Sample records for active primary mirror

  1. Correction of a Space Telescope Active Primary Mirror Using Adaptive Optics in a Woofer-Tweeter Configuration

    DTIC Science & Technology

    2015-09-01

    shows the elements of an AHM. The substrate is a rib-stiffened silicon carbide ( SiC ) structure cast to meet the required optical figure. The...right) 2. SMT Three Point Linearity Test The active mirror under study is a 1-meter hexagonal SiC AHM mirror with 156 face sheet actuators. The...CORRECTION OF A SPACE TELESCOPE ACTIVE PRIMARY MIRROR USING ADAPTIVE OPTICS IN A WOOFER-TWEETER CONFIGURATION by Matthew R. Allen September 2015

  2. Structural design of a large deformable primary mirror for a space telescope

    NASA Astrophysics Data System (ADS)

    Hansen, J. G. R.

    A 4 meter aperture deformable primary mirror is designed with the mirror and its supports integrated into a single structure. The integrated active mirror's minimal weight makes it desirable for a space telescope as well as a terrestrial application. Utilizing displacement actuators, the active controls at the mirror's surface include position control and slope control in both the radial and tangential directions at each of the 40 control points. Influence functions for each of the controls are nearly independent, reducing the complexity of the control system. Experiments with breadboard models verify the structural concept and the techniques used in the finite element method of computer structural analysis. The majority of this paper is a description of finite element analysis results. Localization of influence functions is exhaustively treated. For gravity loads, a thermal gradient through the mirror thickness, and a uniform thermal soak, diffraction limited performance of the 4m design is evaluated. Loads are applied to defocus the mirror and to cause fourth-order astigmatism. Mirror scallop, instigated by a focus shift, has been virtually eliminated with the 40-actuator design. The structural concept is so effective that it should be considered for uncontrolled primary mirrors as well as active mirrors.

  3. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Gemini 8.2-m primary mirror no. 1 polishing

    NASA Astrophysics Data System (ADS)

    Cayrel, Marc; Beraud, P.; Paseri, Jacques; Dromas, E.

    1998-08-01

    The 8-m class primary mirrors of the GEMINI Telescopes are thin ULE menisci actively supported. The two mirror blanks are produced by CORNING, the optical figuring, manufacturing and assembling of interfaces are done by REOSC. REOSC is as well in charge of the transportation of the mirror blanks from CORNING to REOSC, and of the shipment of the finished optics to Hawaii and to Chile. The mirror assembly requirements are summarized, the manufacturing and testing methods are addressed. REOSC had to design and manufacture a dedicated active supporting system, representative of the one used at the telescope level. Its design and performance are presented. The manufacturing steps undertaken at REOSC and the results achieved are then detailed: mirror blank surface generating and grinding, polishing, testing. The current status of the mirrors is finally presented.

  5. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  6. Active telescope systems; Proceedings of the Meeting, Orlando, FL, Mar. 28-31, 1989

    NASA Astrophysics Data System (ADS)

    Roddier, Francois J.

    1989-09-01

    The present conference discusses topics in the fundamental limitations of adaptive optics in astronomical telescopy, integrated telescope systems designs, novel components for adaptive telescopes, active interferometry, flexible-mirror and segmented-mirror telescopes, and various aspects of the NASA Precision Segmented Reflectors Program. Attention is given to near-ground atmospheric turbulence effects, a near-IR astronomical adaptive optics system, a simplified wavefront sensor for adaptive mirror control, excimer laser guide star techniques for adaptive astronomical imaging, active systems in long-baseline interferometry, mirror figure control primitives for a 10-m primary mirror, and closed-loop active optics for large flexible mirrors subject to wind buffet deformations. Also discussed are active pupil geometry control for a phased-array telescope, extremely lightweight space telescope mirrors, segmented-mirror manufacturing tolerances, and composite deformable mirror design.

  7. Verification procedure for the wavefront quality of the primary mirrors for the MRO interferometer

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.; Olivares, Andres; Schmell, Reed A.; Schmell, Rodney A.; Gartner, Darren; Jaramillo, Anthony; Romero, Kelly; Rael, Andres; Lewis, Jeff

    2009-08-01

    We present the verification procedure for the 1.4 meter primary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Six mirrors are in mass production at Optical Surface Technologies (OST) in Albuquerque. The six identical parabolic mirrors will have a radius of curvature of 6300 mm and a final surface wavefront quality of 29 nm rms. The mirrors will be tested in a tower using a computer generated hologram, and the Intellium⢠H2000 interferometer from Engineering Synthesis Design, Inc. (ESDI). The mirror fabrication activities are currently in the early stage of polishing and have already delivered some promising results with the interferometer. A complex passive whiffle tree has been designed and fabricated by Advanced Mechanical and Optical Systems (AMOS, Belgium) that takes into account the gravity loading for an alt-alt mount. The final testing of the primary mirrors will be completed with the mirror cells that will be used in the telescopes. In addition we report on shear tests performed on the mirror cell pads on the back of the primary mirrors. These pads are glued to the mirror. The shear test has demonstrated that the glue can withstand at least 4.9 kilo Newton. This is within the requirements.

  8. Electromagnetic deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Kuiper, S.; Doelman, N.; Overtoom, T.; Nieuwkoop, E.; Russchenberg, T.; van Riel, M.; Wildschut, J.; Baeten, M.; Spruit, H.; Brinkers, S.; Human, J.

    2017-09-01

    To increase the collecting power and to improve the angular imaging resolution, space telescopes are evolving towards larger primary mirrors. The aerial density of the telescope mirrors needs to be kept low, however, to be compatible with the launch requirements. A light-weight (primary) mirror will introduce additional optical aberrations to the system. These may be caused by for instance manufacturing errors, gravity release and thermo-elastic effects. Active Optics (AO) is a key candidate technology to correct for the resultant wave front aberrations [1].

  9. Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors

    DTIC Science & Technology

    2010-09-01

    actuator geometry, and rib-to-facesheet intersection geometry are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A...are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A parametric finite element model is used to explore the trade space...MOST) finite element model. The move to lightweight actively-controlled silicon carbide ( SiC ) mirrors is traced back to previous generations of space

  10. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  11. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  12. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    NASA Astrophysics Data System (ADS)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  13. Structure and mechanical design for a large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Tan, Yufeng; Wang, Jihong; Ren, Ge; Ren, Xiaoli; Xie, Zongliang; Li, Dong

    2018-02-01

    For a better understanding and forecasting of the universe, the high resolution observations are needed. The largeaperture telescope is an integrated success with a combination of material, mechanics, optics and electronics. The telescope is a classic Cassegrain configuration with open structure, alt-azimuth mount, and retractable dome. The instrumentation has a rotating mass of approximately 52 tons and stands over 9 m tall. The 3-m aperture primary mirror is a honeycomb lightweighted mirror with fused silica material and active cooling. The paper will address preliminary design and development of the telescope mount structure, axes drive system, encoder mount and primary mirror system. The structure must have the best performance of stiffness and stability to demand an acceptable image quality. As the largest optical element of the telescope, primary mirror must be well controlled and protected both during operational and non-operational periods. An active cooling system of primary mirror is provided by a flushing subsystem at the front side and sucking subsystem on the central hole to keep the temperature of the facesheet close to that of ambient air. A two-layer mirror cover mounted on the elevation ring is proposed to protect the optical elements and inner beam tube from dust, dirt and debris. Furthermore, the latest plans for future upgrades will be also described.

  14. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  15. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  16. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  17. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  18. James Webb Space telescope optical simulation testbed: experimental results with linear control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Michau, Vincent; Bonnefois, Aurélie; Escolle, Clément; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Ygouf, Marie; Fusco, Thierry; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2017-09-01

    The current generation of terrestrial telescopes has large enough primary mirror diameters that active optical control based on wavefront sensing is necessary. Similarly, in space, while the Hubble Space Telescope (HST) has a mostly passive optical design, apart from focus control, its successor the James Webb Space Telescope (JWST) has active control of many degrees of freedom in its primary and secondary mirrors.

  19. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented.

  20. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  1. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  2. Variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.

  3. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    NASA Astrophysics Data System (ADS)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  4. APF-The Lick Observatory Automated Planet Finder

    DTIC Science & Technology

    2014-04-01

    resolutions up to 150,000. Overall system efficiency (fraction of photons incident on the primary mirror that are detected by the science CCD) on blaze at...A second (currently unused) Nasmyth focus can be quickly accessed via a rotatable tertiary mirror . The telescope uses a 2.41 m diameter f=1:5 primary...within 0.5″, and 90% encircled energy within 1″. The mount for the secondary mirror M2 incorporates an active tip/tilt and focus system that corrects for

  5. Manufacture of a 1.7m prototype of the GMT primary mirror segments

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Miller, S. M.; Smith, B. K.; Zehnder, R.; Zhao, C.

    2006-06-01

    We have nearly completed the manufacture of a 1.7 m off-axis mirror as part of the technology development for the Giant Magellan Telescope. The mirror is an off-axis section of a 5.3 m f/0.73 parent paraboloid, making it roughly a 1:5 model of the outer 8.4 m GMT segment. The 1.7 m mirror will be the primary mirror of the New Solar Telescope at Big Bear Solar Observatory. It has a 2.7 mm peak-to-valley departure from the best-fit sphere, presenting a serious challenge in terms of both polishing and measurement. The mirror was polished with a stressed lap, which bends actively to match the local curvature at each point on the mirror surface, and works for asymmetric mirrors as well as symmetric aspheres. It was measured using a hybrid reflective-diffractive null corrector to compensate for the mirror's asphericity. Both techniques will be applied in scaled-up versions to the GMT segments.

  6. Space active optics: in flight aberrations correction for the next generation of large space telescopes

    NASA Astrophysics Data System (ADS)

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2017-11-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. In this paper, we present an active optics system as a way to fulfill those two objectives. Indeed, active optics consists in controlling mirrors' deformations in order to improve the images quality [1]. The two main applications of active optics techniques are the in-situ compensation of phase errors in a wave front by using a corrector deformable mirror [2] and the manufacturing of aspherical mirrors by stress polishing or by in-situ stressing [3]. We will focus here on the wave-front correction. Indeed, the next generation of space telescopes will have lightweight primary mirrors; in consequence, they will be sensitive to the environment variations, inducing optical aberrations in the instrument. An active optics system is principally composed of a deformable mirror, a wave front sensor, a set of actuators deforming the mirror and control/command electronics. It is used to correct the wave-front errors due to the optical design, the manufacturing imperfections, the large lightweight primary mirrors' deflection in field gravity, the fixation devices, and the mirrors and structures' thermal distortions due to the local turbulence [4]. Active optics is based on the elasticity theory [5]; forces and/or load are used to deform a mirror. Like in adaptive optics, actuators can simply be placed under the optical surface [1,2], but other configurations have also been studied: a system's simplification, inducing a minimization of the number of actuators can be achieved by working on the mirror design [5]. For instance, in the so called Vase form Multimode Deformable Mirror [6], forces are applied on an external ring clamped on the pupil. With this method, there is no local effect due to the application of forces on the mirror's back face. Furthermore, the number of actuators needed to warp the mirror does not depend on the pupil size; it is a fully scalable configuration. The insertion of a Vase form Multimode Deformable Mirror on the design of an optical instrument will allow correcting the most common low spatial frequency aberrations. This concept could be applied in a space telescope. A Finite Element Analysis of the developed model has been conducted in order to characterize the system's behavior and to validate the concept.

  7. Large aperture telescope technology: a design for an active lightweight multi-segmented fold-out space mirror

    NASA Astrophysics Data System (ADS)

    Thompson, S. J.; Doel, A. P.; Whalley, M.; Edeson, R.; Edeson, R.; Tosh, I.; Poyntz-Wright, O.; Atad-Ettedgui, E.; Montgomery, D.; Nawasra, J.

    2017-11-01

    Large aperture telescope technology (LATT) is a design study for a differential lidar (DIAL) system; the main investigation being into suitable methods, technologies and materials for a 4-metre diameter active mirror that can be stowed to fit into a typical launch vehicle (e.g. ROKOT launcher with 2.1-metre diameter cargo) and can self-deploy - in terms of both leaving the space vehicle and that the mirrors unfold and self-align to the correct optical form within the tolerances specified. The primary mirror requirements are: main wavelength of 935.5 nm, RMS corrected wavefront error of λ/6, optical surface roughness better than 5 nm, areal density of less than 16 kg/m2 and 1-2 mirror shape corrections per orbit. The primary mirror consists of 7 segments - a central hexagonal mirror and 6 square mirror petals which unfold to form the 4-meter diameter aperture. The focus of the UK LATT consortium for this European Space Agency (ESA) funded project is on using lightweighted aluminium or carbon-fibre-composite materials for the mirror substrate in preference to more traditional materials such as glass and ceramics; these materials have a high strength and stiffness to weight ratio, significantly reducing risk of damage due to launch forces and subsequent deployment in orbit. We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.

  8. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  9. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  10. Mirror Observation of Finger Action Enhances Activity in Anterior Intraparietal Sulcus: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru

    2013-01-01

    Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP. PMID:25792898

  11. Wavefront Analysis of Adaptive Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Hillman, Lloyd

    1997-01-01

    The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery order, this report simply summarizes the material with the various UAH-written presentation packages attached as appendices.

  12. Do Mirror Glasses Have the Same Effect on Brain Activity as a Mirror Box? Evidence from a Functional Magnetic Resonance Imaging Study with Healthy Subjects

    PubMed Central

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on conceptual differences between MVF devices. However, our findings need to be validated within specific patient groups. PMID:26018572

  13. Design and development status of the University of Tokyo Atacama Observatory 6.5m telescope

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Aoki, Tsutomu; Doi, Mamoru; Handa, Toshihiro; Kamizuka, Takafumi; Kato, Natsuko; Kawara, Kimiaki; Kohno, Kotaro; Konishi, Masahiro; Koshida, Shintaro; Minezaki, Takeo; Miyata, Takashi; Motohara, Kentaro; Sako, Shigeyuki; Soyano, Takao; Takahashi, Hidenori; Tamura, Yoichi; Tanabe, Toshihiko; Tanaka, Masuo; Tarusawa, Ken'ichi; Yoshii, Yuzuru

    2014-07-01

    We here summarize the design and the current fabrication status for the University of Tokyo Atacama Observatory (TAO) 6.5-m telescope. The TAO telescope is operated at one of the best sites for infrared observations, at the summit of Co. Chajnantor in Chile, and is optimized for infrared observations. The telescope mount, mirrors, and mirror support systems are now at the final design phase. The mechanical and optical designs are done by following and referring to those of the Magellan telescopes, MMT, and Large Binocular Telescope. The final focal ratio is 12.2. The field-of-view is as wide as 25 arcmin in diameter and the plate scale is 2.75 arcsec mm-1. The F/1.25 light-weighted borosilicate (Ohara E6) honeycomb primary mirror is adopted and being fabricated by the Steward Observatory Mirror Laboratory. The primary mirror is supported by 104 loadspreaders bonded to the back surface of the mirror and 6 adjustable hardpoints. The mirror is actively controlled by adjusting the actuator forces based on the realtime wavefront measurement. The actuators are optimized for operation at high altitude of the site, 5640-m above the sea level, by considering the low temperature and low air pressure. The mirror is held in the primary mirror cell which is used as a part of the vacuum chamber when the mirror surface is aluminized without being detached from the cell. The pupil is set at the secondary mirror to minimize infrared radiation into instruments. The telescope has two Nasmyth foci for near-infrared and mid-infrared facility instruments (SWIMS and MIMIZUKU, respectively) and one folded-Caseggrain focus for carry-in instruments. At each focus, autoguider and wavefront measurement systems are attached to achieve seeing-limited image quality. The telescope mount is designed as a tripod-disk type alt-azimuth mount. Both the azimuthal and elevation axes are supported by and run on the hydrostatic bearings. Friction drives are selected for these axis drives. The telescope mount structure and primary mirror support as well as the mirrors are under thermal control and maintained at ambient air temperature to minimize the mirror seeing.

  14. Overview and status of the Giant Magellan Telescope Project

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick J.; Fanson, James; Bernstein, Rebecca; Ashby, David; Bigelow, Bruce; Boyadjian, Nune; Bouchez, Antonin; Chauvin, Eric; Donoso, Eduardo; Filgueira, Jose; Goodrich, Robert; Groark, Frank; Jacoby, George; Pearce, Eric

    2016-08-01

    The Giant Magellan Telescope Project is in the construction phase. Production of the primary mirror segments is underway with four of the seven required 8.4m mirrors at various stages of completion and materials purchased for segments five and six. Development of the infrastructure at the GMT site at Las Campanas is nearing completion. Power, water, and data connections sufficient to support the construction of the telescope and enclosure are in place and roads to the summit have been widened and graded to support transportation of large and heavy loads. Construction pads for the support buildings have been graded and the construction residence is being installed. A small number of issues need to be resolved before the final design of the telescope structure and enclosure can proceed and the GMT team is collecting the required inputs to the decision making process. Prototyping activities targeted at the active and adaptive optics systems are allowing us to finalize designs before large scale production of components begins. Our technically driven schedule calls for the telescope to be assembled on site in 2022 and to be ready to receive a subset of the primary and secondary mirror optics late in the year. The end date for the project is coupled to the delivery of the final primary mirror segments and the adaptive secondary mirrors that support adaptive optics operations.

  15. Design, Fabrication, and Validation of an Ultra-Lightweight Membrane Mirror (Conference Proceedings)

    DTIC Science & Technology

    2005-08-01

    Membrane Mirror Active boundary control is very promising and studies predict good control over astigmatism and coma aberrations. However, the primary...design analysis. The mount has a split lenticular setup, allowing one canopy and many membrane mirrors that can be interchanged. The mount has a...spherical aberration, which is as expected. Results from finite element modeling showed that astigmatism can be corrected with the normal actuators

  16. Mirror therapy for phantom limb pain: brain changes and the role of body representation.

    PubMed

    Foell, J; Bekrater-Bodmann, R; Diers, M; Flor, H

    2014-05-01

    Phantom limb pain (PLP) is a common consequence of amputation and is difficult to treat. Mirror therapy (MT), a procedure utilizing the visual recreation of movement of a lost limb by moving the intact limb in front of a mirror, has been shown to be effective in reducing PLP. However, the neural correlates of this effect are not known. We investigated the effects of daily mirror training over 4 weeks in 13 chronic PLP patients after unilateral arm amputation. Eleven participants performed hand and lip movements during a functional magnetic resonance imaging (fMRI) measurement before and after MT. The location of neural activity in primary somatosensory cortex during these tasks was used to assess brain changes related to treatment. The treatment caused a significant reduction of PLP (average decrease of 27%). Treatment effects were predicted by a telescopic distortion of the phantom, with those patients who experienced a telescope profiting less from treatment. fMRI data analyses revealed a relationship between change in pain after MT and a reversal of dysfunctional cortical reorganization in primary somatosensory cortex. Pain reduction after mirror training was also related to a decrease of activity in the inferior parietal cortex (IPC). Experienced body appearance seems to be an important predictor of mirror treatment effectiveness. Maladaptive changes in cortical organization are reversed during mirror treatment, which also alters activity in the IPC, a region involved in painful perceptions and in the perceived relatedness to an observed limb. © 2013 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

  17. Last results of MADRAS, a space active optics demonstrator

    NASA Astrophysics Data System (ADS)

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Devilliers, Christophe; Liotard, Arnaud; Lopez, Céline; Chazallet, Frédéric

    2017-11-01

    The goal of the MADRAS project (Mirror Active, Deformable and Regulated for Applications in Space) is to highlight the interest of Active Optics for the next generation of space telescope and instrumentation. Wave-front errors in future space telescopes will mainly come from thermal dilatation and zero gravity, inducing large lightweight primary mirrors deformation. To compensate for these effects, a 24 actuators, 100 mm diameter deformable mirror has been designed to be inserted in a pupil relay. Within the project, such a system has been optimized, integrated and experimentally characterized. The system is designed considering wave-front errors expected in 3m-class primary mirrors, and taking into account space constraints such as compactness, low weight, low power consumption and mechanical strength. Finite Element Analysis allowed an optimization of the system in order to reach a precision of correction better than 10 nm rms. A dedicated test-bed has been designed to fully characterize the integrated mirror performance in representative conditions. The test set up is made of three main parts: a telescope aberrations generator, a correction loop with the MADRAS mirror and a Shack-Hartman wave-front sensor, and PSF imaging. In addition, Fizeau interferometry monitors the optical surface shape. We have developed and characterized an active optics system with a limited number of actuators and a design fitting space requirements. All the conducted tests tend to demonstrate the efficiency of such a system for a real-time, in situ wave-front. It would allow a significant improvement for future space telescopes optical performance while relaxing the specifications on the others components.

  18. Ultralightweight optics for space applications

    NASA Astrophysics Data System (ADS)

    Mayo, James W.; DeHainaut, Linda L.; Bell, Kevin D.; Smith, Winfred S.; Killpatrick, Don H.; Dyer, Richard W.

    2000-07-01

    Lightweight, deployable space optics has been identified as a key technology for future cost-effective, space-based systems. The United States Department of Defense has partnered with the National Aeronautical Space Administration to implement a space mirror technology development activity known as the Advanced Mirror System Demonstrator (AMSD). The AMSD objectives are to advance technology in the production of low-mass primary mirror systems, reduce mirror system cost and shorten mirror- manufacturing time. The AMSD program will offer substantial weight, cost and production rate improvements over Hubble Space Telescope mirror technology. A brief history of optical component development and a review of optical component state-of-the-art technology will be given, and the AMSD program will be reviewed.

  19. Enhancing the mirror illusion with transcranial direct current stimulation.

    PubMed

    Jax, Steven A; Rosa-Leyra, Diana L; Coslett, H Branch

    2015-05-01

    Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Directed Energy Technology Overview

    DTIC Science & Technology

    2011-06-01

    with an AR coating, The primary mirror is zerodur on a 9 point mount incorporating a tuned mass damper.. The secondary, tertiary, and coude optics are...beam conditioning back end section: • A beam expander enlarges the beam and shapes it to fill the active area of a deformable mirror • Because of the...enabling technologies that would make a 100-kW SS laser possible (high power optical coatings, high power gain modules, deformable mirror technology

  1. Low-Cost Large Aperture Telescopes for Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2006-01-01

    Low-cost, 0.5-1 meter ground apertures are required for near-Earth laser communications. Low-cost ground apertures with equivalent diameters greater than 10 meters are desired for deep-space communications. This presentation focuses on identifying schemes to lower the cost of constructing networks of large apertures while continuing to meet the requirements for laser communications. The primary emphasis here is on the primary mirror. A slumped glass spherical mirror, along with passive secondary mirror corrector and active adaptive optic corrector show promise as a low-cost alternative to large diameter monolithic apertures. To verify the technical performance and cost estimate, development of a 1.5-meter telescope equipped with gimbal and dome is underway.

  2. [Phantom limb pain syndrome: therapeutic approach using mirror therapy in a Geriatric Department].

    PubMed

    González García, Paloma; Manzano Hernández, M Pilar; Muñoz Tomás, M Teresa; Martín Hernández, Carlos; Forcano García, Mercedes

    2013-01-01

    The clinical use of mirror visual feedback was initially introduced to alleviate phantom pain by restoring motor function through plastic changes in the human primary motor cortex. It is a promising novel technique that gives a new perspective to neurological rehabilitation. Using this therapy, the mirror neuron system is activated and decrease the activity of those systems that perceive protopathic pain, making somatosensory cortex reorganization possible. This paper reports the results of the mirror therapy in three patients with phantom limb pain after recent lower limb amputation, showing its analgesic effects and its benefits as a comprehensive rehabilitation instrument for lower limb amputee geriatric patients. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.

  3. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  4. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  5. Technologies for the fabrication of the E-ELT mirrors within the T-REX project

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Aliverti, M.; Bianco, A.; Basso, S.; Citterio, O.; Civitani, M.; Ghigo, M.; Pariani, G.; Sironi, G.; Riva, M.; Vecchi, G.; Zerbi, F.

    With its primary mirror with 39 m of diameter, the E-ELT will be the largest optical/near-infrared telescope in the world and will gather 13 times more light than the largest optical telescopes existing today. The different optical sub-systems of E-ELT, including the primary mirror based on hundreds of reflecting tiles assembled together, represent key components for the implementation of the telescopes. A huge amount of aspherical reflecting elements have to be produced with "state of the art" figuring and polishing technologies and measured with proper metrological equipments. In the past couple of years, in the context of the T-REX project, a specific development program was carried out at the Brera Astronomical Observatory-INAF in order to address a numbers of technology aspects related to the fabrication of the E-ELT mirrors. In this paper we give a short overview of the activities that have been carried out. Other papers in this volume report on specific activities that have pursed within such a development program. skip=8pt

  6. Fast force actuators for LSST primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  7. Analysis and correction for measurement error of edge sensors caused by deformation of guide flexure applied in the Thirty Meter Telescope SSA.

    PubMed

    Cao, Haifeng; Zhang, Jingxu; Yang, Fei; An, Qichang; Zhao, Hongchao; Guo, Peng

    2018-05-01

    The Thirty Meter Telescope (TMT) project will design and build a 30-m-diameter telescope for research in astronomy in visible and infrared wavelengths. The primary mirror of TMT is made up of 492 hexagonal mirror segments under active control. The highly segmented primary mirror will utilize edge sensors to align and stabilize the relative piston, tip, and tilt degrees of segments. The support system assembly (SSA) of the segmented mirror utilizes a guide flexure to decouple the axial support and lateral support, while its deformation will cause measurement error of the edge sensor. We have analyzed the theoretical relationship between the segment movement and the measurement value of the edge sensor. Further, we have proposed an error correction method with a matrix. The correction process and the simulation results of the edge sensor will be described in this paper.

  8. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  9. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  10. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  11. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial.

    PubMed

    Michielsen, Marian E; Selles, Ruud W; van der Geest, Jos N; Eckhardt, Martine; Yavuzer, Gunes; Stam, Henk J; Smits, Marion; Ribbers, Gerard M; Bussmann, Johannes B J

    2011-01-01

    To evaluate for any clinical effects of home-based mirror therapy and subsequent cortical reorganization in patients with chronic stroke with moderate upper extremity paresis. A total of 40 chronic stroke patients (mean time post .onset, 3.9 years) were randomly assigned to the mirror group (n = 20) or the control group (n = 20) and then joined a 6-week training program. Both groups trained once a week under supervision of a physiotherapist at the rehabilitation center and practiced at home 1 hour daily, 5 times a week. The primary outcome measure was the Fugl-Meyer motor assessment (FMA). The grip force, spasticity, pain, dexterity, hand-use in daily life, and quality of life at baseline-posttreatment and at 6 months-were all measured by a blinded assessor. Changes in neural activation patterns were assessed with functional magnetic resonance imaging (fMRI) at baseline and posttreatment in an available subgroup (mirror, 12; control, 9). Posttreatment, the FMA improved more in the mirror than in the control group (3.6 ± 1.5, P < .05), but this improvement did not persist at follow-up. No changes were found on the other outcome measures (all Ps >.05). fMRI results showed a shift in activation balance within the primary motor cortex toward the affected hemisphere in the mirror group only (weighted laterality index difference 0.40 ± 0.39, P < .05). This phase II trial showed some effectiveness for mirror therapy in chronic stroke patients and is the first to associate mirror therapy with cortical reorganization. Future research has to determine the optimum practice intensity and duration for improvements to persist and generalize to other functional domains.

  12. The first aluminum coating of the 3700mm primary mirror of the Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Bheemireddy, Krishna Reddy; Gopinathan, Maheswar; Pant, Jayshreekar; Omar, Amitesh; Kumar, Brijesh; Uddin, Wahab; Kumar, Nirmal

    2016-07-01

    Initially the primary mirror of the 3.6m Devasthal Optical Telescope is uncoated polished zerodur glass supplied by Lytkarino Optical Glass Factory, Russia/Advanced Mechanical and Optical Systems, Belgium. In order to do the aluminium coating on the primary mirror the coating plant including washing unit is installed near the telescope (extension building of telescope) by Hind High Vacuum (HHV) Bangalore, India. Magnetron sputtering technique is used for the coating. Several coating trials are done before the primary mirror coating; samples are tested for reflectivity, uniformity, adhesivity and finally commissioned. The primary mirror is cleaned, coated by ARIES. We present here a brief description of the coating plant installation, Mirror cleaning and coating procedures and the testing results of the samples.

  13. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F., E-mail: borra@phy.ulaval.ca

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror usesmore » a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.« less

  14. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark Arthur (Inventor)

    1990-01-01

    The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.

  15. Study Of Pre-Shaped Membrane Mirrors And Electrostatic Mirrors With Nonlinear-Optical Correction

    DTIC Science & Technology

    2002-01-01

    mirrors have been manufactured of glass-like material Zerodur with very low coefficient of linear expansion. They have a more light cellular construction...primary and flat secondary mirrors are both segmented ones. In the case of the primary mirror made of traditional materials such as Zerodur or fused...FINAL REPORT ISTC Project #2103p “Study of Pre-Shaped Membrane Mirrors and Electrostatic Mirrors with Nonlinear-Optical Correction” Manager

  16. Progress on SOFIA primary mirror

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel

    2000-06-01

    REOSC, SAGEM Group, has a significant contribution to the SOFIA project with the design and fabrication of the 2.7-m primary mirror and its fixtures as well as the M3 mirror tower assembly. This paper will primarily report the progress made on the primary mirror design and the first important manufacturing step: its lightweighting by machining pockets from the rear side of the blank.

  17. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  18. Design and analysis of an active optics system for a 4-m telescope mirror combining hydraulic and pneumatic supports

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Moreau, Vincent; Schumacher, Jean-Marc; Piérard, Maxime; Somja, Aude; Gloesener, Pierre; Flebus, Carlo

    2015-09-01

    AMOS has developed a hybrid active optics system that combines hydraulic and pneumatic properties of actuators to support a 4-m primary mirror. The mirror is intended to be used in the Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope) that will be installed by the National Solar Observatory (NSO) atop the Haleakala volcano in Hawaii. The mirror support design is driven by the needs of (1) minimizing the support-induced mirror distortions under telescope operating conditions, (2) shaping the mirror surface to the desired profile, and (3) providing a high stiffness against wind loads. In order to fulfill these requirements, AMOS proposes an innovative support design that consist of 118 axial actuators and 24 lateral actuators. The axial support is based on coupled hydraulic and pneumatic actuators. The hydraulic part is a passive system whose main function is to support the mirror weight with a high stiffness. The pneumatic part is actively controlled so as to compensate for low-order wavefront aberrations that are generated by the mirror support itself or by any other elements in the telescope optical chain. The performances of the support and its adequacy with the requirements are assessed with the help of a comprehensive analysis loop involving finite-element, thermal and optical modellings.

  19. Multilayer active shell mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (< 1.0 mm), lightweight (2.7 kg/m2), and have large actuation capabilities. These capabilities, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  20. New Method for Characterizing the State of Optical and Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva; Saif, Babak; Feinberg, Lee; Chaney, David; Bluth, Marcel; Greenfield, Perry; Hack, Warren; Smith, Scott; Sanders, James

    2014-01-01

    James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of a 6.5 m primary mirror (PM), secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to make it the Optical Telescope Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the primary mirror using high speed dynamics interferometry.

  1. Cortical mechanisms of mirror therapy after stroke.

    PubMed

    Rossiter, Holly E; Borrelli, Mimi R; Borchert, Robin J; Bradbury, David; Ward, Nick S

    2015-06-01

    Mirror therapy is a new form of stroke rehabilitation that uses the mirror reflection of the unaffected hand in place of the affected hand to augment movement training. The mechanism of mirror therapy is not known but is thought to involve changes in cerebral organization. We used magnetoencephalography (MEG) to measure changes in cortical activity during mirror training after stroke. In particular, we examined movement-related changes in the power of cortical oscillations in the beta (15-30 Hz) frequency range, known to be involved in movement. Ten stroke patients with upper limb paresis and 13 healthy controls were recorded using MEG while performing bimanual hand movements in 2 different conditions. In one, subjects looked directly at their affected hand (or dominant hand in controls), and in the other, they looked at a mirror reflection of their unaffected hand in place of their affected hand. The movement-related beta desynchronization was calculated in both primary motor cortices. Movement-related beta desynchronization was symmetrical during bilateral movement and unaltered by the mirror condition in controls. In the patients, movement-related beta desynchronization was generally smaller than in controls, but greater in contralesional compared to ipsilesional motor cortex. This initial asymmetry in movement-related beta desynchronization between hemispheres was made more symmetrical by the presence of the mirror. Mirror therapy could potentially aid stroke rehabilitation by normalizing an asymmetrical pattern of movement-related beta desynchronization in primary motor cortices during bilateral movement. © The Author(s) 2014.

  2. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.

  3. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  4. Research on large-aperture primary mirror supporting way of vehicle-mounted laser communication system

    NASA Astrophysics Data System (ADS)

    Meng, Lixin; Meng, Lingchen; Zhang, Yiqun; Zhang, Lizhong; Liu, Ming; Li, Xiaoming

    2018-01-01

    In the satellite to earth laser communication link, large-aperture ground laser communication terminals usually are used in order to realize the requirement of high rate and long distance communication and restrain the power fluctuation by atmospheric scintillation. With the increasing of the laser communication terminal caliber, the primary mirror weight should also be increased, and selfweight, thermal deformation and environment will affect the surface accuracy of the primary mirror surface. A high precision vehicular laser communication telescope unit with an effective aperture of 600mm was considered in this paper. The primary mirror is positioned with center hole, which back is supported by 9 floats and the side is supported by a mercury band. The secondary mirror adopts a spherical adjusting mechanism. Through simulation analysis, the system wave difference is better than λ/20 when the primary mirror is in different dip angle, which meets the requirements of laser communication.

  5. On the construction of a 2-metre mirror blank for the universal reflecting telescope in Tautenburg (German Title: Über die Fertigung eines 2-Meter-Spiegelträgers für das Universal-Spiegelteleskop in Tautenburg )

    NASA Astrophysics Data System (ADS)

    Lödel, Wolfgang

    The astronomers' desire to penetrate deeper into space transforms into a demand for larger telescopes. The primary mirror constitutes the main part of a reflecting telescope, and it determines all subsequent activities. Already in the 1930s activities existed in the Schott company to manufacture mirror blanks up to diameters of 2 metres, which could not be pursued because of political constraints. This ambitious goal was again picked up a few years after the war. At a time when the procurement of raw materials was extremely difficult, the glass workers of Schott in Jena attacked this large project. After some failures, a good mirror blank could be delivered to the Carl Zeiss Company in 1951 for further processing and for the construction of the first 2-metre reflecting telescope. From 1960 to 1986, this mirror made from optical glass ZK7 served its purpose at the Karl Schwarzschild Observatory in Tautenburg. lt was then replaced by a zero expansion glass ceramics mirror.

  6. Manufacture of a combined primary and tertiary mirror for the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Kingsley, J. S.; Lutz, R. D.; Miller, S. M.; Tuell, M.

    2008-07-01

    The Large Synoptic Survey Telescope uses a unique optomechanical design that places the primary and tertiary mirrors on a single glass substrate. The honeycomb sandwich mirror blank was formed in March 2008 by spin-casting. The surface is currently a paraboloid with a 9.9 m focal length matching the primary. The deeper curve of the tertiary mirror will be produced when the surfaces are generated. Both mirrors will be lapped and polished using stressed laps and other tools on an 8.4 m polishing machine. The highly aspheric primary mirror will be measured through a refractive null lens, and a computer-generated hologram will be used to validate the null lens. The tertiary mirror will be measured through a diffractive null corrector, also validated with a separate hologram. The holograms for the two tests provide alignment references that will be used to make the axes of the two surfaces coincide.

  7. Alignment and assembly process for primary mirror subsystem of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2015-11-01

    In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.

  8. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  9. Final acceptance testing of the LSST monolithic primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.

  10. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  11. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. Copyright © 2015 the American Physiological Society.

  12. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions

    PubMed Central

    Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-01-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp2 = 0.005; ECR: P = 0.712, ηp2 = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp2 = 0.049; ECR: P = 0.343, ηp2 = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. PMID:25632077

  13. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  14. Two-stage optics - High-acuity performance from low-acuity optical systems

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1992-01-01

    The concept of two-stage optics, developed under a program to enhance the performance, lower the cost, and increase the reliability of the 20-m Large Deployable Telescope, is examined. The concept permits the large primary mirror to remain as deployed or as space-assembled, with phasing and subsequent control of the system done by a small fully assembled optical active element placed at an exit pupil. The technique is being applied to correction of the fabrication/testing error in the Hubble Space Telescope primary mirror. The advantages offered by this concept for very large space telescopes are discussed.

  15. Structural evaluation of candidate designs for the large space telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Soosaar, K.; Grin, R.; Furey, M.; Hamilton, J.

    1975-01-01

    Structural performance analyses were conducted on two candidate designs (Itek and Perkin-Elmer designs) for the large space telescope three-meter mirror. The mirror designs and the finite-element models used in the analyses evaluation are described. The results of the structural analyses for several different types of loading are presented in tabular and graphic forms. Several additional analyses are also reported: the evaluation of a mirror design concept proposed by the Boeing Co., a study of the global effects of local cell plate deflections, and an investigation of the fracture mechanics problems likely to occur with Cervit and ULE. Flexibility matrices were obtained for the Itek and Perkin-Elmer mirrors to be used in active figure control studies. Summary, conclusions, and recommendations are included.

  16. Design Study of an 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    This paper will review a recent NASA MSFC preliminary study that demonstrated the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. The study started with the unique capabilities of the Ares V vehicle and examined the feasibility of launching a large aperture low cost low risk telescope based on a conventional ground based glass primary mirror. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN & C, avionics, power systems and reaction wheels; operations & servicing, mass budget and system cost. The study telescope was an on-axis three-mirror anastigmatic design with a fine steering mirror. The observatory has a 100 arc-minute (8.4 X 12 arc-minutes) of diffraction limited field of view at a wavelength les than 500 nm. The study assumed that the primary mirror would be fabricated from an existing Schott Zerodur residual VLT blank edged to 6.2 meters, 175 mm thick at the edge with a mass of 11,000 kg. The entire mass budget for the observatory including primary mirror, structure, light baffle tube, instruments, space craft, avionics, etc. is less than 40,000 kg - a 33% mass margin on the Ares V's 60,000 kg Sun-Earth L2 capability. An 8 meter class observatory would have a total mass of less than 60,000 kg of which the primary mirror is the largest contributor.

  17. James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Soummer, Rémi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Levecq, Olivier; Mazoyer, Johan; N'Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2017-09-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, such as JWST. With the JWST Science and Operations Center co-located at STScI, JOST was developed to provide both a platform for staff training and to test alternate wavefront sensing and control strategies for independent validation or future improvements beyond the baseline operations. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the most recent experimental results for the segmented mirror alignment. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is tested on simulation and experimentally. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by misalignment of the secondary lens and the segmented mirror, are tested and validated both on simulations and experimentally. In this proceeding, we present the performance of the full active optic control loop in presence of perturbations on the segmented mirror, and we detail the quality of the alignment correction.

  18. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  19. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  20. Multispectral glancing incidence X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1990-01-01

    A multispectral glancing incidence X-ray telescope is illustrated capable of broadband, high-resolution imaging of solar and stellar X-ray and extreme ultraviolet radiation sources which includes a primary optical system preferably of the Wolter I type having a primary mirror system (20, 22). The primary optical system further includes an optical axis (24) having a primary focus (F1) at which the incoming radiation is focused by the primary mirrors. A plurality of ellipsoidal mirrors (30a, 30b, 30cand 30d) are carried at an inclination to the optical axis behind the primary focus (F1). A rotating carrier (32) is provided on which the ellipsoidal mirrors are carried so that a desired one of the ellipsoidal mirrors may be selectively positioned in front of the incoming radiation beam (26). In the preferred embodiment, each of the ellipsoidal mirrors has an identical concave surface carrying a layered synthetic microstructure coating tailored to reflect a desired wavelength of 1.5 .ANG. or longer. Each of the identical ellipsoidal mirrors has a second focus (F2) at which a detector (16) is carried. Thus the different wavelength image is focused upon the detector irregardless of which mirror is positioned in front of the radiation beam. In this manner, a plurality of low wavelengths in a wavelength band generally less than 30 angstroms can be imaged with a high resolution.

  1. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  2. Analysis of target wavefront error for secondary mirror of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Chang, Shenq-Tsong; Lin, Wei-Cheng; Kuo, Ching-Hsiang; Chan, Chia-Yen; Lin, Yu-Chuan; Huang, Ting-Ming

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  3. Development of large aperture telescope technology (LATT): test results on a demonstrator bread-board

    NASA Astrophysics Data System (ADS)

    Briguglio, R.; Xompero, M.; Riccardi, A.; Lisi, F.; Duò, F.; Vettore, C.; Gallieni, D.; Tintori, M.; Lazzarini, P.; Patauner, C.; Biasi, R.; D'Amato, F.; Pucci, M.; Pereira do Carmo, João.

    2017-11-01

    The concept of a low areal density primary mirror, actively controlled by actuators, has been investigated through a demonstration prototype. A spherical mirror (400 mm diameter, 2.7 Kg mass) has been manufactured and tested in laboratory and on the optical bench, to verify performance, controllability and optical quality. In the present paper we will describe the prototype and the test results.

  4. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    The following major activities were advanced or completed: complete design of the entire telescope assembly and fabrication of all front-end components; specification of all rocket skin sections including bulkheads, feedthroughs and access door; fabrication, curing, and delivery of the large graphite-epoxy telescope tube; engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment to a kinematic three-point mount; detail design of the camera control, payload and housekeeping electronics; and multilayer mirror flats with 2d spacings of 50 A and 60 A.

