Science.gov

Sample records for active primary mirror

  1. The VST active primary mirror support system

    NASA Astrophysics Data System (ADS)

    Schipani, Pietro; Capaccioli, Massimo; D'Orsi, Sergio; Ferragina, Luigi; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco; De Paris, Giacinto; Fierro, Davide; Tomelleri, Raffaele; Rossettini, Pierfrancesco; Perina, Francesco; Recchia, Stefano; Magrin, Demetrio

    2010-07-01

    The 2.6-m primary mirror of the VST telescope is equipped with an active optics system in order to correct low-order aberrations, constantly monitoring the optical quality of the image and controlling the relative position and the shape of the optical elements. Periodically an image analyser calculates the deviation of the image from the best quality. VST is equipped with both a Shack-Hartmann in the probe system and a curvature sensor embedded in the OmegaCAM instrument. The telescope control software decomposes the deviation into single optical contributions and calculates the force correction that each active element has to perform to achieve the optimal quality. The set of correction forces, one for each axial actuator, is computed by the telescope central computer and transmitted to the local control unit of the primary mirror system for execution. The most important element of the VST active optics is the primary mirror, with its active support system located within the primary mirror cell structure. The primary mirror support system is composed by an axial and a lateral independent systems and includes an earthquake safety system. The system is described and the results of the qualification test campaign are discussed.

  2. Finite element analysis of lightweight active primary mirror

    NASA Astrophysics Data System (ADS)

    Lu, Wei Xin; Guan, Chun Lin; Rao, Chang Hui

    2012-09-01

    With the increasing requirement on spatial resolution to achieve ideal performance in space-based optical imaging system, there is a need to enlarge primary apertures. However, primary mirrors of such systems cannot maintain its optical tolerances across the mirror surface after sending to space, because of gravity change and varying ambient temperature. It necessitates active optics technology of primary mirror surface correction. Since mass-to-orbit is expensive and limited, lightweight primary mirror is needed. The paper investigates a lightweight, active primary mirror. This primary mirror structure includes lightweight face sheet and substrate with surface-parallel actuators embedded in the recess of web support ribs. Finite element models of lightweight, active primary mirror structures with different structural parameters are established and simulated. Using the response function matrixes acquired from finite element analysis, the fitting errors for Zernike polynomials are computed by MATLAB. Correctability comparisons of lightweight, active primary mirror structures with different parameters are carried out. To get best correctability, the mirrors should have small recess depth, high and thin ribs, thick face sheets and long actuators. The structural analysis result will be valuable for the design of lightweight, active primary mirror.

  3. Active supports and force optimization for the MMT primary mirror

    NASA Astrophysics Data System (ADS)

    Martin, Hubert M.; Callahan, Shawn P.; Cuerden, Brian; Davison, Warren B.; Derigne, S. T.; Dettmann, Lee R.; Parodi, G.; Trebisky, T. J.; West, Steve C.; Williams, Joseph T.

    1998-08-01

    We describe the active support system and optimization of support forces for the 6.5 m primary mirror for the Multiple Mirror Telescope Conversion. The mirror was figured to an accuracy of 26 nm rms surface error, excluding certain flexible bending modes that will be controlled by support forces in the telescope. On installation of the mirror into its telescope support cell, an initial optimization of support forces is needed because of minor differences between the support used during fabrication and that in the telescope cell. The optimization is based on figure measurements made interferometrically in the vibration- isolated test tower of the Steward Observatory Mirror Lab. Actuator influence functions were determined by finite- element analysis and verified by measurement. The optimization is performed by singular value decomposition of the influence functions into normal modes. Preliminary results give a wavefront accuracy better than that of the atmosphere in 0.11 arcsecond seeing.

  4. Active support system for 1-m SONG primary mirror

    NASA Astrophysics Data System (ADS)

    Niu, Dongsheng; Wang, Guomin; Gu, Bozhong

    2012-05-01

    Chinese-node telescope of Stellar Observations Network Group (SONG) has a primary mirror 1m in diameter with flat back, which will be supported actively. The performance evaluation of the telescope's active optics system is conducted. Finite element analysis (FEA) is employed to analyze the optical surface figures of the primary mirror, and two optimizations are carried out by using ANSYS: (1) the locations and forces of axial supports are optimized with the telescope pointing to zenith; (2) the lateral support forces are calculated with the telescope pointing to horizon. Axial support force sensitivities are calculated in a case that a single axial support has a force error of 0.5N. The correction ability of the active support system is analyzed when an arbitrary axial support is failure. Several low order Zernike modes are modeled with MATLAB procedure, and active optics corrections are applied to these modes. Thermal deformation of the mirror is also corrected using active support system.

  5. Active thermal figure control for the TOPS II primary mirror

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  6. Optimized mirror supports, active primary mirrors and adaptive secondaries for the Optical Very Large Array (OVLA)

    NASA Astrophysics Data System (ADS)

    Arnold, Luc

    1994-06-01

    This article first deals with general aspects of optimizing mirror supports. A wide variety of support topologies have been optimized by Nelson et al for unobscured entrance pupils. Optical forces and locations of point supports have been calculated here for annular pupils. Efficient topologies introducing a small amount of defocusing are also proposed for unobscured and annular pupils. Support efficiencies are given for each topology. Wavefront errors are estimated in the case of a defective cell, in order to specify tolerances on forces and geometries. The OVLA active optics is then discussed. The very thin, meniscus-shaped primary will be actively supported by 29 actuators and 3 fixed points. Actuator locations and forces have been calculated to minimize the mirror deflection under its own weight but also to allow a good control of astigmatism. We finally present a study of a concave adaptive secondary for the OVLA telescopes. As an initial result, we propose a defocus adaptive corrector with a variable thickness distribution. Conditions of use are defined, and performances are evaluated.

  7. GMT primary mirror support

    NASA Astrophysics Data System (ADS)

    Hull, Charlie

    2014-07-01

    The GMT primary mirror support draws on the heritage developed for the 3.5 m, 6.5 m, and 8.4 m mirrors from the Steward Observatory Mirror Lab. While similar in design philosophy and concept, each successive generation has incorporated refinements based on the experience gained from previous mirrors.

  8. Active optics primary mirror support system for the 26m VST telescope

    NASA Astrophysics Data System (ADS)

    Schipani, Pietro; D'Orsi, Sergio; Ferragina, Luigi; Fierro, Davide; Marty, Laurent; Molfese, Cesare; Perrotta, Francesco

    2010-03-01

    The Very Large Telescope Survey Telescope (VST) is equipped with an active optics system in order to correct low-order aberrations. The 2.6 m primary mirror is supported both axially and laterally and is surrounded by several safety devices for earthquake protection. We describe the mirror support system and discuss the results of the qualification test campaign.

  9. Performance comparison between two axial active support schemes for 1-m thin meniscus primary mirror

    NASA Astrophysics Data System (ADS)

    Niu, D. S.; Wang, G. M.; Gu, B. Z.; Ye, Y.

    2013-03-01

    Active support scheme may decide the deformation of the optical surface figure of the primary mirror. Two main active axial support schemes are often adopted to the thin meniscus primary mirror, one scheme is that the axial supports normal to the mirror bottom surface, and the other is that the active forces parallel to the optical axis. In order to compare the performance of the two support schemes, 1-m thin meniscus primary mirror is conducted. Finite element analysis (FEA) is employed to analyze the optical surface figures of the primary mirror, and optimizations are carried out by using ANSYS for each support scheme to obtain the locations and active forces. The axial support force sensitivities are calculated for the two support schemes in a case that a single axial support has a force error of 0.5 N. The correction ability of the active support system for both of the support schemes are analyzed when an arbitrary axial support is failure. Several low order Zernike modes are modeled with MATLAB procedure, and active optics corrections are applied to these modes for the two active supports. The extra mirror surface error due to thermal deformation is also corrected with the two support schemes.

  10. Performance comparison between two active support schemes for 1-m primary mirror

    NASA Astrophysics Data System (ADS)

    Niu, Dongsheng; Wang, Guomin; Gu, Bozhong

    2012-09-01

    Active support scheme may decide the deformation of the optical surface figure of the primary mirror. Two active support schemes have been designed for 1-m primary mirror, and the performance of each support scheme is conducted. Finite element analysis (FEA) is employed to analyze the optical surface figures of the primary mirror, and optimizations are carried out by using ANSYS for each support scheme to obtain the locations of the axial support. When the locations are determined, axial support force sensitivities are calculated for the two support schemes in a case that a single axial support has a force error of 0.5N. The correction ability of the active support system for both of support schemes are analyzed when an arbitrary axial support is failure. Several low order Zernike modes are modeled with MATLAB procedure, and active optics corrections are applied to these modes for the two active supports. Thermal deformation of the mirror is also corrected for the two schemes.

  11. Laboratory demonstration of a primary active mirror for space with the LATT: large aperture telescope technology

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Biasi, Roberto; Gallieni, Daniele; Vettore, Christian; d'Amato, Francesco; Xompero, Marco; Arcidiacono, Carmelo; Lisi, Franco; Riccardi, Armando; Patauner, Christian; Lazzarini, Paolo; Tintori, Matteo; Duò, Fabrizio; Pucci, Mauro; Zuccaro Marchi, Alessandro; Maresi, Luca

    2016-07-01

    The LATT project is an ESA contract under TRP programme to demonstrate the scalability of the technology from ground-based adaptive mirrors to space active primary mirrors. A prototype spherical mirror based on a 40 cm diameter 1 mm thin glass shell with 19 contactless, voice-coil actuators and co-located position sensors have been manufactured and integrated into a final unit with an areal density lower than 20 kg/m2. Laboratory tests demonstrated the controllability with very low power budget and the survival of the fragile glass shell exposed to launch accelerations, thanks to an electrostatic locking mechanism; such achievements pushes the technology readiness level toward 5. With this prototype, the LATT project explored the feasibility of using an active and lightweight primary for space telescopes. The concept is attractive for large segmented telescopes, with surface active control to shape and co-phase them once in flight. In this paper we will describe the findings of the technological advances and the results of the environmental and optical tests.

  12. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  13. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  14. Gemini primary mirror support system

    NASA Astrophysics Data System (ADS)

    Stepp, Larry M.; Huang, Eugene W.; Cho, Myung K.

    1994-06-01

    The primary mirror selected for the Gemini 8-m Telescopes is a thin meniscus made of Corning ULE(superscript TM) glass. The conceptual design of the Gemini support system has evolved in response to the properties of the meniscus mirror and the functional requirements of the Gemini Telescopes. This paper describes the design requirements, the design features, and predicted performance of this system.

  15. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  16. Active Optics for a Segmented Primary Mirror on a Deep-Space Optical Receiver Antenna (DSORA)

    NASA Technical Reports Server (NTRS)

    Clymer, B. D.

    1990-01-01

    This article investigates the active optical control of segments in the primary mirror to correct for wavefront errors in the Deep-Space Optical Receiver Antenna (DSORA). Although an exact assessment of improvement in signal blur radius cannot be made until a more detailed preliminary structural design is completed, analytical tools are identified for a time when such designs become available. A brief survey of appropriate sensing approaches is given. Since the choice of control algorithm and architecture depends on the particular sensing system used, typical control systems, estimated complexities, and the type of equipment required are discussed. Once specific sensor and actuator systems are chosen, the overall control system can be optimized using methods identified in the literature.

  17. JWST Primary Mirror Installation Complete

    NASA Video Gallery

    Completing the assembly of the primary mirror, which took place at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is a significant milestone and the culmination of over a decade of desi...

  18. Active control of primary mirror of an orbiting telescope with thermal excitation

    NASA Technical Reports Server (NTRS)

    Hill, J. L.; Youngblood, J. N.

    1973-01-01

    The results of a study of the feasibility of an active method of surface error control using thermal elements are presented. It is shown that the control effort of the thermal elements is sufficient for the purpose, and that such benefits as low cost, low weight, and high reliability may be achieved in conjunction with a significant reduction in the mirror surface error figure.

  19. Design and simulation of the active support system for a 1.2m meniscus primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fan, Bin; Zeng, Zhige; Li, Xiaojin; Wang, Hongqiao; Liu, Rong

    2015-07-01

    Thin meniscus primary mirrors with active support have been used successfully in many large telescopes, and also draw attention of many optical fabricators. Because the active support system can correct the low order figure errors, such as astigmatism, coma, trefoil 3rd astigmatism, the optical fabricators can just focus on to remove high order figure errors. This will shorten the fabrication time. In this paper, we present an active support system for a 1.2m meniscus parabolic primary mirror. It contains 37 axial push-pull force supports, 3 axial fixed points, and 4 lateral restraints. Some basic performance of the active support system is analyzed and the figure error correction capability is also studied based on Zernike modes.

  20. The design of an active support control system for a thin 1.2m primary mirror

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Li, Xiaojin; Liu, Haitao; Wang, Hongqiao

    2014-09-01

    Active support system is a low-frequency wavefront error correction system, which is often used to correct the mirror deformation resulting from gravity, temperature, wind load, manufacture, installation and other factors. In addition, the active support technology can improve the efficiency of grinding and polishing by adjusting the surface shape in the process of manufacturing large mirrors. This article describes the design of an active support control system for a thin 1.2m primary mirror. The support system consists of 37 axial pneumatic actuators. And in order to change the shape of thin primary mirror we need to precisely control the 37 pneumatic actuators. These 37 pneumatic actuators are divided into six regions. Each region is designed with a control circuit board to realize force closed-loop control for the pneumatic actuators, and all control panels are connected to the PC by CAN bus. The control panels have to support: receive commands from the host PC; control the actuators; periodically return result of control. The whole control system is composed by hardware and control algorithm and communication program.

  1. Active mirrors warped using Zernike polynomials for correcting off-axis aberrations of fixed primary mirrors. II. Optical testing and performance evaluation.

    NASA Astrophysics Data System (ADS)

    Moretto, G.; Lemaitre, G. R.; Bactivelane, T.; Wang, M.; Ferrari, M.; Mazzanti, S.; di Biagio, B.; Borra, E. F.

    1995-12-01

    We investigate the aspherization of an active mirror for correcting third and fifth-order aberrations. We use a stainless steel AISI 420 mirror with a controlled pressure load, two series of 12-punctual radial positions of force application distributed symmetrically in two concentric rings around the mirror. We obtain the wavefronts for Cv1, Sph3, Coma3, Astm3, Comatri, Astm5 as well as those of the added wavefronts. Although this active prototype mirror has general uses, our goal is to compensate the aberrations of a liquid mirror observing at large angles from the zenith.

  2. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  3. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being polished at the the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  4. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph shows engineers inspecting the Hubble Space Telescope's (HST's) Primary Mirror at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025- micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  5. Hubble Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This photograph shows the Hubble Space Telescope's (HST's) Primary Mirror being ground at the Perkin-Elmer Corporation's large optics fabrication facility. After the 8-foot diameter mirror was ground to shape and polished, the glass surface was coated with a reflective layer of aluminum and a protective layer of magnesium fluoride, 0.1- and 0.025-micrometers thick, respectively. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST and the Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  6. Design and construction of the VLT primary mirror cell: support of the large, thin primary mirror

    NASA Astrophysics Data System (ADS)

    Stanghellini, Stefano; Legrand, P.; Baty, A.; Hovsepian, T.

    1997-03-01

    The primary mirror cell of the very large telescope supports the primary mirror, the tertiary tower and mirror, and the Cassegrain instrumentation. Stringent requirements have been set to achieve the desired image quality, flexibility of use, and the necessary mirror safety. This paper describes the most important requirements set on the system and some of the design solutions which were chosen.

  7. Active control of primary mirror of an orbiting telescope with thermal excitation

    NASA Technical Reports Server (NTRS)

    Hill, J. L.; Youngblood, J. N.

    1974-01-01

    The generalization is presented that was made to model a layered structure of a kind that represents a light-weighted mirror. This theory is presented along with the strategy for error suppression. The results of a variety of error-suppression studies are also presented. The computer programs for all parts of this study are included.

  8. SIRTF primary mirror design, analysis, and testing

    NASA Technical Reports Server (NTRS)

    Sarver, George L., III; Maa, Scott; Chang, LI

    1990-01-01

    The primary mirror assembly (PMA) requirements and concepts for the Space Infrared Telescope Facility (SIRTF) program are discussed. The PMA studies at NASA/ARC resulted in the design of two engineering test articles, the development of a mirror mount cryogenic static load testing system, and the procurement and partial testing of a full scale spherical mirror mounting system. Preliminary analysis and testing of the single arch mirror with conical mount design and the structured mirror with the spherical mount design indicate that the designs will meet all figure and environmental requirements of the SIRTF program.

  9. Modeling control systems for primary mirror supports

    NASA Astrophysics Data System (ADS)

    Fisher, Martin; Haque, Jaque; Wilkes, John D.; Amos, Clive S.; Steel, Darrin J.

    1995-06-01

    The RGO is involved in a number of mirror support programs, ranging from new controllers for its existing Isaac Newton Group (ING) telescopes to new primary mirror supports for the UK Infra-red Telescope (UKIRT) and design proposals for the active support of the Gemini 8 m meniscus mirrors. This work has led to the identification or development of critical components such as load cells and control valves which have high precision and stability. Even so it is still necessary to develop servo controllers capable of minimizing the effects of non- linearity and maintaining stability, particularly in regard to the highly non-linear behavior of pneumatic supports. In order to predict the performance of mirror supports and compare differing control strategies, components and systems are modelled using Matlab(superscript R) and Simulink(superscript R). These models are presented, together with parameters derived experimentally, and results from recent laboratory tests are discussed. Specific applications are described and current status of the work at the time of submission is presented.

  10. Primary mirror segment fabrication for CELT

    NASA Astrophysics Data System (ADS)

    Mast, Terry S.; Nelson, Jerry E.; Sommargren, Gary E.

    2000-07-01

    The primary mirror of the proposed California Extremely Large Telescope is a 30-meter diameter mosaic of hexagonal segments. An initial design calls for about a thousand segments with a hexagon side length of 0.5 meters, a primary-mirror focal ratio of 1.5, and a segment surface quality of about 20 nanometers rms. We describe concepts for fabricating these segments.

  11. Multilayer Active Shell Mirrors

    NASA Astrophysics Data System (ADS)

    Steeves, John

    This thesis presents a novel active mirror technology based on carbon fiber composites and replication manufacturing processes. Multiple additional layers are implemented into the structure in order to provide the reflective layer, actuation capabilities and electrode routing. The mirror is thin, lightweight, and has large actuation capabilities. These features, along with the associated manufacturing processes, represent a significant change in design compared to traditional optics. Structural redundancy in the form of added material or support structures is replaced by thin, unsupported lightweight substrates with large actuation capabilities. Several studies motivated by the desire to improve as-manufactured figure quality are performed. Firstly, imperfections in thin CFRP laminates and their effect on post-cure shape errors are studied. Numerical models are developed and compared to experimental measurements on flat laminates. Techniques to mitigate figure errors for thicker laminates are also identified. A method of properly integrating the reflective facesheet onto the front surface of the CFRP substrate is also presented. Finally, the effect of bonding multiple initially flat active plates to the backside of a curved CFRP substrate is studied. Figure deformations along with local surface defects are predicted and characterized experimentally. By understanding the mechanics behind these processes, significant improvements to the overall figure quality have been made. Studies related to the actuation response of the mirror are also performed. The active properties of two materials are characterized and compared. Optimal active layer thicknesses for thin surface-parallel schemes are determined. Finite element simulations are used to make predictions on shape correction capabilities, demonstrating high correctabiliity and stroke over low-order modes. The effect of actuator saturation is studied and shown to significantly degrade shape correction performance. The

  12. The 8.2 metre primary mirrors of the VLT

    NASA Astrophysics Data System (ADS)

    Dierickx, P.; Enard, D.; Merkle, F.; Noethe, L.; Wilson, R. N.

    1990-08-01

    The Very Large Telescope (VLT) presently being developed at ESO is described in terms of technological advances which make its use both technically effective and feasible. The VLT capitalizes on advances in materials, polishing techniques, and mirror support systems. The VLT consists of four 8-m alt-az telescopes and a 2-m auxiliary telescope in a single-dish configuration with Zerodur meniscus mirrors passively supported on a lateral system. A discussion of the tradeoffs between glass and metal mirrors is presented, and computerized polishing is described in relation to optical specifications. The mirror is supported with 150 axial and 60 lateral supports with electromechanical actuators to modulate applied force. The active optics concept is employed via the flexibility of the primary mirror, which generates elastomechanical deformations and the position and orientation of the secondary mirror.

  13. LSST primary, secondary, and tertiary mirror support systems

    NASA Astrophysics Data System (ADS)

    Cuerden, Brian; Sebag, Jacques; Mathews, Scott; Cho, Myung; Lee, Joon; West, Steven

    2004-09-01

    The current LSST Baseline Configuration has a field of view of 3.5 degrees and an optical etendue of 302 meters square degrees square. The etendue calculation includes the effect of gradual vignetting by the camera as the field angle increases. A current optical point design includes an 8.4 m spun cast light-weighted borosilicate primary mirror, a 3.2 m secondary mirror and a 5.0 m tertiary mirror. The goal of this study is to determine if these mirrors can be actively supported and retain figure control over elevation angles without closed-loop control based on wave-front measurement. Support systems for the tertiary and primary mirrors are adapted from proven systems utilized on 6.5 and 8.4 m class primaries developed by the University of Arizona"s Mirror Laboratory. The number and locations of axial and lateral supports is determined for each mirror and the gravitational and support induced surface distortions are calculated and are shown to be within budgeted limits. The support components and their performance are described and it is demonstrated that predicted mirror distortion attributable to the support system is consistent with the known performance of the support components.

  14. Deformation verification and surface improvement of active stressed lap for 4  m-class primary mirror fabrication.

    PubMed

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2015-04-01

    The surface shape accuracy of the active stressed lap impacts the performance of grinding and polishing in the fabrication of large mirrors. We introduce a model of active stressed lap for the fabrication of a 4 m f/1.5 mirror based on finite element analysis (FEA), and the lap surface accuracy achieves RMS<1.8  μm in the FEA method. Using the lap surface measurement system, experimental verification is put forward, and the RMS of the measured lap surface is within 2 μm in practice. A general improvement in lap surface accuracy using the Zernike polynomial is shown. After compensating the calculation errors, the lap surface accuracy is improved by 8%-23%, and achieves RMS<1.5  μm, which is appropriate for practical grinding and polishing. PMID:25967173

  15. Optimization of the ATST primary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Price, Ronald S.; Moon, Il K.

    2006-06-01

    The Advanced Technology Solar Telescope (ATST) primary mirror is a 4.24-m diameter, 75-mm thick, off-axis parabola solid meniscus mirror made out of a glass or glass ceramic material. Its baseline support system consists of 120 axial supports mounted at the mirror back surface and 24 lateral supports along the outer edge with an active optics capability. This primary mirror support system was optimized for the telescope at a near horizon position to achieve the best gravity and thermal effects. To fulfill the optical and mechanical performance requirements, extensive finite element analyses using I-DEAS and optical analyses with PCFRINGE have been conducted for the support optimization. Analyses include static deformation (gravity and thermal), frequency calculations, and support system sensitivity evaluations. An influence matrix was established to compensate potential errors using an active optics system. Performances of the primary mirror support system were evaluated from mechanical deformation calculations and the optical analyses before and after active optics corrections. The performance of the mirror cell structure was also discussed.

  16. James Webb Space Telescope (JWST) Primary Mirror Material Selection

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee D.; Russell, Kevin; Texter, Scott

    2004-01-01

    The James Webb Space Telescope (JWST) conducted a phase down select process via the Advanced Mirror System Demonstrator (AMSD) project to assess the Technology Readiness Level of various candidate mirror materials. This process culminated in the selection of Beryllium as the JWST primary mirror material. This paper outlines the mirror evaluation process, defines the selection criteria and summarizes the candidate mirror's performances.

  17. Solar optical telescope primary mirror controller

    NASA Technical Reports Server (NTRS)

    Brown, R. J.; Liu, D.

    1980-01-01

    The development of a technique to control the articulated primary mirror (APM) of the solar optical telescope (SOT) is discussed. Program results indicate that a single, all digital controller has sufficient capability to totally handle the computational requirements for control of the SOT APM.

  18. Primary mirror assemblies for large space telescopes

    NASA Astrophysics Data System (ADS)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    In this report are considered the basic problems which relate to developemnt, manufacture, experimental trying out, and usage of primary mirrors (PM) of the large space telescopes intended to perform distant sounding of the Earth. Attention is concentrated on development of weight-reduced passive mirrors which ensure more reliable operation of the telescope as a whole. In the report we expressed the opinion that it is quite possible to manufacture a passive weight-reduced PM if its diameter is equal approximately to 3 m. Materials which may be used for the manufacturing of PM are beryllium and silicon carbide, physical and mechanical parameters of which are the most preferable ones. But it should be taken into consideration that this is the glass ceramic of CO115M brand which has been mastered by the industry of Russia in the greatest extent. It was confirmed that parameters of this material remain unchanged during a long period of time. Constructions of the PM, made of glass ceramic, as well as constructions of holders intended to fix the mirror, are presented in this report. A holder is used first of all to prevent lowering of a PM surface quality after a mirror has been removed from a machine and fixed in a primary mirror assembly (PMA). At present two-layer construction of a PM is preferable. This construction consists of thick base including weight reduction structure, which is in a radius which is optimum from the standpoint of deformation of a mirror operating surface. In the process of manufacture a mirror is deprived of its weight with the use of special pneumatic off-loading elements. PMA is erected in vertical plane by means of using an interferometric inspection system. In the end of this report we expressed the views on an approach to engineering of a PM by taking into account potentialities both of space ships and of carrier rockets.

  19. Hubble Space Telescope (HST) Primary Mirror Inspection

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Prior to installation, technicians inspect the primary mirror of the Hubble Space Telescope (HST). The first in a series of great observatories launched by NASA, the HST was designed to last approximately 15 years. The Marshall Space Flight Center had management responsibility for the development of the HST and played a major role in ground tests and orbital checkout of the telescope. The HST was launched April 24, 1990 aboard Space Shuttle Discovery's STS-31 mission.

  20. EST Telescope: primary mirror, support, and cooling system

    NASA Astrophysics Data System (ADS)

    Volkmer, R.; Manni, F.; Giannuzzi, M.; Scotto, A.; Cavaller, L.; Scheiffelen, T.; Bettonvil, F.; Berrilli, F.

    2010-07-01

    The solar telescope EST is currently in the conceptual design phase. It is planned to be build on the Canary Islands until end of the decade. It is specialized on polarimetric observations and will provide high spatial and spectral observations of the different solar atmospheric layers. The diameter of the primary mirror blank is 4.2m. Different types of mirror shapes were investigated with respect to thermal and mechanical characteristics. To remove the absorbed heat an air cooling system from the back side will be applied. Additional an air flushing system will remove remaining warm air from the front side. A major problem of a large open telescope will be the wind load. Results of the investigations will be shown. To achieve optimal optical performance an active support system is planned. The primary mirror cell needs to be stiff enough to support the primary mirror without deformation at strong wind in case of the open telescope option, but sufficient room for the active support system and cooling system below the backside of the mirror is also required. Preliminary designs and analysis results will be presented.

  1. Large Telescope Segmented Primary Mirror Alignment

    NASA Technical Reports Server (NTRS)

    Rud, Mayer

    2010-01-01

    A document discusses a broadband (white light) point source, located at the telescope Cassegrain focus, which generates a cone of light limited by the hole in the secondary mirror (SM). It propagates to the aspheric null-mirror, which is optimized to make all the reflected rays to be normal to the primary mirror (PM) upon reflection. PM retro-reflects the rays back through the system for wavefront analysis. The point source and the wavefront analysis subsystems are all located behind the PM. The PM phasing is absolute (white light) and does not involve the SM. A relatively small, aspheric null-mirror located near the PM center of curvature has been designed to deliver the high level of optical wavefront correction. The phasing of the segments is absolute due to the use of a broadband source. The segmented PM is optically aligned independently and separately from the SM alignment. The separation of the PM segments alignment from the PM to the SM, and other telescope optics alignments, may be a significant advantage, eliminating the errors coupling. The point source of this concept is fully cooperative, unlike a star or laser-generated guide-star, providing the necessary brightness for the optimal S/N ratio, the spectral content, and the stable on-axis position. This concept can be implemented in the lab for the PM initial alignment, or made to be a permanent feature of the space-based or groundbased telescope.

  2. Primary mirror support system for the SUBARU Telescope

    NASA Astrophysics Data System (ADS)

    Iye, Masanori; Kodaira, Keiichi

    1994-06-01

    The Japan National Large Telescope `SUBARU' will be completed on the summit of Mauna Kea by the end of the century. One of the major characteristics new to the SUBARU telescope is the active support system for its large monolithic primary mirror, which has 261 points of computer-controlled actuators to maintain a precise mirror figure. This paper describes the control principle, design concepts, results of engineering experiments and numerical simulations of the active support system to ensure the high imaging performance of this system.

  3. Research on axial support technology of large aperture primary mirror

    NASA Astrophysics Data System (ADS)

    Yao, Hui

    2010-05-01

    In ground-based optical detection system, when large aperture primary mirror in a different pitch angle detection, the surface shape error of primary mirror is affected by its weight deformation, and the surface shape error of primary mirror is one of the key factors affecting imaging quality. The primary mirror support system, including axial support and radial support, and the axial support is main factor affecting the surface shape error of primary mirror, the position and number of axial support is very important for surface shape error of primary mirror. The support technology of Φ1.2m primary mirror was studied detailedly in this paper, the parameterized model of primary mirror was built based on ANSYS, the relationship between the surface shape error of primary mirror and the ratio of its diameter to thickness was analyzed, the axial support was optimized, and the support-ring number, support-ring radius and support point position of axial support were optimum designed. The result of analysis showed that the Root-Mean-Square (RMS) value of the surface shape error of primary mirror was 1.8 nm, when the primary mirror pointed to zenith, met to the design need of the optical system, and the axial support system was verified.

  4. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented. PMID:26192533

  5. LUTE primary mirror materials and design study report

    NASA Technical Reports Server (NTRS)

    Ruthven, Greg

    1993-01-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  6. LUTE primary mirror materials and design study report

    NASA Astrophysics Data System (ADS)

    Ruthven, Greg

    1993-02-01

    The major objective of the Lunar Ultraviolet Telescope Experiment (LUTE) Primary Mirror Materials and Design Study is to investigate the feasibility of the LUTE telescope primary mirror. A systematic approach to accomplish this key goal was taken by first understanding the optical, thermal, and structural requirements and then deriving the critical primary mirror-level requirements for ground testing, launch, and lunar operations. After summarizing the results in those requirements which drove the selection of material and the design for the primary mirror are discussed. Most important of these are the optical design which was assumed to be the MSFC baseline (i.e. 3 mirror optical system), telescope wavefront error (WFE) allocations, the telescope weight budget, and the LUTE operational temperature ranges. Mechanical load levels, reflectance and microroughness issues, and options for the LUTE metering structure were discussed and an outline for the LUTE telescope sub-system design specification was initiated. The primary mirror analysis and results are presented. The six material substrate candidates are discussed and four distinct mirror geometries which are considered are shown. With these materials and configurations together with varying the location of the mirror support points, a total of 42 possible primary mirror designs resulted. The polishability of each substrate candidate was investigated and a usage history of 0.5 meter and larger precision cryogenic mirrors (the operational low end LUTE temperature of 60 K is the reason we feel a survey of cryogenic mirrors is appropriate) that were flown or tested are presented.

  7. Current progress in the research of LAMOST primary mirror support

    NASA Astrophysics Data System (ADS)

    Gong, Xuefei; Cui, Xiangqun; Ye, Xizhang

    2004-09-01

    The thirty-seven one meter class mirror segments which comprise the LAMOST primary mirror need precision support and cell to meet the demand of optics surface figure. Because true ZERODUR glass mirror has had the final design drawing that has been slight different from the former one, a modified sub-mirror finite element model and re-analysis have considered many new factors including the anti-drop groove, center blind hole and invar pad. At the same time, After a sub-cell prototype have been designed and manufactured, with a similar K9 glass mirror segment, the experiment of mirror figure testing is being conduct to verify sub-cell"s performance and modify some detail. The support truss of primary mirror also has new scheme. This paper introduces the sub-cell prototype experiment, analysis of sub-mirror and new support truss.

  8. Disassembling and reintegration of large telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Xu, Qi-rui; Fan, Bin; Zhang, Ming

    2014-09-01

    The success of the large telescope is largely linked to the excellent performance and reliability of the primary mirror. In order to maintain the quality of its reflective surface at the high expectations of astronomers, the primary mirror after almost two or three years of astronomical observations, needs to be removed and reinstalled for its cleaning and re-coating operation. There are a series of procedures such as the primary mirror cell dissembling from telescope, mirror handling, transportation, reintegration, alignment and so on. This paper will describe the experiences of disassembling and reintegration of large telescope primary mirror, taking a two meter grade primary mirror for example. As with all advanced and complex opto-mechanical systems, there has been the usual problems and trouble shooting.

  9. Effect of Gemini primary mirror position relative to the lateral support on mirror figure

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Stepp, Larry M.

    2000-07-01

    The Gemini primary mirror support incorporates a system of hydraulic whiffletrees to carry the mirror weight and define its position. The six orthogonal kinematic degrees of freedom are controlled by six hydraulic zones--three axial, two lateral, plus a transverse lateral. By varying the fluid volumes in these hydraulic zones the mirror position can be adjusted in all six degrees of freedom. Because of the finite lengths of the linkages that connect the mirror to the lateral supports, any shift in mirror position changes the amplitudes and directions of the applied forces with a resulting effect on the static balance and mirror figure. These effects have been calculated for mirror translations and rotations in all six degrees of freedom, resulting in predictions of the changes in the axial and lateral support forces and in the mirror figure. This paper describes the modeling as well as experimental verification of the results.

  10. The primary mirror support system of the ESO-VLT.

    NASA Astrophysics Data System (ADS)

    Schneermann, M.; Cui, X.-Q.

    1988-10-01

    The 8 meter unit telescopes of the ESO very large telescope (VLT) will have primary mirrors of the solid thin meniscus type. Presently various different options concerning material and thickness are still under consideration for the production of the mirror blanks. This paper describes the performance analysis of a glass ceramic mirror with a thickness of 200 mm. This mirror is supported by a functionally separated axial and radial support system. The results of the analytical assessment of the mirror performance under those loading conditions are discussed.

  11. ESO's New Technology Telescope (NTT) metallic primary mirror project

    NASA Astrophysics Data System (ADS)

    Mischung, K. N.

    A development status assessment is made of the European Southern Observatory's planned New Technology Telescope metallic primary mirror. It has thus far been established that a nickel-coated aluminum or aluminum alloy mirror can be manufactured within 15-18 months at costs which lie well below those projected for glass or ceramic primary mirrors of comparable figure and dimensions. Physical and mechanical property comparisons are conducted for a total of eight mirror material types, including titanium alloy, beryllium, and stainless steel; attention is given to the various casting technologies that may be employed.

  12. The 100 cm solar telescope primary mirror study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The manufacturing impact of primary mirror configuration on the performance of a 100 cm aperture solar telescope was studied. Three primary mirror configurations were considered: solid, standard lightweight, and mushroom. All of these are of low expansion material. Specifically, the study consisted of evaluating the mirrors with regard to: manufacturing metrology, manufacturing risk factors and ultimate quality assessment. As a result of this evaluation, a performance comparison of the configurations was made, and a recommendation of mirror configuration is the final output. These evaluations, comparisons and recommendations are discussed in detail. Other investigations were completed and are documented in the appendices.

  13. The Large Binocular Telescope primary mirror support control system description and current performance results

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Kern, Jonathan; Hill, John M.; Davison, Warren B.; Cuerden, Brian; Brynnel, Joar G.; Biddick, Chris; Duffek, Kenneth

    2008-07-01

    The Large Binocular Telescope (LBT) is built around two lightweight borosilicate honeycomb mirrors which, at 8.4 meters in diameter, are the largest operational examples of this technology. Since the mirrors are relatively stiff, the LBT mirror support system relies on passive position control and active force control. Passive position control is performed by six extendable hardpoints organized as a truncated hexapod, which may be positioned as required by the active optics control loop. The hardpoints rely on their axial stiffness to maintain the mirror position against residual external disturbances. The active force control system minimizes the force exerted by the hardpoints on the glass. Additionally, the axial component of the nominally uniform active support forces can be perturbed to distort the mirror as required by the active optics control loop. Because of the relatively large CTE of borosilicate glass, the differential temperature of the mirror is critical. Thus, the force control system must support a 16 metric ton mirror using less than 100 Watts of electrical power. The authors present a description of the primary mirror support system as implemented at the LBT. Initial stability problems made the mirrors nearly unusable in freezing temperatures. The authors explain the reason for this instability and describe the solutions implemented. Data demonstrating the current performance of the primary mirror support system are also presented.

  14. Design and analysis of support system of LAMOST primary mirror

    NASA Astrophysics Data System (ADS)

    Gong, Xuefei; Cui, Xiangqun; Chen, Haiyuan; Ye, Xizhang; Zhang, Ru

    2003-02-01

    LAMOST (The Large Sky Area Multi-object Fiber Spectroscopic Telescope) is a reflecting Schmidt telescope. There are two large segmented mirrors in LAMOST: One is the Schmidt plate MA, and the other is the spherical primary mirror MB. The dimension of MB is about 6.7m×6m and it is face down in 25°. MB is composed of 37 hexagonal sub-mirrors. During the observation, one should maintain the correct mirror figure for each sub-mirror and co-focus for all 37 sub-mirrors to obtain the good image, even it is an unconventional designed telescope without tracking movement on the primary mirror. This paper presents the design and the finite element analysis for the whole primary mirror support system, which includes the optimization of the mirror support points distribution, the design and the testing of the prototype of MB sub-cell, the structure analysis and the design of the mirror support truss.

  15. Verification procedure for the wavefront quality of the primary mirrors for the MRO interferometer

    NASA Astrophysics Data System (ADS)

    Bakker, Eric J.; Olivares, Andres; Schmell, Reed A.; Schmell, Rodney A.; Gartner, Darren; Jaramillo, Anthony; Romero, Kelly; Rael, Andres; Lewis, Jeff

    2009-08-01

    We present the verification procedure for the 1.4 meter primary mirrors of the Magdalena Ridge Observatory Interferometer (MROI). Six mirrors are in mass production at Optical Surface Technologies (OST) in Albuquerque. The six identical parabolic mirrors will have a radius of curvature of 6300 mm and a final surface wavefront quality of 29 nm rms. The mirrors will be tested in a tower using a computer generated hologram, and the Intellium⢠H2000 interferometer from Engineering Synthesis Design, Inc. (ESDI). The mirror fabrication activities are currently in the early stage of polishing and have already delivered some promising results with the interferometer. A complex passive whiffle tree has been designed and fabricated by Advanced Mechanical and Optical Systems (AMOS, Belgium) that takes into account the gravity loading for an alt-alt mount. The final testing of the primary mirrors will be completed with the mirror cells that will be used in the telescopes. In addition we report on shear tests performed on the mirror cell pads on the back of the primary mirrors. These pads are glued to the mirror. The shear test has demonstrated that the glue can withstand at least 4.9 kilo Newton. This is within the requirements.

  16. Design of infrared astronomical satellite /IRAS/ primary mirror mounts

    NASA Technical Reports Server (NTRS)

    Schreibman, M.; Young, P.

    1980-01-01

    The design of an operational mount to rigidly secure the primary mirror to its baseplate without the introduction of figure error always proves to be a major task on diffraction limited optical systems. A summary of the design of the Infrared Astronomical Satellite (IRAS) primary mirror mount is given. The mirror was designed to be alligned and tested at room temperature and operated in a zero 'g' field at temperatures of 2K. To minimize overstressing, a stiffness requirement of greater than 150 Hz was required for cold launch and room temperature vibration acceptance testing. Additional isolation was required to minimize strains, introduced via the mounting base, due to thermal and mechanical distortions.

  17. Thermal analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8-meter primary mirror

    NASA Astrophysics Data System (ADS)

    Hornsby, Linda; Hopkins, Randall C.; Stahl, H. Philip

    2010-07-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 point and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The objective is to maintain the primary mirror at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop®1. A detailed model of the primary mirror was required in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew and a 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the solar environment that influences the thermal performance. All assumptions that were used in the analysis are also documented. Estimates of mirror heater power requirements are reported. The thermal model is used to predict gradients across and through the primary mirror using an idealized boundary temperature on the back and sides of the mirror of 280 K.

  18. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  19. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration

    NASA Astrophysics Data System (ADS)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2016-04-01

    The Naval Postgraduate School's segmented mirror telescope (SMT) was developed using prototype silicon carbide active hybrid mirror technology to demonstrate lower cost and rapid manufacture of primary mirror segments for a space telescope. The developmental mirror segments used too few actuators limiting the ability to adequately correct the surface figure error. To address the unintended shortfall of the developmental mirrors, a deformable mirror is added to the SMT and control techniques are developed. The control techniques are similar to woofer-tweeter adaptive optics, where the SMT segment represents the woofer and the deformable mirror represents the tweeter. The optical design of an SMT woofer-tweeter system is presented, and the impacts of field angle magnification on the placement and size of the deformable mirror are analyzed. A space telescope woofer-tweeter wavefront control technique is proposed using a global influence matrix and closed-loop constrained minimization controller. The control technique simultaneously manipulates the woofer and tweeter mirrors. Simulation and experimental results demonstrate a significant improvement in wavefront error of the primary mirror and the control technique shows significant wavefront error improvement compared to sequentially controlling the woofer and tweeter mirrors.

  20. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    NASA Astrophysics Data System (ADS)

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.

    1997-05-01

    This paper describes the mechanical design of the primary mirror that images the synchrotron light extracted from the High Energy Ring of the PEP-II B Factory. During operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm^2, and the imaging surface is plated with Electroless Nickel to improve its optical characteristics. Calculated mechanical distortions and stresses experienced by the mirror during off-axis and normal operation will be presented.

  1. Control of the California Extremely Large Telescope primary mirror

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Chanan, Gary A.

    2003-01-01

    The current design concept for the California Extremely Large Telescope (CELT) includes 1080 segments in the primary mirror, with the out-of-plane degrees of freedom actively controlled. We construct the control matrix for this active control system, and describe its singular modes and sensor noise propagation. Data from the Keck telescopes are used to generate realistic estimates of the control system contributions to the CELT wavefront error and wavefront gradient error. Based on these estimates, control system noise will not significantly degrade either seeing-limited or diffraction-limited observations. The use of supplemental wavefront information for real-time control is therefore not necessary. We also comment briefly on control system bandwidth requirements and limitations.

  2. Articulated primary mirror /APM/ for the Solar Optical Telescope /SOT/

    NASA Technical Reports Server (NTRS)

    Gowrinathan, S.; Gottesman, J.

    1981-01-01

    Allowing the location of the primary vs secondary mirrors to be movable in space, the articulated primary mirror (APM) was designed as an inexpensive alternative, providing stable imagery, for the Solar Optical Telescope (SOT). Requirements of high resolution in the sub-arc-second region, and the ability to point the telescope through the Instrument Pointing System (IPS) were satisfied. Alignment sensors, contained within the subsystem, locate the points of coincidence of the foci of the primary and secondary optics (conic foci). These are utilized as inputs for subsystem actuators to correct via the digital controller algorithm.

