigate the plasmonic material, a monolayer graphene, and study its hybrid structure with three kinds of hyperbolic thin films grown on SiO2 substrate. The inter-mode hybridization and their tunability have been thoroughly clarified from both the band dispersions and the mode patterns numerically calculated through a transfer matrix method. Our results show that these hybrid multilayer structures are of strong potentials for applications in plasmonic waveguides, modulators and detectors in infrared. Project supported by the National Natural Science Foundation of China (Grant No. 61271085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LR15F050001).

  8. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  9. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    PubMed

    Wang, Yang-Yang; Zhang, Tong

    2014-09-19

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  10. Through-space transfer of chiral information mediated by a plasmonic nanomaterial

    NASA Astrophysics Data System (ADS)

    Ostovar Pour, Saeideh; Rocks, Louise; Faulds, Karen; Graham, Duncan; Parchaňský, Václav; Bouř, Petr; Blanch, Ewan W.

    2015-07-01

    The ability to detect chirality gives stereochemically attuned nanosensors the potential to revolutionize the study of biomolecular processes. Such devices may structurally characterize the mechanisms of protein-ligand binding, the intermediates of amyloidogenic diseases and the effects of phosphorylation and glycosylation. We demonstrate that single nanoparticle plasmonic reporters, or nanotags, can enable a stereochemical response to be transmitted from a chiral analyte to an achiral benzotriazole dye molecule in the vicinity of a plasmon resonance from an achiral metallic nanostructure. The transfer of chirality was verified by the measurement of mirror image surface enhanced resonance Raman optical activity spectra for the two enantiomers of both ribose and tryptophan. Computational modelling confirms these observations and reveals the novel chirality transfer mechanism responsible. This is the first report of colloidal metal nanoparticles in the form of single plasmonic substrates displaying an intrinsic chiral sensitivity once attached to a chiral molecule.

  11. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope

    PubMed Central

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application. PMID:25234712

  12. Engineering optical properties using plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good

  13. Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution

    SciTech Connect

    Yu, Guiyang; Wang, Xiang; Cao, Jungang; Wu, Shujie; Yan, Wenfu; Liu, Gang

    2016-01-01

    A composite photocatalyst of embedding plasmonic Au nanoparticle into CdS (Au@CdS) was prepared with a cysteine-assisted hydrothermal approach. This structure could take fully advantage of electromagnetic fields at the surface of the Au nanoparticles under visible light illumination. The photocatalytic hydrogen evolution activity of CdS could be significantly improved. Without the use of any other metal or metal oxide as cocatalysts, the quantum efficiency can reach 12.1 % over 0.5%Au@CdS at 420 nm. When using 0.1%Pt as a cocatalyst, the quantum efficiency of 0.5%Au@CdS can be further improved to 45.6%. This efficiency can be maintained more than 100 h in the test 12 days, exhibiting a relatively high stability. Photoluminescence (PL) characterization shows that the formation rate of photoexcited e-/h+ was dramatically increased when Au nanoparticles were embedded into CdS. Time-resolved PL measurement shows that Au@CdS also has a longer luminescence lifetime than that of CdS, reflecting that the photoexcited electrons in Au@CdS be with much longer lifetime to reduce H+ forming H2. All these enhancements can be attributed to the effective energy transfer between the Au surface and CdS due to the well matched composite nanostructure. Dr. Xiang Wang gratefully acknowledges the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work.

  14. Synthesis and functionalization of gold nanorods for probing plasmonic enhancement mechanisms in organic photovoltaic active layers

    NASA Astrophysics Data System (ADS)

    Wadams, Robert Christopher

    DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.

  15. Terahertz plasmon amplification in RTD-gated HEMTs with a grating-gate

    NASA Astrophysics Data System (ADS)

    Condori Quispe, Hugo O.; Encomendero, Jimy; Xing, Huili Grace; Sensale Rodriguez, Berardi

    2016-09-01

    We analyze amplification of terahertz plasmons in a grating-gate semiconductor hetero-structure. The device consists of a resonant-tunneling-diode gated high-electron-mobility transistor (RTD-gated HEMT), i.e. a HEMT structure with a double-barrier gate stack enabling resonant tunneling from gate to channel. In these devices, the key element enabling substantial power gain is the coupling of terahertz waves into and out of plasmons in the RTD-gated HEMT channel, i.e. the gain medium, via the grating-gate itself, part of the active device, rather than by an external antenna structure as in previous works, enabling amplification with associated power gain >> 30 dB at room temperature.

  16. Aspartame-stabilized gold-silver bimetallic biocompatible nanostructures with plasmonic photothermal properties, antibacterial activity, and long-term stability.

    PubMed

    Fasciani, Chiara; Silvero, M Jazmin; Anghel, Maria Alexandra; Argüello, Gerardo A; Becerra, Maria Cecilia; Scaiano, Juan C

    2014-12-17

    Gold-silver core-shell nanoparticles stabilized with a common sweetener, aspartame (AuNP@Ag@Asm), combine the antimicrobial properties of silver with the photoinduced plasmon-mediated photothermal effects of gold. The particles were tested with several bacterial strains, while biocompatibility was verified with human dermal fibroblasts.

  17. Nanoporous noninvasive cellular electrical activity-based analysis devices.

    PubMed

    Prasad, Shalini; Quijano, Jorge

    2007-03-01

    In recent years, rapid advancements have been made in the biomedical applications of microtechnology and nanotechnology. While the focus of such technologies have been primarily on in vitro analytical and diagnostic tools, more recently in vivo therapeutic and sensing applications have gained attention. The long-term integration of cells with inorganic materials provides the basis for novel sensing platforms. The work presented here focuses on the ability to maintain cells long-term in nanoporous silicon-based microenvironments. This article describes the creation of nanoporous, biocompatible, alumina membranes as a platform for incorporation into a cell-based device targeted for in situ recording of cellular electrical activity variations due to the changes associated with the surrounding microenvironments. Studies described herein focus on the interaction of nanoporous alumina substrates embedded in silicon patterned with cells of interest. The fidelity of such a system is demonstrated in terms of viability, proliferation, and functionality. The capability of such microfabricated nanoporous membranes, as in vitro for cell-based assays for sensing and drug delivery applications, is also demonstrated. It has potential in vivo application for therapeutic immunoisolation.

  18. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  19. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  20. Development of a laboratory demonstration model active cleaning device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1975-01-01

    A laboratory demonstration model of a device for removing contaminant films from optical surfaces in space was developed. The development of a plasma tube, which would produce the desired cleaning effects under high vacuum conditions, represented the major problem in the program. This plasma tube development is discussed, and the resulting laboratory demonstration-model device is described.

  1. Application of Plasmonics in Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lu, Dawei

    This thesis studies the application of plasmonics in solar energy conversion and near field thermal energy harvesting. The efficiency of semiconductor solar cell is limited by the inability of absorbing photons with energy below the bandgap. By designing plasmonic nanograting with resonance at the absorption edge, ~10% overall absorption improvement is achieved. Both localized and propagating surface plasmon modes are observed in the device. Their interaction, and the influence on overall solar cell absorption performance are studied in details. In addition, this thesis studies the upconversion materials which can convert unabsorbed near infrared photons by semiconductor solar cells into well absorbed visible photons. By tuning the surface plasmon resonance at the upconversion frequency with silver nanograting structure, the photoluminescence of upconversion material can be improved by 39-fold maximum. The rate equation analysis reveals that the improvement is attributed to roughly 3-fold absorption enhancement and 2-fold energy transfer enhancement with plasmonics. This thesis also explores the application of plasmonics to enhanced near field thermal radiation harvesting. I designed metamaterial to excite the spoof surface plasmon in the terahertz frequency for strongly enhanced thermal radiation. The FDTD simulation developed from the fluctuation electrodynamics demonstrates several hundredfold enhancement of thermally excited electromagnetic energy in the near field.

  2. Diagnostic for two-mode variable valve activation device

    SciTech Connect

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  3. The Fault in Their Shapes: Investigating the Surface-Plasmon-Resonance-Mediated Catalytic Activities of Silver Quasi-Spheres, Cubes, Triangular Prisms, and Wires.

    PubMed

    da Silva, Anderson G M; Rodrigues, Thenner S; Wang, Jiale; Yamada, Liliam K; Alves, Tiago V; Ornellas, Fernando R; Ando, Rômulo A; Camargo, Pedro H C

    2015-09-22

    The surface-plasmon-resonance (SPR)-mediated catalytic activities of Ag and Au nanoparticles have emerged a relatively new frontier in catalysis in which visible light can be employed as an eco-friendly energy input to drive chemical reactions. Although this phenomenon has been reported for a variety of transformations, the effect of the nanoparticle shape and crystalline structure on the activities remains unclear. In this paper, we investigated the SPR-mediated catalytic activity of Ag quasi-spheres, cubes, triangular prisms, and wires toward the oxidation of p-aminothiophenol to p,p'-dimercaptoazobenzene by activated O2. The activities at 632.8 nm excitation followed the order triangular prisms and quasi-spheres > wires ≫ cubes. These results indicated that the shape, optical properties, and crystal structure played an important role in the detected SPR-mediated activities.

  4. Strong Coupling of Single Emitters to Surface Plasmons

    DTIC Science & Technology

    2007-07-01

    individual optical emitters and elec- tromagnetic excitations in conducting nanostructures. The excitations are optical plasmons that can be local- ized to...subwavelength dimensions. Under realistic conditions, the tight confinement causes optical emission to be almost entirely directed into the propagating...has been substantial interest in nanoscale optical devices based on the electromagnetic sur- face modes surface plasmons associated with subwave

  5. Genetically engineered plasmonic nanoarrays.

    PubMed

    Forestiere, Carlo; Pasquale, Alyssa J; Capretti, Antonio; Miano, Giovanni; Tamburrino, Antonello; Lee, Sylvanus Y; Reinhard, Björn M; Dal Negro, Luca

    2012-04-11

    In the present Letter, we demonstrate how the design of metallic nanoparticle arrays with large electric field enhancement can be performed using the basic paradigm of engineering, namely the optimization of a well-defined objective function. Such optimization is carried out by coupling a genetic algorithm with the analytical multiparticle Mie theory. General design criteria for best enhancement of electric fields are obtained, unveiling the fundamental interplay between the near-field plasmonic and radiative photonic coupling. Our optimization approach is experimentally validated by surface-enhanced Raman scattering measurements, which demonstrate how genetically optimized arrays, fabricated using electron beam lithography, lead to order of ten improvement of Raman enhancement over nanoparticle dimer antennas, and order of one hundred improvement over optimal nanoparticle gratings. A rigorous design of nanoparticle arrays with optimal field enhancement is essential to the engineering of numerous nanoscale optical devices such as plasmon-enhanced biosensors, photodetectors, light sources and more efficient nonlinear optical elements for on chip integration.

  6. Electronic security systems and active implantable medical devices.

    PubMed

    Irnich, Werner

    2002-08-01

    How do active implantable medical devices react in the presence of strong magnetic fields in the frequency range between extremely low frequency (ELF) to radiofrequency (RF) as they are emitted by electronic security systems (ESS)? There are three different sorts of ESSs: electronic article surveillance (EAS) devices, metal detector (MDS) devices, and radiofrequency identification (RFID) systems. Common to all is the production of magnetic fields. There is an abundance of literature concerning interference by ESS gates with respect to if there is an influence possible and if such an influence can bear a risk for the AIMD wearers. However, there has been no attempt to study the physical mechanism nor to develop a model of how and under which conditions magnetic fields can influence pacemakers and defibrillators and how they could be disarmed by technological means. It is too often assumed that interference of AIMD with ESS is inevitable. Exogenous signals of similar intensity and rhythm to heart signals can be misinterpreted and, thus, confuse the implant. Important for the interference coupling mechanism is the differentiation between a "unipolar" and a "bipolar" system. With respect to magnetic fields, the left side implanted pacemaker is the most unfavorable case as the lead forms approximately a semicircular area of maximum 225 cm2 into which a voltage can be induced. This assumption yields an interference coupling model that can be expressed by simple mathematics. The worst-case conditions for induced interference voltages are a coupling area of 225 cm2 that is representative for a large human, a homogeneous magnetic field perpendicular to the area formed by the lead, and a unipolar ventricular pacemaker system that is implanted on the left side of the thorax and has the highest interference sensitivity. In bipolar systems the fields must be 17 times larger when compared to a unipolar system to have the same effect. The magnetic field for interfering with ICDs

  7. Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Ping; Chen, Hsiao-Chien; Wang, Ching-Chiung; Tsai, Po-Wei; Ho, Chia-Wen; Liu, Yu-Chuan

    2015-12-01

    Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water’s tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water’s fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte’s concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water’s fundamental activities via effective energy transfer.

  8. Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature

    PubMed Central

    Yang, Chih-Ping; Chen, Hsiao-Chien; Wang, Ching-Chiung; Tsai, Po-Wei; Ho, Chia-Wen; Liu, Yu-Chuan

    2015-01-01

    Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water’s tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water’s fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte’s concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4’-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water’s fundamental activities via effective energy transfer. PMID:26658304

  9. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching.

    PubMed

    Guo, Peijun; Weimer, Matthew S; Emery, Jonathan D; Diroll, Benjamin T; Chen, Xinqi; Hock, Adam S; Chang, Robert P H; Martinson, Alex B F; Schaller, Richard D

    2017-01-24

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  10. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    SciTech Connect

    Li, Xiaojuan Tang, Duanlian; Tang, Fan; Zhu, Yunyan; He, Changfa; Liu, Minghua Lin, Chunxiang; Liu, Yifan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradation of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.

  11. A further comparison of graphene and thin metal layers for plasmonics.

    PubMed

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-21

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  12. A further comparison of graphene and thin metal layers for plasmonics

    NASA Astrophysics Data System (ADS)

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-01

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  13. High-conductivity silicon based spectrally selective plasmonic surfaces for sensing in the infrared region

    NASA Astrophysics Data System (ADS)

    Gorgulu, K.; Gok, A.; Yilmaz, M.; Topalli, K.; Okyay, A. K.

    2017-02-01

    Plasmonic perfect absorbers have found a wide range of applications in imaging, sensing, and light harvesting and emitting devices. Traditionally, metals are used to implement plasmonic structures. For sensing applications, it is desirable to integrate nanophotonic active surfaces with biasing and amplification circuitry to achieve monolithic low cost solutions. Commonly used plasmonic metals such as Au and Ag are not compatible with standard silicon complementary metal-oxide-semiconductor (CMOS) technology. Here we demonstrate plasmonic perfect absorbers based on high conductivity silicon. Standard optical lithography and reactive ion etching techniques were used for the patterning of the samples. We present computational and experimental results of surface plasmon resonances excited on a silicon surface at normal and oblique incidences. We experimentally demonstrate our absorbers as ultra-low cost, CMOS-compatible and efficient refractive index sensing surfaces. The experimental results reveal that the structure exhibits a sensitivity of around 11 000 nm/RIU and a figure of merit of up to 2.5. We also show that the sensing performance of the structure can be improved by increasing doping density.