  5. Potential determinants of efficacy of mirror therapy in stroke patients--A pilot study.

    PubMed

    Brunetti, Maddalena; Morkisch, Nadine; Fritzsch, Claire; Mehnert, Jan; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2015-01-01

    Mirror therapy (MT) was found to improve motor function after stroke. However, there is high variability between patients regarding motor recovery. The following pilot study was designed to identify potential factors determining this variability between patients with severe upper limb paresis, receiving MT. Eleven sub-acute stroke patients with severe upper limb paresis participated, receiving in-patient rehabilitation. After a set of pre-assessments (including measurement of brain activity at the primary motor cortex and precuneus during the mirror illusion, using near-infrared spectroscopy as described previously), four weeks of MT were applied, followed by a set of post-assessments. Discriminant group analysis for MT responders and non-responders was performed. Six out of eleven patients were defined as responders and five as non-responders on the basis of their functional motor improvement. The initial motor function and the activity shift in both precunei (mirror index) were found to discriminate significantly between responders and non-responders. In line with earlier results, initial motor function was confirmed as crucial determinant of motor recovery. Additionally, activity response to the mirror illusion in both precunei was found to be a candidate for determination of the efficacy of MT.

  6. Study on active lap tool influence function in grinding 1.8 m primary mirror.

    PubMed

    Haitao, Liu; Zhige, Zeng; Fan, Wu; Bin, Fan; Yongjian, Wan

    2013-11-01

    We present a theoretical modeling method to predict the ring tool influence function (TIF) based on the computer-controlled active lap process. The gap on the lap-grinding layer is considered, and its influence on the ring TIF is analyzed too. The relationship between the shape of the ring TIF and the lap-workpiece rotation speed ratio is discussed in this paper. The recipe for calculating dwell time for axisymmetric fabrication is discussed. The grinding process of a 1.8 m primary mirror is improved based on these results. The grinding process is accomplished after 30 circles of grinding, and the surface shape error is from PV 82 μm RMS 16.4 μm reduced to PV 13.5 μm RMS 2.5 μm.

  7. NST: Thermal Modeling for a Large Aperture Solar Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Roy

    2011-05-01

    Late in the 1990s the Dutch Open Telescope demonstrated that internal seeing in open, large aperture solar telescopes can be controlled by flushing air across the primary mirror and other telescope structures exposed to sunlight. In that system natural wind provides a uniform air temperature throughout the imaging volume, while efficiently sweeping heated air away from the optics and mechanical structure. Big Bear Solar Observatory's New Solar Telescope (NST) was designed to realize that same performance in an enclosed system by using both natural wind through the dome and forced air circulation around the primary mirror to provide the uniform air temperatures required within the telescope volume. The NST is housed in a conventional, ventilated dome with a circular opening, in place of the standard dome slit, that allows sunlight to fall only on an aperture stop and the primary mirror. The primary mirror is housed deep inside a cylindrical cell with only minimal openings in the side at the level of the mirror. To date, the forced air and cooling systems designed for the NST primary mirror have not been implemented, yet the telescope regularly produces solar images indicative of the absence of mirror seeing. Computational Fluid Dynamics (CFD) analysis of the NST primary mirror system along with measurements of air flows within the dome, around the telescope structure, and internal to the mirror cell are used to explain the origin of this seemingly incongruent result. The CFD analysis is also extended to hypothetical systems of various scales. We will discuss the results of these investigations.

  8. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  9. NASA's James Webb Space Telescope Primary Mirror Fully Assembled

    NASA Image and Video Library

    2016-02-04

    The 18th and final primary mirror segment is installed on what will be the biggest and most powerful space telescope ever launched. The final mirror installation Wednesday at NASA’s Goddard Space Flight Center in Greenbelt, Maryland marks an important milestone in the assembly of the agency’s James Webb Space Telescope. “Scientists and engineers have been working tirelessly to install these incredible, nearly perfect mirrors that will focus light from previously hidden realms of planetary atmospheres, star forming regions and the very beginnings of the Universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “With the mirrors finally complete, we are one step closer to the audacious observations that will unravel the mysteries of the Universe.” Using a robotic arm reminiscent of a claw machine, the team meticulously installed all of Webb's primary mirror segments onto the telescope structure. Each of the hexagonal-shaped mirror segments measures just over 4.2 feet (1.3 meters) across -- about the size of a coffee table -- and weighs approximately 88 pounds (40 kilograms). Once in space and fully deployed, the 18 primary mirror segments will work together as one large 21.3-foot diameter (6.5-meter) mirror. Credit: NASA/Goddard/Chris Gunn Credits: NASA/Chris Gunn

  10. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year.

  11. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-03

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year.

  12. Software for Alignment of Segments of a Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Hall, Drew P.; Howard, Richard T.; Ly, William C.; Rakoczy, John M.; Weir, John M.

    2006-01-01

    The Segment Alignment Maintenance System (SAMS) software is designed to maintain the overall focus and figure of the large segmented primary mirror of the Hobby-Eberly Telescope. This software reads measurements made by sensors attached to the segments of the primary mirror and from these measurements computes optimal control values to send to actuators that move the mirror segments.

  13. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  14. The GTC: a convenient test bench for ELT demonstrations

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, Jose M.; Hammersley, Peter L.; Martinez-Roger, Carlos

    2004-07-01

    The Gran Telescopio Canarias (GTC) is, being assembled at the Observatorio del Roque de los Muchachos (ORM) in the island of La Palma. First light is expected for early 2005 with the first science observations late in 2005. The GTC, being a segmented primary mirror telescope, could be employed for testing several technological aspects relevant to the future generation of Extremely Large Telescopes (ELT). In the short term, the mass production of aespheric mirror segments can be examined in detail and improvements made along the way, or planned for the future. Indeed the GTC segments are now entering into a chain production scheme. Later on, different strategies for the control aspects of the primary mirror can be explored to optimize the optical performance of segmented telescopes. Moreover, the entire GTC active optics can offer a learning tool for testing various strategies and their application to ELTs.

  15. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.

  16. Photonic Doppler velocimetry probe designed with stereo imaging

    NASA Astrophysics Data System (ADS)

    Malone, Robert M.; Cata, Brian M.; Daykin, Edward P.; Esquibel, David L.; Frogget, Brent C.; Holtkamp, David B.; Kaufman, Morris I.; McGillivray, Kevin D.; Palagi, Martin J.; Pazuchanics, Peter; Romero, Vincent T.; Sorenson, Danny S.

    2014-09-01

    During the fabrication of an aspherical mirror, the inspection of the residual wavefront error is critical. In the program of a spaceborne telescope development, primary mirror is made of ZERODUR with clear aperture of 450 mm. The mass is 10 kg after lightweighting. Deformation of mirror due to gravity is expected; hence uniform supporting measured by load cells has been applied to reduce the gravity effect. Inspection has been taken to determine the residual wavefront error at the configuration of mirror face upwards. Correction polishing has been performed according to the measurement. However, after comparing with the data measured by bench test while the primary mirror is at a configuration of mirror face horizontal, deviations have been found for the two measurements. Optical system that is not able to meet the requirement is predicted according to the measured wavefront error by bench test. A target wavefront error of secondary mirror is therefore analyzed to correct that of primary mirror. Optical performance accordingly is presented.

  17. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  18. Thermal optimum design for tracking primary mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Pan, Hai-jun; Ruan, Ping; Li, Fu; Wang, Hong-Wei

    2011-08-01

    In the conventional method, the structural parameters of primary mirror are usually optimized just by the requirement of mechanical performance. Because the influences of structural parameters on thermal stability are not taken fully into account in this simple method, the lightweight optimum design of primary mirror usually brings the bad thermal stability, especially in the complex environment. In order to obtain better thermal stability, a new method about structure-thermal optimum design of tracking primary mirror is discussed. During the optimum process, both the lightweight ratio and thermal stability will be taken into account. The structure-thermal optimum is introduced into the analysis process and commenced after lightweight design as the secondary optimum. Using the engineering analysis of software ANSYS, a parameter finite element analysis (FEA) model of mirror is built. On the premise of appropriate lightweight ratio, the RMS of structure-thermal deformation of mirror surface and lightweight ratio are assigned to be state variables, and the maximal RMS of temperature gradient load to be object variable. The results show that certain structural parameters of tracking primary mirror have different influences on mechanical performance and thermal stability, even they are opposite. By structure-thermal optimizing, the optimized mirror model discussed in this paper has better thermal stability than the old one under the same thermal loads, which can drastically reduce difficulty in thermal control.

  19. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  20. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  1. The effects of thermal gradients on the Mars Observer Camera primary mirror

    NASA Technical Reports Server (NTRS)

    Applewhite, Roger W.; Telkamp, Arthur R.

    1992-01-01

    The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.

  2. The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review

    PubMed Central

    Zhang, Jack J. Q.; Welage, Nandana

    2018-01-01

    Objective To evaluate the concurrent and training effects of action observation (AO) and action execution with mirror visual feedback (MVF) on the activation of the mirror neuron system (MNS) and its relationship with the activation of the motor cortex in stroke individuals. Methods A literature search using CINAHL, PubMed, PsycINFO, Medline, Web of Science, and SCOPUS to find relevant studies was performed. Results A total of 19 articles were included. Two functional magnetic resonance imaging (fMRI) studies reported that MVF could activate the ipsilesional primary motor cortex as well as the MNS in stroke individuals, whereas two other fMRI studies found that the MNS was not activated by MVF in stroke individuals. Two clinical trials reported that long-term action execution with MVF induced a shift of activation toward the ipsilesional hemisphere. Five fMRI studies showed that AO activated the MNS, of which, three found the activation of movement-related areas. Five electroencephalography (EEG) studies demonstrated that AO or MVF enhanced mu suppression over the sensorimotor cortex. Conclusions MVF may contribute to stroke recovery by revising the interhemispheric imbalance caused by stroke due to the activation of the MNS. AO may also promote motor relearning in stroke individuals by activating the MNS and motor cortex. PMID:29853839

  3. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration

    PubMed Central

    Lukes, Sarah J.; Downey, Ryan D.; Kreitinger, Seth T.; Dickensheets, David L.

    2017-01-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15 μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  4. A technique for designing active control systems for astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Creedon, J. F.

    1973-01-01

    The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.

  5. Status of Technology Development to enable Large Stable UVOIR Space Telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; MSFC AMTD Team

    2017-01-01

    NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.

  6. Potential determinants of efficacy of mirror therapy in stroke patients – A pilot study

    PubMed Central

    Brunetti, Maddalena; Morkisch, Nadine; Fritzsch, Claire; Mehnert, Jan; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2015-01-01

    Abstract Background: Mirror therapy (MT) was found to improve motor function after stroke. However, there is high variability between patients regarding motor recovery. Objectives: The following pilot study was designed to identify potential factors determining this variability between patients with severe upper limb paresis, receiving MT. Methods: Eleven sub-acute stroke patients with severe upper limb paresis participated, receiving in-patient rehabilitation. After a set of pre-assessments (including measurement of brain activity at the primary motor cortex and precuneus during the mirror illusion, using near-infrared spectroscopy as described previously), four weeks of MT were applied, followed by a set of post-assessments. Discriminant group analysis for MT responders and non-responders was performed. Results: Six out of eleven patients were defined as responders and five as non-responders on the basis of their functional motor improvement. The initial motor function and the activity shift in both precunei (mirror index) were found to discriminate significantly between responders and non-responders. Conclusions: In line with earlier results, initial motor function was confirmed as crucial determinant of motor recovery. Additionally, activity response to the mirror illusion in both precunei was found to be a candidate for determination of the efficacy of MT. PMID:26409402

  7. The Hubble Space Telescope optical systems failure report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The findings of the Hubble Space Telescope Optical Systems Board of Investigation are reported. The Board was formed to determine the cause of the flaw in the telescope, how it occurred, and why it was not detected before launch. The Board conducted its investigation to include interviews with personnel involved in the fabrication and test of the telescope, review of documentation, and analysis and test of the equipment used in the fabrication of the telescope's mirrors. The investigation proved that the primary mirror was made in the wrong shape (a 0.4-wave rms wavefront error at 632.8 nm). The primary mirror was manufactured by the Perkin-Elmer Corporation (Hughes Danbury Optical Systems, Inc.). The critical optics used as a template in shaping the mirror, the reflective null corrector (RNC), consisted of two small mirrors and a lens. This unit had been preserved by the manufacturer exactly as it was during the manufacture of the mirror. When the Board measured the RNC, the lens was incorrectly spaced from the mirrors. Calculations of the effect of such displacement on the primary mirror show that the measured amount, 1.3 mm, accounts in detail for the amount and character of the observed image blurring. No verification of the reflective null corrector's dimensions was carried out by Perkin-Elmer after the original assembly. There were, however, clear indications of the problem from auxiliary optical tests made at the time. A special optical unit called an inverse null corrector, designed to mimic the reflection from a perfect primary mirror, was built and used to align the apparatus; when so used, it clearly showed the error in the reflective null corrector. A second null corrector was used to measure the vertex radius of the finished primary mirror. It, too, clearly showed the error in the primary mirror. Both indicators of error were discounted at the time as being themselves flawed. The Perkin-Elmer plan for fabricating the primary mirror placed complete reliance on the reflective null corrector as the only test to be used in both manufacturing and verifying the mirror's surface with the required precision. This methodology should have alerted NASA management to the fragility of the process and the possibility of gross error. Such errors had been seen in other telescope programs, yet no independent tests were planned, although some simple tests to protect against major error were considered and rejected. During the critical time period, there was great concern about cost and schedule, which further inhibited consideration of independent tests.

  8. Current status of the facility instrumentation suite at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Rothberg, Barry; Kuhn, Olga; Edwards, Michelle L.; Hill, John M.; Thompson, David; Veillet, Christian; Wagner, R. Mark

    2016-07-01

    The current status of the facility instrumentation for the Large Binocular Telescope (LBT) is reviewed. The LBT encompasses two 8.4 meter primary mirrors on a single mount yielding an effective collecting area of 11.8 meters or 23 meters when interferometrically combined. The three facility instruments at LBT include: 1) the Large Binocular Cameras (LBCs), each with a 23'× 25' field of view (FOV). The blue optimized and red optimized optical wavelength LBCs are mounted at the prime focus of the SX (left) and DX (right) primary mirrors, respectively. Combined, the filter suite of the two LBCs cover 0.3-1.1 μm, including the addition of new medium-band filters centered on TiO (0.78 μm) and CN (0.82 μm) 2) the Multi-Object Double Spectrograph (MODS), two identical optical spectrographs each mounted at the straight through f/15 Gregorian focus of the primary mirrors. The capabilities of MODS-1 and -2 include imaging with Sloan filters (u, g, r, i, and z) and medium resolution (R ˜ 2000) spectroscopy, each with 24 interchangeable masks (multi-object or longslit) over a 6'× 6' FOV. Each MODS is capable of blue (0.32-0.6 μm) and red (0.5-1.05 μm) wavelength only spectroscopy coverage or both can employ a dichroic for 0.32-1.05 μm wavelength coverage (with reduced coverage from 0.56- 0.57 μm) and 3) the two LBT Utility Camera in the Infrared instruments (LUCIs), are each mounted at a bent-front Gregorian f/15 focus of a primary mirror. LUCI-1 and 2 are designed for seeing-limited (4'× 4' FOV) and active optics using thin-shell adaptive secondary mirrors (0.5'× 0.5' FOV) imaging and spectroscopy over the wavelength range of 0.95-2.5 μm and spectroscopic resolutions of 400 <= R <= 11000 (depending on the combination of grating, slits, and cameras used). The spectroscopic capabilities also include 32 interchangeable multi-object or longslit masks which are cryogenically cooled. Currently all facility instruments are in-place at the LBT and, for the first time, have been on-sky for science observations. In Summer 2015 LUCI-1 was refurbished to replace the infrared detector; to install a high-resolution camera to take advantage of the active optics SX secondary; and to install a grating designed primarily for use with high resolution active optics. Thus, like MODS-1 and -2, both LUCIs now have specifications nearly identical to each other. The software interface for both LUCIs have also been replaced, allowing both instruments to be run together from a single interface. With the installation of all facility instruments finally complete we also report on the first science use of "mixed-mode" operations, defined as the combination of different paired instruments with each mirror (i.e. LBC+MODS, LBC+LUCI, LUCI+MODS). Although both primary mirrors reside on a single fixed mount, they are capable of operating as independent entities within a defined "co-pointing" limit. This provides users with the additional capability to independently dither each mirror or center observations on two different sets of spatial coordinates within this limit.

  9. Being "Secondary" is Important for a Webb Telescope Mirror

    NASA Image and Video Library

    2017-12-08

    NASA release July 19, 2011 Click here to learn about the James Webb Space Telescope The secondary mirror (shown here) was polished at the L3 Integrated Optical Systems - Tinsley in Richmond, Calif. to accuracies of less than one millionth of an inch. That accuracy is important for forming the sharpest images when the mirrors cool to -400°F (-240°C) in the cold of space. The Webb's secondary mirror was recently completed, following polishing and gold-coating. "Secondary" may not sound as important as "primary" but when it comes to the next-generation James Webb Space Telescope a secondary mirror plays a critical role in ensuring the telescope gathers information from the cosmos. The Webb's secondary mirror was recently completed, following polishing and gold-coating. There are four different types of mirrors that will fly on the James Webb Space Telescope, and all are made of a light metal called beryllium. It is very strong for its weight and holds its shape across a range of temperatures. There are primary mirror segments (18 total that combined make the large primary mirror providing a collecting area of 25 meters squared/269.1 square feet), the secondary mirror, tertiary mirror and the fine steering mirror. Unlike the primary mirror, which is molded into the shape of a hexagon, the secondary mirror is perfectly rounded. The mirror is also convex, so the reflective surface bulges toward a light source. It looks much like a curved mirror that you'll see on the wall near the exit of a parking garage that lets motorists see around a corner. This mirror is coated with a microscopic layer of gold to enable it to efficiently reflect infrared light (which is what the Webb telescope's cameras see). The quality of the secondary mirror surface is so good that the final convex surface at cold temperatures does not deviate from the design by more than a few millionths of a millimeter - or about one ten thousandth the diameter of a human hair. "As the only convex mirror on the Webb telescope, the secondary mirror has always been recognized to be the hardest of all of the mirrors to polish and test, so we are delighted that its performance meets all specifications," said Lee Feinberg, Webb Optical Telescope manager at NASA's Goddard Space Flight Center in Greenbelt, Md. Convex mirrors are particularly hard to test because light that strikes them diverges away from the mirror. Feinberg noted, "The Webb telescope convex secondary mirror is approximately the size of the Spitzer Space Telescope's primary mirror and is by far the largest convex cryogenic mirror ever built for a NASA program." It was data from the Spitzer's mirrors that helped make the decision to use beryllium for the Webb telescope mirrors. Spitzer's mirrors were also made of beryllium. So why is this mirror so critical? Because the secondary mirror captures light from the 18 primary mirror segments and relays those distant images of the cosmos to the telescope's science cameras. The secondary mirror is mounted on folding "arms" that position it in front of the 18 primary mirror segments. The secondary mirror will soon come to NASA's Goddard Space Flight Center in Greenbelt, Md. where it will be installed on the telescope structure. Then, as a complete unit, the telescope structure and mirrors will undergo acoustic and vibration testing. The secondary mirror was developed at Ball Aerospace & Technology Corp. of Boulder, Colo. and the mirror recently completed polishing at the L3–IOS-Tinsley facility in Richmond, Calif. Northrop Grumman space Systems is the prime contractor on the Webb telescope program. The James Webb Space Telescope is the world’s next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, Webb will observe the most distant objects in the universe, provide images of the very first galaxies ever formed and see unexplored planets around distant stars. The Webb Telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency. Credit:NASA/Ball Aerospace/Tinsley NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Analysis and design of segment control system in segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao

    2017-10-01

    Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.

  11. Viewing speech modulates activity in the left SI mouth cortex.

    PubMed

    Möttönen, Riikka; Järveläinen, Juha; Sams, Mikko; Hari, Riitta

    2005-02-01

    The ability to internally simulate other persons' actions is important for social interaction. In monkeys, neurons in the premotor cortex are activated both when the monkey performs mouth or hand actions and when it views or listens to actions made by others. Neuronal circuits with similar "mirror-neuron" properties probably exist in the human Broca's area and primary motor cortex. Viewing other person's hand actions also modulates activity in the primary somatosensory cortex SI, suggesting that the SI cortex is related to the human mirror-neuron system. To study the selectivity of the SI activation during action viewing, we stimulated the lower lip (with tactile pulses) and the median nerves (with electric pulses) in eight subjects to activate their SI mouth and hand cortices while the subjects either rested, listened to other person's speech, viewed her articulatory gestures, or executed mouth movements. The 55-ms SI responses to lip stimuli were enhanced by 16% (P<0.01) in the left hemisphere during speech viewing whereas listening to speech did not modulate these responses. The 35-ms responses to median-nerve stimulation remained stable during speech viewing and listening. Own mouth movements suppressed responses to lip stimuli bilaterally by 74% (P<0.001), without any effect on responses to median-nerve stimuli. Our findings show that viewing another person's articulatory gestures activates the left SI cortex in a somatotopic manner. The results provide further evidence for the view that SI is involved in "mirroring" of other persons' actions.

  12. Technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    NASA Astrophysics Data System (ADS)

    Zuccaro Marchi, Alessandro; D'Amato, Francesco; Gallieni, Daniele; Biasi, Roberto; Molina, Marco; Duò, Fabrizio; Ruder, Nikolaus; Salinari, Piero; Lisi, Franco; Riccardi, Armando; Gambicorti, Lisa; Simonetti, Francesca; Pereira do Carmo, Joao Pedro N.

    2017-11-01

    The increasing interest on space telescopes for scientific applications leads to implement the manufacturing technology of the most critical element, i.e. the primary mirror: being more suitable a large aperture, it must be lightweight and deployable. The presented topic was originally addressed to a spaceborne DIAL (Differential Absorption LIDAR) mission operating at 935.5 nm for the measurement of water vapour profile in atmosphere, whose results were presented at ICSO 2006 and 2008. Aim of this paper is to present the latest developments on the main issues related to the fabrication of a breadboard, covering two project critical areas identified during the preliminary studies: the design and performances of the long-stroke actuators used to implement the mirror active control and the mirror survivability to launch via Electrostatic Locking (EL) between mirror and backplane. The described work is developed under the ESA/ESTEC contract No. 22321/09/NL/RA. The lightweight mirror is structured as a central sector surrounded by petals, all of them actively controlled to reach the specified shape after initial deployment and then maintained within specs for the entire mission duration. The presented study concerns: a) testing the Carbon Fiber Reinforced Plastic (CFRP) backplane manufacturing and EL techniques, with production of suitable specimens; b) actuator design optimisation; c) design of the deployment mechanism including a high precision latch; d) the fabrication of thin mirrors mock-ups to validate the fabrication procedure for the large shells. The current activity aims to the construction of an optical breadboard capable of demonstrating the achievement of all these coupled critical aspects: optical quality of the thin shell mirror surface, actuators performances and back-plane - EL subsystem functionality.

  13. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.

    PubMed

    Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B

    2012-01-01

    Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  14. Interpersonal motor resonance in autism spectrum disorder: evidence against a global "mirror system" deficit.

    PubMed

    Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2013-01-01

    The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  15. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary mirror (see figure) white light from a distant source would not be brought to initial focus on one or more imaging scientific instrument(s) as in customary practice. Instead, the light would be brought to initial focus on a phase-conjugate mirror. The phase-conjugate mirror would send a phase-conjugate image back, along the path of the incoming light, to the primary mirror. A transparent, highly efficient diffractive thin film deposited on the primary mirror would direct the phase-conjugate image to the imaging instrument(s).

  16. Segment Alignment Maintenance System for the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo -elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the subarray SAMS.

  17. SOFIA primary mirror fabrication and testing

    NASA Astrophysics Data System (ADS)

    Geyl, Roland; Tarreau, Michel; Plainchamp, Patrick

    2001-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint American-German project dedicated to performing IR astronomy on board a Boeing Aircraft, in near space condition. First flight of the Observatory is planned for 2003. The REOSC Products Unit of SAGEM SA (France) has been contracted by Kayser Threde (Germany) for the design and fabrication of the 2.7-meter diameter, F/1.19 parabolic lightweight SOFIA primary mirror as well as the M3 dichroic and folding mirror assembly. This paper will report the design, fabrication and test of the lightweight primary mirror. The mirror structure has been obtained by machining it out from a solid Zerodur blank. It is the world's largest of this type today. Axial and lateral mirror support system has been conceptually designed and engineered by SAGEM-REOSC engineers in relation with Kayser Threde team. The optical surface is an F/1.19 parabola polished to a high level of quality.

  18. SOFIA lightweight primary mirror

    NASA Astrophysics Data System (ADS)

    Espiard, Jean; Tarreau, Michel; Bernier, Joel; Billet, Jacques; Paseri, Jacques

    1998-08-01

    Thanks to its experience in lightweighting ceramic glass mirrors by machining, R.E.O.S.C. won the contract for designing and manufacturing the primary mirror and its lateral fixations of the 2.7 m. SOFIA telescope which will be installed aboard a 747 SP Boeing aircraft to constitute the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  19. The design, construction and testing of the optics for a 147-cm-aperture telescope

    NASA Technical Reports Server (NTRS)

    Buchroeder, R. A.; Elmore, L. H.; Shack, R. V.; Slater, P. N.

    1972-01-01

    Geodetic optics research for the Air Force Cambridge Research Laboratories (AFCRL) is described. The work consisted mainly of the fabrication of the optical components for a telescope with a 152-cm-diam (60-in.) primary mirror masked down to 147-cm-diam for use by the AFCRL for a lunar ranging experiment. Among the achievements of this contract were the following: completion of the primary and secondary mirrors for a high-quality 147-cm-diam telescope system in eight months from the start of edging the primary; manufacture and testing of a unique center mount for the primary according to an AFCRL design that allowed for a thin-edged and therefore less-massive mirror; and development of a quantitative analysis of the wire test for calculating the departure of the mirror figure from the design figure quickly and accurately after each polishing step. This analysis method in conjunction with a knowledge of polishing rates for given weights and diameters of tools, mirror, and polishing materials should considerably reduce the polishing time required for future large mirrors.

  20. JWST testbed telescope: a functionally accurate scaled version of the flight optical telescope element used to develop the flight wavefront sensing and control algorithm

    NASA Astrophysics Data System (ADS)

    Kingsbury, Lana K.; Atcheson, Paul D.

    2004-10-01

    The Northrop-Grumman/Ball/Kodak team is building the JWST observatory that will be launched in 2011. To develop the flight wavefront sensing and control (WFS&C) algorithms and software, Ball is designing and building a 1 meter diameter, functionally accurate version of the JWST optical telescope element (OTE). This testbed telescope (TBT) will incorporate the same optical element control capability as the flight OTE. The secondary mirror will be controlled by a 6 degree of freedom (dof) hexapod and each of the 18 segmented primary mirror assemblies will have 6 dof hexapod control as well as radius of curvature adjustment capability. In addition to the highly adjustable primary and secondary mirrors, the TBT will include a rigid tertiary mirror, 2 fold mirrors (to direct light into the TBT) and a very stable supporting structure. The total telescope system configured residual wavefront error will be better than 175 nm RMS double pass. The primary and secondary mirror hexapod assemblies enable 5 nm piston resolution, 0.0014 arcsec tilt resolution, 100 nm translation resolution, and 0.04497 arcsec clocking resolution. The supporting structure (specifically the secondary mirror support structure) is designed to ensure that the primary mirror segments will not change their despace position relative to the secondary mirror (spaced > 1 meter apart) by greater than 500 nm within a one hour period of ambient clean room operation.

  1. Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.

    PubMed

    Simon, Shiri; Mukamel, Roy

    2017-05-01

    Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.

  2. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  3. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Keski-Kuha, R.; McKay, A.; Chaney, D.; Gallagher, B.; Ha, K.

    2012-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The .70x.51m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. The telescope is supported by a composite structure optimized for performance at cryogenic temperatures. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. All flight mirrors have now completed polishing, coating with protected Au and final cryo testing, and the telescope is on track to meet all system requirements. We here review the measured performance of the component mirrors and the predicted performance of the flight telescope.

  4. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of

  5. Active optics for next generation space telescopes

    NASA Astrophysics Data System (ADS)

    Costes, V.; Perret, L.; Laubier, D.; Delvit, J. M.; Imbert, C.; Cadiergues, L.; Faure, C.

    2017-09-01

    High resolution observation systems need bigger and bigger telescopes. The design of such telescopes is a key issue for the whole satellite. In order to improve the imaging resolution with minimum impact on the satellite, a big effort must be made to improve the telescope compactness. Compactness is also important for the agility of the satellite and for the size and cost of the launcher. This paper shows how compact a high resolution telescope can be. A diffraction limited telescope can be less than ten times shorter than its focal length. But the compactness impacts drastically the opto-mechanical sensitivity and the optical performances. Typically, a gain of a factor of 2 leads to a mechanical tolerance budget 6 times more difficult. The need to implement active optics for positioning requirements raises very quickly. Moreover, the capability to compensate shape defaults of the primary mirror is the way to simplify the mirror manufacture, to mitigate the development risks and to minimize the cost. The larger the primary mirror is, the more interesting it is to implement active optics for shape compensations. CNES is preparing next generation of earth observation satellite in the frame of OTOS (Observation de la Terre Optique Super-Résolue; High resolution earth observing optical system). OTOS is a technology program. In particular, optical technological developments and breadboards dedicated to active optics are on-going. The aim is to achieve TRL 5 to TRL6 for these new technologies and to validate the global performances of such an active telescope.

  6. A normal incidence X-ray telescope sounding rocket payload

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress is reported on the following major activities on the X-ray telescope: (1) complete design of the entire telescope assembly and fabrication of all front-end components was completed; (2) all rocket skin sections, including bulkheads, feedthroughs and access door, were specified; (3) fabrication, curing and delivery of the large graphite-epoxy telescope tube were completed; (4) an engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment system to a kinematic three-point mount; (5) detail design of the camera control, payload and housekeeping electronics were completed; and (6) multilayer mirror plates with 2d spacings of 50 A and 60 A were produced.

  7. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    PubMed

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  8. Presentation Annotated

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas

    2017-01-01

    This Report is not the latest word on an old idea but the first word on a new one. The new idea reverses the old one, the axiom that the best primary objective for an astronomical telescope exhibits the least chromatic aberration. That axiomatic distinction goes back to a young Isaac Newton who knew from experiments with prisms and mirrors in the 1660's that magnification with a reflection primary was completely free of the dispersion he saw with refraction. The superiority of reflection primary objectives for eyeball or photographic viewing is now considered obvious. It was this piece of wisdom on achromatic primary objectives that led to the dominance of the parabolic mirror as the means to collect star light. Newton was aware of the problem when he introduced his telescope to the scientific world in 1670.This Report is not the latest word on an old idea but the first word on a new one. The new idea reverses the old one, the axiom that the best primary objective for an astronomical telescope exhibits the least chromatic aberration. That axiomatic distinction goes back to a young Isaac Newton who knew from experiments with prisms and mirrors in the 1660's that magnification with a reflection primary was completely free of the dispersion he saw with refraction. The superiority of reflection primary objectives for eyeball or photographic viewing is now considered obvious. Actually, Newton's design innovation was in a secondary mirror, a plane mirror far more easily fabricated than Gregory's embodiment of 1663 which required two curved mirrors.

  9. Wide-angle flat field telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1986-01-01

    Described is an unobscured three mirror wide angle telescopic imaging system comprised of an input baffle which provides a 20 deg (Y axis) x 30 deg (X axis) field of view, a primary mirror having a convex spherical surface, a secondary mirror having a concave ellipsoidal reflecting surface, a tertiary mirror having a concave spherical reflecting surface. The mirrors comprise mirror elements which are offset segments of parent mirrors whose axes and vertices commonly lie on the system's optical axis. An iris diaphragm forming an aperture stop is located between the secondary and tertiary mirror with its center also being coincident with the optical axis and being further located at the beam waist of input light beams reflected from the primary and secondary mirror surfaces. At the system focus following the tertiary mirror is located a flat detector which may be, for example, a TV imaging tube or a photographic film. When desirable, a spectral transmission filter is placed in front of the detector in close proximity thereto.

  10. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2017-12-08

    A view of the one dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year. Read more: www.nasa.gov/feature/goddard/2016/by-the-dozen-nasas-jame... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. By the Dozen: NASA's James Webb Space Telescope Mirrors

    NASA Image and Video Library

    2016-01-07

    Caption: One dozen (out of 18) flight mirror segments that make up the primary mirror on NASA's James Webb Space Telescope have been installed at NASA's Goddard Space Flight Center. Credits: NASA/Chris Gunn More: Since December 2015, the team of scientists and engineers have been working tirelessly to install all the primary mirror segments onto the telescope structure in the large clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The twelfth mirror was installed on January 2, 2016. "This milestone signifies that all of the hexagonal shaped mirrors on the fixed central section of the telescope structure are installed and only the 3 mirrors on each wing are left for installation," said Lee Feinberg, NASA's Optical Telescope Element Manager at NASA Goddard. "The incredibly skilled and dedicated team assembling the telescope continues to find ways to do things faster and more efficiently." Each hexagonal-shaped segment measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). After being pieced together, the 18 primary mirror segments will work together as one large 21.3-foot (6.5-meter) mirror. The primary mirror will unfold and adjust to shape after launch. The mirrors are made of ultra-lightweight beryllium. The mirrors are placed on the telescope's backplane using a robotic arm, guided by engineers. The full installation is expected to be completed in a few months. The mirrors were built by Ball Aerospace & Technologies Corp., Boulder, Colorado. Ball is the principal subcontractor to Northrop Grumman for the optical technology and lightweight mirror system. The installation of the mirrors onto the telescope structure is performed by Harris Corporation of Rochester, New York. Harris Corporation leads integration and testing for the telescope. While the mirror assembly is a very significant milestone, there are many more steps involved in assembling the Webb telescope. The primary mirror and the tennis-court-sized sunshield are the largest and most visible components of the Webb telescope. However, there are four smaller components that are less visible, yet critical. The instruments that will fly aboard Webb - cameras and spectrographs with detectors able to record extremely faint signals — are part of the Integrated Science Instrument Module (ISIM), which is currently undergoing its final cryogenic vacuum test and will be integrated with the mirror later this year. Read more: www.nasa.gov/feature/goddard/2016/by-the-dozen-nasas-jame... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Silicon nitride ceramic development in Thales Alenia Space : qualification achievement and further developments for future applications

    NASA Astrophysics Data System (ADS)

    Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.

    2017-11-01

    Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.

  13. Silicon nitride ceramic development in Thales Alenia Space: qualification achiement and further developments for future applications

    NASA Astrophysics Data System (ADS)

    Cornillon, L.; Devilliers, C.; Behar-Lafenetre, S.; Ait-Zaid, S.; Berroth, K.; Bravo, A. C.

    2017-11-01

    Dealing with ceramic materials for more than two decades, Thales Alenia Space - France has identified Silicon Nitride Si3N4 as a high potential material for the manufacturing of stiff, stable and lightweight truss structure for future large telescopes. Indeed, for earth observation or astronomic observation, space mission requires more and more telescopes with high spatial resolution, which leads to the use of large primary mirrors, and a long distance between primary and secondary mirrors. Therefore current and future large space telescopes require a huge truss structure to hold and locate precisely the mirrors. Such large structure requires very strong materials with high specific stiffness and a low coefficient of thermal expansion (CTE). Based on the silicon nitride performances and on the know how of FCT Ingenieurkeramik to manufacture complex parts, Thales Alenia Space (TAS) has engaged, in cooperation with FCT, activities to develop and qualify silicon nitride parts for other applications for space projects.

  14. Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mehnert, Jan; Brunetti, Maddalena; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2013-06-01

    Mirror therapy is a therapy to treat patients with pain syndromes or hemiparesis after stroke. However, the underlying neurophysiologic mechanisms are not clearly understood. In order to determine the effect of a mirror-like illusion (MIR) on brain activity using functional near-infrared spectroscopy, 20 healthy right-handed subjects were examined. A MIR was induced by a digital horizontal inversion of the subjects' filmed hand. Optodes were placed on the primary motor cortex (M1) and the occipito-parietal cortex (precuneus, PC). Regions of interest (ROI) were defined a priori based on previous results of similar studies and confirmed by the analysis of effect sizes. Analysis of variance of the ROI signal revealed a dissociated pattern: at the PC, the MIR caused a significant inversion of a hemispheric lateralization opposite to the perceived hand, independent of the moving hand. In contrast, activity in M1 showed lateralization opposite to the moving hand, but revealed no mirror effect. These findings extend our understanding on interhemispheric rivalry and indicate that a MIR is integrated into visuomotor coordination similar to normal view, irrespective of the hand that is actually performing the task.

  15. Re-aluminising the primary mirror of the South African Astronomical Observatory's 74-inch telescope

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; Stoffels, John; Koorts, Willie; Christian, Brendt; de Water, Wilhelmina; Fransman, Timothy; Gibbons, Denville; Machete, Nelson; Sefako, Ramotholo R.; Taaibos, Sinethemba

    2016-07-01

    Telescope mirrors reside in harsh environments and thus require periodic re-aluminisation to maintain their reflectivity. The SAAO's Sutherland field station suffers from dust and frequent bouts of high humidity. Dust settling on the mirrors adheres to the upward-facing optical surfaces and is not removed by CO2 cleaning. The 74-inch primary mirror was unsuccessfully re-aluminised in April 2015. Parts of the mirror proved difficult to clean and the resulting coating included hazy, white patches in those problem areas. Cotton wool soaked with ferric chloride was used to strip small patches of coating, confirming that no optical surface damage had occurred. The 55 year-old aluminising equipment for the 74-inch required an extensive overhaul and the spruced up system was then used to re-coat the primary mirror in November 2015. We used the same de-ionised water, potassium hydroxide, sodium lauryl sulphate, cotton wool, safety gear and cleaning techniques employed by the mirror coating team at the neighbouring Southern African Large Telescope, as well as their Ocean Optics reflectometer to quantify the improvement in reflectivity. Measurements at 320 nm on different parts of the dirty primary ranged between 10 % and 70 %, while the new coating exceeded 95 % over the entire surface.

  16. Development and performance of Hobby-Eberly Telescope 11-m segmented mirror

    NASA Astrophysics Data System (ADS)

    Krabbendam, Victor L.; Sebring, Thomas A.; Ray, Frank B.; Fowler, James R.

    1998-08-01

    The Hobby Eberly Telescope features a unique eleven-meter spherical primary mirror consisting of a single steel truss populated with 91 Zerodur(superscript TM) mirror segments. The 1 meter hexagonal segments are fabricated to 0.033 micron RMS spherical surfaces with matched radii to 0.5 mm. Silver coatings are applied to meet reflectance criteria for wavelengths from 0.35 to 2.5 micron. To support the primary spectroscopic uses of the telescope the mirror must provide a 0.52 arc sec FWHM point spread function. Mirror segments are co-aligned to within 0.0625 ar sec and held to 25 microns of piston envelope using a segment positioning system that consists of 273 actuators (3 per mirror), a distributed population of controllers, and custom developed software. A common path polarization shearing interferometer was developed to provide alignment sensing of the entire array from the primary mirror's center of curvature. Performance of the array is being tested with an emphasis on alignment stability. Distributed temperature measurements throughout the truss are correlated to pointing variances of the individual mirror segments over extended periods of time. Results are very encouraging and indicate that this mirror system approach will prove to be a cost-effective solution for large optical collecting apertures.

  17. A Space Imaging Concept Based on a 4-meter Spun-Cast Borosilicate Monolithic Primary Mirror

    DTIC Science & Technology

    2010-06-01

    borosilicate monolithic primary mirror 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steve West, S.H... Mirror Technology Days, Boulder, Colorado, USA, 7-9 June 2010. 14. ABSTRACT The goal of this effort is to produce the largest monolithic telescope...capable of being lifted by a Delta IV or Atlas V EELV to 500 km. A strategy using a 4 m borosilicate mirror is proposed. A preliminary architecture was

  18. Highly light-weighted ZERODUR mirrors

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stéphanie; Lasic, Thierry; Viale, Roger; Mathieu, Jean-Claude; Ruch, Eric; Tarreau, Michel; Etcheto, Pierre

    2017-11-01

    Due to more and more stringent requirements for observation missions, diameter of primary mirrors for space telescopes is increasing. Difficulty is then to have a design stiff enough to be able to withstand launch loads and keep a reasonable mass while providing high opto-mechanical performance. Among the possible solutions, Thales Alenia Space France has investigated optimization of ZERODUR mirrors. Indeed this material, although fragile, is very well mastered and its characteristics well known. Moreover, its thermo-elastic properties (almost null CTE) is unequalled yet, in particular at ambient temperature. Finally, this material can be polished down to very low roughness without any coating. Light-weighting can be achieved by two different means : either optimizing manufacturing parameters or optimizing design (or both). Manufacturing parameters such as walls and optical face thickness have been improved and tested on representative breadboards defined on the basis of SAGEM-REOSC and Thales Alenia Space France expertise and realized by SAGEM-REOSC. In the frame of CNES Research and Technology activities, specific mass has been decreased down to 36 kg/m2. Moreover SNAP study dealt with a 2 m diameter primary mirror. Design has been optimized by Thales Alenia Space France while using classical manufacturing parameters - thus ensuring feasibility and costs. Mass was decreased down to 60 kg/m2 for a gravity effect of 52 nm. It is thus demonstrated that high opto-mechanical performance can be guaranteed with large highly lightweighted ZERODUR mirrors.

  19. Curvature wavefront sensing performance evaluation for active correction of the Large Synoptic Survey Telescope (LSST).

    PubMed

    Manuel, Anastacia M; Phillion, Donald W; Olivier, Scot S; Baker, Kevin L; Cannon, Brice

    2010-01-18

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary, along with three refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. In order to maintain image quality during operation, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations, which arise primarily from forces due to gravity and thermal expansion. We describe the methodology for measuring the telescope aberrations using a set of curvature wavefront sensors located in the four corners of the LSST camera focal plane. We present a comprehensive analysis of the wavefront sensing system, including the availability of reference stars, demonstrating that this system will perform to the specifications required to meet the LSST performance goals.