  3. Alignment displacements of the solar optical telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Medenica, W. V.

    1978-01-01

    Solar optical telescope is a space shuttle payload which is at the present time (1978) being planned. The selected alignment method for the telescope's primary mirror is such that the six inclined legs supporting the mirror are at the same time motorized alignment actuators, changing their own length according to the alignment requirement and command. The alignment displacements were described, including circumvention of some apparent NASTRAN limitations.

  4. Bipod flexure for 1-m primary mirror system.

    PubMed

    Kihm, Hagyong; Yang, Ho-Soon; Lee, Yun-Woo

    2014-12-01

    We present an analytical formulation of the bipod flexure for mounting the 1-m primary mirror in a space telescope. Compliance and stiffness matrices of the bipod flexure are derived to estimate theoretical performance and to make initial design guidelines. We use finite element analysis to optimize the bipod design satisfying the application requirements. Experimental verification is achieved by vibration test with a dummy mirror system. PMID:25554320

  5. Thermal Analysis of the Advanced Technology Large Aperture Space Telescope (ATLAST) 8 Meter Primary Mirror

    NASA Technical Reports Server (NTRS)

    Hornsby, Linda; Stahl, H. Philip; Hopkins, Randall C.

    2010-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) preliminary design concept consists of an 8 meter diameter monolithic primary mirror enclosed in an insulated, optical tube with stray light baffles and a sunshade. ATLAST will be placed in orbit about the Sun-Earth L2 and will experience constant exposure to the sun. The insulation on the optical tube and sunshade serve to cold bias the telescope which helps to minimize thermal gradients. The primary mirror will be maintained at 280K with an active thermal control system. The geometric model of the primary mirror, optical tube, sun baffles, and sunshade was developed using Thermal Desktop(R) SINDA/FLUINT(R) was used for the thermal analysis and the radiation environment was analyzed using RADCAD(R). A XX node model was executed in order to characterize the static performance and thermal stability of the mirror during maneuvers. This is important because long exposure observations, such as extra-solar terrestrial planet finding and characterization, require a very stable observatory wave front. Steady state thermal analyses served to predict mirror temperatures for several different sun angles. Transient analyses were performed in order to predict thermal time constant of the primary mirror for a 20 degree slew or 30 degree roll maneuver. This paper describes the thermal model and provides details of the geometry, thermo-optical properties, and the environment which influences the thermal performance. All assumptions that were used in the analysis are also documented. Parametric analyses are summarized for design parameters including primary mirror coatings and sunshade configuration. Estimates of mirror heater power requirements are reported. The thermal model demonstrates results for the primary mirror heated from the back side and edges using a heater system with multiple independently controlled zones.

  6. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  7. Edgewise connectivity: an approach to improving segmented primary mirror performance

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Arnold, William R.; Stahl, H. Philip

    2015-01-01

    As future astrophysics missions require space telescopes with greater sensitivity and angular resolution, the corresponding increase in the primary mirror diameter presents numerous challenges. Since fairing restrictions limit the maximum diameter of monolithic and deployable segmented mirrors that can be launched, there is a need for on-orbit assembly methods that decouple the mirror diameter from the choice of launch vehicle. In addition, larger mirrors are more susceptible to vibrations and are typically so lightly damped that vibrations could persist for some time if uncontrolled. To address these challenges, we present a segmented mirror architecture in which the segments are connected edgewise by mechanisms analogous to damped springs. These mechanisms can be damped springs, flux-pinning mechanisms, virtual mechanisms, or any other device with the same basic behavior. Using a parametric finite-element model, we show that for low to intermediate stiffnesses, the stiffness and damping contributions from the mechanisms improve both the natural frequency and disturbance response of the segmented mirror. At higher stiffnesses, the mechanisms structurally connect the segments, leading to a segmented mirror that performs comparably to a monolith-or better, depending on the mechanism damping-with the modular design enabling on-orbit assembly and scalability.

  8. Thermally Actuated Primary Mirror for Space Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Angel, J. R.; Kang, T.; Cuerden, B.; Stahl, P.; Guyon, O.

    2007-05-01

    Figure correction by thermal actuation of telescope primary mirrors will be valuable for space telescopes aimed at very high contrast imaging. It is planned that the primary mirror of TOPS (Telescope to Observe Planetary Systems) will be made with this technology. TOPS will use phase induced intensity apodization (PIAA, Guyon et al, 2003-2007) to obtain very high suppression of diffracted light at very close inner working angle. TOPS II, a scaled-up version with a 2 m primary would readily detect earth-like planets in the habitable zone of nearby stars, provided low order wavefront errors are very accurately controlled. This is best done at the primary, to avoid propagation effects. The correction concept relies on the low but finite thermal expansion of honeycomb mirrors made from fused silica, a material commonly used for precision lightweight space optics. The mirror will be figured for the highest accuracy passive figure. The residual low order errors with likely few nm amplitude will be sensed on-orbit and nulled out by slightly varying the temperature of the back faceplate and individual rib elements. Resistive heating will be balanced in a servo control loop against radiative loss to cold fingers inserted in each honeycomb cell. Preliminary finite element models indicate that, for a mirror with n cells, up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. For a honeycomb test mirror of borosilicate glass interferometric measurements show a single cell influence function with 300 nm stroke and 5 minute time constant is readily achieved. As the next step, it is planned that full actuation of all cells of a prototype mirror will be undertaken at MSFC, leading toward a 2 m flight demonstrator.

  9. Modeling and analysis of LAMOST primary mirror support structure

    NASA Astrophysics Data System (ADS)

    Gong, Xuefei; Cui, Xiangqun

    2002-07-01

    The Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) is a national large scientific project in China at the beginning of this century. It is an unconventional designed modern optical telescope and has the both large field of view and large aperture. The spherical primary mirror MB in LAMOST is a segmented mirror with 37 sub-mirrors. The MB will be supported by a very stable truss structure and the mirror surface will be kept in a high optical accuracy. This paper presents the work on the finite element model of the truss structure of MB and gives the results of static and dynamic analysis with this model especially for the optimization of the higher stiffness and the lighter weight.

  10. Spectroscopic survey telescope design. I - Primary mirror structure and support

    NASA Astrophysics Data System (ADS)

    Ray, F. B.; Krishnamachari, S. V.

    1988-09-01

    The present design for a spectroscopic survey telescope uses a spherical primary mirror whose figure requires that a secondary focus assembly be driven at the tracking rate in an attitude normal to the spherical focal surface, while the telescope, being tilted at a predetermined angular zenith distance, need only be 'set' (and clamped) occasionally in azimuth. The spherical primary mirror segments are configured to an identical radius-of-curvature and supported on a fully triangulated stainless steel space frame; a structural analysis using finite elements indicates that the expected static performance of both the individual segments and the overall space frame present reasonable goals for current engineering practice.

  11. Dynamic analysis and design of the SIRTF primary mirror mount

    NASA Technical Reports Server (NTRS)

    Richard, Ralph M.; Vukobratovich, Daniel; Pollard, L. Wayne

    1987-01-01

    The criteria and considerations for the design of the support system for the Space Infrared Telescope Facility (SIRTF) primary mirror are presented. A flexural-gimbal-baseplate design for the 0.5 m primary mirror was developed. Preliminary studies have indicated that this design may be further improved by replacing the flexures by a post-gimbal system wherein the gimbal design accomodates both the cryogenic cool down effects, the dynamic launch loads, and manufacturing tolerance effects. Additionally, a prestressed baseplate concept had evolved and was presented for the full scale 1.0 m mirror. However, preliminary design studies indicate that this concept will not be required, and the post-gimbal-baseplate design similar to the 0.5 m alternate support system will meet the cryogenic cool down, dynamic launch load criteria, and manufacturing tolerance effects.

  12. Do mirror glasses have the same effect on brain activity as a mirror box? Evidence from a functional magnetic resonance imaging study with healthy subjects.

    PubMed

    Milde, Christopher; Rance, Mariela; Kirsch, Pinar; Trojan, Jörg; Fuchs, Xaver; Foell, Jens; Bekrater-Bodmann, Robin; Flor, Herta; Diers, Martin

    2015-01-01

    Since its original proposal, mirror therapy has been established as a successful neurorehabilitative intervention in several neurological disorders to recover motor function or to relieve pain. Mirror therapy seems to operate by reactivating the contralesional representation of the non-mirrored limb in primary motor- and somatosensory cortex. However, mirror boxes have some limitations which prompted the use of additional mirror visual feedback devices. The present study evaluated the utility of mirror glasses compared to a mirror box. We also tested the hypothesis that increased interhemispheric communication between the motor hand areas is the mechanism by which mirror visual feedback recruits the representation of the non-mirrored limb. Therefore, mirror illusion capacity and brain activations were measured in a within-subject design during both mirror visual feedback conditions in counterbalanced order with 20 healthy subjects inside a magnetic resonance imaging scanner. Furthermore, we analyzed task-dependent functional connectivity between motor hand representations using psychophysiological interaction analysis during both mirror tasks. Neither the subjective quality of mirror illusions nor the patterns of functional brain activation differed between the mirror tasks. The sensorimotor representation of the non-mirrored hand was recruited in both mirror tasks. However, a significant increase in interhemispheric connectivity between the hand areas was only observed in the mirror glasses condition, suggesting different mechanisms for the recruitment of the representation of the non-mirrored hand in the two mirror tasks. We conclude that the mirror glasses might be a promising alternative to the mirror box, as they induce similar patterns of brain activation. Moreover, the mirror glasses can be easy applied in therapy and research. We want to emphasize that the neuronal mechanisms for the recruitment of the affected limb representation might differ depending on

  13. Design and Optimization of the SPOT Primary Mirror Segment

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason G.; Michaels, Gregory J.

    2005-01-01

    The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit

  14. Displacement sensors for the primary mirror of the W. M. Keck Telescope

    SciTech Connect

    Minor, R.H.; Arthur, A.A.; Gabor, G.; Jackson, H.G.; Jared, R.C.; Mast, T.S.; Schaefer, B.A.

    1989-07-01

    The Primary Mirror of the Keck Observatory Telescope is made up of an array of 36 hexagonal mirror segments under active control. The measurement of the relative orientations of the mirror segments is fundamental to their control. The mechanical and electronic design of the sensors used to measure these relative positions is described along with the performance of the sensors under a variety of tests. In use, the sensors will measure relative positions with a resolution of a few nanometers. This resolution and the low noise, drift and thermal sensitivity of the sensors are adequate to stabilize the primary mirror figure to the precision required for optical and infrared astronomy. 4 refs., 6 figs.

  15. Surface Figure Metrology for CELT Primary Mirror Segments

    SciTech Connect

    Sommargren, G; Phillion, D; Seppala, L; Lerner, S

    2001-02-27

    The University of California and California Institute of Technology are currently studying the feasibility of building a 30-m segmented ground based optical telescope called the California Extremely Large Telescope (CELT). The early ideas for this telescope were first described by Nelson and Mast and more recently refined by Nelson. In parallel, concepts for the fabrication of the primary segments were proposed by Mast, Nelson and Sommargren where high risk technologies were identified. One of these was the surface figure metrology needed for fabricating the aspheric mirror segments. This report addresses the advanced interferometry that will be needed to achieve 15nm rms accuracy for mirror segments with aspheric departures as large as 35mm peak-to-valley. For reasons of cost, size, measurement consistency and ease of operation we believe it is desirable to have a single interferometer that can be universally applied to each and every mirror segment. Such an instrument is described in this report.

  16. LBT primary mirrors: the final design of the supporting system

    NASA Astrophysics Data System (ADS)

    Parodi, Giancarlo; Cerra, G. C.; Hill, John M.; Davison, Warren B.; Salinari, Piero

    1997-03-01

    The main final results in terms of stresses and optical performances are reported for the large binocular telescope (LBT) primary mirrors. The two borosilicate LBT primary mirrors f/1.14 have 8.4 diameter and are produced at the Steward Observatory Mirror Lab (SOML). They are honeycomb shaped in order to achieve light weight, short thermal constant and high stiffness. The back plate is flat and the upper is paraboloid shaped. Each elementary cell has, in the lower plate, one circular hole permitting the ventilation of cell itself. The material used is the borosilicate Ohara E6. Different supporting systems have been analyzed from the mirror casting to the operative conditions, i.e.: supporting system during the cooling of the casting phase; supporting system for the handling after the casting phase and before the optical surface grinding and polishing; supporting system for the handling after the optical surface polishing and for maintenance; passive support system in non-operative condition; supporting system in operative condition. The stress checks carried out show that the values of the maximum principal tensile stresses are below 0.7 MPa for long times and/or stresses affecting large volumes, and are below 1.05 MPa for short times and small volumes. Optical performances in operative condition respect the specification.

  17. PACT: the actuator to support the primary mirror of the ELT

    NASA Astrophysics Data System (ADS)

    Kamphues, F.; Nijenhuis, J.; den Breeje, R.; van den Dool, T. C.; Ponsioen, J.

    2008-07-01

    The European Southern Observatory (ESO) has started technology development for their next generation optical telescope. Due to its ultra large collecting area, The European Extremely Large Telescope (E-ELT) will require a paradigm shift in telescope design to keep the overall program cost at an acceptable level. The E-ELT will feature a 42 meter segmented primary mirror and will make extensive use of active and adaptive optics. Each primary mirror segment will be supported by three actuators that control piston and tilt. TNO has developed a low cost nanopositioning actuator (PACT) for the primary mirror segments. The actuators will be tested by IAC and ESO, with support from TNO, under operational conditions in a Wind Evaluation Breadboard (WEB) at the Roque de Los Muchachos observatory in La Palma.

  18. Position actuators for the primary mirror of the W. M. Keck Telescope

    SciTech Connect

    Meng, J.D.; Franck, J.; Gabor, G.; Jared, R.C.; Minor, R.H.; Schaefer, B.

    1989-07-01

    The pistons and tilts of the 36 segments of the W. M. Keck Telescope primary mirror are under active control. The mechanical and electronic designs of the actuators used to achieve this control are described along with the performance of the actuators under a variety of tests. In use, the actuators will move in four-nanometer increments. This resolution and the accuracy of the actuator moves are adequate for stabilizing the figure of the primary mirror to the precision required for optical and infrared astronomy.

  19. Low-friction magnetically levitating support for telescope primary mirrors

    NASA Astrophysics Data System (ADS)

    Blakley, Rick D.

    2000-08-01

    A unit device for supporting a telescope primary mirror in its cell is described. It replaces the traditional roller- ball or oil-bellows support unit. The device utilizes the levitating field from opposing magnets to support the primary's weight above the cell's surface. This frees the bearings of the device so that the primary may expand or contract smoothly, unimpaired with `sticky', loaded bearings. The mechanics of the device restrain the opposing magnets from drifting inappropriately and work to isolate the primary from undesirable bending moments. Supplying the near-cell magnet, which may advance toward the near-primary magnet, with the standard counterweight and fulcrum commonly seen behind the cell assures the primary/device, weight/force balance remains for any orientation. Design, forces, and ongoing research for levitated support is discussed. A prototype is under construction.

  20. A Research on the Primary Mirror Manipulator of Large Segmented-mirror Telescope

    NASA Astrophysics Data System (ADS)

    Zuo, H.

    2012-09-01

    Since Galileo firstly used the telescope to observe the sky 400 years ago, the aperture of the telescope has become larger and larger to observe the deeper universe, and the segmented-mirror telescope is becoming more and more popular with increasing aperture. In the early 21st century, a series of segmented-mirror telescopes have been constructed including the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) of China. LAMOST is a meridian reflecting Schmidt telescope, and the dimension of the primary mirror is about 6.7 m× 6 m, which is composed of 37 hexagonal sub-mirrors. However, a problem about the mirror installation appears with the increasing aperture. If there are hundreds of sub-mirrors in the telescope, it is a challenging job to mount and dismount them to the truss. This problem is discussed in this paper and a manipulator for the primary mirror of LAMOST is designed to perform the mount and dismount work. In chapter 1, all the segmented-mirror telescopes in the world are introduced and how the sub-mirrors of these telescopes are installed has been investigated. After comparing with the serial and the parallel robot, a serial robot manipulator proposal, which has several redundant degrees of freedom (DOFs), has been chosen from a series of design proposals. In chapter 2, the theoretical analysis has been carried out on the basis of the design proposal, which includes the forward kinematics and the inverse kinematics. Firstly the D-H coordinate is built according to the structure of the manipulator, so it is possible to obtain the end-effector position and orientation from the individual joint motion thanks to the forward kinematics. Because of the redundant DOFs of the manipulator, the inverse kinematics solution can be a very trick task, and the result may not be only, therefore a kind of simulation is carried out to get the numerical solution using ADAMS (Automatic Dynamic Analysis of Mechanical System). In the dynamics analysis the

  1. Wide-field aberration corrector for spherical gossamer primary mirrors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2000-10-01

    If gossamer primary mirrors were to be constructed in a spherical form, it would be possible to arrange a simple null- test in situ. However, spherical mirrors would require correction of the large amount of spherical aberration created in pupils that generally will be greater than 2 m diameter. The design requirement is for diffraction-limited performance over a useful angular field. The otherwise excellent wide- field design solutions of the classical Schmidt and Maksutov are inapplicable in gossamer structures because of the mass and size penalty of large refractive components. However, it is possible for this mode of correction to be achieved near the prime focus by means of pupil transfer optics that minify the large entrance pupil down to more acceptable dimensions. A problem with these solutions is constraint of field coverage due to pupil aberrations created by the large spherical aberration of the primary mirror. This leads the designer towards slower primaries and the penalty of larger, heavier structures. A solution is presented here for spherical primaries with speeds up to f/4. This is based on the 'KiwiStar' principle presented here in 1997, in which a large spherical catoptric is combined by pupil-transfer with a smaller spherical catadioptric to give well corrected wide field images of high speed. This system is well suited to correction at the prime focus of large spherical mirrors, and has only one relatively small weak aspheric surface to provide zonal correction, all other surfaces being spherical. An example is presented of a 4 m diameter, f/2.5 system that is diffraction-limited over the whole of a 0.25 degree field (43 mm diameter), for a bandpass of 486 - 850 nm.

  2. Testing the James Webb Space Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    JWST in-process optical testing and cryogenic requirement compliance certification, verification andvalidation was probably the most difficult metrology job of our generation in astronomical optics. But, the challenge was met: by hard work of dozens of optical metrologists; development and qualification of multiple custom test setups; and several new inventions, including 4D PhaseCam and Leica Absolute Distance Meter. This paper summarizes the metrology tools, test setups and processes used to characterize the JWST primary mirror.

  3. Research on primary mirror lateral support structure of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    2010-05-01

    The primary mirror of large-aperture telescope is an important component of telescope system. The surface figure error of the primary mirror is a critical factor affecting the imaging quality of telescope system. With the augment of primary mirror aperture, the surface figure error of the primary mirror is affected by many factors, such as gravity, thermal deformation and so on. The factors that influence the surface figure error of the primary mirror are considered and analyzed roundly according to technical requirements of optical system. So the feasible project is researched on the lateral support structure of large-aperture telescope primary mirror. The primary mirror support system of large-aperture telescope is composed of axial support and lateral support. In traditional telescope, the contribution of lateral support to surface distortion is less than axial support. With increase of diameter to thickness ratio, lateral support is becoming more complicated and important than before. Lateral support is a key technology the same as axial support for the large-aperture telescope primary mirror. With the foundation of analysis, comparison and conclusion of related literature and monograph, according to primary mirror supporting principle of the large-aperture telescope. Lateral support methods, the influence of the primary mirror surface figure error due to primary mirror lateral support and lateral support structure of primary mirror are analyzed.

  4. Primary mirror dynamic disturbance models for TMT: vibration and wind

    NASA Astrophysics Data System (ADS)

    MacMynowski, Douglas G.; Colavita, M. Mark; Skidmore, Warren; Vogiatzis, Konstantinos

    2010-07-01

    The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment.

  5. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  6. Fabrication of the LSST monolithic primary-tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Ketelsen, Dean A.; Law, Kevin; Gressler, William J.; Zhao, Chunyu

    2012-09-01

    As previously reported (at the SPIE Astronomical Instrumentation conference of 2010 in San Diego1), the Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona’s Steward Observatory Mirror Lab. We will provide an update to the status of the mirrors and metrology systems, which have advanced from concepts to hardware in the past two years. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab, reducing the degrees of freedom needed to be controlled in the telescope. The surface specification is described as a structure function, related to seeing in excellent conditions. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper details the manufacturing process and metrology systems for each surface, including the alignment of the two surfaces. M1 is a hyperboloid and can utilize a standard Offner null corrector, whereas M3 is an oblate ellipsoid, so it has positive spherical aberration. The null corrector is a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature. Laser trackers are relied upon to measure the alignment and spacing as well as rough-surface metrology during looseabrasive grinding.

  7. Design and analysis of large spaceborne light-weighted primary mirror and its support system

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Jin, Guang; Yang, Hong-bo

    2007-12-01

    With the development of the resolution of spaceborne remote sensor, the diameter of the primary mirror of spaceborne telescope becomes larger and larger. The distortion of primary mirror which is influenced by the mirror material, structure, self-weight, support system and temperature environment affects optical image quality finally. In this paper, an on-axis TMA high-resolution Cassegrain optical payload with a primary mirror whose diameter is φ 650mm was designed and the effects of the influence factors of the distortion acts on the on-axis TMA optical system primary mirror had been analyzed by means of Finite Element Analysis. During work, the technology of the primary mirror design had been summarized and general consideration of the primary mirror design technology also had been described at the same time. Considering the telescope manufacture and work station, a reasonable and optimal structure of the primary mirror sub-assembly is taken finally. In the end, the distortion of the primary mirror during its fabrication station and work station had been analyzed by integrated Finite Element Analysis Method. The results implicated the synthesis profile error (P-V value) for the primary mirror is less than λ/10 and all the indexes of the primary mirror satisfy the requirements of the optical system.

  8. Space Adaptation of Active Mirror Segment Concepts

    NASA Technical Reports Server (NTRS)

    Ames, Gregory H.

    1999-01-01

    This report summarizes the results of a three year effort by Blue Line Engineering Co. to advance the state of segmented mirror systems in several separate but related areas. The initial set of tasks were designed to address the issues of system level architecture, digital processing system, cluster level support structures, and advanced mirror fabrication concepts. Later in the project new tasks were added to provide support to the existing segmented mirror testbed at Marshall Space Flight Center (MSFC) in the form of upgrades to the 36 subaperture wavefront sensor. Still later, tasks were added to build and install a new system processor based on the results of the new system architecture. The project was successful in achieving a number of important results. These include the following most notable accomplishments: 1) The creation of a new modular digital processing system that is extremely capable and may be applied to a wide range of segmented mirror systems as well as many classes of Multiple Input Multiple Output (MIMO) control systems such as active structures or industrial automation. 2) A new graphical user interface was created for operation of segmented mirror systems. 3) The development of a high bit rate serial data loop that permits bi-directional flow of data to and from as many as 39 segments daisy-chained to form a single cluster of segments. 4) Upgrade of the 36 subaperture Hartmann type Wave Front Sensor (WFS) of the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed at MSFC resulting in a 40 to 5OX improvement in SNR which in turn enabled NASA personnel to achieve many significant strides in improved closed-loop system operation in 1998. 5) A new system level processor was built and delivered to MSFC for use with the PAMELA testbed. This new system featured a new graphical user interface to replace the obsolete and non-supported menu system originally delivered with the PAMELA system. The hardware featured Blue Line's new stackable

  9. Primary mirror back surface shape research of GEO laser communication system

    NASA Astrophysics Data System (ADS)

    Liu, Weida; Zhang, Li-zhong; Meng, Li-xin

    2015-11-01

    The research of laser communication system primary mirror deformation caused by back surface shape variation was done in this paper. The usual mirror back surface shapes were sphere, double arch, flat and biconcave shape and so on. Based on the four shape mirror, with the center hole rim support pattern, the four shape mirror temperature distribution equation was inferred by thermal elastic theory, deformation are compared in 1-5℃ radius direction temperature difference, in the case of minor weight gap and equal maximum thickness. As a result, the deformation of sphere back surface shape mirror is minimal. So sphere back surface shape is fit for the primary mirror.

  10. Optical testing of the LSST combined primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Martin, Hubert M.; Burge, James H.; Gressler, William J.; Zhao, Chunyu

    2010-07-01

    The Large Synoptic Survey Telescope (LSST) utilizes a three-mirror design in which the primary (M1) and tertiary (M3) mirrors are two concentric aspheric surfaces on one monolithic substrate. The substrate material is Ohara E6 borosilicate glass, in a honeycomb sandwich configuration, currently in production at The University of Arizona's Steward Observatory Mirror Lab. In addition to the normal requirements for smooth surfaces of the appropriate prescriptions, the alignment of the two surfaces must be accurately measured and controlled in the production lab. Both the pointing and centration of the two optical axes are important parameters, in addition to the axial spacing of the two vertices. This paper describes the basic metrology systems for each surface, with particular attention to the alignment of the two surfaces. These surfaces are aspheric enough to require null correctors for each wavefront. Both M1 and M3 are concave surfaces with both non-zero conic constants and higher-order terms (6th order for M1 and both 6th and 8th orders for M3). M1 is hyperboloidal and can utilize a standard Offner null corrector. M3 is an oblate ellipsoid, so has positive spherical aberration. We have chosen to place a phase-etched computer-generated hologram (CGH) between the mirror surface and the center-of-curvature (CoC), whereas the M1 null lens is beyond the CoC. One relatively new metrology tool is the laser tracker, which is relied upon to measure the alignment and spacings. A separate laser tracker system will be used to measure both surfaces during loose abrasive grinding and initial polishing.

  11. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    NASA Technical Reports Server (NTRS)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  12. Optimization design for the supporting system of 2m telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Zhao, Fu; Wang, Ping; Gong, Yanjue; Zhang, Li; Lin, Jianlong

    2008-12-01

    This paper describes the optimization solution improving the total quality of the primary mirror supporting type. With the methods of Finite element analysis(FEA), Orthogonal experiment and BP Neural Network, the relationship between the structure parameters in primary mirror supporting type and the deformation of the primary mirror is built. With this relationship and Genetic Algorithm(GA) optimization design, a group of reasonable technology parameters is found that can improve the static stiffness of the primary mirror supporting type so as to reduce the gravity deformation of the primary mirror. The modal analysis and random vibration analysis are also discussed in detail, and the results indicate that the dynamic stiffness of the primary mirror supporting type is also improved.

  13. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions.

  14. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions.

    PubMed

    Zult, Tjerk; Goodall, Stuart; Thomas, Kevin; Hortobágyi, Tibor; Howatson, Glyn

    2015-04-01

    Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions. PMID:25632077

  15. A support method of large aperture light weighted primary mirror manufacturing and testing

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Zhou, Yuming; Li, Chenxi

    2010-05-01

    With the resolution of space optical remote sensor getting higher, the aperture of the primary mirror has been becoming larger correlatively. The requirement of the plane precision has also become higher. The manufacturing and testing of space optical remote sensor primary mirror should be under more critical status which is different from the mirror on the ground, especially for the primary mirror aperture that is larger than 1 m. This paper compares the differences of testing and manufacturing status between the primary mirror on space optical remote sensor and on the ground. A support method of large aperture primary mirror manufacturing and testing has been released, which is to carry out multiplediscrete support on the back of the mirror by controlling the support stress. The results indicates that this method could reduce the plane error of the primary mirror brought by its self weight effectively by finite element simulation when the mirror is being polishing, so as to satisfy the design and use requirement of the primary mirror.

  16. Hubble Space Telescope primary-mirror characterization by measurement of the reflective null corrector.

    PubMed

    Furey, L; Dubos, T; Hansen, D; Samuels-Schwartz, J

    1993-04-01

    The reflective null corrector used to manufacture of the Hubble Space Telescope contains valuable information about the prescription of the primary mirror since an excellent null was achieved between the null-corrector wave front and the primary-mirror wave front. During the Phase I measurements, the leading cause of the spherical aberration, the field lens position error, was discovered and remeasured to an accuracy of +/-0.005 mm. To derive the conic constant of the primary mirror to an accuracy of +/-0.0003, we remeasured the parameters of the reflective null corrector that could contribute to the spherical aberration of the primary mirror.

  17. Control System Modeling for the Thirty Meter Telescope Primary Mirror

    NASA Technical Reports Server (NTRS)

    MacMynowski, Douglas G.; Thompson, Peter M.; Shelton, J. Chris; Roberts, Lewis C., Jr.; Colavita, M. Mark; Sirota, Mark J.

    2011-01-01

    The Thirty Meter Telescope primary mirror is composed of 492 segments that are controlled to high precision in the presence of wind and vibration disturbances, despite the interaction with structural dynamics. The higher bandwidth and larger number of segments compared with the Keck telescopes requires greater attention to modeling to ensure success. We focus here on the development and validation of a suite of quasi-static and dynamic modeling tools required to support the design process, including robustness verification, performance estimation, and requirements flowdown. Models are used to predict the dynamic response due to wind and vibration disturbances, estimate achievable bandwidth in the presence of control-structure-interaction (CSI) and uncertainty in the interaction matrix, and simulate and analyze control algorithms and strategies, e.g. for control of focus-mode, and sensor calibration. Representative results illustrate TMT performance scaling with parameters, but the emphasis is on the modeling framework itself.

  18. Structural Modeling of the Next Generation Space Telescope's Primary Mirror

    NASA Technical Reports Server (NTRS)

    Boulet, J. A. M.

    1998-01-01

    In recent years, astronomical observations made with space telescopes have dramatically increased our understanding of the history of the universe. In particular, the cosmic Background Explorer (COBE) and the Hubble Space Telescope (HST) have yielded observations that cannot be achieved at ground-based observatories. We now have views of the universe before galaxies existed (from COBE) and views of young galaxies (from HST). But none of the existing observatories can provide views of the period in which the galaxies were born, about 100 million to one billion years after the "big bang". NASA expects the Next Generation Space Telescope (NGST) to fill this gap. An investigation into the structural modeling of the primary mirror of the NGST, its methodology and results are presented.

  19. Design of primary mirror supporting structure and lightweight of space camera

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanmin; Xu, Tiqing; Liu, Shufeng; Yang, Bo; Liu, Yinnian

    2012-10-01

    In order to satisfy the strict requirements of the surface-shapes and lightweight ratios for space mirrors, the following factors for primary mirror and its support are summarized, shape decision, material selection, lightweight methods, support pattern, weight-loss function and thermal stability, according to the special requirement about primary mirror in modern space camera. The design method of lightweight structure and the flexible supporting structure of the primary mirror is proposed. In order to ensure its optical performance, flexible support structure was introduced to improve stress distribution in a variety of conditions. The finite element models for some kinds of lightweight mirror are built for analyzing the influence of the mirror weight on its surface. It satisfy that [PV]≤λ/10, [RMS] ≤λ/40, (λ=632.8nm) with different gravity orientation. The primary mirror structure of the dynamic stiffness was checked by modal analysis of the primary mirror. Finally, according to the experiments, It is proved that the weight, stiffness and surface accuracy of the primary mirror can meet the engineering requirement, and the mirror supporting structure and lightweight is reasonable.

  20. Design and analysis of supporting structure between the primary mirror and the secondary mirror on a space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Chai, Wenyi; Feng, Liangjie; Yang, Wengang; Wang, Wei; Fan, Xuewu

    2015-10-01

    Mechanical stability is a significant segment for an on-axis space telescope to assure its assembly accuracy as well as the image quality in the rigorous space environment, supporting structure between the primary mirror and the secondary mirror as a main structure of the on-axis space telescope must be designed reasonably to meet the mission requirements of the space telescope. Meanwhile, in view of the limitation of the satellite launching cost, it is necessary to reduce the weight and power compensation during the supporting structure design based on the satisfaction of telescope performance. Two types of supporting structure for a space telescope are designed, one is three-tripod structure which has three tripods located on the optical bench to support the secondary mirror assemblies and keep the distance between the primary mirror and the secondary mirror, the other is barrel supporting structure which includes a tube and a secondary mirror support with four spider struts. To compare the mechanical performance and launching cost of the two kinds of supporting structure, both structural and thermal analysis model are established. The analysis results indicates that the three-tripod support is lighter, has better mechanical performance and needs less power compensation than the barrel support.

  1. Surface control techniques for the segmented primary mirror in the large lunar telescope

    NASA Technical Reports Server (NTRS)

    Gleckler, Anthony D.; Pflibsen, Kent P.; Ulich, B. L.; Smith, Duane D.

    1991-01-01

    The large lunar telescope is a proposed moon-based telescope which incorporates a sixteen-meter segmented primary mirror. An error budget is developed for the active control system of the primary mirror. A control methodology for the primary mirror is then described which utilizes piston sensors for measuring the relative piston error between adjacent segments as well as a separate sensor which measures the tilt of each segment with respect to the pointing direction of the telescope. A trade study is conducted in which the following types of tilt sensors are examined to determine their applicability to this program: stellar wavefront sensors, such as a Hartmann-Shack or a shearing interferometer; holographic optical elements; interferometers; scanning systems; and some nonoptical systems which electronically measure the relative tilt between adjacent segments. In addition, two independent methods of quantitatively verifying the performance of the telescope using either a phase retrieval algorithm or an image sharpening technique, both of which are based on the quality of a stellar image, are presented.

  2. Design of the primary mirror segment support system for the E-ELT

    NASA Astrophysics Data System (ADS)

    Cavaller, Lluis; Marrero, Juan; Castro, Javier; Morante, Esteban; Ronquillo, Mariano; Hernández, Elvio

    2008-07-01

    The European Extremely Large Telescope (E-ELT) is a 42-m class optical telescope with a segmented primary mirror composed of 984 segments which is currently being studied by ESO (European Southern Observatory). The segment support system combines a series of mechanical whiffletrees for the axial support, a central diaphragm for lateral support and a torsional constrainer. These elements are fixed to a common moving frame which is actively moved by means of three actuators in piston and tip-tilt in order to keep the whole primary mirror in phase. The moving frame is fixed to the segments subcells, which properly attach the segments to the cell structure, by means of special flexures, allowing large axial alignment capability combined with high lateral stiffness. This paper describes the development of the support system for the primary mirror segments of the E-ELT, which has been specified for a high stiffness and eigenfrequencies, 60Hz for axial modes and 40Hz for lateral ones.

  3. Optimization analysis of primary mirror in large aperture telescope based on workbench

    NASA Astrophysics Data System (ADS)

    Feng, Zhengsen; Wang, Guomin

    2015-10-01

    With the diameter increasing for large aperture telescope primary mirror, the gravity caused by the increased of surface size will directly affect the quality of optical imaging, the adjustment of large aperture primary mirror will be frequent according to the requirement of observation. As the angle and the azimuth's transformation of primary mirror influences the surface shape accuracy immediately, the rational design of the primary mirror supporting structure is of crucial importance. Now the general method is to use ANSYS APDL programming, which is inconvenient and complex to fit for the different components, the calculation require much time and the analysis is lack of efficient. Taking the diameter of 1.12 m telescope primary mirror as the research objection, the paper combine the actual design parameters of SONG telescope, respectively using ANSYS WORKBENCH to employ the primary mirror axial and lateral support model in finite element method, the optimal solution is obtained by optimization design and the change rule of mirror surface deformation under inclined condition is studied. The optimization results according with the requirements of the primary mirror comprehensive error proves that the optimization analysis method is available and applicable.

  4. Primary mirror and mount technology for the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K.; Chang, L. S.; Mansfield, J. A.; Howard, Steven D.

    1989-01-01

    Candidate technologies for a lightweight primary mirror for the SOFIA telescope are evaluated for both mirror blank fabrication and polishing. Two leading candidates for the type mirror blank are considered: the frit-bonded, structured form, and the thin meniscus form. The feasible mirror is required to be very lightweight with an areal density of approximately 100 kg/sq m, have an f/ratio near 1.0, and have surface quality that permits imaging in the visible as well as the infrared. Also considered are the results of a study conducted to assess the feasibility of designing a suitable mounting system for the primary mirror. The requirements for the mount design are given both in terms of the environmental conditions and the expected optical performance. PATRAN and NASTRAN programs are used to model mirror and mounting. The sandwich-type mirror made of ultra low expansion silica with square cells in the core, is modeled using equivalent solid elements for the core. The design study produces primary mirror surface deflections in 1g as a function of mirror elevation angles. The surface is analyzed using an optical analysis program, FRINGE, to give a prediction of the mirror optical performance. Results from this analysis are included.

  5. Keck telescope primary mirror segments: fabrication and support.

    NASA Astrophysics Data System (ADS)

    Mast, T. S.; Nelson, J. E.

    1988-10-01

    The fabrication of the mirror segments and segment support systems for the Keck Telescope are currently in progress. High quality mirror blanks are being manufactured and delivered by Schott Optical Technologies on a regular schedule. The segment fabrication facilities at Itek Optical Systems are in the final stage of preparation for production.

  6. Final acceptance testing of the LSST monolithic primary/tertiary mirror

    NASA Astrophysics Data System (ADS)

    Tuell, Michael T.; Burge, James H.; Cuerden, Brian; Gressler, William; Martin, Hubert M.; West, Steven C.; Zhao, Chunyu

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a three-mirror wide-field survey telescope with the primary and tertiary mirrors on one monolithic substrate1. This substrate is made of Ohara E6 borosilicate glass in a honeycomb sandwich, spin cast at the Steward Observatory Mirror Lab at The University of Arizona2. Each surface is aspheric, with the specification in terms of conic constant error, maximum active bending forces and finally a structure function specification on the residual errors3. There are high-order deformation terms, but with no tolerance, any error is considered as a surface error and is included in the structure function. The radii of curvature are very different, requiring two independent test stations, each with instantaneous phase-shifting interferometers with null correctors. The primary null corrector is a standard two-element Offner null lens. The tertiary null corrector is a phase-etched computer-generated hologram (CGH). This paper details the two optical systems and their tolerances, showing that the uncertainty in measuring the figure is a small fraction of the structure function specification. Additional metrology includes the radii of curvature, optical axis locations, and relative surface tilts. The methods for measuring these will also be described along with their tolerances.

  7. Experiment and modal analysis on the primary mirror structure of Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyuan; Zhang, Rui; Chen, Zhiping; Yang, Shimo; Hu, Qiqian

    2006-06-01

    Primary mirror with Φ 1m and f 3.5m is the most important optical part in Space Solar Telescope (SST), which is designed to make observations of transient and steady state solar hydrodynamic and magnetohydrodynamic processes and is being researched and manufactured by National Astronomical Observatories. The primary mirror structure(PMS), a crucial linker for the optical and other subsystems, includes primary mirror and its supporting frame. Therefore, this part must satisfy the optical sufficient strength, stiffness, and thermal stability requirements under the space environment and in the launching process. In this paper the primary mirror structure and its connection are described. The scheme of modal analysis and experiment is built, according to the specific dynamic requirements of the primary mirror structure in Space Solar Telescope. The dynamic response on the primary mirror structure is analyzed with MSC.NASTRAN software. Comparing these results with mode parameters obtained from modal experiment analysis. Modal experiment uses freely hanging primary mirror structure, simple input multi-output, and modal parameter identification through CADA-X software. Both results provide evidences to develop this satellite design.

  8. Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.

    PubMed

    Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan

    2015-08-20

    An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained. PMID:26368746

  9. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.

    PubMed

    Liu, Shutian; Hu, Rui; Li, Quhao; Zhou, Ping; Dong, Zhigang; Kang, Renke

    2014-12-10

    For the large-aperture space telescope, the lightweight primary mirror design with a high-quality optical surface is a critical and challenging issue. This work presents a topology optimization-based design procedure for a lightweight primary mirror and a new mirror configuration of a large-aperture space telescope is obtained through the presented design procedure. Inspired by the topology optimization method considering cast constraints, an optimization model for the configuration design of the mirror back is proposed, through which the distribution and the heights of the stiffeners on the mirror back can be optimized simultaneously. For the purpose of minimizing the optical surface deviation due to self-weight and polishing pressure loadings, the objective function is selected as to maximize the mirror structural stiffness, which can be achieved by minimizing the structural compliance. The total mass of the primary mirror is assigned as the constraint. In the application example, results of the optimized design topology for two kinds of mass constraints are presented. Executing the design procedure for specific requirements and postprocessing the topology obtained of the structure, a new mirror configuration with tree-like stiffeners and a multiple-arch back in double directions is proposed. A verification model is constructed to evaluate the design results and the finite element method is used to calculate the displacement of the mirror surface. Then the RMS deviation can be obtained after fitting the deformed surface by Zernike polynomials. The proposed mirror is compared with two classical mirrors in the optical performance, and the comparison results demonstrate the superiority of the new mirror configuration. PMID:25608076

  10. Active array design for FAME: Freeform Active Mirror Experiment

    NASA Astrophysics Data System (ADS)

    Jaskó, Attila; Aitink-Kroes, Gabby; Agócs, Tibor; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Bányai, Evelin

    2014-07-01

    In this paper a status report is given on the development of the FAME (Freeform Active Mirror Experiment) active array. Further information regarding this project can be found in the paper by Venema et al. (this conference). Freeform optics provide the opportunity to drastically reduce the complexity of the future optical instruments. In order to produce these non-axisymmetric freeform optics with up to 1 mm deviation from the best fit sphere, it is necessary to come up with new design and manufacturing methods. The way we would like to create novel freeform optics is by fine tuning a preformed high surface-quality thin mirror using an array which is actively controlled by actuators. In the following we introduce the tools deployed to create and assess the individual designs. The result is an active array having optimal number and lay-out of actuators.

  11. Large-aperture active optical carbon fiber reinforced polymer mirror

    NASA Astrophysics Data System (ADS)

    Jungwirth, Matthew E. L.; Wilcox, Christopher C.; Wick, David V.; Baker, Michael S.; Hobart, Clinton G.; Milinazzo, Jared J.; Robichaud, Joseph; Romeo, Robert C.; Martin, Robert N.; Ballesta, Jerome; Lavergne, Emeric; Dereniak, Eustace L.

    2013-05-01

    An active reflective component can change its focal length by physically deforming its reflecting surface. Such elements exist at small apertures, but have yet to be fully realized at larger apertures. This paper presents the design and initial results of a large-aperture active mirror constructed of a composite material called carbon fiber reinforced polymer (CFRP). The active CFRP mirror uses a novel actuation method to change radius of curvature, where actuators press against two annular rings placed on the mirror's back. This method enables the radius of curvature to increase from 2000mm to 2010mm. Closed-loop control maintains good optical performance of 1.05 waves peak-to-valley (with respect to a HeNe laser) when the active CFRP mirror is used in conjunction with a commercial deformable mirror.

  12. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  13. Analysis of the dynamics of thin primary mirrors for large astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Mccann, M.

    1973-01-01

    The NASTRAN structural analysis program was used to investigate the dynamic properties of thin primary mirrors suitable for use in large orbiting astronomical telescopes. An analysis is included of the mode shapes and modal frequencies for several thin, homogeneous, isotropic mirrors. Typical cases include two different mirror diameters, two different diameter-to-thickness ratios, and both a mirror without and a mirror with a central hole that is 22 percent of the mirror diameter. The finite-element structural model is evaluated by comparing the NASTRAN generated results with theoretical values for a simply supported, flat, circular mirror. The same model is then used for evaluating the spherical mirrors. The mode shapes and frequencies of a 0.762-meter-diameter mirror with a 60-to-1 diameter-to-thickness ratio and a three-point rigid kinematic (not overconstrained) mount are calculated and plotted for comparison with results obtained previously from the SAMIS structural analysis program for this same mirror. A static analysis is also shown for comparison with experimentally obtained influence coefficients.