  14. Stamping High-Aspect-Ratio Plasmonic Nanoarrays on SERS-Supporting Platforms

    SciTech Connect

    Bhandari, Deepak; Wells, Sabrina M; Polemi, Alessia; Kravchenko, Ivan I; Shuford, Kevin L; Sepaniak, Michael J

    2011-01-01

    The dielectric property of a nanoparticle-supporting film has recently garnered attention in the fabrication of plasmonic surfaces. A few studies have shown that localized surface plasmon resonance (LSPR), and hence SERS, strongly depends on substrate refractive index. In order to create higher efficiency SERS-active surfaces, it is therefore necessary to consider substrate property along with nanoparticle morphology. However, due to certain limitations of conventional lithography, it is often not feasible to create well-defined plasmonic nanoarrays on a substrate of interest. Herein, an additive nanofabrication technique, nanotransfer printing (nTP), is implemented to integrate electron beam lithography (EBL) defined high-aspect-ratio nanofeatures on a variety of SERS-supporting surfaces. With the aid of suitable surface chemistries, a wide range of plasmonic particles were successfully integrated on surfaces of three physically and chemically distinct dielectric materials, viz Polydimethyl siloxane (PDMS), SU-8 photoresist, and glass surfaces, using silicon-based relief pillars. These nTP created metal nanoparticles strongly amplify Raman signal and complement the selection of suitable substrates for better SERS enhancement. Our experimental observations are also supported by the theoretical calculations. The implementation of nTP to stamp out metal nanoparticles on multitude conventional/unconventional substrates has novel applications in designing in-built plasmonic microanalytical devices for SERS sensing and other related photonic studies.

  15. Plasmon and compositional mapping of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Collins, Sean M.; DeSantis, Christopher J.; Skrabalak, Sara E.; Midgley, Paul A.

    2014-11-01

    Recently, co-reduction of Au and Pd has allowed the synthesis of complex Au core/AuPd shell nanoparticles with elongated tips and cubic-like symmetry. Optical studies have shown strong plasmonic behavior and high refractive index sensitivities. In this paper, we describe the composition and the near-field plasmonic behavior of those complex structures. Monochromated STEM-EELS, Cathodoluminescence, and EDS mapping reveals the different resonant modes in these particles, and shows that Pd, a poor plasmonic metal, does not prevent strong resonances and could actually be extremely helpful for plasmon-enhanced catalysis.

  16. Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain

    PubMed Central

    Gao, Zhen; Gao, Fei; Shastri, Kunal Krishnaraj; Zhang, Baile

    2016-01-01

    Localized spoof surface plasmon polaritons (spoof-SPPs) in a graded spoof-plasmonic resonator chain with linearly increasing spacing are experimentally investigated at microwave frequencies. Transmission measurements and direct near-field mappings on this graded chain show that the propagation of localized spoof-SPPs can be cutoff at different positions along the graded chain under different frequencies due to the graded coupling between adjacent resonators. This mechanism can be used to guide localized spoof-SPPs in the graded chain to specific positions depending on the frequency and thereby implement a device that can work as a selective switch in integrated plasmonic circuits. PMID:27149656

  17. Integrated architecture for the electrical detection of plasmonic resonances based on high electron mobility photo-transistors.

    PubMed

    Sammito, Davide; De Salvador, Davide; Zilio, Pierfrancesco; Biasiol, Giorgio; Ongarello, Tommaso; Massari, Michele; Ruffato, Gianluca; Morpurgo, Margherita; Silvestri, Davide; Maggioni, Gianluigi; Bovo, Gianluca; Gaio, Michele; Romanato, Filippo

    2014-01-01

    We report the design of an integrated platform for on-chip electrical transduction of the surface plasmon resonance supported by a nanostructured metal grating. The latter is fabricated on the active area of a GaAs/AlGaAs photo-HEMT and simultaneously works as the electronic gate of the device. The gold plasmonic crystal has a V-groove profile and has been designed by numerical optical simulations. By showing that the numerical models accurately reproduce the phototransistors experimental response, we demonstrate that the proposed architecture is suitable for the development of a new class of compact and scalable SPR sensors.

  18. Nonlinear terahertz superconducting plasmonics

    NASA Astrophysics Data System (ADS)

    Wu, Jingbo; Zhang, Caihong; Liang, Lanju; Jin, Biaobing; Kawayama, Iwao; Murakami, Hironaru; Kang, Lin; Xu, Weiwei; Wang, Huabing; Chen, Jian; Tonouchi, Masayoshi; Wu, Peiheng

    2014-10-01

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  19. One-dimensional plasmonic nano-photocatalysts: synthesis, characterization and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hunyadi Murph, Simona E.

    2011-10-01

    This study describes a simple two-step approach to coat gold nanorods with a silica/titania shell. Gold nanorods with an aspect ratio of 2.5 (L=48+/-2 and d=19+/-1) are synthesized by a silver-seed mediated growth approach according to our previously reported procedure (Hunyadi Murph ACS Symposium Series, Volume 1064, Chapter 8, 2011, 127-163 and reference herein). Gold nanorods are grown on pre-formed gold nano-seeds in the presence of surfactant, cetyltrimethylammonium bromide (CTAB), and a small amount of silver ions. A bifunctional linker molecule which has a thiol group at one end and a silane group at the other is used to derivatize gold nanorods. The silane group is subsequently reacted with both sodium silicate and titanium isopropoxide to a silica/titania shell around the gold nanorods. By fine tuning the reaction conditions, the silica/titania shell thickness can be controlled from ~5 to ~40nm. The resulting nanomaterials are stable, amenable to scale up and can be isolated without core aggregation or decomposition. These new materials have been characterized by scanning electron microscopy, energy dispersive X-ray analysis, UV-Vis spectroscopy and dynamic light scattering analysis. Photocatalytic activity of Au-silica/titania nanomaterials under visible and UV illumination is measured via degradation of a model dye, methyl orange (MO) under visible and UV illumination. The results indicate a 3 fold improvement in the photocatalytic decomposition rate of MO under visible illumination vs. UV illumination.

  20. ONE-DIMENSIONAL PLASMONIC NANO-PHOTOCATALYSTS: SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY

    SciTech Connect

    Murph, S.

    2011-08-14

    This study describes a simple two-step approach to coat gold nanorods with a silica/titania shell. Gold nanorods with an aspect ratio of 2.5 (L = 48 {+-} 2 and d = 19 {+-} 1) are synthesized by a silver-seed mediated growth approach according to our previously reported procedure (Hunyadi Murph ACS Symposium Series, Volume 1064, Chapter 8, 2011, 127-163 and reference herein). Gold nanorods are grown on pre-formed gold nano-seeds in the presence of surfactant, cetyltrimethylammonium bromide (CTAB), and a small amount of silver ions. A bifunctional linker molecule which has a thiol group at one end and a silane group at the other is used to derivatize gold nanorods. The silane group is subsequently reacted with both sodium silicate and titanium isopropoxide to a silica/titania shell around the gold nanorods. By fine tuning the reaction conditions, the silica/titania shell thickness can be controlled from {approx}5 to {approx}40nm. The resulting nanomaterials are stable, amenable to scale up and can be isolated without core aggregation or decomposition. These new materials have been characterized by scanning electron microscopy, energy dispersive X-ray analysis, UV-Vis spectroscopy and dynamic light scattering analysis. Photocatalytic activity of Au-silica/titania nanomaterials under visible and UV illumination is measured via degradation of a model dye, methyl orange (MO) under visible and UV illumination. The results indicate a 3 fold improvement in the photocatalytic decomposition rate of MO under visible illumination vs. UV illumination.

  1. Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas

    SciTech Connect

    Berry, Christopher W.; Hashemi, Mohammad R.; Jarrahi, Mona

    2014-02-24

    An array of 3 × 3 plasmonic photoconductive terahertz emitters with logarithmic spiral antennas is fabricated on a low temperature (LT) grown GaAs substrate and characterized in response to a 200 fs optical pump from a Ti:sapphire mode-locked laser at 800 nm wavelength. A microlens array is used to split and focus the optical pump beam onto the active area of each plasmonic photoconductive emitter element. Pulsed terahertz radiation with record high power levels up to 1.9 mW in the 0.1–2 THz frequency range is measured at an optical pump power of 320 mW. The record high power pulsed terahertz radiation is enabled by the use of plasmonic contact electrodes, enhancing the photoconductor quantum efficiencies, and by increasing the overall device active area, mitigating the carrier screening effect and thermal breakdown at high optical pump power levels.

  2. Tailorable reflection of surface plasmons in defect engineered graphene

    NASA Astrophysics Data System (ADS)

    Luo, Weiwei; Cai, Wei; Wu, Wei; Xiang, Yinxiao; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-12-01

    The electrical, optical, mechanical and thermal properties of graphene can be significantly altered by defects, thus engineering the defects in graphene is promising for applications in functionalized materials and nanoscale devices. Here the propagations of surface plasmon waves near graphene defect boundaries created by ion beams are studied. Specifically, plasmon reflections are observed near the induced defect boundaries for the first time, which implies that ion-irradiation induced defects act as efficient scattering centers for the plasmonic waves, just like the native grain boundaries. Moreover, engineering the defects with varied ion doses results in tailorable plasmon reflection properties due to changed defect degrees. The controllable plasmon reflections near ion induced defect boundaries open up a new avenue for plasmon wave engineering.

  3. Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    De Sio, Luciano; Cataldi, Ugo; Bürgi, Thomas; Tabiryan, Nelson; Bunning, Timothy J.

    2016-07-01

    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm.

  4. Plasmonic optical interference.

    PubMed

    Choi, Dukhyun; Shin, Chang Kyun; Yoon, Daesung; Chung, Deuk Seok; Jin, Yong Wan; Lee, Luke P

    2014-06-11

    Understanding optical interference is of great importance in fundamental and analytical optical design for next-generation personal, industrial, and military applications. So far, various researches have been performed for optical interference phenomena, but there have been no reports on plasmonic optical interference. Here, we report that optical interference could be effectively coupled with surface plasmons, resulting in enhanced optical absorption. We prepared a three-dimensional (3D) plasmonic nanostructure that consists of a plasmonic layer at the top, a nanoporous dielectric layer at the center, and a mirror layer at the bottom. The plasmonic layer mediates strong plasmonic absorption when the constructive interference pattern is matched with the plasmonic component. By tailoring the thickness of the dielectric layer, the strong plasmonic absorption can facilely be controlled and covers the full visible range. The plasmonic interference in the 3D nanostructure thus creates brilliant structural colors. We develop a design equation to determine the thickness of the dielectric layer in a 3D plasmonic nanostructure that could create the maximum absorption at a given wavelength. It is further demonstrated that the 3D plasmonic nanostructure can be realized on a flexible substrate. Our 3D plasmonic nanostructures will have a huge impact on the fields of optoelectronic systems, biochemical optical sensors, and spectral imaging.

  5. Plasmon-Enhanced Enzymatic Reactions: A Study of Nanoparticle-Enzyme Distance- and Nanoparticle Loading-Dependent Enzymatic Activity

    PubMed Central

    Abel, Biebele; Akinsule, Alice; Andrews, Canisha; Aslan, Kadir

    2011-01-01

    A detailed investigation of the dependence of the efficiency of plasmon-enhanced enzymatic reactions on the distance between silver island films (SIFs) and horse radish peroxidase (HRP) enzyme and on the loading of SIFs on glass surfaces is presented. Three different extent of loading of SIFs on glass slides were used: 1) low, 2) medium and 3) high, which was characterized by using optical absorption spectroscopy and scanning electron microscopy. Streptavidin-linked HRP enzyme was deposited onto SIFs and glass slides by using three different strategies: strategy 1: biotin-avidin protein assay (distance between SIFs and HRP = 4–8 nm), strategy 2: self assembled monolayers (SAMs) (1–5 nm), strategy 3: polymer layer (1–5 nm). The efficiency of enzymatic conversion of O-phenylenediamine dihydrochloride (OPD) to a colored product by HRP on SIFs and glass surfaces was assessed by optical absorption spectroscopy. The distance between SIFs and HRP and the extent of loading of SIFs on the glass surfaces were shown to have significant effect on the efficiency of plasmon-enhanced enzymatic reactions. In this regard, up to an %250 increase in enzymatic conversion of OPD was observed from SIFs with high loading using strategy 1. In addition, we have studied the potential of repeated use of SIFs in plasmon-enhanced enzymatic reactions. PMID:21949594

  6. Plasmon-Enhanced Enzymatic Reactions: A Study of Nanoparticle-Enzyme Distance- and Nanoparticle Loading-Dependent Enzymatic Activity.

    PubMed

    Abel, Biebele; Akinsule, Alice; Andrews, Canisha; Aslan, Kadir

    2011-01-01

    A detailed investigation of the dependence of the efficiency of plasmon-enhanced enzymatic reactions on the distance between silver island films (SIFs) and horse radish peroxidase (HRP) enzyme and on the loading of SIFs on glass surfaces is presented. Three different extent of loading of SIFs on glass slides were used: 1) low, 2) medium and 3) high, which was characterized by using optical absorption spectroscopy and scanning electron microscopy. Streptavidin-linked HRP enzyme was deposited onto SIFs and glass slides by using three different strategies: strategy 1: biotin-avidin protein assay (distance between SIFs and HRP = 4-8 nm), strategy 2: self assembled monolayers (SAMs) (1-5 nm), strategy 3: polymer layer (1-5 nm). The efficiency of enzymatic conversion of O-phenylenediamine dihydrochloride (OPD) to a colored product by HRP on SIFs and glass surfaces was assessed by optical absorption spectroscopy. The distance between SIFs and HRP and the extent of loading of SIFs on the glass surfaces were shown to have significant effect on the efficiency of plasmon-enhanced enzymatic reactions. In this regard, up to an %250 increase in enzymatic conversion of OPD was observed from SIFs with high loading using strategy 1. In addition, we have studied the potential of repeated use of SIFs in plasmon-enhanced enzymatic reactions.