  20. Single-axis four-mirror system: large spherical primary and small fields

    NASA Astrophysics Data System (ADS)

    Baranne, Andre

    1998-08-01

    A catoptric corrector of modest size can be used for large spherical primaries, easily integrated at the prime focus, this corrector gives back to the system, aspect and properties of 2-mirrors classical telescopes. In the last few years, progress in active and adaptative optics makes possible a lot of things, progress in measuring distances, new ideas on optical coatings, new materials and so on in a near future, all that makes the instrumentalist dreamy It is said that nobody knows today if the size of 3rd millennium telescopes will be limited or not by a theoretical, physical or technical phenomenon, thus let us imagine but with thoughtfulness because our projects will be surely restricted by financial considerations

  1. Alignment and use of the optical test for the 8.4-m off-axis primary mirrors of the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    West, S. C.; Burge, J. H.; Cuerden, B.; Davison, W.; Hagen, J.; Martin, H. M.; Tuell, M. T.; Zhao, C.; Zobrist, T.

    2010-07-01

    The Giant Magellan Telescope has a 25 meter f/0.7 near-parabolic primary mirror constructed from seven 8.4 meter diameter segments. Several aspects of the interferometric optical test used to guide polishing of the six off-axis segments go beyond the demonstrated state of the art in optical testing. The null corrector is created from two obliquelyilluminated spherical mirrors combined with a computer-generated hologram (the measurement hologram). The larger mirror is 3.75 m in diameter and is supported at the top of a test tower, 23.5 m above the GMT segment. Its size rules out a direct validation of the wavefront produced by the null corrector. We can, however, use a reference hologram placed at an intermediate focus between the two spherical mirrors to measure the wavefront produced by the measurement hologram and the first mirror. This reference hologram is aligned to match the wavefront and thereby becomes the alignment reference for the rest of the system. The position and orientation of the reference hologram, the 3.75 m mirror and the GMT segment are measured with a dedicated laser tracker, leading to an alignment accuracy of about 100 microns over the 24 m dimensions of the test. In addition to the interferometer that measures the GMT segment, a separate interferometer at the center of curvature of the 3.75 m sphere monitors its figure simultaneously with the GMT measurement, allowing active correction and compensation for residual errors. We describe the details of the design, alignment, and use of this unique off-axis optical test.

  2. Demonstration of a Segment Alignment Maintenance System on a Seven-Segment Sub-Array of the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo-elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors supplemented by inclinometers for global radius of curvature sensing. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the sub-array SAMS.

  3. Mirror neuron system and observational learning: behavioral and neurophysiological evidence.

    PubMed

    Lago-Rodriguez, Angel; Lopez-Alonso, Virginia; Fernández-del-Olmo, Miguel

    2013-07-01

    Three experiments were performed to study observational learning using behavioral, perceptual, and neurophysiological data. Experiment 1 investigated whether observing an execution model, during physical practice of a transitive task that only presented one execution strategy, led to performance improvements compared with physical practice alone. Experiment 2 investigated whether performing an observational learning protocol improves subjects' action perception. In experiment 3 we evaluated whether the type of practice performed determined the activation of the Mirror Neuron System during action observation. Results showed that, compared with physical practice, observing an execution model during a task that only showed one execution strategy does not provide behavioral benefits. However, an observational learning protocol allows subjects to predict more precisely the outcome of the learned task. Finally, intersperse observation of an execution model with physical practice results in changes of primary motor cortex activity during the observation of the motor pattern previously practiced, whereas modulations in the connectivity between primary and non primary motor areas (PMv-M1; PPC-M1) were not affected by the practice protocol performed by the observer. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Interpersonal motor resonance in autism spectrum disorder: evidence against a global “mirror system” deficit

    PubMed Central

    Enticott, Peter G.; Kennedy, Hayley A.; Rinehart, Nicole J.; Bradshaw, John L.; Tonge, Bruce J.; Daskalakis, Zafiris J.; Fitzgerald, Paul B.

    2013-01-01

    The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD. PMID:23734121

  5. Gondola for High Altitude Planetary Science (GHAPS) Telescope Secondary Mirror Positioning Hexapod Issues and Alternatives

    NASA Technical Reports Server (NTRS)

    Wells, Mark

    2017-01-01

    Active positioning of the GHAPS secondary telescope mirror is desired to correct for rigid body deflections due to temperature variations and gravity sag in the telescope structure that may impact optical performance. The current design concept for the secondary mirror mount uses a Commercial-Off -the-Shelf hexapod for mirror positioning and fine adjustment. The Hexapod specification states that motions as small as 0.1 microns along the optical axis and 2 microns perpendicular to the optical axis will cause optical aberrations that will require correction by repositioning the secondary mirror. In addition, the secondary mirror mount and positioning system must survive a 15g shock of parachute opening and landing during the instrument recovery operation. The secondary mirror positioning system must operate at a minimum specified temperature of -50 C. The telescope operates in the IR and the secondary mirror mount and positioning device is in the metering path between the primary and secondary mirrors. I2R losses in positioning system actuator devices, which may cause heating of the positioning system and secondary mirror, must be minimized due to the previously mentioned alignment sensitivity and the viewing spectrum of interest. The GHAPs project was cancelled on June 30, 2017. The purpose of this study is to address some of the issues identified with the hexapod secondary mirror positioning system and identify alternative approaches. This information may be used if the project is re-started at a later date.

  6. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2014-01-01

    A Fast Steering Mirror (FSM) is going to be provided as the secondary of the Giant Magellan Telescope (GMT) for the first light observations. FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m, and each mirror is activated by three tip-tilt actuators which compensate image degradations caused by winds and structure jitter. An FSM prototype (FSMP) has been developed to achieve the key technologies, fabrication of highly aspheric off-axis mirror and precise tip-tilt actuation. It consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The development has been conducted by Korea Astronomy and Space Science Institute together with four other institutions in Korea and USA. The mirror was light-weighted by digging about a hundred holes at the backside, and the front surface has been polished. The result of computer generated hologram measurements showed the surface error of 11.7 nm rms. The tip-tilt test-bed has been manufactured and assembled. Tip-tilt range and resolution tests complied the requirements, and the attenuation test results also satisfied the performance requirements. In this paper, we present the successful developments of the prototype.

  7. Aluminization and mirror removal of the Magellan 6.5-meter telescope

    NASA Astrophysics Data System (ADS)

    Perez, Frank S.

    1994-06-01

    The Magellan Project 6.5-meter telescope is a collaboration of the Carnegie Institution of Washington and the University of Arizona. The telescope will be located on Cerro Manqui, at the Las Campanas Observatory, Chile. At the beginning of the Magellan Project several schemes were investigated for realuminizing the primary mirror. We have chosen to leave the primary mirror in its cell with the mirror support system intact. Two major advantages of leaving the mirror in its cell are that it does not have to be lifted or handled and the support system does not have to be removed or reinstalled for aluminization.

  8. Modular Orbital Demonstration of an Evolvable Space Telescope

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian

    2016-06-01

    The key driver for a telescope's sensitivityis directly related to the size of t he mirror area that collects light from the objects being observed.The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The HDST envisioned for this mission would have an aperture >10 m, which is a larger payload than can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. The Optical Telescope Assembly for HDST is a primary mission cost driver. Enabling affordable solutions for this next generation of large aperture space-based telescope are needed.This reports on the concept for the MODEST, which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student's exploration of space. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Ceramic Matrix Composite that have excellent mechanical and thermal properties, e.g. high stiffness, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  9. Space astronomical telescopes and instruments; Proceedings of the Meeting, Orlando, FL, Apr. 1-4, 1991

    NASA Astrophysics Data System (ADS)

    Bely, Pierre Y.; Breckinridge, James B.

    The present volume on space astronomical telescopes and instruments discusses lessons from the HST, telescopes on the moon, future space missions, and mirror fabrication and active control. Attention is given to the in-flight performance of the Goddard high-resolution spectrograph of the HST, the initial performance of the high-speed photometer, results from HST fine-guidance sensors, and reconstruction of the HST mirror figure from out-of-focus stellar images. Topics addressed include system concepts for a large UV/optical/IR telescope on the moon, optical design considerations for next-generation space and lunar telescopes, the implications of lunar dust for astronomical observatories, and lunar liquid-mirror telescopes. Also discussed are space design considerations for the Space Infrared Telescope Facility, the Hubble extrasolar planet interferometer, Si:Ga focal-plane arrays for satellite and ground-based telescopes, microchannel-plate detectors for space-based astronomy, and a method for making ultralight primary mirrors.

  10. Airborne Intercept Monitoring

    DTIC Science & Technology

    2006-04-01

    Primary mirror of Zerodur with Pilkington 747 coating • FOV = 0.104 degrees Airborne Intercept Monitoring RTO-MP-SET-105 16 - 3 UNCLASSIFIED...Pointing System (SPS). The STS is a 0.75 meter aperture Mersenne Cassegrain telescope and the SAT is a 0.34 meter aperture 3- mirror anastigmat telescope...UNLIMITED UNCLASSIFIED/UNLIMITED • Air Flow to Mitigate Thermal “Seeing” Effects • Light weighted primary mirror to reduce mass The SAT

  11. The ELT in 2017: The Year of the Primary Mirror

    NASA Astrophysics Data System (ADS)

    Cirasuolo, M.; Tamai, R.; Cayrel, M.; Koehler, B.; Biancat Marchet, F..; González, J. C.; Dimmler, M.; Tuti, M.; ELT Team

    2018-03-01

    The Extremely Large Telescope (ELT) is at the core of ESO's vision to deliver the largest optical and infrared telescope in the world. With its unrivalled sensitivity and angular resolution the ELT will transform our view of the Universe: from exoplanets to resolved stellar populations, from galaxy evolution to cosmology and fundamental physics. This article focuses on one of the most challenging aspects of the entire programme, the 39-metre primary mirror (M1). 2017 was a particularly intense year for M1, the main highlight being the approval by ESO's Council to proceed with construction of the entire mirror. In addition, several contracts have been placed to ensure that the giant primary mirror will be operational at first light.

  12. Realization and testing of a deployable space telescope based on tape springs

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Li, Chuang; Zhong, Peifeng; Chong, Yaqin; Jing, Nan

    2017-08-01

    For its compact size and light weight, space telescope with deployable support structure for its secondary mirror is very suitable as an optical payload for a nanosatellite or a cubesat. Firstly the realization of a prototype deployable space telescope based on tape springs is introduced in this paper. The deployable telescope is composed of primary mirror assembly, secondary mirror assembly, 6 foldable tape springs to support the secondary mirror assembly, deployable baffle, aft optic components, and a set of lock-released devices based on shape memory alloy, etc. Then the deployment errors of the secondary mirror are measured with three-coordinate measuring machine to examine the alignment accuracy between the primary mirror and the deployed secondary mirror. Finally modal identification is completed for the telescope in deployment state to investigate its dynamic behavior with impact hammer testing. The results of the experimental modal identification agree with those from finite element analysis well.

  13. Altered Activation and Functional Asymmetry of Exner's Area but not the Visual Word Form Area in a Child with Sudden-onset, Persistent Mirror Writing.

    PubMed

    Linke, Annika; Roach-Fox, Elizabeth; Vriezen, Ellen; Prasad, Asuri Narayan; Cusack, Rhodri

    2018-06-02

    Mirror writing is often produced by healthy children during early acquisition of literacy, and has been observed in adults following neurological disorders or insults. The neural mechanisms responsible for involuntary mirror writing remain debated, but in healthy children, it is typically attributed to the delayed development of a process of overcoming mirror invariance while learning to read and write. We present an unusual case of sudden-onset, persistent mirror writing in a previously typical seven-year-old girl. Using her dominant right hand only, she copied and spontaneously produced all letters, words and sentences, as well as some numbers and objects, in mirror image. Additionally, she frequently misidentified letter orientations in perceptual assessments. Clinical, neuropsychological, and functional neuroimaging studies were carried out over sixteen months. Neurologic and ophthalmologic examinations and a standard clinical MRI scan of the head were normal. Neuropsychological testing revealed average scores on most tests of intellectual function, language function, verbal learning and memory. Visual perception and visual reasoning were average, with the exception of below average form constancy, and mild difficulties on some visual memory tests. Activation and functional connectivity of the reading and writing network was assessed with fMRI. During a reading task, the VWFA showed a strong response to words in mirror but not in normal letter orientation - similar to what has been observed in typically developing children previously - but activation was atypically reduced in right primary visual cortex and Exner's Area. Resting-state connectivity within the reading and writing network was similar to that of age-matched controls, but hemispheric asymmetry between the balance of motor-to-visual input was found for Exner's Area. In summary, this unusual case suggests that a disruption to visual-motor integration rather than to the VWFA can contribute to sudden-onset, persistent mirror writing in the absence of clinically detectable neurological insult. Copyright © 2018. Published by Elsevier Ltd.

  14. Recent developments for Astronomy at SAGEM

    NASA Astrophysics Data System (ADS)

    Geyl, Roland

    2003-02-01

    SAGEM, through its REOSC product line, is offering a high skill of optics design fabrication and assembly to the astronomical community. Beside large projects like ESO VLT, SOFIA or the Spain GTC, SAGEM is continuously active with smaller projects. In this paper, we will present our recent work in the field of thin films with mirror broadband and durable coating and large area filters for multimegapixel camera. Latest results of Sofia primary mirror integration will be presented. Work on large prime focus correctors like the one of CFHT MegaPrime and the SALT Spherical Aberration Corrector. For space astronomy it is our new activity of mold smoothing for large telecom antenna or submillimeter reflectors that will be presented.

  15. A comparison of performance of lightweight mirrors

    NASA Technical Reports Server (NTRS)

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  16. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  17. Alignment displacements of the solar optical telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Medenica, W. V.

    1978-01-01

    Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.

  18. Resolving the Southern African Large Telescope's image quality problems

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh E.; Crause, Lisa A.; O'Connor, James; Strümpfer, Francois; Strydom, Ockert J.; Sass, Craig; Brink, Janus D.; Plessis, Charl du; Wiid, Eben; Love, Jonathan

    2013-08-01

    Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase in 2006 showed degradation due to a large focus gradient, astigmatism, and higher order optical aberrations. An extensive forensic investigation exonerated the primary mirror and the science instruments before pointing to the mechanical interface between the telescope and the spherical aberration corrector, the complex optical subassembly which corrects the spherical aberration introduced by the 11-m primary mirror. Having diagnosed the problem, a detailed repair plan was formulated and implemented when the corrector was removed from the telescope in April 2009. The problematic interface was replaced, and the four aspheric mirrors were optically tested and re-aligned. Individual mirror surface figures were confirmed to meet specification, and a full system test after the re-alignment yielded a root mean square wavefront error of 0.15 waves. The corrector was reinstalled in August 2010 and aligned with respect to the payload and primary mirror. Subsequent on-sky tests revealed spurious signals being sent to the tracker by the auto-collimator, the instrument that maintains the alignment of the corrector with respect to the primary mirror. After rectifying this minor issue, the telescope yielded uniform 1.1 arcsec star images over the full 10-arcmin field of view.

  19. Lightweight structure design for supporting plate of primary mirror

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Wei; Liu, Bei; Qu, Yan Jun; Li, Xu Peng

    2017-10-01

    A topological optimization design for the lightweight technology of supporting plate of the primary mirror is presented in this paper. The supporting plate of the primary mirror is topologically optimized under the condition of determined shape, loads and environment. And the optimal structure is obtained. The diameter of the primary mirror in this paper is 450mm, and the material is SiC1 . It is better to select SiC/Al as the supporting material. Six points of axial relative displacement can be used as constraints in optimization2 . Establishing the supporting plate model and setting up the model parameters. After analyzing the force of the main mirror on the supporting plate, the model is applied with force and constraints. Modal analysis and static analysis of supporting plates are calculated. The continuum structure topological optimization mathematical model is created with the variable-density method. The maximum deformation of the surface of supporting plate under the gravity of the mirror and the first model frequency are assigned to response variable, and the entire volume of supporting structure is converted to object function. The structures before and after optimization are analyzed using the finite element method. Results show that the optimized fundamental frequency increases 29.85Hz and has a less displacement compared with the traditional structure.

  20. Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients.

    PubMed

    Cacchio, Angelo; De Blasis, Elisabetta; De Blasis, Vincenzo; Santilli, Valter; Spacca, Giorgio

    2009-10-01

    Complex regional pain syndrome type 1 (CRPSt1) of the upper limb is a painful and debilitating condition, frequent after stroke, and interferes with the rehabilitative process and outcome. However, treatments used for CRPSt1 of the upper limb are limited. . This randomized controlled study was conducted to compare the effectiveness on pain and upper limb function of mirror therapy on CRPSt1 of upper limb in patients with acute stroke. . Of 208 patients with first episode of unilateral stroke admitted to the authors' rehabilitation center, 48 patients with CRPSt1 of the affected upper limb were enrolled in a randomized controlled study, with a 6-month follow-up, and assigned to either a mirror therapy group or placebo control group. The primary end points were a reduction in the visual analogue scale score of pain at rest, on movement, and brush-induced tactile allodynia. The secondary end points were improvement in motor function as assessed by the Wolf Motor Function Test and Motor Activity Log. . The mean scores of both the primary and secondary end points significantly improved in the mirror group (P < .001). No statistically significant improvement was observed in any of the control group values (P > .001). Moreover, statistically significant differences after treatment (P < .001) and at the 6-month follow-up were found between the 2 groups. . The results indicate that mirror therapy effectively reduces pain and enhances upper limb motor function in stroke patients with upper limb CRPSt1.

  1. Wide acceptance angle, high concentration ratio, optical collector

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1991-01-01

    A cassegrain optical system provides improved collection of off-axis light yet is still characterized by a high concentration ratio. The optical system includes a primary mirror for collecting incoming light and reflecting the light to a secondary mirror which, in turn, reflects the light to a solar cell or other radiation collection device. The primary mirror reflects incoming on-axis light onto an annular section of the secondary mirror and results in the reflection of a substantial amount of incoming off-axis light onto the remainder of the secondary mirror. Thus light which would otherwise be lost to the system will be captured by the collector. Furthermore, the off-axis sections of the secondary mirror may be of a different geometrical shape than the on-axis annular section so as to optimize the amount of off-axis light collected.

  2. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  3. University of Texas 7.6 meter telescope project

    NASA Astrophysics Data System (ADS)

    Barnes, T. G., III

    1982-10-01

    The University of Texas very large optical telescope design is fundamentally constrained by the requirements of completion by the late 1980s and costs within the range of private philanthropy. In light of these requirements, design studies indicate that the largest possible telescope must incorporate as its essential features a monolithic, 7.6-m diameter primary mirror constructed as either an ultrathin fused silica meniscus (of 10-15 cm thickness) or a borosilicate glass honeycomb (of classical thickness). This primary mirror would be of f/2 Ritchley-Chretien geometry. Light would be relayed from the primary to two f/13.5 Nasmyth foci. The mount would be of alt-azimuth type, housed in a building similar to that employed by the Multiple Mirror Telescope with an adjacent annex containing the mirror aluminizing chamber.

  4. Cleaning procedure for mirror coating at Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Yutani, Masami; Hayashi, Saeko S.; Kurakami, Tomio; Kanzawa, Tomio; Ohshima, Norio; Nakagiri, Masao

    2003-02-01

    We would like to present the procedure of how to prepare the primary mirror of Subaru Telescope for the realuminization. The equipment for the coating and its preparation are located at the ground floor of the telescope enclosure. There are two trolleys for carrying the mirror cell and the mirror itself, a mirror lifting jig, a washing facility for the primary mirror (PMWF), the water purification system, the coating chamber and the waste water pit. The PMWF can provide the tap water for initial rinsing, the chemical for stripping the old coating, and the deionized water for final cleaning. It has two pairs of arms that deploy horizontally above the mirror and have nozzles to spray. The arms spin around its center where the rotary joints are connected to the plumbing from storage tanks. Deck above the water arms serve as platform for personnel for the inspection or for scrubbing work. We use hydrochloric acid mixture to remove the old aluminum coating. For rinsing and final cleaning, we use the water through the purification system. The water supply from the nozzles and the rotation of the arms can be controlled from a panel separated from the washing machine itself. After several experiments and improvements in the washing, we have carried out the coating of the 8.3 m primary mirror in September last year. This was the third time, and the reflectivity of the new coating show satisfactory result.

  5. Advanced Dispersed Fringe Sensing Algorithm for Coarse Phasing Segmented Mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Spechler, Joshua A.; Hoppe, Daniel J.; Sigrist, Norbert; Shi, Fang; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.

    2013-01-01

    Segment mirror phasing, a critical step of segment mirror alignment, requires the ability to sense and correct the relative pistons between segments from up to a few hundred microns to a fraction of wavelength in order to bring the mirror system to its full diffraction capability. When sampling the aperture of a telescope, using auto-collimating flats (ACFs) is more economical. The performance of a telescope with a segmented primary mirror strongly depends on how well those primary mirror segments can be phased. One such process to phase primary mirror segments in the axial piston direction is dispersed fringe sensing (DFS). DFS technology can be used to co-phase the ACFs. DFS is essentially a signal fitting and processing operation. It is an elegant method of coarse phasing segmented mirrors. DFS performance accuracy is dependent upon careful calibration of the system as well as other factors such as internal optical alignment, system wavefront errors, and detector quality. Novel improvements to the algorithm have led to substantial enhancements in DFS performance. The Advanced Dispersed Fringe Sensing (ADFS) Algorithm is designed to reduce the sensitivity to calibration errors by determining the optimal fringe extraction line. Applying an angular extraction line dithering procedure and combining this dithering process with an error function while minimizing the phase term of the fitted signal, defines in essence the ADFS algorithm.

  6. Production of the 4.26 m ZERODUR mirror blank for the Advanced Technology Solar telescope (ATST)

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Werner, Thomas; Westerhoff, Thomas

    2014-07-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) will be the most powerful solar telescope in the world. It is currently being built by the Association of Universities for Research in Astronomy (AURA) in a height of 3000 m above sea level on the mountain Haleakala of Maui, Hawaii. The primary mirror blank of diameter 4.26 m is made of the extremely low thermal expansion glass ceramic ZERODUR® of SCHOTT AG Advanced Optics. The DKIST primary mirror design is extremely challenging. With a mirror thickness of only 78 to 85 mm it is the smallest thickness ever machined on a mirror of 4.26 m in diameter. Additionally the glassy ZERODUR® casting is one of the largest in size ever produced for a 4 m class ZERODUR® mirror blank. The off axis aspherical mirror surface required sophisticated grinding procedures to achieve the specified geometrical tolerance. The small thickness of about 80 mm required special measures during processing, lifting and transport. Additionally acid etch treatment was applied to the convex back-surface and the conical shaped outer diameter surface to improve the strength of the blank. This paper reports on the challenging tasks and the achievements on the material property and dimensional specification parameter during the production of the 4.26 m ZERODUR® primary mirror blank for AURA.

  7. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  8. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    DTIC Science & Technology

    2015-12-01

    carbon fiber reinforced polymer (CFRP) mirrors been proposed for use in future imaging satellites. Compared to traditional glass -based mirrors, CFRP...SUBJECT TERMS carbon fiber reinforced polymer mirror, adaptive optics, deformable mirror, surface figure error 15. NUMBER OF PAGES 79 16. PRICE CODE...Department of Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT In recent years, carbon fiber reinforced

  9. A NASA Technician directs loading of the crated SOFIA primary mirror assembly into a C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  10. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing

    NASA Astrophysics Data System (ADS)

    Besuner, R. W.; Chow, K. P.; Kendrick, S. E.; Streetman, S.

    2008-07-01

    Optical testing of large mirrors for space telescopes can be challenging and complex. Demanding optical requirements necessitate both precise mirror figure and accurate prediction of zero gravity shape. Mass and packaging constraints require mirrors to be lightweighted and optically fast. Reliability and low mass imply simple mounting schemes, with basic kinematic mounts preferable to active figure control or whiffle trees. Ground testing should introduce as little uncertainty as possible, ideally employing flight mounts without offloaders. Testing mirrors with their optical axes horizontal can result in less distortion than in the vertical orientation, though distortion will increase with mirror speed. Finite element modeling and optimization tools help specify selective reinforcement of the mirror structure to minimize wavefront errors in a one gravity test, while staying within mass budgets and meeting other requirements. While low distortions are necessary, an important additional criterion is that designs are tolerant to imperfect positioning of the mounts relative to the neutral surface of the mirror substrate. In this paper, we explore selective reinforcement of a 2-meter class, f/1.25 primary mirror for the proposed SNAP space telescope. We specify designs optimized for various mount radial locations both with and without backup mount locations. Reinforced designs are predicted to have surface distortions in the horizontal beam test low enough to perform optical testing on the ground, on flight mounts, and without offloaders. Importantly, the required accuracy of mount locations is on the order of millimeters rather than tenths of millimeters.

  11. Spherical primary optical telescope (SPOT) segments

    NASA Astrophysics Data System (ADS)

    Hall, Christopher; Hagopian, John; DeMarco, Michael

    2012-09-01

    The spherical primary optical telescope (SPOT) project is an internal research and development program at NASA Goddard Space Flight Center. The goals of the program are to develop a robust and cost effective way to manufacture spherical mirror segments and demonstrate a new wavefront sensing approach for continuous phasing across the segmented primary. This paper focuses on the fabrication of the mirror segments. Significant cost savings were achieved through the design, since it allowed the mirror segments to be cast rather than machined from a glass blank. Casting was followed by conventional figuring at Goddard Space Flight Center. After polishing, the mirror segments were mounted to their composite assemblies. QED Technologies used magnetorheological finishing (MRF®) for the final figuring. The MRF process polished the mirrors while they were mounted to their composite assemblies. Each assembly included several magnetic invar plugs that extended to within an inch of the face of the mirror. As part of this project, the interaction between the MRF magnetic field and invar plugs was evaluated. By properly selecting the polishing conditions, MRF was able to significantly improve the figure of the mounted segments. The final MRF figuring demonstrates that mirrors, in the mounted configuration, can be polished and tested to specification. There are significant process capability advantes due to polishing and testing the optics in their final, end-use assembled state.

  12. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Angel, J. R. P.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Johns, M.; Kingsley, J. S.; Kot, L. B.; Lutz, R. D.; Miller, S. M.; Shectman, S. A.; Strittmatter, P. A.; Zhao, C.

    2006-06-01

    The design, manufacture and support of the primary mirror segments for the GMT build on the successful primary mirror systems of the MMT, Magellan and Large Binocular telescopes. The mirror segment and its support system are based on a proven design, and the experience gained in the existing telescopes has led to significant refinements that will provide even better performance in the GMT. The first 8.4 m segment has been cast at the Steward Observatory Mirror Lab, and optical processing is underway. Measurement of the off-axis surface is the greatest challenge in the manufacture of the segments. A set of tests that meets the requirements has been defined and the concepts have been developed in some detail. The most critical parts of the tests have been demonstrated in the measurement of a 1.7 m off-axis prototype. The principal optical test is a full-aperture, high-resolution null test in which a hybrid reflective-diffractive null corrector compensates for the 14 mm aspheric departure of the off-axis segment. The mirror support uses the same synthetic floatation principle as the MMT, Magellan, and LBT mirrors. Refinements for GMT include 3-axis actuators to accommodate the varying orientations of segments in the telescope.

  13. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  14. Characterization of the JWST Pathfinder mirror dynamics using the center of curvature optical assembly (CoCOA)

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, 18 segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  15. Characteristic investigation of Golay9 multiple mirror telescope with a spherical primary mirror

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Wu, Quanying; Zhu, Xifang; Xiang, Ruxi; Qian, Lin

    2017-10-01

    The sparse aperture provides a novel solution to the manufacturing difficulties of modern super large telescopes. Golay configurations are optimal in the sparse aperture family. Characteristics of the Golay9 multiple mirror telescope having a spherical primary mirror are investigated. The arrangement of the nine sub-mirrors is discussed after the planar Golay9 configuration is analyzed. The characteristics of the entrance pupil are derived by analyzing the sub-aperture shapes with different relative apertures and sub-mirror sizes. Formulas about the fill factor and the overlay factor are deduced. Their maximal values are presented based on the derived tangency condition. Formulas for the point spread function (PSF) and the modulation transfer function (MTF) of the Golay9 MMT are also deduced. Two Golay9 MMT have been developed by Zemax simulation. Their PSF, MTF, fill factors, and overlay factors prove that our theoretical results are consistent with the practical simulation ones.

  16. Characterization of the JWST Pathfinder Mirror Dynamics Using the Center of Curvature Optical Assembly (CoCOA)

    NASA Technical Reports Server (NTRS)

    Wells, Conrad; Hadaway, James B.; Olczak, Gene; Cosentino, Joseph; Johnston, John D.; Whitman, Tony; Connolly, Mark; Chaney, David; Knight, J. Scott; Telfer, Randal

    2016-01-01

    The JWST (James Webb Space Telescope) Optical Telescope Element (OTE) consists of a 6.6 meter clear aperture, 18-segment primary mirror, all-reflective, three-mirror anastigmat operating at cryogenic temperatures. To verify performance of the primary mirror, a full aperture center of curvature optical null test is performed under cryogenic conditions in Chamber A at NASA Johnson Space Center using an instantaneous phase measuring interferometer. After phasing the mirrors during the JWST Pathfinder testing, the interferometer is utilized to characterize the mirror relative piston and tilt dynamics under different facility configurations. The correlation between the motions seen on detectors at the focal plane and the interferometer validates the use of the interferometer for dynamic investigations. The success of planned test hardware improvements will be characterized by the multi-wavelength interferometer (MWIF) at the Center of Curvature Optical Assembly (CoCOA).

  17. Development of surface metrology for the Giant Magellan Telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Burge, J. H.; Davison, W.; Martin, H. M.; Zhao, C.

    2008-07-01

    The Giant Magellan Telescope achieves 25 meter aperture and modest length using an f/0.7 primary mirror made from 8.4 meter diameter segments. The systems that will be used for measuring the aspheric optical surfaces of these mirrors are in the final phase of development. This paper discusses the overall metrology plan and shows details for the development of the principal test system - a system that uses mirrors and holograms to provide a null interferometric test of the surface. This system provides a full aperture interferometric measurement of the off-axis segments by compensating the 14.5 mm aspheric departure with a tilted 3.8-m diameter powered mirror, a 77 cm tilted mirror, and a computer generated hologram. The interferometric measurements are corroborated with a scanning slope measurement from a scanning pentaprism system and a direct measurement system based on a laser tracker.

  18. Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Oh, Chang Jin; Lowman, Andrew E.; Smith, Greg A.; Su, Peng; Huang, Run; Su, Tianquan; Kim, Daewook; Zhao, Chunyu; Zhou, Ping; Burge, James H.

    2016-07-01

    Daniel K. Inouye Solar Telescope (formerly known as Advanced Technology Solar Telescope) will be the largest optical solar telescope ever built to provide greatly improved image, spatial and spectral resolution and to collect sufficient light flux of Sun. To meet the requirements of the telescope the design adopted a 4m aperture off-axis parabolic primary mirror with challenging specifications of the surface quality including the surface figure, irregularity and BRDF. The mirror has been completed at the College of Optical Sciences in the University of Arizona and it meets every aspect of requirement with margin. In fact this mirror may be the smoothest large mirror ever made. This paper presents the detail fabrication process and metrology applied to the mirror from the grinding to finish, that include extremely stable hydraulic support, IR and Visible deflectometry, Interferometry and Computer Controlled fabrication process developed at the University of Arizona.

  19. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  20. System Architecture of Explorer Class Spaceborne Telescopes: A look at Optimization of Cost, Testability, Risk and Operational Duty Cycle from the Perspective of Primary Mirror Material Selection

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Westerhoff, Thomas

    2015-01-01

    Management of cost and risk have become the key enabling elements for compelling science to be done within Explorer or M-Class Missions. We trace how optimal primary mirror selection may be co-optimized with orbit selection. And then trace the cost and risk implications of selecting a low diffusivity low thermal expansion material for low and medium earth orbits, vs. high diffusivity high thermal expansion materials for the same orbits. We will discuss that ZERODUR®, a material that has been in space for over 30 years, is now available as highly lightweighted open-back mirrors, and the attributes of these mirrors in spaceborne optical telescope assemblies. Lightweight ZERODUR® solutions are practical from mirrors < 0.3m in diameter to >4m in diameter. An example of a 1.2m lightweight ZERODUR® mirror will be discussed.

  1. Support optimization of the ring primary mirror of a 2m solar telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jin, Zhenyu; Liu, Zhong

    2016-08-01

    A special 2-m Ring Solar Telescope (2-m RST) is to be built by YNAO-Yunnan Astronomical Observatory, Kunming, China. Its distinct primary mirror is distinctively shaped in a ring with an outer diameter of 2.02 m and a ring width of 0.35 m. Careful calculation and optimization of the mirror support pattern have been carried out first of all to define optimum blank parameters in view of performance balance of support design, fabrication and cost. This paper is to review the special consideration and optimization of the support design for the unique ring mirror. Schott zerodur is the prevailing candidate for the primary mirror blank. Diverse support patterns with various blank thicknesses have been discussed by extensive calculation of axial support pattern of the mirror. We reached an optimum design of 36 axial supports for a blank thickness of 0.15 m with surface error of 5 nm RMS. Afterwards, lateral support scheme was figured out for the mirror with settled parameters. A classical push-and-pull scheme was used. Seeing the relative flexibility of the ring mirror, special consideration was taken to unusually set the acting direction of the support forces not in the mirror gravity plane, but along the gravity of the local virtual slices of the mirror blank. Nine couples of the lateral push-pull force are considered. When pointing to horizon, the mirror surface exhibits RMS error of 5 nm with three additional small force couples used to compensate for the predominant astigmatism introduced by lateral supports. Finally, error estimation has been performed to evaluate the surface degradation with introduced errors in support force and support position, respectively, for both axial and lateral supports. Monte Carlo approach was applied using unit seeds for amplitude and position of support forces. The comprehensive optimization and calculation suggests the support systems design meet the technic requirements of the ring mirror of the 2-m RST.

  2. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    NASA Astrophysics Data System (ADS)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.

  3. James Webb Space Telescope: Frequently Asked Questions for Scientists and Engineers

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    JWST will be tested incrementally during its construction, starting with individual mirrors and instruments (including cameras and spectrometers) and building up to the full observatory. JWST's mirrors and the telescope structure are first each tested individually, including optical testing of the mirrors and alignment testing of the structure inside a cold thermal-vacuum chamber. The mirrors are then installed on the telescope structure in a clean room at Goddard Space Flight Center (GSFC). In parallel to the telescope assembly and alignment, the instruments are being built and tested, again first individually, and then as part of an integrated instrument assembly. The integrated instrument assembly will be tested in a thermal-vacuum chamber at GSFC using an optical simulator of the telescope. This testing makes sure the instruments are properly aligned relative to each other and also provides an independent check of the individual tests. After both the telescope and the integrated instrument module are successfully assembled, the integrated instrument module will be installed onto the telescope, and the combined system will be sent to Johnson Space Flight Center (JSC) where it will be optically tested in one of the JSC chambers. The process includes testing the 18 primary mirror segments acting as a single primary mirror, and testing the end-to-end system. The final system test will assure that the combined telescope and instruments are focused and aligned properly, and that the alignment, once in space, will be within the range of the actively controlled optics. In general, the individual optical tests of instruments and mirrors are the most accurate. The final system tests provide a cost-effective check that no major problem has occurred during assembly. In addition, independent optical checks of earlier tests will be made as the full system is assembled, providing confidence that there are no major problems.

  4. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  5. Ground crewmen shove the more than two-ton SOFIA primary mirror assembly in its transport crate into a C-17's cavernous cargo bay for shipment to NASA Ames

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  6. Technicians position the transport cradle as a crane lowers SOFIA's primary mirror assembly into place prior to finish coating of the mirror at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  7. Deformation-free rim for the primary mirror of telescope having sub-second resolution

    NASA Astrophysics Data System (ADS)

    Malyshev, I. V.; Chkhalo, N. I.; Toropov, M. N.; Salashchenko, N. N.; Pestov, A. E.; Kuzin, S. V.; Polkovnikov, V. N.

    2017-05-01

    The work is devoted to the method of mounting and surface shape measurement of the primary mirror of ARCA telescope, intended for the Sun observation in EUV wavelength range. Calculation of mirror's deformation due to weight is carried out and a method of its experimental determination in interferometer is proposed. The method of deformation-free installation of mirror into the telescope is proposed. Impact shocks and vibrations, arising during missile launch, is analyzed, and an optimal size of bridges in the rim is determined. Calculations of the mirror deformation due to temperature difference in the telescope on the Earth's orbit and its influence on the resolution of the telescope are conducted. The stresses arising in epoxy adhesive due to temperature changes and due to starting shocks are simulated.

  8. Advanced Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  9. Microwave electron cyclotron electron resonance (ECR) ion source with a large, uniformly distributed, axially symmetric, ECR plasma volume

    DOEpatents

    Alton, Gerald D.

    1996-01-01

    An electron cyclotron resonance (ECR) ion source includes a primary mirror coil disposed coaxially around a vacuum vessel in which a plasma is induced and introducing a solenoidal ECR-producing field throughout the length of the vacuum vessel. Radial plasma confinement is provided by a multi-cusp, multi-polar permanent magnet array disposed azimuthally around the vessel and within the primary mirror coil. Axial confinement is provided either by multi-cusp permanent magnets at the opposite axial ends of the vessel, or by secondary mirror coils disposed on opposite sides of the primary coil.

  10. Nonlinear-Optical Correction of Aberrations in Imaging Telescopes Based on a Diffraction Structure on the Primary Mirror

    DTIC Science & Technology

    1998-01-01

    48 f) Metal and semiconductor thin- film systems ................ 48 3.3.2. Methods of formation of interference field for recording the hologram...in others - dynamic holograms [27,29,30,33] based either on photorefractive crystals [27,33], or on liquid -crystal spatial light modulators (SLM...variations of the primary mirror’s curvature, which can be caused, e.g., by thermal effects or by inaccuracy in adjustment of the elastic thin- film mirror

  11. ULE design considerations for a 3m class light weighted mirror blank for E-ELT M5

    NASA Astrophysics Data System (ADS)

    Fox, Andrew; Hobbs, Tom; Edwards, Mary; Arnold, Matthew; Sawyer, Kent

    2016-07-01

    It is expected that the next generation of large ground based astronomical telescopes will need large fast-steering/tip-tilt mirrors made of ultra-lightweight construction. These fast-steering mirrors are used to continuously correct for atmospheric disturbances and telescope vibrations. An example of this is the European Extremely Large Telescope (E-ELT) M5 lightweight mirror, which is part of the Tip-Tilt/Field-Stabilization Unit. The baseline design for the E-ELT M5 mirror, as presented in the E-ELT Construction Proposal, is a closed-back ULE mirror with a lightweight core using square core cells. Corning Incorporated (Corning) has a long history of manufacturing lightweight mirror blanks using ULE in a closed-back construction, going back to the 1960's, and includes the Hubble Space Telescope primary mirror, Subaru Telescope secondary and tertiary mirrors, the Magellan I and II tertiary mirrors, and Kepler Space Telescope primary mirror, among many others. A parametric study of 1-meter class lightweight mirror designs showed that Corning's capability to seal a continuous back sheet to a light-weighted core structure provides superior mirror rigidity, in a near-zero thermal expansion material, relative to other existing technologies in this design space. Corning has investigated the parametric performance of several design characteristics for a 3-meter class lightweight mirror blank for the E-ELT M5. Finite Element Analysis was performed on several design scenarios to obtain weight, areal density, and first Eigen frequency. This paper presents an overview of Corning ULE and lightweight mirror manufacturing capabilities, the parametric performance of design characteristics for 1-meter class and 3-meter class lightweight mirrors, as well as the manufacturing advantages and disadvantages of those characteristics.

  12. The Discovery Channel Telescope: Construction and Design Progress, January 2007

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Millis, R. L.; Smith, B. W.; Dunham, E. W.; Marshall, H.

    2006-12-01

    The Discovery Channel Telescope (DCT) is a 4.2m telescope under construction in northern Arizona. The DCT is located at a new site near Happy Jack at 2361m elevation, which was selected following a lengthy site testing campaign that demonstrated DIMM-characterized median ground-level seeing of 0.84-arcsec FWHM. The DCT science mission includes targeted studies of astrophysical and solar system objects utilizing RC and Nasmyth-mounted imaging and spectroscopic instrumentation, and wide-field surveys of KBO’s, NEA’s, and astrophysical objects with a 2-degree FOV prime focus camera. The DCT facility enclosure and control buildings will be completed soon, including the telescope mount and dome supports, major machinery infrastructure, the instrument laboratory, control and computer rooms, and the auxiliary building for the mirror coating plant. Meanwhile, the effort for final figuring and polishing of the 4.3m ULE meniscus primary mirror blank began in August 2006 at the University of Arizona College of Optical Sciences. The primary mirror and its design support, and the integrated telescope mount model, were finite-element analyzed to optimize the design of the mirror and top-end support configurations. The primary mirror axial and tangential actuators will be fabricated in early 2007 and utilized in the final figure and polish cycle. The prime focus camera design has been refined to achieve atmospheric dispersion-compensated 0.25-arcsec images at 1-degree field radius, from B to I-band, at reduced cost through simplification of glasses to standard types and utilization of spheres on all but two lens surfaces. The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately conducted with the DCT. Lowell Observatory and Discovery Communications are actively seeking additional partners in the project; interested parties should contact R. L. Millis, Director.