  14. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system. PMID:27409212

  15. Four-zone varifocus mirrors with adaptive control of primary and higher-order spherical aberration.

    PubMed

    Lukes, Sarah J; Downey, Ryan D; Kreitinger, Seth T; Dickensheets, David L

    2016-07-01

    Electrostatically actuated deformable mirrors with four concentric annular electrodes can exert independent control over defocus as well as primary, secondary, and tertiary spherical aberration. In this paper we use both numerical modeling and physical measurements to characterize recently developed deformable mirrors with respect to the amount of spherical aberration each can impart, and the dependence of that aberration control on the amount of defocus the mirror is providing. We find that a four-zone, 4 mm diameter mirror can generate surface shapes with arbitrary primary, secondary, and tertiary spherical aberration over ranges of ±0.4, ±0.2, and ±0.15  μm, respectively, referred to a non-normalized Zernike polynomial basis. We demonstrate the utility of this mirror for aberration-compensated focusing of a high NA optical system.

  16. Application of research for metal primary mirror of large-aperture infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Meng, Xiaohui; Zhang, Haiying; Li, Xinnan

    2010-05-01

    Metal is an early telescope mirror material, it was later replaced by glass which has lower thermal expansion coefficient. However, for observing the sun, these glass materials in the primary mirror are affected by the sun's intense radiation, its temperature rises rapidly, but which conducts heat slowly. The temperature difference between mirror and ambient air is so large that causing the air turbulence which has affected the observation precision. While the metal material has better thermal conductivity characteristics, it can greatly improve the problems caused by air turbulence. This paper analyzes the characteristics of the various mirror materials, and then makes a rust-proof aluminum alloy 5A05 as the mirror substrate material. For the major deficiencies of the soft aluminum surface which is not suitable for polishing, this paper presents a method of electroless nickel plating to improve its surface properties. After the mirror go through a thermal shock, the upper and lower levels of metal CTE don't match with each other, which leads to mirror deformation and warping. The bimetallic effect has been illustrated by the theory of beam element and give a result of elementary approximated. The analysis shows that the displacement deformation of the upper and lower layers of metal which is caused by thermal shock is smaller when the CTE is closer. In the experiments, a spherical aluminum mirrors with the substrate of 5A05 aluminum alloy, diameter of 110mm, the radius of curvature of 258.672mm is manufactured in classical technique. And it ultimately achieves optical mirror-polished precision. Besides, the long-term thermal stability experimental study of the aluminum mirrors proved that Al-infrared solar telescope primary mirror meets the needs of the long-term observation during use.

  17. Optimization strategy of axial and lateral supports for large primary mirrors

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    1994-06-01

    A parametric study was performed to optimize the support systems of a large primary mirror. In order to analyze the support pattern locations and the levels of the support forces, finite element models of the primary mirror were employed. Influence matrices for the axial defining supports were established by combining sets of unit load cases which were applied at each of the selected support points in the mirror models. A least square algorithm was utilized to satisfy the design requirements during the optimization process. In this paper, a description of an optimization scheme to define the axial support locations and the force directions of the lateral supports is presented. The optimization procedures were applied to the GEMINI primary mirrors and the optimized force sets were verified by finite element analysis.

  18. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research.

  19. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research. PMID:25446453

  20. Precision Linear Actuators for the Spherical Primary Optical Telescope Demonstration Mirror

    NASA Technical Reports Server (NTRS)

    Budinoff, Jason; Pfenning, David

    2006-01-01

    The Spherical Primary Optical Telescope (SPOT) is an ongoing research effort at Goddard Space Flight Center developing wavefront sensing and control architectures for future space telescopes. The 03.5-m SPOT telescope primary mirror is comprise9 of six 0.86-m hexagonal mirror segments arranged in a single ring, with the central segment missing. The mirror segments are designed for laboratory use and are not lightweighted to reduce cost. Each primary mirror segment is actuated and has tip, tilt, and piston rigid-body motions. Additionally, the radius of curvature of each mirror segment may be varied mechanically. To provide these degrees of freedom, the SPOT mirror segment assembly requires linear actuators capable of mirror segment, which has a mass of -100 kg. A stepper motor driving a differential satellite roller screw was designed to meet these demanding requirements. Initial testing showed that the actuator is capable of sub-micron repeatability over the entire 6-mm range, and was limited by 100-200 nm measurement noise levels present in the facility. Further testing must be accomplished in an isolated facility with a measurement noise floor of <5 nm. Such a facility should be ready for use at GSFC in the early summer of 2006, and will be used to better characterize this actuator.

  1. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  2. Electronic speckle pattern interferometric testing of JWST primary mirror segment assembly

    NASA Astrophysics Data System (ADS)

    Smith, Koby Z.; Chaney, David M.; Saif, Babak N.

    2011-09-01

    The James Webb Space Telescope (JWST) Primary Mirror Segment Assembly (PMSA) was required to meet NASA Technology Readiness Level (TRL) 06 requirements in the summer of 2006. These TRL06 requirements included verifying all mirror technology systems level readiness in simulated end-to-end operating conditions. In order to support the aggressive development and technology readiness schedule for the JWST Primary Mirror Segment Assembly (PMSA), a novel approach was implemented to verify the nanometer surface figure distortion effects on an in-process non-polished beryllium mirror surface. At the time that the TRL06 requirements needed to be met, a polished mirror segment had not yet been produced that could have utilized the baselined interferometric optical test station. The only JWST mirror segment available was a finished machined segment with an acid-etched optical surface. Therefore an Electronic Speckle Pattern Interferometer (ESPI) was used in coordination with additional metrology techniques to perform interferometric level optical testing on a non-optical surface. An accelerated, rigorous certification program was quickly developed for the ESPI to be used with the unfinished optical surface of the primary mirror segment. The ESPI was quickly implemented into the PMSA test program and optical testing was very successful in quantifying the nanometer level surface figure deformation changes in the PMSA due to assembly, thermal cycling, vibration, and acoustic testing. As a result of the successful testing, the PMSA passed all NASA TRL06 readiness requirements.

  3. The effects of thermal gradients on the Mars Observer Camera primary mirror

    NASA Technical Reports Server (NTRS)

    Applewhite, Roger W.; Telkamp, Arthur R.

    1992-01-01

    The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.

  4. Active optics control of VST telescope secondary mirror.

    PubMed

    Schipani, Pietro; D'Orsi, Sergio; Fierro, Davide; Marty, Laurent

    2010-06-01

    In telescopes based on active optics, defocus and coma are usually compensated for by secondary mirror movements. They are performed at the Very Large Telescope Survey Telescope (VST) with a hexapod--a parallel robot with six degrees of freedom positioning capability. We describe the application of the two-mirror telescope theory to the VST case and the solutions adopted for the hexapod control. We present the results of performance and reliability tests performed both in the laboratory and at the telescope.

  5. Network activity of mirror neurons depends on experience.

    PubMed

    Ushakov, Vadim L; Kartashov, Sergey I; Zavyalova, Victoria V; Bezverhiy, Denis D; Posichanyuk, Vladimir I; Terentev, Vasliliy N; Anokhin, Konstantin V

    2013-03-01

    In this work, the investigation of network activity of mirror neurons systems in animal brains depending on experience (existence or absence performance of the shown actions) was carried out. It carried out the research of mirror neurons network in the C57/BL6 line mice in the supervision task of swimming mice-demonstrators in Morris water maze. It showed the presence of mirror neurons systems in the motor cortex M1, M2, cingular cortex, hippocampus in mice groups, having experience of the swimming and without it. The conclusion is drawn about the possibility of the new functional network systems formation by means of mirror neurons systems and the acquisition of new knowledge through supervision by the animals in non-specific tasks.

  6. Production of primary mirror segments for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Allen, R. G.; Burge, J. H.; Davis, J. M.; Davison, W. B.; Johns, M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Lutz, R. D.; Strittmatter, P. A.; Su, P.; Tuell, M. T.; West, S. C.; Zhou, P.

    2014-07-01

    Segment production for the Giant Magellan Telescope is well underway, with the off-axis Segment 1 completed, off-axis Segments 2 and 3 already cast, and mold construction in progress for the casting of Segment 4, the center segment. All equipment and techniques required for segment fabrication and testing have been demonstrated in the manufacture of Segment 1. The equipment includes a 28 m test tower that incorporates four independent measurements of the segment's figure and geometry. The interferometric test uses a large asymmetric null corrector with three elements including a 3.75 m spherical mirror and a computer-generated hologram. For independent verification of the large-scale segment shape, we use a scanning pentaprism test that exploits the natural geometry of the telescope to focus collimated light to a point. The Software Configurable Optical Test System, loosely based on the Hartmann test, measures slope errors to submicroradian accuracy at high resolution over the full aperture. An enhanced laser tracker system guides the figuring through grinding and initial polishing. All measurements agree within the expected uncertainties, including three independent measurements of radius of curvature that agree within 0.3 mm. Segment 1 was polished using a 1.2 m stressed lap for smoothing and large-scale figuring, and a set of smaller passive rigid-conformal laps on an orbital polisher for deterministic small-scale figuring. For the remaining segments, the Mirror Lab is building a smaller, orbital stressed lap to combine the smoothing capability with deterministic figuring.

  7. Design and manufacture of 8.4 m primary mirror segments and supports for the GMT

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Angel, J. R. P.; Burge, J. H.; Cuerden, B.; Davison, W. B.; Johns, M.; Kingsley, J. S.; Kot, L. B.; Lutz, R. D.; Miller, S. M.; Shectman, S. A.; Strittmatter, P. A.; Zhao, C.

    2006-06-01

    The design, manufacture and support of the primary mirror segments for the GMT build on the successful primary mirror systems of the MMT, Magellan and Large Binocular telescopes. The mirror segment and its support system are based on a proven design, and the experience gained in the existing telescopes has led to significant refinements that will provide even better performance in the GMT. The first 8.4 m segment has been cast at the Steward Observatory Mirror Lab, and optical processing is underway. Measurement of the off-axis surface is the greatest challenge in the manufacture of the segments. A set of tests that meets the requirements has been defined and the concepts have been developed in some detail. The most critical parts of the tests have been demonstrated in the measurement of a 1.7 m off-axis prototype. The principal optical test is a full-aperture, high-resolution null test in which a hybrid reflective-diffractive null corrector compensates for the 14 mm aspheric departure of the off-axis segment. The mirror support uses the same synthetic floatation principle as the MMT, Magellan, and LBT mirrors. Refinements for GMT include 3-axis actuators to accommodate the varying orientations of segments in the telescope.

  8. Mirror with a variable amplitude - phase reflectance. 2. Modelling of a laser resonator with an active output mirror

    SciTech Connect

    Kiiko, V V; Kislov, V I; Ofitserov, Evgenii N

    2011-03-31

    We present the operator model of the laser resonator with an active output mirror based on the Fabry - Perot interferometer with nonflat (spherical and aspherical) mirrors and an adjustable gap. The results of numerical simulation of a microchip laser with a thermal lens and an active output interferometer-based mirror are given. It is shown that the use of an active interferometer as the output cavity mirror allows one to control the number of transverse modes of laser radiation and its power; in this case, the beam divergence can be reduced by a factor of 1.5 - 2.5. (laser resonators)

  9. Figure control of flexible structures - Optical surfaces of thin deformable primary mirrors

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.; Ostroff, A. J.

    1980-01-01

    Application of a modal control design technique to achieve discrete control of distributed parameter systems is considered. Results are presented for application of the design technique to achieve diffraction limited performance from the primary mirror of a space telescope and to provide flutter suppression for an aircraft wing.

  10. Characterization and performances of the primary mirror of the PILOT balloon-borne experiment

    NASA Astrophysics Data System (ADS)

    Engel, C.; Ristorcelli, I.; Bernard, J.-Ph; Longval, Y.; Marty, C.; Mot, B.; Otrio, G.; Roudil, G.

    2013-08-01

    PILOT is a balloon-borne experiment designed to perform large-scale surveys of the polarized interstellar emission in the submillimeter. It is based on the use of an off-axis Gregorian type telescope, with a 1 m diameter primary mirror, and a large focal plane equipped with detectors arrays providing a field of view. All optical elements except the primary mirror are located inside a large liquid He cryostat, cooled down to 3 K. Strong constraints are then imposed on the alignment between the primary mirror and the cold optics. The characterization and optimization of the optical system performances are critical to the success of the mission. In this paper, we present the modelling and measurements performed on the primary mirror for this purpose. The optical and mechanical parameters of the as-built primary mirror have been determined using a method based on 3D measurements of the mirror surface. The deformations expected under flight conditions due to temperature variations and flexion under gravity have been estimated. We have also performed measurements using a submillimeter test bench in order to control the image quality and derive the main optical parameters. The parameters derived from the modeling using 3D measurements are in agreement with the requirements except for the conic constant. The best positioning of the mirror has been optimized consequently. The modeling has also allowed us to determine the pre-flight alignment parameters of the mirror as a function of the expected structure temperature at ceiling altitude. We have shown that this adjustment will enable to keep the tight requirements on the focus position (600 μm) within a range of C around the ceiling temperature value. The submillimeter measurements have validated the results derived from the 3D measurement based modeling. The image quality was investigated by performing a spatial exploration in azimuth and elevation around the nominal focus position, and along the optical axis. The

  11. Research on the support structure of the primary mirror of large-aperture telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Jingxu

    2007-12-01

    Large-aperture telescope can be used in surveying battlefield, researching landform, searching object, real-time monitoring, imaging, detecting and identifying spatial targets and so on. A large-aperture telescope for achieving high resolution power is designed to monitor spatial target and image in real time. Real-time monitoring plays an important role in military conflicts. The orbit parameter of object, quantity, geometrical shape parameter and so on can be obtained by detect spatial target. With the development of optical technology, people require larger aperture in optics-electronic (O-E) system. By increasing optical aperture, the ability of collecting light and resolution power in the system can be enhanced. But the support structure of the primary mirror of large-aperture telescope will be a very difficult problem. With the increase of primary mirror aperture, the weight of the primary mirror will become larger than before. The root mean square (rms) of the primary mirror is affected by many factors, such as deadweight, deformation of heat, environment and so on. Due to the primary mirror of telescope is an important component of telescope system. By reducing the weight of primary mirror, precision of the system is ensured. During the designing phase, one can consider the supporting project of the primary mirror synthetically and analyze it roundly according to technical requirement of optical system and the effect factors. The final structural design can be reasonable. In an astronomical telescope, the surface of reflector is an important part for collecting dark radiation of celestial bodies. Its surface shape will have an effect on collecting efficiency of telescope radiant energy directly. So the rms must be very high. Optical system of large aperture, small wavelength and small focus can receive maximal light intensity. For ground-based optical astronomical telescope, the design proposed in the paper can satisfy the requirement of the possible

  12. Structural evaluation of candidate designs for the large space telescope primary mirror

    NASA Technical Reports Server (NTRS)

    Soosaar, K.; Grin, R.; Furey, M.; Hamilton, J.

    1975-01-01

    Structural performance analyses were conducted on two candidate designs (Itek and Perkin-Elmer designs) for the large space telescope three-meter mirror. The mirror designs and the finite-element models used in the analyses evaluation are described. The results of the structural analyses for several different types of loading are presented in tabular and graphic forms. Several additional analyses are also reported: the evaluation of a mirror design concept proposed by the Boeing Co., a study of the global effects of local cell plate deflections, and an investigation of the fracture mechanics problems likely to occur with Cervit and ULE. Flexibility matrices were obtained for the Itek and Perkin-Elmer mirrors to be used in active figure control studies. Summary, conclusions, and recommendations are included.

  13. The flexure assembly design for the SIRTF one-meter primary mirror

    NASA Technical Reports Server (NTRS)

    Richard, R. M.; Vukobratovich, D.; Cho, M.; Pollard, L. W.; Melugin, R. K.

    1989-01-01

    A titanium flexure assembly for the Space Infrared Telescope Facility (SIRTF) 1-m primary mirror has been designed to accommodate: (1) the cryogenic cool-down effect on the optical performance of the mirror, (2) the Shuttle launch-load environment, and (3) the support-baseplate manufacturing tolerances. Numerous iterations involving a multidimensional design space search led to an assembly design that provides the stiffness and strength in the vertical (optical axis) and tangential directions to accommodate launch loads, but is compliant radially to accommodate cryogenic cool down. A 'folded back' titanium flexure system was required because of the differential thermal contraction of the aluminum telescope baseplate support and the fused-silica mirror. This unique and innovative flexure assembly represents a totally passive mechanism for accommodating the design launch loads, cryogenic cool down, and out-of-plane baseplate effects.

  14. A Novel Axial Foldable Mechanism for a Segmented Primary Mirror of Space Telescope

    NASA Astrophysics Data System (ADS)

    Thesiya, Dignesh; Srinivas, Arra; Shukla, Piyush

    2015-09-01

    Future space missions will have larger telescopes in order to look deeper into space while improvising on spatial resolution. The primary mirrors for these telescopes will be so large that using a monolithic mirror will be nearly impossible because of the difficulties associated with its fabrication, transportation, and installation on a launch vehicle. The feasibility of launching these huge mirrors is limited because of their small launch fairing diameter. The aerodynamic shape of the fairing requires a small diameter, but the height of the launch vehicle, which is available for designers to utilize, is larger than the fairing diameter. This paper presents the development of an axial deployment mechanism based on the screw jack principle. The mechanism was designed and developed, and a prototype was constructed in order to demonstrate a lab model.

  15. Primary Mirror Figure Maintenance of the Hobby-Eberly Telescope using the Segment Alignment Maintenance System

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)

    2002-01-01

    The Segment Alignment Maintenance System (SAMs) was installed on McDonald Observatory's Hobby-Eberly Telescope (HET) in August 2001. The SAMs became fully operational in October 2001. The SAMs uses a system of 480 inductive edge sensors to correct misalignments of the HET's 91 primary mirror segments when the segments are perturbed from their aligned reference positions. A special observer estimated and corrects for the global radius of curvature (GroC) mode, a mode unobservable by the edge sensors. The SAMs edge sensor system and (GroC) estimator are able to maintain HET's primary figure for much longer durations than previously had been observed. Telescope image quality has improved, and the amount of overhead time required from primary mirror alignment has been reduced. This paper gives a functional description of the SAMs control system and presents performance verification data. This paper also describes how the SAMs has improved the operational efficiency of the HET.

  16. Modeling and vibration control of an active membrane mirror

    NASA Astrophysics Data System (ADS)

    Ruggiero, Eric J.; Inman, Daniel J.

    2009-09-01

    The future of space satellite technology lies in ultra-large mirrors and radar apertures for significant improvements in imaging and communication bandwidths. The availability of optical-quality membranes drives a parallel effort for structural models that can capture the dominant dynamics of large, ultra-flexible satellite payloads. Unfortunately, the inherent flexibility of membrane mirrors wreaks havoc with the payload's on-orbit stability and maneuverability. One possible means of controlling these undesirable dynamics is by embedding active piezoelectric ceramics near the boundary of the membrane mirror. In doing so, active feedback control can be used to eliminate detrimental vibration, perform static shape control, and evaluate the health of the structure. The overall motivation of the present work is to design a control system using distributed bimorph actuators to eliminate any detrimental vibration of the membrane mirror. As a basis for this study, a piezoceramic wafer was attached in a bimorph configuration near the boundary of a tensioned rectangular membrane sample. A finite element model of the system was developed to capture the relevant system dynamics from 0 to 300 Hz. The finite element model was compared against experimental results, and fair agreement found. Using the validated finite element models, structural control using linear quadratic regulator control techniques was then used to numerically demonstrate effective vibration control. Typical results show that less than 12 V of actuation voltage is required to eliminate detrimental vibration of the membrane samples in less than 15 ms. The functional gains of the active system are also derived and presented. These spatially descriptive control terms dictate favorable regions within the membrane domain for placing sensors and can be used as a design guideline for structural control applications. The results of the present work demonstrate that thin plate theory is an appropriate modeling

  17. First results of the wind evaluation breadboard for ELT primary mirror design

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  18. Expanding the mirror: vicarious activity for actions, emotions, and sensations.

    PubMed

    Keysers, Christian; Gazzola, Valeria

    2009-12-01

    We often empathically share the states of others. The discovery of 'mirror neurons' suggested a neural mechanism for monkeys to share the actions of others. Here we expand this view by showing that mirror neurons for actions not only exist in the premotor cortex or in monkeys and that vicarious activity can also be measured for the emotions and sensations of others. Although we still need to empirically explore the function and development of these vicarious activations, we should stop thinking of vicarious brain activity as a peculiar property of the premotor cortex: instead it seems to be a very common phenomenon which leads social stimuli to recruit a wide range of seemingly private neural systems. PMID:19880311

  19. Improvements to the Apache Point 3.5-m primary-mirror support system

    NASA Astrophysics Data System (ADS)

    Brown, Yorke J.; Davis, Jon E.

    1998-05-01

    The primary mirror of the Apache Point 3.5 meter telescope rests on an array of small pneumatic actuators distributed over the back plate of the mirror and within its honey comb cells. A control system constantly adjusts the pressure in the actuators so as to synthesize a perfectly rigid mounting, thus maintaining both the figure of the mirror and its orientation with respect to the mirror cell. In its original configuration, the APO 3.5 meter system exhibited a number of anomalous behaviors that detracted from the optical performance of the telescope. Analysis of the design indicated three basic problems: first that the pneumatic servovalves suffered from mechanical nonlinearities and an adverse dependence of their transfer function on operating pressure; second, that the air supply system could not exhaust air from the actuators rapidly enough near the horizon and zenith; and third, that the control system did not adequately account for the inertia of the mirror under dynamic conditions. Consequently, we have designed and installed a new control system which addresses these deficiencies. The new system employs high-bandwidth, flapper-type proportional valves that eliminate the mechanical problems and permit implementation of a high- performance controller. The new controller utilizes the existing hard points for mirror position sensing, but implements a pressure-feedback inner loop and a more sophisticated dynamic model. The air supply system now incorporates a sub-atmospheric return and operates closed- loop to minimize contamination problems. The new system exhibits substantial improvements over its previous performance, with positioning errors in the sub-micron range. The design has been selected for use on the Sloan Digital Sky Survey telescope.

  20. Fabrication of experimental three-meter space telescope primary and secondary mirror support structure

    NASA Technical Reports Server (NTRS)

    Mishler, H. W.

    1974-01-01

    The fabrication of prototype titanium alloy primary and secondary mirror support structures for a proposed experimental three-meter space telescope is discussed. The structure was fabricated entirely of Ti-6Al-4V tubing and plate. Fabrication included the development of procedures including welding, forming, and machining. Most of the structures was fabricated by gas-shielding tungsten-arc (GTA) welding with several major components fabricated by high frequency resistance (HFR) welding.

  1. An updated T-series thermocouple measurement system for high-accuracy temperature measurements of the MMT primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Gibson, J. D.

    2012-09-01

    Starting in 2009, MMTO began design and installation of a new set of electronics to measure a set of radiallydistributed type T thermocouples installed after the primary mirror polishing was completed. These thermocouples are arranged in both single measurement points and as thermopiles for differential temperature sensing. Since the goal of the primary mirror temperature control system is to minimize mirror seeing and mirror figure errors induced by temperature variation across the primary mirror, it depends on excellent accuracy from the temperature sensing system. The new electronics encompass on-board cold-junction compensation, real-time ITS-90 curve fitting, and Ethernet connectivity to the data servers running in the MMTO software infrastructure. We describe the hardware design, system wiring, and software used in this system.

  2. Investigation of Primary Mirror Segment's Residual Errors for the Thirty Meter Telescope

    NASA Technical Reports Server (NTRS)

    Seo, Byoung-Joon; Nissly, Carl; Angeli, George; MacMynowski, Doug; Sigrist, Norbert; Troy, Mitchell; Williams, Eric

    2009-01-01

    The primary mirror segment aberrations after shape corrections with warping harness have been identified as the single largest error term in the Thirty Meter Telescope (TMT) image quality error budget. In order to better understand the likely errors and how they will impact the telescope performance we have performed detailed simulations. We first generated unwarped primary mirror segment surface shapes that met TMT specifications. Then we used the predicted warping harness influence functions and a Shack-Hartmann wavefront sensor model to determine estimates for the 492 corrected segment surfaces that make up the TMT primary mirror. Surface and control parameters, as well as the number of subapertures were varied to explore the parameter space. The corrected segment shapes were then passed to an optical TMT model built using the Jet Propulsion Laboratory (JPL) developed Modeling and Analysis for Controlled Optical Systems (MACOS) ray-trace simulator. The generated exit pupil wavefront error maps provided RMS wavefront error and image-plane characteristics like the Normalized Point Source Sensitivity (PSSN). The results have been used to optimize the segment shape correction and wavefront sensor designs as well as provide input to the TMT systems engineering error budgets.

  3. The design method of CGH for testing the Φ404, F2 primary mirror

    NASA Astrophysics Data System (ADS)

    Xie, Nian; Duan, Xueting; Li, Hua

    2014-09-01

    In order to accurately test shape quality of the large diameter aspherical mirror, a kind of binary optical element called Computer generated holograms (CGHs) are widely used .The primary role of the CGHs is to generate any desired wavefronts to realize phase compensation. In this paper, the CGH design principle and design process are reviewed at first. Then an optical testing system for testing the aspheric mirror includes a computer generated hologram (CGH) and an imaging element (IE) is disposed. And an optical testing system only concludes a CGH is proposed too. The CGH is designed for measurement of an aspheric mirror (diameter=404mm, F-number=2). Interferometric simulation test results of the aspheric mirror show that the whole test system obtains the demanded high accuracy. When combined the CGH with an imaging element in the Aspheric Compensator, the smallest feature in the CGH should be decreased. The CGH can also be used to test freeform surface with high precision, it is of great significance to the development of the freeform surface.

  4. Analysis investigation of supporting and restraint conditions on the surface deformation of a collimator primary mirror

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; You, Zhen-Ting; Huang, Bo-Kai; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-09-01

    For meeting the requirements of the high-precision telescopes, the design of collimator is essential. The diameter of the collimator should be larger than that of the target for the using of alignment. Special supporting structures are demanded to reduce the deformation of gravity and to control the surface deformation induced by the mounting force when inspecting large-aperture primary mirrors. By using finite element analysis, a ZERODUR® mirror of a diameter of 620 mm will be analyzed to obtain the deformation induced by the supporting structures. Zernike polynomials will also be adopted to fit the optical surface and separate corresponding aberrations. Through the studies under different boundary conditions and supporting positions of the inner ring, it is concluded that the optical performance will be excellent under a strong enough supporter.

  5. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

    2010-07-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. This paper will introduce the systems level architecture and optical layout of the CoCOA and its main subsystems.

  6. A method on lightweight for the primary mirror of large space-based telescope based on neural network

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Zhang, Shuqing; Tan, Fanjiao; Zhi, Xiyang; Chu, Yongqiang; Lv, Hongdi; Zhen, Rongkai

    2014-11-01

    With the aperture of telescope becoming larger, the mass of primary mirror and other relevant structures will become heavier as well. Therefore, lighting weight for large space-based telescope is necessary. This paper purposed a method based on Neural Network aims to build a math model for primary mirror of large space-based telescope, which can reduce weight of the telescope and smaller mirror deformation caused by gravity release effectively. In the meantime, it can also improve stiffness of structure and reduce thermal strain caused by on orbit temperature variation effectively. The model describes the relationship between the structure of primary mirror of large space-based telescope and corresponding deformation, and describes the optical performance of mirror by using Zernike Polynomial. To optimize the structure of primary mirror lightweight, we take the deformation of mirror and its optical performance into consideration. To apply the structures parameters and its corresponding deformations to Neural Network training, we use the combination samples of different mirror lightweight structure parameters and corresponding deformation which caused by gravity release and thermal condition. Finally, by taking advantage of the Neural Network model to optimize the primary mirror lightweight of 1-meter rectangle space-based telescope, which can make the RMS 0.024λ (λ=632.8nm)and areal density under 15kg/m2. This method combines existing results and numerical simulation to establish numerical model based on Neural Network method. Research results can be applied to same processes of designing, analyzing, and processing of large space-based telescope directly.

  7. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  8. Design of the Apache-Point Observatory 3.5-METER Telescope - Part Three - Primary Mirror Support System

    NASA Astrophysics Data System (ADS)

    Mannery, E. J.; Siegmund, W. A.; Hull, M. T.

    1986-01-01

    The authors describe a system of pneumatic piston mirror supports for use in an altitude over azimuth telescope which react to gravity and wind loading. A pressure controller provides dynamic compensation of variable wind loading and changes in the gravity loading as a result of altitude angle changes. An active air circulation system which ventilates every honeycomb cell can be implemented without interference from the mirror supports. The system can be expanded in principle to accomodate 8 m honeycomb mirrors.

  9. The LATT way towards large active primaries for space telescopes

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Arcidiacono, Carmelo; Xompero, Marco; Lisi, Franco; Riccardi, Armando; Biasi, Roberto; Patauner, Christian; Gallieni, Daniele; Lazzarini, Paolo; Tintori, Matteo; d'Amato, Francesco; Pucci, Mauro; Duò, Fabrizio; Vettore, Christian; Zuccaro Marchi, Alessandro

    2016-07-01

    The Large Aperture Telescope Technology (LATT) goes beyond the current paradigm of future space telescopes, based on a deformable mirror in the pupil relay. Through the LATT project we demonstrated the concept of a low-weight active primary mirror, whose working principle and control strategy benefit from two decades of advances in adaptive optics for ground-based telescopes. We developed a forty centimeter spherical mirror prototype, with an areal density lower than 17 kg/m2, controlled through contactless voice coil actuators with co-located capacitive position sensors. The prototype was subjected to thermo-vacuum, vibration and optical tests, to push its technical readiness toward level 5. In this paper we present the background and the outcomes of the LATT activities under ESA contract (TRP programme), exploring the concept of a lightweight active primary mirror for space telescopes. Active primaries will open the way to very large segmented apertures, actively shaped, which can be lightweight, deployable and accurately phased once in flight.

  10. In situ aluminization of the MMT 6.5m primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Kindred, W.; Williams, J. T.

    2006-06-01

    In May, 2000 the MMT Conversion was dedicated. Space limitations on the summit of Mt. Hopkins, AZ and limited financial resources dictated in-situ aluminization of the φ 6.5m primary mirror. Some of the attendant challenges successfully addressed in the course of accomplishing that task are described. For example: a 22 metric ton, φ7m vacuum head had to be lifted 25m before being lowered through the horizon-pointing telescope truss (clearing by 16 mm), then secured to the mirror cell that serves as a vacuum vessel; dirty mirror-support hardware integral to the cell required isolation of the process volume operating at 10 -6mbar; extensive modeling of source geometry was needed to achieve uniformity goals at very short source-substrate distances; and a cost-effective 75kW DC filament voltage source using commercially-available arc welders was developed that allowed simultaneous firing of 200 evaporation sources. Details of design and construction of the evaporation system are given along with techniques and results of the successful coating in November 2001 and September 2005.

  11. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented.

  12. Active hexagonally segmented mirror to investigate new optical phasing technologies for segmented telescopes.

    PubMed

    Gonté, Frédéric; Dupuy, Christophe; Luong, Bruno; Frank, Christoph; Brast, Roland; Sedghi, Baback

    2009-11-10

    The primary mirror of the future European Extremely Large Telescope will be equipped with 984 hexagonal segments. The alignment of the segments in piston, tip, and tilt within a few nanometers requires an optical phasing sensor. A test bench has been designed to study four different optical phasing sensor technologies. The core element of the test bench is an active segmented mirror composed of 61 flat hexagonal segments with a size of 17 mm side to side. Each of them can be controlled in piston, tip, and tilt by three piezoactuators with a precision better than 1 nm. The context of this development, the requirements, the design, and the integration of this system are explained. The first results on the final precision obtained in closed-loop control are also presented. PMID:19904341

  13. Mirror neuron activation in children with developmental coordination disorder: A functional MRI study.

    PubMed

    Reynolds, Jess E; Licari, Melissa K; Billington, Jac; Chen, Yihui; Aziz-Zadeh, Lisa; Werner, Julie; Winsor, Anne M; Bynevelt, Michael

    2015-12-01

    The aim of this study was to reveal cortical areas that may contribute to the movement difficulties seen in children with Developmental Coordination Disorder (DCD). Specifically, we hypothesized that there may be a deficit in the mirror neuron system (MNS), a neural system that responds to both performed and observed actions. Using functional MRI, 14 boys with DCD (x=10.08 years ± 1.31, range=7.83-11.58 years) and 12 typically developing controls (x=10.10 years ± 1.15, range=8.33-12.00 years) were scanned observing, executing and imitating a finger sequencing task using their right hand. Cortical activations of mirror neuron regions, including posterior inferior frontal gyrus (IFG), ventral premotor cortex, anterior inferior parietal lobule and superior temporal sulcus were examined. Children with DCD had decreased cortical activation mirror neuron related regions, including the precentral gyrus and IFG, as well as in the posterior cingulate and precuneus complex when observing the sequencing task. Region of interest analysis revealed lower activation in the pars opercularis, a primary MNS region, during imitation in the DCD group compared to controls. These findings provide some preliminary evidence to support a possible MNS dysfunction in children with DCD. PMID:26523778

  14. Deformation analysis of tilted primary mirror for an off-axis beam compressor

    NASA Astrophysics Data System (ADS)

    Clark, James H., III; Penado, F. Ernesto; Dugdale, Joel

    2011-09-01

    The Navy Prototype Optical Interferometer (NPOI), located near Flagstaff, Arizona, is a ground-based interferometer that collects and transports stellar radiation from six primary flat collectors, known as siderostats, through a common vacuum relay system to a beam combiner where the beams are combined, fringes are obtained and modulated, and data are recorded for further analysis. The current number of observable stellar objects can increase from 6,000 to approximately 47,000 with the addition of down-tilting beam compressors in the optical train. The increase in photon collection area from the beam compressors opens the sky to many additional and fainter stars. The siderostats are capable of redirecting 35 cm stellar beams into the vacuum relay system. Sans beam compressors, any portion of the beam greater than the capacity of the vacuum transport system, 12.5 cm, is wasted. Engineering analysis of previously procured as-built beam compressor optics show the maximum allowable primary mirror surface sag, resulting in λ/10 peak-to-valley wavefront aberration, occurs at 2.8° down-tilt angle. At the NPOI operational down-tilt angle of 20° the wavefront aberration reduces to an unacceptable λ/4. A design modification concept that reduces tilt-induced sag was investigated. Four outwardly applied 4-lb forces on the rear surface of the mirror reduce the sag from 155 nm to 32 nm at 20° down-tilt and reduce peak-to-valley wavefront deviation to λ/8.6. This preliminary effort indicates that this solution path is a viable and economic way to repair an expensive set of optical components. However, it requires further work to optimize the locations, magnitudes, and quantity of the forces within this system and their influence on the mirror surface.

  15. Software framework for the upcoming MMT Observatory primary mirror re-aluminization

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Clark, Dusty; Porter, Dallan

    2014-07-01

    Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.

  16. Support and Position Control of Primary and Secondary Mirrors for the Sloan Digital Sky Survey (SDSS) Telescope

    NASA Astrophysics Data System (ADS)

    Carey, Larry N.; Owen, Russell E.; Gunn, James E.; Siegmund, Walter A.; Mannery, Edward J.; Hull, Charles L.; Brown, Yorke J.

    2002-12-01

    The support and position control systems for both the primary and secondary mirror of the SDSS Telescope allow the mirrors up to 12 mm of precisely positioned axial motion, as well as limited tilt and transverse motion. This paper describes the final design and operation of these systems. Some relative strengths and limitations of the components and problems encountered with their implementation are also summarized.

  17. Toward high-dynamic active mirrors for LGS refocusing systems

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Madec, Fabrice; Vives, Sébastien; Ferrari, Marc; Le Mignant, David; Cuby, Jean Gabriel

    2010-07-01

    In the frame of the E-ELT-EAGLE instrument phase A studies, we designed a convex VCM able to compensate for the focus variation on the Laser Guide Star (LGS) wavefront sensor, due to the elevation of the telescope and the fixed sodium layer altitude. We present an original optical design including this active convex mirror, providing a large sag variation on a spherical surface with a 120mm clear aperture, with an optical quality better than lambda/5 RMS up to 820μm of sag and better than lambda/4 RMS up to 1000μm of sag. Finite element analysis (FEA) allowed an optimisation of the mirror's variable thickness distribution to compensate for geometrical and material non linearity. Preliminary study of the pre-stressing has also been performed by FEA, showing that a permanent deformation remains after removal of the loads. Results and comparison with the FEA are presented in the article of F.Madec et al (AS10-7736-119, this conference), with an emphasis on the system approach.

  18. Structure analysis of the primary mirror support for the TIM using computer-aided finite element method

    NASA Astrophysics Data System (ADS)

    Farah Simon, Alejandro; Pedrayes, Maria H.; Ruiz Schneider, Elfego; Sierra, Gerardo; Quiros-Pacheco, Fernando; Godoy, Javier; Sohn, Erika

    2000-08-01

    The Mexican Infrared Telescope is one of the most important projects in the Institute for Astronomy of the National University of Mexico. As part of the design we pretend to simulate different components of the telescope by the Finite Element Method (FEM). One of the most important parts of the structure is the primary mirror support. This structure is under stress, causing deformations in the primary mirror; these deformations shouldn't be over 40 nanometers, which is the maximum permissible tolerance. One of the most interesting subjects to develop in this project is to make the segmented primary mirror to work like if it were a monolithic one. Each segment has six degrees of freedom, whose control needs actuators and sensors with stiff mechanical structures. Our purpose is to achieve these levels of design using FEM aided by computer and we pretend to study several models of the structure array using the Conceptual Design Method, in an effort to optimize the design.

  19. Simple system of aberration correction for very large spherical primary mirrors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2000-10-01

    Several large telescopes are now being proposed that would benefit from the cost reduction due to the use of spherical primary mirror. However, structural cost constraints require compact formats that tend to impose very high speeds, e.g. f/1.5, which renders difficult the correction of the resulting very large spherical aberration. A technique is described here in which a spherical concentric Cassegrain-like primary-secondary combination is followed by a simple catadioptric focal modifier. The spherical primary is 9m diameter, f/1.5, and the final focus is f/5 with a sub-arcsecond resolution over a 5 arcminute angular field for a passband of 480-850nm. Primary- secondary separation is only 11m and central obscuration is only 11% of pupil area. The two relatively small corrector components provide the functions of concentric meniscus and zonal corrector plate and are made from the same single glass- BK7 is the example given, but silica or any other preferred glass is possible. The relatively small zonal corrector is the only aspheric surface in the entire system. A related system is described elsewhere in which a 30 arcminute angular field can be achieved with a similar resolution, but with more complex glass requirements. However, supply of such exotic glasses may be difficult in large diameters, and the system presented here may find a place in some specialized applications.

  20. History of mirror casting, figuring, segmentation and active optics

    NASA Astrophysics Data System (ADS)

    Noethe, Lothar

    2009-08-01

    Since the invention of the telescope the mirrors in reflecting telescopes have evolved from small pieces of polished speculum to sophisticated, computer-controlled systems. This review describes the major problems with the casting, figuring and support of these mirrors, and how fundamental inventions like depositing a silver layer on glass or electronic devices like computers opened the path to new solutions for fabricating larger mirrors with improved performance.

  1. The center of curvature optical assembly for the JWST primary mirror cryogenic optical test: optical verification

    NASA Astrophysics Data System (ADS)

    Wells, Conrad; Olczak, Gene; Merle, Cormic; Dey, Tom; Waldman, Mark; Whitman, Tony; Wick, Eric; Peer, Aaron

    2010-08-01

    The James Webb Space Telescope (JWST) Optical Telescope Element (OTE) consists of a 6.6 m clear aperture, allreflective, three-mirror anastigmat. The 18-segment primary mirror (PM) presents unique and challenging assembly, integration, alignment and testing requirements. A full aperture center of curvature optical test is performed in cryogenic vacuum conditions at the integrated observatory level to verify PM performance requirements. The Center of Curvature Optical Assembly (CoCOA), designed and being built by ITT satisfies the requirements for this test. The CoCOA contains a multi wave interferometer, patented reflective null lens, actuation for alignment, full in situ calibration capability, coarse and fine alignment sensing systems, as well as a system for monitoring changes in the PM to CoCOA distance. Two wave front calibration tests are utilized to verify the low and Mid/High spatial frequencies, overcoming the limitations of the standard null/hologram configuration in its ability to resolve mid and high spatial frequencies. This paper will introduce the systems level architecture and optical test layout for the CoCOA.

  2. Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions

    PubMed Central

    Reissig, Paola; Stöckel, Tino; Garry, Michael I.; Summers, Jeffery J.; Hinder, Mark R.

    2015-01-01

    Cross-limb transfer (CLT) describes the observation of bilateral performance gains due to unilateral motor practice. Previous research has suggested that CLT may be reduced, or absent, in older adults, possibly due to age-related structural and functional brain changes. Based on research showing increases in CLT due to the provision of mirror visual feedback (MVF) during task execution in young adults, our study aimed to investigate whether MVF can facilitate CLT in older adults, who are known to be more reliant on visual feedback for accurate motor performance. Participants (N = 53) engaged in a short-term training regime (300 movements) involving a ballistic finger task using their dominant hand, while being provided with either visual feedback of their active limb, or a mirror reflection of their active limb (superimposed over the quiescent limb). Performance in both limbs was examined before, during and following the unilateral training. Furthermore, we measured corticospinal excitability (using TMS) at these time points, and assessed muscle activity bilaterally during the task via EMG; these parameters were used to investigate the mechanisms mediating and predicting CLT. Training resulted in significant bilateral performance gains that did not differ as a result of age or visual feedback (both p > 0.1). Training also elicited bilateral increases in corticospinal excitability (p < 0.05). For younger adults, CLT was significantly predicted by performance gains in the trained hand (β = 0.47), whereas for older adults it was significantly predicted by mirror activity in the untrained hand during training (β = 0.60). The present study suggests that older adults are capable of exhibiting CLT to a similar degree to younger adults. The prominent role of mirror activity in the untrained hand for CLT in older adults indicates that bilateral cortical activity during unilateral motor tasks is a compensatory mechanism. In this particular task, MVF did not facilitate the

  3. Design, fabrication and testing of active carbon shell mirrors for space telescope applications

    NASA Astrophysics Data System (ADS)

    Steeves, John; Laslandes, Marie; Pellegrino, Sergio; Redding, David; Bradford, Samuel Case; Wallace, James Kent; Barbee, Troy

    2014-07-01

    A novel active mirror concept based on carbon fiber reinforced polymer (CFRP) materials is presented. A nanolaminate facesheet, active piezoelectric layer and printed electronics are implemented in order to provide the reflective surface, actuation capabilities and electrical wiring for the mirror. Mirrors of this design are extremely thin (500-850 µm), lightweight (~ 2 kg/m2) and have large actuation capabilities (~ 100 µm peak- to-valley deformation per channel). Replication techniques along with simple bonding/transferring processes are implemented eliminating the need for grinding and polishing steps. An outline of the overall design, component materials and fabrication processes is presented. A method to size the active layer for a given mirror design, along with simulation predictions on the correction capabilities of the mirror are also outlined. A custom metrology system used to capture the highly deformable nature of the mirrors is demonstrated along with preliminary prototype measurements.

  4. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    PubMed

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.