  7. Influence of stabilizing agent and synthesis temperature on the optical properties of silver nanoparticles as active materials in surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Mahmudin, Lufsyi; Suharyadi, Edi; Utomo, Agung Bambang Setio; Abraha, Kamsul

    2016-04-01

    It has been successfully carried out the synthesis of colloidal silver nanoparticles by chemical reduction method. Silver nitrate (AgNO3) was used as metal precursors and trisodium citrate as the reducing agent. In the synthesis process, were varied the stabilizing agent of Polyvinyl Alcohol (PVA) and polyvinylpyrrolidone (PVP) and heating temperature. The formation of silver nanoparticles was observed visually with discoloration (yellowish). The formation and the structure of silver nanoparticles in colloidal solution were further examined through their optical properties by using a UV-Vis spectrometer. The wavelength absorption spectrum of colloidal silver nanoparticles shows that maximum surface plasmon absorption for the trisodium citrate-synthesized nanoparticles was at 429.43 nm for temperature of 90°C. The addition of the stabilizer sharpened spectrum curves and caused red shift in the maximum absorption peak of 429.01 nm and 427.09 nm for PVA and PVP respectively. Meanwhile, the addition of the synthesis temperature also sharpened the maximum surface plasmon absorption band and the red shift the maximum absorption peak of 428.79 nm and 428.58 nm for temperature of 110°C and 120°C respectively. Red shift of the maximum absorption peak indicates a smaller particle size. The maximum surface plasmon absorption band in the range of 427.09 nm to 429.43 nm indicates the presence of spherical or roughly spherical silver nanoparticles and TEM imaging confirmed this shape. TEM imaging results show that the diameter size of the silver nanoparticles range of 10 nm to 60 nm as well as the morphology (crystallites) of silver nanoparticles have spherical geometry with particle distribution which quite dispersive. The dispersibility of nanoparticles such as this could potentially be used as an active material of SPR biosensor.

  8. EDITORIAL: Plasmas and plasmons: links in nanosilver Plasmas and plasmons: links in nanosilver

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-03-01

    Silver has long been valued not just for its rarity but also for its broad ranging attractive properties as a conductor, catalyst and antimicrobial agent, among others. In nanoscale structures, silver takes on a number of additional attributes, as properties such as antimicrobial activity show size dependence. In addition plasmonic properties are exhibited, which enhance local electromagnetic fields and can be hugely beneficial in sensing and imaging applications. As a result silver nanoparticles are increasingly in demand. In this issue researchers describe a microplasma-assisted electrochemical synthesis that allows excellent control over the size and spacing of the resulting particles, which are important parameters for optimizing their performance in device applications [1]. Wet chemistry [2] and lithography [3] are common processes for silver nanoparticle synthesis. However, other methods are constantly in development. Biosynthesis approaches have been attracting increasing interest as more environmentally friendly alternatives. Takayuki Kuwabara and colleagues at Xiamen University in China used the sundried biomass of Cinnamomum camphora leaf to reduce silver nitrate [4], demonstrating a cost-efficient alternative to conventional methods which might also be suitable for large-scale production. At Zhejiang Normal University researchers noted that the abasic site (AP site) in the DNA duplex can act as a capping scaffold in the generation of fluorescent silver nanoclusters [5]. In addition the resulting fluorescence of the nanocrystals can be used for detecting DNA single-nucleotide polymorphism. Researchers in Malaysia have also noted the potential sensing applications of nanoparticles of another noble metal for swine DNA [6]. They observed that single-strand DNA was absorbed on gold nanoparticles and led to a colour shift from pinkish-red to grey-purple. The shift was the result of a reduction in the surface plasmon resonance peak at 530 nm and new features

  9. Pixel-level plasmonic microcavity infrared photodetector

    NASA Astrophysics Data System (ADS)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-05-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging.

  10. Submicron omega-shaped plasmonic polarization rotator

    NASA Astrophysics Data System (ADS)

    Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.

    2014-10-01

    In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.

  11. Pixel-level plasmonic microcavity infrared photodetector

    PubMed Central

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  12. Infrared Plasmonics with Conductive Ternary Nitrides.

    PubMed

    Metaxa, C; Kassavetis, S; Pierson, J F; Gall, D; Patsalas, P

    2017-03-29

    Conductive transition metal nitrides are emerging as promising alternative plasmonic materials that are refractory and CMOS-compatible. In this work, we show that ternary transition metal nitrides of the B1 structure and consisting of a combination of group-IVb transition metal, such as Ti or Zr, and group III (Sc, Y, Al) or group II (Mg, Ca) elements can have tunable plasmonic activity in the infrared range in contrast to Ta-based ternary nitrides, which exhibit plasmonic performance in the visible and UV ranges. We consider the intrinsic quality factors of surface plasmon polariton for the ternary nitrides, and we calculate the dispersion of surface plasmon polariton and the field enhancement at the vicinity of nitride/silica interfaces. Based on these calculations, it is shown that among these nitrides the most promising are TixSc1-xN and TixMg1-xN. In particular, TixSc1-xN can have plasmonic activity in the usual telecom bands at 850, 1300, and 1550 nm. Still, these nitrides exhibit substantial electronic losses mostly due to fine crystalline grains that deteriorate the plasmonic field enhancement. This unequivocally calls for improved growth processes that would enable the fabrication of such ternary nitrides of high crystallinity.

  13. Noiseless Non-Reciprocity in a Parametric Active Device

    DTIC Science & Technology

    2011-04-01

    and isolators belong to an important class of microwave components employed in applications including the measurement of mesoscopic circuits at...devices such as circulators and isolators belong to an important class of microwave components employed in applications including the measurement of...class of microwave components employed in applications including the measurement of mesoscopic circuits at cryogenic temperatures. The measurement

  14. Plasmon enhanced upconversion for applications in solar energy harvesting (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Wounjhang

    2016-09-01

    Rare-earth activated upconversion material is receiving renewed attention for their potential applications in bioimaging and solar energy conversion. Plasmon resonance can enhance the upconversion efficiency but the enhancement mechanism remained unclear due to the inherent complexity of upconversion process. In this study, we synthesized NaYF4:Yb3+,Er3+ upconversion nanoparticles (UCNPs) and modified the surface with an amphiphilic polymer, (poly(maleic anhydride-alt-octadecene) (PMAO), which makes UCNPs water-soluble and negatively charged. This in turn enables electrostatic self-assembly of UCNPs. We fabricated silver nanograting using laser-interference lithography and deposited 3 monolayers of UNCPs by polyelectrolyte-mediated layer-by-layer self-assembly process. It is noted that all the fabrication processes are scalable. We then conducted a comprehensive photoluminescence (PL) and transient PL spectroscopy. We observed up to 39x enhancement in PL intensity. A combination of numerical simulations, rate equation analysis and transient PL spectroscopy revealed that the total enhancement is made of 3.1x absorption enhancement and 2.7x energy transfer rate enhancement. The absorption enhancement makes the most contribution because the upconverted PL intensity varies quadratically with the absorption. This study represents the first experimental observation of plasmon enhanced energy transfer rate in UCNPs. It contributes to the long debate on the plasmon enhancement of Förster energy transfer process. Finally, we developed a new numerical modeling tool that can faithfully simulate the highly non-uniform light absorption and carrier generation in the plasmon enhanced photovoltaic devices. We used the tool to precisely predict the performance of photovoltaic devices incorporating plasmon enhanced upconversion and offer guidelines for upconversion photovoltaic devices.

  15. Symmetric miniaturized heating system for active microelectronic devices

    NASA Astrophysics Data System (ADS)

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 °C when the oven operates at 200 °C. The minioven can heat packages from room temperature up to 200 °C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 °C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The device is also subjected to

  16. Symmetric miniaturized heating system for active microelectronic devices.

    PubMed

    McCracken, Michael; Mayer, Michael; Jourard, Isaac; Moon, Jeong-Tak; Persic, John

    2010-07-01

    To qualify interconnect technologies such as microelectronic fine wire bonds for mass production of integrated circuit (IC) packages, it is necessary to perform accelerated aging tests, e.g., to age a device at an elevated temperature or to subject the device to thermal cycling and measure the decrease of interconnect quality. There are downsides to using conventional ovens for this as they are relatively large and have relatively slow temperature change rates, and if electrical connections are required between monitoring equipment and the device being heated, they must be located inside the oven and may be aged by the high temperatures. Addressing these downsides, a miniaturized heating system (minioven) is presented, which can heat individual IC packages containing the interconnects to be tested. The core of this system is a piece of copper cut from a square shaped tube with high resistance heating wire looped around it. Ceramic dual in-line packages are clamped against either open end of the core. One package contains a Pt100 temperature sensor and the other package contains the device to be aged placed in symmetry to the temperature sensor. According to the temperature detected by the Pt100, a proportional-integral-derivative controller adjusts the power supplied to the heating wire. The system maintains a dynamic temperature balance with the core hot and the two symmetric sides with electrical connections to the device under test at a cooler temperature. Only the face of the package containing the device is heated, while the socket holding it remains below 75 degrees C when the oven operates at 200 degrees C. The minioven can heat packages from room temperature up to 200 degrees C in less than 5 min and maintain this temperature at 28 W power. During long term aging, a temperature of 200 degrees C was maintained for 1120 h with negligible resistance change of the heating wires after 900 h (heating wire resistance increased 0.2% over the final 220 h). The

  17. Plasmonic Enhancement of the Ellipsometric Measurement of Thin Metal Lines

    NASA Astrophysics Data System (ADS)

    O'Mullane, Samuel

    In semiconductor manufacturing, defect analysis and process control are extremely important for optimal device performance and yield enhancement. One in-line tool used for quick optical characterization is the ellipsometer. Because it is nondestructive and largely automated, ellipsometers have become key tools in this process. Scatterometry based optical critical dimension (OCD) analysis is the full optical modeling of ellipsometric measurements using regression-based structures. Specifically for metallic gratings, OCD has a couple of challenges. First, the sensitivity to changes in the width of the metal lines is decreasing for smaller widths. Second, the main scatterometry spectral simulation method (rigorous coupled wave analysis, RCWA) can produce wildly inaccurate results if convergence is not maintained. The research that will follow demonstrates full convergence using RCWA and finite element method (FEM) simulations for metal gratings of this sort. Additionally, the main focus will be on design improvements to these metal gratings to boost sensitivity to their widths. The foundation of this improvement is plasmonic activity, realized for the first time in copper interconnect test structures. Both surface plasmon and localized plasmon activity will be discussed and seen in simulation spectra. The largest sensitivity improvement is due to localized plasmons which depend significantly on all feature dimensions of the metal grating. Importantly, the new cross-grating test structure design has increasing sensitivity with decreasing width. The proposed enhancement to sensitivity for these small metal lines is demonstrated through agreement between RCWA and FEM simulations. Due to considerably different methods and formulation, these simulations would only agree for physically measurable phenomena and converged spectra for each method.

  18. 3D plasmonic nanoantennas integrated with MEA biosensors.

    PubMed

    Dipalo, Michele; Messina, Gabriele C; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; De Angelis, Francesco

    2015-02-28

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.

  19. A silicon-based electrical source of surface plasmon polaritons.

    PubMed

    Walters, R J; van Loon, R V A; Brunets, I; Schmitz, J; Polman, A

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100 nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  20. A silicon-based electrical source of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; van Loon, R. V. A.; Brunets, I.; Schmitz, J.; Polman, A.

    2010-01-01

    After decades of process scaling driven by Moore's law, the silicon microelectronics world is now defined by length scales that are many times smaller than the dimensions of typical micro-optical components. This size mismatch poses an important challenge for those working to integrate photonics with complementary metal oxide semiconductor (CMOS) electronics technology. One promising solution is to fabricate optical systems at metal/dielectric interfaces, where electromagnetic modes called surface plasmon polaritons (SPPs) offer unique opportunities to confine and control light at length scales below 100nm (refs 1, 2). Research groups working in the rapidly developing field of plasmonics have now demonstrated many passive components that suggest the potential of SPPs for applications in sensing and optical communication. Recently, active plasmonic devices based on III-V materials and organic materials have been reported. An electrical source of SPPs was recently demonstrated using organic semiconductors by Koller and colleagues. Here we show that a silicon-based electrical source for SPPs can be fabricated using established low-temperature microtechnology processes that are compatible with back-end CMOS technology.

  1. Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Inho; Seok Jeong, Doo; Seong Lee, Taek; Seong Lee, Wook; Lee, Kyeong-Seok

    2012-05-01

    We demonstrate using finite-difference-time-domain calculations that embedding Ag nano disks (NDs) in the buffer layers of thin P3HT:PCBM organic solar cells can enhance optical absorption in the active layers at specific wavelength range. We show that the aspect ratio of the NDs is a key parameter for strong plasmonic absorption enhancement. Two different plasmonic absorption bands are observed stemming from optical refractive index differences among the layers surrounding the NDs in the solar cell devices. One absorption band by the surface plasmon mode localized at the interface of indium tin oxide/ND, which is undesirable for plasmonic absorption enhancement in the active layer, become negligible as the aspect ratio of the diameter-to-height increased. The other absorption band by the dipole-like surface plasmon mode, which plays a main role in enhancing the absorption in the active layer, is spectrally tunable by adjusting the aspect ratio of the NDs. The influences of diameter, height, and coverage of the NDs on optical absorption in the active layer are discussed. Embedding the optimal size NDs in the buffer layer leads to the enhanced total absorption in the 50 nm thick active layer by 16% relative to that without the NDs, and the optical absorption keeps enhanced with increasing the active layer thickness up to 90 nm. However, further increases in the active layer thickness are detrimental to absorption enhancement, which is considered to be caused by destructive interference between scattered light by the NDs and incident light.

  2. Single-plasmon interferences.

    PubMed

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-03-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons.

  3. Single-plasmon interferences

    PubMed Central

    Dheur, Marie-Christine; Devaux, Eloïse; Ebbesen, Thomas W.; Baron, Alexandre; Rodier, Jean-Claude; Hugonin, Jean-Paul; Lalanne, Philippe; Greffet, Jean-Jacques; Messin, Gaétan; Marquier, François

    2016-01-01

    Surface plasmon polaritons are electromagnetic waves coupled to collective electron oscillations propagating along metal-dielectric interfaces, exhibiting a bosonic character. Recent experiments involving surface plasmons guided by wires or stripes allowed the reproduction of quantum optics effects, such as antibunching with a single surface plasmon state, coalescence with a two-plasmon state, conservation of squeezing, or entanglement through plasmonic channels. We report the first direct demonstration of the wave-particle duality for a single surface plasmon freely propagating along a planar metal-air interface. We develop a platform that enables two complementary experiments, one revealing the particle behavior of the single-plasmon state through antibunching, and the other one where the interferences prove its wave nature. This result opens up new ways to exploit quantum conversion effects between different bosonic species as shown here with photons and polaritons. PMID:26998521

  4. Performance Enhancement in Plasmonic Photoconductive Terahertz Electronics by Incorporating Distributed Bragg Reflectors

    NASA Astrophysics Data System (ADS)

    Hemmati, Soroosh

    Terahertz optoelectronics have shown significant promise in the development and enhancement of technologies in chemical identification, biological sensing, and medical imaging. The practical advancement of such devices, however, has been hindered by the characteristics of the frequency range, 0.3 to 3 THz in the electromagnetic radiation spectrum. Presented here is a demonstration of the significant advancements possible in creating efficient and ultra-fast plasmonic THz sources by incorporating an optical cavity using a distributed Bragg reflector (DBR). Plasmonic electrodes enable increased transmission of photons into a GaAs photo-absorbing substrate, and the DBR enhances the quantum efficiency of the device by creating an optical cavity which allows for nearly 100% of the incoming light getting absorbed in the active GaAs layer.