  13. Last results of technological developments for ultra-lightweight, large aperture, deployable mirror for space telescopes

    NASA Astrophysics Data System (ADS)

    Gambicorti, Lisa; D'Amato, Francesco; Vettore, Christian; Duò, Fabrizio; Guercia, Alessio; Patauner, Christian; Biasi, Roberto; Lisi, Franco; Riccardi, Armando; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; Zuccaro Marchi, Alessandro; Pereira do Carmo, Joao

    2017-11-01

    The aim of this work is to describe the latest results of new technological concepts for Large Aperture Telescopes Technology (LATT) using thin deployable lightweight active mirrors. This technology is developed under the European Space Agency (ESA) Technology Research Program and can be exploited in all the applications based on the use of primary mirrors of space telescopes with large aperture, segmented lightweight telescopes with wide Field of View (FOV) and low f/#, and LIDAR telescopes. The reference mission application is a potential future ESA mission, related to a space borne DIAL (Differential Absorption Lidar) instrument operating around 935.5 nm with the goal to measure water vapor profiles in atmosphere. An Optical BreadBoard (OBB) for LATT has been designed for investigating and testing two critical aspects of the technology: 1) control accuracy in the mirror surface shaping. 2) mirror survivability to launch. The aim is to evaluate the effective performances of the long stroke smart-actuators used for the mirror control and to demonstrate the effectiveness and the reliability of the electrostatic locking (EL) system to restraint the thin shell on the mirror backup structure during launch. The paper presents a comprehensive vision of the breadboard focusing on how the requirements have driven the design of the whole system and of the various subsystems. The manufacturing process of the thin shell is also presented.

  14. Developmental Cryogenic Active Telescope Testbed, a Wavefront Sensing and Control Testbed for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Leboeuf, Claudia M.; Davila, Pamela S.; Redding, David C.; Morell, Armando; Lowman, Andrew E.; Wilson, Mark E.; Young, Eric W.; Pacini, Linda K.; Coulter, Dan R.

    1998-01-01

    As part of the technology validation strategy of the next generation space telescope (NGST), a system testbed is being developed at GSFC, in partnership with JPL and Marshall Space Flight Center (MSFC), which will include all of the component functions envisioned in an NGST active optical system. The system will include an actively controlled, segmented primary mirror, actively controlled secondary, deformable, and fast steering mirrors, wavefront sensing optics, wavefront control algorithms, a telescope simulator module, and an interferometric wavefront sensor for use in comparing final obtained wavefronts from different tests. The developmental. cryogenic active telescope testbed (DCATT) will be implemented in three phases. Phase 1 will focus on operating the testbed at ambient temperature. During Phase 2, a cryocapable segmented telescope will be developed and cooled to cryogenic temperature to investigate the impact on the ability to correct the wavefront and stabilize the image. In Phase 3, it is planned to incorporate industry developed flight-like components, such as figure controlled mirror segments, cryogenic, low hold power actuators, or different wavefront sensing and control hardware or software. A very important element of the program is the development and subsequent validation of the integrated multidisciplinary models. The Phase 1 testbed objectives, plans, configuration, and design will be discussed.

  15. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Raymond Wilson, whose pioneering optics research at ESO made today's giant telescopes possible thanks to "active optics" technology, has been awarded the 2010 Kavli Prize in astrophysics. The founder and original leader of the Optics and Telescopes Group at ESO, Wilson shares the million-dollar prize with two American scientists, Jerry Nelson and Roger Angel. The biennial prize, presented by the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research, was instituted in 2008 and is given to researchers who significantly advance knowledge in the fields of nanoscience, neuroscience, and astrophysics, acting as a complement to the Nobel Prize. The award is named for and funded by Fred Kavli, the Norwegian entrepreneur and phi­lanthropist who later founded the Kavlico Corpora­tion in the US - today one of the world's largest suppliers of sensors for aeronautic, automotive and industrial applications. Wilson, who joined ESO in 1972, strived to achieve optical perfection, developing the concept of active optics as a way to enhance the size of telescopic primary mirrors. It is the size of these mirrors that determines the ability of a telescope to gather light and study faint and distant objects. Before active optics, mirrors over six metres in diameter were impossible, being too heavy, costly, and likely to bend from gravity and temperature changes. The use of active optics, which preserves optimal image quality by continually adjusting the mirror's shape during observations, made lighter, thinner so-called "meniscus mirrors" possible. Wilson first led the implementation of active optics in the revolutionary New Technology Telescope at ESO's La Silla Observatory, and continued to develop and improve the technology until his retirement in 1993. Since then, active optics have become a standard part of modern astronomy, applied in every big telescope including ESO's Very Large Telescope (VLT), a telescope array with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. Using multifield measurements to eliminate alignment degeneracies in the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Sabatke, Erin; Acton, Scott; Schwenker, John; Towell, Tim; Carey, Larkin; Shields, Duncan; Contos, Adam; Leviton, Doug

    2007-09-01

    The primary mirror of the James Webb Space Telescope (JWST) consists of 18 segments and is 6.6 meters in diameter. A sequence of commissioning steps is carried out at a single field point to align the segments. At that single field point, though, the segmented primary mirror can compensate for aberrations caused by misalignments of the remaining mirrors. The misalignments can be detected in the wavefronts of off-axis field points. The Multifield (MF) step in the commissioning process surveys five field points and uses a simple matrix multiplication to calculate corrected positions for the secondary and primary mirrors. A demonstration of the Multifield process was carried out on the JWST Testbed Telescope (TBT). The results show that the Multifield algorithm is capable of reducing the field dependency of the TBT to about 20 nm RMS, relative to the TBT design nominal field dependency.

  17. First results of the wind evaluation breadboard for ELT primary mirror design

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  18. The neuronal correlates of mirror therapy: an fMRI study on mirror induced visual illusions in patients with stroke.

    PubMed

    Michielsen, Marian E; Smits, Marion; Ribbers, Gerard M; Stam, Henk J; van der Geest, Jos N; Bussmann, Johannes B J; Selles, Ruud W

    2011-04-01

    To investigate the neuronal basis for the effects of mirror therapy in patients with stroke. 22 patients with stroke participated in this study. The authors used functional MRI to investigate neuronal activation patterns in two experiments. In the unimanual experiment, patients moved their unaffected hand, either while observing it directly (no-mirror condition) or while observing its mirror reflection (mirror condition). In the bimanual experiment, patients moved both hands, either while observing the affected hand directly (no-mirror condition) or while observing the mirror reflection of the unaffected hand in place of the affected hand (mirror condition). A two-factorial analysis with movement (activity vs rest) and mirror (mirror vs no mirror) as main factors was performed to assess neuronal activity resultant of the mirror illusion. Data on 18 participants were suitable for analysis. Results showed a significant interaction effect of movement×mirror during the bimanual experiment. Activated regions were the precuneus and the posterior cingulate cortex (p<0.05 false discovery rate). In this first study on the neuronal correlates of the mirror illusion in patients with stroke, the authors showed that during bimanual movement, the mirror illusion increases activity in the precuneus and the posterior cingulate cortex, areas associated with awareness of the self and spatial attention. By increasing awareness of the affected limb, the mirror illusion might reduce learnt non-use. The fact that the authors did not observe mirror-related activity in areas of the motor or mirror neuron system questions popular theories that attribute the clinical effects of mirror therapy to these systems.

  19. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  20. Design Study of 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing shroud and 55,000 kg capacity to the Sun Earth L2 point enables entirely new classes of space telescopes. NASA MSFC has conducted a preliminary study that demonstrates the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations and servicing; mass and power budgets; and system cost.

  1. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas; Stahl, Phil; Arnold, Bill

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next Ultraviolet, Optical, Infrared (UVOIR) space observatory. A likely science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet that is 10-10 times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront. This paper investigates two topics: 1) parametric relationships between a primary mirror's thermal parameters and wavefront stability, and 2) optimal temperature profiles in the telescope's shroud and heater plate that minimize static wavefront error (WFE) in the primary mirror.

  2. Dynamic analysis of the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Calleson, Robert E.; Scott, A. Don

    1987-01-01

    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.

  3. Yes, the James Webb Space Telescope Mirrors 'Can'

    NASA Image and Video Library

    2017-12-08

    The powerful primary mirrors of the James Webb Space Telescope will be able to detect the light from distant galaxies. The manufacturer of those mirrors, Ball Aerospace & Technologies Corp. of Boulder, Colo., recently celebrated their successful efforts as mirror segments were packed up in special shipping canisters (cans) for shipping to NASA. The Webb telescope has 21 mirrors, with 18 primary mirror segments working together as one large 21.3-foot (6.5-meter) primary mirror. The mirror segments are made of beryllium, which was selected for its stiffness, light weight and stability at cryogenic temperatures. Bare beryllium is not very reflective of near-infrared light, so each mirror is coated with about 0.12 ounce of gold. Northrop Grumman Corp. Aerospace Systems is the principal contractor on the telescope and commissioned Ball for the optics system's development, design, manufacturing, integration and testing. The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency. For more information about the James Webb Space Telescope, visit: www.jwst.nasa.gov Credit: Ball Aerospace NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  5. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  6. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  7. Three-meter telescope study

    NASA Technical Reports Server (NTRS)

    Wissinger, A.; Scott, R. M.; Peters, W.; Augustyn, W., Jr.; Arnold, R.; Offner, A.; Damast, M.; Boyce, B.; Kinnaird, R.; Mangus, J. D.

    1971-01-01

    A means is presented whereby the effect of various changes in the most important parameters of a three meter aperature space astronomy telescope can be evaluated to determine design trends and to optimize the optical design configuration. Methods are defined for evaluating the theoretical optical performance of axisymmetric, centrally obscured telescopes based upon the intended astronomy research usage. A series of design parameter variations is presented to determine the optimum telescope configuration. The design optimum requires very fast primary mirrors, so the study also examines the current state of the art in fabricating large, fast primary mirrors. The conclusion is that a 3-meter primary mirror having a focal ratio as low as f/2 is feasible using currently established techniques.

  8. Reduced mu suppression and altered motor resonance in euthymic bipolar disorder: Evidence for a dysfunctional mirror system?

    PubMed

    Andrews, Sophie C; Enticott, Peter G; Hoy, Kate E; Thomson, Richard H; Fitzgerald, Paul B

    2016-01-01

    Social cognitive difficulties are common in the acute phase of bipolar disorder and, to a lesser extent, during the euthymic stage, and imaging studies of social cognition in euthymic bipolar disorder have implicated mirror system brain regions. This study aimed to use a novel multimodal approach (i.e., including both transcranial magnetic stimulation (TMS) and electroencephalogram (EEG)) to investigate mirror systems in bipolar disorder. Fifteen individuals with euthymic bipolar disorder and 16 healthy controls participated in this study. Single-pulse TMS was applied to the optimal site in the primary motor cortex (M1), which stimulates the muscle of interest during the observation of hand movements (goal-directed or interacting) designed to elicit mirror system activity. Single EEG electrodes (C3, CZ, C4) recorded mu rhythm modulation concurrently. Results revealed that the patient group showed significantly less mu suppression compared to healthy controls. Surprisingly, motor resonance was not significantly different overall between groups; however, bipolar disorder participants showed a pattern of reduced reactivity on some conditions. Although preliminary, this study indicates a potential mirror system deficit in euthymic bipolar disorder, which may contribute to the pathophysiology of the disorder.

  9. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2003-02-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The first of two 8.4-meter borosilicate honeycomb primary mirrors for LBT is being polished at the Steward Observatory Mirror Lab this year. The second of the two 8.4-meter mirror blanks waits its turn in the polishing queue. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4-arcminute diameter field-of-view. These adaptive secondary mirrors with 672 voice-coil actuators are now in the early stages of fabrication. The interferometric focus combining the light from the two 8.4-meter primaries will reimage the two folded Gregorian focal planes to three central locations for phased array imaging. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure was fabricated and pre-assembled in Italy by Ansaldo-Camozzi in Milan. The structure was disassembled, packed and shipped to Arizona. The enclosure was built on Mt. Graham and is ready for telescope installation.

  10. Optimization of lightweight structure and supporting bipod flexure for a space mirror.

    PubMed

    Chen, Yi-Cheng; Huang, Bo-Kai; You, Zhen-Ting; Chan, Chia-Yen; Huang, Ting-Ming

    2016-12-20

    This article presents an optimization process for integrated optomechanical design. The proposed optimization process for integrated optomechanical design comprises computer-aided drafting, finite element analysis (FEA), optomechanical transfer codes, and an optimization solver. The FEA was conducted to determine mirror surface deformation; then, deformed surface nodal data were transferred into Zernike polynomials through MATLAB optomechanical transfer codes to calculate the resulting optical path difference (OPD) and optical aberrations. To achieve an optimum design, the optimization iterations of the FEA, optomechanical transfer codes, and optimization solver were automatically connected through a self-developed Tcl script. Two examples of optimization design were illustrated in this research, namely, an optimum lightweight design of a Zerodur primary mirror with an outer diameter of 566 mm that is used in a spaceborne telescope and an optimum bipod flexure design that supports the optimum lightweight primary mirror. Finally, optimum designs were successfully accomplished in both examples, achieving a minimum peak-to-valley (PV) value for the OPD of the deformed optical surface. The simulated optimization results showed that (1) the lightweight ratio of the primary mirror increased from 56% to 66%; and (2) the PV value of the mirror supported by optimum bipod flexures in the horizontal position effectively decreased from 228 to 61 nm.

  11. Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    NASA Technical Reports Server (NTRS)

    Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2015-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.

  12. James Webb Space Telescope's Golden Mirror Unveiled

    NASA Image and Video Library

    2017-12-08

    NASA engineers unveil the giant golden mirror of NASA's James Webb Space Telescope, and it's goldenly delicious! The 18 mirrors that make up the primary mirror were individually protected with a black covers when they were assembled on the telescope structure. Now, for the first time since the primary mirror was completed, the covers have been lifted. Standing tall and glimmering gold inside NASA's Goddard Space Flight Center's clean room in Greenbelt, Maryland, this mirror will be the largest yet sent into space. Currently, engineers are busy assembling and testing the other pieces of the telescope. Read more: go.nasa.gov/1TejHg4 Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. The Webb Telescope's Actuators: Curving Mirrors in Space

    NASA Image and Video Library

    2017-12-08

    NASA image release December 9, 2010 Caption: The James Webb Space Telescope's Engineering Design Unit (EDU) primary mirror segment, coated with gold by Quantum Coating Incorporated. The actuator is located behind the mirror. Credit: Photo by Drew Noel NASA's James Webb Space Telescope is a wonder of modern engineering. As the planned successor to the Hubble Space telescope, even the smallest of parts on this giant observatory will play a critical role in its performance. A new video takes viewers behind the Webb's mirrors to investigate "actuators," one component that will help Webb focus on some of the earliest objects in the universe. The video called "Got Your Back" is part of an on-going video series about the Webb telescope called "Behind the Webb." It was produced at the Space Telescope Science Institute (STScI) in Baltimore, Md. and takes viewers behind the scenes with scientists and engineers who are creating the Webb telescope's components. During the 3 minute and 12 second video, STScI host Mary Estacion interviewed people involved in the project at Ball Aerospace in Boulder, Colo. and showed the actuators in action. The Webb telescope will study every phase in the history of our universe, ranging from the first luminous glows after the big bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system. Measuring the light this distant light requires a primary mirror 6.5 meters (21 feet 4 inches) across – six times larger than the Hubble Space telescope’s mirror! Launching a mirror this large into space isn’t feasible. Instead, Webb engineers and scientists innovated a unique solution – building 18 mirrors that will act in unison as one large mirror. These mirrors are packaged together into three sections that fold up - much easier to fit inside a rocket. Each mirror is made from beryllium and weighs approximately 20 kilograms (46 pounds). Once in space, getting these mirrors to focus correctly on faraway galaxies is another challenge entirely. Actuators, or tiny mechanical motors, provide the answer to achieving a single perfect focus. The primary and secondary mirror segments are both moved by six actuators that are attached to the back of the mirrors. The primary segment has an additional actuator at the center of the mirror that adjusts its curvature. The third mirror segment remains stationary. Lee Feinberg, Webb Optical Telescope Element Manager at NASA's Goddard Space Flight Center in Greenbelt, Md. explained "Aligning the primary mirror segments as though they are a single large mirror means each mirror is aligned to 1/10,000th the thickness of a human hair. This alignment has to be done at 50 degrees above absolute zero! What's even more amazing is that the engineers and scientists working on the Webb telescope literally had to invent how to do this." With the actuators in place, Brad Shogrin, Webb Telescope Manager at Ball Aerospace, Boulder, Colo, details the next step: attaching the hexapod (meaning six-footed) assembly and radius of curvature subsystem (ROC). "Radius of curvature" refers to the distance to the center point of the curvature of the mirror. Feinberg added "To understand the concept in a more basic sense, if you change that radius of curvature, you change the mirror's focus." The "Behind the Webb" video series is available in HQ, large and small Quicktime formats, HD, Large and Small WMV formats, and HD, Large and Small Xvid formats. To see the actuators being attached to the back of a telescope mirror in this new "Behind the Webb" video, visit: webbtelescope.org/webb_telescope/behind_the_webb/7 For more information about Webb's mirrors, visit: www.jwst.nasa.gov/mirrors.html For more information on the James Webb Space Telescope, visit: jwst.nasa.gov Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  14. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    PubMed

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern.

  15. Stellar figure sensor

    NASA Technical Reports Server (NTRS)

    Peters, W. N.

    1973-01-01

    A compilation of analytical and experimental data is presented concerning the stellar figure sensor. The sensor is an interferometric device which is located in the focal plane of an orbiting large space telescope (LST). The device was designed to perform interferometry on the optical wavefront of a single star after it has propagated through the LST. An analytical model of the device was developed and its accuracy was verified by an operating laboratory breadboard. A series of linear independent control equations were derived which define the operations required for utilizing a focal plane figure sensor in the control loop for the secondary mirror position and for active control of the primary mirror.

  16. Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will

    2007-01-01

    We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.

  17. Ground-Based Telescope Parametric Cost Model

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Rowell, Ginger Holmes

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.

  18. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are relatively inexpensive because their surface figures are characterized by errors as large as about 10 waves. Figure 1 schematically depicts the apparatus used in an experiment to demonstrate such an application on a reduced scale involving a 30-cm-diameter aperture.

  19. Support of Mark III Optical Interferometer

    DTIC Science & Technology

    1988-11-01

    error, and low visibility* pedestal, and the surface of a zerodur sphere attached to the mirror errors are not entirely consistent. as shown in Fig. 7...of’ stellar usually associated with the primary mirror of a large astronomical interferometers at Mt. Wilson Observatory. The first instrument...the two siderostats is directed toward the central building by fixed mirrors . These fixed mirrors are necessary to keep the polarization - vectors

  20. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  1. Study on optical polishing experiment of zerodur mirror

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Li, Hang; Wang, Peng; Guo, Wen; Wang, Yonggang; Du, Yan; Dong, Huiwen

    2014-08-01

    A zerodur mirror whose aperture is 900mm is chosen to be the primary mirror of an optical system. The mirror is polished by rapid polishing and precision polishing methods relatively. The final surface figures of the mirror are as follows: the peak-to-valley value (P-V value) is 0.204λ (λ=632.8nm), and the root-mean-square value (RMS value) is 0.016λ, which meet the requirement of the optical system. The results show that the polishing process is feasible.

  2. Engineering the Future: Cell 6

    NASA Technical Reports Server (NTRS)

    Stahl, P. H.

    2010-01-01

    This slide presentation reviews the development of the James Webb Space Telescope (JWST), explaining the development using a systems engineering methodology. Included are slides showing the organizational chart, the JWST Science Goals, the size of the primary mirror, and full scale mockups of the JSWT. Also included is a review of the JWST Optical Telescope Requirements, a review of the preliminary design and analysis, the technology development required to create the JWST, with particular interest in the specific mirror technology that was required, and views of the mirror manufacturing process. Several slides review the process of verification and validation by testing and analysis, including a diagram of the Cryogenic Test Facility at Marshall, and views of the primary mirror while being tested in the cryogenic facility.

  3. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2004-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (e.g., Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate its feasibility.

  4. Spherical Primary Optical Telescope (SPOT): An Architecture Demonstration for Cost-effective Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Hagopian, John; Budinoff, Jason; Dean, Bruce; Howard, Joe

    2005-01-01

    This paper summarizes efforts underway at the Goddard Space Flight Center to demonstrate a new type of space telescope architecture that builds on the rigid, segmented telescope heritage of the James Webb Space Telescope but that solves several key challenges for future space telescopes. The architecture is based on a cost-effective segmented spherical primary mirror combined with a unique wavefront sensing and control system that allows for continuous phasing of the primary mirror. The segmented spherical primary allows for cost-effective 3-meter class (eg, Midex and Discovery) missions as well as enables 30-meter telescope solutions that can be manufactured in a reasonable amount of time and for a reasonable amount of money. The continuous wavefront sensing and control architecture enables missions in low-earth-orbit and missions that do not require expensive stable structures and thermal control systems. For the 30-meter class applications, the paper discusses considerations for assembling and testing the telescopes in space. The paper also summarizes the scientific and technological roadmap for the architecture and also gives an overview of technology development, design studies, and testbed activities underway to demonstrate it s feasibility.

  5. The PACT trial: PAtient Centered Telerehabilitation: effectiveness of software-supported and traditional mirror therapy in patients with phantom limb pain following lower limb amputation: protocol of a multicentre randomised controlled trial.

    PubMed

    Rothgangel, Andreas Stefan; Braun, Susy; Schulz, Ralf Joachim; Kraemer, Matthias; de Witte, Luc; Beurskens, Anna; Smeets, Rob Johannes

    2015-01-01

    Non-pharmacological interventions such as mirror therapy are gaining increased recognition in the treatment of phantom limb pain; however, the evidence in people with phantom limb pain is still weak. In addition, compliance to self-delivered exercises is generally low. The aim of this randomised controlled study is to investigate the effectiveness of mirror therapy supported by telerehabilitation on the intensity, duration and frequency of phantom limb pain and limitations in daily activities compared to traditional mirror therapy and care as usual in people following lower limb amputation. A three-arm multi-centre randomised controlled trial will be performed. Participants will be randomly assigned to care as usual, traditional mirror therapy or mirror therapy supported by telerehabilitation. During the first 4 weeks, at least 10 individual sessions will take place in every group. After the first 4 weeks, participants will be encouraged to perform self-delivered exercises over a period of 6 weeks. Outcomes will be assessed at 4 and 10 weeks after baseline and at 6 months follow-up. The primary outcome measure is the average intensity of phantom limb pain during the last week. Secondary outcome measures include the different dimensions of phantom limb pain, pain-related limitations in daily activities, global perceived effect, pain-specific self-efficacy, and quality of life. Several questions concerning the study design that emerged during the preparation of this trial will be discussed. This will include how these questions were addressed and arguments for the choices that were made. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  6. Photonic muscle active optics for space telescopes (active optics with 1023 actuators)

    NASA Astrophysics Data System (ADS)

    Ritter, Joe

    2009-08-01

    Presented is a novel optical system using Cis-Trans photoisomerization where nearly every molecule of a mirror substrate is itself an optically powered actuator. Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Areal density can be reduced by increasing actuation density. Making every molecule of a substrate an actuator approaches the limit of the areal density vs actuation design trade space. Cis-Trans photoisomerization, a reversible reorganization of molecular structure induced by light, causes a change in the shape and volume of azobenzene based molecules. Induced strain in these "photonic muscles" can be over 40%. Forces are pico-newtons/molecule. Although this molecular limit is not typically multiplied in aggregate materials we have made, considering the large number of molecules in a mole, future optimized systems may approach this limit In some π-π* mixed valence azo-polymer membranes we have made photoisomerization causes a highly controllable change in macroscopic dimension with application of light. Using different wavelengths and polarizations provides the capability to actively reversibly and remotely control membrane mirror shape and dynamics using low power lasers, instead of bulky actuators and wires, thus allowing the substitution of optically induced control for rigidity and mass. Areal densities of our photonic muscle mirrors are approximately 100 g/m2. This includes the substrate and actuators (which are of course the same). These materials are thin and flexible (similar to saran wrap) so high packing ratios are possible, suggesting the possibility of deployable JWST size mirrors weighing 6 kilograms, and the possibility of ultralightweight space telescopes the size of a football field. Photons weigh nothing. Why must even small space telescopes weigh tons? Perhaps they do not.

  7. Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Gu, Zhiyuan; Wang, Yang; Ju, Guohao; Yan, Changxiang

    2018-01-01

    Active optics usually uses the computation models based on numerical methods to correct misalignments and figure errors at present. These methods can hardly lead to any insight into the aberration field dependencies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C telescope based on this analytical alignment model. It is shown that in the absence of wavefront measurement errors, wavefront measurements at only two field points are enough, and the correction process can be completed with only one alignment action. In the presence of wavefront measurement errors, increasing the number of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo simulation shows that, when -2 mm ≤ linear misalignment ≤ 2 mm, -0.1 deg ≤ angular misalignment ≤ 0.1 deg, and -0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5 / C6, λ = 632.8 nm) ≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples after being corrected is linearly related to wavefront testing error.

  8. Formation Flying of Components of a Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Quadrelli, Marco; Breckenridge, William

    2009-01-01

    A conceptual space telescope having an aperture tens of meters wide and a focal length of hundreds of meters would be implemented as a group of six separate optical modules flying in formation: a primary-membrane-mirror module, a relay-mirror module, a focal-plane-assembly module containing a fast steering mirror and secondary and tertiary optics, a primary-mirror-figure-sensing module, a scanning-electron-beam module for controlling the shape of the primary mirror, and a sunshade module. Formation flying would make it unnecessary to maintain the required precise alignments among the modules by means of an impractically massive rigid structure. Instead, a control system operating in conjunction with a metrology system comprising optical and radio subsystems would control the firing of small thrusters on the separate modules to maintain the formation, thereby acting as a virtual rigid structure. The control system would utilize a combination of centralized- and decentralized-control methods according to a leader-follower approach. The feasibility of the concept was demonstrated in computational simulations that showed that relative positions could be maintained to within a fraction of a millimeter and orientations to within several microradians.

  9. High-resolution deployable telescope for satellite applications

    NASA Astrophysics Data System (ADS)

    Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto

    2004-02-01

    CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.

  10. Performance of lightweight large C/SiC mirror

    NASA Astrophysics Data System (ADS)

    Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko

    2017-11-01

    Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.

  11. Design and verification for front mirror-body structure of on-axis three mirror anastigmatic space camera

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan

    2017-11-01

    The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.

  12. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  13. Reflectometer design using nonimaging optics

    NASA Astrophysics Data System (ADS)

    Snail, Keith A.

    1987-12-01

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  14. Reflectometer design using nonimaging optics.

    PubMed

    Snail, K A

    1987-12-15

    A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.

  15. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  16. A deployable telescope for sub-meter resolutions from microsatellite platforms

    NASA Astrophysics Data System (ADS)

    Dolkens, D.; Kuiper, J. M.

    2017-11-01

    Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable arms and a main housing with active thermal control, will guarantee a high thermal stability during operations. Since a robust mechanical design alone is insufficient to ensure a diffraction limited performance, an inorbit calibration system was developed. Post launch, a combination of interferometric measurements and capacitive sensors will be used to characterise the system. Actuators beneath the primary mirror segments will then correct the position of the mirror segments to meet the required operating accuracies. During operations, a passive system will be used. This system relies on a phase diversity algorithm to retrieve residual wavefront aberrations and deconvolve the image data. Using this approach, a good end-to-end imaging performance can be achieved.

  17. Wavefront sensing, control, and pointing

    NASA Technical Reports Server (NTRS)

    Pitts, Thomas; Sevaston, George; Agronin, Michael; Bely, Pierre; Colavita, Mark; Clampin, Mark; Harvey, James; Idell, Paul; Sandler, Dave; Ulmer, Melville

    1992-01-01

    A majority of future NASA astrophysics missions from orbiting interferometers to 16-m telescopes on the Moon have, as a common requirement, the need to bring light from a large entrance aperture to the focal plane in a way that preserves the spatial coherence properties of the starlight. Only by preserving the phase of the incoming wavefront, can many scientific observations be made, observations that range from measuring the red shift of quasi-stellar objects (QSO's) to detecting the IR emission of a planet in orbit around another star. New technologies for wavefront sensing, control, and pointing hold the key to advancing our observatories of the future from those already launched or currently under development. As the size of the optical system increases, either to increase the sensitivity or angular resolution of the instrument, traditional technologies for maintaining optical wavefront accuracy become prohibitively expensive or completely impractical. For space-based instruments, the low mass requirement and the large temperature excursions further challenge existing technologies. The Hubble Space Telescope (HST) is probably the last large space telescope to rely on passive means to keep its primary optics stable and the optical system aligned. One needs only look to the significant developments in wavefront sensing, control, and pointing that have occurred over the past several years to appreciate the potential of this technology for transforming the capability of future space observatories. Future developments in space-borne telescopes will be based in part on developments in ground-based systems. Telescopes with rigid primary mirrors much larger than 5 m in diameter are impractical because of gravity loading. New technologies are now being introduced, such as active optics, that address the scale problem and that allow very large telescopes to be built. One approach is a segmented design such as that being pioneered by the W.M. Keck telescope now under construction at the Mauna Kea Observatory. It consists of 36 hexagonal mirror segments, supported on a framework structure, which are positioned by actuators located between the structure and the mirrors. The figure of the telescope is initialized by making observations of a bright star using a Shack Hartmann sensor integrated with a white light interferometer. Then, using sensed data from the mirror edges to control these actuators, the figure of the mosaic of 36 segments is maintained as if it were a rigid primary mirror. Another active optics approach is the use of a thin meniscus mirror with actuators. This technique was demonstrated on the European Southern Observatory's New Technology Telescope (NTT) and is planned for use in the Very Large Telescope (consists of four 8-m apertures), which is now entering the design phase.

  18. SOFIA's primary mirror assembly is cradled on its dolly as technicians prepare to move it into a "clean room" at NASA Dryden's Aircraft Operations Facility

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  19. The SOFIA primary mirror assembly is cautiously lifted from its cavity in the modified 747 by a crane in preparation for finish coating operations at NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  20. Technicians carefully guide SOFIA's primary mirror assembly on its transport cradle into a clean room where it is being prepared for shipment to NASA Ames

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  1. Technicians with ropes carefully guide the primary mirror assembly as a crane slowly moves it toward its transport cradle after removal from the SOFIA aircraft

    NASA Image and Video Library

    2008-04-18

    Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  2. Dynamical simulation of E-ELT segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Sedghi, B.; Muller, M.; Bauvir, B.

    2011-09-01

    The dynamical behavior of the primary mirror (M1) has an important impact on the control of the segments and the performance of the telescope. Control of large segmented mirrors with a large number of actuators and sensors and multiple control loops in real life is a challenging problem. In virtual life, modeling, simulation and analysis of the M1 bears similar difficulties and challenges. In order to capture the dynamics of the segment subunits (high frequency modes) and the telescope back structure (low frequency modes), high order dynamical models with a very large number of inputs and outputs need to be simulated. In this paper, different approaches for dynamical modeling and simulation of the M1 segmented mirror subject to various perturbations, e.g. sensor noise, wind load, vibrations, earthquake are presented.

  3. Fabrication, Testing, Coating and Alignment of Fast Segmented Optics

    DTIC Science & Technology

    2006-05-25

    mirror segment, a 100 mm thick Zerodur mirror blank was purchased from Schott. Figure 2 shows the segment and its support for polishing and testing in...Polishing large off-axis segments of fast primary mirrors 2. Testing large segments in an off-axis geometry 3. Alignment of multiple segments of a large... mirror 4. Coatings that reflect high-intensity light without distorting the substrate These technologies are critical because of several unique

  4. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  5. The Magellan Telescopes

    NASA Astrophysics Data System (ADS)

    Shectman, Stephen A.; Johns, Matthew

    2003-02-01

    Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.

  6. Facilitation of corticospinal excitability according to motor imagery and mirror therapy in healthy subjects and stroke patients.

    PubMed

    Kang, Youn Joo; Ku, Jeonghun; Kim, Hyun Jung; Park, Hae Kyung

    2011-12-01

    To delineate the changes in corticospinal excitability when individuals are asked to exercise their hand using observation, motor imagery, voluntary exercise, and exercise with a mirror. The participants consisted of 30 healthy subjects and 30 stroke patients. In healthy subjects, the amplitudes and latencies of motor evoked potential (MEP) were obtained using seven conditions: (A) rest; (B) imagery; (C) observation and imagery of the hand activity of other individuals; (D) observation and imagery of own ipsilateral hand activity; (E) observation and imagery of the hand activity of another individual with a mirror; (F) observation and imagery of own symmetric ipsilateral hand activity (thumb abduction) with a mirror; and (G) observation and imagery of own asymmetric ipsilateral hand activity (little finger abduction) with a mirror. In stroke patients, MEPs were obtained in the A, C, D, E, F conditions. In both groups, increment of the percentage MEP amplitude (at rest) and latency decrement of MEPs were significantly higher during the observation of the activity of the hand of another individual with a mirror and during symmetric ipsilateral hand activity on their own hand with a mirror than they were without a mirror. In healthy subjects, the increment of percentage MEP amplitude and latency decrement were significantly higher during the observation of the symmetric ipsilateral hand activity with a mirror compared to the observation of the activity of the asymmetric ipsilateral hand with a mirror of their own hand. In both groups, corticospinal excitability was facilitated by viewing the mirror image of the activity of the ipsilateral hand. These findings provide neurophysiological evidence supporting the application of various mirror imagery programs during stroke rehabilitation.

  7. Facilitation of Corticospinal Excitability According to Motor Imagery and Mirror Therapy in Healthy Subjects and Stroke Patients

    PubMed Central

    Kang, Youn Joo; Ku, Jeonghun; Kim, Hyun Jung

    2011-01-01

    Objective To delineate the changes in corticospinal excitability when individuals are asked to exercise their hand using observation, motor imagery, voluntary exercise, and exercise with a mirror. Method The participants consisted of 30 healthy subjects and 30 stroke patients. In healthy subjects, the amplitudes and latencies of motor evoked potential (MEP) were obtained using seven conditions: (A) rest; (B) imagery; (C) observation and imagery of the hand activity of other individuals; (D) observation and imagery of own ipsilateral hand activity; (E) observation and imagery of the hand activity of another individual with a mirror; (F) observation and imagery of own symmetric ipsilateral hand activity (thumb abduction) with a mirror; and (G) observation and imagery of own asymmetric ipsilateral hand activity (little finger abduction) with a mirror. In stroke patients, MEPs were obtained in the A, C, D, E, F conditions. Results In both groups, increment of the percentage MEP amplitude (at rest) and latency decrement of MEPs were significantly higher during the observation of the activity of the hand of another individual with a mirror and during symmetric ipsilateral hand activity on their own hand with a mirror than they were without a mirror. In healthy subjects, the increment of percentage MEP amplitude and latency decrement were significantly higher during the observation of the symmetric ipsilateral hand activity with a mirror compared to the observation of the activity of the asymmetric ipsilateral hand with a mirror of their own hand. Conclusion In both groups, corticospinal excitability was facilitated by viewing the mirror image of the activity of the ipsilateral hand. These findings provide neurophysiological evidence supporting the application of various mirror imagery programs during stroke rehabilitation. PMID:22506202

  8. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This image illustrates the Hubble Space Telescope's (HST's) Optical Telescope Assembly (OTA). One of the three major elements of the HST, the OTA consists of two mirrors (a primary mirror and a secondary mirror), support trusses, and the focal plane structure. The mirrors collect and focus light from selected celestial objects and are housed near the center of the telescope. The primary mirror captures light from objects in space and focuses it toward the secondary mirror. The secondary mirror redirects the light to a focal plane where the Scientific Instruments are located. The primary mirror is 94.5 inches (2.4 meters) in diameter and the secondary mirror is 12.2 inches (0.3 meters) in diameter. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth Orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from the Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The spacecraft is 42.5 feet (13 meters) long and weighs 25,000 pounds (11,600 kilograms). The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  9. Toward first light for the 6.5-m MMT Telescope

    NASA Astrophysics Data System (ADS)

    West, Steve C.; Callahan, Shawn; Chaffee, Frederic H.; Davison, Warren B.; Derigne, S. T.; Fabricant, Daniel G.; Foltz, Craig B.; Hill, John M.; Nagel, Robert H.; Poyner, Anthony D.; Williams, Joseph T.

    1997-03-01

    Operated by the Multiple Mirror Telescope Observatory (MMTO), the multiple mirror telescope (MMT) is funded jointly by the Smithsonian Institution (SAO) and the University of Arizona (UA). The two organizations equally share observing time on the telescope. The MMT was dedicated in May 1979, and is located on the summit of Mt. Hopkins (at an altitude of 2.6 km), 64 km south of Tucson, Arizona, at the Smithsonian Institution's Fred Lawrence Whipple Observatory (FLWO). As a result of advances in the technology at the Steward Observatory Mirror Laboratory for the casting of large and fast borosilicate honeycomb astronomical primary mirrors, in 1987 it was decided to convert the MMT from its six 1.8 m mirror array (effective aperture of 4.5 m) to a single 6.5 m diameter primary mirror telescope. This conversion will more than double the light gathering capacity, and will by design, increase the angular field of view by a factor of 15. Because the site is already developed and the existing building and mount will be used with some modification, the conversion will be accomplished for only about $20 million. During 1995, several major technical milestones were reached: (1) the existing building was modified, (2) the major steel telescope structures were fabricated, and (3) the mirror blank was diamond wheel ground (generated). All major mechanical hardware required to affect the conversion is now nearly in hand. Once the primary mirror is polished and lab-tested on its support system, the six-mirror MMT will be taken out of service and the conversion process begun. We anticipate that a 6 - 12 month period will be required to rebuild the telescope, install its optics and achieve f/9 first light, now projected to occur in early 1998. The f/5.4 and f/15 implementation will then follow. We provide a qualitative and brief update of project progress.

  10. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  11. Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Jenstrom, Del

    2000-01-01

    In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.

  12. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions

    NASA Astrophysics Data System (ADS)

    Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Soummer, R.; Shaklan, S.; Norman, C.

    2018-01-01

    High-contrast imaging and spectroscopy provide unique constraints for exoplanet formation models as well as for planetary atmosphere models. Instrumentation techniques in this field have greatly improved over the last two decades, with the development of stellar coronagraphy, in parallel with specific methods of wavefront sensing and control. Next generation space- and ground-based telescopes will enable the characterization of cold solar-system-like planets for the first time and maybe even in situ detection of bio-markers. However, the growth of primary mirror diameters, necessary for these detections, comes with an increase of their complexity (segmentation, secondary mirror features). These discontinuities in the aperture can greatly limit the performance of coronagraphic instruments. In this context, we introduced a new technique, Active Correction of Aperture Discontinuities-Optimized Stroke Minimization (ACAD-OSM), to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph, using deformable mirrors. In this paper, we present several tools that can be used to optimize the performance of this technique for its application to future large missions. In particular, we analyzed the influence of the deformable setup (size and separating distance) and found that there is an optimal point for this setup, optimizing the performance of the instrument in contrast and throughput while minimizing the strokes applied to the deformable mirrors. These results will help us design future coronagraphic instruments to obtain the best performance.

  13. The neuronal correlates of mirror therapy: A functional magnetic resonance imaging study on mirror-induced visual illusions of ankle movements.

    PubMed

    Guo, Feng; Xu, Qun; Abo Salem, Hassan M; Yao, Yihao; Lou, Jicheng; Huang, Xiaolin

    2016-05-15

    Recovery in stroke is mediated by neural plasticity. Mirror therapy is an effective method in the rehabilitation of stroke patients, but the mechanism is still obscure. To identify the neural networks associated with the effect of lower-limbs mirror therapy, we investigated a functional magnetic resonance imaging (fMRI) study of mirror-induced visual illusion of ankle movements. Five healthy controls and five left hemiplegic stroke patients performed tasks related to mirror therapy in the fMRI study. Neural activation was compared in a no-mirror condition and a mirror condition. All subjects in the experiment performed the task of flexing and extending the right ankle. In a mirror condition, movement of the left ankle was simulated by mirror reflection of right ankle movement. Changes in neural activation in response to mirror therapy were assessed both in healthy controls and stroke patients. We found strong activation of the motor cortex bilaterally in healthy controls, as well as significant activation of the ipsilateral sensorimotor cortex, the occipital gyrus, and the anterior prefrontal gyrus in stroke patients with respect to the non-mirror condition. We concluded that mirror therapy of ankle movements may induce neural activation of the ipsilesional sensorimotor cortex, and that cortical reorganization may be useful for motor rehabilitation in stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Gregory [Gregorie], James (1638-75)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Scottish mathematician and optician, born in Aberdeen. Gregory described in Optica Promota a design (which he never realized) for the first practical reflecting telescope in which a perforated primary concave parabolic mirror converges the light to the focus of a concave ellipsoidal secondary mirror. The light is reflected back to the ellipsoid's second focus behind the main mirror. A real image ...

  15. Method of Analysis for Determining and Correcting Mirror Deformation due to Gravity

    DTIC Science & Technology

    2014-01-01

    obtainable. 1.3 Description of As-Built Beam Compressor Assembly The as-built beam compressor assembly consists of primary and secondary Zerodur ® mirrors held...Method of analysis for determining and correcting mirror deformation due to gravity James H. Clark, III F. Ernesto, Penado Downloaded From: http...00-00-2014 4. TITLE AND SUBTITLE Method of analysis for determining and correcting mirror deformation due to gravity 5a. CONTRACT NUMBER 5b. GRANT

  16. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  17. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2000-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.

  18. Secondary concentrators for parabolic dish solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Poon, P. T.

    1981-01-01

    A variety of different concepts are currently being studied with the objective to lower the cost of parabolic mirrors and to provide alternatives. One of the considered approaches involves the use of compound concentrators. A compound solar concentrator is a concentrator in which the sunlight is reflected or refracted more than once. It consists of a primary mirror or lens, whose aperture determines the amount of sunlight gathered, and a smaller secondary mirror or lens. Additional small optical elements may also be incorporated. The possibilities and problems regarding a use of compound concentrators in parabolic dish systems are discussed. Attention is given to concentrating secondary lenses, secondary imaging and concentrating mirrors, conical secondary mirrors, compound elliptic secondary concentrating mirrors, and hyperbolic trumpet secondary concentrating mirrors.