  5. Activity-Dependent Neurorehabilitation Beyond Physical Trainings: "Mental Exercise" Through Mirror Neuron Activation.

    PubMed

    Yuan, Ti-Fei; Chen, Wei; Shan, Chunlei; Rocha, Nuno; Arias-Carrión, Oscar; Paes, Flávia; de Sá, Alberto Souza; Machado, Sergio

    2015-01-01

    The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system. PMID:26556068

  6. Development of the primary mirror segment support assemblies for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Ponslet, Eric; Blanco, Dan; Cho, Myung; Mast, Terry; Nelson, Jerry; Ponchione, R. J.; Sirota, Mark; Stephens, Vince; Stepp, Larry; Tubb, Alan; Williams, Eric C.

    2006-06-01

    This paper describes the studies performed to establish a baseline conceptual design of the Segment Support Assembly (SSA) for the Thirty Meter Telescope (TMT) primary mirror. The SSA uses a combination of mechanical whiffletrees for axial support, a central diaphragm for lateral support, and a whiffletree-based remote-controlled warping harness for surface figure corrections. Axial support whiffletrees are numerically optimized to minimize the resulting gravityinduced deformation. Although a classical central diaphragm solution was eventually adopted, several lateral support concepts are considered. Warping harness systems are analyzed and optimized for their effectiveness at correcting second and third order optical aberrations. Thermal deformations of the optical surface are systematically analyzed using finite element analysis. Worst-case performance of the complete system as a result of gravity loading and temperature variations is analyzed as a function of zenith angle using an integrated finite element model.

  7. Brain Activation Associated with Practiced Left Hand Mirror Writing

    ERIC Educational Resources Information Center

    Kushnir, T.; Arzouan, Y.; Karni, A.; Manor, D.

    2013-01-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated…

  8. Corticospinal mirror neurons.

    PubMed

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  9. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  10. A study on support structure of the one-meter primary mirror of the Space Solar Telescope

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Hu, Qi-Qian

    2004-06-01

    In this paper, a reasonable support system of the one-meter primary mirror which is one of important components of the Space Solar Telescope is presented. This system can satisfy the optical calibration on the ground and launching mechanical environment, and guarantee a high precision state during the normal observation on the orbit.

  11. Design Of A Support System For The Primary Mirror Of A Cryogenic Space Telescope

    NASA Astrophysics Data System (ADS)

    DiTolla, Robert; Richard, Ralph M.; Vukobratovich, Daniel

    1986-07-01

    The finite element method was used for the structural design of the Space Infrared Telescope Facility (SIRTF) primary mirror and its support system in a cryogenic environment similar to space-shuttle cargo-bay launch conditions. Shuttle loads were specified by power spectral density functions (PSDF) obtained from previous shuttle launches. The primary goal in the development of a design to withstand this random loading was to ensure the structural integrity of the support system, which comprised an aluminum baseplate and three titanium flexures. This design was an extension of a support system previously developed for cryogenic static effects only. The displacements and stresses of the support system are greatly affected by the damping characteristics of the flexures, which are very difficult to quantify. A parametric study illustrates the behavior of the system over the range of the estimated damping values. Recommendations and techniques for modeling this type of structure are presented. The methods and approaches used in the analysis and the effect of model refinement upon solution accuracy are discussed.

  12. A space imaging concept based on a 4m structured spun-cast borosilicate monolithic primary mirror

    NASA Astrophysics Data System (ADS)

    West, S. C.; Bailey, S. H.; Bauman, S.; Cuerden, B.; Granger, Z.; Olbert, B. H.

    2010-07-01

    Lockheed Martin Corporation (LMC) tasked The University of Arizona Steward Observatory (UASO) to conduct an engineering study to examine the feasibility of creating a 4m space telescope based on mature borosilicate technology developed at the UASO for ground-based telescopes. UASO has completed this study and concluded that existing launch vehicles can deliver a 4m monolithic telescope system to a 500 km circular orbit and provide reliable imagery at NIIRS 7-8. An analysis of such an imager based on a lightweight, high-performance, structured 4m primary mirror cast from borosilicate glass is described. The relatively high CTE of this glass is used to advantage by maintaining mirror shape quality with a thermal figuring method. Placed in a 290 K thermal shroud (similar to the Hubble Space Telescope), the orbit averaged figure surface error is 6nm rms when earth-looking. Space-looking optical performance shows that a similar thermal conditioning scheme combined with a 270 K shroud achieves primary mirror distortion of 10 nm rms surface. Analysis shows that a 3-point bipod mount will provide launch survivability with ample margin. The primary mirror naturally maintains its shape at 1g allowing excellent end-to-end pre-launch testing with e.g. the LOTIS 6.5m Collimator. The telescope includes simple systems to measure and correct mirror shape and alignment errors incorporating technologies already proven on the LOTIS Collimator. We have sketched a notional earth-looking 4m telescope concept combined with a wide field TMA concept into a DELTA IV or ATLAS 552 EELV fairing. We have combined an initial analysis of launch and space performance of a special light-weighted honeycomb borosilicate mirror (areal density 95 kg/m2) with public domain information on the existing launch vehicles.

  13. LACBWR primary shield activation analysis

    SciTech Connect

    Nelson, L.L.; Lahti, G.P.; Johnson, W.J.

    1996-11-01

    Nuclear power plants in the US are required to estimate the costs of decommissioning to ensure that adequate funds are accumulated during the useful life of the plant. A major component of the decommissioning cost is the disposal of radioactive material, including material near the reactor created by neutron activation. An accurate assessment of the residual radioactivity in the reactor`s primary shield is necessary to determine this portion of the decommissioning demolition and disposal cost. This paper describes the efforts used to determine the activation levels remaining in the primary shield of the LaCrosse boiling water reactor (LACBWR), owned and operated by Dairyland Power Cooperative.

  14. Mirror Visual Feedback Induces Lower Neuromuscular Activity in Children with Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Feltham, Max G.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2010-01-01

    The study examined the effects of mirror feedback information on neuromuscular activation during bimanual coordination in eight children with spastic hemiparetic cerebral palsy (SHCP) and a matched control group. The "mirror box" creates a visual illusion, which gives rise to a visual perception of a zero lag, symmetric movement between the two…

  15. Active X-ray mirror development at UCL: preliminary results

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Doel, Peter; Yao, Jun; Brooks, David; Thompson, Samantha; Willingale, Richard; Feldman, Charlotte; Button, Tim; Zhang, Dou; James, Ady

    2007-12-01

    The Smart X-ray Optics project is a UK based consortium consisting of several institutions to investigate the application of active/adaptive optics upon both small and large scale grazing incidence x-ray optics. The work done at University College London (UCL) focuses on the application of piezoelectric materials to large scale optics in order to actively deform the mirror's surface. These optics are geared towards the next generation of x-ray telescopes and it is hoped that the project will be able to achieve a resolution greater than that currently available by Chandra (0.5"). One of the aims of the consortium is to produce a working prototype. The initial design is based on a thin nickel ellipsoid segment with an x-ray reflective coating, on the back of which will be bonded a series of piezoelectric actuators. Investigation into the specification of the design of an active x-ray optic prototype and suitable support test structure has been undertaken. The dimensions and constraints upon the prototype, and the manufacturing process to produce a nickel shell are discussed. Finite element analysis (FEA) of the physical characteristics of piezoelectric materials has shown the ability to deform the nickel surface to correct for errors of several microns. FEA has also been utilised in the specification of the prototype's support structure to ensure that gravitational sag upon the optic is kept to a minimum. Laboratory experiments have tested a series of materials, different actuators and bonding methods, which could then be applied to the prototype.

  16. Exploring associations between gaze patterns and putative human mirror neuron system activity.

    PubMed

    Donaldson, Peter H; Gurvich, Caroline; Fielding, Joanne; Enticott, Peter G

    2015-01-01

    The human mirror neuron system (MNS) is hypothesized to be crucial to social cognition. Given that key MNS-input regions such as the superior temporal sulcus are involved in biological motion processing, and mirror neuron activity in monkeys has been shown to vary with visual attention, aberrant MNS function may be partly attributable to atypical visual input. To examine the relationship between gaze pattern and interpersonal motor resonance (IMR; an index of putative MNS activity), healthy right-handed participants aged 18-40 (n = 26) viewed videos of transitive grasping actions or static hands, whilst the left primary motor cortex received transcranial magnetic stimulation. Motor-evoked potentials recorded in contralateral hand muscles were used to determine IMR. Participants also underwent eyetracking analysis to assess gaze patterns whilst viewing the same videos. No relationship was observed between predictive gaze and IMR. However, IMR was positively associated with fixation counts in areas of biological motion in the videos, and negatively associated with object areas. These findings are discussed with reference to visual influences on the MNS, and the possibility that MNS atypicalities might be influenced by visual processes such as aberrant gaze pattern. PMID:26236215

  17. Active optics and the axisymmetric case: MINITRUST wide-field three-reflection telescopes with mirrors aspherized from tulip and vase forms

    NASA Astrophysics Data System (ADS)

    Lemaitre, Gerard R.; Montiel, Pierre; Joulie, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2004-09-01

    Wide-field astronomy requires larger size telescopes. Compared to the catadioptric Schmidt, the optical properties of a three mirror telescope provides significant advantages. (1) The flat field design is anastigmatic at any wavelength, (2) the system is extremely compact -- four times shorter than a Schmidt -- and, (3) compared to a Schmidt with refractive corrector -- requiring the polishing of three optical surfaces --, the presently proposed Modified-Rumsey design uses all of eight available free parameters of a flat fielded anastigmatic three mirror telescope for mirrors generated by active optics methods. Compared to a Rumsey design, these parameters include the additional slope continuity condition at the primary-tertiary link for in-situ stressing and aspherization from a common sphere. Then, active optics allows the polishing of only two spherical surfaces: the combined primary-tertiary mirror and the secondary mirror. All mirrors are spheroids of the hyperboloid type. This compact system is of interest for space and ground-based astronomy and allows to built larger wide-field telescopes such as demonstrated by the design and construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° FOV, consisting of an in-situ stressed double vase form primary-tertiary and of a stress polished tulip form secondary. Optical tests of these telescopes, showing diffraction limited images, are presented.

  18. Segmented mirror control system hardware for CELT

    NASA Astrophysics Data System (ADS)

    Mast, Terry S.; Nelson, Jerry E.

    2000-07-01

    The primary mirror of the proposed California Extremely Large Telescope is a 30-meter diameter mosaic of hexagonal segments. The primary mirror active control will be achieved using four systems: sensors, actuators, processor, and alignment camera. We describe here the basic requirements of sensors and actuators, sketch a sensor design, and indicate interesting actuator alternatives.

  19. Advancement of the segment support system for the Thirty Meter Telescope primary mirror

    NASA Astrophysics Data System (ADS)

    Williams, Eric C.; Baffes, Curtis; Mast, Terry; Nelson, Jerry; Platt, Benjamin; Ponchione, R. J.; Ponslet, Eric; Setoodeh, Shahriar; Sirota, Mark; Stephens, Vince; Stepp, Larry; Tubb, Alan

    2008-07-01

    This paper presents refinements to the design of the TMT primary mirror segment passive-support system that are effective in reducing gravity print-through and thermal distortion effects. First, a novel analytical method is presented for tuning the axial and lateral support systems in a manner that results in improved optical performance when subject to varying gravity fields. The method utilizes counterweights attached to the whiffletrees to cancel astigmatic and comatic errors normally resulting when the lateral support system resists transverse loads induced by gravity. Secondly, several central diaphragm designs are presented and analyzed to assess lateral-gravity and thermal distortion performance: 1) a simple flat diaphragm, 2) a stress-relieving diaphragm having a slotted outer rim and a circumferential convolution near the outside diameter, and 3) a flat diaphragm having a slotted outer rim. The latter design is chosen based on results from analytical studies which show it to have better overall optical performance in the presence of gravity and thermal environments.

  20. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  1. The primary culture of mirror carp snout and caudal fin tissues and the isolation of Koi herpesvirus.

    PubMed

    Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2013-10-01

    The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types. PMID:23893087

  2. JWST Lightweight Mirror TRL-6 Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  3. Design of a prototype primary mirror segment positioning actuator for the Thirty Meter Telescope

    NASA Astrophysics Data System (ADS)

    Lorell, Kenneth R.; Aubrun, Jean-Noël; Clappier, Robert R.; Miller, Scott W.; Sirota, Mark

    2006-06-01

    The Thirty Meter Telescope (TMT) is a collaborative project between the California Institute of Technology (CIT), the University of California (UC), the Association of Universities for Research in Astronomy (AURA), and the Association of Canadian Universities for Research in Astronomy (ACURA). In order for the Thirty Meter Telescope (TMT) to achieve the required optical performance, each of its 738 primary mirror segments must be positioned relative to adjacent segments with nanometer-level accuracy. Three in plane degrees of freedom are controlled via a passive Segment Support Assembly which is described in another paper presented at this conference (paper 6273-45). The remaining three out of plane degrees of freedom, tip, tilt, and piston, are controlled via three actuators for each segment. Because of its size and the shear number of actuators, TMT will require an actuator design, departing from that used on the Keck telescopes, its successful predecessor. Sensitivity to wind loads and structural vibrations, the large dynamic range, low operating power, and extremely reliable operation, all achieved at an affordable unit cost, are the most demanding design requirements. This paper describes a concept that successfully meets the TMT requirements, along with analysis and performance predictions. The actuator concept is based on a prototype actuator developed for the California Extremely Large Telescope (CELT) project. It relies on techniques that achieve the required accuracy while providing a substantial amount of vibration attenuation and damping. A development plan consisting of a series of prototype actuators is envisioned to verify cost, reliability, and performance before mass production is initiated. The first prototype (P I) of this development plan is now being built and should complete initial testing by the end of 2 nd QTR 06.

  4. Active Mirror Predictive and Requirements Verification Software (AMP-ReVS)

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.

    2012-01-01

    This software is designed to predict large active mirror performance at various stages in the fabrication lifecycle of the mirror. It was developed for 1-meter class powered mirrors for astronomical purposes, but is extensible to other geometries. The package accepts finite element model (FEM) inputs and laboratory measured data for large optical-quality mirrors with active figure control. It computes phenomenological contributions to the surface figure error using several built-in optimization techniques. These phenomena include stresses induced in the mirror by the manufacturing process and the support structure, the test procedure, high spatial frequency errors introduced by the polishing process, and other process-dependent deleterious effects due to light-weighting of the mirror. Then, depending on the maturity of the mirror, it either predicts the best surface figure error that the mirror will attain, or it verifies that the requirements for the error sources have been met once the best surface figure error has been measured. The unique feature of this software is that it ties together physical phenomenology with wavefront sensing and control techniques and various optimization methods including convex optimization, Kalman filtering, and quadratic programming to both generate predictive models and to do requirements verification. This software combines three distinct disciplines: wavefront control, predictive models based on FEM, and requirements verification using measured data in a robust, reusable code that is applicable to any large optics for ground and space telescopes. The software also includes state-of-the-art wavefront control algorithms that allow closed-loop performance to be computed. It allows for quantitative trade studies to be performed for optical systems engineering, including computing the best surface figure error under various testing and operating conditions. After the mirror manufacturing process and testing have been completed, the

  5. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  6. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    PubMed

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons.

  7. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    PubMed

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons. PMID:25017963

  8. Design of an interferometric system for piston measurements in segmented primary mirrors

    NASA Astrophysics Data System (ADS)

    Arasa, Josep; Laguarta, Ferran; Pizarro, Carlos; Tomas, Nuria; Pinto, Agusti

    2000-10-01

    Recently, telescopes with segmented primary mirrors are becoming increasingly popular due to their ability of achieving large apertures without the inconveniences caused by the fabrication and handling of monolithic surfaces with 8m (or over) in diameter. The difference in position of each pair of adjacent segments along the local normal of their interface (called piston hereafter), however, needs to be precisely measured in order to provide a diffraction- limited image. If a system yielding the nanometric accuracy required in piston measurements worked in daylight hours, the resultant saving in observation time would be an important advance on a majority of the state-of-the-art piston measurement systems. An interferometric piston measurement instrument accomplishing such objectives has been designed starting from the usual Michelson configuration at the CD6 (Terrassa, Spain), and its final test has been carried out in the test workbench of the Instituto de Astrofisica de Canarias (IAC, Canary Islands, Spain). Its optical layout relies on projecting the reference arm of the interferometer onto one of the segments of the pair considered, along the direction of the local normal to the surface while the measurement arm is projected onto the interface which divides the pair of segments considered. The field of view and its illumination are calculated to be equivalent in both segments. The lateral shift of the fringes in both interferograms determines the piston error present. A combination of monochromatic and white light is used, in order to remove the (lambda) /2 phase ambiguities present in piston measurements without losing the required resolution in the measurement. In this paper, the optical design of this interferometric piston measurement instrument will be presented. The particular configuration used in the interferometer, the implementation of an imaging system allowing to see both the interface of the segments and the interference fringes, the effect of the

  9. Density increase due to active feedback in mirror machine

    NASA Astrophysics Data System (ADS)

    Seemann, Omri; Be'Ery, Ilan

    2014-10-01

    Mirror machines are one of the schemes for future fusion systems. Its main drawbacks are the flute instability and being open ended which results in plasma losses. A feedback system is used to stabilize the flute instability in a table top mirror machine with a continuous plasma source and RF heating. Under certain source density and temperature conditions, although the plasma was stabilized, plasma density increase was not measured. After decreasing the source density and increasing the temperature, Plasma density increase was achieved. It is theorized that these results are due to transition of the plasma main loss mechanism from collision dominated to instability dominated. In the former, the main density loss is through diffusion and In the latter, it is through flute instability which drives the plasma to the edge of the vacuum chamber. Future research directions are discussed for a planned machine which should achieve higher temperatures and better diagnostic capabilities. The research will focus on magnetic actuators and passive RF stabilization.

  10. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  11. A technique for designing active control systems for astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Howell, W. E.; Creedon, J. F.

    1973-01-01

    The problem of designing a control system to achieve and maintain the required surface accuracy of the primary mirror of a large space telescope was considered. Control over the mirror surface is obtained through the application of a corrective force distribution by actuators located on the rear surface of the mirror. The design procedure is an extension of a modal control technique developed for distributed parameter plants with known eigenfunctions to include plants whose eigenfunctions must be approximated by numerical techniques. Instructions are given for constructing the mathematical model of the system, and a design procedure is developed for use with typical numerical data in selecting the number and location of the actuators. Examples of actuator patterns and their effect on various errors are given.

  12. Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mehnert, Jan; Brunetti, Maddalena; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2013-06-01

    Mirror therapy is a therapy to treat patients with pain syndromes or hemiparesis after stroke. However, the underlying neurophysiologic mechanisms are not clearly understood. In order to determine the effect of a mirror-like illusion (MIR) on brain activity using functional near-infrared spectroscopy, 20 healthy right-handed subjects were examined. A MIR was induced by a digital horizontal inversion of the subjects' filmed hand. Optodes were placed on the primary motor cortex (M1) and the occipito-parietal cortex (precuneus, PC). Regions of interest (ROI) were defined a priori based on previous results of similar studies and confirmed by the analysis of effect sizes. Analysis of variance of the ROI signal revealed a dissociated pattern: at the PC, the MIR caused a significant inversion of a hemispheric lateralization opposite to the perceived hand, independent of the moving hand. In contrast, activity in M1 showed lateralization opposite to the moving hand, but revealed no mirror effect. These findings extend our understanding on interhemispheric rivalry and indicate that a MIR is integrated into visuomotor coordination similar to normal view, irrespective of the hand that is actually performing the task.

  13. Common-pull, multiple-push, vacuum-activated telescope mirror cell.

    PubMed

    Ruiz, Elfego; Sohn, Erika; Salas, Luis; Luna, Esteban; Araiza-Durán, José A

    2014-11-20

    A new concept for push-pull active optics is presented, where the push-force is provided by means of individual airbag type actuators and a common force in the form of a vacuum is applied to the entire back of the mirror. The vacuum provides the pull-component of the system, in addition to gravity. Vacuum is controlled as a function of the zenithal angle, providing correction for the axial component of the mirror's weight. In this way, the push actuators are only responsible for correcting mirror deformations, as well as for supporting the axial mirror weight at the zenith, allowing for a uniform, full dynamic-range behavior of the system along the telescope's pointing range. This can result in the ability to perform corrections of up to a few microns for low-order aberrations. This mirror support concept was simulated using a finite element model and was tested experimentally at the 2.12 m San Pedro Mártir telescope. Advantages such as stress-free attachments, lighter weight, large actuator area, lower system complexity, and lower required mirror-cell stiffness could make this a method to consider for future large telescopes.

  14. Fabrication and Testing of Active and Adaptive Cyanate Ester Composite Mirrors

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2004-01-01

    The objective of the NASA/Bennett Optical Research Inc. (BOR) NAS8-02008 Phase II Program, which also incorporated ideas developed under the earlier NASA NAS8-01035 Phase 1 Program, was to develop a large mirror fabrication and test facility with emphasis on producing large, light weight active and adaptive optics. A principle objective was to develop mandrels on which to make large composite graphite-filled cyanate ester mirrors, Deliverables were two of these superpolished lightweight active/adaptive optic composite mirrors, one 12" (approx.1/3 meter) in diameter and one 22" (approx.1/2 meter) in diameter. In addition optical superpolishers for mandrels up to 1.2 meters in diameter, test instruments for determining optical figure and scattered light, novel design actuators for making the composite mirrors both active and adaptive, and passive and active means for measuring actuator performance were developed at BOR. We are now installing a superpolisher capable of producing 3 meter diameter mirror/mandrels. All polishers utilize the principle of centrifugal elutriation and produce superpolished mandrels with surface microroughnesses under 1 nm rms.

  15. Active optics and modified-Rumsey wide-field telescopes: MINITRUST demonstrators with vase- and tulip-form mirrors

    NASA Astrophysics Data System (ADS)

    Lemaître, Gérard R.; Montiel, Pierre; Joulié, Patrice; Dohlen, Kjetil; Lanzoni, Patrick

    2005-12-01

    Wide-field astronomy requires the development of larger aperture telescopes. The optical properties of a three-mirror modified-Rumsey design provide significant advantages when compared to other telescope designs: (i) at any wavelength, the design has a flat field and is anastigmatic; (ii) the system is extremely compact, i.e., it is almost four times shorter than a Schmidt. Compared to the equally compact flat-field Ritchey-Chrétien with a doublet-lens corrector, as developed for the Sloan digital sky survey - and which requires the polishing of six optical surfaces - the proposed modified-Rumsey design requires only a two-surface polishing and provides a better imaging quality. All the mirrors are spheroids of the hyperboloid type. Starting from the classical Rumsey design, it is shown that the use of all eight available free parameters allows the simultaneous aspherization of the primary and tertiary mirrors by active optics methods from a single deformable substrate. The continuity conditions between the primary and the tertiary hyperbolizations are achieved by an intermediate narrow ring of constant thickness that is not optically used. After the polishing of a double vase form in a spherical shape, the primary-tertiary hyperbolizations are achieved by in situ stressing. The tulip-form secondary is hyperbolized by stress polishing. Other active optics alternatives are possible for a space telescope. The modified-Rumsey design is of interest for developing large space- and ground-based survey telescopes in UV, visible, or IR ranges, such as currently demonstrated with the construction of identical telescopes MINITRUST-1 and -2, f/5 - 2° field of view. Double-pass optical tests show diffraction-limited images.

  16. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  17. Primary Planets and Elementary Moons: Activities for Primary Students.

    ERIC Educational Resources Information Center

    Winrich, Ralph A.; Samuel, Mary

    This booklet was designed to supplement existing classroom studies on the subject of the solar system at the primary level. Science and mathematics activities for studying moons, planets, and space craft are presented. (PR)

  18. Manufacturing an active X-ray mirror prototype in thin glass.

    PubMed

    Spiga, D; Barbera, M; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M S; Di Cicca, G; Lo Cicero, U; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X-rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X-ray illumination in an intra-focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described. PMID:26698046

  19. Manufacturing an active X-ray mirror prototype in thin glass.

    PubMed

    Spiga, D; Barbera, M; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M S; Di Cicca, G; Lo Cicero, U; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X-rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X-ray illumination in an intra-focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.

  20. Fail-safe fiber-optics data bus using active multimode mirror terminals.

    PubMed

    Spillman, W B; Gravel, R L; Soref, R A

    1978-12-01

    A prototype fail-safe optical data bus utilizing active LiTaO(3) electrooptic mirror terminals has been constructed and tested. Features of the system include (1) a single optical source; (2) an optical insertion loss of less than 6 dB and a tapoff ratio of 13 dB for the mirror terminals in the fail-safe mode; (3) compatibility with commercially available LED sources, P-I-N photodiode detectors, and step-index multimode monofibers; (4) remote terminal modulation depth approaching 50% for 100 V applied; and (5) the use of a pulse transformer technique which allows the required electrooptic modulation voltages to be obtained from a 5-V electrical supply. The construction of a working prototype data bus using mirror terminals demonstrates the feasibility of such systems for use in optical communications at the present state of the art.

  1. Manufacturing and testing a thin glass mirror shell with piezoelectric active control

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Barbera, M.; Collura, A.; Basso, S.; Candia, R.; Civitani, M.; Di Bella, M.; Di Cicca, G.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.; Varisco, S.

    2015-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto the non-optical side of the mirrors, and several groups are already at work on this approach. The concept we are developing consists of actively integrating thin glass foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays. The actuators are commercial components, while the tension signals are carried by a printed circuit obtained by photolithography, and the driving electronic is a multi-channel low power consumption voltage supply developed inhouse. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array are determined in X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we describe the manufacturing steps to obtain a first active mirror prototype and the very first test performed in X-rays.

  2. Activation of the human mirror neuron system during the observation of the manipulation of virtual tools in the absence of a visible effector limb.

    PubMed

    Modroño, Cristián; Navarrete, Gorka; Rodríguez-Hernández, Antonio F; González-Mora, José L

    2013-10-25

    This work explores the mirror neuron system activity produced by the observation of virtual tool manipulations in the absence of a visible effector limb. Functional MRI data was obtained from healthy right-handed participants who manipulated a virtual paddle in the context of a digital game and watched replays of their actions. The results show how action observation produced extended bilateral activations in the parietofrontal mirror neuron system. At the same time, three regions in the left hemisphere (in the primary motor and the primary somatosensory cortex, the supplementary motor area and the dorsolateral prefrontal cortex) showed a reduced BOLD, possibly related with the prevention of inappropriate motor execution. These results can be of interest for researchers and developers working in the field of action observation neurorehabilitation.

  3. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    NASA Astrophysics Data System (ADS)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  4. Development of lightweight mirror elements for the Euro50 mirrors

    NASA Astrophysics Data System (ADS)

    Bennett, Harold E.; Romeo, Robert C.; Shaffer, Joseph J.; Chen, Peter C.

    2004-07-01

    .5 kHz frequency piezoelectric actuators have a displacement of approximately one μm per volt, 82 times greater than conventional piezoelectric actuators, and a throw of +/-30 μm or more. Compliant faceplates can be adaptive as well as active. Calculations indicate that for actuator spacings of about 4 cm the effective mirror stiffness equals that of a solid Zerodur mirror with a conventional 6:1 diameter to thickness ratio. The effect of gravitational sag for composite mirrors is calculated to be negligible. They are thus a good choice for the secondary mirror for the Euro50 as well as for the primary or secondary mirrors for other giant telescopes.

  5. Heritage Adoption Lessons Learned, Active Mirror Telescope Cover Deployment and Latch Mechanism

    NASA Technical Reports Server (NTRS)

    Wincentsen, James E.

    2006-01-01

    The Active Mirror Telescope (AMT) task adopted the Cover Deployment and Latch Mechanism (CDLM) design as used on the Galaxy Evolution Explorer (GALEX) project. The three separate mechanisms that comprise the CDLM will be discussed in this paper in addition to a focus on heritage adoption lessons learned and specific examples. These lessons learned will be valuable to any project considering the use of heritage designs.

  6. Mirror Technology Roadmap for NASA's Exoplanet Exploration Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Shaklan, Stuart B.; Balasubramanian, K.

    2011-01-01

    There are several possible approaches to designing exoplanet missions: (1) Coronagraphs (2) Interferometers (3) Starshades Wavefront sensing and control is the central concern, not mirror size (1) Starlight suppression with deformable mirrors (2) Thermal and structural stability (3) Metrology for sensing and control Diffraction-limited optical primary mirrors 4-m or larger are needed to detect Earthlike planets (1) Surface figure similar to HST required (2) Smaller primary mirrors can be used with aggressive coronagraph designs, but the stability tolerances become the driving concern (3) Stability tolerances of coronagraphs are greatly reduced when larger primaries are used in conjunction with 8th-order masks Long term vision for large telescope development includes space-based segmented-mirror telescopes using actively-controlled glass segments or silicon carbide hybrid-mirror designs

  7. Active shape correction of a thin glass/plastic x-ray mirror

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Barbera, M.; Basso, S.; Civitani, M.; Collura, A.; Dell'Agostino, S.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.

    2014-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project.

  8. Deformation of partially pumped active mirrors for high average-power diode-pumped solid-state lasers.

    PubMed

    Albach, Daniel; LeTouzé, Geoffroy; Chanteloup, Jean-Christophe

    2011-04-25

    We discuss the deformation of a partially pumped active mirror amplifier as a free standing disk, as implemented in several laser systems. We rely on the Lucia laser project to experimentally evaluate the analytical and numerical deformation models. PMID:21643092

  9. Visual and auditory stimuli associated with swallowing activate mirror neurons: a magnetoencephalography study.

    PubMed

    Ushioda, Takashi; Watanabe, Yutaka; Sanjo, Yusuke; Yamane, Gen-Yuki; Abe, Shinichi; Tsuji, Yusuke; Ishiyama, Atushi

    2012-12-01

    In the present study, we evaluated activated areas of the cerebral cortex with regard to the mirror neuron system during swallowing. To identify the activated areas, we used magnetoencephalography. Subjects were ten consenting volunteers. Swallowing-related stimuli comprised an animated image of the left profile of a person swallowing water with laryngeal elevation as a visual swallowing trigger stimulus and a swallowing sound as an auditory swallowing trigger stimulus. As control stimuli, a still frame image of the left profile without an additional trigger was shown, and an artificial sound as a false auditory trigger was provided. Triggers were presented at 3,000 ms after the start of image presentation. The stimuli were combined and presented and the areas activated were identified for each stimulus. With animation and still-frame stimuli, the visual association area (Brodmann area (BA) 18) was activated at the start of image presentation, while with the swallowing sound and artificial sound stimuli, the auditory areas BA 41 and BA 42 were activated at the time of trigger presentation. However, with animation stimuli (animation stimulus, animation + swallowing sound stimuli, and animation + artificial sound stimuli), activation in BA 6 and BA 40, corresponding to mirror neurons, was observed between 620 and 720 ms before the trigger. Besides, there were also significant differences in latency time and peak intensity between animation stimulus and animation + swallowing sound stimuli. Our results suggest that mirror neurons are activated by swallowing-related visual and auditory stimuli.

  10. [Mirror neurons].

    PubMed

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  11. Discrete control of linear distributed systems with application to the deformable primary mirror of a large orbiting telescope. Ph.D. Thesis - Rhode Island Univ.

    NASA Technical Reports Server (NTRS)

    Creedon, J. F.

    1970-01-01

    The results are presented of a detailed study of the discrete control of linear distributed systems with specific application to the design of a practical controller for a plant representative of a telescope primary mirror for an orbiting astronomical observatory. The problem of controlling the distributed plant is treated by employing modal techniques to represent variations in the optical figure. Distortion of the mirror surface, which arises primarily from thermal gradients, is countered by actuators working against a backing structure to apply a corrective force distribution to the controlled surface. Each displacement actuator is in series with a spring attached to the mirror by means of a pad intentionally introduced to restrict the excitation of high-order modes. Control is exerted over a finite number of the most significant modes.

  12. Health Activities for Primary School Students.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    This manual targets new and second-year Peace Corps volunteers, presenting health lessons and activities for primary school students in Thailand. Each section of the manual outlines basic technical information about the topic, contains several detailed lesson plans, and lists quick activities that can be carried out at schools. Songs and recipes…

  13. Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures.

    PubMed

    Lucianetti, Antonio; Albach, Daniel; Chanteloup, Jean-Christophe

    2011-06-20

    We illustrate the benefits of a thin, low pressure helium cell for efficient and safe heat removal in cryogenically-cooled active mirror laser amplifiers operating in the [100 J-1 kJ]/[1-10 Hz] range. A homogeneous gain medium temperature distribution averaging 160 K is obtained with a sub-mm helium-filled gap between the gain medium and a copper plate at 77 K. A significant degree of flexibility for tuning the temperature in the amplifier can be achieved by varying the pressure of the helium gas in the 10(2) to 10(5) Pa range. PMID:21716519

  14. The Case for Aggressive Segmentation of the Primary Mirror of the Next Generation Space Telescope and Future ORIGINS Missions

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Zelders, Glenn W., Jr.

    1998-01-01

    Optical performance variations are considered from several factors including the gap between regular hexagonal mirror segments, the relative ability of segments of different size to be manufactured with low wavefront error, and expected mirror deformations. Additionally a weight variation function will be driven by recently postulated relationships which can be expressed so as to determine thickness of the mirror segment to satisfy: (1) polishing pressures (2) 1-g sage deflection, and (3) thermal induced stress as well as ancillary masses including actuators, wiring, and electronics. The result will be to survey the trade space of segment number and size for a range of apertures from 4 to 20 meters.

  15. Energy Activities for the Primary Classroom. Revised.

    ERIC Educational Resources Information Center

    Tierney, Blue, Comp.

    An energy education program at the primary level should help students to understand the nature and importance of energy, consider different energy sources, learn about energy conservation, prepare for energy related careers, and become energy conscious in other career fields. The activities charts, readings, and experiments provided in this…

  16. Astronomical liquid mirrors as highly ultrasensitive, broadband-operational surface-enhanced Raman scattering-active substrates.

    PubMed

    Lu, Tai-Yen; Lee, Yang-Chun; Yen, Yu-Ting; Yu, Chen-Chieh; Chen, Hsuen-Li

    2016-03-15

    In this study, we found that an astronomical liquid mirror can be prepared as a highly ultrasensitive, low-cost, highly reproducible, broadband-operational surface-enhanced Raman scattering (SERS)-active substrate. Astronomical liquid mirrors are highly specularly reflective because of their perfectly dense-packed silver nanoparticles; they possess a large number and high density of hot spots that experience a very high intensity electric field, resulting in excellent SERS performance. When using the liquid mirror-based SERS-active substrate to detect 4-aminothiophenol (4-ATP), we obtained measured analytical enhancement factors (AEFs) of up to 2.7×10(12) and detection limits as low as 10(-15) M. We also found that the same liquid mirror could exhibit superior SERS capability at several distinct wavelengths (532, 632.8, and 785 nm). The presence of hot spots everywhere in the liquid mirror provided highly repeatable Raman signals from low concentrations of analytes. In addition, the astronomical liquid mirrors could be transferred readily onto cheap, flexible, and biodegradable substrates and still retain their excellent SERS performance, suggesting that they might find widespread applicability in various (bio)chemical detection fields.

  17. Using Mu Rhythm Desynchronization to Measure Mirror Neuron Activity in Infants

    ERIC Educational Resources Information Center

    Nystrom, Par; Ljunghammar, Therese; Rosander, Kerstin; von Hofsten, Claes

    2011-01-01

    The Mirror Neuron System hypothesis stating that observed actions are projected onto the observer's own action system assigns an important role to development, because only actions mastered by the observer can be mirrored. The purpose of the present study was to investigate whether there is evidence of a functioning mirror neuron system (MNS) in…

  18. Performance of the primary mirror center-of-curvature optical metrology system during cryogenic testing of the JWST Pathfinder telescope

    NASA Astrophysics Data System (ADS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-07-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse and fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment and phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development and spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software and procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate and efficient cryogenic testing of the JWST flight telescope.

  19. Performance of the Primary Mirror Center-of-curvature Optical Metrology System During Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.

  20. Mirroring activity in the brain and movement determinant in the Rorschach test.

    PubMed

    Porcelli, Piero; Giromini, Luciano; Parolin, Laura; Pineda, Jaime A; Viglione, Donald J

    2013-01-01

    Human movement (M) responses to the Rorschach are related to cognitive sophistication, creativity, and empathy. Recent studies also link Ms to EEG-mu suppression, an index of mirroring activity in the brain. In this article, we further investigate the link between Ms and mu suppression by testing some clinical interpretative distinctions. Previously collected EEG data recorded during the administration of the Rorschach were reanalyzed. We hypothesized that (a) among several responses investigated, only M would be associated with mu suppression, and (b) Ms with active movement, ordinary form quality, or whole human figures would be most strongly associated with mu suppression. Hypothesis 1 was fully confirmed, thus supporting that the traditional interpretation of M has a neurobiological foundation. Hypothesis 2 was partially confirmed; that is, active Ms were associated with mu suppression more strongly than passive Ms (p < .05), but no other significant differences emerged. Clinical implications are discussed. PMID:23495976

  1. The production of metal mirrors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Brooks, David

    This thesis demonstrates the possibility of manufacturing larger mirrors from nickel coated aluminium with a considerable cost and risk benefits compared to zero expansion glass ceramic or borosilicate. Constructing large mirrors from aluminium could cut the cost of production by one third. A new generation of very large telescopes is being designed, on the order of 100 meters diameter. The proposed designs are of mosaic type mirrors similar to the Keck Telescope primary. The enormous mass of glass required inhibits the construction, simply by its cost and production time. Very little research has been done on the processes involved in the production of large metal mirrors. However the thermal efficiency and potential improved mirror seeing benefits are documented. Space telescopes and optical telecommunications could also benefit with the application of metal mirrors. Presented here are the processes and results that culminated in the rebirth of the Birr Telescope. The main section concerns the material selection and processes in the construction of a 1.83 meter diameter 1.4 tonne aluminium primary mirror. The aluminium mirror technology developed was also applied to the construction of an aspheric thin meniscus deformable mirror. Methods employed in its production are described. Documented are the advanced computer controlled polishing methods employed in producing a one third scale model of the hyperbolic secondary mirror for the Gemini Telescopes. These were developed using an active polishing lap.

  2. Exploring primary care activities in ACT teams.

    PubMed

    Vanderlip, Erik R; Williams, Nancy A; Fiedorowicz, Jess G; Katon, Wayne

    2014-05-01

    People with serious mental illness often receive inadequate primary and preventive care services. Federal healthcare reform endorses team-based care that provides high quality primary and preventive care to at risk populations. Assertive community treatment (ACT) teams offer a proven, standardized treatment approach effective in improving mental health outcomes for the seriously mentally ill. Much is known about the effectiveness of ACT teams in improving mental health outcomes, but the degree to which medical care needs are addressed is not established. The purpose of this study was to explore the extent to which ACT teams address the physical health of the population they serve. ACT team leaders were invited to complete an anonymous, web-based survey to explore attitudes and activities involving the primary care needs of their clients. Information was collected regarding the use of health screening tools, physical health assessments, provision of medical care and collaboration with primary care systems. Data was analyzed from 127 team leaders across the country, of which 55 completed the entire survey. Nearly every ACT team leader believed ACT teams have a role in identifying and managing the medical co-morbidities of their clientele. ACT teams report participation in many primary care activities. ACT teams are providing a substantial amount of primary and preventive services to their population. The survey suggests standardization of physical health identification, management or referral processes within ACT teams may result in improved quality of medical care. ACT teams are in a unique position to improve physical health care by virtue of having medically trained staff and frequent, close contact with their clients.

  3. The effect of mirror therapy on upper-extremity function and activities of daily living in stroke patients

    PubMed Central

    Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung

    2015-01-01

    The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients. PMID:26180297

  4. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory

    PubMed Central

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J.; Düzel, Emrah

    2015-01-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. PMID:26420783

  5. Vibration damping for the Segmented Mirror Telescope

    NASA Astrophysics Data System (ADS)

    Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.

    2012-09-01

    The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (<40 Hz) vibration modes of the primary mirror segments. Each of the six segments has three or more modes in this bandwidth, and resonant vibration excited by acoustics or small disturbances on the structure can result in phase mismatches between adjacent segments thereby degrading image quality. The damping system consists of two tuned mass dampers (TMDs) for each of the mirror segments. An adjustable TMD with passive magnetic damping was selected to minimize sensitivity to changes in temperature; both frequency and damping characteristics can be tuned for optimal vibration mitigation. Modal testing was performed with a laser vibrometry system to characterize the SMT segments with and without the TMDs. Objectives of this test were to determine operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.

  6. JWST Mirror Installation

    NASA Video Gallery

    The first six of 18 hexagonal shaped segments that will form NASA’s James Webb Space Telescope’s primary mirror for space observations were readied this week to begin final cryogenic testing at...

  7. The role of shared neural activations, mirror neurons, and morality in empathy--a critical comment.

    PubMed

    Lamm, Claus; Majdandžić, Jasminka

    2015-01-01

    In the last decade, the phenomenon of empathy has received widespread attention by the field of social neuroscience. This has provided fresh insights for theoretical models of empathy, and substantially influenced the academic and public conceptions about this complex social skill. The present paper highlights three key issues which are often linked to empathy, but which at the same time might obscure our understanding of it. These issues are: (1) shared neural activations and whether these can be interpreted as evidence for simulation accounts of empathy; (2) the causal link of empathy to our presumed mirror neuron system; and (3) the question whether increasing empathy will result in better moral decisions and behaviors. The aim of our review is to provide the basis for critically evaluating our current understanding of empathy, and its public reception, and to inspire new research directions.

  8. Virtual Mirrors

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2010-01-01

    The multiple-reflection photograph in Fig. 1 was taken in an elevator on board the cruise ship Norwegian Jade in March 2008. Three of the four walls of the elevator were mirrored, allowing me to see the combination of two standard arrangements of plane mirrors: two mirrors set at 90 degrees to each other and two parallel mirrors. Optical phenomena…

  9. Modulations of mirroring activity by desire for social connection and relevance of movement

    PubMed Central

    Sharer, Elizabeth A.; Bargh, John A.; Pineda, Jaime A.

    2014-01-01

    Mirroring neurons fire both when an individual moves and observes another move in kind. This simulation of others’ movements is thought to effortlessly and ubiquitously support empathetic connection and social understanding. However, at times this could be maladaptive. How could a boxer mirror a losing opponent’s expressions of fatigue, feeling his weariness, precisely when strength is required? Clearly, the boxer must emotionally disconnect from his opponent and those expressions of fatigue must become irrelevant and not mirrored. But, movements that inform of his opponent’s intentions to deliver an incoming blow are quite relevant and still should require mirroring. We tested these dimensions of emotional connectedness and relevance of movement in an electroencephalography experiment, where participants’ desires to socially connect with a confederate were manipulated. Before manipulation, all participants mirrored the confederate’s purely kinematic (a hand opening and closing) and goal-directed (a hand opening and closing around a token that the participant desired) hand movements. After manipulation, unfairly treated subjects ceased to mirror the purely kinematic movements but continued to mirror goal-relevant movements. Those treated fairly continued to mirror all movements. The results suggest that social mirroring can be adaptive in order to meet the demands of a varied social environment. PMID:24194581

  10. Extremely aspheric mirrors: prototype development of an innovative manufacturing process based on active optics

    NASA Astrophysics Data System (ADS)

    Challita, Zalpha; Hugot, Emmanuel; Ferrari, Marc; Le Merrer, Joël.; Le Mignant, David; Cuby, Jean-Gabriel

    2012-09-01

    The next generation of focal-plane astronomical instruments requires technological breakthroughs to reduce their system complexity while increasing their scientific performances. Applied to the optical systems, recent studies show that the use of freeform reflective optics allows competitive compact systems with less optical components. In this context, our challenge is to supply an active freeform mirror system, using a combination of different active optics techniques. The optical shape will be provided during the fabrication using the mechanical property of metals to plasticize and will be coupled with a specific actuator system to compensate for the residual form errors, during the instrument operation phase. We present in this article the development of an innovative manufacturing process based on cold hydro-forming method, with the aim to adapt it for VIS/NIR requirements in terms of optical surface quality. It can operate on thin and flat polished initial substrates. The realization of a first prototype for a 100 mm optical diameter mirror is in progress, to compare the mechanical behaviours obtained by tests and by Finite Element Analysis (FEA), for different materials. Then, the formed samples will be characterized optically. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process. It concerns the microstructure considerations, the springback effects and the work hardening evolutions of the samples, depending on the initial substrate properties and the boundary conditions applied. Modeling and tests have started with axi-symmetric spherical and aspherical shapes and will continue with highly aspherics and freeforms.