  5. Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium

    PubMed Central

    Veltri, Alessandro; Chipouline, Arkadi; Aradian, Ashod

    2016-01-01

    The plasmonic response of a metal nanoparticle in the presence of surrounding gain elements is studied, using a space and time-dependent model, which integrates a quantum formalism to describe the gain and a classical treatment for the metal. Our model fully takes into account the influence of the system geometry (nanosphere) and offers for the first time, the possibility to describe the temporal evolution of the fields and the coupling among the multipolar modes of the particle. We calculate the lasing threshold value for all multipoles of the spaser, and demonstrate that the dipolar one is lowest. The onset of the lasing instability, in the linear regime, is then studied both with and without external field forcing. We also study the behaviour of the system below the lasing threshold, with the external field, demonstrating the existence of an amplification regime where the nanoparticle’s plasmon is strongly enhanced as the threshold is approached. Finally, a qualitative discussion is provided on later, non-linear stages of the dynamics and the approach to the steady-state of the spaser; in particular, it is shown that, for the considered geometry, the spasing is necessarily multi-modal and multipolar modes are always activated. PMID:27625072

  6. Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium

    NASA Astrophysics Data System (ADS)

    Veltri, Alessandro; Chipouline, Arkadi; Aradian, Ashod

    2016-09-01

    The plasmonic response of a metal nanoparticle in the presence of surrounding gain elements is studied, using a space and time-dependent model, which integrates a quantum formalism to describe the gain and a classical treatment for the metal. Our model fully takes into account the influence of the system geometry (nanosphere) and offers for the first time, the possibility to describe the temporal evolution of the fields and the coupling among the multipolar modes of the particle. We calculate the lasing threshold value for all multipoles of the spaser, and demonstrate that the dipolar one is lowest. The onset of the lasing instability, in the linear regime, is then studied both with and without external field forcing. We also study the behaviour of the system below the lasing threshold, with the external field, demonstrating the existence of an amplification regime where the nanoparticle’s plasmon is strongly enhanced as the threshold is approached. Finally, a qualitative discussion is provided on later, non-linear stages of the dynamics and the approach to the steady-state of the spaser; in particular, it is shown that, for the considered geometry, the spasing is necessarily multi-modal and multipolar modes are always activated.

  7. Enhanced piezo/solar-photocatalytic activity of Ag/ZnO nanotetrapods arising from the coupling of surface plasmon resonance and piezophototronic effect

    NASA Astrophysics Data System (ADS)

    Zhang, Linlin; Zhu, Dan; He, Haoxuan; Wang, Qiang; Xing, Lili; Xue, Xinyu

    2017-03-01

    Ag/ZnO nanotetrapods are synthesized in mass production via a simple thermal-evaporation/hydrothermal route, and Ag nanoparticles are randomly coated on ZnO nanotetrapods. Ag/ZnO nanotetrapods can co-use the solar and mechanical energy to degrade various organic pollutants, and the solar-photocatalytic activity is significantly enhanced by the piezo-assistance. For instance, under ultrasonic stimulation (200 W) and solar illumination (500 W), Ag/ZnO nanotetrapods can completely degrade methyl orange (MO) within 25 min. The high piezo/solar-photocatalytic efficiency of Ag/ZnO nanotetrapods can be ascribed to the coupling of surface plasmon resonance and piezophototronic effect in the solar-photocatalytic process. The localized surface plasmon resonance effect of Ag nanoparticles can increase the visible light absorption. Ag/ZnO interface can facilitate the interfacial charge transfer and induce the separation of photo-induced charge carriers. The piezoelectric field originated from the deformation of ZnO nanotetrapods can further enhance the separation of photo-induced electron/hole pairs. Our results imply that Ag/ZnO nanotetrapods have great potentials of using sustainable energy in the nature for environmental remediation.

  8. Plasmonic Nanospectroscopy for Thermal Analysis of Organic Semiconductor Thin Films.

    PubMed

    Nugroho, Ferry A A; Diaz de Zerio Mendaza, Amaia; Lindqvist, Camilla; Antosiewicz, Tomasz J; Müller, Christian; Langhammer, Christoph

    2017-02-21

    Organic semiconductors are key materials for the next generation thin film electronic devices like field-effect transistors, light-emitting diodes, and solar cells. Accurate thermal analysis is essential for the fundamental understanding of these materials, for device design, stability studies, and quality control because the desired nanostructures are often far from thermodynamic equilibrium and therefore tend to evolve with time and temperature. However, classical experimental techniques are insufficient because the active layer of most organoelectronic device architectures is typically only on the order of a hundred nanometers or less. Scrutinizing the thermal properties in this size range is, however, critical because strong deviations of the thermal properties from bulk values due to confinement effects and pronounced influence of the substrate become significant. Here, we introduce plasmonic nanospectroscopy as an experimental approach to scrutinize the thickness dependence of the thermal stability of semicrystalline, liquid-crystalline, and glassy organic semiconductor thin films down to the sub-100 nm film thickness regime. In summary, we find a pronounced thickness dependence of the glass transition temperature of ternary polymer/fullerene blend thin films and their constituents, which can be resolved with exceptional precision by the plasmonic nanospectroscopy method, which relies on remarkably simple instrumentation.

  9. Multi-layer topological transmissions of spoof surface plasmon polaritons

    PubMed Central

    Pan, Bai Cao; Zhao, Jie; Liao, Zhen; Zhang, Hao Chi; Cui, Tie Jun

    2016-01-01

    Spoof surface plasmon polaritons (SPPs) in microwave frequency provide a high field confinement in subwavelength scale and low-loss and flexible transmissions, which have been widely used in novel transmission waveguides and functional devices. To play more important roles in modern integrated circuits and systems, it is necessary and helpful for the SPP modes to propagate among different layers of devices and chips. Owing to the highly confined property and organized near-field distribution, we show that the spoof SPPs could be easily transmitted from one layer into another layer via metallic holes and arc-shaped transitions. Such designs are suitable for both the ultrathin and flexible single-strip SPP waveguide and double-strip SPP waveguide for active SPP devices. Numerical simulations and experimental results demonstrate the broadband and high-efficiency multi-layer topological transmissions with controllable absorption that is related to the superposition area of corrugated metallic strips. The transmission coefficient of single-strip SPP waveguide is no worse than −0.8 dB within frequency band from 2.67 GHz to 10.2 GHz while the transmission of double-strip SPP waveguide keeps above −1 dB within frequency band from 2.26 GHz to 11.8 GHz. The proposed method will enhance the realizations of highly complicated plasmonic integrated circuits. PMID:26939995

  10. Integrated Electromechanical Devices for Active Control of Vibration and Sound

    DTIC Science & Technology

    1997-11-01

    of peak power • Minimize ambient noise generation broadband and narrowband • Standard temperature (-25C--55C) with possible extended operation • Must...operate in a vacuum and in non-volatile fluids • Minimize heat generation , EMI, and outgassing • Baseline for application to flat surfaces but allow... generation . An actuator integrated in an electromechanical device could generate sufficient internal heat to affect other components, or alter its

  11. Impact of optical antennas on active optoelectronic devices.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-07

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  12. Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor.

    PubMed

    Goodfellow, Kenneth M; Chakraborty, Chitraleema; Beams, Ryan; Novotny, Lukas; Vamivakas, A Nick

    2015-08-12

    The determination to develop fast, efficient devices has led to vast studies on photonic circuits but it is difficult to shrink these circuits below the diffraction limit of light. However, the coupling between surface plasmon polaritons and nanostructures in the near-field shows promise in developing next-generation integrated circuitry. In this work, we demonstrate the potential for integrating nanoplasmonic-based light guides with atomically thin materials for on-chip near-field plasmon detection. Specifically, we show near-field electrical detection of silver nanowire plasmons with the atomically thin semiconductor molybdenum disulfide. Unlike graphene, atomically thin semiconductors such as molybdenum disulfide exhibit a bandgap that lends itself for the excitation and detection of plasmons. Our fully integrated plasmon detector exhibits plasmon responsivities of ∼255 mA/W that corresponds to highly efficient plasmon detection (∼0.5 electrons per plasmon).

  13. Measuring steps with the Fitbit activity tracker: an inter-device reliability study.

    PubMed

    Dontje, Manon L; de Groot, Martijn; Lengton, Remko R; van der Schans, Cees P; Krijnen, Wim P

    2015-01-01

    Activity trackers like Fitbit are used for self-tracking of physical activity by an increasing number of individuals. Comparing physical activity scores with peers can contribute to the desired behavioural change. However, for meaningful social comparison a high inter-device reliability is paramount. This study aimed to determine the inter-device reliability of Fitbit activity trackers in measuring steps. Ten activity trackers (Fitbit Ultra) were worn by a single person (male, 46 years) during eight consecutive days. Inter-device reliability was assessed on three different levels of aggregation (minutes, hours, days) with various methods, including intra-class correlation coefficient (ICC), Bland-Altman plots, limits of agreement (LOA) and Mixed Model Analysis. Results showed that the inter-device reliability of the Fitbit in measuring steps is good at all levels of aggregation (minutes, hours, days), but especially when steps were measured per day. This implies that individuals can reliably compare their daily physical activity scores with peers.

  14. Highly sensitive beam steering with plasmonic antenna.

    PubMed

    Rui, Guanghao; Zhan, Qiwen

    2014-08-05

    In this work, we design and study a highly sensitive beam steering device that integrates a spiral plasmonic antenna with a subwavelength metallic waveguide. The short effective wavelength of the surface plasmon polaritons (SPPs) mode supported by the metallic waveguide is exploited to dramatically miniaturize the device and improve the sensitivity of the beam steering. Through introducing a tiny displacement of feed point with respect to the geometrical center of the spiral plasmonic antenna, the direction of the radiation can be steered at considerably high angles. Simulation results show that steering angles of 8°, 17° and 34° are obtainable for a displacement of 50 nm, 100 nm and 200 nm, respectively. Benefiting from the reduced device size and the shorter SPP wavelength, the beam steering sensitivity of the beam steering is improved by 10-fold compared with the case reported previously. This miniature plasmonic beam steering device may find many potential applications in quantum optical information processing and integrated photonic circuits.

  15. Hot Charge Carrier Transmission from Plasmonic Nanostructures.

    PubMed

    Christopher, Phillip; Moskovits, Martin

    2017-03-16

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes-processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases. Expected final online publication date for the Annual Review of Physical Chemistry Volume 68 is April 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  16. Localized and propagating plasmons in metal films with nanoholes.

    PubMed

    Schwind, Markus; Kasemo, Bengt; Zorić, Igor

    2013-04-10

    The occurrence of plasmon resonances in thin (~20 nm) Al and Au films, perforated with nanoholes, was studied. In both metals, two plasmon resonances were observed: (i) A surface plasmon polariton mode associated with a maximum in extinction and (ii) a localized resonance in the nanohole associated with a minimum in extinction. By varying the diameter of the nanoholes, the scaling of the peak positions of the plasmon resonances was determined as a function of hole diameter. In the large nanohole limit, the plasmon peak positions depend only on the nanohole diameter being independent of the material. On the other hand, for small nanoholes the plasmon peak positions are material and size dependent. In contrast to Al films where the localized plasmons can be excited from the near-IR to the UV, no plasmon resonances were observed for Au at energies above the interband threshold (2.4 eV). The interaction between a distinct interband transition in Al at 1.5 eV and the localized plasmon resonance is considered in detail. We observe for the first time experimentally a noncrossing behavior of the interband transition and the localized plasmon resonance. The energy (size) dependence of surface plasmon peak width, being a measure for the decay/damping of the latter, is very different for the two metals. This can be explained by considering the different decay mechanisms active in the two metals. Apart from these basic plasmonics results, we test the potential of using the shifts of the plasmon resonances in perforated Al films to follow the atmospheric oxidation/corrosion kinetics of Al. The results are quantified by model calculations. The obtained kinetic law for the oxide growth is in good agreement with a previous XPS study on plain Al films. This suggests that the nanohole-induced plasmon resonances can be a sensitive and simple measure for Al corrosion and metal corrosion in general.

  17. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars.

    PubMed

    Ren, Xingang; Cheng, Jiaqi; Zhang, Shaoqing; Li, Xinchen; Rao, Tingke; Huo, Lijun; Hou, Jianhui; Choy, Wallace C H

    2016-10-01

    The plasmon-optical effects have been utilized to optically enhance active layer absorption in organic solar cells (OSCs). The exploited plasmonic resonances of metal nanomaterials are typically from the fundamental dipole/high-order modes with narrow spectral widths for regional OSC absorption improvement. The conventional broadband absorption enhancement (using plasmonic effects) needs linear-superposition of plasmonic resonances. In this work, through strategic incorporation of gold nanostars (Au NSs) in between hole transport layer (HTL) and active layer, the excited plasmonic asymmetric modes offer a new approach toward broadband enhancement. Remarkably, the improvement is explained by energy transfer of plasmonic asymmetric modes of Au NS. In more detail, after incorporation of Au NSs, the optical power in electron transport layer transfers to active layer for improving OSC absorption, which otherwise will become dissipation or leakage as the role of carrier transport layer is not for photon-absorption induced carrier generation. Moreover, Au NSs simultaneously deliver plasmon-electrical effects which shorten transport path length of the typically low-mobility holes and lengthen that of high-mobility electrons for better balanced carrier collection. Meanwhile, the resistance of HTL is reduced by Au NSs. Consequently, power conversion efficiency of 10.5% has been achieved through cooperatively plasmon-optical and plasmon-electrical effects of Au NSs.