  19. Development of 1-m primary mirror for a spaceborne camera

    NASA Astrophysics Data System (ADS)

    Kihm, Hagyong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

    2015-09-01

    We present the development of a 1-m lightweight mirror system for a spaceborne electro-optical camera. The mirror design was optimized to satisfy the performance requirements under launch loads and space environment. The mirror made of Zerodur® has pockets at the back surface and three square bosses at the rim. Metallic bipod flexures support the mirror at the bosses and adjust the mirror's surface distortion due to gravity. We also show an analytical formulation of the bipod flexure, where compliance and stiffness matrices of the bipod flexure are derived to estimate theoretical performance and to make initial design guidelines. Optomechanical performances such as surface distortions due to gravity is explained. Environmental verification of the mirror is achieved by vibration tests.

  20. Large Space Optics: From Hubble to JWST and Beyond

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    If necessity truly is the mother of invention, then advances in lightweight space mirror technology have been driven by launch vehicle mass and volume constraints. In the late 1970 s, at the start of Hubble development, the state of the art in ground based telescopes was 3 to 4 meter monolithic primary mirrors with masses of 6000 to 10,000 kg - clearly too massive for the planned space shuttle 25,000 kg capability to LEO. Necessity led Hubble to a different solution. Launch vehicle mass constraints (and cost) resulted in the development of a 2.4 meter lightweight eggcrate mirror. At 810 kg (180 kg/m2), this mirror was approximately 7.4% of HST s total 11,110 kg mass. And, the total observatory structure at 4.3 m x 13.2 m fit snuggly inside the space shuttle 4.6 m x 18.3 m payload bay. In the early 1990 s, at the start of JWST development, the state of the art in ground based telescopes was 8 meter class monolithic primary mirrors (16,000 to 23,000 kg) and 10 meter segmented mirrors (14,400 kg). Unfortunately, launch vehicles were still constrained to 4.5 meter payloads and 25,000 kg to LEO or 6,600 kg to L2. Furthermore, science now demanded a space telescope with 6 to 8 meter aperture operating at L2. Mirror technology was identified as a critical capability necessary to enable the next generation of large aperture space telescopes. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996 (1). These studies identified two significant architectural constraints: segmentation and areal density. Because the launch vehicle fairing payload dynamic envelop diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. And, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density of 20 kg/m2. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated resulting in matured and demonstrated mirror technology for JWST (2, 3). Today, the JWST 6.5 meter primary mirror has an areal density of 25 kg/m2 for a total mass of 625 kg or 9.6% of the total JWST observatory mass of 6,500 kg. Looking into the future, science requires increasing larger collecting apertures. Ground based telescopes are already moving towards 30+ meter mirrors. The only way to meet this challenge for space telescopes is via even lower areal density mirrors or on-orbit assembly or larger launch vehicles (4). The planned NASA Ares V with its 10 meter fairing and 55,000 kg payload to L2 eliminates this constraint (5).

  1. The Mirror Illusion Increases Motor Cortex Excitability in Children With and Without Hemiparesis.

    PubMed

    Grunt, Sebastian; Newman, Christopher J; Saxer, Stefanie; Steinlin, Maja; Weisstanner, Christian; Kaelin-Lang, Alain

    2017-03-01

    Mirror therapy provides a visual illusion of a normal moving limb by using the mirror reflection of the unaffected arm instead of viewing the paretic limb and is used in rehabilitation to improve hand function. Little is known about the mechanism underlying its effect in children with hemiparesis. To investigate the effect of the mirror illusion (MI) on the excitability of the primary motor cortex (M1) in children and adolescents. Twelve patients with hemiparesis (10-20 years) and 8 typically developing subjects (8-17 years) participated. Corticospinal reorganization was classified as contralateral (projection from contralateral hemisphere to affected hand) or ipsilateral (projection from ipsilateral hemisphere to affected hand). M1 excitability of the hemisphere projecting to the affected (nondominant in typically developing subjects) hand was obtained during 2 different conditions using single-pulse transcranial magnetic stimulation (TMS). Each condition (without/with mirror) consisted of a unimanual and a bimanual task. Motor-evoked potentials (MEPs) were recorded from the abductor pollicis brevis and flexor digitorum superficialis muscles. MEP amplitudes were significantly increased during the mirror condition ( P = .005) in typically developing subjects and in patients with contralateral reorganization. No significant effect of MI was found in subjects with ipsilateral reorganization. MI increased M1 excitability during active movements only. This increase was not correlated to hand function. MI increases the excitability of M1 in hemiparetic patients with contralateral corticospinal organization and in typically developing subjects. This finding provides neurophysiological evidence supporting the application of mirror therapy in selected children and adolescents with hemiparesis.

  2. Design trade study for a 4-meter off-axis primary mirror substrate and mount for the Habitable-zone Exoplanet Direct Imaging Mission

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Stahl, H. Philip

    2017-09-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study's purpose is not to produce a final design, but rather to established a design methodology for matching the mirror's properties (mass and stiffness) with the mission's optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs open-back vs partial-back; meniscus vs flat back vs shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  3. James Webb Space Telescope: The First Light Machine

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    NASA James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fundamental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world's largest space telescope. Its architecture, e.g. aperture, wavelength range and operating temperature, is driven by JWST's science objectives. Introduction: Scheduled to start its 5 year mission after 2018, JWST will study the origin and evolution of galaxies, stars and planetary systems. Its science mission is to: Identify the first bright objects that formed in the early Universe, and follow the ionization history. Determine how galaxies form. Determine how galaxies and dark matter, including gas, stars, metals, overall morphology and active nuclei evolved to the present day. Observe the birth and early development of stars and the formation of planets. And, study the physical and chemical properties of solar systems for the building blocks of Life. Principle: To accomplish the JWST science objectives requires a larger aperture infrared cryogenic space telescope. A large aperture is required because the objects are very faint. The infrared spectral range is required because the objects are so far away that their ultraviolet and visible wavelength spectral lines are red-shifted into the infrared. Because the telescope is infrared, it needs to be cryogenic. And, because of the telescope is infrared, it must operate above the Earth's atmosphere, i.e. in space. JWST is probably the single most complicated mission that humanity has attempted. It is certainly the most difficult optical fabrication and testing challenge of our generation. The JWST 6.5 m diameter primary mirror is nearly a parabola with a conic constant of -0.9967 and radius of curvature at 30K of 15.880 m. The primary mirror is divided into 18 segments with 3 different prescriptions; each with its own off-axis distance and aspheric departure. The radius of curvature for all 18 segments must match to +/- 0.150 mm at 30K. JWST is diffraction limited at 2 micrometers which translates into a transmitted wavefront specification of 156 nm rms. Of that amount, 50 nm rms is allocated to the primary mirror. Each segment is allocated 22 nm rms surface error. At the start of the JWST program, the capability to make such a mirror did not exist. In 1996, NASA began a systematic and comprehensive mirror technology development effort which resulted in JWST. This program resulted in a qualified mirror fabrication process being approved in 2006. Today, all JWST primary mirror segments meet their requirements and are on schedule for a 2018 launch. The next step is system level assembly, integration and test. Ambient tests will be conducted at Goddard Space Flight Center and cryogenic system level testing will be performed in Chamber A at the Johnson Space Center.

  4. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain.

    PubMed

    Deconinck, Frederik J A; Smorenburg, Ana R P; Benham, Alex; Ledebt, Annick; Feltham, Max G; Savelsbergh, Geert J P

    2015-05-01

    Mirror visual feedback (MVF), a phenomenon where movement of one limb is perceived as movement of the other limb, has the capacity to alleviate phantom limb pain or promote motor recovery of the upper limbs after stroke. The tool has received great interest from health professionals; however, a clear understanding of the mechanisms underlying the neural recovery owing to MVF is lacking. We performed a systematic review to assess the effect of MVF on brain activation during a motor task. We searched PubMed, CINAHL, and EMBASE databases for neuroimaging studies investigating the effect of MVF on the brain. Key details for each study regarding participants, imaging methods, and results were extracted. The database search yielded 347 article, of which we identified 33 suitable for inclusion. Compared with a control condition, MVF increases neural activity in areas involved with allocation of attention and cognitive control (dorsolateral prefrontal cortex, posterior cingulate cortex, S1 and S2, precuneus). Apart from activation in the superior temporal gyrus and premotor cortex, there is little evidence that MVF activates the mirror neuron system. MVF increases the excitability of the ipsilateral primary motor cortex (M1) that projects to the "untrained" hand/arm. There is also evidence for ipsilateral projections from the contralateral M1 to the untrained/affected hand as a consequence of training with MVF. MVF can exert a strong influence on the motor network, mainly through increased cognitive penetration in action control, though the variance in methodology and the lack of studies that shed light on the functional connectivity between areas still limit insight into the actual underlying mechanisms. © The Author(s) 2014.

  5. Deployable telescope having a thin-film mirror and metering structure

    DOEpatents

    Krumel, Leslie J [Cedar Crest, NM; Martin, Jeffrey W [Albuquerque, NM

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  6. Kodak AMSD Mirror Development Program

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  7. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Pueyo, Laurent A. (Inventor); Norman, Colin A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  8. James Webb Space Telescope Optical Simulation Testbed I: overview and first results

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Soummer, Rémi; Choquet, Élodie; N'Diaye, Mamadou; Levecq, Olivier; Lajoie, Charles-Philippe; Ygouf, Marie; Leboulleux, Lucie; Egron, Sylvain; Anderson, Rachel; Long, Chris; Elliott, Erin; Hartig, George; Pueyo, Laurent; van der Marel, Roeland; Mountain, Matt

    2014-08-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.

  9. Primary Mirror Figure Maintenance of the Hobby-Eberly Telescope using the Segment Alignment Maintenance System

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)

    2002-01-01

    The Segment Alignment Maintenance System (SAMs) was installed on McDonald Observatory's Hobby-Eberly Telescope (HET) in August 2001. The SAMs became fully operational in October 2001. The SAMs uses a system of 480 inductive edge sensors to correct misalignments of the HET's 91 primary mirror segments when the segments are perturbed from their aligned reference positions. A special observer estimated and corrects for the global radius of curvature (GroC) mode, a mode unobservable by the edge sensors. The SAMs edge sensor system and (GroC) estimator are able to maintain HET's primary figure for much longer durations than previously had been observed. Telescope image quality has improved, and the amount of overhead time required from primary mirror alignment has been reduced. This paper gives a functional description of the SAMs control system and presents performance verification data. This paper also describes how the SAMs has improved the operational efficiency of the HET.

  10. Estimating the mirror seeing for a large optical telescope with a numerical method

    NASA Astrophysics Data System (ADS)

    Zhang, En-Peng; Cui, Xiang-Qun; Li, Guo-Ping; Zhang, Yong; Shi, Jian-Rong; Zhao, Yong-Heng

    2018-05-01

    It is widely accepted that mirror seeing is caused by turbulent fluctuations in the index of air refraction in the vicinity of a telescope mirror. Computational Fluid Dynamics (CFD) is a useful tool to evaluate the effects of mirror seeing. In this paper, we present a numerical method to estimate the mirror seeing for a large optical telescope (∼ 4 m) in cases of natural convection with the ANSYS ICEPAK software. We get the FWHM of the image for different inclination angles (i) of the mirror and different temperature differences (ΔT) between the mirror and ambient air. Our results show that the mirror seeing depends very weakly on i, which agrees with observational data from the Canada-France-Hawaii Telescope. The numerical model can be used to estimate mirror seeing in the case of natural convection although with some limitations. We can determine ΔT for thermal control of the primary mirror according to the simulation, empirical data and site seeing.

  11. The Preflight Photometric Calibration of the Extreme-Ultraviolet Imaging Telescope EIT

    NASA Technical Reports Server (NTRS)

    Dere, K. P.; Moses, J. D.; Delaboudiniere, J. -P.; Brunaud, J.; Carabetian, C.; Hochedez, J. -F.; Song, X. Y.; Catura, R. C.; Clette, F.; Defise, J. -M.

    2000-01-01

    This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey-Chretien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 . Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.

  12. Absolute measurements of large mirrors

    NASA Astrophysics Data System (ADS)

    Su, Peng

    The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several times the mirror under test in relation to the test system. The result was a separation of errors in the optical test system to those errors from the mirror under test. This method proved to be accurate to 12nm rms. Another absolute measurement technique discussed in this dissertation utilizes the property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal point. We have developed a scanning pentaprism technique that exploits this geometry to measure off-axis paraboloidal mirrors such as the GMT segments. This technique was demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 nm rms.

  13. Discrete control of linear distributed systems with application to the deformable primary mirror of a large orbiting telescope. Ph.D. Thesis - Rhode Island Univ.

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.

    1970-01-01

    The results are presented of a detailed study of the discrete control of linear distributed systems with specific application to the design of a practical controller for a plant representative of a telescope primary mirror for an orbiting astronomical observatory. The problem of controlling the distributed plant is treated by employing modal techniques to represent variations in the optical figure. Distortion of the mirror surface, which arises primarily from thermal gradients, is countered by actuators working against a backing structure to apply a corrective force distribution to the controlled surface. Each displacement actuator is in series with a spring attached to the mirror by means of a pad intentionally introduced to restrict the excitation of high-order modes. Control is exerted over a finite number of the most significant modes.

  14. NIRSpec optics development: final report

    NASA Astrophysics Data System (ADS)

    Geyl, R.; Ruch, E.; Vayssade, H.; Leplan, H.; Rodolfo, J.

    2017-11-01

    As shown and discussed on a Sagem poster presented at the ICSO 2010 conference [1], scientific or commercial earth observation space instruments are more and more taking advantage of the remarkable properties of Silicon Carbide in term of hardness, stiffness and thermal stability combined with a reasonable density which are indeed of primary importance for all space applications. Sagem-REOSC High Performance Optics Unit works on the polishing, coating and integration technologies of SiC mirrors since more than ten year through various successful space programs for various customers: INSAT 3D scan mirror, ROCSAT II and SPIRALE main telescopes, GAIA large primary mirrors and Auto-collimation flats, …). This paper aims to provide to the international space community an exhaustive vision of the work performed by Sagem-REOSC on the polishing, coating and integration of the three Three Mirror Anastigmats of the NIRSpec spectrographic instrument which is the main ESA contribution to the JWST.

  15. Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.

    2000-07-01

    A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.

  16. Comparing optical test methods for a lightweight primary mirror of a space-borne Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan

    2014-09-01

    A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.

  17. Prototyping the E-ELT M1 local control system communication infrastructure

    NASA Astrophysics Data System (ADS)

    Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.

    2016-08-01

    The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.

  18. Neurons in primary motor cortex engaged during action observation.

    PubMed

    Dushanova, Juliana; Donoghue, John

    2010-01-01

    Neurons in higher cortical areas appear to become active during action observation, either by mirroring observed actions (termed mirror neurons) or by eliciting mental rehearsal of observed motor acts. We report the existence of neurons in the primary motor cortex (M1), an area that is generally considered to initiate and guide movement performance, responding to viewed actions. Multielectrode recordings in monkeys performing or observing a well-learned step-tracking task showed that approximately half of the M1 neurons that were active when monkeys performed the task were also active when they observed the action being performed by a human. These 'view' neurons were spatially intermingled with 'do' neurons, which are active only during movement performance. Simultaneously recorded 'view' neurons comprised two groups: approximately 38% retained the same preferred direction (PD) and timing during performance and viewing, and the remainder (62%) changed their PDs and time lag during viewing as compared with performance. Nevertheless, population activity during viewing was sufficient to predict the direction and trajectory of viewed movements as action unfolded, although less accurately than during performance. 'View' neurons became less active and contained poorer representations of action when only subcomponents of the task were being viewed. M1 'view' neurons thus appear to reflect aspects of a learned movement when observed in others, and form part of a broadly engaged set of cortical areas routinely responding to learned behaviors. These findings suggest that viewing a learned action elicits replay of aspects of M1 activity needed to perform the observed action, and could additionally reflect processing related to understanding, learning or mentally rehearsing action.

  19. Finite Element Modeling of a Semi-Rigid Hybrid Mirror and a Highly Actuated Membrane Mirror as Candidates for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Craig, Larry; Jacobson, Dave; Mosier, Gary; Nein, Max; Page, Timothy; Redding, Dave; Sutherlin, Steve; Wilkerson, Gary

    2000-01-01

    Advanced space telescopes, which will eventually replace the Hubble Space Telescope (HTS), will have apertures of 8 - 20 n. Primary mirrors of these dimensions will have to be foldable to fit into the space launcher. By necessity these mirrors will be extremely light weight and flexible and the historical approaches to mirror designs, where the mirror is made as rigid as possible to maintain figure and to serve as the anchor for the entire telescope, cannot be applied any longer. New design concepts and verifications will depend entirely on analytical methods to predict optical performance. Finite element modeling of the structural and thermal behavior of such mirrors is becoming the tool for advanced space mirror designs. This paper discusses some of the preliminary tasks and study results, which are currently the basis for the design studies of the Next Generation Space Telescope.

  20. Inverting Image Data For Optical Testing And Alignment

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Redding, David; Yu, Jeffrey W.; Dumont, Philip J.

    1993-01-01

    Data from images produced by slightly incorrectly figured concave primary mirror in telescope processed into estimate of spherical aberration of mirror, by use of algorithm finding nonlinear least-squares best fit between actual images and synthetic images produced by multiparameter mathematical model of telescope optical system. Estimated spherical aberration, in turn, converted into estimate of deviation of reflector surface from nominal precise shape. Algorithm devised as part of effort to determine error in surface figure of primary mirror of Hubble space telescope, so corrective lens designed. Modified versions of algorithm also used to find optical errors in other components of telescope or of other optical systems, for purposes of testing, alignment, and/or correction.

  1. Study on the key alignment technology of the catadioptric optical system

    NASA Astrophysics Data System (ADS)

    Song, Chong; Fu, Xing; Fu, Xi-hong; Kang, Xiao-peng; Liu, Kai

    2017-02-01

    Optical system alignment has a great influence on the whole system accuracy. In this paper, the processing of optical system alignment was mainly studied, the processing method of optics on the primary and secondary mirrors, front correction lens group and behind correction lens group with high precision centering lathe and internal focusing telescope. Then using the height indicator complete the system alignment of the primary mirror, secondary mirror, front correction group and behind correction group. Finally, based on the zygo interferometer detect the wavefront information. Using this alignment program for catadioptric optical system, the wavefront aberration of optical system, focal length, modulation transfer function (MTF) and other technical indicators have reached the requirements.

  2. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.

  3. James Webb Space Telescope optical simulation testbed III: first experimental results with linear-control alignment

    NASA Astrophysics Data System (ADS)

    Egron, Sylvain; Lajoie, Charles-Philippe; Leboulleux, Lucie; N'Diaye, Mamadou; Pueyo, Laurent; Choquet, Élodie; Perrin, Marshall D.; Ygouf, Marie; Michau, Vincent; Bonnefois, Aurélie; Fusco, Thierry; Escolle, Clément; Ferrari, Marc; Hugot, Emmanuel; Soummer, Rémi

    2016-07-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop experiment designed to study wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science and Operations Center. The design of JOST reproduces the physics of JWST's three-mirror anastigmat (TMA) using three custom aspheric lenses. It provides similar quality image as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at 633 nm. An Iris AO segmented mirror stands for the segmented primary mirror of JWST. Actuators allow us to control (1) the 18 segments of the segmented mirror in piston, tip, tilt and (2) the second lens, which stands for the secondary mirror, in tip, tilt and x, y, z positions. We present the full linear control alignment infrastructure developed for JOST, with an emphasis on multi-field wavefront sensing and control. Our implementation of the Wavefront Sensing (WFS) algorithms using phase diversity is experimentally tested. The wavefront control (WFC) algorithms, which rely on a linear model for optical aberrations induced by small misalignments of the three lenses, are tested and validated on simulations.

  4. The design method of CGH for testing the Φ404, F2 primary mirror

    NASA Astrophysics Data System (ADS)

    Xie, Nian; Duan, Xueting; Li, Hua

    2014-09-01

    In order to accurately test shape quality of the large diameter aspherical mirror, a kind of binary optical element called Computer generated holograms (CGHs) are widely used .The primary role of the CGHs is to generate any desired wavefronts to realize phase compensation. In this paper, the CGH design principle and design process are reviewed at first. Then an optical testing system for testing the aspheric mirror includes a computer generated hologram (CGH) and an imaging element (IE) is disposed. And an optical testing system only concludes a CGH is proposed too. The CGH is designed for measurement of an aspheric mirror (diameter=404mm, F-number=2). Interferometric simulation test results of the aspheric mirror show that the whole test system obtains the demanded high accuracy. When combined the CGH with an imaging element in the Aspheric Compensator, the smallest feature in the CGH should be decreased. The CGH can also be used to test freeform surface with high precision, it is of great significance to the development of the freeform surface.

  5. Status of mirror segment production for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Davis, J. M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Loeff, A.; Lutz, R. D.; Merrill, C.; Strittmatter, P. A.; Tuell, M. T.; Weinberger, S. N.; West, S. C.

    2016-07-01

    The Richard F. Caris Mirror Lab at the University of Arizona is responsible for production of the eight 8.4 m segments for the primary mirror of the Giant Magellan Telescope, including one spare off-axis segment. We report on the successful casting of Segment 4, the center segment. Prior to generating the optical surface of Segment 2, we carried out a major upgrade of our 8.4 m Large Optical Generator. The upgrade includes new hardware and software to improve accuracy, safety, reliability and ease of use. We are currently carrying out an upgrade of our 8.4 m polishing machine that includes improved orbital polishing capabilities. We added and modified several components of the optical tests during the manufacture of Segment 1, and we have continued to improve the systems in preparation for Segments 2-8. We completed two projects that were prior commitments before GMT Segment 2: casting and polishing the combined primary and tertiary mirrors for the LSST, and casting and generating a 6.5 m mirror for the Tokyo Atacama Observatory.

  6. NASA James Webb Space Telescope Engineering of the Primary Mirror Segment Assemblies (PMSA) and the Primary Mirror Backplane Support Structure (PMBSS)

    NASA Technical Reports Server (NTRS)

    Cohen, Lester M.

    2015-01-01

    The design, engineering tests of the PMSAs PMBSS show that we have a robust system that not only meets but exceeds (better than) the design requirements for these components. In the next 2 years the Telescope Observatory will be subjected to a simulated launch environment (sine vibeacoustics) and operations tests at cryogenic temperatures. Launch is schedule for the last quarter of 2018.

  7. Conceptual design and structural analysis for an 8.4-m telescope

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  8. The primary culture of mirror carp snout and caudal fin tissues and the isolation of Koi herpesvirus.

    PubMed

    Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2013-10-01

    The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types.

  9. Opto-mechanical design and gravity-deformation analysis on optical telescope in laser communication system

    NASA Astrophysics Data System (ADS)

    Fu, Sen; Du, Jindan; Song, Yiwei; Gao, Tianyu; Zhang, Daqing; Wang, Yongzhi

    2017-11-01

    In space laser communication, optical antennas are one of the main components and the precision of optical antennas is very high. In this paper, it is based on the R-C telescope and it is carried out that the design and simulation of optical lens and supporting truss, according to the parameters of the systems. And a finite element method (FEM) was used to analyze the deformation of the optical lens. Finally, the Zernike polynomial was introduced to fit the primary mirror with a diameter of 250mm. The objective of this study is to determine whether the wave-front aberration of the primary mirror can meet the imaging quality. The results show that the deterioration of the imaging quality caused by the gravity deformation of primary and secondary mirrors. At the same time, the optical deviation of optical antenna increase with the diameter of the pupil.

  10. Schwarzschild camera

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The fabrication procedures for the primary and secondary mirrors for a Schwarzschild camera are summarized. The achieved wave front for the telescope was 1/2 wave at .63 microns. Interferograms of the two mirrors as a system are given and the mounting procedures are outlined.

  11. The Discovery Channel Telescope: Construction and Design Progress, June 2006

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Smith, B. W.; Millis, R. L.; Dunham, E. W.; Wiecha, O. M.; Marshall, H.

    2006-06-01

    The Discovery Channel Telescope (DCT) is a 4.2m telescope under construction in northern Arizona. The DCT is located at a new site near Happy Jack at 2361m elevation, which was selected following a lengthy site testing campaign that demonstrated median ground-level seeing of 0.84-arcsec FWHM. The DCT science mission includes targeted studies of astrophysical and solar system objects utilizing RC and Nasmyth-mounted imaging and spectroscopic instrumentation, and wide-field surveys of KBO’s, Centaurs, NEA’s, and other time-variable objects with a 2-degree FOV prime focus camera.The DCT facility enclosure and control building will be completed this year, including the supports for the telescope mount and dome, the major infrastructure for facility machinery, the instrument laboratory, control and computer rooms, and the auxiliary building for the mirror coating facility. Meanwhile, the 4.3m ULE meniscus primary mirror blank was completed at Corning, Inc., in October 2005, and the 2-3 year mirror figuring effort is due to begin June 2006. The primary mirror and its design support, and the preliminary integrated telescope mount model, were finite-element analyzed to optimize the design of the mirror and top-end support configurations. The prime focus camera design has been refined to achieve atmospheric dispersion-compensated 0.25-arcsec images at 1-degree field radius, from B to I-band, at reduced cost through simplification of glasses to standard types and utilization of spheres on all but two lens surfaces.The Discovery Channel Telescope is a project of the Lowell Observatory with major financial support from Discovery Communications, Inc. (DCI). DCI plans ongoing television programming featuring the construction of the telescope and the research ultimately conducted with the DCT. Lowell Observatory is actively seeking additional partners in the project; interested parties should contact R. L. Millis, Director.

  12. Mirror therapy for improving motor function after stroke.

    PubMed

    Thieme, Holm; Mehrholz, Jan; Pohl, Marcus; Behrens, Johann; Dohle, Christian

    2013-01-01

    This systematic review summarizes the effectiveness of mirror therapy for improving motor function, activities of daily living, pain, and visuospatial neglect in patients after stroke. We searched the Cochrane Stroke Group’s Trials Register (June 2011), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 2), MEDLINE (1950 to June 2011), EMBASE (1980 to June 2011), CINAHL (1982 to June 2011), AMED (1985 to June 2011), PsycINFO (1806 to June 2011), and PEDro (June 2011). We also handsearched relevant conference proceedings, trials, and research registers; checked reference lists; and contacted trialists, researchers, and experts in our field of study. We included randomized controlled trials and randomized crossover trials comparing mirror therapy with any control intervention for patients after stroke. Two review authors independently selected trials based on the inclusion criteria, documented the methodological quality of studies, and extracted data. The primary outcome was motor function. We analyzed the results as standardized mean differences (SMDs) for continuous variables. We included 14 studies with a total of 567 participants, which compared mirror therapy with other interventions. When compared with all other interventions, mirror therapy was found to have a significant effect on motor function (postintervention data: SMD 0.61; 95% CI 0.22 to 1.0; P=0.002; change scores: SMD 1.04; 95% CI 0.57 to 1.51; P<0.0001) ; Figure). However, effects on motor function are influenced by the type of control intervention. Additionally, mirror therapy was found to improve activities of daily living (SMD 0.33; 95% CI 0.05 to 0.60; P=0.02). We found a significant positive effect on pain (SMD −1.10; 95% CI −2.10 to −0.09; P=0.03), which is influenced by patient population. We found limited evidence for improving visuospatial neglect (SMD 1.22; 95% CI 0.24 to 2.19; P=0.01). The effects on motor function were stable at follow-up assessment after 6 months.

  13. Optics: Light, Color, and Their Uses. An Educator's Guide with Activities in Science and Mathematics.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This educator's guide from discusses optics, light, color and their uses. Activities include: (1) "Reflection of Light with a Plane (Flat) Mirror--Trace a Star"; (2) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a 90-Degree Angle"; (3) "Reflection of Light with Two Plane Mirrors--Double Mirrors Placed at a Number of…

  14. Discovery Channel Telescope active optics system early integration and test

    NASA Astrophysics Data System (ADS)

    Venetiou, Alexander J.; Bida, Thomas A.

    2012-09-01

    The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.

  15. LED structure with enhanced mirror reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer andmore » adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.« less

  16. Novel unimorph deformable mirror for space applications

    NASA Astrophysics Data System (ADS)

    Verpoort, Sven; Rausch, Peter; Wittrock, Ulrich

    2017-11-01

    We have developed a new type of unimorph deformable mirror, designed to correct for low-order Zernike modes. The mirror has a clear optical aperture of 50 mm combined with large peak-to-valley Zernike amplitudes of up to 35 μm. Newly developed fabrication processes allow the use of prefabricated super-polished and coated glass substrates. The mirror's unique features suggest the use in several astronomical applications like the precompensation of atmospheric aberrations seen by laser beacons and the use in woofer-tweeter systems. Additionally, the design enables an efficient correction of the inevitable wavefront error imposed by the floppy structure of primary mirrors in future large space-based telescopes. We have modeled the mirror by using analytical as well as finite element models. We will present design, key features and manufacturing steps of the deformable mirror.

  17. Statistical analysis of the surface figure of the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Lightsey, Paul A.; Chaney, David; Gallagher, Benjamin B.; Brown, Bob J.; Smith, Koby; Schwenker, John

    2012-09-01

    The performance of an optical system is best characterized by either the point spread function (PSF) or the optical transfer function (OTF). However, for system budgeting purposes, it is convenient to use a single scalar metric, or a combination of a few scalar metrics to track performance. For the James Webb Space Telescope, the Observatory level requirements were expressed in metrics of Strehl Ratio, and Encircled Energy. These in turn were converted to the metrics of total rms WFE and rms WFE within spatial frequency domains. The 18 individual mirror segments for the primary mirror segment assemblies (PMSA), the secondary mirror (SM), tertiary mirror (TM), and Fine Steering Mirror have all been fabricated. They are polished beryllium mirrors with a protected gold reflective coating. The statistical analysis of the resulting Surface Figure Error of these mirrors has been analyzed. The average spatial frequency distribution and the mirror-to-mirror consistency of the spatial frequency distribution are reported. The results provide insight to system budgeting processes for similar optical systems.

  18. A primary mirror metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.

    2016-07-01

    The Giant Magellan Telescope (GMT)1 is a 25 m "doubly segmented" telescope composed of seven 8.4 m "unit Gregorian telescopes", on a common mount. Each primary and secondary mirror segment will ideally lie on the geometrical surface of the corresponding rotationally symmetrical full aperture optical element. Therefore, each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and cophased. First light with a subset of four unit telescopes is currently scheduled for 2022. The project is currently considering an important aspect of the assembly, integration and verification (AIV) phase of the project. This paper will discuss a dedicated system to directly characterize the on-sky performance of the M1 segments, independently of the M2 subsystem. A Primary Mirror Metrology System (PMS) is proposed. The main purpose of this system will be to he4lp determine the rotation axis of an instrument rotator (the Gregorian Instrument Rotator or GIR in this case) and then to characterize the deflections and deformations of the M1 segments with respect to this axis as a function of gravity and temperature. The metrology system will incorporate a small (180 mm diameter largest element) prime focus corrector (PFC) that simultaneously feeds a <60" square acquisition and guiding camera field, and a Shack Hartmann wavefront sensor. The PMS is seen as a significant factor in risk reduction during AIV; it allows an on-sky characterization of the primary mirror segments and cells, without the complications of other optical elements. The PMS enables a very useful alignment strategy that constrains each primary mirror segments' optical axes to follow the GIR axis to within a few arc seconds. An additional attractive feature of the incorporation of the PMS into the AIV plan, is that it allows first on-sky telescope operations to occur with a system of considerably less optical and control complexity than the final doubly segmented Gregorian telescope configuration. This paper first discusses the strategic rationale for a PMS. Next the system itself is described in some detail. Finally, some description of the various uses the PMS will be put to during AIV of the M1 segments and subsequent characterization will be described.

  19. Implementation of a Wavefront-Sensing Algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey S.; Dean, Bruce; Aronstein, David

    2013-01-01

    A computer program has been written as a unique implementation of an image-based wavefront-sensing algorithm reported in "Iterative-Transform Phase Retrieval Using Adaptive Diversity" (GSC-14879-1), NASA Tech Briefs, Vol. 31, No. 4 (April 2007), page 32. This software was originally intended for application to the James Webb Space Telescope, but is also applicable to other segmented-mirror telescopes. The software is capable of determining optical-wavefront information using, as input, a variable number of irradiance measurements collected in defocus planes about the best focal position. The software also uses input of the geometrical definition of the telescope exit pupil (otherwise denoted the pupil mask) to identify the locations of the segments of the primary telescope mirror. From the irradiance data and mask information, the software calculates an estimate of the optical wavefront (a measure of performance) of the telescope generally and across each primary mirror segment specifically. The software is capable of generating irradiance data, wavefront estimates, and basis functions for the full telescope and for each primary-mirror segment. Optionally, each of these pieces of information can be measured or computed outside of the software and incorporated during execution of the software.

  20. JWST Primary Mirror Tilt and Rollover Timelapse

    NASA Image and Video Library

    2017-12-08

    On May 4th 2016 engineers at the Goddard Space Flight Center tilted the uncovered primary mirror of the James Webb Space Telescope upright and to a rollover position. In this rare timelapse video see inside the world's largest clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland as the James Webb Space Telescope team lifts and turns the telescope for the first time. With glimmering gold surfaces, the large primary and rounded secondary mirror on this telescope are specially designed to reflect infrared light from some of the first stars ever born. The team will now begin to prepare to install the telescope's science instruments to the back of the mirrors. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. For more information, visit: www.jwst.nasa.gov or www.nasa.gov/webb Credit: NASA/Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Correcting Surface Figure Error in Imaging Satellites Using a Deformable Mirror

    DTIC Science & Technology

    2013-12-01

    background understanding about the Naval Postgraduate School’s SMT test- bed and the required performance for mirror surface figures. The...Postgraduate School. Larger than the Hubble Space Telescope, but smaller than the JWST (see Figure 2), the SMT is an advanced test- bed to research the...orientation (from [3]). The six segments of the primary mirror have a lightweight, deformable, nano- laminate face with actuators across the rear

  2. Manufacturing of super-polished large aspheric/freeform optics

    NASA Astrophysics Data System (ADS)

    Kim, Dae Wook; Oh, Chang-jin; Lowman, Andrew; Smith, Greg A.; Aftab, Maham; Burge, James H.

    2016-07-01

    Several next generation astronomical telescopes or large optical systems utilize aspheric/freeform optics for creating a segmented optical system. Multiple mirrors can be combined to form a larger optical surface or used as a single surface to avoid obscurations. In this paper, we demonstrate a specific case of the Daniel K. Inouye Solar Telescope (DKIST). This optic is a 4.2 m in diameter off-axis primary mirror using ZERODUR thin substrate, and has been successfully completed in the Optical Engineering and Fabrication Facility (OEFF) at the University of Arizona, in 2016. As the telescope looks at the brightest object in the sky, our own Sun, the primary mirror surface quality meets extreme specifications covering a wide range of spatial frequency errors. In manufacturing the DKIST mirror, metrology systems have been studied, developed and applied to measure low-to-mid-to-high spatial frequency surface shape information in the 4.2 m super-polished optical surface. In this paper, measurements from these systems are converted to Power Spectral Density (PSD) plots and combined in the spatial frequency domain. Results cover 5 orders of magnitude in spatial frequencies and meet or exceed specifications for this large aspheric mirror. Precision manufacturing of the super-polished DKIST mirror enables a new level of solar science.

  3. Feasibility and effectiveness of adding object-related bilateral symmetrical training to mirror therapy in chronic stroke: A randomized controlled pilot study.

    PubMed

    Rodrigues, Letícia Cardoso; Farias, Nayara Correa; Gomes, Raquel Pinheiro; Michaelsen, Stella Maris

    2016-01-01

    To evaluate the feasibility and effectiveness of adding object-related bilateral symmetrical training to mirror therapy (MT) to improve upper limb (UL) activity in chronic stroke patients. Sixteen patients with moderate UL impairment were randomly allocated to either the experimental (EG) or control (CG) group. Both groups performed 1 hour sessions, 3 days/week for 4 weeks, involving object-related bilateral symmetrical training. EG performed the tasks observing their nonparetic UL reflected in the mirror, while CG observed the paretic UL directly. The primary outcome measure was unilateral and bilateral UL activity according to the Test d'Évaluation des Membres Supérieurs de Personnes Âgées (TEMPA). All measurements were taken at baseline, post-training, and follow-up (2 weeks). TEMPA total score showed the main effect of time. Significant improvement was found for bilateral but not unilateral tasks. Both groups showed gains after training, with no differences between them. This study showed the feasibility of adding object-related bilateral training to MT. Both types of training improved UL bilateral activity; however, a larger sample is required for a definitive study. Other studies need to be carried out to evaluate the effectiveness of combining more distal-oriented movements and object-related unilateral training to improve these effects in chronic stroke patients.

  4. Fabrication of experimental three-meter space telescope primary and secondary mirror support structure

    NASA Technical Reports Server (NTRS)

    Mishler, H. W.

    1974-01-01

    The fabrication of prototype titanium alloy primary and secondary mirror support structures for a proposed experimental three-meter space telescope is discussed. The structure was fabricated entirely of Ti-6Al-4V tubing and plate. Fabrication included the development of procedures including welding, forming, and machining. Most of the structures was fabricated by gas-shielding tungsten-arc (GTA) welding with several major components fabricated by high frequency resistance (HFR) welding.

  5. Wind Evaluation Breadboard electronics and software

    NASA Astrophysics Data System (ADS)

    Núñez, Miguel; Reyes, Marcos; Viera, Teodora; Zuluaga, Pablo

    2008-07-01

    WEB, the Wind Evaluation Breadboard, is an Extremely Large Telescope Primary Mirror simulator, developed with the aim of quantifying the ability of a segmented primary mirror to cope with wind disturbances. This instrument supported by the European Community (Framework Programme 6, ELT Design Study), is developed by ESO, IAC, MEDIA-ALTRAN, JUPASA and FOGALE. The WEB is a bench of about 20 tons and 7 meter diameter emulating a segmented primary mirror and its cell, with 7 hexagonal segments simulators, including electromechanical support systems. In this paper we present the WEB central control electronics and the software development which has to interface with: position actuators, auxiliary slave actuators, edge sensors, azimuth ring, elevation actuator, meteorological station and air balloons enclosure. The set of subsystems to control is a reduced version of a real telescope segmented primary mirror control system with high real time performance but emphasizing on development time efficiency and flexibility, because WEB is a test bench. The paper includes a detailed description of hardware and software, paying special attention to real time performance. The Hardware is composed of three computers and the Software architecture has been divided in three intercommunicated applications and they have been implemented using Labview over Windows XP and Pharlap ETS real time operating system. The edge sensors and position actuators close loop has a sampling and commanding frequency of 1KHz.

  6. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  7. Advanced Mirror Technology Development (AMTD) project: overview and year four accomplishments

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2016-07-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  8. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  9. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, Simon J.; Seppala, Lynn G.

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  10. Motion of the drawing hand induces a progressive increase in muscle activity of the non-dominant hand in Ramachandran's mirror-box therapy.

    PubMed

    Furukawa, Kiminobu; Suzuki, Harue; Fukuda, Jun

    2012-11-01

    To observe the real-time muscle activity of bilateral hands while subjects draw circles under 2 conditions: with and without using Ramachandran's mirror-box. A total of 24 healthy volunteers. Subjects drew 4 circles sequentially using their dominant hand with the other hand at rest, both with and without looking at a mirror image. Circles were marked by 8 dots on the paper, which subjects connected up to draw the shape. The activity of the bilateral first dorsal interosseus muscles was recorded using surface electromyography. Muscle activity of the dominant hand remained constant during each task. In contrast, muscle activity of the non-dominant hand increased under the condition of watching the image in the mirror, but was low under the non-watching condition. Furthermore, muscle activity of the non-dominant hand increased over the duration of the task. However, wide variation between subjects was observed under the mirror-image condition. Increased muscle action potential of the non-dominant hand may be induced by the circle drawing task of the dominant hand during Ramachandran's mirror-box therapy, which supports previous observations of increased brain activity caused by watching a mirror image.

  11. SiC lightweight telescopes for advanced space applications. I - Mirror technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter

    1992-01-01

    A SiC based telescope is an extremely attractive emerging technology which offers the lightweight and stiffness features of beryllium, the optical performance of glass to diffraction limited visible resolution, superior optical/thermal stability to cryogenic temperatures, and the cost advantages of an aluminum telescope. SSG has developed various SiC mirrors with and without a silicon coating and tested these mirrors over temperature ranges from +50 C to -250 C. Our test results show less than 0.2 waves P-V in visible wavefront change and no hysteresis over this wide temperature range. Several SSG mirrors are representative of very lightweight SiC/Si mirrors including (1) a 9 cm diameter, high aspect ratio mirror weighing less than 30 grams and (2) a 23 cm diameter eggcrated mirror weighing less than 400 grams. SSG has also designed and analyzed a 0.6 meter SiC based, on axis, three mirror reimaging telescope in which the primary mirror weighs less than 6 kg and a 0.5 meter GOES-like scan mirror. SSG has also diamond turned several general aspheric SiC/Si mirrors with excellent cryo optical performance.

  12. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.

    PubMed

    Hu, Rui; Liu, Shutian; Li, Quhao

    2017-05-20

    For the development of a large-aperture space telescope, one of the key techniques is the method for designing the flexures for mounting the primary mirror, as the flexures are the key components. In this paper, a topology-optimization-based method for designing flexures is presented. The structural performances of the mirror system under multiple load conditions, including static gravity and thermal loads, as well as the dynamic vibration, are considered. The mirror surface shape error caused by gravity and the thermal effect is treated as the objective function, and the first-order natural frequency of the mirror structural system is taken as the constraint. The pattern repetition constraint is added, which can ensure symmetrical material distribution. The topology optimization model for flexure design is established. The substructuring method is also used to condense the degrees of freedom (DOF) of all the nodes of the mirror system, except for the nodes that are linked to the mounting flexures, to reduce the computation effort during the optimization iteration process. A potential optimized configuration is achieved by solving the optimization model and post-processing. A detailed shape optimization is subsequently conducted to optimize its dimension parameters. Our optimization method deduces new mounting structures that significantly enhance the optical performance of the mirror system compared to the traditional methods, which only focus on the parameters of existing structures. Design results demonstrate the effectiveness of the proposed optimization method.