  11. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates

    NASA Astrophysics Data System (ADS)

    Zeng, Chunmei; Yu, Xia; Guo, Peiji

    2014-08-01

    A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.

  12. Mirror neuron activity during contagious yawning--an fMRI study.

    PubMed

    Haker, Helene; Kawohl, Wolfram; Herwig, Uwe; Rössler, Wulf

    2013-03-01

    Yawning is contagious. However, little research has been done to elucidate the neuronal representation of this phenomenon. Our study objective was to test the hypothesis that the human mirror neuron system (MNS) is activated by visually perceived yawning. We used functional magnetic resonance imaging to assess brain activity during contagious yawning (CY). Signal-dependent changes in blood oxygen levels were compared when subjects viewed videotapes of yawning faces as opposed to faces with a neutral expression. In response to yawning, subjects showed unilateral activation of their Brodmann's area 9 (BA 9) portion of the right inferior frontal gyrus, a region of the MNS. In this way, two individuals could share physiological and associated emotional states based on perceived motor patterns. This is one component of empathy (motor empathy) that underlies the development of cognitive empathy. The BA 9 is reportedly active in tasks requiring mentalizing abilities. Our results emphasize the connection between the MNS and higher cognitive empathic functions, including mentalizing. We conclude that CY is based on a functional substrate of empathy. PMID:22772979

  13. Mirror neuron activity during contagious yawning--an fMRI study.

    PubMed

    Haker, Helene; Kawohl, Wolfram; Herwig, Uwe; Rössler, Wulf

    2013-03-01

    Yawning is contagious. However, little research has been done to elucidate the neuronal representation of this phenomenon. Our study objective was to test the hypothesis that the human mirror neuron system (MNS) is activated by visually perceived yawning. We used functional magnetic resonance imaging to assess brain activity during contagious yawning (CY). Signal-dependent changes in blood oxygen levels were compared when subjects viewed videotapes of yawning faces as opposed to faces with a neutral expression. In response to yawning, subjects showed unilateral activation of their Brodmann's area 9 (BA 9) portion of the right inferior frontal gyrus, a region of the MNS. In this way, two individuals could share physiological and associated emotional states based on perceived motor patterns. This is one component of empathy (motor empathy) that underlies the development of cognitive empathy. The BA 9 is reportedly active in tasks requiring mentalizing abilities. Our results emphasize the connection between the MNS and higher cognitive empathic functions, including mentalizing. We conclude that CY is based on a functional substrate of empathy.

  14. Low temperature diode pumped active mirror Yb3+:YAG disk laser amplifier studies.

    PubMed

    Marrazzo, Samuel; Gonçalvès-Novo, Thierry; Millet, François; Chanteloup, Jean-Christophe

    2016-06-13

    An experimental study of a static helium gas gap heat switch concept for laser amplification is presented. High single pass gains with large co-sintered ceramic Yb:YAG disks are recorded in the 80-200K temperature range on a diode pumped active mirror amplifier.

  15. Effects of mirror therapy combined with motor tasks on upper extremity function and activities daily living of stroke patients

    PubMed Central

    Kim, Kyunghoon; Lee, Sukmin; Kim, Donghoon; Lee, Kyoungbo; Kim, Youlim

    2016-01-01

    [Purpose] The objective of this study was to investigate the effects of mirror therapy combined with exercise tasks on the function of the upper limbs and activities of daily living. [Subjects and Methods] Twenty-five stroke patients who were receiving physical therapy at K Hospital in Gyeonggi-do, South Korea, were classified into a mirror therapy group (n=12) and a conventional therapy group (n=13). The therapies were applied for 30 minutes per day, five times per week, for a total of four weeks. Upper limb function was measured with the Action Research Arm test, the Fugl-Meyer Assessment, and the Box and Block test, and activities of daily living were measured with the Functional Independence Measure. A paired test was performed to compare the intragroup differences between before training and after four weeks of therapy, and an independent t-test was performed to compare the differences between the two groups before and after four weeks of therapy. [Results] In the intragroup comparison, both groups showed significant differences between measurements taken before and after four weeks of therapy. In the intergroup comparison, the mirror therapy group showed significant improvements compared with the conventional therapy group, both in upper limb function and activities of daily living. [Conclusion] The findings of this study demonstrated that mirror therapy is more effective than conventional therapy for the training of stroke patients to improve their upper limb function and activities of daily living. PMID:27065534

  16. Low temperature diode pumped active mirror Yb3+:YAG disk laser amplifier studies.

    PubMed

    Marrazzo, Samuel; Gonçalvès-Novo, Thierry; Millet, François; Chanteloup, Jean-Christophe

    2016-06-13

    An experimental study of a static helium gas gap heat switch concept for laser amplification is presented. High single pass gains with large co-sintered ceramic Yb:YAG disks are recorded in the 80-200K temperature range on a diode pumped active mirror amplifier. PMID:27410286

  17. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  18. Development of Nanolaminate Thin Shell Mirrors

    SciTech Connect

    Hickey, G S; Lih, S S; Barbee, T

    2002-08-09

    The space science community has identified a need for ultra-light weight, large aperture optical systems that are capable of producing high-resolution images of low contrast. Current mirror technologies are limited due either to not being scalable to larger sizes at reasonable masses, or to lack of surface finish, dimensional stability in a space environment or long fabrication times. This paper will discuss the development of thin-shell, nano-laminate mirror substrates that are capable of being electro-actively figured. This technology has the potential to substantially reduce the cost of space based optics by allowing replication of ultra-lightweight primary mirrors from a master precision tool. Precision master tools have been shown to be used multiple times with repeatable surface quality results with less than one week fabrication times for the primary optical mirror substrate. Current development has developed a series of 0.25 and 0.5 meter spherical nanolaminate mirrors that are less than 0.5 kg/m{sup 2} areal density before electroactive components are mounted, and a target of less than 2.0 kg/m with control elements. This paper will provide an overview of nanolaminate materials for optical mirrors, modeling of their behavior under figure control and experiments conducted to validate precision control.

  19. Prediction of primary somatosensory neuron activity during active tactile exploration

    PubMed Central

    Campagner, Dario; Evans, Mathew Hywel; Bale, Michael Ross; Erskine, Andrew; Petersen, Rasmus Strange

    2016-01-01

    Primary sensory neurons form the interface between world and brain. Their function is well-understood during passive stimulation but, under natural behaving conditions, sense organs are under active, motor control. In an attempt to predict primary neuron firing under natural conditions of sensorimotor integration, we recorded from primary mechanosensory neurons of awake, head-fixed mice as they explored a pole with their whiskers, and simultaneously measured both whisker motion and forces with high-speed videography. Using Generalised Linear Models, we found that primary neuron responses were poorly predicted by whisker angle, but well-predicted by rotational forces acting on the whisker: both during touch and free-air whisker motion. These results are in apparent contrast to previous studies of passive stimulation, but could be reconciled by differences in the kinematics-force relationship between active and passive conditions. Thus, simple statistical models can predict rich neural activity elicited by natural, exploratory behaviour involving active movement of sense organs. DOI: http://dx.doi.org/10.7554/eLife.10696.001 PMID:26880559

  20. Imaging performance of elliptical-boundary varifocal mirrors in active optical systems

    NASA Astrophysics Data System (ADS)

    Lukes, Sarah Jane

    Micro-electro-mechanical systems deformable-membrane mirrors provide a means of focus control and attendant spherical aberration correction for miniaturized imaging systems. The technology has greatly advanced in the last decade, thereby extending their focal range capabilities. This dissertation describes a novel SU-8 2002 silicon-on-insulator wafer deformable mirror. A 4.000 mm x 5.657 mm mirror for 45o incident light rays achieves 22 mum stroke or 65 diopters, limited by snapdown. The mirrors show excellent optical quality while flat. Most have peak-to-valley difference of less than 150 nm and root-mean-square less than 25 nm. The process proves simple, only requiring a silicon-on-insulator wafer, SU-8 2002, and a metal layer. Xenon difluoride etches the silicon to release the mirrors. Greater than 90% of the devices survive fabrication and release. While current literature includes several aberration analyses on static mirrors, analyses that incorporate the dynamic nature of these mirrors do not exist. Optical designers may have a choice between deformable mirrors and other types of varifocal mirrors or lenses. Furthermore, a dynamic mirror at an incidence angle other than normal may be desired due to space limitations or for higher throughput (normal incidence requires a beam splitter). This dissertation presents an analysis based on the characteristic function of the system. It provides 2nd and 3rd order aberration coefficients in terms of dynamic focus range and base ray incidence angle. These afford an understanding of the significance of different types of aberrations. Root-mean-square and Strehl calculations provide insight into overall imaging performance for various conditions. I present general guidelines for maximum incidence angle and field of fiew that provide near diffraction-limited performance. Experimental verification of the MEMS mirrors at 5o and 45o incidence angles validates the analytical results. A Blu-ray optical pick-up imaging

  1. Mirror mount

    DOEpatents

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  2. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  3. Actuation profiles to form Zernike shapes with a thermal active mirror.

    PubMed

    Saathof, Rudolf; Schutten, Gerrit Jan M; Spronck, Jo W; Munnig Schmidt, Robert H

    2015-01-15

    In EUV lithography, the absorption of EUV light causes wavefront distortion that deteriorates the imaging process. An adaptive optics system has been developed ["Adaptive optics to counteract thermal aberrations," Ph.D. thesis (TU Delft, 2013)] to correct for this distortion using an active mirror (AM). This AM is thermally actuated by absorbing an irradiance profile exposed by a projector onto the AM. Due to thermal conductivity and bimorph-like deformation of the AM, the relation between actuation profile and actuated shape is not trivial. Therefore, this Letter describes how actuation profiles are obtained to generate Zernike shapes. These actuation profiles have been obtained by a finite-element-based optimization procedure. Furthermore, these actuation profiles are exposed to the AM, and the resulting deformations are measured. This Letter shows actuated Zernike shapes with purities higher than 0.9 for most actuation profiles. In addition, superimposed actuation profiles resulted in superimposed Zernike shapes, showing linearity needed to apply modal wavefront correction. Therefore, this approach can be used to obtain actuation profiles for this AM concept, which can be used for highly precise wavefront correction. PMID:25679845

  4. Rapid Maturation of Edge Sensor Technology and Potential Application in Large Space Telescopes with Segmented Primary Mirrors

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    This paper explores the history and results of the last two year's efforts to transition inductive edge sensor technology from Technology Readiness Level 2 to Technology Readiness Level 6. Both technical and programmatic challenges were overcome in the design, fabrication, test, and installation of over a thousand sensors making up the Segment Alignment Maintenance System (SAMs) for the 91 segment, 9.2-meter. Hobby Eberly Telescope (HET). The integration of these sensors with the control system will be discussed along with serendipitous leverage they provided for both initialization alignment and operational maintenance. The experience gained important insights into the fundamental motion mechanics of large segmented mirrors, the relative importance of the variance sources of misalignment errors, the efficient conduct of a program to mature the technology to the higher levels. Unanticipated factors required the team to develop new implementation strategies for the edge sensor information which enabled major segmented mirror controller design simplifications. The resulting increase in the science efficiency of HET will be shown. Finally, the on-going effort to complete the maturation of inductive edge sensor by delivering space qualified versions for future IR (infrared radiation) space telescopes.

  5. Chiral mirrors

    NASA Astrophysics Data System (ADS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  6. Tomographic alignment algorithm for an extremely large three-mirror telescope: invisible modes.

    PubMed

    Piatrou, Piotr; Chanan, Gary

    2010-11-20

    We analyze the optical effects due to distortions of a three-mirror telescope that is sufficiently large that all three mirrors must be actively controlled. Numerical experiments on telescopes with both monolithic and segmented primary mirrors reveal the existence of telescope misalignment configurations (modes) that are invisible to a fixed focal station wavefront sensor, even for highly redundant multidirectional tomographic measurement schemes. We describe these modes and give a theoretical explanation for them.

  7. Control and network system of force actuators for deformable mirror active optics in LAMOST

    NASA Astrophysics Data System (ADS)

    Zhang, Shengtao; Zhang, Zhenchao; Wang, You

    2007-12-01

    The reflecting Schmidt plate M A of LAMOST consists of 24 segmented hexagonal sub-mirrors. Each sub-mirror is 25mm thick and 1.1m in diagonal. There are 34 force actuators on the back of one sub-mirror which need to be controlled to offer precise load to create correct mirror deformation. This paper presents the control method and network configuration of force actuators for one sub-mirror. Master computer running Windows NT operation system and slave controllers running DOS operation system are connected together via Ethernet local area network (ELAN) by means of TCP/IP protocol. Adopting five slave controllers, 34 force actuators are combined into a distributed system. Master computer controls five slave controllers and five slave controllers operate 34 force actuators. Master computer communicates with slave controllers normally, which receives state of each force actuator from slave controllers and sends instructions to slave controllers via Ethernet LAN. Each slave controller operates 8 force actuators to offer correct load. Axial load capacity of force actuator is +/-150N (pull and push) with accuracy RMS <=0.05N. Force sensor is used as close-loop feedback apparatus to detect the micro load of the actuator.

  8. Two-mirror optical system with a small fold mirror

    NASA Astrophysics Data System (ADS)

    Liu, Xinping; Li, Yingcai; Yang, Jianfeng

    1998-09-01

    A new configuration of two-mirror optical system with a small fold mirror is presented in this paper. Consisting of a concave (positive power) primary mirror followed by a small flat mirror, a concave (positive power) secondary mirror, four lenses and a beam splitter, it gives the excellent image quality. A 1.5-m EFL, F/10 system of the upper configuration is designed over the 4 degree(s) field angle and 0.50 approximately 0.70 micrometers wavelength range. The aberrations have been highly corrected and the distortion is less than 0.3% over the field. The obscuration could be minimized by reducing primary radius of curvature and avoiding the spider that holds the small fold mirror.

  9. Finite element analysis of carbon fiber composite adaptive mirrors

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Doel, Peter

    2004-10-01

    With the advent of the new generation of ground-based telescopes with primary sizes of 30-100 m, adaptive optics (AO) technology is in rapid development. One important area of research is that of integration of AO into the telescope's operation. A possible solution for this is the use of an adaptive secondary mirror. However, for a secondary of several meters in size, this presents many problems in choice of material, as well as design for the adaptive control. An active mirror prototype made out of a carbon fibre composite material (CFC) is under development at University College London in collaboration with QinetiQ and Cobham Composites. We present here results from finite element analysis of this mirror, as well as modelling results of an adaptive secondary mirror section as might be developed for the new class of telescopes. These results indicate that CFC could indeed present a viable alternative to more traditional deformable mirror materials.

  10. The secondary mirror concept for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Cayrel, Marc; Bonnet, Henri; Ciattaglia, Emanuela; Esselborn, Michael; Koch, Franz; Kurlandczyk, Herve; Pettazzi, Lorenzo; Rakich, Andrew; Sedghi, Babak

    2014-07-01

    The E-ELT is an active and adaptive 39-m telescope, with an anastigmat optical solution (5 mirrors including two flats), currently being developed by the European Southern Observatory (ESO). The convex 4-metre-class secondary mirror (M2) is a thin Zerodur meniscus passively supported by an 18 point axial whiffletree. A warping harness system allows to correct low order deformations of the M2 Mirror. Laterally the mirror is supported on 12 points along the periphery by pneumatic jacks. Due to its high optical sensitivity and the telescope gravity deflections, the M2 unit needs to allow repositioning the mirror during observation. Considering its exposed position 30m above the primary, the M2 unit has to provide good wind rejection. The M2 concept is described and major performance characteristics are presented.

  11. Mirrored patterns of lateralized neuronal activation reflect old and new memories in the avian auditory cortex.

    PubMed

    Olson, Elizabeth M; Maeda, Rie K; Gobes, Sharon M H

    2016-08-25

    In monolingual humans, language-related brain activation shows a distinct lateralized pattern, in which the left hemisphere is often dominant. Studies are not as conclusive regarding the localization of the underlying neural substrate for language in sequential language learners. Lateralization of the neural substrate for first and second language depends on a number of factors including proficiency and early experience with each language. Similar to humans learning speech, songbirds learn their vocalizations from a conspecific tutor early in development. Here, we show mirrored patterns of lateralization in the avian analog of the mammalian auditory cortex (the caudomedial nidopallium [NCM]) in sequentially tutored zebra finches (Taeniopygia guttata​) in response to their first tutor song, learned early in development, and their second tutor song, learned later in development. The greater the retention of song from their first tutor, the more right-dominant the birds were when exposed to that song; the more birds learned from their second tutor, the more left-dominant they were when exposed to that song. Thus, the avian auditory cortex may preserve lateralized neuronal traces of old and new tutor song memories, which are dependent on proficiency of song learning. There is striking resemblance in humans: early-formed language representations are maintained in the brain even if exposure to that language is discontinued. The switching of hemispheric dominance related to the acquisition of early auditory memories and subsequent encoding of more recent memories may be an evolutionary adaptation in vocal learners necessary for the behavioral flexibility to acquire novel vocalizations, such as a second language. PMID:27288718

  12. Mirror mount

    DOEpatents

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  13. Tuning of temporo-occipital activity by frontal oscillations during virtual mirror exposure causes erroneous self-recognition.

    PubMed

    Serino, Andrea; Sforza, Anna Laura; Kanayama, Noriaki; van Elk, Michiel; Kaliuzhna, Mariia; Herbelin, Bruno; Blanke, Olaf

    2015-10-01

    Self-face recognition, a hallmark of self-awareness, depends on 'off-line' stored information about one's face and 'on-line' multisensory-motor face-related cues. The brain mechanisms of how on-line sensory-motor processes affect off-line neural self-face representations are unknown. This study used 3D virtual reality to create a 'virtual mirror' in which participants saw an avatar's face moving synchronously with their own face movements. Electroencephalographic (EEG) analysis during virtual mirror exposure revealed mu oscillations in sensory-motor cortex signalling on-line congruency between the avatar's and participants' movements. After such exposure and compatible with a change in their off-line self-face representation, participants were more prone to recognize the avatar's face as their own, and this was also reflected in the activation of face-specific regions in the inferotemporal cortex. Further EEG analysis showed that the on-line sensory-motor effects during virtual mirror exposure caused these off-line visual effects, revealing the brain mechanisms that maintain a coherent self-representation, despite our continuously changing appearance. PMID:26215485

  14. Tuning of temporo-occipital activity by frontal oscillations during virtual mirror exposure causes erroneous self-recognition.

    PubMed

    Serino, Andrea; Sforza, Anna Laura; Kanayama, Noriaki; van Elk, Michiel; Kaliuzhna, Mariia; Herbelin, Bruno; Blanke, Olaf

    2015-10-01

    Self-face recognition, a hallmark of self-awareness, depends on 'off-line' stored information about one's face and 'on-line' multisensory-motor face-related cues. The brain mechanisms of how on-line sensory-motor processes affect off-line neural self-face representations are unknown. This study used 3D virtual reality to create a 'virtual mirror' in which participants saw an avatar's face moving synchronously with their own face movements. Electroencephalographic (EEG) analysis during virtual mirror exposure revealed mu oscillations in sensory-motor cortex signalling on-line congruency between the avatar's and participants' movements. After such exposure and compatible with a change in their off-line self-face representation, participants were more prone to recognize the avatar's face as their own, and this was also reflected in the activation of face-specific regions in the inferotemporal cortex. Further EEG analysis showed that the on-line sensory-motor effects during virtual mirror exposure caused these off-line visual effects, revealing the brain mechanisms that maintain a coherent self-representation, despite our continuously changing appearance.

  15. Magic Mirrors

    ERIC Educational Resources Information Center

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  16. Slumped mirrors

    NASA Astrophysics Data System (ADS)

    Pteancu, Mircea; Dragan, Dorin; Dragan, Olivier; Miron, Andrei; Stanescu, Octavian

    2008-02-01

    The authors discusse the construction of slumped mirrors, their fabrication and testing (polishing and lapping). An important topic of the discussion is thermal fabrication of mirrors by using of matrixes. One of the authors of the entry is combining astronomy and aquariums construction.

  17. Advanced Mirror Technology Development (AMTD) Thermal Trade Studies

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas

    2015-01-01

    Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.

  18. Promoting Physical Activity in Primary Care

    PubMed Central

    Singer, Joel; Lindsay, Elizabeth A.; Wilson, Douglas M.C.

    1991-01-01

    The principle barriers preventing health care professionals from promoting physical activity include an incomplete understanding of the evidence linking physical activity and health, difficulty in translating research findings into a feasible and efficacious clinical intervention, resistance to adopting a preventive orientation, and concerns about the risks of physical activity. Low level activities likely provide benefit with little risk. PMID:21229089

  19. Multi-segmented piezoelectric mirrors as active/adaptive optics components.

    PubMed

    Signorato, R; Hignette, O; Goulon, J

    1998-05-01

    The angular acceptance of piezoelectric (Pzt) bimorph mirrors is limited by the maximum length of commercially available Pzt ceramic plates. To overcome this limit and manufacture longer devices, several (2n + 1) 150 mm-long bimorph Pzt stacks were assembled side-to-side. Two prototype mirrors, 450 (n = 1) and 750 (n = 2) mm long, were designed, assembled, polished and optically characterized. They are fully UHV compatible and are now installed in the monochromatic section of the ESRF beamlines ID26 and ID32. Both mirrors cover the full range of required bending radii (1 km concave-3.5 km convex). Junctions between segments do not spoil the optical surface quality. The surface slope error r.m.s. can be kept well below 1 arcsec over the full bending range. Adaptive compensation for low-frequency figure errors was shown to be easy and reliable. After compensation, residual shape errors are of the order of 40 nm r.m.s. over 700 mm. PMID:15263657

  20. Mirror, Mirror on the Wall...?

    ERIC Educational Resources Information Center

    Pflaster, Gail

    1979-01-01

    The study determined the value of using a mirror for speech teaching by recording manner, place, voicing, and blend errors produced by 27 hearing-impaired children (5-13 years old) while imitating consonant-vowel syllables under three conditions (audition alone, audition plus direct vision, and audition plus vision using a mirror). (Author)

  1. Enhancing the mirror illusion with transcranial direct current stimulation.

    PubMed

    Jax, Steven A; Rosa-Leyra, Diana L; Coslett, H Branch

    2015-05-01

    Visual feedback has a strong impact on upper-extremity movement production. One compelling example of this phenomena is the mirror illusion (MI), which has been used as a treatment for post-stroke movement deficits (mirror therapy). Previous research indicates that the MI increases primary motor cortex excitability, and this change in excitability is strongly correlated with the mirror's effects on behavioral performance of neurologically-intact controls. Based on evidence that primary motor cortex excitability can also be increased using transcranial direct current stimulation (tDCS), we tested whether bilateral tDCS to the primary motor cortices (anode right-cathode left and anode left-cathode right) would modify the MI. We measured the MI using a previously-developed task in which participants make reaching movements with the unseen arm behind a mirror while viewing the reflection of the other arm. When an offset in the positions of the two limbs relative to the mirror is introduced, reaching errors of the unseen arm are biased by the reflected arm's position. We found that active tDCS in the anode right-cathode left montage increased the magnitude of the MI relative to sham tDCS and anode left-cathode right tDCS. We take these data as a promising indication that tDCS could improve the effect of mirror therapy in patients with hemiparesis. PMID:25796410

  2. Fused silica mirror development for SIRTF

    NASA Technical Reports Server (NTRS)

    Barnes, W. P., Jr.

    1983-01-01

    An advanced design, lightweight, fuse-quartz mirror of sandwich construction was evaluated for optical figure performance at cryogenic temperatures. A low temperature shroud was constructed with an integral mirror mount and interface to a cryostat for use in a vacuum chamber. The mirror was tested to 13 K. Cryogenic distortion of the mirror was measured interferometrically. Separate interferometry of the chamber window during the test permitted subtraction of the small window distortions from the data. Results indicate that the imaging performance of helium cooled, infrared telescopes will be improved using this type of mirror without correction of cryogenic distortion of the primary mirror.

  3. Mirror mount

    DOEpatents

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  4. Mirror mount

    DOEpatents

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  5. Mirror mount

    DOEpatents

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  6. Active feedback stabilization of multimode flute instability in a mirror trap

    NASA Astrophysics Data System (ADS)

    Be'ery, I.; Seemann, O.; Fisher, A.

    2014-07-01

    The flute instability in a table-top mirror machine has been stabilized by a feedback system consisting of optical sensors, a digital signal processor and charge-injecting electrodes. The use of multiple sensors and actuators enable the feedback to simultaneously stabilize two modes of the fast-growing, slowly rotating flute instability. Step function response and magnetohydrodynamic spectroscopy indicate a smooth frequency response and an inherent delayed response of the plasma drift due to the sheath resistivity. The measured feedback power is very small relative to the heating power of the plasma.

  7. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  8. Teaching students to read the primary literature using POGIL activities.

    PubMed

    Murray, Tracey Arnold

    2014-01-01

    The ability to read, interpret, and evaluate articles in the primary literature are important skills that science majors will use in graduate school and professional life. Because of this, it is important that students are not only exposed to the primary literature in undergraduate education, but also taught how to read and interpret these articles. To achieve this objective, POGIL activities were designed to use the primary literature in a majors biochemistry sequence. Data show that students were able to learn content from the literature without separate activities or lecture. Students also reported an increase in comfort and confidence in approaching the literature as a result of the activities.

  9. Activity Based Astronomy for Primary Science Programs.

    ERIC Educational Resources Information Center

    Ginns, Ian

    Print materials in astronomy such as books, journals, charts, and posters are typically the sources of information for teachers and children about the moon, the sun, lunar and solar eclipses, planetary sizes, distances of planets from the sun, planetary atmospheres, and so on. This paper describes and analyzes a number of activities designed to…

  10. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads. PMID:18253168

  11. Influence functions of a thin shallow meniscus-shaped mirror.

    PubMed

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads.

  12. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  13. Mirror Technology

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Under a NASA contract, MI-CVD developed a process for producing bulk silicon carbide by means of a chemical vapor deposition process. The technology allows growth of a high purity material with superior mechanical/thermal properties and high polishability - ideal for mirror applications. The company employed the technology to develop three research mirrors for NASA Langley and is now marketing it as CVD SILICON CARBIDE. Its advantages include light weight, thermal stability and high reflectivity. The material has nuclear research facility applications and is of interest to industrial users of high power lasers.

  14. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the

  15. Carbon nanotube optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  16. Performance prediction of the LSST secondary mirror

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.; Liang, Ming; Neill, Douglas R.

    2009-08-01

    The Large Synoptic Survey Telescope (LSST) is an 8.4 meter telescope with a field of view of 10 square degrees. This telescope will be capable of mapping the entire visible sky every few nights via sequential 15-second exposures, opening new windows on the universe from dark energy to time variable objects. The LSST optics calls for an annular 3.5 m diameter Secondary Mirror (M2), which is a large meniscus convex asphere (ellipse). The M2 converts the beam reflected from the f/1.2 primary mirror into a beam for the f/0.83 Tertiary Mirror (M3). The M2 has a mass of approximately 1.5 metric tons and the mirror support system will need to maintain the mirror figure at different gravity orientations. The optical performance evaluations were made based on the optimized support systems consisting of 72 axial supports, mounted at the mirror back surface, and 6 tangent link lateral supports mounted around the outer edge. The predicted print-though errors of the M2 supports are 8nm RMS surface for axial gravity and 10nm RMS surface for lateral gravity. The natural frequencies were calculated for the M2 dynamic performance. In addition, thermo-elastic analyses of M2 for thermal gradient cases were conducted. The LSST M2 support system has an active optics capability to maintain optical figure and its performance to correct low-order aberrations has been demonstrated. The optical image qualities and structure functions for the axial and lateral gravity print-through cases, and thermal gradient effects were calculated.

  17. Conicoid Mirrors

    ERIC Educational Resources Information Center

    Castano, Diego J.; Hawkins, Lawrence C.

    2011-01-01

    The first-order equation relating object and image location for a mirror of arbitrary conic-sectional shape is derived. It is also shown that the parabolic reflecting surface is the only one free of aberration and only in the limiting case of distant sources. (Contains 3 figures.)

  18. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  19. Active control of adaptive optics system in a large segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Nagashima, M.; Agrawal, B. N.

    2014-02-01

    For a large adaptive optics system such as a large segmented mirror telescope (SMT), it is often difficult, although not impossible, to directly apply common multi-input multi-output (MIMO) controller design methods due to the computational burden imposed by the large dimension of the system model. In this article, a practical controller design method is proposed which significantly reduces the system dimension for a system where the dimension required to represent the dynamics of the plant is much smaller than the dimension of the full plant model. The proposed method decouples the dynamic and static parts of the plant model by a modal decomposition technique to separately design a controller for each part. Two controllers are then combined using the so-called sensitivity decoupling method so that the resulting feedback loop becomes the superposition of the two individual feedback loops of the dynamic and static parts. A MIMO controller was designed by the proposed method using the H ∞ loop-shaping technique for an SMT model to be compared with other controllers proposed in the literature. Frequency-domain analysis and time-domain simulation results show the superior performance of the proposed controller.

  20. Research study to determine critical optical/mechanical properties of materials considered for selection as substrates for the primary mirror on a large telescope

    NASA Technical Reports Server (NTRS)

    Slomba, A. F.; Goggin, W. R.

    1972-01-01

    An investigation was conducted to evaluate the stability of a specific low expansion glass-ceramic material relative to its use as a large, lightweight mirror substrate for diffraction-limited spaceborne optical applications. These evaluations were made on a segment (0.44 meter diameter by 0.31 meter thick) of a 2 to 3 meter diameter mirror blank. The dimensional stability of this mirror was measured interferometrically before and after lightweighting, as a function of rough machining, etching, thermal environment, and support configuration. A special computer analysis program was used to plot the coefficients corresponding to aberrations with sixfold symmetry (caused by the mirror's self-weight deflection on a three point support). The objective was to enhance the test sensitivity. Results indicate that any such effects due to self-weight deflection are of the order of 0.015 lambda rms. The rms and peak-to-peak figure changes associated with each processing operation are summarized.

  1. Simulation of segmented mirror telescope and calculating asphericity of segmented mirror

    NASA Astrophysics Data System (ADS)

    Liao, Zhou; Qiu, Qi; Zhang, Yudong

    2014-09-01

    To determine parameters of the Segmented Mirror Telescope is quite essential for the design, manufacture, testing and construct of the telescope system, especially the F-number parameters and curvature radius of the primary mirror, as well as the asphericity. A model of Sub-segmented mirror was established in this paper, based on which, using the feature points combined with lagrange condition extreme, the asphericity calculation of the asymmetrical hexagon off-axis parabolic mirror in different central points is solved. The 8m and 11m segmented mirror telescope were taken for example in the calculation, and got the relation curve between F-number of primary mirror and Asphericity of segmented mirror, respectively. This work is useful for the design, manufacturing and testing of the large diameter Segmented Mirror Telescope.

  2. Science Activities That Work: Perceptions of Primary School Teachers

    NASA Astrophysics Data System (ADS)

    Appleton, Ken

    2002-06-01

    Many primary school teachers in Australia tend to be reluctant to teach science, partly because they are not confident in science and have limited science background knowledge. However, quite a number of primary school teachers still manage to teach some science. When they plan to teach science, many of them use the term science activities that work. Such activities seem to be related to science pedagogical content knowledge for some primary teachers. In order to better understand what the term activities that work means, twenty teachers from several schools were interviewed and asked what they understood by this expression. Themes that emerged suggest that activities that work are hands on, are interesting and motivating for the children, have a clear outcome or result, are manageable in the classroom, use equipment that is readily available, and are preferably used in a context where science is integrated into themes. Implications for curriculum and for preservice teacher education are considered.

  3. [Phantom limb pain syndrome: therapeutic approach using mirror therapy in a Geriatric Department].

    PubMed

    González García, Paloma; Manzano Hernández, M Pilar; Muñoz Tomás, M Teresa; Martín Hernández, Carlos; Forcano García, Mercedes

    2013-01-01

    The clinical use of mirror visual feedback was initially introduced to alleviate phantom pain by restoring motor function through plastic changes in the human primary motor cortex. It is a promising novel technique that gives a new perspective to neurological rehabilitation. Using this therapy, the mirror neuron system is activated and decrease the activity of those systems that perceive protopathic pain, making somatosensory cortex reorganization possible. This paper reports the results of the mirror therapy in three patients with phantom limb pain after recent lower limb amputation, showing its analgesic effects and its benefits as a comprehensive rehabilitation instrument for lower limb amputee geriatric patients.

  4. TRL-6 Qualification of JWST Mirror Segments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    Since 1996, all key mirror technology for a JWST Primary Mirror Segment Assembly (PMSA), as defined directly from the JWST Level 1 Science Requirements, have been developed and matured from a Technology Readiness Level (TRL) of 3 to 6. This has occurred as the result of a highly successful technology development program including sub-scale Beryllium Mirror Demonstrator (SBMD), Advanced Mirror System Demonstrator (AMSD), and JWST flight mirror fabrication. Directly traceable prototypes (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  5. Paranal Receives New Mirror

    NASA Astrophysics Data System (ADS)

    2008-04-01

    A 4.1-metre diameter primary mirror, a vital part of the world's newest and fastest survey telescope, VISTA (the Visible and Infrared Survey Telescope for Astronomy) has been delivered to its new mountaintop home at Cerro Paranal, Chile. The mirror will now be coupled with a small camera for initial testing prior to installing the main camera in June. Full scientific operations are due to start early next year. VISTA will form part of ESO's Very Large Telescope facility. ESO PR Photo 10d/08 ESO PR Photo 10d/08 The VISTA Mirror The mirror arrived over the Easter weekend at the Paranal Observatory where the telescope is being assembled at an altitude of 2518m, in Chile's Atacama Desert. VISTA Project Manager Alistair McPherson from STFC's UK Astronomy Technology Centre (UK ATC) accompanied the mirror on its journey to Chile: "This is a major milestone for the VISTA project. The precious mirror was loaded on to a plane in a special cradle that used tennis balls to cushion it from impact for its arduous journey across three continents. " "The mirror had a difficult four-day journey, by air and by road. It arrived in perfect condition and now that it has been coated, we will install the mirror in the telescope with a small test camera for about four weeks testing. We plan to install the main camera in June," said the Project Scientist on VISTA, Will Sutherland of Queen Mary, University of London, UK. The VISTA 4.1-metre diameter primary mirror is the most strongly curved large mirror ever polished to such a precise and exacting surface accuracy - deviations from a perfect surface of less than 1/3000th of the thickness of a human hair. On arrival at Cerro Paranal it was safely craned into the telescope dome where it was washed and coated with a thin layer of protected silver in the facility's coating plant. Silver is the best metal for the purpose since it reflects over 98% of near-infrared light, better than the more commonly used aluminium. To date, the reflectivity

  6. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  7. Eliminating mirror responses by instructions.

    PubMed

    Bardi, Lara; Bundt, Carsten; Notebaert, Wim; Brass, Marcel

    2015-09-01

    The observation of an action leads to the activation of the corresponding motor plan in the observer. This phenomenon of motor resonance has an important role in social interaction, promoting imitation, learning and action understanding. However, mirror responses not always have a positive impact on our behavior. An automatic tendency to imitate others can introduce interference in action execution and non-imitative or opposite responses have an advantage in some contexts. Previous studies suggest that mirror tendencies can be suppressed after extensive practice or in complementary joint action situations revealing that mirror responses are more flexible than previously thought. The aim of the present study was to gain insight into the mechanisms that allow response flexibility of motor mirroring. Here we show that the mere instruction of a counter-imitative mapping changes mirror responses as indexed by motor evoked potentials (MEPs) enhancement induced by transcranial magnetic stimulation (TMS). Importantly, mirror activation was measured while participants were passively watching finger movements, without having the opportunity to execute the task. This result suggests that the implementation of task instructions activates stimulus-response association that can overwrite the mirror representations. Our outcome reveals one of the crucial mechanisms that might allow flexible adjustments of mirror responses in different contexts. The implications of this outcome are discussed.

  8. Smart materials optical mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.

    2014-08-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes embedded in an epoxy matrix. CNT/epoxy is a multifunctional or `smart' composite material that has sensing capabilities and can be made to incorporate self-actuation as well. Moreover, since the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and 3D printing. The technology therefore holds promise for development of a new generation of lightweight, compact `smart' telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics. We discuss possible paths for future development.

  9. Status on NGST Mirror Technology

    NASA Technical Reports Server (NTRS)

    Jacobson, David

    2000-01-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1 - 3 m depending on the details of the architecture. The secondary mirror will likely be a monolith similar in size to one of the primary mirror segments. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at less than 15 kg/sq m, operational at approx. 40 K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2 - 2.0 m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2 - 2.0 m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting, the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding; the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the

  10. Mirror monochromator

    SciTech Connect

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  11. Software for Alignment of Segments of a Telescope Mirror

    NASA Technical Reports Server (NTRS)

    Hall, Drew P.; Howard, Richard T.; Ly, William C.; Rakoczy, John M.; Weir, John M.

    2006-01-01

    The Segment Alignment Maintenance System (SAMS) software is designed to maintain the overall focus and figure of the large segmented primary mirror of the Hobby-Eberly Telescope. This software reads measurements made by sensors attached to the segments of the primary mirror and from these measurements computes optimal control values to send to actuators that move the mirror segments.

  12. High Precision Metrology on the Ultra-Lightweight W 50.8 cm f/1.25 Parabolic SHARPI Primary Mirror using a CGH Null Lens

    NASA Technical Reports Server (NTRS)

    Antonille, Scott

    2004-01-01

    For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.

  13. Commercial Activities in Primary Schools: A Quantitative Study

    ERIC Educational Resources Information Center

    Raine, Gary

    2007-01-01

    The commercialisation of schools is a controversial issue, but very little is known about the actual situation in UK schools. The aim of this study was to investigate, with particular reference to health education and health promotion, commercial activities and their regulation in primary schools in the Yorkshire and Humber region of the UK. A…

  14. Active Classroom Participation in a Group Scribbles Primary Science Classroom

    ERIC Educational Resources Information Center

    Chen, Wenli; Looi, Chee-Kit

    2011-01-01

    A key stimulus of learning efficacy for students in the classroom is active participation and engagement in the learning process. This study examines the nature of teacher-student and student-student discourse when leveraged by an interactive technology--Group Scribbles (GS) in a Primary 5 Science classroom in Singapore which supports rapid…

  15. Compulsory "Foreign Language Activities" in Japanese Primary Schools

    ERIC Educational Resources Information Center

    Hashimoto, Kayoko

    2011-01-01

    From 2011, the new curriculum for introducing English to Japanese primary schools will be fully implemented in the form of "foreign language activities". This innovation forms part of the government's plan to cultivate "Japanese with English abilities", a development based on the awareness, particularly in the business sector, that equipping…

  16. The OVLA 1.5-m primary as a segment for an Extremely Large Telescope?

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Lardière, O.; Dejonghe, J.

    The Optical Very Large Array (OVLA) 1.5 m prototype telescope is under construction at Observatoire de Haute Provence. This telescope features a thin active parabolic f/1.7 mirror, weighting 100 kg/m^2 with the active cell. The meniscus-shaped mirror, made of low-cost ordinary window glass, is 24.1 mm thick and supported by 32 actuators, each ensuring both axial and lateral supporting via a glued triple contact point under the mirror. The active optics system is briefly described, as well as the mirror thermal behaviour and how we plan to correct in situ the related deformations. We discuss the characteristics of this mirror concept (weight, low-cost, thermal behaviour, wind buffeting) of this mirror concept versus its application to ELT primary mirror active segments.

  17. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    NASA Astrophysics Data System (ADS)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  18. Performance prediction of the TMT secondary mirror support system

    NASA Astrophysics Data System (ADS)

    Cho, Myung K.

    2008-07-01

    The Ritchey-Chretien (RC) design of the Thirty Meter Telescope (TMT) optics calls for a 3.1 m diameter Secondary Mirror (M2), which is a large meniscus convex hyperboloid. The M2 converts the beam reflected from the f/1 primary mirror into an f/15 beam for the science instruments. The M2 Mirror (M2M) has a mass of approximately two metric tons and the mirror support system will need to maintain the mirror figure at different gravity orientations. Recent changes in the telescope configuration to RC from Aplanatic Gregorian (AG) prescription and reduction of the fully-illuminated field of view to 15 arc minutes required a design change in the M2 mirror figure from a concave radius to a convex radius, with a significant reduction in diameter, which in turn requires re-optimization of the mirror support systems. The optical performance evaluations were made based on the optimized support systems resulting from the change from AG to RC. The M2 optimized support system consists of 60 axial supports, mounted at the mirror back surface, and 24 lateral supports mounted along the outer edge. The predicted print-though errors of the M2M supports are 10nm RMS surface for axial gravity and 2nm RMS surface for lateral gravity. This M2M support system has an active optics capability to accommodate potential mechanical or thermal errors; its performance to correct low-order aberrations has been analyzed. A structure function of the axial gravity support print-through was calculated.

  19. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  20. Mirror system activity for action and language is embedded in the integration of dorsal and ventral pathways.