  18. From nano-plasmonic optics toward molecules bio-sensing

    NASA Astrophysics Data System (ADS)

    Su, Kai-Hung

    A systematic study on optical properties of nano-metallic particles was investigated. Nano metallic particle plasmon resonant peak wavelengths are significantly red-shifted from that of a single particle because of near-field coupling when two nano-particles are placed closer to each other. The shift decays approximately exponentially with increasing particle spacing and become negligible when the gap between the two particles exceeds about 2.5 times the particle short-axis length. While resonant peak of a finite 1D nano-particles chain is also significantly red-shifted, the peak wavelength is found to be non-monotonic and oscillating with the variation of the chain length. The results shown to occurs only for larger particles where phase retardation effects are important in plasmon coupling. Based on the coupling results from nano-particle interaction studies, we develop a new type of tunable plasmon resonance nano-particles, named tunable nano-plasmonic resonator (TNPR) which consists multi-layered Au/SiO2 nanodisks. Compared to single layered Au nanodisks, multilayered nanodisks TNPR exhibit several distinctive properties including significantly enhanced plasmon resonances and tunable resonance wavelengths which can be tailored to desired values by simply varying dielectric layer thickness while the particle diameter is kept constant. This tunable and augmented plasmon resonance holds a great potential in the applications of surface-enhanced Raman scattering (SERS). Characterized TNPR enhancement factor reaches as high as 4.7 x 10 10 for individual TNPRs, among the highest enhancement factor reported in single nanoparticle, indicating that our designed TNPR can serve as a great SERS active-substrate by matching the laser pumping frequency to maximize SERS enhancement. TNPR design was implemented for real bio-application. The sensitivity of non-optimized TNPR for in vitro proteolytic PSA assays reaches to 6pM. Compared to other cancer biomarker detection assays

  19. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    NASA Astrophysics Data System (ADS)

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-11-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices.

  20. Plasmonic metalens based on coupled resonators for focusing of surface plasmons

    PubMed Central

    Xu, Quan; Zhang, Xueqian; Xu, Yuehong; Li, Quan; Li, Yanfeng; Ouyang, Chunmei; Tian, Zhen; Gu, Jianqiang; Zhang, Wentao; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As an essential functionality, flexible focusing of surface plasmons (SPs) is of particular interest in nonlinear optics and highly integrated plasmonic circuitry. Here, we developed a versatile plasmonic metalens, a metasurface comprised of coupled subwavelength resonators, whose optical responses exhibit a remarkable feature of electromagnetically induced transparency (EIT). We demonstrate numerically and experimentally how a proper spatial design of the unit elements steers SPs to arbitrary foci based on the holographic principles. More specifically, we show how to control the interaction between the constituent EIT resonators to efficiently manipulate the focusing intensity of SPs. We also demonstrated that the proposed metalens is capable of achieving frequency division multiplexing. The power and simplicity of the proposed design would offer promising opportunities for practical plasmonic devices. PMID:27897221

  1. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    SciTech Connect

    Azad, Abul K; Chen, Houtong; Taylor, Antoinette; O' Hara, John F; Han, Jiaguang; Lu, Xinchao; Zhang, Weili

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  2. Aluminum-based hot carrier plasmonics

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Munday, Jeremy N.

    2017-01-01

    Aluminum has recently arisen as an excellent alternative plasmonic material due to its tunability, low optical loss, and CMOS compatibility. However, its use in optoelectronic applications has been limited due to Al oxidation. Herein, we report a semiconductor-free aluminum hot carrier device that exploits the self-terminating oxidation to create an interface barrier for high performance metal-insulator-transparent conducting oxide devices. We find a 300% enhancement of the responsivity compared to similarly reported Au-based devices, resulting in a responsivity up to ˜240 nA/W, and a clear dependence of the open-circuit voltage on incident photon energy. We show that further improvement can be obtained by coupling to plasmonic modes of a metal-insulator-metal structure composed of a nanowire array adjacent to a thin aluminum film, increasing light absorption by a factor of three and enabling tunability of the hot carrier response for improved device performance.

  3. Emerging Vocabulary Learning: From a Perspective of Activities Facilitated by Mobile Devices

    ERIC Educational Resources Information Center

    Hu, Zengning

    2013-01-01

    This paper examines the current mobile vocabulary learning practice to discover how far mobile devices are being used to support vocabulary learning. An activity-centered perspective is undertaken, with the consideration of new practice against existing theories of learning activities including behaviorist activities, constructivist activities,…

  4. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.

    PubMed

    Le, Khai Q; Abass, Aimi; Maes, Bjorn; Bienstman, Peter; Alù, Andrea

    2012-01-02

    We theoretically investigate and compare the influence of square silver gratings and one-dimensional photonic crystal (1D PC) based nanostructures on the light absorption of organic solar cells with a thin active layer. We show that, by integrating the grating inside the active layer, excited localized surface plasmon modes may cause strong field enhancement at the interface between the grating and the active layer, which results in broadband absorption enhancement of up to 23.4%. Apart from using silver gratings, we show that patterning a 1D PC on top of the device may also result in a comparable broadband absorption enhancement of 18.9%. The enhancement is due to light scattering of the 1D PC, coupling the incoming light into 1D PC Bloch and surface plasmon resonance modes.

  5. A general design rule to manipulate photocarrier transport path in solar cells and its realization by the plasmonic-electrical effect.

    PubMed

    Sha, Wei E I; Zhu, Hugh L; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C H

    2015-02-17

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics.

  6. A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect

    NASA Astrophysics Data System (ADS)

    Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.

    2015-02-01

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics.

  7. A General Design Rule to Manipulate Photocarrier Transport Path in Solar Cells and Its Realization by the Plasmonic-Electrical Effect

    PubMed Central

    Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.

    2015-01-01

    It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics. PMID:25686578

  8. Feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities

    PubMed Central

    Rovniak, Liza S.; Denlinger, LeAnn; Duveneck, Ellen; Sciamanna, Christopher N.; Kong, Lan; Freivalds, Andris; Ray, Chester A.

    2013-01-01

    Objectives This study aimed to evaluate the feasibility of using a compact elliptical device to increase energy expenditure during sedentary activities. A secondary aim was to evaluate if two accelerometers attached to the elliptical device could provide reliable and valid assessments of participants’ frequency and duration of elliptical device use. Design Physically inactive adults (n = 32, age range = 25–65) were recruited through local advertisements and selected using stratified random sampling based on sex, body mass index (BMI), and age. Methods Indirect calorimetry was used to assess participants’ energy expenditure while seated and while using the elliptical device at a self-selected intensity level. Participants also self-reported their interest in using the elliptical device during sedentary activities. Two Actigraph GT3X accelerometers were attached to the elliptical device to record time-use patterns. Results Participants expended a median of 179.1 kilocalories per hour while using the elliptical device (range = 108.2–269.0), or a median of 87.9 more kilocalories (range = 19.7–178.6) than they would expend per hour of sedentary sitting. Participants reported high interest in using the elliptical device during TV watching and computer work, but relatively low interest in using the device during office meetings. Women reported greater interest in using the elliptical device than men. The two accelerometers recorded identical time-use patterns on the elliptical device and demonstrated concurrent validity with time-stamped computer records. Conclusions Compact elliptical devices could increase energy expenditure during sedentary activities, and may provide proximal environmental cues for increasing energy expenditure across multiple life domains. PMID:24035273

  9. Proposal for a topological plasmon spin rectifier

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Drew, H. D.; Fuhrer, M. S.

    2011-01-01

    We propose a device in which the spin-polarized ac plasmon mode in the surface state of a topological insulator nanostructure induces a static spin accumulation in a resonant, normal metal structure coupled to it. Using a finite-difference time-domain model, we simulate this spin-pump mechanism with drift, diffusion, relaxation, and precession in a magnetic field. This optically driven system can serve as a dc "spin battery" for spintronic devices.

  10. Gain modulation by graphene plasmons in aperiodic lattice lasers

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Marshall, O. P.; Folland, T. G.; Kim, Y.-J.; Grigorenko, A. N.; Novoselov, K. S.

    2016-01-01

    Two-dimensional graphene plasmon-based technologies will enable the development of fast, compact, and inexpensive active photonic elements because, unlike plasmons in other materials, graphene plasmons can be tuned via the doping level. Such tuning is harnessed within terahertz quantum cascade lasers to reversibly alter their emission. This is achieved in two key steps: first, by exciting graphene plasmons within an aperiodic lattice laser and, second, by engineering photon lifetimes, linking graphene’s Fermi energy with the round-trip gain. Modal gain and hence laser spectra are highly sensitive to the doping of an integrated, electrically controllable, graphene layer. Demonstration of the integrated graphene plasmon laser principle lays the foundation for a new generation of active, programmable plasmonic metamaterials with major implications across photonics, material sciences, and nanotechnology.

  11. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    NASA Astrophysics Data System (ADS)

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications.

  12. Single-crystalline aluminum film for ultraviolet plasmonic nanolasers

    PubMed Central

    Chou, Bo-Tsun; Chou, Yu-Hsun; Wu, Yen-Mo; Chung, Yi-Cheng; Hsueh, Wei-Jen; Lin, Shih-Wei; Lu, Tien-Chang; Lin, Tzy-Rong; Lin, Sheng-Di

    2016-01-01

    Significant advances have been made in the development of plasmonic devices in the past decade. Plasmonic nanolasers, which display interesting properties, have come to play an important role in biomedicine, chemical sensors, information technology, and optical integrated circuits. However, nanoscale plasmonic devices, particularly those operating in the ultraviolet regime, are extremely sensitive to the metal and interface quality. Thus, these factors have a significant bearing on the development of ultraviolet plasmonic devices. Here, by addressing these material-related issues, we demonstrate a low-threshold, high-characteristic-temperature metal-oxide-semiconductor ZnO nanolaser that operates at room temperature. The template for the ZnO nanowires consists of a flat single-crystalline Al film grown by molecular beam epitaxy and an ultrasmooth Al2O3 spacer layer synthesized by atomic layer deposition. By effectively reducing the surface plasmon scattering and metal intrinsic absorption losses, the high-quality metal film and the sharp interfaces formed between the layers boost the device performance. This work should pave the way for the use of ultraviolet plasmonic nanolasers and related devices in a wider range of applications. PMID:26814581

  13. Plasmonics in atomically thin materials.

    PubMed

    García de Abajo, F Javier; Manjavacas, Alejandro

    2015-01-01

    The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared frequencies, as well as strong interaction with optical quantum emitters. Here, we present a simple analytical description of the optical response of such kinds of structures, which we exploit to investigate their application to light modulation and quantum optics. Specifically, we show that plasmons in one-atom-thick noble-metal layers can be used both to produce complete tunable optical absorption and to reach the strong-coupling regime in the interaction with neighboring quantum emitters. Our methods are applicable to any plasmon-supporting thin materials, and in particular, we provide parameters that allow us to readily calculate the response of silver, gold, and graphene islands. Besides their interest for nanoscale electro-optics, the present study emphasizes the great potential of these structures for the design of quantum nanophotonics devices.

  14. Plasmonic nanocrystal solar cells utilizing strongly confined radiation.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Rijal, Upendra; Bastola, Ebin; Uprety, Prakash; Liyanage, Geethika; Razgoniaev, Anton; Ostrowski, Alexis D; Zamkov, Mikhail

    2014-12-23

    The ability of metal nanoparticles to concentrate light via the plasmon resonance represents a unique opportunity for funneling the solar energy in photovoltaic devices. The absorption enhancement in plasmonic solar cells is predicted to be particularly prominent when the size of metal features falls below 20 nm, causing the strong confinement of radiation modes. Unfortunately, the ultrashort lifetime of such near-field radiation makes harvesting the plasmon energy in small-diameter nanoparticles a challenging task. Here, we develop plasmonic solar cells that harness the near-field emission of 5 nm Au nanoparticles by transferring the plasmon energy to band gap transitions of PbS semiconductor nanocrystals. The interfaces of Au and PbS domains were designed to support a rapid energy transfer at rates that outpace the thermal dephasing of plasmon modes. We demonstrate that central to the device operation is the inorganic passivation of Au nanoparticles with a wide gap semiconductor, which reduces carrier scattering and simultaneously improves the stability of heat-prone plasmonic films. The contribution of the Au near-field emission toward the charge carrier generation was manifested through the observation of an enhanced short circuit current and improved power conversion efficiency of mixed (Au, PbS) solar cells, as measured relative to PbS-only devices.

  15. Nanophotonics Based on Semiconductor-Photonic Crystal/Quantum Dot and Metal-/Semiconductor-Plasmonics

    NASA Astrophysics Data System (ADS)

    Asakawa, Kiyoshi; Sugimoto, Yoshimasa; Ikeda, Naoki; Tsuya, Daiju; Koide, Yasuo; Watanabe, Yoshinori; Ozaki, Nobuhiko; Ohkouchi, Shunsuke; Nomura, Tsuyoshi; Inoue, Daisuke; Matsui, Takayuki; Miura, Atsushi; Fujikawa, Hisayoshi; Sato, Kazuo

    This paper reviews our recent activities on nanophotonics based on a photonic crystal (PC)/quantum dot (QD)-combined structure for an all-optical device and a metal/semiconductor composite structure using surface plasmon (SP) and negative refractive index material (NIM). The former structure contributes to an ultrafast signal processing component by virtue of new PC design and QD selective-area-growth technologies, while the latter provides a new RGB color filter with a high precision and optical beam-steering device with a wide steering angle.

  16. Thermal limiting effects in optical plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.; Zakomirnyi, V. I.; Rasskazov, I. L.; Polyutov, S. P.

    2017-04-01

    We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW.

  17. Haptic device development based on electro static force of cellulose electro active paper

    NASA Astrophysics Data System (ADS)

    Yun, Gyu-young; Kim, Sang-Youn; Jang, Sang-Dong; Kim, Dong-Gu; Kim, Jaehwan

    2011-04-01

    Haptic is one of well-considered device which is suitable for demanding virtual reality applications such as medical equipment, mobile devices, the online marketing and so on. Nowadays, many of concepts for haptic devices have been suggested to meet the demand of industries. Cellulose has received much attention as an emerging smart material, named as electro-active paper (EAPap). The EAPap is attractive for mobile haptic devices due to its unique characteristics in terms of low actuation power, suitability for thin devices and transparency. In this paper, we suggest a new concept of haptic actuator with the use of cellulose EAPap. Its performance is evaluated depending on various actuation conditions. As a result, cellulose electrostatic force actuator shows a large output displacement and fast response, which is suitable for mobile haptic devices.

  18. MEMS Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2001-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) is currently under development at the NASA Glenn Research Center to meet this need. It uses a thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface. The device can be used strictly in the cooling mode, or it can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly are accomplished by wet etching and wafer bonding techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces and limited failure modes, and minimal induced vibration.