  13. Modulation of the Intracortical LFP during Action Execution and Observation

    PubMed Central

    Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N.; Kraskov, Alexander

    2015-01-01

    The activity of mirror neurons in macaque ventral premotor cortex (PMv) and primary motor cortex (M1) is modulated by the observation of another's movements. This modulation could underpin well documented changes in EEG/MEG activity indicating the existence of a mirror neuron system in humans. Because the local field potential (LFP) represents an important link between macaque single neuron and human noninvasive studies, we focused on mirror properties of intracortical LFPs recorded in the PMv and M1 hand regions in two macaques while they reached, grasped and held different objects, or observed the same actions performed by an experimenter. Upper limb EMGs were recorded to control for covert muscle activity during observation. The movement-related potential (MRP), investigated as intracortical low-frequency LFP activity (<9 Hz), was modulated in both M1 and PMv, not only during action execution but also during action observation. Moreover, the temporal LFP modulations during execution and observation were highly correlated in both cortical areas. Beta power in both PMv and M1 was clearly modulated in both conditions. Although the MRP was detected only during dynamic periods of the task (reach/grasp/release), beta decreased during dynamic and increased during static periods (hold). Comparison of LFPs for different grasps provided evidence for partially nonoverlapping networks being active during execution and observation, which might be related to different inputs to motor areas during these conditions. We found substantial information about grasp in the MRP corroborating its suitability for brain–machine interfaces, although information about grasp was generally low during action observation. PMID:26041914

  14. Development of reaction-sintered SiC mirror for space-borne optics

    NASA Astrophysics Data System (ADS)

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  15. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  16. An active co-phasing imaging testbed with segmented mirrors

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Cao, Genrui

    2011-06-01

    An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.

  17. Controlling Laser Spot Size in Outer Space

    NASA Technical Reports Server (NTRS)

    Bennett, Harold E.

    2005-01-01

    Three documents discuss a method of controlling the diameter of a laser beam projected from Earth to any altitude ranging from low orbit around the Earth to geosynchronous orbit. Such laser beams are under consideration as means of supplying power to orbiting spacecraft at levels of the order of tens of kilowatts apiece. Each such beam would be projected by use of a special purpose telescope having an aperture diameter of 15 m or more. Expanding the laser beam to such a large diameter at low altitude would prevent air breakdown and render the laser beam eyesafe. Typically, the telescope would include an adaptive-optics concave primary mirror and a convex secondary mirror. The laser beam transmitted out to the satellite would remain in the near field on the telescope side of the beam waist, so that the telescope focal point would remain effective in controlling the beam width. By use of positioning stages having submicron resolution and repeatability, the relative positions of the primary and secondary mirrors would be adjusted to change the nominal telescope object and image distances to obtain the desired beam diameter (typically about 6 m) at the altitude of the satellite. The limiting distance D(sub L) at which a constant beam diameter can be maintained is determined by the focal range of the telescope 4 lambda f(sup 2) where lambda is the wavelength and f the f/number of the primary mirror. The shorter the wavelength and the faster the mirror, the longer D(sub L) becomes.

  18. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the large scale production is presented as well as the performance, in terms of geometric and optical properties, of the produced mirrors. The alignment procedure of the mirrors is also detailed. This technique is finally compared to other manufacturing techniques based on composite glass mirrors within the framework of GCT mirrors specificities.

  19. Cophasing techniques for extremely large telescopes

    NASA Astrophysics Data System (ADS)

    Devaney, Nicholas; Schumacher, Achim

    2004-07-01

    The current designs of the majority of ELTs envisage that at least the primary mirror will be segmented. Phasing of the segments is therefore a major concern, and a lot of work is underway to determine the most suitable techniques. The techniques which have been developed are either wave optics generalizations of classical geometric optics tests (e.g. Shack-Hartmann and curvature sensing) or direct interferometric measurements. We present a review of the main techniques proposed for phasing and outline their relative merits. We consider problems which are specific to ELTs, e.g. vignetting of large parts of the primary mirror by the secondary mirror spiders, and the need to disentangle phase errors arising in different segmented mirrors. We present improvements in the Shack-Hartmann and curvature sensing techniques which allow greater precision and range. Finally, we describe a piston plate which simulates segment phasing errors and show the results of laboratory experiments carried out to verify the precision of the Shack-Hartmann technique.

  20. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    PubMed

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  1. Fabrication and testing of the first 8.4-m off-axis segment for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Kim, D. W.; Kingsley, J. S.; Tuell, M. T.; West, S. C.; Zhao, C.; Zobrist, T.

    2010-07-01

    The primary mirror of the Giant Magellan Telescope consists of seven 8.4 m segments which are borosilicate honeycomb sandwich mirrors. Fabrication and testing of the off-axis segments is challenging and has led to a number of innovations in manufacturing technology. The polishing system includes an actively stressed lap that follows the shape of the aspheric surface, used for large-scale figuring and smoothing, and a passive "rigid conformal lap" for small-scale figuring and smoothing. Four independent measurement systems support all stages of fabrication and provide redundant measurements of all critical parameters including mirror figure, radius of curvature, off-axis distance and clocking. The first measurement uses a laser tracker to scan the surface, with external references to compensate for rigid body displacements and refractive index variations. The main optical test is a full-aperture interferometric measurement, but it requires an asymmetric null corrector with three elements, including a 3.75 m mirror and a computer-generated hologram, to compensate for the surface's 14 mm departure from the best-fit sphere. Two additional optical tests measure large-scale and small-scale structure, with some overlap. Together these measurements provide high confidence that the segments meet all requirements.

  2. Contactless efficient two-stage solar concentrator for tubular absorber.

    PubMed

    Benítez, P; García, R; Miñano, J C

    1997-10-01

    The design of a new type of two-mirror solar concentrator for a tubular receiver, the XX concentrator, is presented. The main feature of the XX is that it has a sizable gap between the secondary mirror and the absorber and it still achieves concentrations close to the thermodynamic limit with high collection efficiencies. This characteristic makes the XX unique and, contrary to current two-stage designs, allows for the location of the secondary outside the evacuated tube. One of the XX concentrators presented achieves an average flux concentration within +/-0.73 deg of 91.1% of the thermodynamic limit with a collection efficiency of 96.8% (i.e., 3.2% of the rays incident on the primary mirror within +/-0.73 deg are rejected). Another XX design is 92.5% efficient and receives 95.1% of the maximum concentration. These values are the highest reported for practical concentrators, to our knowledge. The gap between the absorber and the secondary mirror is 6.8 and 10.5 times the absorber radius for each concentrator. Moreover the rim angle of the primary mirror is 98.8 and 104.4 deg in each case, which is of interest for the collector's good mechanical stability.

  3. Measuring a Precise Ultra-Lightweight Spaceflight Mirror on Earth: The Analysis of the SHARPI PM Mirror Figure Data during Mirror Processing at GSFC

    NASA Technical Reports Server (NTRS)

    Antonille, Scott; Content, David; Rabin, Douglas; Wallace, Thomas; Wake, Shane

    2007-01-01

    The SHARPI (Solar High Angular Resolution Photometric Imager) primary mirror is a 5kg, 0.5m paraboloid, diffraction limited at FUV wavelengths when placed in a 0-G environment. The ULE sandwich honeycomb mirror and the attached mount pads were delivered by ITT (then Kodak) in 2003 to NASA s Goddard Space Flight Center (GSFC). At GSFC, we accepted, coated, mounted, and vibration tested this mirror in preparation for flight on the PICTURES (Planet Imaging Concept Testbed Using a Rocket Experiment) mission. At each step, the integrated analysis of interferometer data and FEA models was essential to quantify the 0-G mirror figure. This task required separating nanometer sized variations from hundreds of nanometers of gravity induced distortion. The ability to isolate such features allowed in-situ monitoring of mirror figure, diagnosis of perturbations, and remediation of process errors. In this paper, we describe the technical approach used to achieve these measurements and overcome the various difficulties maintaining UV diffraction-limited performance with this aggressively lightweighted mirror.

  4. Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanger, G.M.

    1986-01-01

    The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less

  5. The pressure control technology of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Daxing

    2010-10-01

    The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.

  6. Interference testing methods of large astronomical mirrors base on lenses and CGH wavefront correctors

    NASA Astrophysics Data System (ADS)

    Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Patrikeev, Vladimir E.; Semenov, Alexandr P.

    2010-07-01

    Since last years and at present days LZOS, JSC has been producing a range of primary mirrors of astronomical telescopes with diameter more than 1m under contracts with foreign companies. Simultaneous testing of an aspherical surface figure by means of a lens corrector and CGH (computer generated hologram) corrector, testing of the corrector using the CGH allow challenging the task of definite testing of the mirrors surfaces figure. The results of successful figuring of the mirrors with diameter up to 4m like VISTA Project (Southern European Observatory), TNT (Thai National telescope, Australia - Thailand), LCO telescopes (Las Cumbres Observatory, USA; Russian national projects and meeting these mirrors specifications' requirements are all considered as the sufficient evidence.

  7. Adaptive Optics at the World’s Biggest Optical Telescope

    DTIC Science & Technology

    2010-09-01

    bottom up. The reflective, and deformable, component of each of the LBT’s mirrors is a concave Zerodur shell, 1.6 mm in average thickness and 911 mm in...Physik, 85748 Garching, Germany ABSTRACT The Large Binocular Telescope (LBT) on Mt. Graham, Arizona, comprises two 8.4 m primary mirrors on a...adaptive optics (AO) was incorporated into the design through two adaptive secondary mirrors (ASM), each 91 cm in diameter with 672 actuators, which feed

  8. Focusing Light Rays Back to the Vertex of a Reflecting Parabolic Collector: The Equivalent of Dionysius Ear Effect in Optical Systems

    ERIC Educational Resources Information Center

    De Luca, R.; Fedullo, A.

    2009-01-01

    A vertical light ray coming from infinity is reflected by a primary parabolic mirror M[subscript 1] having focus at F[subscript 1]. At a small distance from F[subscript 1] a secondary mirror M[subscript 2], symmetric with respect to the vertical axis, is placed. One would like to find the analytic equation of the mirror M[subscript 2], so that all…

  9. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R [Albuquerque, NM; Diels, Jean-Claude M [Albuquerque, NM

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  10. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  11. [The motor organization of cerebral cortex and the role of the mirror neuron system. Clinical impact for rehabilitation].

    PubMed

    Sallés, Laia; Gironès, Xavier; Lafuente, José Vicente

    2015-01-06

    The basic characteristics of Penfield homunculus (somatotopy and unique representation) have been questioned. The existence of a defined anatomo-functional organization within different segments of the same region is controversial. The presence of multiple motor representations in the primary motor area and in the parietal lobe interconnected by parieto-frontal circuits, which are widely overlapped, form a complex organization. Both features support the recovery of functions after brain injury. Regarding the movement organization, it is possible to yield a relevant impact through the understanding of actions and intentions of others, which is mediated by the activation of mirror-neuron systems. The implementation of cognitive functions (observation, image of the action and imitation) from the acute treatment phase allows the activation of motor representations without having to perform the action and it plays an important role in learning motor patterns. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  12. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training.

    PubMed

    Selles, Ruud W; Michielsen, Marian E; Bussmann, Johannes B J; Stam, Henk J; Hurkmans, Henri L; Heijnen, Iris; de Groot, Danielle; Ribbers, Gerard M

    2014-09-01

    Although most mirror therapy studies have shown improved motor performance in stroke patients, the optimal mirror training protocol still remains unclear. To study the relative contribution of a mirror in training a reaching task and of unilateral and bimanual training with a mirror. A total of 93 stroke patients at least 6 months poststroke were instructed to perform a reaching task as fast and as fluently as possible. They performed 70 practice trials after being randomly allocated to 1 of 5 experimental groups: training with (1) the paretic arm with direct view (Paretic-No Mirror), (2) the nonparetic arm with direct view (Nonparetic-No Mirror), (3) the nonparetic arm with mirror reflection (Nonparetic Mirror), (4) both sides and with a nontransparent screen preventing visual control of paretic side (Bilateral-Screen), and (5) both sides with mirror reflection of the nonparetic arm (Bilateral-Mirror). As baseline and follow-up, patients performed 6 trials using only their paretic side. Primary outcome measure was the movement time. We found the largest intervention effect in the Paretic-No Mirror condition. However, the Nonparetic-Mirror condition was not significantly different from the Paretic-No Mirror condition, while the Unaffected-No Mirror condition had significantly less improvement than the Paretic-No Mirror condition. In addition, movement time improved significantly less in the bimanual conditions and there was no difference between both bimanual conditions or between both mirror conditions. The present study confirms that using a mirror reflection can facilitate motor learning. In this task, bimanual movement using mirror training was less effective than unilateral training. © The Author(s) 2014.

  13. Status of Mirror Technology for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to establish credibility that the goals of NGST could be achieved. The past two years of the program has seen major steps in the development of several mirror materials, which not only might have NGST applicability but could also support other programs for other customers. Additionally, a second large mirror procurement, the Advanced Mirror System Demonstrator (AMSD), has been implemented providing a focal point to complete the mirror technology development and lead ultimately to the production of mirrors that will fly on NEXUS (NGST flight experimentand) and NGST. This talk will focus on a status of the mirror technology developed over the past 4 years on the NGST program.

  14. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  15. Somatic and movement inductions phantom limb in non-amputees

    NASA Astrophysics Data System (ADS)

    Casas, D. M.; Gentiletti, G. G.; Braidot, A. A.

    2016-04-01

    The illusion of the mirror box is a tool for phantom limb pain treatment; this article proposes the induction of phantom limb syndrome on non-amputees upper limb, with a neurological trick of the mirror box. With two study situations: a) Somatic Induction is a test of the literature reports qualitatively, and novel proposal b) Motor Induction, which is an objective report by recording surface EEG. There are 3 cases proposed for Motor illusion, for which grasped movement is used: 1) Control: movement is made, 2) illusion: the mirror box is used, and 3) Imagination: no movement is executed; the subject only imagines its execution. Three different tasks are registered for each one of them (left hand, right hand, and both of them). In 64% of the subjects for somatic experience, a clear response to the illusion was observed. In the experience of motor illusion, cortical activation is detected in both hemispheres of the primary motor cortex during the illusion, where the hidden hand remains motionless. These preliminary findings in phantom limb on non-amputees can be a tool for neuro-rehabilitation and neuro-prosthesis control training.

  16. Active edge control in the precessions polishing process for manufacturing large mirror segments

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Zhang, Wei; Walker, David; Yu, Gouyo

    2014-09-01

    The segmentation of the primary mirror is the only promising solution for building the next generation of ground telescopes. However, manufacturing segmented mirrors presents its own challenges. The edge mis-figure impacts directly on the telescope's scientific output. The `Edge effect' significantly dominates the polishing precision. Therefore, the edge control is regarded as one of the most difficult technical issues in the segment production that needs to be addressed urgently. This paper reports an active edge control technique for the mirror segments fabrication using the Precession's polishing technique. The strategy in this technique requires that the large spot be selected on the bulk area for fast polishing, and the small spot is used for edge figuring. This can be performed by tool lift and optimizing the dell time to compensate for non-uniform material removal at the edge zone. This requires accurate and stable edge tool influence functions. To obtain the full tool influence function at the edge, we have demonstrated in previous work a novel hybrid-measurement method which uses both simultaneous phase interferometry and profilometry. In this paper, the edge effect under `Bonnet tool' polishing is investigated. The pressure distribution is analyzed by means of finite element analysis (FEA). According to the `Preston' equation, the shape of the edge tool influence functions is predicted. With this help, the multiple process parameters at the edge zone are optimized. This is demonstrated on a 200mm crosscorners hexagonal part with a result of PV less than 200nm for entire surface.

  17. Solar Collector With Image-Forming Mirror Cavity to Irradiate Small Central Volume

    NASA Technical Reports Server (NTRS)

    Buchele, Don; Castle, Charles; Bonoetti, Joseph A.

    2001-01-01

    A unique solar thermal chamber has been designed and fabricated to produce the maximum concentration of solar energy and higher temperature possible. Its primary purpose was for solar plasma propulsion experiments and related material specimen testing above 3000 K. The design not only maximized solar concentration, but also, minimized infrared heat loss. This paper provides the underlying theory and operation of the chamber and initial optical correlation to the actual fabricated hardware. The chamber is placed at the focal point of an existing primary concentrator with a 2.74 m (9 ft) focal length. A quartz lens focuses a small sun image at the inlet hole of the mirrored cavity. The lens focuses two image planes at prescribed positions; the sun at the cavity's entrance hole and the primary concentrator at the junction plane of two surfaces that form the cavity chamber. The back half is an ellipsoid reflector that produces a 1.27 cm diameter final sun image. The image is "suspended in space," 7.1 cm away from the nearest cavity surface, to minimize thermal and contaminate damage to the mirror surfaces. A hemisphere mirror makes up the front chamber and has its center of curvature at the target image, where rays leaving the target are reflected back upon themselves, minimizing radiation losses.

  18. The effect of mirror therapy on upper-extremity function and activities of daily living in stroke patients.

    PubMed

    Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung

    2015-06-01

    The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients.

  19. The effect of mirror therapy on upper-extremity function and activities of daily living in stroke patients

    PubMed Central

    Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung

    2015-01-01

    The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients. PMID:26180297

  20. A two-in-one Faraday rotator mirror exempt of active optical alignment.

    PubMed

    Wan, Qiong; Wan, Zhujun; Liu, Hai; Liu, Deming

    2014-02-10

    A two-in-one Faraday rotator mirror was presented, which functions as two independent Faraday rotation mirrors with a single device. With the introduction of a reflection lens as substitution of the mirror in traditional structure, this device is characterized by exemption of active optical alignment for the designers and manufacturers of Faraday rotator mirrors. A sample was fabricated by passive mechanical assembly. The insertion loss was measured as 0.46 dB/0.50 dB for the two independent ports, respectively.

  1. Invariant natural killer T cells trigger adaptive lymphocytes to churn up bile.

    PubMed

    Joyce, Sebastian; Van Kaer, Luc

    2008-05-15

    How innate immune response causes autoimmunity has remained an enigma. In this issue of Cell Host & Microbe, Mattner et al. demonstrate that invariant natural killer T cells activated by the mucosal commensal Novosphingobium aromaticivorans precipitate chronic T cell-mediated autoimmunity against small bile ducts that mirrors human primary biliary cirrhosis. These findings provide a mechanistic understanding of the role of innate immunity toward a microbe in the development of autoimmunity.

  2. A Research on the Primary Mirror Manipulator of Large Segmented-mirror Telescope

    NASA Astrophysics Data System (ADS)

    Zuo, H.

    2012-09-01

    Since Galileo firstly used the telescope to observe the sky 400 years ago, the aperture of the telescope has become larger and larger to observe the deeper universe, and the segmented-mirror telescope is becoming more and more popular with increasing aperture. In the early 21st century, a series of segmented-mirror telescopes have been constructed including the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) of China. LAMOST is a meridian reflecting Schmidt telescope, and the dimension of the primary mirror is about 6.7 m× 6 m, which is composed of 37 hexagonal sub-mirrors. However, a problem about the mirror installation appears with the increasing aperture. If there are hundreds of sub-mirrors in the telescope, it is a challenging job to mount and dismount them to the truss. This problem is discussed in this paper and a manipulator for the primary mirror of LAMOST is designed to perform the mount and dismount work. In chapter 1, all the segmented-mirror telescopes in the world are introduced and how the sub-mirrors of these telescopes are installed has been investigated. After comparing with the serial and the parallel robot, a serial robot manipulator proposal, which has several redundant degrees of freedom (DOFs), has been chosen from a series of design proposals. In chapter 2, the theoretical analysis has been carried out on the basis of the design proposal, which includes the forward kinematics and the inverse kinematics. Firstly the D-H coordinate is built according to the structure of the manipulator, so it is possible to obtain the end-effector position and orientation from the individual joint motion thanks to the forward kinematics. Because of the redundant DOFs of the manipulator, the inverse kinematics solution can be a very trick task, and the result may not be only, therefore a kind of simulation is carried out to get the numerical solution using ADAMS (Automatic Dynamic Analysis of Mechanical System). In the dynamics analysis the Lagrange formulation is introduced, and the dynamic equations of the manipulator have been obtained by using the Lagrange method. Since the manipulator is a serious coupling system, the dynamic curve of the key joints is plotted by using the ADAMS software. According to the theoretical analysis, the manipulator for the primary mirror of LAMOST is designed and fabricated. The whole manipulator consists of three parts. The first part is the mechanical arm which is used to realize the high speed and the long distance location, and it is rebuilt from a small truck crane; The second part is a serial mechanical hand which is used to realize the low speed and the short distance location. It has six DOFs including the pitch, the rotate about the vertical axis, the elevation along the vertical axis, and two horizontal translations. Subsequently the structure is analyzed in the ANSYS software to confirm that the strength is enough and the displacement is in the tolerance; The third part is a mechanical wrist, in which part a hydraulic rod is used to keep the bottom of the mechanical hand horizontal. In chapter 6, the control characteristics of the whole manipulator are analyzed. Furthermore, the control method and flowchart are proposed. Based on this method the control device was selected. In the end of this paper, the main work and the results of this project are summarized. Further research is prospected and it provides a reference for the future large telescope projects.

  3. The effects of action observation training and mirror therapy on gait and balance in stroke patients.

    PubMed

    Lee, Ho Jeong; Kim, Young Mi; Lee, Dong Kyu

    2017-03-01

    [Purpose] The aim of this study was to evaluate the effects of action observation training and mirror therapy to improve on balance and gait function of stroke patients. [Subjects and Methods] The participants were randomly allocated to one of three groups: The action observation training with activity group practiced additional action observation training with activity for three 30-minute session for six weeks (n=12). The mirror therapy with activity group practiced additional mirror therapy with activity for three 30-minute sessions for six weeks (n=11). The only action observation training group practiced additional action observation training for three 30-minute sessions for weeks (n=12). All groups received conventional therapy for five 60-minute sessions over a six-week period. [Results] There were significant improvements in balance and gait function. The action observation training with activity group significantly improved subjects' static balance. The action observation training with activity group and the mirror therapy with activity group significantly improved subjects' gait ability. [Conclusion] The activation of mirror neurons combined with a conventional stroke physiotherapy program enhances lower-extremity motor recovery and motor functioning in stroke patients.

  4. Assessing Human Mirror Activity With EEG Mu Rhythm: A Meta-Analysis

    PubMed Central

    Fox, Nathan A.; Bakermans-Kranenburg, Marian J.; Yoo, Kathryn H.; Bowman, Lindsay C.; Cannon, Erin N.; Vanderwert, Ross E.; Ferrari, Pier F.; van IJzendoorn, Marinus H.

    2016-01-01

    A fundamental issue in cognitive neuroscience is how the brain encodes others’ actions and intentions. In recent years, a potential advance in our knowledge on this issue is the discovery of mirror neurons in the motor cortex of the nonhuman primate. These neurons fire to both execution and observation of specific types of actions. Researchers use this evidence to fuel investigations of a human mirror system, suggesting a common neural code for perceptual and motor processes. Among the methods used for inferring mirror system activity in humans are changes in a particular frequency band in the electroencephalogram (EEG) called the mu rhythm. Mu frequency appears to decrease in amplitude (reflecting cortical activity) during both action execution and action observation. The current meta-analysis reviewed 85 studies (1,707 participants) of mu that infer human mirror system activity. Results demonstrated significant effect sizes for mu during execution (Cohen’s d = 0.46, N = 701) as well as observation of action (Cohen’s d = 0.31, N = 1,508), confirming a mirroring property in the EEG. A number of moderators were examined to determine the specificity of these effects. We frame these meta-analytic findings within the current discussion about the development and functions of a human mirror system, and conclude that changes in EEG mu activity provide a valid means for the study of human neural mirroring. Suggestions for improving the experimental and methodological approaches in using mu to study the human mirror system are offered. PMID:26689088

  5. Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis.

    PubMed

    Broderick, P; Horgan, F; Blake, C; Ehrensberger, M; Simpson, D; Monaghan, K

    2018-06-01

    Mirror therapy has been proposed as an effective intervention for lower limb rehabilitation post stroke. This systematic review with meta-analysis examined if lower limb mirror therapy improved the primary outcome measures of muscle tone and motor function and the secondary outcome measures balance characteristics, functional ambulation, walking velocity, passive range of motion (PROM) for ankle dorsiflexion and gait characteristics in patients with stroke compared to other interventions. Standardised mean differences (SMD) and mean differences (MD) were used to assess the effect of mirror therapy on lower limb functioning. Nine studies were included in the review. Among the primary outcome measures there was evidence of a significant effect of mirror therapy on motor function compared with sham and non-sham interventions (SMD 0.54; 95% CI 0.24-0.93). Furthermore, among the secondary outcome measures there was evidence of a significant effect of mirror therapy for balance capacity (SMD -0.55; 95% CI -1.01 to -0.10), walking velocity (SMD 0.71; 95% CI 0.35-1.07), PROM for ankle dorsiflexion (SMD 1.20; 95% CI 0.71-1.69) and step length (SMD 0.56; 95% CI -0.00 to 1.12). The results indicate that using mirror therapy for the treatment of certain lower limb deficits in patients with stroke may have a positive effect. Although results are somewhat positive, overly favourable interpretation is cautioned due to methodological issues concerning included studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  7. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    PubMed

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  8. The infant mirror neuron system studied with high density EEG.

    PubMed

    Nyström, Pär

    2008-01-01

    The mirror neuron system has been suggested to play a role in many social capabilities such as action understanding, imitation, language and empathy. These are all capabilities that develop during infancy and childhood, but the human mirror neuron system has been poorly studied using neurophysiological measures. This study measured the brain activity of 6-month-old infants and adults using a high-density EEG net with the aim of identifying mirror neuron activity. The subjects viewed both goal-directed movements and non-goal-directed movements. An independent component analysis was used to extract the sources of cognitive processes. The desynchronization of the mu rhythm in adults has been shown to be a marker for activation of the mirror neuron system and was used as a criterion to categorize independent components between subjects. The results showed significant mu desynchronization in the adult group and significantly higher ERP activation in both adults and 6-month-olds for the goal-directed action observation condition. This study demonstrate that infants as young as 6 months display mirror neuron activity and is the first to present a direct ERP measure of the mirror neuron system in infants.

  9. Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm

    NASA Astrophysics Data System (ADS)

    Mazoyer, J.; Pueyo, L.; N'Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; St. Laurent, K. E.; Soummer, R.; Shaklan, S.; Norman, C.

    2018-01-01

    Future searches for bio-markers on habitable exoplanets will rely on telescope instruments that achieve extremely high contrast at small planet-to-star angular separations. Coronagraphy is a promising starlight suppression technique, providing excellent contrast and throughput for off-axis sources on clear apertures. However, the complexity of space- and ground-based telescope apertures goes on increasing over time, owing to the combination of primary mirror segmentation, the secondary mirror, and its support structures. These discontinuities in the telescope aperture limit the coronagraph performance. In this paper, we present ACAD-OSM, a novel active method to correct for the diffractive effects of aperture discontinuities in the final image plane of a coronagraph. Active methods use one or several deformable mirrors that are controlled with an interaction matrix to correct for the aberrations in the pupil. However, they are often limited by the amount of aberrations introduced by aperture discontinuities. This algorithm relies on the recalibration of the interaction matrix during the correction process to overcome this limitation. We first describe the ACAD-OSM technique and compare it to the previous active methods for the correction of aperture discontinuities. We then show its performance in terms of contrast and off-axis throughput for static aperture discontinuities (segmentation, struts) and for some aberrations evolving over the life of the instrument (residual phase aberrations, artifacts in the aperture, misalignments in the coronagraph design). This technique can now obtain the Earth-like planet detection threshold of {10}10 contrast on any given aperture over at least a 10% spectral bandwidth, with several coronagraph designs.

  10. Using the DP-190 glue for adhesive attachment of a large space mirror and its rim

    NASA Astrophysics Data System (ADS)

    Vlasenko, Oleg; Zverev, Alexey; Sachkov, Mikhail

    2014-07-01

    The glue DP-190 is widely used for adhesive attachment of astrositall (zerodur) lightweight large-size space astronomical mirrors (diameter of 1.7 m and more) with elements of their frames of invar. Peculiarities of physicalmechanical behavior of the glue DP-190 when exposed to the environment during the ground operation and in orbit cause instability of the reflective surface quality of mirrors. In this report we show that even a small (around 1%-5%) volumetric deformation of a cylindrical adhesive layer with a thickness of 0.8 mm between the mirror and the rim element causes significant mirrors deformation. We propose to use adhesive layer of special form that allows to reduce volumetric deformations of the glue DP-190 up to three times. Here we present results based on primary mirror tests of the WSO-UV project.

  11. Large active mirror in aluminium

    NASA Astrophysics Data System (ADS)

    Leblanc, Jean-M.; Rozelot, Jean-Pierre

    1991-11-01

    The Large Active Mirrors in Aluminum Project (LAMA) is intended as a metallic alternative to the conventional glass mirrors. This alternative is to bring about definite improvements in terms of lower cost, shorter manufacturing, and reduced brittleness. Combined in a system approach that integrates design, development, and manufacturing of both the aluminum meniscus and its active support, the LAMA project is a technologically consistent product for astronomical and laser telescopes. Large size mirrors can be delivered, up to 8 m diameter. Recent progress in active optics makes possible control, as well as real-time adjustment, of a metallic mirror's deformations, especially those induced by temperature variations and/or aging. It also enables correction of whatever low-frequency surface waves escaped polishing. Besides, the manufacturing process to produce the aluminum segments together with the electron welding technique ensure the material's homogeneity. Quality of the surface condition will result from optimized implementation of the specific aluminum machining and polishing techniques. This paper highlights the existing aluminum realizations compared to glass mirrors, and gives the main results obtained during a feasibility demonstration phase, based on 8 m mirror requirements.

  12. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  13. Mirrors design, analysis and manufacturing of the 550mm Korsch telescope experimental model

    NASA Astrophysics Data System (ADS)

    Huang, Po-Hsuan; Huang, Yi-Kai; Ling, Jer

    2017-08-01

    In 2015, NSPO (National Space Organization) began to develop the sub-meter resolution optical remote sensing instrument of the next generation optical remote sensing satellite which follow-on to FORMOSAT-5. Upgraded from the Ritchey-Chrétien Cassegrain telescope optical system of FORMOSAT-5, the experimental optical system of the advanced optical remote sensing instrument was enhanced to an off-axis Korsch telescope optical system which consists of five mirrors. It contains: (1) M1: 550mm diameter aperture primary mirror, (2) M2: secondary mirror, (3) M3: off-axis tertiary mirror, (4) FM1 and FM2: two folding flat mirrors, for purpose of limiting the overall volume, reducing the mass, and providing a long focal length and excellent optical performance. By the end of 2015, we implemented several important techniques including optical system design, opto-mechanical design, FEM and multi-physics analysis and optimization system in order to do a preliminary study and begin to develop and design these large-size lightweight aspheric mirrors and flat mirrors. The lightweight mirror design and opto-mechanical interface design were completed in August 2016. We then manufactured and polished these experimental model mirrors in Taiwan; all five mirrors ware completed as spherical surfaces by the end of 2016. Aspheric figuring, assembling tests and optical alignment verification of these mirrors will be done with a Korsch telescope experimental structure model in 2018.

  14. System concept for a moderate cost Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.

    1986-01-01

    A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.

  15. Evaluation of mirrored muscle activity in patients with Complex Regional Pain Syndrome.

    PubMed

    Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J

    2014-10-01

    Motor dysfunction in Complex Regional Pain Syndrome (CRPS) has been associated with bilateral changes in central motor processing, suggesting abnormal coupling between the affected and unaffected limb. We evaluated the occurrence of involuntary muscle activity in a limb during voluntary movements of the contralateral limb (i.e., mirror activity) in unilaterally affected patients to examine disinhibition of contralateral motor activity in CRPS. Mirror activity was examined during unimanual rhythmic flexion-extension movements of the wrist through in-depth analysis of electromyography recordings from the passive arm in 20 CRPS patients and 40 controls. The number of mirror-epochs was comparable for both arms in both CRPS patients and controls. Mirror-epochs in the affected arm of patients were comparable to those in controls. Mirror-epochs in the unaffected arm were shorter and showed less resemblance (in terms of rhythm and timing) to activity of the homologous muscle in the moving arm compared to mirror-epochs in controls. No evidence for disinhibition of contralateral motor activity was found during unimanual movement. Although motor dysfunction in CRPS has been associated with bilateral changes in cortical motor processing, the present findings argue against disinhibition of interhemispheric projections to homologous muscles in the contralateral limb during unimanual movement. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Advanced mirror technology development (AMTD): year five status

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-orlarger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp 150 Hz 1.5-meter Ultra-Low Expansion (ULE) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur mirror using the STOP model prediction and verification of CTE homogeneity.

  17. A 4-meter Telescope for the US Air Force Academy

    NASA Astrophysics Data System (ADS)

    Buzasi, D.; Andersen, G.; Wetterer, C.

    2004-05-01

    The United States Air Force Academy (USAFA) in Colorado Springs has obtained a 4m-diameter, lightweight telescope from the discontinued Space Based Laser project. Originally designed and constructed for space, this segmented telescope is being reconfigured for use in a ground-based facility. The current optical design is an afocal Mersenne configuration with an extremely thin (17mm) glass primary. The telescope has 312 fine figure actuators for active shaping of the primary, as well as 42 piston actuators for phasing of the segments and adaptive optics capability with a 300-actuator deformable mirror and wavefront sensor. We are recoating and redesigning the optics (with new secondary and tertiary mirrors) and constructing a new truss and an alt-az mount with two Nasmyth foci capable of both sidereal and low-Earth object tracking down to altitudes of 200km. The telescope will be located in a new facility to be built next to the current USAFA Observatory. The primary use of the telescope will be for education by involving cadets in a wide range of Air Force experiments including active ranging, communication, and imaging and characterization of satellites. We envision, however, that substantial time will also be available for astronomy. Although the Colorado Springs site is not ideal for many astronomical uses, it does lend itself to easy access by cadets, faculty, and visitors, and is appropriate for spectroscopy and bright-object work. Compared to similar facilities around the world, we expect to have a large amount of time available for outside users.

  18. A development roadmap for critical technologies needed for TALC: a deployable 20m annular space telescope

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich

    2016-07-01

    Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction capabilities, and mechanical models for validation of the deployment concept. Accompanying these developments, a strong system activity will ensure that the ultimate goal of having an integrated system can be met, especially in terms of (a) scalability toward a larger structure, and (b) verification philosophy.

  19. An 8 Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.

  20. Design Trade Study for a 4-Meter Off-Axis Primary Mirror Substrate and Mount for the Habitable-Zone Exoplanet Direct Imaging Mission

    NASA Technical Reports Server (NTRS)

    Arnold, William R.; Stahl, H. Philip

    2017-01-01

    An extensive trade study was conducted to evaluate primary mirror substrate design architectures for the HabEx mission baseline 4-meter off-axis telescope. The study’s purpose is not to produce a final design, but rather to established a design methodology for matching the mirror’s properties (mass and stiffness) with the mission’s optical performance specifications (static dynamic wavefront error, WFE). The study systematically compares the effect of proven design elements (closed-back vs. open-back vs. partial-back; meniscus vs. flat back vs. shaped back; etc.), which can be implemented with proven space mirror materials (ULE and Zerodur), on static and dynamic WFE. Additionally, the study compares static and dynamic WFE of each substrate point design integrated onto three and six point mounts.

  1. Dynamic/Jitter Assessment of Multiple Potential HabEx Structural Designs

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike

    2017-01-01

    One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of = 5 mas. Dynamic analyses of two configurations of a proposed (HabEx) 4 meter off-axis telescope structure were performed to predict effects of jitter on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which will roll into efforts to define the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.

  2. Gemini primary mirror in situ wash

    NASA Astrophysics Data System (ADS)

    Vucina, Tomislav; Boccas, Maxime; Araya, Claudio; Ah Hee, Clayton; Cavedoni, Chas

    2008-07-01

    The Gemini twins were the first large modern telescopes to receive protected silver coatings on their mirrors in 2004. The low emissivity requirement is fundamental for the IR optimization. In the mid-IR a factor of two reduction in telescope emissivity is equivalent to increasing the collecting area by the same factor. Our emissivity maintenance requirement is very stringent: 0.5% maximum degradation during operations, at any single wavelength beyond 2.2 μm. We developed a very rigorous standard to wash the primary mirrors in the telescope without science down time. The in-situ washes are made regularly, and the reflectivity and emissivity gains are significant. The coating lifetime has been extended far more than our original expectations. In this report we describe the in-situ process and hardware, explain our maintenance plan, and show results of the coating performance over time.

  3. CFRP mirror technology for cryogenic space interferometry: review and progress to date

    NASA Astrophysics Data System (ADS)

    Jones, Martyn L.; Walker, David; Naylor, David A.; Veenendaal, Ian T.; Gom, Brad G.

    2016-07-01

    The FP7 project, FISICA (Far Infrared Space Interferometer Critical Assessment), called for the investigation into the suitability of Carbon fiber Reinforced Plastic (CFRP) for a 2m primary mirror. In this paper, we focus on the major challenge for application, the development of a mirror design that would maintain its form at cryogenic temperatures. In order to limit self-emission the primary is to be cooled to 4K whilst not exceeding a form error of 275nm PV. We then describe the development of an FEA model that utilizes test data obtained from a cryogenic test undertaken at the University of Lethbridge on CFRP samples. To conclude, suggestions are made in order to advance this technology to be suitable for such an application in order to exploit the low density and superior specific properties of polymeric composites.

  4. Dynamic/jitter assessment of multiple potential HabEx structural designs

    NASA Astrophysics Data System (ADS)

    Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike

    2017-09-01

    One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of <= 5 milli-arc seconds (mas). Dynamic analyses of two configurations of a proposed HabEx 4 meter off-axis telescope structure were performed to predict effects of a vibration input on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which contribute to efforts in defining the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.

  5. On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes.

    PubMed

    Surdej, Isabelle; Yaitskova, Natalia; Gonte, Frederic

    2010-07-20

    The Zernike phase contrast method is a novel technique to phase the primary mirrors of segmented telescopes. It has been tested on-sky on a unit telescope of the Very Large Telescope with a segmented mirror conjugated to the primary mirror to emulate a segmented telescope. The theoretical background of this sensor and the algorithm used to retrieve the piston, tip, and tilt information are described. The performance of the sensor as a function of parameters such as star magnitude, seeing, and integration time is discussed. The phasing accuracy has always been below 15 nm root mean square wavefront error under normal conditions of operation and the limiting star magnitude achieved on-sky with this sensor is 15.7 in the red, which would be sufficient to phase segmented telescopes in closed-loop during observations.

  6. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  7. Towards a Multi-Variable Parametric Cost Model for Ground and Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd

    2016-01-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost approximately (X) D(exp (1.75 +/- 0.05)) lambda(exp(-0.5 +/- 0.25) T(exp -0.25) e (exp (-0.04)Y). Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  8. Multivariable parametric cost model for space and ground telescopes

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Henrichs, Todd

    2016-09-01

    Parametric cost models can be used by designers and project managers to perform relative cost comparisons between major architectural cost drivers and allow high-level design trades; enable cost-benefit analysis for technology development investment; and, provide a basis for estimating total project cost between related concepts. This paper hypothesizes a single model, based on published models and engineering intuition, for both ground and space telescopes: OTA Cost (X) D (1.75 +/- 0.05) λ (-0.5 +/- 0.25) T-0.25 e (-0.04) Y Specific findings include: space telescopes cost 50X to 100X more ground telescopes; diameter is the most important CER; cost is reduced by approximately 50% every 20 years (presumably because of technology advance and process improvements); and, for space telescopes, cost associated with wavelength performance is balanced by cost associated with operating temperature. Finally, duplication only reduces cost for the manufacture of identical systems (i.e. multiple aperture sparse arrays or interferometers). And, while duplication does reduce the cost of manufacturing the mirrors of segmented primary mirror, this cost savings does not appear to manifest itself in the final primary mirror assembly (presumably because the structure for a segmented mirror is more complicated than for a monolithic mirror).

  9. Nasmyth Telescope

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    An altazimuth reflecting telescope with relatively stable platforms for mounting heavy, large, delicate or developmental equipment which cannot be, or has not been, engineered to cope with attitude changes during the tracking of a star. The optical configuration is the Cassegrain type, with a primary and secondary mirror, and an additional third flat mirror mounted at the intersection of the alti...

  10. Tendency to Mirror-Image on a Visual Memory Test.

    ERIC Educational Resources Information Center

    Aliotti, Nicholas C.

    1980-01-01

    Young children (153 normal preschool and primary graders, 19 cerebral palsied 5 to 15 year olds, and 16 learning disabled 7 to 12 year olds) were given a test of immediate visual memory which required selection of a geometric design from among six alternatives, including a mirror image and a rotation. (CL)

  11. EUV multilayer coatings for the Atmospheric Imaging Assembly instrument aboard the Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Windt, D L; Robinson, J C

    2006-02-09

    Multilayer coatings for the 7 EUV channels of the AIA have been developed and completed successfully on all AIA flight mirrors. Mo/Si coatings (131, 171, 193.5, 211 {angstrom}) were deposited at Lawrence Livermore National Laboratory (LLNL). Mg/SiC (304, 335 {angstrom}) and Mo/Y (94 {angstrom}) coatings were deposited at Columbia University. EUV reflectance of the 131/335 {angstrom}, 171 {angstrom}, 193.5/211 {angstrom} primary and secondary flight mirrors and the 94/304 {angstrom} secondary flight mirror was measured at beamline 6.3.2. of the Advanced Light Source (ALS) at LBNL. EUV reflectance of the 94/304 {angstrom} primary and secondary flight mirrors was measured at beamlinemore » X24C of the National Synchrotron Light Source (NSLS) at Brookhaven National Lab. Preliminary EUV reflectance measurements of the 94, 304 and 335 {angstrom} coatings were performed with a laser plasma source reflectometer located at Columbia University. Prior to multilayer coating, Atomic Force Microscopy (AFM) characterization and cleaning of all flight substrates was performed at LLNL.« less

  12. Evaluation of image quality in a Cassegrain-type telescope with an oscillating secondary mirror

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Matthews, S.