    PubMed

    Arbib, Michael A

    2010-01-01

    We develop the view that the involvement of mirror neurons in embodied experience grounds brain structures that underlie language, but that many other brain regions are involved. We stress the cooperation between the dorsal and ventral streams in praxis and language. Both have perceptual and motor schemas but the perceptual schemas in the dorsal path are affordances linked to specific motor schemas for detailed motor control, whereas the ventral path supports planning and decision making. This frames the hypothesis that the mirror system for words evolved from the mirror system for actions to support words-as-phonological-actions, with semantics provided by the linkage to neural systems supporting perceptual and motor schemas. We stress the importance of computational models which can be linked to the parametric analysis of data and conceptual analysis of these models to support new patterns of understanding of the data. In the domain of praxis, we assess the FARS model of the canonical system for grasping, the MNS models for the mirror system for grasping, and the Augmented Competitive Queuing model that extends the control of action to the opportunistic scheduling of action sequences and also offers a new hypothesis on the role of mirror neurons in self action. Turning to language, we use Construction Grammar as our linguistic framework to get beyond single words to phrases and sentences, and initiate analysis of what brain functions must complement mirror systems to support this functionality. PMID:19942271

  1. Amplification characteristics of a cryogenic Yb³⁺:YAG total-reflection active-mirror laser.

    PubMed

    Furuse, Hiroaki; Sakurai, Toshimitsu; Chosrowjan, Haik; Kawanaka, Junji; Miyanaga, Noriaki; Fujita, Masayuki; Ishii, Shinya; Izawa, Yasukazu

    2014-03-20

    We have studied the amplification characteristics of a cryogenically cooled Yb³⁺:YAG total-reflection active-mirror (TRAM) ceramic laser including wavefront distortion, birefringence loss, small signal gain (SSG), and temperature rise for developing high-performance master oscillator power amplifier (MOPA) systems. A 0.6 mm thick Yb³⁺:YAG ceramic sample was used, and maximum pump intensity ~10  kW/cm² was reached. The transmitted wavefront was measured by using a Shack-Hartmann wavefront sensor, and we evaluated the thermal lens focal length and Strehl ratio for different pump conditions. We have also observed a butterfly-like leakage profile of thermally induced birefringence loss at the maximum pump intensity. From SSG measurements, we obtained moderate laser gain of G=3 for one bounce with a near aberration-free wavefront. Gain calculations, which included also temperature dependence of the emission cross section and reabsorption of Yb³⁺:YAG, were in good agreement with the experiments. These experimental results will be useful as benchmark data for numerical simulations of temperature distribution in TRAM and for designing multikilowatt-class high-performance MOPA systems.

  2. CNS activation and regional connectivity during pantomime observation: No engagement of the mirror neuron system for deaf signers

    PubMed Central

    Emmorey, Karen; Xu, Jiang; Gannon, Patrick; Goldin-Meadow, Susan; Braun, Allen

    2009-01-01

    Deaf signers have extensive experience using their hands to communicate. Using fMRI, we examined the neural systems engaged during the perception of manual communication in 14 deaf signers and 14 hearing non-signers. Participants passively viewed blocked video clips of pantomimes (e.g., peeling an imaginary banana) and action verbs in American Sign Language (ASL) that were rated as meaningless by non-signers (e.g., TO-DANCE). In contrast to visual fixation, pantomimes strongly activated fronto-parietal regions (the mirror neuron system, MNS) in hearing non-signers, but only bilateral middle temporal regions in deaf signers. When contrasted with ASL verbs, pantomimes selectively engaged inferior and superior parietal regions in hearing non-signers, but right superior temporal cortex in deaf signers. The perception of ASL verbs recruited similar regions as pantomimes for deaf signers, with some evidence of greater involvement of left inferior frontal gyrus for ASL verbs. Functional connectivity analyses with left hemisphere seed voxels (ventral premotor, inferior parietal lobule, fusiform gyrus) revealed robust connectivity with the MNS for the hearing non-signers. Deaf signers exhibited functional connectivity with the right hemisphere that was not observed for the hearing group for the fusiform gyrus seed voxel. We suggest that life-long experience with manual communication, and/or auditory deprivation, may alter regional connectivity and brain activation when viewing pantomimes. We conclude that the lack of activation within the MNS for deaf signers does not support an account of human communication that depends upon automatic sensorimotor resonance between perception and action. PMID:19679192

  3. Mirror-image organometallic osmium arene iminopyridine halido complexes exhibit similar potent anticancer activity.

    PubMed

    Fu, Ying; Soni, Rina; Romero, María J; Pizarro, Ana M; Salassa, Luca; Clarkson, Guy J; Hearn, Jessica M; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J

    2013-11-01

    Four chiral Os(II) arene anticancer complexes have been isolated by fractional crystallization. The two iodido complexes, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 2, (S)-ImpyMe: N-(2-pyridylmethylene)-(S)-1-phenylethylamine) and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)I]PF6 (complex 4, (R)-ImpyMe: N-(2-pyridylmethylene)-(R)-1-phenylethylamine), showed higher anticancer activity (lower IC50 values) towards A2780 human ovarian cancer cells than cisplatin and were more active than the two chlorido derivatives, (S(Os),S(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 1, and (R(Os),R(C))-[Os(η(6)-p-cym)(ImpyMe)Cl]PF6, 3. The two iodido complexes were evaluated in the National Cancer Institute 60-cell-line screen, by using the COMPARE algorithm. This showed that the two potent iodido complexes, 2 (NSC: D-758116/1) and 4 (NSC: D-758118/1), share surprisingly similar cancer cell selectivity patterns with the anti-microtubule drug, vinblastine sulfate. However, no direct effect on tubulin polymerization was found for 2 and 4, an observation that appears to indicate a novel mechanism of action. In addition, complexes 2 and 4 demonstrated potential as transfer-hydrogenation catalysts for imine reduction.

  4. Calculation of a mirror asymmetric effect in electron scattering from chiral targets. [in optically active medium

    NASA Technical Reports Server (NTRS)

    Rich, A.; Van House, J.; Hegstrom, R. A.

    1982-01-01

    A dynamical calculation is presented of the helicity induced in an initially unpolarized electron beam after elastic scattering from an optically active medium, a process analogous to the circular polarization induced in unpolarized light following Rayleigh scattering from chiral targets. The calculation is based on the bound helical electron model of a chiral molecule, according to which the major contribution to the helicity is provided by the perturbation of the electron bound state by the spin-orbit interaction of the bound electrons moving in the electric field of the molecular core. The net helicity acquired is found to depend directly on a molecular asymmetry factor and the square of the atomic number of the heaviest atom in an asymmetric environment. For the case of carbon, the induced helicity is on the order of 0.00001, which would account for its lack of observation in a recent experiment. Results may have implications for the origin of optical activity in biological molecules by the differential ionization of D and L isomers by beta-decay electrons.

  5. Dynamical activities of primary somatosensory cortices studied by magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Kishida, Kuniharu

    2009-11-01

    A blind identification method of transfer functions in feedback systems is introduced for examination of dynamical activities of cortices by magnetoencephalography study. Somatosensory activities are examined in 5 Hz periodical median nerve stimulus. In the present paper, we will try two careful preprocessing procedures for the identification method to obtain impulse responses between primary somatosensory cortices. Time series data of the somatosensory evoked field are obtained by using a blind source separation of the T/k type (fractional) decorrelation method. Time series data of current dipoles of primary somatosensory cortices are transformed from the time series data of the somatosensory evoked field by the inverse problem. Fluctuations of current dipoles of them are obtained after elimination of deterministic periodical evoked waveforms. An identification method based on feedback system theory is used for estimation of transfer functions in a feedback model from obtained fluctuations of currents dipoles of primary somatosensory cortices. Dynamical activities between them are presented by Bode diagrams of transfer functions and their impulse responses: the time delay of about 30 ms via corpus callosum is found in the impulse response of identified transfer function.

  6. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

    PubMed Central

    Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie

    2015-01-01

    Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples. PMID

  7. A Specific Component of the Evoked Potential Mirrors Phasic Dopamine Neuron Activity during Conditioning.

    PubMed

    Pan, Wei-Xing; Dudman, Joshua T

    2015-07-22

    Midbrain dopamine (DA) neurons are thought to be a critical node in the circuitry that mediates reward learning. DA neurons receive diverse inputs from regions distributed throughout the neuraxis from frontal neocortex to the mesencephalon. While a great deal is known about changes in the activity of individual DA neurons during learning, much less is known about the functional changes in the microcircuits in which DA neurons are embedded. Here we used local field potentials recorded from the midbrain of behaving mice to show that the midbrain evoked potential (mEP) faithfully reflects the temporal and spatial structure of the phasic response of midbrain neuron populations during conditioning. By comparing the mEP to simultaneously recorded single units, we identified specific components of the mEP that corresponded to phasic DA and non-DA responses to salient stimuli. The DA component of the mEP emerged with the acquisition of a conditioned stimulus, was extinguished following changes in reinforcement contingency, and could be inhibited by pharmacological manipulations that attenuate the phasic responses of DA neurons. In contrast to single-unit recordings, the mEP permitted relatively dense sampling of the midbrain circuit during conditioning and thus could be used to reveal the spatiotemporal structure of multiple intermingled midbrain circuits. Finally, the mEP response was stable for months and thus provides a new approach to study long-term changes in the organization of ventral midbrain microcircuits during learning. Significance statement: Neurons that synthesize and release the neurotransmitter dopamine play a critical role in voluntary reward-seeking behavior. Much of our insight into the function of dopamine neurons comes from recordings of individual cells in behaving animals; however, it is notoriously difficult to record from dopamine neurons due to their sparsity and depth, as well as the presence of intermingled non-dopaminergic neurons. Here we

  8. Reverse sequencing syllables of spoken words activates primary visual cortex.

    PubMed

    Ino, Tadashi; Asada, Tomohiko; Hirose, Syuichi; Ito, Jin; Fukuyama, Hidenao

    2003-10-27

    Using fMRI, we investigated the neural correlates for sequencing the individual syllables of spoken words in reverse order. The comparison of this task to a control task requiring subjects to repeat identical syllables given acoustically revealed the activation of the primary visual cortex. Because one syllable is generally expressed by one kana character (Japanese phonogram), most subjects used a strategy in which the kana character string corresponding to the word was imagined visually and then read mentally in reverse order to perform the task effectively. Such strategy was not used during a control condition. These results suggest that the primary visual cortex plays a role in the generation of an imagined string.

  9. What do fish make of mirror images?

    PubMed Central

    Desjardins, Julie K.; Fernald, Russell D.

    2010-01-01

    Fish act aggressively towards their mirror image suggesting that they consider it another individual, whereas in some mammals behavioural response to mirrors may be an evidence of self-recognition. Since fish cannot self-recognize, we asked whether they could distinguish between fighting a mirror image and fighting a real fish. We compared molecular, physiological and behavioural responses in each condition and found large differences in brain gene expression levels. Although neither levels of aggressive behaviour nor circulating androgens differed between these conditions, males fighting a mirror image had higher immediate early gene (IEG) expression in brain areas homologous to the amygdala and hippocampus than controls. Since amygdalar responses are associated with fear and fear conditioning in other species, higher levels of brain activation when fighting a mirror suggest fish experience fear in response to fights with a mirror image. Clearly, the fish recognize something unusual about the mirror image and the differential brain response may reflect a cognitive distinction. PMID:20462889

  10. Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain.

    PubMed

    Kim, Yu Shin; Anderson, Michael; Park, Kyoungsook; Zheng, Qin; Agarwal, Amit; Gong, Catherine; Saijilafu; Young, LeAnne; He, Shaoqiu; LaVinka, Pamela Colleen; Zhou, Fengquan; Bergles, Dwight; Hanani, Menachem; Guan, Yun; Spray, David C; Dong, Xinzhong

    2016-09-01

    Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by "hijacking" neighboring neurons through gap junctions. PMID:27568517

  11. Characterizing Primary Care Visit Activities at Veterans Health Administration Clinics.

    PubMed

    Gutierrez, Jennifer C; Terwiesch, Christian; Pelak, Mary; Pettit, Amy R; Marcus, Steven C

    2015-01-01

    Medical home models seek to increase efficiency and maximize the use of resources by ensuring that all care team members work at the top of their licenses. We sought to break down primary care office visits into measurable activities to better under stand how primary care providers (PCPs) currently spend visit time and to provide insight into potential opportunities for revision or redistribution of healthcare tasks. We videotaped 27 PCPs during office visits with 121 patients at four Veterans Health Administration medical centers. Based on patterns emerging from the data, we identified a taxonomy of 12 provider activity categories that enabled us to quantify the frequency and duration of activities occurring during routine primary care visits. We conducted descriptive and multivariate analyses to examine associations between visit characteristics and provider and clinic characteristics. We found that PCPs spent the greatest percentage of their visit time discussing existing conditions (20%), discussing new conditions (18%), record keeping (13%), and examining patients (13%). Providers spent the smallest percentage of time on preventive care and coordination of care. Mean visit length was 22.9 minutes (range 7.9-58.0 minutes). Site-level ratings of medical home implementation were not associated with differences in how visit time was spent. These data provide a window into how PCPs are spending face-to-face time with patients. The methodology and taxonomy presented here may prove useful for future quality improvement and research endeavors, particularly those focused on opportunities to increase nonappointment care and to ensure that team members work at the top of their skill level.

  12. Medium-precision null-screen testing of off-axis parabolic mirrors for segmented primary telescope optics: the large millimeter telescope.

    PubMed

    Díaz-Uribe, R

    2000-06-01

    The feasibility of using null screens for testing the segments of a parabolic segmented telescope mirror for the Large Millimeter Telescope (LMT) is analyzed. An algorithm for designing the null screen for testing the off-axis segments of conic surfaces is described. Actual screen designs for the different classes of segments of the LMT are presented. The sensitivity of the test and the required accuracies for the fabrication and positioning of the screen are analyzed. A measuring accuracy of approximately 12 microm in surface sagitta is within the reach of the technique. PMID:18345203

  13. Solar simulator mirror refurbishment

    NASA Technical Reports Server (NTRS)

    Leverton, W. R.

    1974-01-01

    Solar simulator mirrors were refurbished. Two different refurbishment methods were employed. In the first, the electroformed mirror replica was removed from the casting and replaced with a new mirror replica. In the second, only the aluminized surface, with its protective overcoat, was removed from the mirror and replaced after cleaning of the nickel surface.

  14. Mirror System Activity for Action and Language Is Embedded in the Integration of Dorsal and Ventral Pathways

    ERIC Educational Resources Information Center

    Arbib, Michael A.

    2010-01-01

    We develop the view that the involvement of mirror neurons in embodied experience grounds brain structures that underlie language, but that many other brain regions are involved. We stress the cooperation between the dorsal and ventral streams in praxis and language. Both have perceptual and motor schemas but the perceptual schemas in the dorsal…

  15. Mirror seeing control of large infrared solar telescope

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying; Li, Xinnan; Meng, Xiaohui; Ni, Houkun

    2010-07-01

    To obtain high resolution infrared image, both low photon efficiency and long wavelength of infrared light requires enough large aperture telescope, but large aperture vacuum windows can hardly achieve high optical quality, so open structure becomes the only viable choice for large infrared solar telescope. In addition to the effects of atmospheric turbulence, open solar telescopes suffer from the heating of the optics by sunlight, especially primary mirror heating. These factors cause the image to shiver and become blurred, and increase infrared observing noise. Since blowing air across the front surface of the primary mirror doesn't have the necessary heat transfer coefficient to remove the absorbed heat load, it must be cooled down to maintained at a temperature between 0K and 2K below ambient air temperature to reduce the effects of turbulence. This paper will introduce some cooling methods and simulation results of primary mirror in large infrared solar telescope. On the other hand, mirror material with nice thermal conductivity can reduce the temperature difference between mirror surface and air, and mirror surface polishing at infrared wavelength can be comparatively easier than at visible wavelength, so it is possible to select low cost metal mirror as primary mirror of infrared solar telescope. To analyze the technical feasibility of metal mirror serving as primary mirror, this paper also give some polishing results of aluminum mirror with electroless nickel coating.

  16. Floating mirror mount

    SciTech Connect

    Koop, D.E.

    1989-01-03

    This patent describes a floating mirror mount for a mirror of a laser is described consisting of: a mirror having a front surface and a back surface, a keeper encircling the mirror and having a peripheral flange engaging the front surface of the mirror when the mirror is not installed in a laser, a retainer positioned rearwardly of the back surface of the mirror and connected to the keeper and having a spring seating surface, spring means engageable with the spring seating surface of the retainer for exerting a resilient biasing force on the mirror, and fastening means for connecting the retainer to the mirror positioning structure of the laser on installation of the mirror mount in the laser.

  17. Hedgehog activity controls opening of the primary mouth.

    PubMed

    Tabler, Jacqueline M; Bolger, Trióna G; Wallingford, John; Liu, Karen J

    2014-12-01

    To feed or breathe, the oral opening must connect with the gut. The foregut and oral tissues converge at the primary mouth, forming the buccopharyngeal membrane (BPM), a bilayer epithelium. Failure to form the opening between gut and mouth has significant ramifications, and many craniofacial disorders have been associated with defects in this process. Oral perforation is characterized by dissolution of the BPM, but little is known about this process. In humans, failure to form a continuous mouth opening is associated with mutations in Hedgehog (Hh) pathway members; however, the role of Hh in primary mouth development is untested. Here, we show, using Xenopus, that Hh signaling is necessary and sufficient to initiate mouth formation, and that Hh activation is required in a dose-dependent fashion to determine the size of the mouth. This activity lies upstream of the previously demonstrated role for Wnt signal inhibition in oral perforation. We then turn to mouse mutants to establish that SHH and Gli3 are indeed necessary for mammalian mouth development. Our data suggest that Hh-mediated BPM persistence may underlie oral defects in human craniofacial syndromes.

  18. [Physical activity in basic and primary prevention of cardiovascular disease].

    PubMed

    Sobieszczańska, Małgorzata; Kałka, Dariusz; Pilecki, Witold; Adamus, Jerzy

    2009-06-01

    On account of the frequency of appearing and character of atherosclerosis cardiac vascular disease, one of the most crucial elements of effective fight against it is preparation of complex preventive programs including as vast number of population as possible. Consequently, Benjamin and Smitch suggested attaching the notion of basic prevention to the standard division into primary and secondary one. The basic prevention, carrying out in the general population, should concern genetic predisposition, psychosocial factors, keeping up proper body weight, healthy eating and physical activity. Especially high hopes are connected with high efficiency, simplicity and low money-consumption of preventive activities associated with physical activity modification, which has a crucial influence on reducing negative impact of atherosclerosis hazard. The results of numerous scientific research, carried out in many countries and on various, large groups, proved undoubtedly that at the healthy adult people of both sex the systematic physical activity of moderate intensification plays an essential part in preventing CVD and decreasing the death risk because of that reason as well. Moreover, systematic physical exercises show many other health-oriented actions, thanks to which they have an influence on decreasing premature and total death rate. The risk of incidence of civilization-related diseases such as diabetes type II, hypertension, obesity, osteoporosis, tumors (of large intestine, breast, prostatic gland) and depression has decreased significantly. Unequivocally positive influence has been proved at many observations dedicated to health recreational physical activity and physical activity connected with professional work based on aerobe effort. The positive effects have been also observed at children population and senior population which is more and more numerous and the most at risk. The beneficial action of physical activity is connected with direct effect on organism

  19. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, T.C.

    1995-03-21

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis. 7 figures.

  20. Kinematic high bandwidth mirror mount

    DOEpatents

    Kuklo, Thomas C.

    1995-01-01

    An adjustable mirror mount system for a mirror is disclosed comprising a mirror support having a planar surface thereon, a mirror frame containing a mirror and having a planar surface behind the mirror facing the planar surface of the mirror support and parallel to the reflecting surface of the mirror and mounted pivotally to the mirror support at a point central to the frame, a first adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along one axis lying in the plane of the planar surface of the mirror frame; and a second adjustment means between the mirror support and the mirror frame spaced from the central pivot mount for adjusting the movement of the mirror along a second axis lying in the plane of the planar surface of the mirror frame and perpendicular to the first axis.

  1. Lost and Found: Music Activities Delivered by Primary Classroom Generalists

    ERIC Educational Resources Information Center

    King, Fiona

    2015-01-01

    Primary classroom teachers can play a vital role in the music education of primary school students, providing a basis for lifelong learning in music and the arts. Research shows that not all Victorian primary school students have equitable access to music education and that the role of the classroom teacher becomes valuable in supplying or…

  2. Antimicrobial activity of filling materials used in primary teeth pulpotomy.

    PubMed

    Pimenta, Hévelin Couto; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Neves, Ana Thereza Sabóia; Fontes, Rodrigo Gusmão; da Silva, Priscila Vieira; Aranha, Andreza Maria Fábio

    2015-04-01

    The aim of this study was to investigate the antibacterial activity of pulp capping materials used in primary teeth (formocresol [FC], zinc oxide and eugenol cement [ZOE], ZOE mixed with FC [ZOEFC], mineral trioxide aggregate [MTA] and calcium hydroxide [CH]) against cariogenic bacteria. The agar plate diffusion test was used for the cultures, including saline solution as a negative control. A base layer of 15 mL of brain heart infusion agar was inoculated with 300 mL of each inoculum. Twelve wells were made and completely filled with one of the testing materials for each bacteria strain. The plates were incubated at 37°C for 48 h. Zones of microbial inhibition and material diffusion were measured and photographed. The results obtained were analyzed by Kruskal-Wallis and Mann-Whitney non-parametric tests. Respectively, the medium zones of bacteria inhibition of FC, ZOE, ZOEFC, MTA and CH against Streptococcus mutans growth were 28.5, 15.2, 20.8, 9.3 and 11.6; against Lactobacillus acidophilus growth were 28.7, 14.8, 15.3, 15.2 and 20.0, and against Actinomyces viscosus growth were 13.6, 13.5, 14.7, 10.0 and 13.6. We might confirmed the high antibacterial activity of FC solution, especially against S. mutans and L. acidophilus, as wells as, the low inhibitory effect of MTA cement on the cariogenic bacteria studied.

  3. Antimicrobial Activity of Filling Materials Used in Primary Teeth Pulpotomy

    PubMed Central

    Pimenta, Hévelin Couto; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Neves, Ana Thereza Sabóia; Fontes, Rodrigo Gusmão; da Silva, Priscila Vieira; Aranha, Andreza Maria Fábio

    2015-01-01

    The aim of this study was to investigate the antibacterial activity of pulp capping materials used in primary teeth (formocresol [FC], zinc oxide and eugenol cement [ZOE], ZOE mixed with FC [ZOEFC], mineral trioxide aggregate [MTA] and calcium hydroxide [CH]) against cariogenic bacteria. The agar plate diffusion test was used for the cultures, including saline solution as a negative control. A base layer of 15 mL of brain heart infusion agar was inoculated with 300 mL of each inoculum. Twelve wells were made and completely filled with one of the testing materials for each bacteria strain. The plates were incubated at 37°C for 48 h. Zones of microbial inhibition and material diffusion were measured and photographed. The results obtained were analyzed by Kruskal–Wallis and Mann–Whitney non-parametric tests. Respectively, the medium zones of bacteria inhibition of FC, ZOE, ZOEFC, MTA and CH against Streptococcus mutans growth were 28.5, 15.2, 20.8, 9.3 and 11.6; against Lactobacillus acidophilus growth were 28.7, 14.8, 15.3, 15.2 and 20.0, and against Actinomyces viscosus growth were 13.6, 13.5, 14.7, 10.0 and 13.6. We might confirmed the high antibacterial activity of FC solution, especially against S. mutans and L. acidophilus, as wells as, the low inhibitory effect of MTA cement on the cariogenic bacteria studied. PMID:25954072

  4. Light, Color, and Mirrors.

    ERIC Educational Resources Information Center

    Tiburzi, Brian; Tamborino, Laurie; Parker, Gordon A.

    2000-01-01

    Describes an exercise in which students can use flashlights, mirrors, and colored paper to discover scientific principles regarding optics. Addresses the concepts of angles of incidence and reflection, colored vs. white light, and mirror images. (WRM)

  5. One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector.

    PubMed

    Lee, KyeoReh; Lee, Junsung; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-10-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomenon made possible by the wave property of light. Here, we demonstrate the realization of a one-wave optical phase conjugation mirror using a spatial light modulator. An adaptable single-mode filter is created, and a phase-conjugate beam is then prepared by reverse propagation through this filter. Our method is simple, alignment free, and fast while allowing high power throughput in the time-reversed wave, which has not been simultaneously demonstrated before. Using our method, we demonstrate high throughput full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence.

  6. Physical Activity of Malaysian Primary School Children: Comparison by Sociodemographic Variables and Activity Domains.

    PubMed

    Wong, Jyh Eiin; Parikh, Panam; Poh, Bee Koon; Deurenberg, Paul

    2016-07-01

    This study describes the physical activity of primary school children according to sociodemographic characteristics and activity domains. Using the Malaysian South East Asian Nutrition Surveys data, 1702 children aged 7 to 12 years were included in the analysis. Physical activity was reported as a total score and categorized into low, medium, and high levels based on Physical Activity Questionnaire for Older Children. Higher overall activity scores were found in boys, younger age, non-Chinese ethnicity, and normal body mass index category. Sex, age, and ethnicity differences were found in structured or organized, physical education, and outside-of-school domain scores. Transport-related scores differed by age group, ethnicity, household income, and residential areas but not among the three physical activity levels. Participation of girls, Chinese, and older children were low in overall and almost all activity domains. Sociodemographic characteristics are important factors to consider in increasing the different domains of physical activity among Malaysian children. PMID:27257293

  7. LED structure with enhanced mirror reflectivity

    DOEpatents

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  8. Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions

    NASA Technical Reports Server (NTRS)

    Steuber, Thomas J.

    2004-01-01

    Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.

  9. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  10. Teaching Students to Read the Primary Literature Using POGIL Activities

    ERIC Educational Resources Information Center

    Murray, Tracey Arnold

    2014-01-01

    The ability to read, interpret, and evaluate articles in the primary literature are important skills that science majors will use in graduate school and professional life. Because of this, it is important that students are not only exposed to the primary literature in undergraduate education, but also taught how to read and interpret these…

  11. Large thin adaptive x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  12. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  13. Mirror neurons through the lens of epigenetics.

    PubMed

    Ferrari, Pier F; Tramacere, Antonella; Simpson, Elizabeth A; Iriki, Atsushi

    2013-09-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this opinion article, we argue that, in light of recent evidence, this is at best an incomplete and oversimplified view of mirror neurons, where activity is actually variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although associative and genetic accounts fail to consider the complexity of genetic and nongenetic interactions, we propose a new evolutionary developmental biology (evo-devo) perspective, which predicts that environmental differences early in development should produce variations in mirror neuron response patterns, tuning them to the social environment.

  14. Mirror Neurons through the Lens of Epigenetics

    PubMed Central

    Ferrari, Pier F.; Tramacere, Antonella; Simpson, Elizabeth A.; Iriki, Atsushi

    2013-01-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this article, we argue that, in light of recent evidence, this is, at best, an incomplete and oversimplified view of mirror neurons, whose activity is actually quite variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although extant associative and genetic accounts fail to consider the complexity of genetic and non-genetic interactions, we propose a new Evo-Devo perspective, which predicts that environmental differences early in development, or through sensorimotor training, should produce variations in mirror neuron response patterns, tuning them to the social environment. PMID:23953747

  15. "Pocket" Deformable Mirror for an Integrated On-Mirror Adaptive System

    NASA Astrophysics Data System (ADS)

    Beresnev, L.; Voronstov, M.; Wangsness, P.

    Existing HEL beam control architectures are extremely complicated because they require installation and alignment of a large number of optical elements, resulting in substantial increase of the entire HEL system size, weight and cost. There is a strong interest in designing new robust beam control capabilities integrated directly to a beam director system. The discussed technical effort is focused on development and demonstration of a new adaptive beam director (ABD) consisting of a beam forming telescope with wavefront compensation integrated solely on its ultra-lightweight primary mirror. This on-mirror AO system will be controlled using a stochastic parallel gradient descent (SPGD) controller specifically designed for target-in-the-loop (TIL) operation. The key component of the on-mirror AO system is its primary mirror. This mirror contains an array of pockets machined on its backside, called a pocket-mirror. A special dielectric layer deposited on the front surface of the pocket-mirror is highly reflective for the HEL wavelength ???HEL, and semi-transparent for the laser illuminator wavelength ?ILL. Thus the wave ?ILL scattered by the target surface enters inside the mirror pockets, while the outgoing HEL beam with wavelength ?HEL is totally reflected. The pockets of the ABD pocket-mirror include opto-electronic components that can provide local (inside pocket-window) wavefront correction and sensing. Wavefront correction at each pocket aperture is performed using electrically sectioned piezo-ceramic annular rings made from thin (~0.3 mm) bimorph discs glued to the pocket bottoms. Control voltages applied to these electrodes result in mechanical deformation of the pocket-window front surface thus providing compensation of low-order aberrations at each pocket-window. Packaging the pockets with a high fill factor allows high resolution control of the beam director primary mirror shape. Preliminary analysis has shown that surface stroke near 3 microns with

  16. One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector.

    PubMed

    Lee, KyeoReh; Lee, Junsung; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-10-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomenon made possible by the wave property of light. Here, we demonstrate the realization of a one-wave optical phase conjugation mirror using a spatial light modulator. An adaptable single-mode filter is created, and a phase-conjugate beam is then prepared by reverse propagation through this filter. Our method is simple, alignment free, and fast while allowing high power throughput in the time-reversed wave, which has not been simultaneously demonstrated before. Using our method, we demonstrate high throughput full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence. PMID:26550723

  17. Construction of Prototype Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Robinson, William G.

    1997-01-01

    This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.

  18. Cleaning and aluminum coating test with the 1.6 m ULE-mirror.

    NASA Astrophysics Data System (ADS)

    Okita, K.; Watanabe, E.; Yutani, M.; Kurakami, T.; Yoshida, M.; Waseda, K.; Fukuda, T.; Torii, Y.; Noguchi, T.

    1994-10-01

    The authors made tests of cleaning the 1.6 meter ULE mirror and exfoliating stale aluminum coat from glass as a part of the investigation of simplifying the process of cleaning the primary mirror of the SUBARU telescope.

  19. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  20. Mirror neurons and their clinical relevance.

    PubMed

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena; Cattaneo, Luigi

    2009-01-01

    One of the most exciting events in neurosciences over the past few years has been the discovery of a mechanism that unifies action perception and action execution. The essence of this 'mirror' mechanism is as follows: whenever individuals observe an action being done by someone else, a set of neurons that code for that action is activated in the observers' motor system. Since the observers are aware of the outcome of their motor acts, they also understand what the other individual is doing without the need for intermediate cognitive mediation. In this Review, after discussing the most pertinent data concerning the mirror mechanism, we examine the clinical relevance of this mechanism. We first discuss the relationship between mirror mechanism impairment and some core symptoms of autism. We then outline the theoretical principles of neurorehabilitation strategies based on the mirror mechanism. We conclude by examining the relationship between the mirror mechanism and some features of the environmental dependency syndromes.

  1. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  2. Self in the mirror.

    PubMed

    Prinz, Wolfgang

    2013-09-01

    What are mirror systems good for? Several suggestions have been made in response to this question, addressing the putative functions of mirror systems in minds and brains. This paper examines possible contributions of mirror systems to the emergence of subjectivity. At the heart of the discussion is the notion of social mirroring, which has a long tradition in social philosophy and social anthropology. Taking the existence of mirror devices in minds and brains for granted, I argue that social mirroring is a prerequisite for the constitution of mental selves, and, hence, the emergence of subjectivity. However, the fact that self and subjectivity are socially created should not be taken to indicate that they are illusory. They are as real as natural facts are. PMID:23410785

  3. LOXT mirror design study

    NASA Technical Reports Server (NTRS)

    Vanspeybroeck, L.; Antrim, W.; Boyd, D.; Giacconi, R.; Sinnamon, G.; Stille, F.

    1972-01-01

    The final report for the large orbiting X-ray telescope (LOXT) high resolution mirror design study is presented. The following tasks were performed: (1) Generation of a reference and alternate preliminary design for the LOXT high resolution mirror assembly, which will meet the LOXT scientific requirements, and are within the present state of the art of materials and fabrication techniques. (2) Measurement, in X-rays, of the scattering properties of a variety of optical flats, embodying materials, coatings, and polishing techniques which might be applicable to the flight configuration LOXT high resolution mirror. (3) Preparation of a procurement specification for a paraboloid test mirror of the size of the innermost paraboloid of the high resolution mirror assembly, including the design requirements for the reference design evolved from this preliminary design study. The results of the engineering and scientific analysis and the conclusions drawn are presented. The procurement specification for the test mirror is included.

  4. Actuated Hybrid Mirrors for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Ealey, Mark; Redding, David

    2010-01-01

    This paper describes new, large, ultra-lightweight, replicated, actively controlled mirrors, for use in space telescopes. These mirrors utilize SiC substrates, with embedded solid-state actuators, bonded to Nanolaminate metal foil reflective surfaces. Called Actuated Hybrid Mirrors (AHMs), they use replication techniques for high optical quality as well as rapid, low cost manufacturing. They enable an Active Optics space telescope architecture that uses periodic image-based wavefront sensing and control to assure diffraction-limited performance, while relaxing optical system fabrication, integration and test requirements. The proposed International Space Station Observatory seeks to demonstrate this architecture in space.

  5. Active stochastic stress fluctuations in the cell cytoskeleton stir the cell and activate primary cilia

    NASA Astrophysics Data System (ADS)

    Schmidt, Christoph F.; Fakhri, Nikta; Battle, Christopher; Ott, Carolyn M.; Wessel, Alok D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.

    2015-03-01

    Cells are active systems with molecular force generation that drives complex dynamics at the supramolecular scale. Much of cellular dynamics is driven by myosin motors interacting with the actin cytoskeleton. We discovered active random ``stirring'' driven by cytoplasmic myosin as an intermediate mode of transport, different from both thermal diffusion and directed motor activity. We found a further manifestation of cytoskeletal dynamics in the active motion patterns of primary cilia generated by epithelial cells. These cilia were thought to be immotile due to the absence of dynein motors, but it turns out that their anchoring deeper inside the cell in combination with the strongly fluctuating cortex results in clearly measurable non-equilibrium fluctuations.

  6. Mesmerising mirror neurons.

    PubMed

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition.

  7. Alignment test results of the JWST Pathfinder Telescope mirrors in the cryogenic environment

    NASA Astrophysics Data System (ADS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James B.; Knight, J. Scott; Lunt, Sharon

    2016-07-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASA's Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the Science Instrument (SI) detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  8. Alignment Test Results of the JWST Pathfinder Telescope Mirrors in the Cryogenic Environment

    NASA Technical Reports Server (NTRS)

    Whitman, Tony L.; Wells, Conrad; Hadaway, James; Knight, J. Scott; Lunt, Sharon

    2016-01-01

    After integration of the Optical Telescope Element (OTE) to the Integrated Science Instrument Module (ISIM) to become the OTIS, the James Webb Space Telescope OTIS is tested at NASAs Johnson Space Center (JSC) in the cryogenic vacuum Chamber A for alignment and optical performance. The alignment of the mirrors comprises a sequence of steps as follows: The mirrors are coarsely aligned using photogrammetry cameras with reflective targets attached to the sides of the mirrors. Then a multi-wavelength interferometer is aligned to the 18-segment primary mirror using cameras at the center of curvature to align reflected light from the segments and using fiducials at the edge of the primary mirror. Once the interferometer is aligned, the 18 primary mirror segments are then adjusted to optimize wavefront error of the aggregate mirror. This process phases the piston and tilt positions of all the mirror segments. An optical fiber placed at the Cassegrain focus of the telescope then emits light towards the secondary mirror to create a collimated beam emitting from the primary mirror. Portions of the collimated beam are retro-reflected from flat mirrors at the top of the chamber to pass through the telescope to the SI detector. The image on the detector is used for fine alignment of the secondary mirror and a check of the primary mirror alignment using many of the same analysis techniques used in the on-orbit alignment. The entire process was practiced and evaluated in 2015 at cryogenic temperature with the Pathfinder telescope.

  9. Coating considerations for mirrors of CPV devices

    SciTech Connect

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-26

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  10. NASA CONNECT: Algebra: Mirror, Mirror on the Universe

    NASA Technical Reports Server (NTRS)

    2000-01-01

    'Algebra: Mirror, Mirror on the Universe' is the last of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'Algebra: Mirror, Mirror on the Universe', students will learn how algebra is used to explore the universe.

  11. A Cross-Sectional Comparison of Druggable Mutations in Primary Tumors, Metastatic Tissue, Circulating Tumor Cells, and Cell-Free Circulating DNA in Patients with Metastatic Breast Cancer: The MIRROR Study Protocol

    PubMed Central

    Picornell, Antoni C; Alvarez, Enrique L; Martin, Miguel

    2016-01-01

    Background Characterization of the driver mutations in an individual metastatic breast cancer (MBC) patient is critical to selecting effective targeted therapies. Currently, it is believed that the limited efficacy of many targeted drugs may be due to the expansion of drug resistant clones with different genotypes that were already present in the primary tumor. Identifying the genomic alterations of these clones, and introducing combined or sequential targeted drug regimens, could lead to a significant increase in the efficacy of currently available targeted therapies. Objective The primary objective of this study is to assess the concordance/discordance of mutations between the primary tumor and metastatic tissue in MBC patients. Secondary objectives include comparing the genomic profiles of circulating tumor cells (CTCs) and circulating free DNA (cfDNA) from peripheral blood with those of the primary tumor and metastatic tissue for each patient, evaluating these mutations in the signaling pathways that are relevant to the disease, and testing the feasibility of introducing liquid biopsy as a translational laboratory tool in clinical practice. Methods The multicenter, transversal, observational MIRROR study is currently ongoing in three participating hospitals. All consecutive patients with MBC confirmed by radiologic findings will be screened for eligibility, either at first relapse or if tumor regrowth occurs while on treatment for metastatic disease. Results Patient recruitment is currently ongoing. To date, 41 patients have a complete set of tissue samples available (plasma, CTCs, and formalin-fixed, paraffin-embedded primary tumor and metastatic tumor). However, none of these samples have undergone nucleic acids extraction or targeted deep sequencing. Conclusions The results of this study may have a significant influence on the practical management of patients with MBC, and may provide clues to clinicians that lead towards a better stratification of patients

  12. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  13. Flying the "Active School Flag": Physical Activity Promotion through Self-Evaluation in Primary Schools in Ireland

    ERIC Educational Resources Information Center

    Chroinin, Deirdre Ni; Murtagh, Elaine; Bowles, Richard

    2012-01-01

    Primary schools are key sites where children can be active, advance their knowledge and understanding of how to participate in physical activity (PA) and develop an appreciation of its importance in their lives. This study explored the role of schools in promoting PA asking: how do primary schools approach the promotion of whole-school PA? Data…

  14. Two-mirror, three-reflection telescopes as candidates for sky surveys in ground and space applications. The MINITRUST: an active optics warping telescope for wide-field astronomy

    NASA Astrophysics Data System (ADS)

    Viotti, Roberto F.; La Padula, Cesare D.; Vignato, Agostino; Lemaitre, Gerard R.; Montiel, Pierre; Dohlen, Kjetil

    2002-12-01

    A concept based on a two-mirror, three-reflection telescope has been investigated. Its anastigmatism and flat fielded properties, the compactness and optical performances over 2-2.5 arc deg field of view, make this optical system of high interest for the development of much larger telescopes than with Schmidt designs. The 2MTRT concept is a potential candidate for sky surveys with 2-3 meter class telescopes and particularily well adapted for UV space surveys. Preliminary developments have been carried out with the construction of a 30-cm prototype on Amoretti's design, providing encouraging results. At present, a 45-cm 2MTRT prototype has been realized for ground based sky survey of NEOs, based on active optics (MINITRUST), in order to overcome the difficulty of obtaining three aspherical surfaces. The primary and tertiary lie on the same double vase substrate, and have a rest profile. The hyperbolization is carried out in situ by air depressure. The secondary, in a tulip form substrate, has been hyperbolized by elastic relaxation. The project is planned for operation in 2003.

  15. The mirror box

    NASA Astrophysics Data System (ADS)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  16. Stable mirror mount

    DOEpatents

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  17. Stable mirror mount

    DOEpatents

    Cutburth, Ronald W.

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  18. Bronze rainbow hologram mirrors

    NASA Astrophysics Data System (ADS)

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  19. Functional and structural brain differences associated with mirror-touch synaesthesia.

    PubMed

    Holle, Henning; Banissy, Michael J; Ward, Jamie

    2013-12-01

    Observing touch is known to activate regions of the somatosensory cortex but the interpretation of this finding is controversial (e.g. does it reflect the simulated action of touching or the simulated reception of touch?). For most people, observing touch is not linked to reported experiences of feeling touch but in some people it is (mirror-touch synaesthetes). We conducted an fMRI study in which participants (mirror-touch synaesthetes, controls) watched movies of stimuli (face, dummy, object) being touched or approached. In addition we examined whether mirror touch synaesthesia is associated with local changes of grey and white matter volume in the brain using VBM (voxel-based morphometry). Both synaesthetes and controls activated the somatosensory system (primary and secondary somatosensory cortices, SI and SII) when viewing touch, and the same regions were activated (by a separate localiser) when feeling touch--i.e. there is a mirror system for touch. However, when comparing the two groups, we found evidence that SII seems to play a particular important role in mirror-touch synaesthesia: in synaesthetes, but not in controls, posterior SII was active for watching touch to a face (in addition to SI and posterior temporal lobe); activity in SII correlated with subjective intensity measures of mirror-touch synaesthesia (taken outside the scanner), and we observed an increase in grey matter volume within the SII of the synaesthetes' brains. In addition, the synaesthetes showed hypo-activity when watching touch to a dummy in posterior SII. We conclude that the secondary somatosensory cortex has a key role in this form of synaesthesia.

  20. Tandem mirror plasma confinement apparatus

    DOEpatents

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  1. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  2. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  3. Mirroring multiple agents: motor resonance during action observation is modulated by the number of agents.

    PubMed

    Cracco, Emiel; De Coster, Lize; Andres, Michael; Brass, Marcel

    2016-09-01

    Although social situations regularly involve multiple persons acting together, research on the mirror neuron system has focused on situations in which a single agent is observed. Therefore, the goal of the current study was to explore the role of the mirror mechanism in situations involving multiple agents. Specifically, we used transcranial magnetic stimulation (TMS) to investigate whether mirror activation is modulated by the number of observed agents. Based on group contagion research, we hypothesized that multiple agents would provide a stronger trigger to the motor system and would therefore produce a stronger mirror response than a single agent. Participants observed movements performed by a single hand or by two hands while TMS was applied to the primary motor cortex. The results confirmed that activation in the motor system was stronger for two hands. This suggests that input to the motor system increases as the number of agents grows. Relating back to group contagion, our study suggests that groups may be more contagious simply because their actions resonate louder. Given that the mirror mechanism has been linked to a variety of social skills, our findings additionally have important implications for the understanding of social interaction at the group level.

  4. Mirroring multiple agents: motor resonance during action observation is modulated by the number of agents.

    PubMed

    Cracco, Emiel; De Coster, Lize; Andres, Michael; Brass, Marcel

    2016-09-01

    Although social situations regularly involve multiple persons acting together, research on the mirror neuron system has focused on situations in which a single agent is observed. Therefore, the goal of the current study was to explore the role of the mirror mechanism in situations involving multiple agents. Specifically, we used transcranial magnetic stimulation (TMS) to investigate whether mirror activation is modulated by the number of observed agents. Based on group contagion research, we hypothesized that multiple agents would provide a stronger trigger to the motor system and would therefore produce a stronger mirror response than a single agent. Participants observed movements performed by a single hand or by two hands while TMS was applied to the primary motor cortex. The results confirmed that activation in the motor system was stronger for two hands. This suggests that input to the motor system increases as the number of agents grows. Relating back to group contagion, our study suggests that groups may be more contagious simply because their actions resonate louder. Given that the mirror mechanism has been linked to a variety of social skills, our findings additionally have important implications for the understanding of social interaction at the group level. PMID:27118879

  5. On the construction of a 2-metre mirror blank for the universal reflecting telescope in Tautenburg (German Title: Über die Fertigung eines 2-Meter-Spiegelträgers für das Universal-Spiegelteleskop in Tautenburg )

    NASA Astrophysics Data System (ADS)

    Lödel, Wolfgang

    The astronomers' desire to penetrate deeper into space transforms into a demand for larger telescopes. The primary mirror constitutes the main part of a reflecting telescope, and it determines all subsequent activities. Already in the 1930s activities existed in the Schott company to manufacture mirror blanks up to diameters of 2 metres, which could not be pursued because of political constraints. This ambitious goal was again picked up a few years after the war. At a time when the procurement of raw materials was extremely difficult, the glass workers of Schott in Jena attacked this large project. After some failures, a good mirror blank could be delivered to the Carl Zeiss Company in 1951 for further processing and for the construction of the first 2-metre reflecting telescope. From 1960 to 1986, this mirror made from optical glass ZK7 served its purpose at the Karl Schwarzschild Observatory in Tautenburg. lt was then replaced by a zero expansion glass ceramics mirror.