  19. Integrated Plasmonic Nanocircuits

    DTIC Science & Technology

    2013-09-23

    unsurpassable obstacle: The diffraction limit. Surface plasmon- polaritons (SPP) are easily accessible excitations, whose unique physical properties...naturally forms between two closely-spaced metallic electrodes can support strong standing wave resonances of surface plasmon- polaritons (SPPs). When...the planar ellipse sharing a common focus. In such a geometry, a beam of light can be generated by exciting surface plasmon polaritons (SPPs) at an

  20. Plasmonic electrodes for organic photovoltaics: polarization-independent absorption enhancement

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei; Kafafi, Zakya H.; Bartoli, Filbert J.

    2014-10-01

    We systematically investigate the optical and electrical properties of ultrathin two-dimensional (2D) Ag nanogratings (NGs), and explore their use as plasmonic transparent conducting electrodes in molecular organic photovoltaics (OPVs). A large broadband and polarization-insensitive optical absorption enhancement in the CuPc (copper phthalocyanine): PTCBI (perylene tetracarboxylic bisbenzimidazole) active light-harvesting layers is demonstrated using ultrathin 2D Ag NGs, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes.

  1. 78 FR 41065 - Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... HUMAN SERVICES Food and Drug Administration Agency Information Collection Activities; Proposed Collection; Comment Request; Medical Devices; Third-Party Review Under the Food and Drug Administration Modernization Act AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and...

  2. Water Pollution Scrubber Activity Simulates Pollution Control Devices.

    ERIC Educational Resources Information Center

    Kennedy, Edward C., III; Waggoner, Todd C.

    2003-01-01

    A laboratory activity caused students to think actively about water pollution. The students realized that it would be easier to keep water clean than to remove pollutants. They created a water scrubbing system allowing them to pour water in one end and have it emerge clean at the other end. (JOW)

  3. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  4. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future.

  5. Plasmonic band gap engineering of plasmon-exciton coupling.

    PubMed

    Karademir, Ertugrul; Balci, Sinan; Kocabas, Coskun; Aydinli, Atilla

    2014-10-01

    Controlling plasmon-exciton coupling through band gap engineering of plasmonic crystals is demonstrated in the Kretschmann configuration. When the flat metal surface is textured with a sinusoidal grating only in one direction, using laser interference lithography, it exhibits a plasmonic band gap because of the Bragg scattering of surface plasmon polaritons on the plasmonic crystals. The contrast of the grating profile determines the observed width of the plasmonic band gap and hence allows engineering of the plasmonic band gap. In this work, resonant coupling between the molecular resonance of a J-aggregate dye and the plasmonic resonance of a textured metal film is extensively studied through plasmonic band gap engineering. Polarization dependent spectroscopic reflection measurements probe the spectral overlap occurring between the molecular resonance and the plasmonic resonance. The results indicate that plasmon-exciton interaction is attenuated in the band gap region along the grating direction.

  6. Comparing wearable devices with wet and textile electrodes for activity recognition.

    PubMed

    Lokare, Namita; Gonzalez, Laura; Lobaton, Edgar

    2016-08-01

    This paper explores the idea of identifying activities from muscle activation which is captured by wearable ECG recording devices that use wet and textile electrodes. Most of the devices available today filter out the high frequency components to retain only the signal related to an ECG. We explain how the high frequency components that correspond to muscle activation can be extracted from the recorded signal and can be used to identify activities. We notice that is possible to obtain good performance for both the wet and dry electrodes. However, we observed that signals from the dry textile electrodes introduce less artifacts associated with muscle activation.

  7. Plasmonic nanoantenna hydrophones

    PubMed Central

    Maksymov, Ivan S.; Greentree, Andrew D.

    2016-01-01

    Ultrasound is a valuable biomedical imaging modality and diagnostic tool. Here we theoretically demonstrate that a single dipole plasmonic nanoantenna can be used as an optical hydrophone for MHz-range ultrasound. The nanoantenna is tuned to operate on a high-order plasmon mode, which provides an increased sensitivity to ultrasound in contrast to the usual approach of using the fundamental dipolar plasmon resonance. Plasmonic nanoantenna hydrophones may be useful for ultrasonic imaging of biological cells, cancer tissues or small blood vessels, as well as for Brillouin spectroscopy at the nanoscale. PMID:27612092

  8. Plasmonic colour generation

    NASA Astrophysics Data System (ADS)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.; Link, Stephan; Nordlander, Peter; Halas, Naomi J.; Mortensen, N. Asger

    2016-11-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk-hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.

  9. Plasmonics in buried structures.

    PubMed

    Romero, I; García de Abajo, F J

    2009-10-12

    We describe plasmon propagation in silica-filled coupled nanovoids fully buried in gold. Propagation bands and band gaps are shown to be tunable through the degree of overlap and plasmon hybridization between contiguous voids. The effect of disorder and fabrication imperfections is thoroughly investigated. Our work explores a novel paradigm for plasmon photonics relying on plasmon modes in metal-buried structures, which can benefit from long propagation distances, cancelation of radiative losses, minimum crosstalk between neighboring waveguides, and maximum optical integration in three-dimensional arrangements.

  10. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity.

    PubMed

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-09-11

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

  11. High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity

    NASA Astrophysics Data System (ADS)

    Li, Qian; Li, Zhifeng; Li, Ning; Chen, Xiaoshuang; Chen, Pingping; Shen, Xuechu; Lu, Wei

    2014-09-01

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.

  12. On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position

    PubMed Central

    2016-01-01

    The ability to confine and manipulate light below the diffraction limit is a major goal of future multifunctional optoelectronic/plasmonic systems. Here, we demonstrate the design and realization of a tunable and localized electrical source of excitons coupled to surface plasmons based on a polymer light-emitting field-effect transistor (LEFET). Gold nanorods that are integrated into the channel support localized surface plasmons and serve as nanoantennas for enhanced electroluminescence. By precise spatial control of the near-infrared emission zone in the LEFET via the applied voltages the near-field coupling between electrically generated excitons and the nanorods can be turned on or off as visualized by a change of electroluminescence intensity. Numerical calculations and spectroscopic measurements corroborate significant local electroluminescence enhancement due to the high local density of photonic states in the vicinity of the gold nanorods. Importantly, the integration of plasmonic nanostructures hardly influences the electrical performance of the LEFETs, thus, highlighting their mutual compatibility in novel active plasmonic devices. PMID:26878028

  13. A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers

    PubMed Central

    2015-01-01

    We present a general route for the transfer of Au and Ag nanoparticles of different shapes and sizes, from water into various organic solvents. The experimental conditions for each type of nanoparticles were optimized by using a combination of thiolated poly(ethylene glycol) and a hydrophobic capping agent, such as dodecanethiol. The functionalized nanoparticles were readily transferred into organic dispersions with long-term stability (months). Such organic dispersions efficiently spread out on water, leading to self-assembly at the air/liquid interface into extended nanoparticle arrays which could in turn be transferred onto solid substrates. The dense close packing in the obtained nanoparticle monolayers results in extensive plasmon coupling, rendering them efficient substrates for surface-enhanced Raman scattering spectroscopy. PMID:26258732

  14. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-08

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices.

  15. Distillation of photon entanglement using a plasmonic metamaterial.

    PubMed

    Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki

    2015-12-16

    Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks.

  16. Distillation of photon entanglement using a plasmonic metamaterial

    PubMed Central

    Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö.; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki

    2015-01-01

    Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790

  17. Plasmonics in the UV range with Rhodium nanocubes

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Gutiérrez, Y.; Li, P.; Barreda, Á. I.; Watson, A. M.; Alcaraz de la Osa, R.; Finkelstein, G.; González, F.; Ortiz, D.; Saiz, J. M.; Sanz, J. M.; Everitt, H. O.; Liu, J.; Moreno, F.

    2016-04-01

    Plasmonics in the UV-range constitutes a new challenge due to the increasing demand to detect, identify and destroy biological toxins, enhance biological imaging, and characterize semiconductor devices at the nanometer scale. Silver and aluminum have an efficient plasmonic performance in the near UV region, but oxidation reduces its performance in this range. Recent studies point out rhodium as one of the most promising metals for this purpose: it has a good plasmonic response in the UV and, as gold in the visible, it presents a low tendency to oxidation. Moreover, its easy fabrication through chemical means and its potential for photocatalytic applications, makes this material very attractive for building plasmonic tools in the UV. In this work, we will show an overview of our recent collaborative research with rhodium nanocubes (NC) for Plasmonics in the UV.

  18. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    NASA Astrophysics Data System (ADS)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  19. Measurements of the PLT and PDX device activation

    SciTech Connect

    Stavely, J.; Barnes, C.W.; Chrien, R.E.; Strachan, J.D.

    1981-09-01

    Measurements of the activation levels around the PLT and PDX tokamaks have been made using a Ge(Li) gamma spectrometer and a Geiger counter. The activation results from radiation induced in the plasma by 14 MeV neutrons from the d(t,n)..cap alpha.. fusion reaction, 14.7 MeV protons from the d(/sup 3/He,p)..cap alpha.. fusion reaction, 10 ..-->.. 20 MeV hard x-rays from runaway electron induced bremmstrahlung, and 2.5 MeV neutrons from the d(d,n)/sup 3/He fusion reaction. The magnitude of the activation is compared to that predicted for PDX on the basis of one-dimensional activation codes.

  20. Active devices based on organic semiconductors for wearable applications.

    PubMed

    Barbaro, Massimo; Caboni, Alessandra; Cosseddu, Piero; Mattana, Giorgio; Bonfiglio, Annalisa

    2010-05-01

    Plastic electronics is an enabling technology for obtaining active (transistor based) electronic circuits on flexible and/or nonplanar surfaces. For these reasons, it appears as a perfect candidate to promote future developments of wearable electronics toward the concept of fabrics and garments made by functional (in this case, active electronic) yarns. In this paper, a panoramic view of recent achievements and future perspectives is given.

  1. Plasmonic filters.

    SciTech Connect

    Passmore, Brandon Scott; Shaner, Eric Arthur; Barrick, Todd A.

    2009-09-01

    Metal films perforated with subwavelength hole arrays have been show to demonstrate an effect known as Extraordinary Transmission (EOT). In EOT devices, optical transmission passbands arise that can have up to 90% transmission and a bandwidth that is only a few percent of the designed center wavelength. By placing a tunable dielectric in proximity to the EOT mesh, one can tune the center frequency of the passband. We have demonstrated over 1 micron of passive tuning in structures designed for an 11 micron center wavelength. If a suitable midwave (3-5 micron) tunable dielectric (perhaps BaTiO{sub 3}) were integrated with an EOT mesh designed for midwave operation, it is possible that a fast, voltage tunable, low temperature filter solution could be demonstrated with a several hundred nanometer passband. Such an element could, for example, replace certain components in a filter wheel solution.

  2. An adaptive Hidden Markov Model for activity recognition based on a wearable multi-sensor device

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human activity recognition is important in the study of personal health, wellness and lifestyle. In order to acquire human activity information from the personal space, many wearable multi-sensor devices have been developed. In this paper, a novel technique for automatic activity recognition based o...

  3. Harnessing surface plasmons for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  4. Vivid, full-color aluminum plasmonic pixels

    PubMed Central

    Olson, Jana; Manjavacas, Alejandro; Liu, Lifei; Chang, Wei-Shun; Foerster, Benjamin; King, Nicholas S.; Knight, Mark W.; Nordlander, Peter; Halas, Naomi J.; Link, Stephan

    2014-01-01

    Aluminum is abundant, low in cost, compatible with complementary metal-oxide semiconductor manufacturing methods, and capable of supporting tunable plasmon resonance structures that span the entire visible spectrum. However, the use of Al for color displays has been limited by its intrinsically broad spectral features. Here we show that vivid, highly polarized, and broadly tunable color pixels can be produced from periodic patterns of oriented Al nanorods. Whereas the nanorod longitudinal plasmon resonance is largely responsible for pixel color, far-field diffractive coupling is used to narrow the plasmon linewidth, enabling monochromatic coloration and significantly enhancing the far-field scattering intensity of the individual nanorod elements. The bright coloration can be observed with p-polarized white light excitation, consistent with the use of this approach in display devices. The resulting color pixels are constructed with a simple design, are compatible with scalable fabrication methods, and provide contrast ratios exceeding 100:1. PMID:25225385

  5. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  6. Graphene on plasmonic metamaterials for infrared detection

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Shimatani, Masaaki; Matsumoto, Kazuhiko

    2016-05-01

    Graphene consists of a single layer of carbon atoms with a two-dimensional hexagonal lattice structure. Recently, it has been the subject of increasing interest due to its excellent optoelectronic properties and interesting physics. Graphene is considered to be a promising material for use in optoelectronic devices due to its fast response and broadband capabilities. However, graphene absorbs only 2.3% of incident white light, which limits the performance of photodetectors based on it. One promising approach to enhance the optical absorption of graphene is the use of plasmonic resonance. The field of plasmonics has been receiving considerable attention from the viewpoint of both fundamental physics and practical applications, and graphene plasmonics has become one of the most interesting topics in optoelectronics. In the present study, we investigated the optical properties of graphene on a plasmonic metamaterial absorber (PMA). The PMA was based on a metal-insulator-metal structure, in which surface plasmon resonance was induced. The graphene was synthesized by chemical vapor deposition and transferred onto the PMA, and the reflectance of the PMA in the infrared (IR) region, with and without graphene, was compared. The presence of the graphene layer was found to lead to significantly enhanced absorption only at the main plasmon resonance wavelength. The localized plasmonic resonance induced by the PMA enhanced the absorption of graphene, which was attributed to the enhancement of the total absorption of the PMA with graphene. The results obtained in the present study are expected to lead to improvements in the performance of graphene-based IR detectors.

  7. Plasmonic nanostructures to enhance catalytic performance of zeolites under visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Xingguang; Ke, Xuebin; Du, Aijun; Zhu, Huaiyong

    2014-01-01

    Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations. The polarized electric fields can be further intensified by the electric near-field enhancement of Au-NPs, which results from the localized surface plasmon resonance (LSPR) upon visible light irradiation. The acetalization reaction was selected as a showcase performed on MZSM-5 and Au/MZSM-5 (M = H+, Na+, Ca2+, or La3+). The density functional theory (DFT) calculations confirmed that the intensified polarized electric fields played a critical role in stretching the C = O bond of the reactants of benzaldehyde to enlarge their molecular polarities, thus allowing reactants to be activated more efficiently by catalytic centers so as to boost the reaction rates. This discovery should evoke intensive research interest on plasmonic metals and diverse zeolites with an aim to take advantage of sunlight for plasmonic devices, molecular electronics, energy storage, and catalysis.