    1975-01-01

    A ray-trace analysis is described of aberrations and extreme rays of a Cassegrain-type telescope with a tilted secondary mirror. The work was motivated by the need to understand the factors limiting image quality and to assist in the design of secondary mirrors for three telescopes with oscillating secondary mirrors (OSM) used at Ames Research Center for high altitude infrared astronomy. The telescopes are a 31-cm-diameter Dall-Kirkham (elliptical primary, spherical secondary) flown aboard a Lear jet, a 71-cm balloon-borne Dall-Kirkham flown on the AIROscope gondola, and a 91-cm true Cassegrain (parabolic primary, hyperbolic secondary) flown aboard a C-141 jet transport. The optics for these telescopes were not designed specifically for OSM operation, but all have OSM's and all must be used with various detector configurations; therefore, a facility that evaluates the performance of a telescope for a given configuration is useful. The analytical expressions are summarized and results for the above systems are discussed. Details of the calculation and a discussion of the computer program are given in the appendices.

  13. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  14. Primary Objective Grating Astronomical Telescope

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas D.

    2007-01-01

    It has been 370 years since a seventeenth century French mathematician, Mersenne, presciently sketched out an astronomical telescope based on dual parabolic reflectors. Since that time the concept of the primary objective has been virtually unchanged. Now a new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectroscopy (MOS). Other potential benefits include unprecedented apertures and collection areas. The new design also favors space deployment as a gossamer membrane. The inventor, Tom Ditto, first discovered that higher-order diffraction images contain hidden depth cues, for which he was granted a seminal range finding patent in 1987. Subsequently, he invented and patented 3D localizers, profilometers and microscopes using POGs. The POG telescope was placed in the public domain to expedite research. The function of a telescopes primary objective is to collect flux and to deliver images. Both functions dictate that size matters, and bigger is better. For that reason, there has been a steady push over the past century to ramp up the size of the primary mirror. However, for every doubling of mirror diameter, the elapsed time between initial effort and first light has also doubled. Meanwhile, costs escalated beyond the mirror alone, because larger instruments required larger enclosures and better pointing mechanisms. One key catalog of observation, spectrographic data, is far more difficult to amass than two-dimensional imagery. While the number of observable objects has increased with mirror size, the capacity to take spectra has not increased proportionately. In the best of circumstances, spectrograms are available for one per cent of the all objects surveyed. Spectroscopy was a historical afterthought introduced in the nineteenth century shortly after the invention of the diffraction grating and over a century after Newtons 1670 telescope. Spectroscopy is generally accomplished using a diffraction grating as the disperser in the secondary. The light being delivered to the spectrograph is first captured by a primary mirror which provides no chromatic magnification by itself. Sizeable spectrographs could not be deployed while diffraction gratings were rare commodities scribed using mechanical ruling engines that produced one grating line at a time. Today diffraction gratings are commonplace. Their recent availability is a product of both the invention of holography and the mass replication of surface microstructures. Holography permits all lines in a grating to be made simultaneously in a single photographic exposure. Holograms can then be reproduced by embossing processes. The improvement in replication is analogous to how Gutenberg changed the availability of books. The masters may be expensive, but the copies are not. Computer science is another technology that emerged in the second half of the twentieth century without which our proposed spectrographic instrument could not function due to the complexity of image processing required in data reduction. The employment of very large diffraction gratings as primary objectives for astronomical telescopes requires a novel

  15. A Parametric Finite-Element Model for Evaluating Segmented Mirrors with Discrete, Edgewise Connectivity

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope

  16. Human primary motor cortex is both activated and stabilized during observation of other person's phasic motor actions.

    PubMed

    Hari, Riitta; Bourguignon, Mathieu; Piitulainen, Harri; Smeds, Eero; De Tiège, Xavier; Jousmäki, Veikko

    2014-01-01

    When your favourite athlete flops over the high-jump bar, you may twist your body in front of the TV screen. Such automatic motor facilitation, 'mirroring' or even overt imitation is not always appropriate. Here, we show, by monitoring motor-cortex brain rhythms with magnetoencephalography (MEG) in healthy adults, that viewing intermittent hand actions of another person, in addition to activation, phasically stabilizes the viewer's primary motor cortex, with the maximum of half a second after the onset of the seen movement. Such a stabilization was evident as enhanced cortex-muscle coherence at 16-20 Hz, despite signs of almost simultaneous suppression of rolandic rhythms of approximately 7 and 15 Hz as a sign of activation of the sensorimotor cortex. These findings suggest that inhibition suppresses motor output during viewing another person's actions, thereby withholding unintentional imitation.

  17. Dispersed Fringe Sensing Analysis - DFSA

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Shi, Fang; Redding, David C.; Basinger, Scott A.; Ohara, Catherine M.; Seo, Byoung-Joon; Bikkannavar, Siddarayappa A.; Spechler, Joshua A.

    2012-01-01

    Dispersed Fringe Sensing (DFS) is a technique for measuring and phasing segmented telescope mirrors using a dispersed broadband light image. DFS is capable of breaking the monochromatic light ambiguity, measuring absolute piston errors between segments of large segmented primary mirrors to tens of nanometers accuracy over a range of 100 micrometers or more. The DFSA software tool analyzes DFS images to extract DFS encoded segment piston errors, which can be used to measure piston distances between primary mirror segments of ground and space telescopes. This information is necessary to control mirror segments to establish a smooth, continuous primary figure needed to achieve high optical quality. The DFSA tool is versatile, allowing precise piston measurements from a variety of different optical configurations. DFSA technology may be used for measuring wavefront pistons from sub-apertures defined by adjacent segments (such as Keck Telescope), or from separated sub-apertures used for testing large optical systems (such as sub-aperture wavefront testing for large primary mirrors using auto-collimating flats). An experimental demonstration of the coarse-phasing technology with verification of DFSA was performed at the Keck Telescope. DFSA includes image processing, wavelength and source spectral calibration, fringe extraction line determination, dispersed fringe analysis, and wavefront piston sign determination. The code is robust against internal optical system aberrations and against spectral variations of the source. In addition to the DFSA tool, the software package contains a simple but sophisticated MATLAB model to generate dispersed fringe images of optical system configurations in order to quickly estimate the coarse phasing performance given the optical and operational design requirements. Combining MATLAB (a high-level language and interactive environment developed by MathWorks), MACOS (JPL s software package for Modeling and Analysis for Controlled Optical Systems), and DFSA provides a unique optical development, modeling and analysis package to study current and future approaches to coarse phasing controlled segmented optical systems.

  18. Evolving design criteria for very large aperture space-based telescopes and their influence on the need for intergrated tools in the optimization process

    NASA Astrophysics Data System (ADS)

    Arnold, William R.

    2015-09-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.

  19. Evolving Design Criteria for Very Large Aperture Space-Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4 meter and 8 meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars.

  20. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy.

    PubMed

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-10-01

    Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images.

  1. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy

    PubMed Central

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-01-01

    Abstract. Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images. PMID:26157980

  2. Impact of large field angles on the requirements for deformable mirror in imaging satellites

    NASA Astrophysics Data System (ADS)

    Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij

    2018-04-01

    For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.

  3. Ultralightweight Space Deployable Primary Reflector Demonstrator

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.

  4. Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  5. Optimal wavefront control for adaptive segmented mirrors

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.

  6. Mirror movements in unilateral spastic cerebral palsy: Specific negative impact on bimanual activities of daily living.

    PubMed

    Adler, Caroline; Berweck, Steffen; Lidzba, Karen; Becher, Thomas; Staudt, Martin

    2015-09-01

    Mirror movements are involuntary movements of the other hand during voluntary unimanual movements. Some, but not all children with unilateral spastic cerebral palsy (USCP) show this phenomenon. In this observational study, we investigated whether these mirror movements have a specific negative impact on bimanual activities of daily living. Eighteen children (six girls; age range, 6-16 years; mean age, 12 years 1 month; SD, 3 years 3 month) with USCP, nine with and nine without mirror movements, underwent the Jebsen Taylor Hand Function Test (unimanual capacity) and the Assisting Hand Assessment (bimanual performance). In addition, we measured the time the participants needed for the completion of five activities we had identified as particularly difficult for children with mirror movements. Multivariate analysis demonstrated that mirror movements indeed have a specific negative impact on bimanual performance (Assisting Hand Assessment) and on the time needed for the completion of these five particularly difficult activities. This effect was independent from unimanual capacity. Functional therapies in children with USCP and mirror movements should address this phenomenon. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  8. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  9. Eliminating mirror responses by instructions.

    PubMed

    Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel

    2015-09-01

    The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Advanced Mirror Technology Development (AMTD): Year Five Status

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp approximately 150 Hz 1.5-meter Ultra-Low Expansion (ULE Registered trademark) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur (Registered trademark) mirror using the STOP model prediction and verification of CTE homogeneity.

  11. Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects.

    PubMed

    Wang, Jing; Fritzsch, Claire; Bernarding, Johannes; Krause, Thomas; Mauritz, Karl-Heinz; Brunetti, Maddalena; Dohle, Christian

    2013-01-01

    Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis.

  12. Spectral Analysis of the Shuttle Glow. SPAS II/IBSS Mission - AIS hardware

    DTIC Science & Technology

    1992-04-23

    Mirror Lens C Reflection) CiraCylindrical/-Lens • Plane Mirror j _Slit Slit Mro Fig. 7. Cross section through the reflective foreoptics of the UV Fig. 6...selection. The gratings in the The slit width of 0.045 mm restricted the angular spectrograph are deposited on Zerodur blanks, which width of the FOV...of th*i short fee-1 hlaa, t do, lmw b*WdW 3Wa APO=E OPTIC I VOL 31, ft. 16 1 1~ toes I 48 Secondary Mlirror Primary Mirror - lntaeranas Ptten Image

  13. Metrology system for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck

    2004-01-01

    The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.

  14. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients

    PubMed Central

    2016-01-01

    Objective To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. Methods The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. Results The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. Conclusion In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke. PMID:27606269

  15. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients.

    PubMed

    Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun; Yun, Hyun-Ju; Hwang, Hye-Jung

    2016-08-01

    To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke.

  16. A new telescope concept for space communication

    NASA Astrophysics Data System (ADS)

    Henneberg, Peter; Schubert, Hermann

    1990-07-01

    The design concept of an optical transmit-receive antenna telescope developed in the framework of the ESA SILEX program is presented. SILEX involves optical communication between satellites in GEO, using semiconductor laser diodes operating at 825 nm as the light source. The telescope requirements include entrance diameter 250 mm, exit pupil 8 mm, acquisition FOV 8500 microrad, communication FOV 2000 microrad, angular magnification -31.25, retroreflection 3 microW/sq m nm or less, stray light 1.05 microW/sq m nm or less, and alignment stability 10 years with no refocusing in orbit. The present compact two-mirror configuration employs the glass-ceramic Zerodur for all of the major components (primary mirror/baseplate, secondary mirror, tube, front ring, and ocular) for a total mass of only 5760 g. The prototype manufacturing process gave surface errors of 25 nm rms-WF for the primary and 15 nm rms-WF for the secondary.

  17. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    PubMed

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  18. Adjustable bipod flexures for mounting mirrors in a space telescope.

    PubMed

    Kihm, Hagyong; Yang, Ho-Soon; Moon, Il Kweon; Yeon, Jeong-Heum; Lee, Seung-Hoon; Lee, Yun-Woo

    2012-11-10

    A new mirror mounting technique applicable to the primary mirror in a space telescope is presented. This mounting technique replaces conventional bipod flexures with flexures having mechanical shims so that adjustments can be made to counter the effects of gravitational distortion of the mirror surface while being tested in the horizontal position. Astigmatic aberration due to the gravitational changes is effectively reduced by adjusting the shim thickness, and the relation between the astigmatism and the shim thickness is investigated. We tested the mirror interferometrically at the center of curvature using a null lens. Then we repeated the test after rotating the mirror about its optical axis by 180° in the horizontal setup, and searched for the minimum system error. With the proposed flexure mount, the gravitational stress at the adhesive coupling between the mirror and the mount is reduced by half that of a conventional bipod flexure for better mechanical safety under launch loads. Analytical results using finite element methods are compared with experimental results from the optical interferometer. Vibration tests verified the mechanical safety and optical stability, and qualified their use in space applications.

  19. Are mirror neurons the basis of speech perception? Evidence from five cases with damage to the purported human mirror system

    PubMed Central

    Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory

    2013-01-01

    The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313

  20. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  1. Predicted optical performance of the high-altitude balloon experiment (HABE) telescope in an adverse thermal environment

    NASA Astrophysics Data System (ADS)

    Akau, Ronald L.; Givler, Richard C.; Eastman, Daniel R.

    1994-07-01

    The High-Altitude Balloon Experiment telescope was designed to operate at an ambient temperature of -55 degree(s)C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to -35 degree(s)C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.

  2. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars. The paper uses numerous trade studies created during the software development phase of the Arnold Mirror Modeler to illustrate the influences of system specifications on the design space. The future telescopes will require better performance, stability and documented feasibility to meet the hurdles of today's budget and schedules realities. AMTD is developing the tools, but the basic system planning mentality also has to adopt to the requirements of these very large and complex physical structures.

  3. Mirror Neurons through the Lens of Epigenetics

    PubMed Central

    Ferrari, Pier F.; Tramacere, Antonella; Simpson, Elizabeth A.; Iriki, Atsushi

    2013-01-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this article, we argue that, in light of recent evidence, this is, at best, an incomplete and oversimplified view of mirror neurons, whose activity is actually quite variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although extant associative and genetic accounts fail to consider the complexity of genetic and non-genetic interactions, we propose a new Evo-Devo perspective, which predicts that environmental differences early in development, or through sensorimotor training, should produce variations in mirror neuron response patterns, tuning them to the social environment. PMID:23953747

  4. The realuminizing of the 7-meter-diameter solar simulator collimating mirror

    NASA Technical Reports Server (NTRS)

    Noller, E. W.

    1994-01-01

    This paper describes the modification of a three-electron-beam (EB) gun system for vacuum depositing a highly reflective aluminum coating on a 7.01-m (23-ft) -diam nickel-plated aluminum collimating mirror. The mirror is part of the JPL 7.62-m space simulator that was recently modernized with a new high vacuum pumping system, solar lamp power supplies, solar optic lens system, and refurbished collimating mirror. The 7.01-m 12,700-kg (14-ton) spherical collimating mirror was removed from this facility for replating with 381 micron (0.015 in.) of electroless nickel and polished to a specular finish for realuminizing. The space chamber served as the vacuum coating vessel for the realuminizing coating process. The mirror is the primary reflector for the solar simulation system and the aluminized reflective surface is its most critical performance element. The uniformity of thickness and high reflectivity of the coating in visible and near-ultraviolet (UV) light governs the accuracy of the beam for solar testing. The uniformity of the thin-film thickness also controls the durability of the mirror over time. The mirror was polished to a 64-percent reflectivity with a uniformity of 1.5 percent. The performance goal for the aluminizing was 89 percent with +/- 0.5-percent variation over the mirror.

  5. Design and simulation of EVA tools and robot end effectors for servicing missions of the HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1995-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the Space Shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A Space Shuttle repair mission in January 1994 installed small corrective mirrors that restored the full intended optical capability of the HST. A Second Servicing Mission (SM2) scheduled in 1997 will involve considerable Extra Vehicular Activity (EVA). To reduce EVA time, the addition of robotic capability in the remaining servicing missions has been proposed. Toward that end, two concept designs for a general purpose end effector for robots are presented in this report.

  6. Design and simulation of EVA tools for first servicing mission of HST

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1993-01-01

    The Hubble Space Telescope (HST) was launched into near-earth orbit by the space shuttle Discovery on April 24, 1990. The payload of two cameras, two spectrographs, and a high-speed photometer is supplemented by three fine-guidance sensors that can be used for astronomy as well as for star tracking. A widely reported spherical aberration in the primary mirror causes HST to produce images of much lower quality than intended. A space shuttle repair mission in late 1993 will install small corrective mirrors that will restore the full intended optical capability of the HST. The first servicing mission (FSM) will involve considerable extravehicular activity (EVA). It is proposed to design special EVA tools for the FSM. This report includes details of the data acquisition system being developed to test the performance of the various EVA tools in ambient as well as simulated space environment.

  7. Lateralization of the human mirror neuron system.

    PubMed

    Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco

    2006-03-15

    A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.

  8. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  9. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  10. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  11. Fabrication of the LSST monolithic primary-tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Ketelsen, Dean A.; Law, Kevin; Gressler, William J.; Zhao, Chunyu

    2012-09-01

    As previously reported (at the SPIE Astronomical Instrumentation conference of 2010 in San Diego1), the Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona’s Steward Observatory Mirror Lab. We will provide an update to the status of the mirrors and metrology systems, which have advanced from concepts to hardware in the past two years. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab, reducing the degrees of freedom needed to be controlled in the telescope. The surface specification is described as a structure function, related to seeing in excellent conditions. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper details the manufacturing process and metrology systems for each surface, including the alignment of the two surfaces. M1 is a hyperboloid and can utilize a standard Offner null corrector, whereas M3 is an oblate ellipsoid, so it has positive spherical aberration. The null corrector is a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature. Laser trackers are relied upon to measure the alignment and spacing as well as rough-surface metrology during looseabrasive grinding.

  12. Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders.

    PubMed

    Dapretto, Mirella; Davies, Mari S; Pfeifer, Jennifer H; Scott, Ashley A; Sigman, Marian; Bookheimer, Susan Y; Iacoboni, Marco

    2006-01-01

    To examine mirror neuron abnormalities in autism, high-functioning children with autism and matched controls underwent fMRI while imitating and observing emotional expressions. Although both groups performed the tasks equally well, children with autism showed no mirror neuron activity in the inferior frontal gyrus (pars opercularis). Notably, activity in this area was inversely related to symptom severity in the social domain, suggesting that a dysfunctional 'mirror neuron system' may underlie the social deficits observed in autism.

  13. Mirror therapy for patients with severe arm paresis after stroke--a randomized controlled trial.

    PubMed

    Thieme, Holm; Bayn, Maria; Wurg, Marco; Zange, Christian; Pohl, Marcus; Behrens, Johann

    2013-04-01

    To evaluate the effects of individual or group mirror therapy on sensorimotor function, activities of daily living, quality of life and visuospatial neglect in patients with a severe arm paresis after stroke. Randomized controlled trial. Inpatient rehabilitation centre. Sixty patients with a severe paresis of the arm within three months after stroke. Three groups: (1) individual mirror therapy, (2) group mirror therapy and (3) control intervention with restricted view on the affected arm. Motor function on impairment (Fugl-Meyer Test) and activity level (Action Research Arm Test), independence in activities of daily living (Barthel Index), quality of life (Stroke Impact Scale) and visuospatial neglect (Star Cancellation Test). After five weeks, no significant group differences for motor function were found (P > 0.05). Pre-post differences for the Action Research Arm Test and Fugl-Meyer Test: individual mirror therapy: 3.4 (7.1) and 3.2 (3.8), group mirror therapy: 1.1 (3.1) and 5.1 (10.0) and control therapy: 2.8 (6.7) and 5.2 (8.7). However, a significant effect on visuospatial neglect for patients in the individual mirror therapy compared to control group could be shown (P < 0.01). Furthermore, it was possible to integrate a mirror therapy group intervention for severely affected patients after stroke. This study showed no effect on sensorimotor function of the arm, activities of daily living and quality of life of mirror therapy compared to a control intervention after stroke. However, a positive effect on visuospatial neglect was indicated.

  14. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.

    PubMed

    Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.

  15. Mirror neurons, the representation of word meaning, and the foot of the third left frontal convolution.

    PubMed

    de Zubicaray, Greig; Postle, Natasha; McMahon, Katie; Meredith, Matthew; Ashton, Roderick

    2010-01-01

    Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror neurons, and that action word meanings are shared with the mirror system due to a proposed link between speech and gestural communication. In an fMRI experiment, we investigated whether Broca's area shows mirror activity solely for effectors implicated in the MNS. Next, we examined the responses of empirically determined mirror areas during a language perception task comprising effector-specific action words, unrelated words and nonwords. We found overlapping activity for observation and execution of actions with all effectors studied, i.e., including the foot, despite there being no evidence of foot mirror neurons in the monkey or human brain. These "mirror" areas showed equivalent responses for action words, unrelated words and nonwords, with all of these stimuli showing increased responses relative to visual character strings. Our results support alternative explanations attributing mirror activity in Broca's area to covert verbalisation or hierarchical linearisation, and provide no evidence that the MNS makes a preferential contribution to comprehending action word meanings. 2008 Elsevier Inc. All rights reserved.

  16. The Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV-quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Effinger, Michael R.

    2013-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  17. Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Kirk, Charlie; Maffett, Steve; Abplanalp, Cal; Stahl, H. Philip

    2013-01-01

    Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and ITT Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at ITT Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  18. Analysis and Verification of HET 1 m Mirror Deflections Due to Edge Sensor Loading

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ninety-one 1 m mirror segments which comprise the McDonald Observatory Hobby Eberly Telescope (HET) primary mirror have been observed to drift out of alignment in an unpredictable manner in response to time variant temperature deviations. A Segment Alignment Maintenance System (SAMS) is being developed to detect and correct this segment-to-segment drift using sensors mounted at the edges of the mirror segments. However, the segments were not originally designed to carry the weight of edge sensors. Thus, analyses and tests were conducted as part of the SAMS design to estimate the magnitude and shape of the edge sensor induced deformations as well as the resultant optical performance. Interferometric testing of a 26 m radius of curvature HET mirror segment was performed at the Marshall Space Flight Center using several load conditions to verify the finite element analyses.

  19. Mirror neuron function, psychosis, and empathy in schizophrenia

    PubMed Central

    McCormick, Laurie M.; Brumm, Michael C.; Beadle, Janelle N.; Paradiso, Sergio; Yamada, Thoru; Andreasen, Nancy

    2013-01-01

    Processing of social and emotional information has been shown to be disturbed in schizophrenia. The biological underpinnings of these abnormalities may be explained by an abnormally functioning mirror neuron system. Yet the relationship between mirror neuron system activity in schizophrenia, as measured using an electroencephalography (EEG) paradigm, and socio-emotional functioning has not been assessed. The present research measured empathy and mirror neuron activity using an established EEG paradigm assessing the integrity of the Mu rhythm (8–13 Hz) suppression over the sensorimotor cortex during observed and actual hand movement in 16 schizophrenia-spectrum disorder (SSD) participants (n=8 actively psychotic and n=8 in residual illness phase) and 16 age- and gender-matched healthy comparison participants. Actively psychotic SSD participants showed significantly greater mu suppression over the sensorimotor cortex of the left hemisphere than residual phase SSD and healthy comparison individuals. The latter two groups showed similar levels of mu suppression. Greater left-sided mu suppression was positively correlated with psychotic symptoms (i.e., greater mu suppression/mirror neuron activity was highest among subjects with the greater severity of psychotic symptoms). SSD subjects tended to have significantly higher levels of Personal Distress (as measured by the Interpersonal Reactivity Index) than healthy participants. The present study suggests that abnormal mirror neuron activity may exist among patients with schizophrenia during the active (psychotic) phase of the illness, and correlates with severity of psychosis. PMID:22510432

  20. Temporally-stable active precision mount for large optics.

    PubMed

    Reinlein, Claudia; Damm, Christoph; Lange, Nicolas; Kamm, Andreas; Mohaupt, Matthias; Brady, Aoife; Goy, Matthias; Leonhard, Nina; Eberhardt, Ramona; Zeitner, Uwe; Tünnermann, Andreas

    2016-06-13

    We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm3, and a full mirror of 228 × 210 × 9 mm3. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm. Its installation position depending deformations are addressed by long-time measurements over 14 weeks indicating no significance of the orientation. Size-induced differences of the mount are studied by a full mirror with 80 manual actuators arranged in the same actuator pattern as the quarter mirror. This sample shows a wavefront error rms of (27±2) nm over a measurement period of 46 days. We conclude that the developed mount is suitable to compensate for manufacturing-induced deformations of large reflective optics, and likely to be included in the overall systems alignment procedure.

  1. A nonlinear disturbance-decoupled elevation axis controller for the Multiple Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Clark, Dusty; Trebisky, Tom; Powell, Keith

    2008-07-01

    The Multiple Mirror Telescope (MMT), upgraded in 2000 to a monolithic 6.5m primary mirror from its original array of six 1.8m primary mirrors, was commissioned with axis controllers designed early in the upgrade process without regard to structural resonances or the possibility of the need for digital filtering of the control axis signal path. Post-commissioning performance issues led us to investigate replacement of the original control system with a more modern digital controller with full control over the system filters and gain paths. This work, from system identification through controller design iteration by simulation, and pre-deployment hardware-in-the-loop testing, was performed using latest-generation tools with Matlab® and Simulink®. Using Simulink's Real Time Workshop toolbox to automatically generate C source code for the controller from the Simulink diagram and a custom target build script, we were able to deploy the new controller into our existing software infrastructure running Wind River's VxWorks™real-time operating system. This paper describes the process of the controller design, including system identification data collection, with discussion of implementation of non-linear control modes and disturbance decoupling, which became necessary to obtain acceptable wind buffeting rejection.

  2. A happy conclusion to the SALT image quality saga

    NASA Astrophysics Data System (ADS)

    Crause, Lisa A.; O'Donoghue, Darragh E.; O'Connor, James E.; Strumpfer, Francois; Strydom, Ockert J.; Sass, Craig; du Plessis, Charl A.; Wiid, Eben; Love, Jonathan; Brink, Janus D.; Wilkinson, Martin; Coetzee, Chris

    2012-09-01

    Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase showed degradation due to a large focus gradient and a variety of other optical aberrations. An extensive forensic investigation eventually traced the problem to the mechanical interface between the telescope and the secondary optics that form the Spherical Aberration Corrector (SAC). The SAC was brought down from the telescope in 2009 April, the problematic interface was replaced and the four corrector mirrors were optically tested and re-aligned. The surface figures of the SAC mirrors were confirmed to be within specification and a full system test following the re-alignment process yielded a RMS wavefront error of just 0.15 waves. The SAC was re-installed on the tracker in 2010 August and aligned with respect to the payload and primary mirror. Subsequent on-sky tests produced alarming results which were due to spurious signals being sent to the tracker by the auto-collimator, the instrument responsible for controlling the attitude of the SAC with respect to the primary mirror. Once this minor issue was resolved, we obtained uniform 1.1 arcsecond star images over the full 10 arcminute field of view of the telescope.

  3. Saving SALT: repairs to the spherical aberration corrector of the Southern African Large Telescope (SALT)

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh E.; O'Connor, James; Crause, Lisa A.; Strumpfer, Francois; Strydom, Ockert J.; Brink, Janus D.; Sass, Craig; Wiid, Eben; Atad-Ettedgui, Eli

    2010-07-01

    The construction of the Southern African Large Telescope (SALT) was largely completed by the end of 2005. At the beginning of 2006, it was realized that the telescope's image quality suffered from optical aberrations, chiefly a focus gradient across the focal plane, but also accompanied by astigmatism and higher order aberrations. In the previous conference in this series, a paper was presented describing the optical system engineering investigation which had been conducted to diagnose the problem. This investigation exonerated the primary mirror as the cause, as well as the science instruments, and was isolated to the interface between the telescope and a major optical sub-system, the spherical aberration corrector (SAC). This is a complex sub-system of four aspheric mirrors which corrects the spherical aberration of the 11-m primary mirror. In the last two years, a solution to this problem was developed which involved removing the SAC from the telescope, installing a modification of the SAC/telescope interface, re-aligning and testing the four SAC mirrors and re-installation on the telescope. This paper describes the plan, discusses the details and shows progress to date and the current status.

  4. Design of a flexure mount for optics in dynamic and cryogenic environments

    NASA Technical Reports Server (NTRS)

    Pollard, Lloyd Wayne

    1989-01-01

    The design of a flexure mount for a mirror operating in a cryogenic environment is presented. This structure represents a design effort recently submitted to NASA Ames for the support of the primary mirror of the Space Infrared Telescope Facility (SIRTF). The support structure must passively accommodate the differential thermal contraction between the glass mirror and the aluminium structure of the telescope during cryogenic cooldown. Further, it must support the one meter diameter, 116 kilogram (258 pound) primary mirror during a severe launch to orbit without exceeding the micro-yield of the material anywhere in the flexure mount. Procedures used to establish the maximum allowable radial stiffness of the flexural mount, based on the finite element program NASTRAN and the optical program FRINGE, are discussed. Early design concepts were evaluated using a parametric design program, and the development of that program is presented. Dynamic loading analyses performed with NASTRAN are discussed. Methods of combining modal responses resulting from a displacement response spectrum analysis are discussed, and a combination scheme called MRSS, modified root of sum of squares, is presented. Model combination schemes using MRSS, SRSS, and ABS are compared to the results of the modal frequency response analysis performed with NASTRAN.

  5. JWST center of curvature test method and results

    NASA Astrophysics Data System (ADS)

    Saif, Babak; Chaney, David; Greenfield, Perry; Van Gorkom, Kyle; Brooks, Keira; Hack, Warren; Bluth, Marcel; Bluth, Josh; Sanders, James; Smith, Koby; Carey, Larkin; Chaung, Sze; Keski-Kuha, Ritva; Feinberg, Lee; Tournois, Severine; Smith, W. Scott; Kradinov, Vladimir

    2017-09-01

    The James Webb Space Telescope (JWST) recently saw the completion of the assembly process for the Optical Telescope Element and Integrated Science Instrument Module (OTIS). This integration effort was performed at Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. In conjunction with this assembly process a series of vibration and acoustic tests were performed. To help assure the telescope's primary mirror was not adversely impacted by this environmental testing an optical center of curvature (CoC) test was performed to measure changes in the mirror's optical performance. The primary is a 6.5 meter diameter mirror consisting of 18 individual hexagonal segments. Each segment is an off-axis asphere. There are a total of three prescriptions repeated six times each. As part of the CoC test each segment was individually measured using a high-speed interferometer (HSI) designed and built specifically for this test. This interferometer is capable of characterizing both static and dynamic characteristics of the mirrors. The latter capability was used, with the aid of a vibration stinger applying a low-level input force, to measure the dynamic characteristic changes of the PM backplane structure. This paper describes the CoC test setup, an innovative alignment method, and both static and dynamic test results.

  6. Mirror Visual Feedback Induces Lower Neuromuscular Activity in Children with Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Feltham, Max G.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2010-01-01

    The study examined the effects of mirror feedback information on neuromuscular activation during bimanual coordination in eight children with spastic hemiparetic cerebral palsy (SHCP) and a matched control group. The "mirror box" creates a visual illusion, which gives rise to a visual perception of a zero lag, symmetric movement between the two…

  7. 12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression.

    PubMed

    Liu, Tinghao; Sui, Zhan; Chen, Lin; Li, Zhupeng; Liu, Qiang; Gong, Mali; Fu, Xing

    2017-09-04

    Experimental amplification of 10-ns pulses to an energy of 12.2 J at the repetition rate of 1-10 Hz is reported from a diode-pumped room-temperature distributed active mirror amplifier chain (DAMAC) based on Nd:YAG slabs. Efficient power scaling at the optical-optical efficiency of 20.6% was achieved by suppressing the transverse parasitic oscillation with ASE absorbers. To the best of our knowledge, this is the first demonstration of a diode-pumped Nd:YAG active-mirror laser with nanosecond pulse energy beyond 10 joules. The verified DAMAC concept holds the promise of scaling the energy to a 50 J level and higher by adding 10-12 more pieces of active mirror in the chain.

  8. Experimental design affects social behavior outcomes in adult zebrafish developmentally exposed to lead.

    PubMed

    Weber, Daniel N; Ghorai, Jugal K

    2013-09-01

    Lead (Pb(2+)) affects neuronal and endocrine systems that influence social interactions. By providing potential hiding locations, spatial heterogeneity may affect Pb(2+)-induced behavioral outcomes. Therefore, a test chamber was designed into which a refuge could be inserted. The refuge allowed test subjects to escape from the mirror image that stimulated agonistic interactions. Behaviors with a mirror were compared with baseline activity patterns without a mirror. Adult (12-month old) male and female zebrafish, exposed to Pb(2+) (0-10 μM) as embryos (2-24 hours post fertilization), were tested individually for 5 min in each chamber design within 2 h of feeding. Behaviors were evaluated for % time in mirror zone, distance traveled (=activity level), and attacks on the mirror image. When there was no refuge, significant concentration-dependent increases occurred in male % time in mirror zone, activity level, and number of attacks. Increases in these variables were less pronounced in females. When there was a refuge, there were significant differences for males only in activity level and attacks at the higher developmental exposure concentrations; % time in mirror zone followed a similar pattern and level as without refuge. Females displayed Pb(2+)-induced behavioral changes only for attacks on mirror. Since the presence of refuges that is, environmental enrichment, reduced Pb(2+)-induced agonistic behavior in both sexes, experimental spatial design can be considered an important factor when interpreting behavioral outcomes.

  9. Next Generation Space Telescope Ultra-Lightweight Mirror Program

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.

    1998-01-01

    The Next Generation Space Telescope is currently envisioned as a eight meter diameter cryogenic deployable telescope that will operate at the earth sun libration point L2. A number of different designs are being examined within NASA and under industry studies by Ball Aerospace, Lockheed-Martin and TRW. Although these designs differ in many respects, they all require significant advancements in the state-of-the-art with respect to large diameter, ultra-lightweight, mirrors. The purpose of this paper is to provide insight into the current status of the mirror development program NGST is a tremendously ambitious undertaking that sets the mark for new NASA missions. In order to achieve the weight, cost and performance requirements of NGST, the primary mirror must be made lighter, cheaper and better than anything that has ever been done. In order to accomplish this an aggressive technology program has been put in place. The scope of the program was determined by examining historically what has been accomplished; assessing recent technological advances in fabrication and testing; and evaluating the effect of these advances relative to enabling the manufacture of lightweight mirrors that meet NGST requirements. As it is currently envisioned, the primary mirror for NGST is on the order of eight meters in diameter, it is to be diffraction limited at a wave length of 2 microns and has an overall weight requirement of 15 kilograms per square meter. Two large scale demonstration projects are under way along with a number of smaller scale demonstrations on a variety of mirror materials and concepts. The University of Arizona (UA) mirror concept is based around a 2mm thick Borosilicate glass face sheet mounted to a composite backplane structure via actuators for mirror figure correction. The Composite Optics Inc.(COI) concept consists of a 3.2mm thick Zerodur face sheet bonded to a composite support structure which in turn is mounted to a composite backplane structure via actuators for mirror phasing. These mirrors are due to be performance tested in ambient conditions in the fall of '98, and cryogenically tested in the spring of '99. The smaller scale efforts include the following: Beryllium is being investigated at Ball Aerospace, Electroform nickel is being investigated in-house at MSFC, Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) is being investigated at Morton International Silicon mirrors are being investigated at Schafer, Carbon Fiber Reinforced Silicon Carbide (CSIC) is being investigated at IABG. SiC at SSG, Composite mirrors at COI, pyrolyzed graphite mirrors at Ultramet, reaction bonded SiC mirrors at Xinetics, along with techniques for lightweighting using waterjets at Waterjet Technology Inc. are all being investigated under the Small Business innovative Research Program SBIR program. A procurement for a third large scale demonstration (nominally 1.5m in diameter) is being planned for release this fall.

  10. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takakura, Satoru; Aguilar, Mario; Akiba, Yoshiki

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I, Q and U, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ~0.5 m), where the CRHWP can be placed between the primary mirror and focalmore » plane. In this configuration, one needs to address the intensity to polarization (I→P) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the {\\scshape Polarbear} experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I→P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ~ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.« less

  11. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope

    DOE PAGES

    Takakura, Satoru; Aguilar, Mario; Akiba, Yoshiki; ...

    2017-05-03

    A continuously rotating half-wave plate (CRHWP) is a promising tool to improve the sensitivity to large angular scales in cosmic microwave background (CMB) polarization measurements. With a CRHWP, single detectors can measure three of the Stokes parameters, I, Q and U, thereby avoiding the set of systematic errors that can be introduced by mismatches in the properties of orthogonal detector pairs. We focus on the implementation of CRHWPs in large aperture telescopes (i.e. the primary mirror is larger than the current maximum half-wave plate diameter of ~0.5 m), where the CRHWP can be placed between the primary mirror and focalmore » plane. In this configuration, one needs to address the intensity to polarization (I→P) leakage of the optics, which becomes a source of 1/f noise and also causes differential gain systematics that arise from CMB temperature fluctuations. In this paper, we present the performance of a CRHWP installed in the {\\scshape Polarbear} experiment, which employs a Gregorian telescope with a 2.5 m primary illumination pattern. The CRHWP is placed near the prime focus between the primary and secondary mirrors. We find that the I→P leakage is larger than the expectation from the physical properties of our primary mirror, resulting in a 1/f knee of 100 mHz. The excess leakage could be due to imperfections in the detector system, i.e. detector non-linearity in the responsivity and time-constant. We demonstrate, however, that by subtracting the leakage correlated with the intensity signal, the 1/f noise knee frequency is reduced to 32 mHz (ℓ ~ 39 for our scan strategy), which is very promising to probe the primordial B-mode signal. We also discuss methods for further noise subtraction in future projects where the precise temperature control of instrumental components and the leakage reduction will play a key role.« less

  12. Applications of tuned mass dampers to improve performance of large space mirrors

    NASA Astrophysics Data System (ADS)

    Yingling, Adam J.; Agrawal, Brij N.

    2014-01-01

    In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.

  13. Cesic: manufacturing study for next generation telescopes

    NASA Astrophysics Data System (ADS)

    Kroedel, M.; Lichtscheindl, J.; Mair, Hp.

    2005-08-01

    Under ESO - European Southern Observatory - contract ECM has performed a feasibility study for the manufacturing of Cesic primary and secondary mirror segments for the OWL-Telescope. The main issues of this study were to demonstrate the feasibility of the serial production (~ 2550 segments) of Cesic mirror segments under a certain schedule and cost optimisation aspect for the segments. Part of this study was also a pre-design of a manufacturing facility for this big amount of mirror segments. This study is limited only up to the manufacturing of a polishable surface, the feasibility of the polishing capability is not part of this study.

  14. Constructing a dispersed fringe sensor prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Frostig, Danielle; McLeod, Brian; AGWS Team

    2018-01-01

    The Giant Magellan Telescope (GMT) will be the world’s largest telescope upon completion. The GMT employs seven 8 m primary mirror segments and seven 1 m secondary mirror segments. One challenge of the GMT is keeping the seven pairs of mirror segments on the GMT in phase. In this project, we developed and began assembly on a design for a dispersed fringe sensor prototype consisting of an optical and basic mechanical layout. The prototype design will be tested on the Magellan Clay Telescope as an experiment for future phasing methods to be used on the GMT.

  15. A dispersed fringe sensor prototype for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Frostig, Danielle; McLeod, Brian A.; Kopon, Derek

    2017-01-01

    The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.

  16. Metallic alternative to glass mirrors (active mirrors in aluminium) - A review

    NASA Astrophysics Data System (ADS)

    Rozelot, Jean P.; Leblanc, Jean-M.

    1991-09-01

    Present-day glass mirrors for telescopes, including the most recent results obtained with aluminum mirrors developed within the European EUREKA procedure (LAMA program) are reviewed. The major advantages of the aluminum-alloy solution, which can be extrapolated today for large size, are discussed. It is shown that aluminum-alloy meniscus blanks, polished on a thin nickel coating, are appropriate to manufacture mirrors of astronomical quality. With the technique of electron-beam welding, large sizes can be envisaged. The development of active optics makes it possible to easily compensate for real-time deformations. The good thermal diffusivity of aluminum alloys leads to a better and faster thermal equilibrium than all other glass structures.

  17. Physiological Effects of Touching Coated Wood.

    PubMed

    Ikei, Harumi; Song, Chorong; Miyazaki, Yoshifumi

    2017-07-13

    This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood.

  18. Physiological Effects of Touching Coated Wood

    PubMed Central

    2017-01-01

    This study examined the physiological effects of touching wood with various coating with the palm of the hand on brain activity and autonomic nervous activity. Participants were 18 female university students (mean age, 21.7 ± 1.6 years). As an indicator of brain activity, oxyhemoglobin concentrations were measured in the left and right prefrontal cortices using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) and heart rate were used as indicators of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflects parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflects sympathetic nervous activity, were measured. Plates of uncoated, oil-finished, vitreous-finished, urethane-finished, and mirror-finished white oak wood were used as tactile stimuli. After sitting at rest with their eyes closed for 60 s, participants touched the stimuli with their palm for 90 s each. The results indicated that tactile stimulation with uncoated wood calmed prefrontal cortex activity (vs. urethane finish and mirror finish), increased parasympathetic nervous activity (vs. vitreous finish, urethane finish, and mirror finish), and decreased heart rate (vs. mirror finish), demonstrating a physiological relaxation effect. Further, tactile stimulation with oil- and vitreous-finished wood calmed left prefrontal cortex activity and decreased heart rate relative to mirror-finished wood. PMID:28703777

  19. Modulation of the mirror system by social relevance.

    PubMed

    Kilner, James M; Marchant, Jennifer L; Frith, Chris D

    2006-09-01

    When we observe the actions of others, certain areas of the brain are activated in a similar manner as to when we perform the same actions ourselves. This 'mirror system' includes areas in the ventral premotor cortex and the inferior parietal lobule. Experimental studies suggest that action observation automatically elicits activity in the observer, which precisely mirrors the activity observed. In this case we would expect this activity to be independent of observer's viewpoint. Here we use whole-head magnetoencephalography (MEG) to record cortical activity of human subjects whilst they watched a series of videos of an actor making a movement recorded from different viewpoints. We show that one cortical response to action observation (oscillatory activity in the 7-12 Hz frequency range) is modulated by the relationship between the observer and the actor. We suggest that this modulation reflects a mechanism that filters information into the 'mirror system', allowing only socially relevant information to pass.