  6. Whole Language Discovery Activities for the Primary Grades.

    ERIC Educational Resources Information Center

    Riley, Margaret C.; Coe, Donna L.

    For the K-3 teacher, this book presents hundreds of ready-to-use individual and group activities for developing reading, writing, listening, and speaking skills, all correlated with other curriculum areas and organized into nine monthly sections. The book includes teaching strategies, individual and group games, activity sheets, quizzes, writing…

  7. Metastatic Gastrointestinal Adenocarcinoma with Osteoblastic Activity: A Case Report of Esophageal and Colonic Primaries

    PubMed Central

    Shabaik, Ahmed S.

    2016-01-01

    Adenocarcinoma with osteoblastic metastases is classically seen in prostate, breast, and lung primaries. Less common primary sites include thyroid, kidney, and stomach. We present two cases of primary gastrointestinal adenocarcinoma with metastatic osteoblastic activity from two previously unreported sites. The first case represents an esophageal adenocarcinoma arising in a background of intestinal metaplasia that metastasized with osteoblastic activity to the deltoid muscle. The second case demonstrates a Stage IV sigmoid colon adenocarcinoma with osteoblastic metastases to the liver and lymph nodes. The findings indicate that metastases from various gastrointestinal primary adenocarcinomas can have prominent bone formation. PMID:27738541

  8. The "Curriculum Vitae": An Imperfect Mirror.

    ERIC Educational Resources Information Center

    Bennett, John B.

    1992-01-01

    Curriculum vitae for college faculty can be ambiguous and even misleading: they can obscure an individual's primary teaching and instructional achievements, tell less than they appear to, and convey an unintended message. Faculty should evaluate the clarity and force with which their vitae express their accomplishments and mirror their abilities.…

  9. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  10. Retrofitting conventional primary clarifiers to activated primary clarifiers to enhance nutrient removal and energy conservation in WWTPs in Beijing, China.

    PubMed

    Wang, Jia-wei; Zhang, Tian-zhu; Chen, Ji-ning; Hu, Zhi-rong

    2011-01-01

    Biological nutrient removal requires sufficient carbon source. Meanwhile, the removal of organic matter in wastewater requires energy consumption in the aeration tank. Carbon source for nutrient removal in most wastewater treatment plants with conventional primary clarifier (CPC) is generally insufficient in China. In order to increase carbon source and to save energy, a part of the CPC may be retrofitted as an activated primary clarifier (APC). In this paper, a pilot scale experiment was conducted to examine the performance of primary sludge fermentation and its effect on nitrogen and phosphorus removal. Results show that the primary sludge fermentation in APC has produced a similar VFA/TP ratio but a higher BOD5/TN ratio compared with those in the CPC effluent, and the TN concentrations in the secondary effluent are at 8.0, 10.8, and 17.4 mg/L, while TP is at 0.45, 1.10, and 2.28 mg/L when the pilot test system was fed with (1) the APC effluent, (2) 50% from the APC effluent and 50% from the CPC effluent, and (3) the CPC effluent, respectively. Results also indicate that the BOD5/TN ratio is a more sensitive factor than the VFA/TP ratio for nutrient removal and energy conservation for the APC fermentation.

  11. Cell wounding activates phospholipase D in primary mouse keratinocytes

    PubMed Central

    Arun, Senthil N.; Xie, Ding; Howard, Amber C.; Zhong, Quincy; Zhong, Xiaofeng; McNeil, Paul L.; Bollag, Wendy B.

    2013-01-01

    Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. PMID:23288946

  12. Final Results of the Ball AMSD Beryllium Mirror

    NASA Technical Reports Server (NTRS)

    Chaney, David M.

    2004-01-01

    The 1.4-meter semi-rigid, beryllium Advanced Mirror System Demonstrator (AMSD) mirror completed initial cryogenic testing at Marshall's X-ray Calibration Facility (XRCF) in August of 2003. Results of this testing show the mirror to have very low cryogenic surface deformation and possess exceptional figure stability. Subsequent to this cryogenic testing beryllium was selected as the material of choice for the James Webb Space Telescope (JWST) multi-segment primary mirror. Therefore, the AMSD mirror was sent back to SSG-Tinsley for additional ambient polishing to JWST requirements. The mirror was successfully polished to less than 22nm rms of low frequency error. Those additional results are presented with comparisons to the JWST requirements.

  13. James Webb Space Telescope Optical Telescope Element Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, Ritva A.; Bowers, Charles W.; Quijada, Manuel A.; Heaney, James B.; Gallagher, Benjamin; McKay, Andrew; Stevenson, Ian

    2012-01-01

    James Webb Space Telescope (JWST) Optical Telescope Element (OTE) mirror coating program has been completed. The science goals of the JWST mission require a uniform, low stress, durable optical coating with high reflectivity over the JWST spectral region. The coating has to be environmentally stable, radiation resistant and compatible with the cryogenic operating environment. The large size, 1.52 m point to point, light weight, beryllium primary mirror (PM) segments and flawless coating process during the flight mirror coating program that consisted coating of 21 flight mirrors were among many technical challenges. This paper provides an overview of the JWST telescope mirror coating program. The paper summarizes the coating development program and performance of the flight mirrors.

  14. Evaluation of control laws and actuator locations for control systems applicable to deformable astronomical telescope mirrors

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.

    1973-01-01

    Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.

  15. Mirror plasma apparatus

    DOEpatents

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  16. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  17. Nanolaminate deformable mirrors

    DOEpatents

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  18. Lighted, Folding Inspection Mirror

    NASA Technical Reports Server (NTRS)

    Roepe, Brian E.

    1991-01-01

    Compact, inexpensive tool used in place of expensive borescopes. Shortens inspection/photographing process. Includes two small metal or glass mirrors hinged together. Two 3-V light bulbs attached along edges of one mirror and connected to battery of two cells. Inserted into narrow opening of clevis or tand, and surface viewed and photographed in opposite mirror. Useful in assembly of segments of solid rocket motors as well as in postflight assessment, engineering evaluation, and refurbishment. Also applied in general to inspection and photographing of inner sealing surfaces to which access difficult.

  19. Thermo-optically driven adaptive mirror

    NASA Astrophysics Data System (ADS)

    Reinert, Felix; Lüthy, Willy

    2006-02-01

    The ideal adaptive optical mirror combines large aperture with high spatial and temporal resolution and a phase shift of at least 2π. Further, a simple low-cost solution is preferred. No adaptive system can perfectly fulfill all these requirements. We present a system that has the potential to reach this goal with the exception of high temporal resolution. But even with a moderate temporal resolution of one second such a system can find practical applications. For example as a laser resonator mirror that allows to modify the intensity distribution of the emission, or to correct slowly varying aberrations of optical systems. Two possible mechanisms can be used to change the optical path length of the adaptive mirror: thermal expansion of the mirror substrate or the thermally induced change of the refractive index (thermal dispersion) of a medium in front of the mirror. Both mechanisms have been shown to lead to promising results. In both cases heating was performed by irradiation of light in the active medium. The thermal dispersion based adaptive mirror is built with a thin layer of a liquid in front of a mirror. To allow a modification of the refractive index by irradiation with a diode laser at 808 nm, a suitable absorber is dissolved in the water. With chopped irradiation a resolution of 3.8 Hz at 30 % contrast is measured. This mirror has been used in a laser resonator to modify the output distribution of the laser. The thermal expansion based adaptive mirror is built with a thin layer of a silicon elastomer with a gold coated front side. We present a preparation method to produce thin films of Sylgard on sapphire. With an irradiated intensity of only 370 mW/cm2 surface modulations of up to 350 nm are obtained. With a test pattern a resolution of 1.6 line-pairs per millimeter at 30 % contrast is measured. The temporal resolution is better than one second.

  20. [Mirror behaviors in dementia: the many mirror signs].

    PubMed

    Ghika, Joseph; Diéguez, Sebastian; Assal, Frédéric; Demonet, Jean-François

    2013-11-13

    Mirror behaviors in advanced dementia are: the mirror sign of Abely and Delmas, where the patient stares at his face (environment-driven behavior of Lhermitte); non recognition of the self in the mirror (autoprosopagnosia and/or delirious auto-Capgras); mirror agnosia of Ramachandran and Binkofski where the patient do not understand the concept of mirror and its use; the psychovisual reflex, or reflex pursuit of the eyes when passively moving a minrror in front of a patient (intact vision); mirror writing (procedural learning). We describe four demented patients with mirror behaviors assessing brain mechanisms of self recognition, social brain and mental and visuo-spatial manipulation of images and objects.

  1. Structure function analysis of mirror fabrication and support errors

    NASA Astrophysics Data System (ADS)

    Hvisc, Anastacia M.; Burge, James H.

    2007-09-01

    Telescopes are ultimately limited by atmospheric turbulence, which is commonly characterized by a structure function. The telescope optics will not further degrade the performance if their errors are small compared to the atmospheric effects. Any further improvement to the mirrors is not economical since there is no increased benefit to performance. Typically the telescope specification is written in terms of an image size or encircled energy and is derived from the best seeing that is expected at the site. Ideally, the fabrication and support errors should never exceed atmospheric turbulence at any spatial scale, so it is instructive to look at how these errors affect the structure function of the telescope. The fabrication and support errors are most naturally described by Zernike polynomials or by bending modes for the active mirrors. This paper illustrates an efficient technique for relating this modal analysis to wavefront structure functions. Data is provided for efficient calculation of structure function given coefficients for Zernike annular polynomials. An example of this procedure for the Giant Magellan Telescope primary mirror is described.

  2. Robots, Bulldozers, and Other Map Activities for the Primary Grades.

    ERIC Educational Resources Information Center

    Pritchard, Sandra F.

    1984-01-01

    Described are activities which will increase fluency in the use of north, south, east, west, up, and down; reinforce the proper positioning of the cardinal directions on a map grid; relate map symbols to familiar surface features; give practice in identifying map symbols; and provide an opportunity to construct maps. (RM)

  3. Teacher Feedback during Active Learning: Current Practices in Primary Schools

    ERIC Educational Resources Information Center

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-01-01

    Background: Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears dif?cult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning.…

  4. Status of Mirror Technology for the Next Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Jacobson, D. N.

    2000-10-01

    The NGST primary mirror is anticipated to be a segmented deployable optic with segment size being in the range of 1-3m depending on the details of the architecture. Over the past 4 years the NGST program has initiated and implemented an aggressive lightweight cryogenic mirror technology program. The program was designed to challenge and excite the optical community in reaching a new standard in production of lightweight optics. The goal was to develop optics at < 15 kg/m2, operational at ~ 40K and meeting the overall NGST observatory requirement for diffraction limited performance at 2 microns. In order to meet the NGST needs, technology efforts were initiated to investigate and develop mirrors in a variety of materials, which held promise for the program. The basic technology approaches have initially targeted the production of large mirrors in the 1.2-2.0m diameter range (or side-to-side distance in the case of hexagonal optics). Although this size may not be the final size of an NGST primary mirror segment, it was felt that a 1.2-2.0m optic would be of sufficient size to understand the mirror material and fabrication processes which drive the cost and schedule of mirror production. The ultimate goals of the technology program are both to demonstrate mirrors meeting the NGST performance requirements, and to establish cost and schedule credibility for producing and implementing the mirrors for the NGST flight system. Establishing cost and schedule credibility is essential to NGST which is a cost capped mission, with past program experience demonstrating that the optics will be a large portion of the total cost of the program. The first two years of the program were dedicated to understanding the various applicable materials, funding those materials to various levels of maturity and implementing the first large mirror procurement, the NGST Mirror System Demonstrator (NMSD), in order to establish a benchmark for the state-of-the-art in lightweight optics and to

  5. Active optics control development at the LBT

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  6. Look Around You. A Primary Student Activity Book Introducing Basic Environmental Concepts.

    ERIC Educational Resources Information Center

    Starkey, Sharon

    This activity book, designed for student use, introduces environmental concepts to the primary student. The basic concept around which the guide is developed is the idea that the environment contains many interdependent things. Water, wind, clouds, non-living objects, plants, animals, and pollution are dealt with as part of the primary student's…

  7. The Rotating Mirror.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1981-01-01

    Discusses theory of the rotating mirror, its use in measuring the velocity of the electrical signal in wires, and the velocity of light. Concludes with a description of the manometric flame apparatus developed for analyzing sound waves. (SK)

  8. The Athena Mirror

    NASA Astrophysics Data System (ADS)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  9. Mirror image proteins.

    PubMed

    Zhao, Le; Lu, Wuyuan

    2014-10-01

    Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.

  10. Mirror Advanced Reactor Study interim design report

    SciTech Connect

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  11. Mirror Attachment For Borescope

    NASA Technical Reports Server (NTRS)

    Gearhart, John F.; Peloquin, James E.

    1994-01-01

    Attachment for articulated borescope provides views into small, normally inaccessible spaces. Simple small round mirror on extension arm welded to borescope head. Tilted at angle to axis of borescope head, mirror provides views sideways to borescope head. Disassembly of turbopump blades not necessary to enable fluorescent-penetrant-dye inspection. Attachment used to inspect difficult-to-reach internal parts of other assemblies. Also used for inspection with ordinary white light.

  12. Developing supplemental activities for primary health care maternity services.

    PubMed

    Panitz, E

    1990-12-01

    Supplemental health care activities are described in the context of the augmented product. The potential benefits of supplemental services to recipients and provider are discussed. The author describes a study that was the basis for (re)developing a supplemental maternity service. The implementation of the results in terms of changes in the marketing mix of this supplemental program is discussed. The effects of the marketing mix changes on program participation are presented.

  13. White-Light Phase-Conjugate Mirrors as Distortion Correctors

    NASA Technical Reports Server (NTRS)

    Frazier, Donald; Smith, W. Scott; Abdeldayem, Hossin; Banerjee, Partha

    2010-01-01

    White-light phase-conjugate mirrors would be incorporated into some optical systems, according to a proposal, as means of correcting for wavefront distortions caused by imperfections in large optical components. The proposal was given impetus by a recent demonstration that white, incoherent light can be made to undergo phase conjugation, whereas previously, only coherent light was known to undergo phase conjugation. This proposal, which is potentially applicable to almost any optical system, was motivated by a need to correct optical aberrations of the primary mirror of the Hubble Space telescope. It is difficult to fabricate large optical components like the Hubble primary mirror and to ensure the high precision typically required of such components. In most cases, despite best efforts, the components as fabricated have small imperfections that introduce optical aberrations that adversely affect imaging quality. Correcting for such aberrations is difficult and costly. The proposed use of white-light phase conjugate mirrors offers a relatively simple and inexpensive solution of the aberration-correction problem. Indeed, it should be possible to simplify the entire approach to making large optical components because there would be no need to fabricate those components with extremely high precision in the first place: A white-light phase-conjugate mirror could correct for all the distortions and aberrations in an optical system. The use of white-light phase-conjugate mirrors would be essential for ensuring high performance in optical systems containing lightweight membrane mirrors, which are highly deformable. As used here, "phase-conjugate mirror" signifies, more specifically, an optical component in which incident light undergoes time-reversal phase conjugation. In practice, a phase-conjugate mirror would typically be implemented by use of a suitably positioned and oriented photorefractive crystal. In the case of a telescope comprising a primary and secondary

  14. Primary silver extraction with a high sulphur activated petroleum coke.

    PubMed

    Schouwenaars, R; Durán Moreno, A; Ramírez Zamora, R M

    2004-01-01

    An extended study was performed to determine the mechanisms that are responsible for the significant silver extraction capacity of activated carbons prepared from a high-sulphur petroleum coke that is available as a waste material from Mexican petroleum refineries. Earlier studies had shown the feasibility of the production of these adsorbents but indicated that the mechanisms of metal adsorption in the present carbons are significantly different from what is classically accepted for commercial carbons. Therefore, selective titration, IR-spectroscopy and scanning electron microscopy of carbons were combined with adsorption experiments and the determination of electrochemical parameters of mixtures of carbon-AgNO3 solution to explain the fundamental reasons for the performance of the obtained carbons. This allowed us to determine the identity of the surface functional groups and to distinguish the effect of different activation processes. The experiments permitted us to explain why these activated carbons, which have a low specific area and lack classical surface functional groups, show such a high silver adsorption capacity.

  15. Notes on moving mirrors

    SciTech Connect

    Obadia, N.; Parentani, R.

    2001-08-15

    The Davies-Fulling (DF) model describes the scattering of a massless field by a noninertial mirror in two dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the reflection factor and the transformation from inertial modes to modes at rest with respect to the mirror. In this perspective, the DF model is simply the limiting case when the reflection factor is unity for all frequencies. In the second part, we introduce an alternative model which is based on self-interactions described by an action principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling between the mirror and field. This allows us to obtain regularized expressions for the fluxes in situations where they are singular when using the DF model. Two examples are considered. The first concerns the flux induced by the disappearance of the reflection condition, a situation which bears some analogies with the end of the evaporation of a black hole. The second case concerns the flux emitted by a uniformly accelerated mirror.

  16. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  17. Cold welded laser mirror assembly

    SciTech Connect

    Chaffee, E.G.

    1989-02-07

    A gas laser apparatus is described comprising: (a) a gas laser tube having a bore extending between cathode and anode ends; (b) the laser tube terminating at each end with a bellows assembly operative to extend the length of the tube bore; (c) each bellows assembly comprising: (i) an adjustably positionable metal bellows secured to a selected end of the tube; (ii) a tubular pedestal secured at one end to the bellows to form an extension thereof and at the opposite end providing a mirror mount surface; (iii) a mirror secured to the surface; (iv) a cold weld material located between the mirror and mirror mount surface; and (v) retaining means secured to the pedestal encasing the outer portion of the mirror and operative to apply pressure to the cold weld material to establish a cold weld seal between the mirror and mirror mount surface to retain the mirror on and prevent shifting of the mirror with respect to the mirror mount surface.

  18. Eight Stars of Gold--The Story of Alaska's Flag. Primary Grade Activities.

    ERIC Educational Resources Information Center

    Alaska State Museum, Juneau.

    This activities booklet focuses on the story of Alaska's flag. The booklet is intended for teachers to use with primary-grade children. Each activity in the booklet contains background information, a summary and time estimate, Alaska state standards, a step-by-step technique for implementing the activity, assessment tips, materials and resource…

  19. The blob crashes into the mirror: modeling the exceptional γ-ray flaring activity of 3C 454.3 in 2010 November

    SciTech Connect

    Vittorini, V.; Tavani, M.; Vercellone, S.

    2014-10-01

    3C 454.3 is a prominent flat-spectrum radio quasar that in recent years attracted considerable attention because of its variable high-energy emissions. In this paper, we focus on the exceptional flaring activity of 3C 454.3 that was detected by AGILE and by Fermi-LAT in 2010 November. In the light of the time-varying data ranging from the radio, optical, and X-ray up to GeV γ-ray bands, we discuss a theoretical framework addressing all data in their overall evolution. For two weeks, the source has shown a plateau of enhanced GeV emission preceding a sudden major flare lasting about three days before decaying. The γ-ray flare onset is abrupt (about six hours), and is characterized by a prominent 'Compton dominance' with the GeV flux exceeding the pre-flare values by a factor of four to five. During this episode, the optical and X-ray fluxes increased by a factor of around two. Within the standard framework of a jet launched with a Lorentz bulk factor Γ ∼ 10 from a central black hole, we explore the yields of two alternatives. Case 1, with high-energy emission originating within the broad line region (BLR); and Case 2, with most of it produced outside at larger distances of a few parsecs. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at parsec scales. This model explains the γ-ray versus optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent 'rphan' optical flare, and the enhanced line emission with no appreciable γ-ray counterpart that preceded the GeV γ-ray flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modeling of the exceptional 3C 454.3 γ-ray flare shows that while emission inside the canonical BLR is problematic, major and rapid

  20. The Blob Crashes into the Mirror: Modeling the Exceptional γ-Ray Flaring Activity of 3C 454.3 in 2010 November

    NASA Astrophysics Data System (ADS)

    Vittorini, V.; Tavani, M.; Cavaliere, A.; Striani, E.; Vercellone, S.

    2014-10-01

    3C 454.3 is a prominent flat-spectrum radio quasar that in recent years attracted considerable attention because of its variable high-energy emissions. In this paper, we focus on the exceptional flaring activity of 3C 454.3 that was detected by AGILE and by Fermi-LAT in 2010 November. In the light of the time-varying data ranging from the radio, optical, and X-ray up to GeV γ-ray bands, we discuss a theoretical framework addressing all data in their overall evolution. For two weeks, the source has shown a plateau of enhanced GeV emission preceding a sudden major flare lasting about three days before decaying. The γ-ray flare onset is abrupt (about six hours), and is characterized by a prominent "Compton dominance" with the GeV flux exceeding the pre-flare values by a factor of four to five. During this episode, the optical and X-ray fluxes increased by a factor of around two. Within the standard framework of a jet launched with a Lorentz bulk factor Γ ~ 10 from a central black hole, we explore the yields of two alternatives. Case 1, with high-energy emission originating within the broad line region (BLR); and Case 2, with most of it produced outside at larger distances of a few parsecs. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at parsec scales. This model explains the γ-ray versus optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent "orphan" optical flare, and the enhanced line emission with no appreciable γ-ray counterpart that preceded the GeV γ-ray flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modeling of the exceptional 3C 454.3 γ-ray flare shows that while emission inside the canonical BLR is problematic, major and rapid

  1. Isolation, antimicrobial activities, and primary structures of hamster neutrophil defensins.

    PubMed Central

    Mak, P; Wójcik, K; Thogersen, I B; Dubin, A

    1996-01-01

    Hamster (Mesocricetus auratus) neutrophil granules contain at least four microbicidal peptides belonging to the defensin family. These compounds were purified from granule acid extracts by reverse-phase chromatography and termed HaNP-1 to -4 (hamster neutrophil peptide). HaNP-1 and HaNP-3 revealed the most bactericidal activity, with a 50% inhibitory concentration of 0.3 to 0.8 microg/ml for Staphylococcus aureus and Streptococcus pyogenes strains. The HaNP-4 was always isolated in concentrations exceeding about 10 times the concentrations of other hamster peptides, but its antibacterial activity as well as that of HaNP-2 was relatively lower, probably as a result of conserved Arg residue substitutions. Other microorganisms were also tested, and generally, hamster defensins exhibited less potency against gram-negative bacteria. The amino acid sequence of hamster defensins showed a high percentage of identity to the sequence of mouse enteric defensins, reaching about 60% identical residues in the case of HaNP-3 and cryptdin 3. PMID:8890190

  2. Managing Risk on a Technology Development Project/Advanced Mirror System Demonstrator

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Stahl, Phil (Technical Monitor)

    2002-01-01

    The risk management study applied to the Advanced Mirror System Demonstrator (AMSD), a precursor mirror technology development for the Next Generation Space Telescope (NGST) is documented. The AMSD will be developed as a segment of a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. The technology gained from the program will support the risk mitigation strategy for the NGST, as well as other government agency space mirror programs.

  3. The Porcine Chloride Channel Calcium-Activated Family Member pCLCA4a Mirrors Lung Expression of the Human hCLCA4

    PubMed Central

    Plog, Stephanie; Grötzsch, Tanja; Klymiuk, Nikolai; Kobalz, Ursula; Gruber, Achim D.

    2012-01-01

    Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4. PMID:22205680

  4. Temperature compensated sleeve type mirror mount

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The primary mirror of a large (26-inch diameter aperture) solar telescope was made of glass ceramic and designed with an integral hub on the back of the center of the mirror. This permits heat from the mirror to radiate off its back to a nearby cold plate. To permit mounting without high stresses, the hub was ground down to a smooth cylindrical surface 3.5 inch in diameter. The ground surface was then acid-etched to remove 0.007 inch (on the diameter) by immersion for five minutes in a mixture of four parts 92% sulfuric acid and three parts 50% hydrofluoric acid. The acid etching removes microcracks from the ground Cer-Vit surface. An Invar sleeve was fabricated to fit over the hub with about 0.010 inch radial (0.020 inch diametral) clearance.

  5. The immune phenotype of AhR null mouse mutants: not a simple mirror of xenobiotic receptor over-activation.

    PubMed

    Esser, Charlotte

    2009-02-15

    Intrinsic and induced cell differentiation and the cellular response to endogenous and exogenous signals are hallmarks of the immune system. Specific and common signalling cascades ensure a highly flexible and adapted response. Increasing evidence suggests that gene modulation by the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is an important part of these processes. For decades the AhR has been studied mainly for its toxic effects after artificial activation by man-made chemical pollutants such as dioxins. These studies gave important, albeit to some extent skewed, evidence for a mechanistic link between the AhR and the immune system. AhR null mutants and other mutants of the AhR signalling pathway have been generated and used to analyse the physiological function of the AhR, including for the developing and antigen-responding immune system. In this review I look at the natural immunological function(s) of the AhR.

  6. Potential determinants of efficacy of mirror therapy in stroke patients – A pilot study

    PubMed Central

    Brunetti, Maddalena; Morkisch, Nadine; Fritzsch, Claire; Mehnert, Jan; Steinbrink, Jens; Niedeggen, Michael; Dohle, Christian

    2015-01-01

    Abstract Background: Mirror therapy (MT) was found to improve motor function after stroke. However, there is high variability between patients regarding motor recovery. Objectives: The following pilot study was designed to identify potential factors determining this variability between patients with severe upper limb paresis, receiving MT. Methods: Eleven sub-acute stroke patients with severe upper limb paresis participated, receiving in-patient rehabilitation. After a set of pre-assessments (including measurement of brain activity at the primary motor cortex and precuneus during the mirror illusion, using near-infrared spectroscopy as described previously), four weeks of MT were applied, followed by a set of post-assessments. Discriminant group analysis for MT responders and non-responders was performed. Results: Six out of eleven patients were defined as responders and five as non-responders on the basis of their functional motor improvement. The initial motor function and the activity shift in both precunei (mirror index) were found to discriminate significantly between responders and non-responders. Conclusions: In line with earlier results, initial motor function was confirmed as crucial determinant of motor recovery. Additionally, activity response to the mirror illusion in both precunei was found to be a candidate for determination of the efficacy of MT. PMID:26409402

  7. Action observation: mirroring across our spontaneous movement tempo

    PubMed Central

    Avanzino, Laura; Lagravinese, Giovanna; Bisio, Ambra; Perasso, Luisa; Ruggeri, Piero; Bove, Marco

    2015-01-01

    During action observation (AO), the activity of the “mirror system” is influenced by the viewer’s expertise in the observed action. A question that remains open is whether the temporal aspects of the subjective motor repertoire can influence the “mirror system” activation. PMID:25989029

  8. Preparation of gaseous CRMs from the primary system for (222)Rn activity measurement.

    PubMed

    Kim, B J; Kim, B C; Lee, K B; Lee, J M; Park, T S

    2016-03-01

    For disseminating the gaseous radon standard traceable to the KRISS primary system based on the defined solid angle counting method, two kinds of radon CRM (a glass ampule type and a stainless steel cylinder type) were developed. The activity of the CRM was certified by subtracting a residual activity from the measured activity by the primary system. After certification, the ampule CRM was used to calibrate a radon-monitoring instrument and the cylinder CRM to calibrate an HPGe system. We also improved the measurement procedure of the radon primary system. In a typical radon energy spectrum, the radon peak overlaps with the polonium peak. For more reliable and accurate measurement of radon activity, a fitting method was adopted for the evaluation of radon area in the alpha energy spectrum. The result of radon activity evaluated by using the fitting method is in good agreement with that by the previous integration method. PMID:26778761

  9. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  10. An Automatic Washing Machine to Remove Aluminum From Astronomical Mirrors

    NASA Astrophysics Data System (ADS)

    Zitelli, Valentina

    Cleaning of large astronomical mirrors, before aluminization, required in the past a large amount of manual operations on the surface. With very large mirrors, 8 meter or more, manual operations become time consuming, expensive and often dangerous, both for mirror surface and operators. A fully automated procedure is thus mandatory when handling large mirrors. To this aim we experimented on a small scale (60 cm) an automatic procedure, free from any manual contact with the mirror, capable of removing old aluminum and leaving a clean, wet surface ready for a successful new aluminization. First we manually treated small borosilicate mirrors, obtained from the LBT primary mirror glass batch, with different sequences of chemicals, commonly used to this purpose. These small mirrors were checked with a Wyko interferometer before and after treating, to trace change in roughness of the surface. Quality and stability of the new aluminum deposition after cleaning was also checked. The washing machine prototype is composed by a water proof box on rigid PVC with a moving arm, a pump and a series of tanks containing the used chemicals. All the adopted components can be used with acids and other corrosive fluids. The machine is designed to hold the mirror in vertical position. An arm with 10 cm spaced nozzles moves up and down in front of the mirror spraying the adopted chemicals in a defined sequence. A pump forces the liquid through the circuit. After the washing, the mirror is left, protected from the dust in the washing machine, for about 2 hours to drip the water, then is moved into the vacuum pump to check the final result of aluminizing the cleaned surface. A homogeneous layer of aluminum follows only after a careful cleaning, otherwise a fast oxidize process, or a inhomogeneous aluminum coating appear. Scaling times, fluxes and costs from this experiment to large size mirrors leads to realistic, affordable figures.

  11. Physics of mirror systems

    SciTech Connect

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies.

  12. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  13. Physical Activity as a Dimension of Family Life for Lower Primary School Children

    ERIC Educational Resources Information Center

    Macdonald, Doune; Rodger, Sylvia; Ziviani, Jenny; Jenkins, David; Batch, Jenny; Jones, Judy

    2004-01-01

    While questions of children's engagement in physical activity are being widely debated, little is known about how physical activity is valued and managed within families. This paper reports on qualitative data from a multi-method study on lower primary aged children. The focus of the broader study was to determine the relationships between young…

  14. Independent and Small Group Activities for Social Studies in the Primary Grades.

    ERIC Educational Resources Information Center

    Ball, Barbara; And Others

    A teachers' guide for social studies, this manual stresses geography curriculum and activities for the primary grades. It is suggested that a teacher work with one group while the other children work individually. Children first work independently for a team, and then progress to less structured small group activities. Positive reinforcement by…

  15. Experimental Activities in Primary School to Learn about Microbes in an Oral Health Education Context

    ERIC Educational Resources Information Center

    Mafra, Paulo; Lima, Nelson; Carvalho, Graça S.

    2015-01-01

    Experimental science activities in primary school enable important cross-curricular learning. In this study, experimental activities on microbiology were carried out by 16 pupils in a Portuguese grade-4 classroom (9-10?years old) and were focused on two problem-questions related to microbiology and health: (1) do your teeth carry microbes? (2) why…

  16. Teaching Primary Science: Emotions, Identity and the Use of Practical Activities

    ERIC Educational Resources Information Center

    Cripps Clark, John; Groves, Susie

    2012-01-01

    This paper uses cultural historical activity theory to examine the interactions between the choices primary teachers make in the use of practical activities in their teaching of science and the purposes they attribute to these; their emotions, background and beliefs; and the construction of their identities as teachers of science. It draws on four…

  17. The Art and Science Connection. Hands-On Activities for Primary Students.

    ERIC Educational Resources Information Center

    Tolley, Kimberley

    Most people think that the artist and the scientist live in two totally different worlds. However, art and science are only two different ways of understanding and knowing the world. To help primary students make a connection between art and science, a collection of hands-on activities have been developed. By engaging in these activities that…

  18. Elementary Environmental Learning Packet K-3, Third Revised Edition. [Primary CEL Blocks, Student Activity Cards].

    ERIC Educational Resources Information Center

    Brevard County School Board, Cocoa, FL.

    This environmental education program consists of two levels: primary and intermediate. The learning materials are activity based and incorporate process and subject area skills with knowledge and concern for the environment. The program is also interdisciplinary including activities and skills from art, language arts, mathematics, music, science,…

  19. Music Activities in Primary School: Students' Preferences in the Spanish Region of Murcia

    ERIC Educational Resources Information Center

    Vicente-Nicolás, Gregorio; Mac Ruairc, Gerry

    2014-01-01

    The aim of this study was to determine the preferences of primary school children in relation to the types of activities that typically take place in music classrooms. For the purposes of this study, these classroom-based music activities have been categorised into five areas: singing, playing instruments, listening, reading and writing music and…

  20. Waterworks Book. An Activity Book about Mississippi's Coastal Resources for Primary Grades.

    ERIC Educational Resources Information Center

    Howe, Kevin M.

    Coastal resources are highlighted in this activity book for primary school children. Special focus is given to Mississippi's coastal areas, but applications to other geographic areas can be made. Wetland concepts and conditions are developed through a variety of games, puzzles, matching exercises and pictorial explanations. Activities addressing…

  1. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  2. Mirror Measurement Device

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Small Business Innovation Research (SBIR) contract led to a commercially available instrument used to measure the shape profile of mirror surfaces in scientific instruments. Bauer Associates, Inc.'s Bauer Model 200 Profilometer is based upon a different measurement concept. The local curvature of the mirror's surface is measured at many points, and the collection of data is computer processed to yield the desired shape profile. (Earlier profilometers are based on the principle of interferometry.) The system is accurate and immune to problems like vibration and turbulence. Two profilometers are currently marketed, and a third will soon be commercialized.

  3. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  4. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  5. Flat Focusing Mirror

    PubMed Central

    Cheng, Y. C.; Kicas, S.; Trull, J.; Peckus, M.; Cojocaru, C.; Vilaseca, R.; Drazdys, R.; Staliunas, K.

    2014-01-01

    The control of spatial propagation properties of narrow light beams such as divergence, focusing or imaging are main objectives in optics and photonics. In this letter, we propose and demonstrate experimentally a flat focusing mirror, based on an especially designed dielectric structure without any optical axis. More generally, it also enables imaging any light pattern in reflection. The flat focusing mirror with a transversal invariance can largely increase the applicability of structured photonic materials for light beam propagation control in small-dimension photonic circuits. PMID:25228358

  6. Dual-use bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, M. S.; Laycock, L. C.; Bagshaw, J. M.; Rowe, D.

    2005-11-01

    Adaptive Optics (AO) is a critical underpinning technology for future optical countermeasures, laser delivery, target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. AO is also well established in ground based astronomy, and is finding applications in free space optical communications and ophthalmology. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS ATC is developing multi-element Deformable Bimorph Mirrors (DBMs) for such applications. A traditional bimorph deformable mirror uses a set of edge electrodes outside the active area in order to meet the required boundary conditions for the active aperture. This inflicts a significant penalty in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. We have devised a number of novel mounting arrangements that reduce dead space and thus provide a much improved trade-off between bandwidth and stroke. These schemes include a novel method for providing vertical displacement at the periphery of the aperture, a method for providing a continuous compliant support underneath the bimorph mirror, and a method for providing a three point support underneath the bimorph. In all three cases, there is no requirement for edge electrodes to provide the boundary conditions, resulting in devices of much higher bandwidth. The target is to broaden the use of these types of mirror beyond the current limits of either low order/low bandwidth, to address the high order, high bandwidth systems required by long range, horizontal path applications. This paper will discuss the different mirror designs, and present experimental results for the most recently assembled mirrors.

  7. Lightweight Deployable Mirrors with Tensegrity Supports

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W.; Bradford, Larry J.; Cleve, Richard C.

    2004-01-01

    The upper part of Figure 1 shows a small-scale prototype of a developmental class of lightweight, deployable structures that would support panels in precise alignments. In this case, the panel is hexagonal and supports disks that represent segments of a primary mirror of a large telescope. The lower part of Figure 1 shows a complete conceptual structure containing multiple hexagonal panels that hold mirror segments. The structures of this class are of the tensegrity type, which was invented five decades ago by artist Kenneth Snelson. A tensegrity structure consists of momentfree compression members (struts) and tension members (cables). The structures of this particular developmental class are intended primarily as means to erect large segmented primary mirrors of astronomical telescopes or large radio antennas in outer space. Other classes of tensegrity structures could also be designed for terrestrial use as towers, masts, and supports for general structural panels. An important product of the present development effort is the engineering practice of building a lightweight, deployable structure as an assembly of tensegrity modules like the one shown in Figure 2. This module comprises two octahedral tensegrity subunits that are mirror images of each other joined at their plane of mirror symmetry. In this case, the plane of mirror symmetry is both the upper plane of the lower subunit and the lower plane of the upper subunit, and is delineated by the midheight triangle in Figure 2. In the configuration assumed by the module to balance static forces under mild loading, the upper and lower planes of each sub-unit are rotated about 30 , relative to each other, about the long (vertical) axis of the structure. Larger structures can be assembled by joining multiple modules like this one at their sides or ends. When the module is compressed axially (vertically), the first-order effect is an increase in the rotation angle, but by virtue of the mirror arrangement, the net

  8. Moving mirrors: a high-density EEG study investigating the effect of camera movements on motor cortex activation during action observation.

    PubMed

    Heimann, Katrin; Umiltà, Maria Alessandra; Guerra, Michele; Gallese, Vittorio

    2014-09-01

    Action execution-perception links (mirror mechanism) have been repeatedly suggested to play crucial roles in social cognition. Remarkably, the designs of most studies exploring this topic so far excluded even the simplest traces of social interaction, such as a movement of the observer toward another individual. This study introduces a new design by investigating the effects of camera movements, possibly simulating the observer's own approaching movement toward the scene. We conducted a combined high-density EEG and behavioral study investigating motor cortex activation during action observation measured by event-related desynchronization and resynchronization (ERD/ERS) of the mu rhythm. Stimuli were videos showing a goal-related hand action filmed while using the camera in four different ways: filming from a fixed position, zooming in on the scene, approaching the scene by means of a dolly, and approaching the scene by means of a steadycam. Results demonstrated a consistently stronger ERD of the mu rhythm for videos that were filmed while approaching the scene with a steadycam. Furthermore, videos in which the zoom was applied reliably demonstrated a stronger rebound. A rating task showed that videos in which the camera approached the scene were felt as more involving and the steadycam was most able to produce a visual experience close to the one of a human approaching the scene. These results suggest that filming technique predicts time course specifics of ERD/ERS during action observation with only videos simulating the natural vision of a walking human observer eliciting a stronger ERD than videos filmed from a fixed position. This demonstrates the utility of ecologically designed studies for exploring social cognition. PMID:24666130

  9. Mirror neurons and mirror systems in monkeys and humans.

    PubMed

    Fabbri-Destro, Maddalena; Rizzolatti, Giacomo

    2008-06-01

    Mirror neurons are a distinct class of neurons that transform specific sensory information into a motor format. Mirror neurons have been originally discovered in the premotor and parietal cortex of the monkey. Subsequent neurophysiological (TMS, EEG, MEG) and brain imaging studies have shown that a mirror mechanism is also present in humans. According to its anatomical locations, mirror mechanism plays a role in action and intention understanding, imitation, speech, and emotion feeling.

  10. Evidence of mirror neurons in human inferior frontal gyrus.

    PubMed

    Kilner, James M; Neal, Alice; Weiskopf, Nikolaus; Friston, Karl J; Frith, Chris D

    2009-08-12

    There is much current debate about the existence of mirror neurons in humans. To identify mirror neurons in the inferior frontal gyrus (IFG) of humans, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging. Subjects either executed or observed a series of actions. Here we show that in the IFG, responses were suppressed both when an executed action was followed by the same rather than a different observed action and when an observed action was followed by the same rather than a different executed action. This pattern of responses is consistent with that predicted by mirror neurons and is evidence of mirror neurons in the human IFG.

  11. M1 corticospinal mirror neurons and their role in movement suppression during action observation.

    PubMed

    Vigneswaran, Ganesh; Philipp, Roland; Lemon, Roger N; Kraskov, Alexander

    2013-02-01

    Evidence is accumulating that neurons in primary motor cortex (M1) respond during action observation, a property first shown for mirror neurons in monkey premotor cortex. We now show for the first time that the discharge of a major class of M1 output neuron, the pyramidal tract neuron (PTN), is modulated during observation of precision grip by a human experimenter. We recorded 132 PTNs in the hand area of two adult macaques, of which 65 (49%) showed mirror-like activity. Many (38 of 65) increased their discharge during observation (facilitation-type mirror neuron), but a substantial number (27 of 65) exhibited reduced discharge or stopped firing (suppression-type). Simultaneous recordings from arm, hand, and digit muscles confirmed the complete absence of detectable muscle activity during observation. We compared the discharge of the same population of neurons during active grasp by the monkeys. We found that facilitation neurons were only half as active for action observation as for action execution, and that suppression neurons reversed their activity pattern and were actually facilitated during execution. Thus, although many M1 output neurons are active during action observation, M1 direct input to spinal circuitry is either reduced or abolished and may not be sufficient to produce overt muscle activity.

  12. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  13. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  14. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    PubMed

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-01-01

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy. PMID:27583794

  15. Persistent pain after spinal cord injury is maintained by primary afferent activity.

    PubMed

    Yang, Qing; Wu, Zizhen; Hadden, Julia K; Odem, Max A; Zuo, Yan; Crook, Robyn J; Frost, Jeffrey A; Walters, Edgar T

    2014-08-01

    Chronic pain caused by insults to the CNS (central neuropathic pain) is widely assumed to be maintained exclusively by central mechanisms. However, chronic hyperexcitablility occurs in primary nociceptors after spinal cord injury (SCI), suggesting that SCI pain also depends upon continuing activity of peripheral sensory neurons. The present study in rats (Rattus norvegicus) found persistent upregulation after SCI of protein, but not mRNA, for a voltage-gated Na(+) channel, Nav1.8, that is expressed almost exclusively in primary afferent neurons. Selectively knocking down Nav1.8 after SCI suppressed spontaneous activity in dissociated dorsal root ganglion neurons, reversed hypersensitivity of hindlimb withdrawal reflexes, and reduced ongoing pain assessed by a conditioned place preference test. These results show that activity in primary afferent neurons contributes to ongoing SCI pain. PMID:25100607

  16. Rearview Mirror Dimming Function

    ERIC Educational Resources Information Center

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  17. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  18. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  19. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  20. Rearview Mirror Dimming Function

    NASA Astrophysics Data System (ADS)

    Layton, William

    2011-12-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge.2 An alternate explanation is given below:

  1. Tandem mirror fusion research

    SciTech Connect

    Baldwin, D.E.

    1983-12-02

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program, culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s.

  2. NIF small mirror mounts

    NASA Astrophysics Data System (ADS)

    McCarville, Tom J.