  8. Ag nanoparticle-blended plasmonic organic solar cells: performance enhancement or detraction?

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Mathews, Nripan; Sum, Tze Chien

    2014-03-01

    The blending of metallic nanoparticles into the active layer of organic solar cells in a bid to enhance their light absorption and device performance has led to controversial reports of both efficiency enhancement and degradation. Herein, through comprehensive transient absorption spectroscopy, we present clear evidence of traps being responsible for performance degradation of poly (3-hexylthiophene): [6,6]-phenyl-C 61-butyric acid methyl ester organic photovoltaic devices incorporated with oleylamine-capped silver nanoparticles. Although the presence of the metallic nanoparticles leads to more excitons being generated in the active layer, higher losses suffered by the polaron population through trap-assisted recombination strongly limits the device performance. Device modeling based on a single mid-gap trap state introduced by the AgNPs can well reproduce the current-voltage curves of the plasmonic organic solar cells - in agreement with the transient absorption findings. These new insights into the photophysics and charge dynamics of plasmonic organic solar cells would help resolve the existing controversy and provide clear guidelines for device design and fabrication.

  9. Re-active Passive (RAP) Devices for Control of Noise Transmission through a Panel

    NASA Technical Reports Server (NTRS)

    Carneal, James P.; Giovanardi, Marco; Fuller, Chris R.; Palumbo, Daniel L.

    2008-01-01

    Re-Active Passive (RAP) devices have been developed to control low frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The RAP device uses passive constrained layer damping to cover the relatively high frequency range (>200 Hz), reactive distributed vibration absorber) to cover the medium frequency range (75 to 250 Hz), and active control for controlling low frequencies (<200 Hz). The device was applied to control noise transmission through a panel mounted in a transmission loss test facility. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three RAP devices were able to increase the overall broadband (15-1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 grams to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.

  10. Controlled mode tuning in 1-D 'RIM' plasmonic crystal trench cavities probed with coupled optical emitters.

    PubMed

    Liu, Tsung-li; Russell, Kasey J; Cui, Shanying; Hu, Evelyn L

    2013-12-02

    We present a design of plasmonic cavities that consists of two sets of 1-D plasmonic crystal reflectors on a plasmonic trench waveguide. A 'reverse image mold' (RIM) technique was developed to pattern high-resolution silver trenches and to embed emitters at the cavity field maximum, and FDTD simulations were performed to analyze the frequency response of the fabricated devices. Distinct cavity modes were observed from the photoluminescence spectra of the organic dye embedded within these cavities. The cavity geometry facilitates tuning of the modes through a change in cavity dimensions. Both the design and the fabrication technique presented could be extended to making trench waveguide-based plasmonic devices and circuits.

  11. Plasmon field effect transistor: A novel sensing platform for biomedical applications

    NASA Astrophysics Data System (ADS)

    Shokri Kojori, Hossein

    The interest in plasmons, associated with nanostructured metals, has remarkably increased in the past decade. A Recent improvement in fabrication techniques to create well-controlled nanostructures also contributed to the rapid development of plasmonic applications, such as meta-materials, nonlinear optics, photovoltaic devices, biomedical sensors, medical therapies and spectroscopy. The surface plasmon resonance (SPR) sensor is one of the successful applications, which is widely used in biomedical research. On the other hand, localized surface plasmon resonance (LSPR) is also widely studied in a broad range of applications. The distinct property of LSPR is a tailored and sharp absorption/scattering peaks depending on the shape and sizes of the metal nanostructures. In addition, plasmonics can enable integration of high speed optical circuit by taking the advantages from the current electronics and optics technologies. Thus, plasmonics is considered as a solution for the next generation systems that offers ultra-high speed data processing. In this dissertation, we will introduce a novel plasmon field effect transistor (FET) that enables direct detection and efficient amplification of plasmon energy. This FET has several advantages such as electrical isolation of plasmon absorber nanostructures from a sensing and drug screening. Currently, we have proof of concept for the antigen-antibody bonding using the plasmon field effect transistor. We will develop a multiplexing capable plasmon FET sensing platform by integrating an array of plasmon FETs with microfluidic channels to detect cancer biomarkers.

  12. A hybrid plasmonic waveguide terahertz quantum cascade laser

    SciTech Connect

    Degl'Innocenti, Riccardo Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A.

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  13. Radiofrequency identification and medical devices: the regulatory framework on electromagnetic compatibility. Part II: active implantable medical devices.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Bartolini, Pietro; Calcagnini, Giovanni

    2012-05-01

    The number and the types of electromagnetic emitters to which patients with active implantable medical devices (AIMD) are exposed to in their daily activities have proliferated over the last decade. Radiofrequency identification (RFID) is an example of wireless technology applied in many fields. The interaction between RFID emitters and AIMD is an important issue for patients, industry and regulators, because of the risks associated with such interactions. The different AIMDs refer to different standards that address the electromagnetic immunity issue in different ways. Indeed, different test setups, immunity levels and rationales are used to guarantee that AIMDs are immune to electromagnetic nonionizing radiation. In this article, the regulatory framework concerning electromagnetic compatibility between RFID systems and AIMDs is analyzed to understand whether and how the application of the current AIMD standards allows for the effective control of the possible risks associated with RFID technology.

  14. Plasmonic nanorod absorbers as orientation sensors

    PubMed Central

    Chang, Wei-Shun; Ha, Ji Won; Slaughter, Liane S.; Link, Stephan

    2010-01-01

    Nanoparticles are actively exploited as biological imaging probes. Of particular interest are gold nanoparticles because of their nonblinking and nonbleaching absorption and scattering properties that arise from the excitation of surface plasmons. Nanoparticles with anisotropic shapes furthermore provide information about the probe orientation and its environment. Here we show how the orientation of single gold nanorods (25 × 73 nm) can be determined from both the transverse and longitudinal surface plasmon resonance by using polarization-sensitive photothermal imaging. By measuring the orientation of the same nanorods separately using scanning electron microscopy, we verified the high accuracy of this plasmon-absorption-based technique. However, care had to be taken when exciting the transverse plasmon absorption using a large numerical aperture objective as out-of-plane plasmon oscillations were also excited then. For the size regime studied here, being able to establish the nanorod orientation from the transverse mode is unique to photothermal imaging and almost impossible with conventional dark-field scattering spectroscopy. This is important because the transverse surface plasmon resonance is mostly insensitive to the medium refractive index and nanorod aspect ratio allowing nanorods of any length to be used as orientation sensors without changing the laser frequency. PMID:20133646

  15. Organic solar cells with plasmonic layers formed by laser nanofabrication.

    PubMed

    Beliatis, Michail J; Henley, Simon J; Han, Seungjin; Gandhi, Keyur; Adikaari, A A D T; Stratakis, Emmanuel; Kymakis, Emmanuel; Silva, S Ravi P

    2013-06-07

    A method for the synthesis of metal nanoparticle coatings for plasmonic solar cells which can meet large scale industrial demands is demonstrated. A UV pulsed laser is utilized to fabricate Au and Ag nanoparticles on the surface of polymer materials which form the substrates for plasmonic organic photovoltaic devices to enhance their performance. Control of the particles' size and density is demonstrated. The optical and electrical effects of these embedded particles on the power conversion efficiency are examined rigorously using both experimental and computer simulation. Gold nanoparticles of particular size and spatial distribution enhance the device efficiency. Based on our findings, we propose design considerations for utilizing the entire AM1.5 spectrum using plasmonic structures towards enhancing the efficiency of polymer solar cells using broad spectrum plasmonics.

  16. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  17. Surface plasmon resonance enhanced visible-light-driven photocatalytic activity in Cu nanoparticles covered Cu2O microspheres for degrading organic pollutants

    NASA Astrophysics Data System (ADS)

    Cheng, Yahui; Lin, Yuanjing; Xu, Jianping; He, Jie; Wang, Tianzhao; Yu, Guojun; Shao, Dawei; Wang, Wei-Hua; Lu, Feng; Li, Lan; Du, Xiwen; Wang, Weichao; Liu, Hui; Zheng, Rongkun

    2016-03-01

    Micron-sized Cu2O with different coverage of Cu nanoparticles (NPs) on the sphere has been synthesized by a redox procedure. The absorption spectra show that Cu NPs induce the surface plasmon resonance (SPR) at the wavelength of ∼565 nm. Methylene blue (MB) photodegrading experiments under visible-light display that the Cu2O-Cu-H2O2 system exhibits a superior photocatalytic activity to Cu2O-H2O2 or pure H2O2 with an evident dependency on Cu coverage. The maximum photodegradation rate is 88% after visible-light irradiating for 60 min. The role of the Cu NPs is clarified through photodegradation experiments under 420 nm light irradiation, which is different from the SPR wavelength of Cu NPs (∼565 nm). By excluding the SPR effect, it proves that Cu SPR plays a key role in the photodegradation. Besides, a dark catalytic activity is observed stemming from the Fenton-like reaction with the aid of H2O2. The radical quenching experiments indicate that both •O2- and •OH radicals contribute to the photocatalysis, while the dark catalysis is only governed by the •OH radicals, leading to a lower activity comparing with the photocatalysis. Therefore, with introducing Cu NPs and H2O2, the Cu2O-based photocatalytic activity could be significantly improved due to the SPR effect and dark catalysis.

  18. Dynamic plasmonic colour display

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-02-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.

  19. Dynamic plasmonic colour display

    PubMed Central

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-01-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications. PMID:28232722

  20. On a portable memory device for physical activities and informations of maternal perception.

    PubMed

    Hasegawa, T; Horio, H; Makikawa, M; Bunki, H; Sasaki, K; Utsu, M; Sakakibara, S; Kanzaki, T; Kobayashi, H; Chiba, Y

    1988-01-01

    The condition of patients must be known to attending doctors for adequate management of a disease, particularly of high risk pregnancy. For this purpose, we have developed a portable computerized disease condition memory device to record the physical activities with maternal perception of fetal movement and uterine condition in daily life, both at home and during work. This device taken out by the patient is a small battery-driven CMOS 8 bit computer system (size: 107 x 80 x 30 mm, 240 g) and is equipped with push-botton switches on the upper side and a mercury switch inside it. The time of maternal perception of fetal movement and uterine contraction are recorded by the patient pressing the corresponding switch. Meanwhile the mercury switch serves as a acceleration sensor and the physical activities were measured by counting ON-OFF actions of the mercury switch caused by her movements. Consequently, the device has recorded physical activities automatically by wearing this unit all day long. The continuously recordable time is more than two weeks. The evaluation about the sensitivity of physical activity measurement has indicated that the mercury switch sensor was well related to the oxygen consumption rate in rest and mild exercise. Using this device to five pregnant women, the data showed the quantitative difference in physical activities between rest in bed and normal home life, and daily changes could be clearly observed. From these results, the physical activities and the condition of the patient in daily life can be followed by this device.

  1. Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion

    NASA Astrophysics Data System (ADS)

    Narang, Prineha; Sundararaman, Ravishankar; Atwater, Harry A.

    2016-06-01

    Surface plasmons provide a pathway to efficiently absorb and confine light in metallic nanostructures, thereby bridging photonics to the nano scale. The decay of surface plasmons generates energetic `hot' carriers, which can drive chemical reactions or be injected into semiconductors for nano-scale photochemical or photovoltaic energy conversion. Novel plasmonic hot carrier devices and architectures continue to be demonstrated, but the complexity of the underlying processes make a complete microscopic understanding of all the mechanisms and design considerations for such devices extremely challenging.Here,we review the theoretical and computational efforts to understand and model plasmonic hot carrier devices.We split the problem into three steps: hot carrier generation, transport and collection, and review theoretical approaches with the appropriate level of detail for each step along with their predictions.We identify the key advances necessary to complete the microscopic mechanistic picture and facilitate the design of the next generation of devices and materials for plasmonic energy conversion.

  2. Design of a continuous passive and active motion device for hand rehabilitation.

    PubMed

    Birch, B; Haslam, E; Heerah, I; Dechev, N; Park, E J

    2008-01-01

    This paper presents the design of a novel, portable device for hand rehabilitation. The device provides for CPM (continuous passive motion) and CAM (continuous active motion) hand rehabilitation for patients recovering from damage such as flexor tendon repair and strokes. The device is capable of flexing/extending the MCP (metacarpophalangeal) and PIP (proximal interphalangeal) joints through a range of motion of 0 degrees to 90 degrees for both the joints independently. In this way, typical hand rehabilitation motions such as intrinsic plus, intrinsic minus, and a fist can be achieved without the need of any splints or attachments. The CPM mode is broken into two subgroups. The first mode is the use of preset waypoints for the device to cycle through. The second mode involves motion from a starting position to a final position, but senses the torque from the user during the cycle. Therefore the user can control the ROM by resisting when they are at the end of the desired motion. During the CPM modes the device utilizes a minimum jerk trajectory model under PD control, moving smoothly and accurately between preselected positions. CAM is the final mode where the device will actively resist the movement of the user. The user moves from a start to end position while the device produces a torque to resist the motion. This active resistance motion is a unique ability designed to mimic the benefits of a human therapist. Another unique feature of the device is its ability to independently act on both the MCP and PIP joints. The feedback sensing built into the device makes it capable of offering a wide and flexible range of rehabilitation programs for the hand.

  3. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.

    PubMed

    Zhu, Jinfeng; Xue, Mei; Hoekstra, Ryan; Xiu, Faxian; Zeng, Baoqing; Wang, Kang L

    2012-03-21

    We propose an optoelectronic model to investigate polymer solar cells with plasmonic nanoparticles. The optical properties of the plasmonic active layers, approximated by the effective medium theory, are combined with the organic semiconductor model. The simulation suggests the enhancement on short-circuit photocurrent is due to light concentration and redistribution by particle plasmons.

  4. Monolithic microwave integrated circuit devices for active array antennas

    NASA Technical Reports Server (NTRS)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  5. Effects of a Physical Education Supportive Curriculum and Technological Devices on Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily Dean; Sullivan, Eileen C.; Ciccomascolo, Lori E.