  20. Highly light-weighted ZERODUR mirror and fixation for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Behar-Lafenetre, Stephanie; Lasic, Thierry; Viale, Roger; Ruch, Eric

    2017-11-01

    Space telescopes require large primary mirrors within a demanding thermal environment: observatories at L2 orbit provide a stable environment with a drawback of very low temperature. Besides, it is necessary to limit as far as possible the mirrors mass while withstanding launch loads and keeping image quality within a cryogenic environment. ZERODUR is a well-known material extensively used for large telescope. Alcatel Alenia Space and Sagem/REOSC have combined their respective skills to go further in the lightweighting ratio of large mirror (36 kg/m2 on 1.5 m2) through a detailed design, performance assessment and technology demonstration with breadboards. Beyond on a large mirror detailed design supported by analysis, a ZERODUR mock-up has been manufacturing by Sagem/REOSC to demonstrate the achievability of the demanding parameters offering this high lightweighting ratio. Through the ISO experience on mirror attachments, a detailed design of the mirror fixation has been done as well. A full size mock-up has been manufactured and successfully tested under thermal cycling and static loading. Eventually, the ZERODUR stability behavior within this large temperature range has been verified through thermal cycling and image quality cryotest on a flat mirror breadboard. These developments demonstrate that ZERODUR is a good candidate for large space cryogenic mirrors offering outstanding optical performances associated to matured and proven technology and manufacturing process.

  1. James Webb Space Telescope primary mirror integration: testing the multiwavelength interferometer on the test bed telescope

    NASA Astrophysics Data System (ADS)

    Olczak, Gene; Fischer, David J.; Connelly, Mark; Wells, Conrad

    2011-09-01

    The James Webb Space Telescope (JWST) integration includes a center of curvature test on its 18 primary mirror segment assemblies (PMSAs). This important test is the only ground test that will demonstrate the ability to align all 18 PMSAs. Using a multi-wavelength interferometer (MWIF) integrated to the test bed telescope (TBT), a one-sixth scale model of the JWST, we verify our ability to align and phase the 18 PMSAs. In this paper we will discuss data analysis and test results when using the MWIF to align the segments of the TBT in preparation for alignment of the JWST.

  2. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  3. Device and method for redirecting electromagnetic signals

    DOEpatents

    Garcia, Ernest J.

    1999-01-01

    A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.

  4. Auroral-particle precipitation and trapping caused by electrostatic double layers in the ionosphere.

    PubMed

    Albert, R D; Lindstrom, P J

    1970-12-25

    Interpretation of high-resolution angular distribution measurements of the primary auroral electron flux detected by a rocket probe launched into a visible aurora from Fort Churchill in the fall of 1966 leads to the following conclusions. The auroral electron flux is nearly monoenergetic and has a quasi-trapped as well as a precipitating component. The quasi-trapped flux appears to be limited to a region defined by magnetic-mirror points and multiple electrostatic double layers in the ionosphere. The electrostatic field of the double-layer distribution enhances the aurora by lowering the magnetic-mirror points and supplying energy to the primary auroral electrons.

  5. The Meteorological Stations of the 1.5 and 0.84 m Telescopes of the OAN: Description and Results

    NASA Astrophysics Data System (ADS)

    Michel, R.; Bohigas, J.; Arroyo, E.; Zazueta, S.

    2001-10-01

    Meteorological stations for the 1.5 and 0.84 m telescopes at the Observatorio Astronómico Nacional at San Pedro Mártir (OAN) are described. The stations include devices for measuring temperature, atmospheric pressure, relative humidity and wind conditions. All the meteorological variables are monitored continuously and mean values are determined every 5 minutes and written on the hard disk of the control computer. This information is continuously refreshed in an HTML page that can be accessed from the OAN home page. In this paper we present the results of measurements taken over 2 years. We find that both primary mirrors are substantially warmer than the surrounding air during the night (up to ~ 5oC). This thermal gradient degrades image quality. For the primary mirror of the 1.5 m telescope this effect can be corrected with a temperature control system. For the 0.84 m telescope, where the primary mirror is located in a closed structure, ventilators moving air from the dome into the closed tube may suffice. During the night the air is colder within both domes than outside, and we conclude that no dome ventilation is necessary in these telescopes.

  6. Pushing Glass: Engaging Young People in Astronomy Through Amateur Mirror Making Classes

    NASA Astrophysics Data System (ADS)

    Larsen, K.; Slater, K. H.; Drew, B. J. V.

    2008-11-01

    One of the activities utilized by amateur astronomers to excite the general public about astronomy is mirror making. This activity requires few basic skills other than patience and perseverance, and the proper instruction. This poster reports on the results of a study of mirror making classes conducted by nine amateur astronomy groups in the Northeast and Mid-Atlantic U.S., including class organizers' reflections on their successes and challenges in recruiting and retaining young men and women through the completion of a workable telescope mirror.

  7. Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression?

    PubMed

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M; Shepherd, Samantha; Lemon, Roger N

    2009-12-24

    The discovery of "mirror neurons" in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited "mirror-like" activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. 2009 Elsevier Inc. All rights reserved.

  8. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  9. Compact reflective imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P [Danville, CA

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  10. Temperature compensated sleeve type mirror mount

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The primary mirror of a large (26-inch diameter aperture) solar telescope was made of glass ceramic and designed with an integral hub on the back of the center of the mirror. This permits heat from the mirror to radiate off its back to a nearby cold plate. To permit mounting without high stresses, the hub was ground down to a smooth cylindrical surface 3.5 inch in diameter. The ground surface was then acid-etched to remove 0.007 inch (on the diameter) by immersion for five minutes in a mixture of four parts 92% sulfuric acid and three parts 50% hydrofluoric acid. The acid etching removes microcracks from the ground Cer-Vit surface. An Invar sleeve was fabricated to fit over the hub with about 0.010 inch radial (0.020 inch diametral) clearance.

  11. The Development of Stacked Core for the Fabrication of Deep Lightweight UV-Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Egerman, Robert; Maffett, Steven P.; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2014-01-01

    The 2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make 4m class or larger monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept 0.43m mirror was completed at Exelis optically tested at 250K at MSFC which demonstrated the ability for imaging out to 2.5 microns. The parameters and test results of this concept mirror are shown. The next phase of the program includes a 1.5m subscale mirror that will be optically and dynamically tested. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will be outlined.

  12. LDR segmented mirror technology assessment study

    NASA Technical Reports Server (NTRS)

    Krim, M.; Russo, J.

    1983-01-01

    In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.

  13. System of the optic-electronic sensors for control position of the radio telescope elements

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  14. Evaluation of the thin deformable active optics mirror concept

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    The active optics concept using a thin deformable mirror has been successfully demonstrated using a 30 in. diameter, 1/2 in. thick mirror and a 61 point matrix of forces for alignment. Many of the problems associated with the design, fabrication, and launch of large aperture diffraction-limited astronomical telescopes have been resolved and experimental data created that can provide accurate predictions of performance in orbit.

  15. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less

  16. The mirror system and its role in social cognition.

    PubMed

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena

    2008-04-01

    Experiments in monkeys have shown that coding the goal of the motor acts is a fundamental property of the cortical motor system. In area F5, goal-coding motor neurons are also activated by observing motor acts done by others (the 'classical' mirror mechanism); in area F2 and area F1, some motor neurons are activated by the mere observation of goal-directed movements of a cursor displayed on a computer screen (a 'mirror-like' mechanism). Experiments in humans and monkeys have shown that the mirror mechanism enables the observer to understand the intention behind an observed motor act, in addition to the goal of it. Growing evidence shows that a deficit in the mirror mechanism underlies some aspects of autism.

  17. Network activity of mirror neurons depends on experience.

    PubMed

    Ushakov, Vadim L; Kartashov, Sergey I; Zavyalova, Victoria V; Bezverhiy, Denis D; Posichanyuk, Vladimir I; Terentev, Vasliliy N; Anokhin, Konstantin V

    2013-03-01

    In this work, the investigation of network activity of mirror neurons systems in animal brains depending on experience (existence or absence performance of the shown actions) was carried out. It carried out the research of mirror neurons network in the C57/BL6 line mice in the supervision task of swimming mice-demonstrators in Morris water maze. It showed the presence of mirror neurons systems in the motor cortex M1, M2, cingular cortex, hippocampus in mice groups, having experience of the swimming and without it. The conclusion is drawn about the possibility of the new functional network systems formation by means of mirror neurons systems and the acquisition of new knowledge through supervision by the animals in non-specific tasks.

  18. Support system design of the sub-mirror cell of the LAMOST Schmidt plate

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jiang, Fanghua

    2006-06-01

    The reflecting Schmidt plate of the Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) is composed of 24 hexagonal segments, each of which is 1100 mm from corner to corner and 25 mm in thickness. Both segmented mirror active optics and deformable mirror active optics are involved in the Schmidt plate so as to compensate for optical aberration and structural deformation. A prototype of the segment support system with dummy aluminum mirror had been setup and tested during 2003 to 2004, afterwards, based on the evaluation of test, the whole support system was updated to a backlash-free and light-weighted design. For the segmented mirror active optics, the segment mirror support system is to fulfill motions of tip, tilt and piston with three linear positioning actuators. Instead of self-alignment bearing adopted in the early prototype, a centering diaphragm is employed to realize a backlash-free pintle. And a lever with reduction of 10:1 is introduced to each of the three positioning actuator mechanisms, respectively, to obtain greater load capacity and further finer output displacement, as hence releases requirement and cost of the actuators. For better performance, high strength steel blades are used in tension state for pivots of the levers preloaded with longitudinal springs. To gap the mirror segments with respect to each other for making proper space for edge sensors, three adjustable fixtures are implemented for each segment mirror module to do translation and pistion on three conrresponding nodes on the top layer of the gross mirror cell truss before being anchored once and forever. In addition, safety measurements as well as anti-rotation mechanism have been taken into consideration throughout the design and development process. This paper describes the mechanical design and related analysis of the segment mirror support system in detail.

  19. Using Mu Rhythm Desynchronization to Measure Mirror Neuron Activity in Infants

    ERIC Educational Resources Information Center

    Nystrom, Par; Ljunghammar, Therese; Rosander, Kerstin; von Hofsten, Claes

    2011-01-01

    The Mirror Neuron System hypothesis stating that observed actions are projected onto the observer's own action system assigns an important role to development, because only actions mastered by the observer can be mirrored. The purpose of the present study was to investigate whether there is evidence of a functioning mirror neuron system (MNS) in…

  20. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  1. Engineers Work on the James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    Engineers at Ball Aerospace test the Wavefront Sensing and Control testbed to ensure that the 18 primary mirror segments and one secondary mirror on JWST work as one. The test is performed on a 1/6 scale model of the JWST mirrors. Credit: NASA/Northrop Grumman/Ball Aerospace To read more about the James Webb Space Telescope go to: www.nasa.gov/topics/technology/features/partnerships.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  2. Space Science

    NASA Image and Video Library

    1995-06-08

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  3. Deflectometry using portable devices

    NASA Astrophysics Data System (ADS)

    Butel, Guillaume P.; Smith, Greg A.; Burge, James H.

    2015-02-01

    Deflectometry is a powerful metrology technique that uses off-the-shelf equipment to achieve nanometer-level accuracy surface measurements. However, there is no portable device to quickly measure eyeglasses, lenses, or mirrors. We present an entirely portable new deflectometry technique that runs on any Android™ smartphone with a front-facing camera. Our technique overcomes some specific issues of portable devices like screen nonlinearity and automatic gain control. We demonstrate our application by measuring an amateur telescope mirror and simulating a measurement of the faulty Hubble Space Telescope primary mirror. Our technique can, in less than 1 min, measure surface errors with accuracy up to 50 nm RMS, simply using a smartphone.

  4. Hubble Space Telescope COSTAR asphere verification with a modified computer-generated hologram interferometer. [Corrective Optics Space Telescope Axial Replacement

    NASA Technical Reports Server (NTRS)

    Feinberg, L.; Wilson, M.

    1993-01-01

    To correct for the spherical aberration in the Hubble Space Telescope primary mirror, five anamorphic aspheric mirrors representing correction for three scientific instruments have been fabricated as part of the development of the corrective-optics space telescope axial-replacement instrument (COSTAR). During the acceptance tests of these mirrors at the vendor, a quick and simple method for verifying the asphere surface figure was developed. The technique has been used on three of the aspheres relating to the three instrument prescriptions. Results indicate that the three aspheres are correct to the limited accuracy expected of this test.

  5. Design and development of 24 times high-power laser beam expander

    NASA Astrophysics Data System (ADS)

    Lin, Zhao-heng; Gong, Xiu-ming; Wu, Shi-bin; Tan, Yi; Jing, Hong-wei; Wei, Zhong-wei

    2013-09-01

    As currently, laser calibration, laser radar, laser ranging and the relative field raised up the demand for high magnification laser beam expander. This article intends to introduce a high-energy laser beam expander research and design, large- diameter, wide-band, high-magnification and small obscuration ratio are the main features. By using Cassegrain reflective optical system, this laser beam expander achieves 24 times beam expand, and outgoing effective limiting aperture is Φ600 mm, band scope between 0.45μm to 5μm, single-pulse laser damage threshold greater than 1J/cm2, continuous-wave laser damage threshold greater than 200W/cm2 and obscuration ratio 1:10. Primary mirror underside support uses 9 points float supporting, lateral support mainly depends on mercury belt support and assists by mandrel ball head positioning support. An analyzing base on finite element analysis software ANSYS, and primary mirror deformation status analysis with debug mode and operativemode, when inputs four groups of Angle 170°, 180°, 210° and 240° , mercury belt under each group of angle load-bearing is 65%, 75% , 85% and 100% respectively, totally 16 workingcondition analyze results. At last, the best way to support primary mirror is finalized. Through design of secondary mirror to achieve a five-dimensional precision fine-tune. By assembling and debugging laser beam expander, Zygo interferometer detection system proof image quality (RMS) is 0.043λ (λ=632.8nm), stability (RMS) is 0.007λ (λ=632.8nm), and effective transmission hit 94%, meets the requirements of practical application completely.

  6. Software framework for the upcoming MMT Observatory primary mirror re-aluminization

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Clark, Dusty; Porter, Dallan

    2014-07-01

    Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.

  7. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  8. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Effinger, Mike; Stahl, H. Philip

    2015-01-01

    The Advanced Mirror Technology Development (AMTD) project is in phase 2 of a multiyear effort, initiated in FY 2012. This effort is to mature, by at least a half Technology Readiness Level step, the critical technologies required to enable 4-meter or larger ultraviolet, optical, and infrared (UVOIR) space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD continues to achieve all of its goals and has accomplished all of its milestones to date. This has been achieved by assembling an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes; by deriving engineering specifications for advanced normal-incidence mirror systems needed to make the required science measurements; and by defining and prioritizing the most important technical problems to be solved. Our results have been presented to the CoPAG and Mirror Tech Days 2013, and proceedings papers of the 2013 and 2014 SPIE Optics & Photonics Symposia have been published.

  9. Mode/Medium Instability in CO2 Laser

    NASA Technical Reports Server (NTRS)

    Webster, K. L.; Sung, C. C.

    1992-01-01

    Report discribes theoretical study of model/medium instability (MMI) in CO2 laser. Purposes of study to extend, to small Fresnel numbers, previous study of MMI restricted to large Fresnel numbers and to study methods of previous studies, to suppress MMI. Method of primary interest involves replacement of hard edge output mirror in laser resonator with mirror, local reflectivity of which decreases with radial distance from optical axis according to Gaussian profile.

  10. Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufli, R; Robinson, J C; Spiller, E

    2006-02-22

    Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

  11. Aureole lidar: Design, operation, and comparison with in-situ measurements

    NASA Astrophysics Data System (ADS)

    Hooper, William P.; Jensen, D. R.

    1992-07-01

    In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.

  12. Aureole lidar: Design, operation, and comparison with in-situ measurements

    NASA Technical Reports Server (NTRS)

    Hooper, William P.; Jensen, D. R.

    1992-01-01

    In 1986, H. Berber and Hooper examined the signals that could be detected by an airborne lidar flying above the marine boundary layer (MBL). One signal (aureole) formed from laser light returned to the receiver after a reflect off the ocean and forward scatter off the aerosol particles appeared to be both detectable and related to the optical depth of the MBL. Now, research has been directed towards developing a practical instrument to measure the aureole and finding an algorithm to use the information. Unlike the lidar backscatter which typically requires a telescope with a narrow field of view (0.5 mrad), the aureole signal occurs over a wide field of view (50 mrad). To accommodate the totally different needs, a standard commercial Cassegrainian telescope was modified to yield a telescope with two focal planes. The secondary mirror was replaced by a lens, whose front surface was half silvered and curved to match the replaced mirror. Light reflecting off the lens focused behind the primary mirror. The back lens surface was curved to allow unreflected light to focus at the natural focus of the primary mirror. This focal plane which is behind the lens has a wide field of view. To calculate an extinction profile, the aureole optical depth estimate is combined with the lidar backscatter profile.

  13. Laser focus compensating sensing and imaging device

    DOEpatents

    Vann, Charles S.

    1993-01-01

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  14. Laser focus compensating sensing and imaging device

    DOEpatents

    Vann, C.S.

    1993-08-31

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  15. Lightweight Deployable Mirrors with Tensegrity Supports

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.; Cleve, Richard C.

    2004-01-01

    The upper part of Figure 1 shows a small-scale prototype of a developmental class of lightweight, deployable structures that would support panels in precise alignments. In this case, the panel is hexagonal and supports disks that represent segments of a primary mirror of a large telescope. The lower part of Figure 1 shows a complete conceptual structure containing multiple hexagonal panels that hold mirror segments. The structures of this class are of the tensegrity type, which was invented five decades ago by artist Kenneth Snelson. A tensegrity structure consists of momentfree compression members (struts) and tension members (cables). The structures of this particular developmental class are intended primarily as means to erect large segmented primary mirrors of astronomical telescopes or large radio antennas in outer space. Other classes of tensegrity structures could also be designed for terrestrial use as towers, masts, and supports for general structural panels. An important product of the present development effort is the engineering practice of building a lightweight, deployable structure as an assembly of tensegrity modules like the one shown in Figure 2. This module comprises two octahedral tensegrity subunits that are mirror images of each other joined at their plane of mirror symmetry. In this case, the plane of mirror symmetry is both the upper plane of the lower subunit and the lower plane of the upper subunit, and is delineated by the midheight triangle in Figure 2. In the configuration assumed by the module to balance static forces under mild loading, the upper and lower planes of each sub-unit are rotated about 30 , relative to each other, about the long (vertical) axis of the structure. Larger structures can be assembled by joining multiple modules like this one at their sides or ends. When the module is compressed axially (vertically), the first-order effect is an increase in the rotation angle, but by virtue of the mirror arrangement, the net first-order rotation between the uppermost and lowermost planes is zero. The need to have zero net rotation between these planes under all loading conditions in a typical practical structure is what prompts the use of the mirror configuration. Force and moment loadings other than simple axial compression produce only second-order deformations through strains in the struts and cables.

  16. Design and Testing of a One-Meter Membrane Mirror with Active Boundary Control (Conference Proceedings)

    DTIC Science & Technology

    2005-08-01

    One type of setup looked into in the past has been the lenticular design, which consists of a clear canopy attached to a reflective film that uses...class lenticular membrane mirror system utilizing active boundary control and stress-coating applications to form a usable aperture for visible...imaging applications. Keywords: Membrane mirror, boundary control, lenticular , lightweight 1. INTRODUCTION Analysis has been conducted to

  17. Space telescope low scattered light camera - A model

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Kuper, T. G.; Shack, R. V.

    1982-01-01

    A design approach for a camera to be used with the space telescope is given. Camera optics relay the system pupil onto an annular Gaussian ring apodizing mask to control scattered light. One and two dimensional models of ripple on the primary mirror were calculated. Scattered light calculations using ripple amplitudes between wavelength/20 wavelength/200 with spatial correlations of the ripple across the primary mirror between 0.2 and 2.0 centimeters indicate that the detection of an object a billion times fainter than a bright source in the field is possible. Detection of a Jovian type planet in orbit about alpha Centauri with a camera on the space telescope may be possible.

  18. Development Tests of a Cryogenic Filter Wheel Assembly for the NIRCam Instrument

    NASA Technical Reports Server (NTRS)

    McCully, Sean; Clark, Charles; Schermerhorn, Michael; Trojanek, Filip; O'Hara, Mark; Williams, Jeff; Thatcher, John

    2006-01-01

    The James Webb Space Telescope is an infrared-optimized space telescope scheduled for launch in 201 3. Its 6.5-m diameter primary mirror will collect light from some of the first galaxies formed after the big bang. The Near Infrared camera (NIRCam) will detect the first light from these galaxies, provide the necessary tools for studying the formation of stars, aid in discovering planets around other stars, and adjust the wave front error on the primary mirror (Fig. 1). The instrument and its complement of mechanisms and optics will operate at a cryogenic temperature of 35 K. This paper describes tests and test results of the NIRCam Filter Wheel assembly prototype.

  19. Large aluminium convex mirror for the cryo-optical test of the Planck primary reflector

    NASA Astrophysics Data System (ADS)

    Gloesener, P.; Flébus, C.; Cola, M.; Roose, S.; Stockman, Y.; de Chambure, D.

    2017-11-01

    In the frame of the PLANCK mission telescope development, it is requested to measure the reflector changes of the surface figure error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been selected and a dedicated thermo mechanical set-up has been constructed. In order to realise the test set-up for this reflector, a large aluminium convex mirror with radius of 19500 mm has been manufactured. The mirror has to operate in a cryogenic environment lower than 30 K, and has a contribution to the RMS WFE with less than 1 μm between room temperature and cryogenic temperature. This paper summarises the design, manufacturing and characterisation of this mirror, showing it has fulfilled its requirements.

  20. Analysis of an x-ray mirror made from piezoelectric bimorph

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Li, Ming; Tang, Shanzhi; Gao, Junxiang; Zhang, Weiwei; Zhu, Peiping

    2017-07-01

    Theoretical analysis of the mechanical behavior of an x-ray mirror made from piezoelectric bimorph is presented. A complete two-dimensional relationship between the radius of curvature of the mirror and the applied voltage is derived. The accuracy of this relationship is studied by comparing the figures calculated by the relationship and Finite Element Analysis. The influences of several critical parameters in the relationship on the radius of curvature are analyzed. It is found that piezoelectric coefficient d31 is the main material property parameter that dominates the radius of curvature, and that the optimal thickness of PZT plate corresponding to largest bending range is 2.5 times of that of faceplate. It is demonstrated that the relationship is helpful for us to complete the primary design of the x-ray mirror made from piezoelectric bimorph.

  1. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  2. The effects of mirror therapy on arm and hand function in subacute stroke in patients.

    PubMed

    Radajewska, Alina; Opara, Józef A; Kucio, Cezary; Błaszczyszyn, Monika; Mehlich, Krzysztof; Szczygiel, Jarosław

    2013-09-01

    The aim of this study was to evaluate the effect of mirror therapy on arm and hand function in subacute stroke in patients. The study included 60 hemiparetic right-handed patients after ischemic stroke 8-10 weeks after onset. They underwent stationary comprehensive rehabilitation in the rehabilitation centre. They were divided into two randomly assigned groups: mirror (n=30) and control (n=30). For both groups, two subgroups were created: one that included patients with right arm paresis (n=15) and the other that included patients with left arm paresis (n=15). The mirror group received an additional intervention: training with a mirror for 5 days/week, 2 sessions/day, for 21 days. Each single session lasted for 15 min. The control group (n=30) underwent a conventional rehabilitation program without mirror therapy. To evaluate self-care in performing activities of daily living, the Functional Index 'Repty' was used. To evaluate hand and arm function, the Frenchay Arm Test and the Motor Status Score were used. Measurements were performed twice: before and after 21 days of applied rehabilitation. No significant improvement in hand and arm function in both subgroups in Frenchay Arm Test and Motor Status Score scales was observed. However, there was a significant improvement in self-care of activities of daily living in the right arm paresis subgroup in the mirror group measured using the Functional Index 'Repty'. Mirror therapy improves self-care of activities of daily living for patients with right arm paresis after stroke.

  3. Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.

  4. Worthwhile optical method for free-form mirrors qualification

    NASA Astrophysics Data System (ADS)

    Sironi, G.; Canestrari, R.; Toso, G.; Pareschi, G.

    2013-09-01

    We present an optical method for free-form mirrors qualification developed by the Italian National Institute for Astrophysics (INAF) in the context of the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project which includes, among its items, the design, development and installation of a dual-mirror telescope prototype for the Cherenkov Telescope Array (CTA) observatory. The primary mirror panels of the telescope prototype are free-form concave mirrors with few microns accuracy required on the shape error. The developed technique is based on the synergy between a Ronchi-like optical test performed on the reflecting surface and the image, obtained by means of the TraceIT ray-tracing proprietary code, a perfect optics should generate in the same configuration. This deflectometry test allows the reconstruction of the slope error map that the TraceIT code can process to evaluate the measured mirror optical performance at the telescope focus. The advantages of the proposed method is that it substitutes the use of 3D coordinates measuring machine reducing production time and costs and offering the possibility to evaluate on-site the mirror image quality at the focus. In this paper we report the measuring concept and compare the obtained results to the similar ones obtained processing the shape error acquired by means of a 3D coordinates measuring machine.

  5. The effects of very early mirror therapy on functional improvement of the upper extremity in acute stroke patients.

    PubMed

    Yeldan, Ipek; Huseyınsınoglu, Burcu Ersoz; Akıncı, Buket; Tarakcı, Ela; Baybas, Sevim; Ozdıncler, Arzu Razak

    2015-11-01

    [Purpose] The aim of the study was to evaluate the effects of a very early mirror therapy program on functional improvement of the upper extremity in acute stroke patients. [Subjects] Eight stroke patients who were treated in an acute neurology unit were included in the study. [Methods] The patients were assigned alternatively to either the mirror therapy group receiving mirror therapy and neurodevelopmental treatment or the neurodevelopmental treatment only group. The primary outcome measures were the upper extremity motor subscale of the Fugl-Meyer Assessment, Motricity Index upper extremity score, and the Stroke Upper Limb Capacity Scale. Somatosensory assessment with the Ayres Southern California Sensory Integration Test, and the Barthel Index were used as secondary outcome measures. [Results] No statistically significant improvements were found for any measures in either group after the treatment. In terms of minimally clinically important differences, there were improvements in Fugl-Meyer Assessment and Barthel Index in both mirror therapy and neurodevelopmental treatment groups. [Conclusion] The results of this pilot study revealed that very early mirror therapy has no additional effect on functional improvement of upper extremity function in acute stroke patients. Multicenter trials are needed to determine the results of early application of mirror therapy in stroke rehabilitation.

  6. Neurofunctional changes after a single mirror therapy intervention in chronic ischemic stroke.

    PubMed

    Novaes, Morgana M; Palhano-Fontes, Fernanda; Peres, Andre; Mazzetto-Betti, Kelley; Pelicioni, Maristela; Andrade, Kátia C; Dos Santos, Antonio Carlos; Pontes-Neto, Octavio; Araujo, Draulio

    2018-03-20

    Mirror therapy (MT) is becoming an alternative rehabilitation strategy for various conditions, including stroke. Although recent studies suggest the positive benefit of MT in chronic stroke motor recovery, little is known about its neural mechanisms. To identify functional brain changes induced by a single MT intervention in ischemic stroke survivors, assessed by both transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI). TMS and fMRI were used to investigate 15 stroke survivors immediately before and after a single 30-min MT session. We found statistically significant increase in post-MT motor evoked potential (MEP) amplitude (increased excitability) from the affected primary motor cortex (M1), when compared to pre-MT MEP. Post-MT fMRI maps were associated with a more organized and constrained pattern, with a more focal M1 activity within the affected hemisphere after MT, limited to the cortical area of hand representation. Furthermore, we find a change in the balance of M1 activity toward the affected hemisphere. In addition, significant correlation was found between decreased fMRI β-values and increased MEP amplitude post-MT, in the affected hemisphere. Our study suggests that a single MT intervention in stroke survivors is related to increased MEP of the affected limb, and a more constrained activity of the affected M1, as if activity had become more constrained and limited to the affected hemisphere.

  7. Two-mirror, three-reflection telescopes as candidates for sky surveys in ground and space applications. The MINITRUST: an active optics warping telescope for wide-field astronomy

    NASA Astrophysics Data System (ADS)

    Viotti, Roberto F.; La Padula, Cesare D.; Vignato, Agostino; Lemaitre, Gerard R.; Montiel, Pierre; Dohlen, Kjetil

    2002-12-01

    A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.

  8. Combined heat and power generation with a HCPV system at 2000 suns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio

    2015-09-28

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connectedmore » to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.« less

  9. Combined heat and power generation with a HCPV system at 2000 suns

    NASA Astrophysics Data System (ADS)

    Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco

    2015-09-01

    This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.

  10. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions.

    PubMed

    Reissig, Paola; Stöckel, Tino; Garry, Michael I; Summers, Jeffery J; Hinder, Mark R

    2015-01-01

    Cross-limb transfer (CLT) describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF) during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53) engaged in a short-term training regime (300 movements) involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb). Performance in both limbs was examined before, during and following the unilateral training. Furthermore, we measured corticospinal excitability (using TMS) at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (both p > 0.1). Training also elicited bilateral increases in corticospinal excitability (p < 0.05). For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47), whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60). The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the extent of CLT.

  11. The neuroscience of observing consciousness & mirror neurons in therapeutic hypnosis.

    PubMed

    Rossi, Ernest L; Rossi, Kathryn L

    2006-04-01

    Neuroscience documents the activity of "mirror neurons" in the human brain as a mechanism whereby we experience empathy and recognize the intentions of others by observing their behavior and automatically matching their brain activity. This neural basis of empathy finds support in research on dysfunctions in the mirror systems of humans with autism and fMRI research on normal subjects designed to assess intentionality, emotions, and complex cognition. Such empathy research now appears to be consistent with the historical and research literature on hypnotic induction, rapport, and many of the classical phenomena of suggestion. A preliminary outline of how mirror neurons may function as a rapport zone mediating between observing consciousness, the gene expression/protein synthesis cycle, and brain plasticity in therapeutic hypnosis and psychosomatic medicine is proposed. Brain plasticity is generalized in the theory, research, and practice of utilizing mirror neurons as an explanatory framework in developing and training new skill sets for facilitating an activity-dependent approach to creative problem solving, mind-body healing, and rehabilitation with therapeutic hypnosis.

  12. The LBT real-time based control software to mitigate and compensate vibrations

    NASA Astrophysics Data System (ADS)

    Borelli, J.; Trowitzsch, J.; Brix, M.; Kürster, M.; Gässler, W.; Bertram, T.; Briegel, F.

    2010-07-01

    The Large Binocular Telescope (LBT) uses two 8.4 meters active primary mirrors and two adaptive secondary mirrors on the same mounting to take advantage of its interferometric capabilities. Both applications, interferometry and AO, are sensitive to vibrations. Several measurement campaigns have been carried out at the LBT and their results strongly indicate that a vibration monitoring system is required to improve the performance of LINC-NIRVANA, LBTI, and ARGOS, the laser guided ground layer adaptive optic system. Currently, a control software for mitigation and compensation of the vibrations is being designed. A complex set of algorithms collects real-time vibration data, archiving it for further analysis, and in parallel, generating the tip-tilt and optical path difference (OPD) data for the control loop of the instruments. A real-time data acquisition device equipped with embedded real-time Linux is used in our systems. A set of quick-look tools is currently under development in order to verify if the conditions at the telescope are suitable for interferometric/adaptive observations.

  13. Uniform-load and actuator influence functions of a thin or thick annular mirror: application to active mirror support optimization

    NASA Astrophysics Data System (ADS)

    Arnold, Luc

    1996-03-01

    Explicit analytical expressions are derived for the elastic deformation of a thin or thick mirror of uniform thickness and with a central hole. Thin-plate theory is used to derive the general influence function, caused by uniform and/or discrete loads, for a mirror supported by discrete points. No symmetry considerations of the locations of the points constrain the model. An estimate of the effect of the shear forces is added to the previous pure bending model to take into account the effect of the mirror thickness. Two particular cases of general influence are the uniform-load (equivalent to gravity in the case of a thin mirror) influence function for a ring support of k discrete points with k-fold symmetry. The influence of the size of the support pads is studied. A method for optimizing an active mirror cell is presented that couples the minimization of the gravity influence function with the optimization of the combined actuator influence functions to fit low-order aberrations. These low-spatial-frequency aberrations can be of elastic or optical origin. In the latter case they are due, for example, to great residual polishing errors corresponding to the soft polishing specifications relaxed for cost reductions. Results show that the correction range of the active cell can thus be noticeably enlarged, compared with an active cell designed as a passive cell, i.e., by minimizing only the deflection under gravitational loading. In the example treated here of the European Southern Observatory's New Technology Telescope I show that the active correction range can be enlarged by approximately 50% in the case of third-order astigmatic correction.

  14. The University of Tokyo Atacama Observatory 6.5m telescope: project overview and current status

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, T.; Kato, N.; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Koshida, S.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Garay, G.

    2016-07-01

    The University of Tokyo Atacama Observatory Project is to construct a 6.5m infrared telescope at the summit of Co. Chajnantor (5640m altitude) in northern Chile, promoted by the University of Tokyo. Thanks to the dry climate (PWV 0.5mm) and the high altitude, it will achieve excellent performance in the NIR to MIR wavelengths. The telescope has two Nasmyth foci where the facility instruments are installed and two folded-Cassegrain foci for carry-in instruments. All these four foci can be switched by rotating a tertiary mirror. The final focal ratio is 12.2 and the telescope foci have large field-of-view of 25° in diameter. We adopted the 6.5m light-weighted borosilicate honeycomb primary mirror and its support system that are developed by Steward Observatory Richard F. Caris Mirror Lab. The dome enclosure has the shape of carousel, and large ventilation windows with shutters control the wind to flush heat inside the dome. The operation building with control room, aluminizing chamber and maintenance facilities is located at the side of the dome. Two cameras, SWIMS for spectroscopy and imaging in the near-infrared and MIMIZUKU in the mid-infrared, are being developed as the first-generation facility instruments. The operation of the telescope will be remotely carried out from a base facility at San Pedro de Atacama, 50km away from the summit. The construction of the telescope is now underway. Fabrication of the telescope mount has almost finished, and the pre-assembly has been carried out in Japan. The primary, secondary, and tertiary mirrors and their cells have been also fabricated, as well as their cells and support systems. Fabrication of the enclosure is now underway, and their pre-assembly in Japan will be carried out in 2016. Construction of the base facility at San Pedro de Atacama has been already completed in 2014, and operated for the activities in Atacama. The telescope is now scheduled to see the first light at the beginning of 2018.

  15. Large ultra-lightweight photonic muscle membrane mirror telescope

    NASA Astrophysics Data System (ADS)

    Ritter, Joseph M.; Baer, Andrea E.; Ditto, Thomas D.

    2008-07-01

    Photons weigh nothing. Why must even small space telescopes weigh tons? Primary mirrors require sub-wavelength figure (shape) error in order to achieve acceptable Strehl ratios. Traditional telescopy methods require rigid and therefore heavy mirrors and reaction structures as well as proportionally heavy and expensive spacecraft busses and launch vehicles. Our team's vision is to demonstrate the technology for making giant space telescopes with 1/2000 the areal density of the Hubble. Progress on a novel actuation approach is presented. The goal is to lay groundwork to achieve a 10 to 100 fold improvement in spatial resolution and a factor of 10 reduction in production and deployment cost of active optics. This entailed the synthesis and incorporation of photoactive isomers into crystals and polyimides to develop nanomachine laser controlled molecular actuators. A large photomechanical effect is obtained in polymers 10-50 μm thick. Laser-induced figure variations include the following: 1) reversible bi-directional bending; 2) large deformation range; 3) high speed deformation; and 4) control with a single laser (~0.1 W/cm2). Photolyzation data presented showing reversible semi-permanence of the photoisomerization indicates that a scanned 1 watt laser rather than a megawatt will suffice for large gossamer structure actuation. Areal density can be reduced by increasing actuation. Making every molecule of a substrate an actuator approaches the limit of the design trade space. Presented is a photomechanical system where nearly every molecule of a mirror substrate is itself an optically powered actuator. Why must even small space telescopes weigh tons? Data suggests they need not.

  16. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope

    NASA Astrophysics Data System (ADS)

    Li, Zongxuan; Chen, Xue; Wang, Shaoju; Jin, Guang

    2017-12-01

    A flexural support technique for lightweighted Primary Mirror Assembly (PMA) of a space telescope is presented in this article. The proposed three-point flexural mount based on a cartwheel flexure can maintain the surface figure of the PMA in a horizontal optical testing layout. The on-orbit surface error of the PMA causes significant degradation in image quality. On-ground optical testing cannot determine the zero-gravity figure of the PMA due to surface distortion by gravity. We unveiled the crucial fact that through a delicate mounting structure design, the surface figure can remain constant precisely without inducing distinguishable astigmatism when PMA rotates with respect to the optical axis, and the figure can be considered as the zero-gravity surface figure on the orbit. A design case is described to show the lightweight design of a SiC mirror and the optimal flexural mounting. Topology optimization and integrated opto-mechanical analysis using the finite element method are utilized in the design process. The Primary Mirror and mounting structures were fabricated and assembled. After the PMA mirror surface was polished to λ/50 RMS, optical testing in different clocking configurations was performed, respectively, through rotating the PMA by multiple angles. Test results show that the surface figure remained invariant, indicating that gravity release on the orbit will not cause an additional surface error. Vibration tests including sweep sine and random vibration were also performed to validate the mechanical design. The requirements for the mounting technique in space were qualified.

  17. Advances in thermal control and performance of the MMT M1 mirror

    NASA Astrophysics Data System (ADS)

    Gibson, J. D.; Williams, G. G.; Callahan, S.; Comisso, B.; Ortiz, R.; Williams, J. T.

    2010-07-01

    Strategies for thermal control of the 6.5-meter diameter borosilicate honeycomb primary (M1) mirror at the MMT Observatory have included: 1) direct control of ventilation system chiller setpoints by the telescope operator, 2) semiautomated control of chiller setpoints, using a fixed offset from the ambient temperature, and 3) most recently, an automated temperature controller for conditioned air. Details of this automated controller, including the integration of multiple chillers, heat exchangers, and temperature/dew point sensors, are presented here. Constraints and sanity checks for thermal control are also discussed, including: 1) mirror and hardware safety, 2) aluminum coating preservation, and 3) optimization of M1 thermal conditions for science acquisition by minimizing both air-to-glass temperature differences, which cause mirror seeing, and internal glass temperature gradients, which cause wavefront errors. Consideration is given to special operating conditions, such as high dew and frost points. Precise temperature control of conditioned ventilation air as delivered to the M1 mirror cell is also discussed. The performance of the new automated controller is assessed and compared to previous control strategies. Finally, suggestions are made for further refinement of the M1 mirror thermal control system and related algorithms.

  18. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    NASA Astrophysics Data System (ADS)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  19. Alignment of the Korsch type off-axis 3 mirror optical system using sensitivity table method

    NASA Astrophysics Data System (ADS)

    Lee, Kyoungmuk; Kim, Youngsoo; Hong, Jinsuk; Kim, Sug-Whan; Lee, Haeng-Bok; Choi, Se-Chol

    2018-05-01

    The optical system of the entire mechanical and optical components consist of all silicon carbide (SiC) is designed, manufactured and aligned. The Korsch type Cassegrain optical system has 3-mirrors, the primary mirror (M1), the secondary mirror (M2), the folding mirror (FM) and the tertiary mirror (M3). To assemble the M3 and the FM to the rear side of the M1 bench, the optical axis of the M3 is 65.56 mm off from the physical center. Due to the limitation of the mass budget, the M3 is truncated excluding its optical axis. The M2 was assigned to the coma compensator and the M3 the astigmatism respectively as per the result of the sensitivity analysis. Despite of the difficulty of placing these optical components in their initial position within the mechanical tolerance, the initial wave front error (WFE) performance is as large as 171.4 nm RMS. After the initial alignment, the sensitivity table method is used to reach the goal of WFE 63.3 nm RMS in all fields. We finished the alignment with the final WFE performance in all fields are as large as 55.18 nm RMS.

  20. LSST telescope and site status

    NASA Astrophysics Data System (ADS)

    Gressler, William J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) Project1 received its construction authorization from the National Science Foundation in August 2014. The Telescope and Site (T and S) group has made considerable progress towards completion in subsystems required to support the scope of the LSST science mission. The LSST goal is to conduct a wide, fast, deep survey via a 3-mirror wide field of view optical design, a 3.2-Gpixel camera, and an automated data processing system. The summit facility is currently under construction on Cerro Pachón in Chile, with major vendor subsystem deliveries and integration planned over the next several years. This paper summarizes the status of the activities of the T and S group, tasked with design, analysis, and construction of the summit and base facilities and infrastructure necessary to control the survey, capture the light, and calibrate the data. All major telescope work package procurements have been awarded to vendors and are in varying stages of design and fabrication maturity and completion. The unique M1M3 primary/tertiary mirror polishing effort is completed and the mirror now resides in storage waiting future testing. Significant progress has been achieved on all the major telescope subsystems including the summit facility, telescope mount assembly, dome, hexapod and rotator systems, coating plant, base facility, and the calibration telescope. In parallel, in-house efforts including the software needed to control the observatory such as the scheduler and the active optics control, have also seen substantial advancement. The progress and status of these subsystems and future LSST plans during this construction phase are presented.

Top