    1999-11-01

    The most prominent physical characteristics of the 192-beam NIF laser are the 123 m length of the main laser and 400 mm aperture of each beam line. The main laser is illustrated in Figure 1, which shows half the total beam lines. Less visible are the many small optics (less than 100-mm diameter) used to align and diagnose each beam line. Commercial mounts can be used for most of the small aperture turning mirrors. This paper reviews the NIF projects effort to identify suitable commercial mirror mounts. The small mirror mounts have stability, wave front, space, and cleanliness requirements similar to the large aperture optics. While cost favors use of commercial mounts, there is little other than user experience to guide the mount qualification process. At present, there is no recognizable qualification standard with which to compare various products. In a large project like NIF, different user experience leads to different product selection. In some cases the differences are justified by application needs, but more often the selection process is somewhat random due to a lack of design standards. The result is redundant design and testing by project staff and suppliers. Identification of suitable mirror mounts for large projects like NIF would be streamlined if standards for physical and performance criteria were available, reducing cost for both the project and suppliers. Such standards could distinguish mounts for performance critical applications like NIF from laboratory applications, where ease of use and flexibility is important.

  3. Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy

    PubMed Central

    Rizzardi, G. Paolo; Harari, Alexandre; Capiluppi, Brunella; Tambussi, Giuseppe; Ellefsen, Kim; Ciuffreda, Donatella; Champagne, Patrick; Bart, Pierre-Alexandre; Chave, Jean-Philippe; Lazzarin, Adriano; Pantaleo, Giuseppe

    2002-01-01

    Primary HIV-1 infection causes extensive immune activation, during which CD4+ T cell activation supports massive HIV-1 production. We tested the safety and the immune-modulating effects of combining cyclosporin A (CsA) treatment with highly active antiretroviral therapy (HAART) during primary HIV-1 infection. Nine adults with primary HIV-1 infection were treated with CsA along with HAART. At week 8, all patients discontinued CsA but maintained HAART. Viral replication was suppressed to a comparable extent in the CsA + HAART cohort and in 29 control patients whose primary infection was treated with HAART alone. CsA restored normal CD4+ T cell levels, both in terms of percentage and absolute numbers. The increase in CD4+ T cells was apparent within a week and persisted throughout the study period. CsA was not detrimental to virus-specific CD8+ or CD4+ T cell responses. At week 48, the proportion of IFN-γ–secreting CD4+ and CD4+CCR7– T cells was significantly higher in the CsA + HAART cohort than in the HAART-alone cohort. In conclusion, rapid shutdown of T cell activation in the early phases of primary HIV-1 infection can have long-term beneficial effects and establish a more favorable immunologic set-point. Appropriate, immune-based therapeutic interventions may represent a valuable complement to HAART for treating HIV infection. PMID:11877476

  4. Cosmology with liquid mirror telescopes

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  5. Progress in the Fabrication and Testing of Telescope Mirrors for The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Bowers, Charles W.; Clampin, M.; Feinberg, L.; Stahl, P.; McKay, A.; Chaney, D.; Gallagher, B.

    2010-01-01

    The telescope of the James Webb Space Telescope (JWST) is an f/20, three mirror anastigmat design, passively cooled (40K) in an L2 orbit. The design provides diffraction limited performance (Strehl ≥ 0.8) at λ=2μm. To fit within the launch vehicle envelope (Arianne V), the 6.6 meter primary mirror and the secondary mirror support structure are folded for launch, then deployed and aligned in space. The primary mirror is composed of 18 individual, 1.3 meter (flat:flat) hexagonal segments, each adjustable in seven degrees of freedom (six rigid body + radius of curvature) provided by a set of high precision actuators. The actuated secondary mirror ( 0.74m) is similarly positioned in six degrees of rigid body motion. The 0.67m, fixed tertiary and 0.17m, flat fine steering mirror complete the telescope mirror complement. All telescope mirrors are made of Be with substantial lightweighting (21kg for each 1.3M primary segment). Additional Be mounting and supporting structure for the high precision ( 10nm steps) actuators are attached to the primary segments and secondary mirror. All mirrors undergo a process of thermal stabilization to reduce stress. An extensive series of interferometric measurements guide each step of the polishing process. Final polishing must account for any deformation between the ambient temperature of polishing and the cryogenic, operational temperature. This is accomplished by producing highly precise, cryo deformation target maps of each surface which are incorporated into the final polishing cycle. The flight mirrors are all close to readiness for this final step or have started cryo-testing at the X-Ray Calibration Facility. Each mirror will then be coated with a protected Au coating prior to attachment to the flight structure. We here review the process and status of the mirror fabrication program and discuss the predicted performance of the telescope based on initial results from cryogenic mirror measurements.

  6. Development of GMT fast steering secondary mirror assembly

    NASA Astrophysics Data System (ADS)

    Cho, Myung; Corredor, Andrew; Dribusch, Christoph; Park, Won Hyun; Muller, Gary; Johns, Matt; Hull, Charlie; Kern, Jonathan; Kim, Young-Soo

    2014-07-01

    The Giant Magellan Telescope (GMT) is one of Extremely large telescopes, which is 25m in diameter featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM is 3.2 m in diameter and built as seven 1.1 m diameter circular segments conjugated 1:1 to the seven 8.4m segments of the primary. The guiding philosophy in the design of the FSM segment mirror is to minimize development and fabrication risks ensuring a set of secondary mirrors are available on schedule for telescope commissioning and early operations in a seeing limited mode. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope subapertures and fast guiding to attenuate telescope wind shake and mount control jitter, thus optimizing the seeing limited performance of the telescope. The final design of the FSM mirror and support system configuration was optimized using finite element analyses and optical performance analyses. The optical surface deformations, image qualities, and structure functions for the gravity print-through cases, thermal gradient effects, and dynamic performances were evaluated. The results indicated that the GMT FSM mirror and its support system will favorably meet the optical performance goals for residual surface error and the FSM surface figure accuracy requirement defined by encircled energy (EE80) in the focal plane. The mirror cell assembly analysis indicated an excellent dynamic stiffness which will support the goal of tip-tilt operation.

  7. Deflectometry for optics evaluation: free form segments of polynomial mirror

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Canestrari, Rodolfo; Pareschi, Giovanni; Pelliciari, Carlo

    2014-07-01

    Deflectometry is a well-known method for astronomical mirror metrology. This paper describes the method we developed for the characterization of free-form concave mirrors. Our technique is based on the synergy between deflectometry and ray-tracing. The deflectometrical test is performed by illuminating the reflecting surface with a known light pattern in a Ronchi - like configuration and retrieving the slope errors by the observed rays deflection. The ray-tracing code allows us to measure the slopes and to evaluate the mirror optical performance. This technique has two main advantages: it is fast and it is applicable on-site, as an intermediate step in the manufacturing process, preventing that out-of-specification mirrors may proceed towards further production steps. Thus, we obtain a considerable time and cost reduction. As an example, we describe the results obtained measuring the primary mirror segments of the Cherenkov prototypal telescope manufactured by the Italian National Institute for Astrophysics in the context of the ASTRI Project. This specific case is challenging because the segmentation of the polynomial primary mirror lead to individual mirrors with deviations from the spherical optical design up to a few millimeters.

  8. Strehl Ratio Meter for Focusing Segmented Mirrors 1

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    1996-01-01

    Initial focusing segmented mirrors that must be deployed in space, such as the Next Generation Space Telescope (NGST), provide challenges not faced before in the area of adaptive optics. The devices used to focus the mirror must minimize the power used and unnecessary mechanical movement. The device described in this report requires no movable parts except for the essential actuators required to move the mirror segments. Detail description of the components can be found in Coker, 1996. The primary mirror of the NGST will consist of 9 segments, a central annular segment, surrounded by 8 segments. The entire mirror assembly will be an 8 meter nearly filled circle (with the corners of the segments clipped to allow for storage in an Atlas IIe shroud). As the segments of the primary mirror are deployed to their operational positions, they must be positioned to within small fractions of a wavelength of near infrared light. When focused, the NGST will put most of its collected li-ht into the small region near the center of its focal plane. The ratio of the total light in the diffraction limited spot about the center of the focal plane to the total light in the focal plane. The purpose of this research effort is to design and build a device that will measure Strehl ratio and to use demonstrate that the Strehl ratio can be used to focus a segmented mirror.

  9. A task control theory of mirror-touch synesthesia.

    PubMed

    Heyes, Cecilia; Catmur, Caroline

    2015-01-01

    Ward and Banissy's illuminating discussion of mirror-touch synesthesia (MTS) encourages research testing two alternatives to Threshold Theory: Their own Self-Other Theory, and "Task Control Theory". MTS may be due to abnormal mirror activity plus a domain-general, rather than a specifically social, impairment in the ability to privilege processing of task-relevant over task-irrelevant information.

  10. COSTAR GHRS m2 Mirror Arm Deployment

    NASA Astrophysics Data System (ADS)

    Troeltzsch, John

    1994-01-01

    The following activities will take place during this proposal. 1. Deploy the GHRS M2 Mirror Arm. This test requires a mix of real-time activities performed by the STOCC and stored command activities performed by the STSCI via SMS commanding. The activities in this proposal involve many COSTAR CARD items. This proposal requires careful attention during proposal implementation and execution to ensure the CARD is correctly implemented.

  11. Activation of Notch1 signaling is required for β-catenin–mediated human primary melanoma progression

    PubMed Central

    Balint, Klara; Xiao, Min; Pinnix, Chelsea C.; Soma, Akinobu; Veres, Imre; Juhasz, Istvan; Brown, Eric J.; Capobianco, Anthony J.; Herlyn, Meenhard; Liu, Zhao-Jun

    2005-01-01

    Notch is a highly conserved transmembrane receptor that determines cell fate. Notch signaling denotes cleavage of the Notch intracellular domain, its translocation to the nucleus, and subsequent activation of target gene transcription. Involvement of Notch signaling in several cancers is well known, but its role in melanoma remains poorly characterized. Here we show that the Notch1 pathway is activated in human melanoma. Blocking Notch signaling suppressed whereas constitutive activation of the Notch1 pathway enhanced primary melanoma cell growth both in vitro and in vivo yet had little effect on metastatic melanoma cells. Activation of Notch1 signaling enabled primary melanoma cells to gain metastatic capability. Furthermore, the oncogenic effect of Notch1 on primary melanoma cells was mediated by β-catenin, which was upregulated following Notch1 activation. Inhibiting β-catenin expression reversed Notch1-enhanced tumor growth and metastasis. Our data therefore suggest a β-catenin–dependent, stage-specific role for Notch1 signaling in promoting the progression of primary melanoma. PMID:16239965

  12. Novel high-bandwidth bimorph deformable mirrors

    NASA Astrophysics Data System (ADS)

    Griffith, Michael S.; Laycock, Leslie C.; Archer, Nick J.

    2004-12-01

    Adaptive Optics (AO) is a critical underpinning technology for future laser delivery (including free-space optical communications), target illumination and imaging systems. It measures and compensates for optical distortion caused by transmission through the atmosphere, resulting in the ability to deploy smaller lasers and identify targets at greater ranges. One of the key components in an AO system is the wavefront modifier, which acts on the incoming or outgoing beam to counter the effects of the atmosphere. BAE SYSTEMS Advanced Technology Centre is developing multi-element bimorph deformable mirrors for such an applications. Our initial designs were based on a standard construction and exhibited a resonant frequency of 1kHz with a maximum stroke of +/-20μm for an active aperture of 50mm. These devices were limited by the necessity to have a 'dead space' between the inner active area and the mirror boundary; this ensured that both the requirements for the stroke and the fixed boundary conditions could be met simultaneously. However, there was a significant penalty to pay in terms of bandwidth, which is inversely proportional to the square of the full mirror diameter. In a series of iteration steps, we have created novel mounting arrangements that reduce dead space and thus provide the optimum trade-off between bandwidth and stroke. These schemes include supporting the mirror from underneath, rather than at its edge. As a result, models of 60mm active diameter mirrors predict a resonance in excess of 5kHz, combined with a maximum stroke greater than +/-40μm. This paper will discuss a number of different mirror designs and present experimental results for recently assembled devices.

  13. Ontario primary care reform and quality improvement activities: an environmental scan

    PubMed Central

    2013-01-01

    Background Quality improvement is attracting the attention of the primary health care system as a means by which to achieve higher quality patient care. Ontario, Canada has demonstrated leadership in terms of its improvement in healthcare, but the province lacks a structured framework by which it can consistently evaluate its quality improvement initiatives specific to the primary healthcare system. The intent of this research was to complete an environmental scan and capacity map of quality improvement activities being built in and by the primary healthcare sector (QI-PHC) in Ontario as a first step to developing a coordinated and sustainable framework of primary healthcare for the province. Methods Data were collected between January and July 2011 in collaboration with an advisory group of stakeholder representatives and quality improvement leaders in primary health care. Twenty participants were interviewed by telephone, followed by review of relevant websites and documents identified in the interviews. Data were systematically examined using Framework Analysis augmented by Prior’s approach to document analysis in an iterative process. Results The environmental scan identified many activities (n = 43) designed to strategically build QI-PHC capacity, identify promising QI-PHC practices and outcomes, scale up quality improvement-informed primary healthcare practice changes, and make quality improvement a core organizational strategy in health care delivery, which were grouped into clusters. Cluster 1 was composed of initiatives in the form of on-going programs that deliberately incorporated long-term quality improvement capacity building through province-wide reach. Cluster 2 represented activities that were time-limited (research, pilot, or demonstration projects) with the primary aim of research production. The activities of most primary health care practitioners, managers, stakeholder organizations and researchers involved in this scan demonstrated a

  14. Advanced Mirror Technology Development (AMTD) for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Accomplishments include: Assembled outstanding team from academia, industry and government with expertise in science and space telescope engineering. Derived engineering specifications for monolithic primary mirror from science measurement needs & implementation constraints. Pursuing long-term strategy to mature technologies necessary to enable future large aperture space telescopes. Successfully demonstrated capability to make 0.5 m deep mirror substrate and polish it to UVOIR traceable figure specification.

  15. News Note: Breakthrough in mirror control at SALT

    NASA Astrophysics Data System (ADS)

    2016-08-01

    The 91 segments of the SALT primary need to be kept precisely aligned in order to obtain the best images. As is well-known, the initial alignment process uses a type of Shack-Hartmann wavefront sensor in an auxiliary tower to send feedback to control the mirror actuators. This note reveals the success of new edge-sensors that keep the mirrors in alignment for several days at a time without the need for Shack-Hartmann testing.

  16. COSTAR FOC M1/M2 Mirror Arm Deployment

    NASA Astrophysics Data System (ADS)

    Troeltzsch, John

    1994-01-01

    The following activities will take place during this proposal. 1. Deploy the FOC M2 Mirror Arm. 2. Deploy the FOC M1 Mirror Arm. This test requires a mix of real-time activities performed by the STOCC and stored command activities performed by the STSCI via SMS commanding. The activities in this proposal involve many COSTAR CARD items. This proposal requires careful attention during proposal implementation and execution to ensure the CARD is correctly implemented.

  17. Variable-curvature mirrors for the VLTI

    NASA Astrophysics Data System (ADS)

    Ferrari, Marc; Derie, Frederic

    1998-07-01

    A variable curvature mirror is a powerful device that can increase the field of view of optical interferometers. Such a mirror has being developed for the coherent combined focus of the European Southern Observatory Very Large Telescope Interferometer. The variable focal length permits positioning of the pupil image of an individual telescope at a precise location after the delay-line. This property is necessary to exactly remap homothetically the output pupil configuration at the image beam combiner. Given the large zoom range that is needed in the delay line, when the mirror is not stressed the optical surface is a plane while it is convex with f/2.5 at maximum stress. The mirror itself is a very small stainless steel meniscus, with a 300 micrometers thickness, because only the high elasticity of such material allows to achieve the full domain of curvature. The thickness distribution of the meniscus is calculated using elasticity theory in the case of a large deformation. The realization of this micro-optic active device requires advanced techniques in optical fabrication and in particular high precision manufacturing with numerical command lathe. This article also presents the testing of this highly variable curvature mirror and the surface quality obtained within the full curvature range.

  18. Treatment of active duty military with PTSD in primary care: A follow-up report.

    PubMed

    Cigrang, Jeffrey A; Rauch, Sheila A M; Mintz, Jim; Brundige, Antoinette; Avila, Laura L; Bryan, Craig J; Goodie, Jeffrey L; Peterson, Alan L

    2015-12-01

    First-line trauma-focused therapies offered in specialty mental health clinics do not reach many veterans and active duty service members with posttraumatic stress disorder (PTSD). Primary care is an ideal environment to expand access to mental health care. Several promising clinical case series reports of brief PTSD therapies adapted for primary care have shown positive results, but the long-term effectiveness with military members is unknown. The purpose of this study was to determine the long-term outcome of an open trial of a brief cognitive-behavioral primary care-delivered protocol developed specifically for deployment-related PTSD in a sample of 24 active duty military (15 men, 9 women). Measures of PTSD symptom severity showed statistically and clinically significant reductions from baseline to posttreatment that were maintained at the 6-month and 1-year follow-up assessments. Similar reductions were maintained in depressive symptoms and ratings of global mental health functioning. PMID:26519833

  19. Treatment of active duty military with PTSD in primary care: A follow-up report.

    PubMed

    Cigrang, Jeffrey A; Rauch, Sheila A M; Mintz, Jim; Brundige, Antoinette; Avila, Laura L; Bryan, Craig J; Goodie, Jeffrey L; Peterson, Alan L

    2015-12-01

    First-line trauma-focused therapies offered in specialty mental health clinics do not reach many veterans and active duty service members with posttraumatic stress disorder (PTSD). Primary care is an ideal environment to expand access to mental health care. Several promising clinical case series reports of brief PTSD therapies adapted for primary care have shown positive results, but the long-term effectiveness with military members is unknown. The purpose of this study was to determine the long-term outcome of an open trial of a brief cognitive-behavioral primary care-delivered protocol developed specifically for deployment-related PTSD in a sample of 24 active duty military (15 men, 9 women). Measures of PTSD symptom severity showed statistically and clinically significant reductions from baseline to posttreatment that were maintained at the 6-month and 1-year follow-up assessments. Similar reductions were maintained in depressive symptoms and ratings of global mental health functioning.

  20. Mirror Image Agnosia

    PubMed Central

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles

  1. Activating Older Adults With Serious Mental Illness for Collaborative Primary Care Visits

    PubMed Central

    Bartels, Stephen J.; Aschbrenner, Kelly A.; Rolin, Stephanie A.; Hendrick, Delia Cimpean; Naslund, John A.; Faber, Marjan J.

    2016-01-01

    Objective Persons with serious mental illness frequently receive inadequate medical care and are more likely to experience difficulty navigating the health care system compared with the general population. To address this gap in quality, we developed a program of peer co-led collaborative activation training for primary care (CAT-PC) designed to improve “patient activation” and person-centered care in primary care visits for middle-aged and older adults with serious mental illness and cardiovascular risk. This report presents pilot study feasibility and participant outcomes for CAT-PC. Method A pre-post pilot evaluation of CAT-PC included N = 17 adults (age ≥ 50) with serious mental illness and cardiovascular health risk conditions, and N = 6 primary care providers. CAT-PC consists of 9 weekly peer co-led patient education and skills training sessions and a 45-min video-based training for primary care providers. Pre-post measures included the Patient Activation Measure (PAM), Perceived Efficacy in Patient-Physician Interactions (PEPPI), Autonomy Preference Index (API) for preferred role in primary care encounters, and Social Skills Performance Assessment (SSPA) role-play test for medical visits. Results All 17 participants attended 5 or more sessions. Post-intervention improvement was found for patient activation and simulated performance of medical visit communication skills. Trends were observed for improved self-efficacy in provider interactions and greater preference for a more collaborative role in decision-making. Conclusions and Implications CAT-PC is a brief, peer co-led education and skills training intervention potentially improving patient activation in primary care encounters and providing an important missing component in emerging models of “patient-centered behavioral health homes” for this high-risk group. PMID:24219769

  2. Effects of Classroom-Based Energizers on Primary Grade Students' Physical Activity Levels

    ERIC Educational Resources Information Center

    Bailey, Catherine Goffreda; DiPerna, James Clyde

    2015-01-01

    The primary aim of this study was to determine the effects of classroom-based exercise breaks (Energizers; Mahar, Kenny, Shields, Scales, & Collins, 2006) on students' physical activity levels during the school day. A multiple baseline design across first grade (N = 3) and second grade (N = 3) classrooms was used to examine the effects of the…

  3. Glimpses of Science: Multimedia-Enhanced Hands-On Activities for Primary School Students

    ERIC Educational Resources Information Center

    Hatsidimitris, George; Connor, Rick; Ginges, Jacinda; Wolfe, Joe

    2010-01-01

    "Glimpses of Science" is the outcome of collaboration between the University of New South Wales and four primary schools in the Sydney metropolitan region. A prototype kit on the topic of sound was developed and demonstrated by the team. This kit formed the basis for further science activities to be designed and produced in conjunction with the…

  4. An Examination of Current Adapted Physical Activity Provision in Primary and Special Schools in Ireland

    ERIC Educational Resources Information Center

    Crawford, Susan

    2011-01-01

    The Disability in Sport Taskforce report examining adapted physical activity (APA) in the Irish context (Department of Education and Science, 1999) found that teachers involved in primary mainstream and specialist settings expressed a grave lack of self-confidence, due to lack of training, in the delivery of APA programmes to children with special…

  5. Children's Physical Activity Levels during Primary School Break Times: A Quantitative and Qualitative Research Design

    ERIC Educational Resources Information Center

    Powell, Emma; Woodfield, Lorayne A.; Nevill, Alan A. M.

    2016-01-01

    The overall aim of this study was to assess the diversity of primary school children's physical activity (PA) during outdoor recess. The study was grounded in a mixed method approach, assisting in the identification of multifaceted predictors of children's PA, including insights to social behaviours during break time. Data were obtained from…

  6. Activation of Inaccurate Prior Knowledge Affects Primary-School Students' Metacognitive Judgments and Calibration

    ERIC Educational Resources Information Center

    van Loon, Mariette H.; de Bruin, Anique B. H.; van Gog, Tamara; van Merrienboer, Jeroen J. G.

    2013-01-01

    The study investigated whether activation of inaccurate prior knowledge before study contributes to primary-school children's commission errors and overconfidence in these errors when learning new concepts. Findings indicate that inaccurate prior knowledge affects children's learning and calibration. The level of children's judgments of learning…

  7. Construing Systems of Management among Primary Headteachers: Moving Forward from Work Activity Studies.

    ERIC Educational Resources Information Center

    Jones, Norah; Connolly, Michael

    2001-01-01

    A study used a Personal Construct Theory/Repertory Grid approach to examine the work of 12 Welsh primary headteachers. Analysis of thematic work-activity grids suggests principals have a more coherent view of their work (as centered on children and education) than Henry Mintzberg's observational studies portrayed. (Contains 36 references.) (MLH)

  8. Primary Grades Teachers' Instructional Decisions during Online Mathematics Professional Development Activities

    ERIC Educational Resources Information Center

    Polly, Drew; Martin, Christie S.; Wang, Chuang; Lambert, Richard G.; Pugalee, David K.

    2016-01-01

    This study examines primary grades teachers' instructional decisions in their mathematics classroom during their participation in a year-long professional development program on formative assessment. Teachers participated in 40 h of face-to-face workshops followed by 40 h of classroom-embedded activities that were facilitated in an asynchronous…

  9. Active ribosomal cistrons and their primary transcripts located in the nucleolus.

    PubMed

    Ghosh, S; Paweletz, N

    1987-03-01

    We have located the active ribosomal cistrons together with their primary transcripts and the associated proteins and enzymes forming the typical 'christmas tree' configuration in the dense nucleolar components. Our results can thus correlate the structural and functional organization of the nucleolus.

  10. Lysozyme: primary bactericidin in human plasma serum active against Bacillus subtilis.

    PubMed Central

    Selsted, M E; Martinez, R J

    1978-01-01

    The in vitro bactericidal reaction of human plasma serum against Bacillus subtilis was investigated. Human lysozyme was purified to homogeneity, and antiserum was prepared against the enzyme. The anti-lysozyme immunoglobulin G was used as a specific inhibitor in bactericidal and bacteriolytic reactions. It was found that at low serum concentrations lysozyme was the primary bactericide active against B. subtilis. At appreciably higher serum concentrations, a lysozyme-independent bactericidal activity was also demonstrated. Images PMID:97236

  11. Congenital mirror movements.

    PubMed Central

    Schott, G D; Wyke, M A

    1981-01-01

    In this report are described seven patients assessed clinically and neuropsychologically in whom mirror movements affecting predominantly the hands occurred as a congenital disorder. These mirror movements, representing a specific type of abnormal synkinesia, may arise as a hereditary condition, in the presence of a recognisable underlying neurological abnormality, and sporadically, and the seven patients provide more or less satisfactory examples of each of these three groups. Despite the apparent uniformity of the disorder, the heterogeneity and variability may be marked, examples in some of our patients including the pronounced increase in tone that developed with arm movement, and the capacity for modulation of the associated movement by alteration of neck position and bio-feedback. Various possible mechanisms are considered; these include impaired cerebral inhibition of unwanted movements, and functioning of abnormal motor pathways. Emphasis has been placed on the putative role of the direct, crossed corticomotoneurone pathways and on the unilateral and bilateral cerebral events that precede movement. PMID:7288446

  12. Dynamic coherent backscattering mirror

    PubMed Central

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  13. Skin mirrors human aging.

    PubMed

    Nikolakis, Georgios; Makrantonaki, Evgenia; Zouboulis, Christos C

    2013-12-01

    Abstract Aged skin exhibits disturbed lipid barrier, angiogenesis, production of sweat, immune functions, and calcitriol synthesis as well as the tendency towards development of certain benign or malignant diseases. These complex biological processes comprise endogenous and exogenous factors. Ethnicity also markedly influences the phenotype of skin aging. The theories of cellular senescence, telomere shortening and decreased proliferative capacity, mitochondrial DNA single mutations, the inflammation theory, and the free radical theory try to explain the biological background of the global aging process, which is mirrored in the skin. The development of advanced glycation end-products and the declining hormonal levels are major factors influencing intrinsic aging. Chronic photodamage of the skin is the prime factor leading to extrinsic skin aging. The deterioration of important skin functions, due to intrinsic and extrinsic aging, leads to clinical manifestations, which mirror several internal age-associated diseases such as diabetes, arterial hypertension and malignancies.

  14. Identification of primary aromatic amines in mutagenically active subfractions from coal liquefaction materials.

    PubMed

    Wilson, B W; Pelroy, R; Cresto, J T

    1980-11-01

    Gas-chromatographic mass spectral (GCMS) analyses were performed on mutagenically active components from the basic, basic tar and neutral tar subfractions of a coal-derived liquid heavy distillate. The latter material is a component fraction of an experimental oil produced in a solvent refined coal process (SRC II) pilot plant. Mutagenicity was determined with the Ames/Salmonella assay system. Thin-layer chromatography (TLC) was used to separate mutagenically active components of the basic, basic tar and neutral tar fractions from some of the other compounds contained in these complex materials. For the 3 fractions tested, mutagenic activity was localized in approx. the same TLC regions, with relative mobilities (Rf) ranging from 0.1 to 0.3. GCMS analysis of the TLC regions showed that the concentrations of primary aromatic amines, as obtained by measuring peak areas for the (M + 1)+ ion as formed in the chemical ionization mode, followed essentially the same distribution as the mutagenic activity. Primary aromatic amines identified in the active regions included aminonaphthalenes, aminoanthracenes, aminophenanthrenes, aminopyrenes and aminochrysenes. With the exception of small amounts of aminonaphthalene, primary aromatic amines were not found in TLC regions that lacked mutagenic activity.

  15. Improved cryogenic aluminum mirrors

    NASA Astrophysics Data System (ADS)

    Vukobratovich, Daniel; Don, Ken; Sumner, Richard E.

    1998-09-01

    Optical surface deformation of metal mirrors used at cryogenic temperatures is reduced through the use of a new process of plating amorphous aluminum on aluminum. The AlumiPlateTM process (produced by AlumiPlate, Inc. in Minneapolis, MN) plates a layer of 99.9+% high purity aluminum about 125 micrometers thick atop the substrate. Very good surface finishes are produced by direct diamond turning of the plating, with some samples below 40 angstroms RMS. Optical testing of a 175-mm diameter, 550-mm optical radius of curvature 6061-T651/AlumiPlateTM aluminum sphere was performed at 65 K to determine cryogenic optical surface figure stability. In five cycles from 300 to 65 K, an average optical surface change of 0.047 wave RMS (1 wave equals 633 nm) was observed. A total optical figure change of 0.03 wave RMS at 65 K was observed from the first to last cycle. The cause of this relatively small long-term change is not yet determined. The test mirror is bi-concave, with a semi- kinematic toroidal mount, and is machined from the axis of a billet. An `uphill quench' heat treatment consisting of five cycles from liquid nitrogen to boiling water temperatures is used to minimize residual stress in the test mirror. Initial diamond turning of the mirror by the Optical Filter Corp., Keene, NH, produced a 300 K unmounted optical surface figure of 0.380 wave peak-to-valley and 0.059 wave RMS. A second effort at diamond turning by II-VI, Inc., Saxonburg, PA produced a 300 K optical figure of 0.443 wave peak-to-valley and 0.066 wave RMS, with a surface roughness varying from 29 to 42 angstroms.

  16. Lightweight Substrates For Mirrors

    NASA Technical Reports Server (NTRS)

    Brown, D. Kyle

    1991-01-01

    New substrate uses conventional quasi-isotropic fabric laminate with surfacing layer of carbon-fiber paper consisting of randomly oriented chopped carbon fibers. Layered structure of fabric and paper relatively easy to manufacture. When impregnated with carbon, structure rigid and stable. Substrates of this type made quite thin, thus keeping areal weights to minimum. Mirrors of this type made faster, and cost less, than predecessors.

  17. Complex/Symplectic Mirrors

    SciTech Connect

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  18. Joined Beryllium Mirror Demonstrator

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Parsonage, Tom; Burdine, Robert (Technical Monitor)

    2001-01-01

    Fabrications of large Beryllium optical components are fundamentally limited by available facility capabilities. To overcome this limitation, NASA funded Brush Wellman Corp to study a Be joining process. Four 76 mm diameters samples and a 0.5 mm diameter Joined Beryllium Mirror Demonstrator (JBMD) were fabricated. This presentation will review the fabrication of these samples and summarize the results of their cryogenic testing at MSFCs XRCF.

  19. Structure modulated electrostatic deformable mirror for focus and geometry control.

    PubMed

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

  20. Replication of lightweight mirrors

    NASA Astrophysics Data System (ADS)

    Chen, Ming Y.; Matson, Lawrence E.; Lee, Heedong; Chen, Chenggang

    2009-08-01

    The fabrication of lightweight mirror assemblages via a replication technique offers great potential for eliminating the high cost and schedule associated with the grinding and polishing steps needed for conventional glass or SiC mirrors. A replication mandrel is polished to an inverse figure shape and to the desired finish quality. It is then, coated with a release layer, the appropriate reflective layer, and followed by a laminate for coefficient of thermal expansion (CTE) tailorability and strength. This optical membrane is adhered to a mirror structural substrate with a low shrinkage, CTE tailored adhesive. Afterwards, the whole assembly is separated from the mandrel. The mandrel is then cleaned and reused for the next replication run. The ultimate goal of replication is to preserve the surface finish and figure of the optical membrane upon its release from the mandrel. Successful replication requires a minimization of the residual stresses within the optical coating stack, the curing stresses from the adhesive and the thermal stress resulting from CTE mismatch between the structural substrate, the adhesive, and the optical membrane. In this paper, the results on replicated trials using both metal/metal and ceramic/ceramic laminates adhered to light weighted structural substrates made from syntactic foams (both inorganic and organic) will be discussed.

  1. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain).

  2. Explaining mirror-touch synesthesia.

    PubMed

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain). PMID:25893437

  3. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 3; Wavefront Aberrations due to Alignment and Figure Compensation

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part three of a series describing the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The work here investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The optical design of the telescope is a three-mirror anastigmat, with an active fold mirror at the exit pupil for fine guiding. The primary mirror is over 6.5 meters in diameter, and is composed of 18 hexagonal segments that can individually positioned on hexapods, as well as compensated for radius of curvature. This effectively gives both alignment and figure control of the primary mirror. The secondary mirror can be moved in rigid body only, giving alignment control of the telescope. The tertiary mirror is fixed, however, as well as the location of the science instrumentation. Simulations are performed of various combinations of active alignment corrections of component figure errors, and of primary mirror figure corrections of alignment errors. Single field point and moderate field knowledge is assumed in the corrections. Aberrations over the field are reported for the varying cases, and examples presented.

  4. Freeform mirror based optical systems for FAME

    NASA Astrophysics Data System (ADS)

    Agócs, Tibor; Kroes, Gabby; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Jaskó, Attila

    2014-07-01

    In this paper we present the design of freeform mirror based optical systems that have the potential to be used in future astronomical instrumentation in the era of extremely large ground based telescopes. Firstly we describe the optical requirements followed by a summary of the optimization methodology used to design the freeform surface. The intention is to create optical architectures, which not only have the numerous advantages of freeform based systems (increased optical performance and/or reduction of mass and volume), but also can be manufactured and tested with today's manufacturing techniques and technologies. The team plans to build a demonstrator based on one of the optical design examples presented in this paper. The demonstrator will be built and tested as part of the OPTICON FP7 Freeform Active Mirror Experiment (FAME) project. A hydroforming technique developed as part of the previous OPTICON FP7 project will be used to produce an accurate, compact and stable freeform mirror. The manufacturing issues normally experienced in the production of freeform mirrors are solved through the hydroforming of thin polished substrates, which then will be supported with an active array structure. The active array will be used to compensate for residual manufacturing errors, thermo-elastic deformation and gravity-induced errors.

  5. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols.

    PubMed

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  6. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    NASA Astrophysics Data System (ADS)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  7. Disparate effects of serum on basal and evoked NFAT activity in primary astrocyte cultures.

    PubMed

    Furman, Jennifer L; Artiushin, Irina A; Norris, Christopher M

    2010-01-29

    In astrocytes, the Ca(2+)-dependent protein phosphatase calcineurin (CN) strongly regulates neuro-immune/inflammatory cascades through activation of the transcription factor, nuclear factor of activated T cells (NFAT). While primary cell cultures provide a useful model system for investigating astrocytic CN/NFAT signaling, variable results may arise both within and across labs because of differences in culture conditions. Here, we determined the extent to which serum and cell confluency affect basal and evoked astrocytic NFAT activity in primary cortical astrocyte cultures. Cells were grown to either approximately 50% or >90% confluency, pre-loaded with an NFAT-luciferase reporter construct, and maintained for 16 h in medium with or without 10% fetal bovine serum (FBS). NFAT-dependent luciferase expression was then measured 5h after treatment with vehicle alone to assess basal NFAT activity, or with Ca(2+) mobilizers and IL-1 beta to assess evoked activity. The results revealed significantly higher levels of basal NFAT activity in FBS-containing medium, regardless of cell confluency. Conversely, evoked NFAT activation was significantly lower in serum-containing medium, with an even greater inhibition observed in confluent cultures. Application of 10% FBS to serum-free astrocyte cultures quickly evoked a roughly seven-fold increase in NFAT activity that was significantly reduced by co-delivery of neutralizing agents for IL-1 beta, TNFalpha, and/or IFN gamma, suggesting that serum occludes evoked NFAT activation through a cytokine-based mechanism. Together, the results demonstrate that the presence of serum and cell confluency have a major impact on CN/NFAT signaling in primary astrocyte cultures and therefore must be taken into consideration when using this model system.

  8. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy.

  9. A spectrum of shadowed mirroring.

    PubMed

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy. PMID:22489812

  10. Primary focal and segmental glomerulosclerosis and soluble factor urokinase-type plasminogen activator receptor.

    PubMed

    Trimarchi, Hernán

    2013-11-01

    Primary focal and segmental glomerulosclerosis (FSGS) may be due to genetic or acquired etiologies and is a common cause of nephrotic syndrome with high morbidity that often leads to end-stage renal failure. The different available therapeutic approaches are unsuccessful, in part due to partially deciphered heterogeneous and complex pathophysiological mechanisms. Moreover, the term FSGS, even in its primary form, comprises a histological description shared by a number of different causes with completely different molecular pathways of disease. This review focuses on the latest developments regarding the pathophysiology of primary acquired FSGS caused by soluble factor urokinase type plasminogen activator receptor, a circulating permeability factor involved in proteinuria and edema formation, and describes recent advances with potential success in therapy.

  11. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation

    PubMed Central

    Jung, Bomi; Padula, Daniela; Burtscher, Ingo; Landerer, Cedric; Lutter, Dominik; Theis, Fabian; Messias, Ana C.; Geerlof, Arie; Sattler, Michael; Kremmer, Elisabeth; Boldt, Karsten; Ueffing, Marius; Lickert, Heiko

    2016-01-01

    The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation. PMID:26901434

  12. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation.

    PubMed

    Jung, Bomi; Padula, Daniela; Burtscher, Ingo; Landerer, Cedric; Lutter, Dominik; Theis, Fabian; Messias, Ana C; Geerlof, Arie; Sattler, Michael; Kremmer, Elisabeth; Boldt, Karsten; Ueffing, Marius; Lickert, Heiko

    2016-01-01

    The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation. PMID:26901434

  13. Relating the "mirrorness" of mirror neurons to their origins.

    PubMed

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  14. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students.

    PubMed

    Hodgin, Katie L; Graham, Dan J

    2016-01-01

    Previous research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one's personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA) and the low percentage who actually meet PA participation standards. However, few studies have examined how mirror exposure and both perceived and actual body size influence highly valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI) would be more likely to take the stairs, and that body size distorting mirrors would impact the stair-elevator decision. One hundred sixty-seven students (51% male) enrolled in an introductory psychology course were recruited to take a survey about their "transportation choices" at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants' choice of floor-climbing method (stairs or elevator) was recorded, and they were administered an Internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror [odds ratios (OR) = 0.37, 95% CI: 0.14-0.96], males (OR = 0.33, 95% CI: 0.13-0.85), those with lower BMI (OR = 0.84, 95% CI: 0.71-0.99), those

  15. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students

    PubMed Central

    Hodgin, Katie L.; Graham, Dan J.

    2016-01-01

    Previous research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one’s personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA) and the low percentage who actually meet PA participation standards. However, few studies have examined how mirror exposure and both perceived and actual body size influence highly valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI) would be more likely to take the stairs, and that body size distorting mirrors would impact the stair–elevator decision. One hundred sixty-seven students (51% male) enrolled in an introductory psychology course were recruited to take a survey about their “transportation choices” at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants’ choice of floor-climbing method (stairs or elevator) was recorded, and they were administered an Internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror [odds ratios (OR) = 0.37, 95% CI: 0.14–0.96], males (OR = 0.33, 95% CI: 0.13–0.85), those with lower BMI (OR = 0.84, 95% CI: 0

  16. Gene modification of primary tumor cells for active immunotherapy of human breast and ovarian cancer.

    PubMed

    Philip, R; Clary, B; Brunette, E; Kilinski, L; Murugesh, D; Sorich, M; Yau, J; Lebkowski, J; Lyerly, H K; Philip, M

    1996-01-01

    We have previously shown that cationic liposomes facilitate adeno-associated virus (AAV) plasmid transfections of primary and cultured cell types. To test the clinical feasibility of using genetically modified tumor vaccines for the treatment of breast and ovarian cancers, we have constructed an expression plasmid pMP6IL2 and investigated the use of liposome-mediated gene delivery into primary, uncultured human breast and ovarian tumor cells to produce interleukin 2 (IL-2)-secreting tumor cells. We have demonstrated significant levels of IL-2 expression in tumor cell lines and primary breast and ovarian tumor cells using this AAV-based expression plasmid complexed to cationic liposomes. Transfections with the non-AAV plasmid containing the identical expression cassette as the AAV plasmid induced IL-2 expression in the tumor cell line but failed to produce IL-2 in primary tumor cells. Significant levels of IL-2 were induced with the AAV plasmid regardless of liposome compositions used for transfection. The transfected breast cell line and primary tumor cells were able to express the transgene product for up to 28 days after lethal radiation. The transfection efficiency was comparable for both the tumor cell line and primary tumor cells and ranged from 20 to 50% for both cell types as assessed by intracellular IL-2 staining. Although the primary tumor cell preparations consist of mixed population of cells, at least 40% of the tumor cells expressed the transgene as assessed by immunostaining for IL-2. The ability to efficiently express transgenes in freshly isolated, nondividing tumor cells may potentiate active immunotherapy strategies for gene-based cancer treatment.

  17. Prototype Development of the GMT Fast Steering Mirror

    NASA Astrophysics Data System (ADS)

    Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.

    2013-06-01

    A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.

  18. Flame Retardant BDE-47 Effectively Activates Nuclear Receptor CAR in Human Primary Hepatocytes

    PubMed Central

    Sueyoshi, Tatsuya

    2014-01-01

    Polybrominated diphenyl ether BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) is a thyroid hormone disruptor in mice; hepatic induction of various metabolic enzymes and transporters has been suggested as the mechanism for this disruption. Utilizing Car −/− and Pxr −/− mice as well as human primary hepatocytes, here we have demonstrated that BDE-47 activated both mouse and human nuclear receptor constitutive activated/androstane receptor (CAR). In mouse livers, CAR, not PXR, was responsible for Cyp2b10 mRNA induction by BDE-47. In human primary hepatocytes, BDE-47 was able to induce translocation of YFP-tagged human CAR from the cytoplasm to the nucleus andCYP2B6 and CYP3A4 mRNAs expressions. BDE-47 activated human CAR in a manner akin to the human CAR ligand CITCO (6-(4-Chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) in luciferase-reporter assays using Huh-7 cells. In contrast, mouse CAR was not potently activated by BDE-47 in the same reporter assays. Furthermore, human pregnane X receptor (PXR) was effectively activated by BDE-47 while mouse PXR was weakly activated in luciferase-reporter assays. Our results indicate that BDE-47 induces CYP genes through activation of human CAR in addition to the previously identified pathway through human PXR. PMID:24218150

  19. Mirror Lake: Past, present and future: Chapter 6

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.; Winter, Thomas C.; Likens, Gene E.

    2009-01-01

    This chapter discusses the hydrological and biogeochemical characteristics of Mirror Lake and the changes that resulted from air-land-water interactions and human activities. Since the formation of Mirror Lake, both the watershed and the lake have undergone many changes, such as vegetation development and basin filling. These changes are ongoing, and Mirror Lake is continuing along an aging pathway and ultimately, it will fill with sediment and no longer be a lake. The chapter also identifies major factors that affected the hydrology and biogeochemistry of Mirror Lake: acid rain, atmospheric deposition of lead and other heavy metals, increased human settlement around the lake, the construction of an interstate highway through the watershed of the Northeast Tributary, the construction of an access road through the West and Northeast watersheds to the lake, and climate change. The chapter also offers future recommendations for management and protection of Mirror Lake.

  20. How from action-mirroring to intention-ascription?

    PubMed

    Jacob, Pierre

    2013-09-01

    This paper is devoted to an assessment of the three-step model offered by Gallese and colleagues in support of the thesis that the function of the mirror mechanism is to mindread an agent's intention. The first step of the model is the acceptance of the direct-matching model of action understanding. The second step is the endorsement of a different model of mirror neuron activity, i.e. the model of chains of logically related mirror neurons (or motor chains) whose application to action-mirroring is supposed to show that the mirror mechanism enables an observer to predict the goal of the agent's forthcoming action. The third step is the endorsement of the 'deflationary' account of intention-ascription according to which to ascribe an intention to an agent is to predict the goal of the agent's forthcoming action. I argue that each step of the model faces insuperable objections.