    2015-01-01

    The purpose of this study was to examine the effects of a physical education supportive curriculum and technological devices, heart rate monitor (HRM) and pedometer (PED), on physical activity. A single-subject ABAB research design was used to examine amount and level of participation in physical activity among 106 suburban fourth and fifth…

  6. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches

    PubMed Central

    Unser, Sarah; Bruzas, Ian; He, Jie; Sagle, Laura

    2015-01-01

    Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure biomolecular interactions, several challenges remain. In this article, we have categorized these challenges into four categories: improving sensitivity and limit of detection, selectivity in complex biological solutions, sensitive detection of membrane-associated species, and the adaptation of sensing elements for point-of-care diagnostic devices. The first section of this article will involve a conceptual discussion of surface plasmon resonance and the factors affecting changes in optical signal detected. The following sections will discuss applications of LSPR biosensing with an emphasis on recent advances and approaches to overcome the four limitations mentioned above. First, improvements in limit of detection through various amplification strategies will be highlighted. The second section will involve advances to improve selectivity in complex media through self-assembled monolayers, “plasmon ruler” devices involving plasmonic coupling, and shape complementarity on the nanoparticle surface. The following section will describe various LSPR platforms designed for the sensitive detection of membrane-associated species. Finally, recent advances towards multiplexed and microfluidic LSPR-based devices for inexpensive, rapid, point-of-care diagnostics will be discussed. PMID:26147727

  7. Complement activation by candidate biomaterials of an implantable microfabricated medical device.

    PubMed

    Sokolov, Andrey; Hellerud, Bernt C; Pharo, Anne; Johannessen, Erik A; Mollnes, Tom E

    2011-08-01

    Implantable devices realized by microfabrication have introduced a new class of potential biomaterials whose properties would need to be assessed. Such devices include sensors for measuring biological substances like glucose. Thus, 14 different candidate materials intended for design of such a device were investigated with respect to their complement activation potential in human serum. The fluid-phase activation was measured by the products C4d, Bb, C3bc, and the terminal complement complex (TCC), whereas solid-phase activation was measured by deposition of TCC on the material surfaces. No fluid-phase activation was found for materials related to the capsule, carrier, or sealing. Fluid-phase activation was, however, triggered to a various extent in three of the four nanoporous membranes (cellulose, polyamide, and aluminium oxide), whereas polycarbonate was rendered inactive. Solid-phase activation discriminated more sensitively between all the materials, revealing that the capsule candidate polydimethylsiloxane and sealing candidate silicone 3140 were highly compatible, showing significantly lower TCC deposition than the negative control (p < 0.01). Three of the candidate materials were indifferent, whereas the remaining nine showed significantly higher deposition of TCC than the negative control (p < 0.01). In conclusion, complement activation, in particular when examined on the solid phase, discriminated well between the different candidate materials tested and could be used as a guide for the selection of the best-suited materials for further investigation and development of the device.

  8. A Robust and Device-Free System for the Recognition and Classification of Elderly Activities

    PubMed Central

    Li, Fangmin; Al-qaness, Mohammed Abdulaziz Aide; Zhang, Yong; Zhao, Bihai; Luan, Xidao

    2016-01-01

    Human activity recognition, tracking and classification is an essential trend in assisted living systems that can help support elderly people with their daily activities. Traditional activity recognition approaches depend on vision-based or sensor-based techniques. Nowadays, a novel promising technique has obtained more attention, namely device-free human activity recognition that neither requires the target object to wear or carry a device nor install cameras in a perceived area. The device-free technique for activity recognition uses only the signals of common wireless local area network (WLAN) devices available everywhere. In this paper, we present a novel elderly activities recognition system by leveraging the fluctuation of the wireless signals caused by human motion. We present an efficient method to select the correct data from the Channel State Information (CSI) streams that were neglected in previous approaches. We apply a Principle Component Analysis method that exposes the useful information from raw CSI. Thereafter, Forest Decision (FD) is adopted to classify the proposed activities and has gained a high accuracy rate. Extensive experiments have been conducted in an indoor environment to test the feasibility of the proposed system with a total of five volunteer users. The evaluation shows that the proposed system is applicable and robust to electromagnetic noise. PMID:27916948

  9. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  10. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Ma, Lingwei; Li, Jianghao; Zhang, Zhengjun

    2017-03-01

    We present a careful numerical study of nanoparticle (NP) faceting, highlighting the great influence of small morphological changes of NP-mirror cavities on near-field enhancement in the nanoparticle-on-mirror (NPOM) system. Using a 3D finite element method (FEM) plasmon mapping method, the active transverse cavity modes can be confirmed. For the dominant mode, we have found that, by increasing the facet width, the resonance can be tuned linearly to the red with little decrease of the peak near-field intensity. It is further demonstrated that by increasing the NP size, the near-field intensity can be strongly enhanced. Understanding of such extreme optics benefits significantly both the optimized design of potential plasmonic devices and the fundamental understanding of nano-optics. Collaborative experimental considerations are expected with the rapid development of nanotechnology.

  11. Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics.

    PubMed

    Bai, Wenli; Gan, Qiaoqiang; Song, Guofeng; Chen, Lianghui; Kafafi, Zakya; Bartoli, Filbert

    2010-11-08

    We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.

  12. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement.

    PubMed

    Huang, Yu; Ma, Lingwei; Li, Jianghao; Zhang, Zhengjun

    2017-03-10

    We present a careful numerical study of nanoparticle (NP) faceting, highlighting the great influence of small morphological changes of NP-mirror cavities on near-field enhancement in the nanoparticle-on-mirror (NPOM) system. Using a 3D finite element method (FEM) plasmon mapping method, the active transverse cavity modes can be confirmed. For the dominant mode, we have found that, by increasing the facet width, the resonance can be tuned linearly to the red with little decrease of the peak near-field intensity. It is further demonstrated that by increasing the NP size, the near-field intensity can be strongly enhanced. Understanding of such extreme optics benefits significantly both the optimized design of potential plasmonic devices and the fundamental understanding of nano-optics. Collaborative experimental considerations are expected with the rapid development of nanotechnology.

  13. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene

    NASA Astrophysics Data System (ADS)

    Ni, G. X.; Wang, L.; Goldflam, M. D.; Wagner, M.; Fei, Z.; McLeod, A. S.; Liu, M. K.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A. H.; Hone, J.; Fogler, M. M.; Basov, D. N.

    2016-04-01

    The success of metal-based plasmonics for manipulating light at the nanoscale has been empowered by imaginative designs and advanced nano-fabrication. However, the fundamental optical and electronic properties of elemental metals, the prevailing plasmonic media, are difficult to alter using external stimuli. This limitation is particularly restrictive in applications that require modification of the plasmonic response at sub-picosecond timescales. This handicap has prompted the search for alternative plasmonic media, with graphene emerging as one of the most capable candidates for infrared wavelengths. Here we visualize and elucidate the properties of non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer. We activate plasmons with femtosecond optical pulses in a specimen of graphene that otherwise lacks infrared plasmonic response at equilibrium. In combination with static nano-imaging results on plasmon propagation, our infrared pump-probe nano-spectroscopy investigation reveals new aspects of carrier relaxation in heterostructures based on high-purity graphene.

  14. THE EFFECT OF DOUBLE VERSUS SINGLE OSCILLATING EXERCISE DEVICES ON TRUNK AND LIMB MUSCLE ACTIVATION

    PubMed Central

    Arora, Shruti; Button, Duane C.; Basset, Fabien A.

    2013-01-01

    Purpose/Background: Proper strengthening of the core and upper extremities is important for muscular health, performance, and rehabilitation. Exercise devices have been developed that attempt to disrupt the center of gravity in order to activate the trunk stabilizing muscles. The objective of this study was to analyze the trunk and shoulder girdle muscle activation with double and single oscillating exercise devices (DOD and SOD respectively) in various planes. Methods: Twelve male subjects performed three interventions using both devices under randomized conditions: single-handed vertical orientation of DOD and SOD to produce 1) medio-lateral oscillation in the frontal plane 2) dorso-ventral oscillation in the sagittal plane and 3) single-handed horizontal orientation for superior and inferior oscillation in the transverse plane. Electromyographic (EMG) activity during the interventions of the anterior deltoid, triceps brachii, biceps brachii, forearm flexors as well as lower abdominal and back stabilizer muscles was collected, and were normalized to maximal voluntary contractions. A two way repeated measures ANOVA (2x3) was conducted to assess the influence of the devices and movement planes on muscle activation. Results: The DOD provided 35.9%, 40.8%, and 52.3% greater anterior deltoid, transverse abdominus (TA)/internal oblique (IO) and lumbo-sacral erector spinae (LSES) activation than did the SOD respectively. Effect size calculations revealed that these differences were of moderate to large magnitude (0.86, 0.48, and 0.61 respectively). There were no significant differences in muscular activation achieved between devices for the triceps brachii, biceps brachii and forearm flexor muscles. Exercise in the transverse plane resulted in 30.5%, 29.5%, and 19.5% greater activation than the sagittal and 21.8%, 17.2%, and 26.3% greater activation than the frontal plane for the anterior deltoid, TA/IO and LSES respectively. Conclusions: A DOD demonstrated greater

  15. Device and software used to carry out Cyclic Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Castro-García, M. P.; Rey-Ronco, M. A.; Alonso-Sánchez, T.

    2014-11-01

    This paper discusses the device and software used to carry out Cyclic Neutron Activation Analysis (CNAA). The aim of this investigation is defining through this device the fluorite content present on different samples from fluorspar concentration plant through the DGNAA (Delayed Gamma Neutron Activation Analysis) method. This device is made of americium-beryllium neutron source, NaI (2"×2") and BGO (2"×2") gamma rays detectors, multichannel and an automatic mechanism which moves the samples from activation and reading position. This mechanism is controlled by a software which allows moving the samples precisely and in a safe way (~ms), which it is very useful when the radioactive isotopes have to be detected with a half time less than 8s.

  16. Effect of the additional anode layers on the absorption enhancement characteristic of plasmonic organic solar cells

    NASA Astrophysics Data System (ADS)

    Yoo, Sanghyuk; Kim, Jungho

    2014-12-01

    We numerically investigate the effect of additional anode layers on the absorption enhancement characteristic of pyramidal-grating plasmonic organic solar cells (OSCs) using the finite element method. The behaviors of the plasmonic absorption enhancement are compared between a “simple” structure consisting of only the active and metal cathode layers and a “practical” structure with the additional anode layers. The plasmonic absorption enhancement is identified by comparing the polarization-dependent absorbance spectra between the planar and plasmonic OSCs. When the active-layer thickness is small, the plasmonic resonance condition changes owing to the addition of the anode layers. When the active-layer thickness is large, the plasmonic resonance condition and corresponding absorption behavior show a slight difference irrespective of the inclusion of the additional anode layers. Therefore, the additional anode layers should be included in the optical analysis and design of plasmonic OSCs when the active-layer thickness is small.

  17. Strong modulation of plasmons in Graphene with the use of an Inverted pyramid array diffraction grating

    PubMed Central

    Matthaiakakis, N.; Mizuta, H.; Charlton, M. D. B.

    2016-01-01

    An optical device configuration allowing efficient electrical tuning of surface plasmon wavelength and absorption in a suspended/conformal graphene film is reported. An underlying 2-dimensional array of inverted rectangular pyramids greatly enhances optical coupling to the graphene film. In contrast to devices utilising 1D grating or Kretchman prism coupling configurations, both s and p polarization can excite plasmons due to symmetry of the grating structure. Additionally, the excited high frequency plasmon mode has a wavelength independent of incident photon angle allowing multidirectional coupling. By combining analytical methods with Rigorous Coupled-Wave Analysis, absorption of plasmons is mapped over near infrared spectral range as a function of chemical potential. Strong control over both plasmon wavelength and strength is provided by an ionic gel gate configuration. 0.04eV change in chemical potential increases plasmon energy by 0.05 eV shifting plasmon wavelength towards the visible, and providing enhancement in plasmon absorption. Most importantly, plasmon excitation can be dynamically switched off by lowering the chemical potential and moving from the intra-band to the inter-band transition region. Ability to electrically tune plasmon properties can be utilized in applications such as on-chip light modulation, photonic logic gates, optical interconnect and sensing applications. PMID:27278301

  18. Gate-tuning of graphene plasmons revealed by infrared nano-imaging.

    PubMed

    Fei, Z; Rodin, A S; Andreev, G O; Bao, W; McLeod, A S; Wagner, M; Zhang, L M; Zhao, Z; Thiemens, M; Dominguez, G; Fogler, M M; Castro Neto, A H; Lau, C N; Keilmann, F; Basov, D N

    2012-07-05

    Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.

  19. 24 Hours of Sleep, Sedentary Behavior, and Physical Activity with Nine Wearable Devices

    PubMed Central

    Rosenberger, Mary E.; Buman, Matthew P.; Haskell, William L.; McConnell, Michael V.; Carstensen, Laura L.

    2015-01-01

    Getting enough sleep, exercising and limiting sedentary activities can greatly contribute to disease prevention and overall health and longevity. Measuring the full 24-hour activity cycle - sleep, sedentary behavior (SED), light intensity physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) - may now be feasible using small wearable devices. PURPOSE This study compares nine devices for accuracy in 24-hour activity measurement. METHODS Adults (N=40, 47% male) wore nine devices for 24-hours: Actigraph GT3X+, activPAL, Fitbit One, GENEactiv, Jawbone Up, LUMOback, Nike Fuelband, Omron pedometer, and Z-Machine. Comparisons (to standards) were made for total sleep time (Z-machine), time spent in SED (activPAL), LPA (GT3x+), MVPA (GT3x+), and steps (Omron). Analysis included mean absolute percent error, equivalence testing, and Bland-Altman plots. RESULTS Error rates ranged from 8.1–16.9% for sleep; 9.5–65.8% for SED; 19.7–28.0% for LPA; 51.8–92% for MVPA; and 14.1–29.9% for steps. Equivalence testing indicated only two comparisons were significantly equivalent to standards: the LUMOback for sedentary behavior and the GT3X+ for sleep. Bland-Altman plots indicated GT3X+ had the closest measurement for sleep, LUMOback for sedentary behavior, GENEactiv for LPA, Fitbit for MVPA and GT3X+ for steps. CONCLUSIONS Currently, no device accurately captures activity data across the entire 24-hour day, but the future of activity measurement should aim for accurate 24-hour measurement as a goal. Researchers should continue to select measurement devices based on their primary outcomes of interest. PMID:26484953

  20. Plasmonic-Electronic Transduction

    DTIC Science & Technology

    2012-01-31

    Resonant terahertz absorption by plasmons in grating-gate GaN HEMT structures,” A. V. Muravjov, D. B. Veksler, X. Hu, R. Gaska, N. Pala, H. Saxena...Nov. 2009, Singapore. 4. “ Terahertz Plasmons in Grating-Gate AlGaN/ GaN HEMTs,” A.V. Muravjov, D.B. Veksler, V.V. Popov, M.S. Shur, N. Pala, X. Hu, R...CA (2009). 9. “Plasmon grating-gate GaN HEMT structures for terahertz applications,” A.V. Muravjov, D.B. Veksler, V.V. Popov, M.S. Shur, N. Pala