Science.gov

Sample records for active protease complex

  1. NMR Analysis of a Novel Enzymatically Active Unlinked Dengue NS2B-NS3 Protease Complex*

    PubMed Central

    Kim, Young Mee; Gayen, Shovanlal; Kang, CongBao; Joy, Joma; Huang, Qiwei; Chen, Angela Shuyi; Wee, John Liang Kuan; Ang, Melgious Jin Yan; Lim, Huichang Annie; Hung, Alvin W.; Li, Rong; Noble, Christian G.; Lee, Le Tian; Yip, Andy; Wang, Qing-Yin; Chia, Cheng San Brian; Hill, Jeffrey; Shi, Pei-Yong; Keller, Thomas H.

    2013-01-01

    The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker (“linked protease”), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a 1H-15N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV. PMID:23511634

  2. In Silico Identification and Evaluation of Leads for the Simultaneous Inhibition of Protease and Helicase Activities of HCV NS3/4A Protease Using Complex Based Pharmacophore Mapping and Virtual Screening

    PubMed Central

    Wadood, Abdul; Riaz, Muhammad; Uddin, Reaz; ul-Haq, Zaheer

    2014-01-01

    Hepatitis C virus (HCV) infection is an alarming and growing threat to public health. The present treatment gives limited efficacy and is poorly tolerated, recommending the urgent medical demand for novel therapeutics. NS3/4A protease is a significant emerging target for the treatment of HCV infection. This work reports the complex-based pharmacophore modeling to find out the important pharmacophoric features essential for the inhibition of both protease and helicase activity of NS3/4A protein of HCV. A seven featured pharmacophore model of HCV NS3/4A protease was developed from the crystal structure of NS3/4A protease in complex with a macrocyclic inhibitor interacting with both protease and helicase sites residues via MOE pharmacophore constructing tool. It consists of four hydrogen bond acceptors (Acc), one hydrophobic (Hyd), one for lone pair or active hydrogen (Atom L) and a heavy atom feature (Atom Q). The generated pharmacophore model was validated by a test database of seventy known inhibitors containing 55 active and 15 inactive/least active compounds. The validated pharmacophore model was used to virtually screen the ChemBridge database. As a result of screening 1009 hits were retrieved and were subjected to filtering by Lipinski’s rule of five on the basis of which 786 hits were selected for further assessment using molecular docking studies. Finally, 15 hits of different scaffolds having interactions with important active site residues were predicted as lead candidates. These candidates having unique scaffolds have a strong likelihood to act as further starting points in the development of novel and potent NS3/4A protease inhibitors. PMID:24551230

  3. Lung protease/anti-protease network and modulation of mucus production and surfactant activity.

    PubMed

    Garcia-Verdugo, Ignacio; Descamps, Delphyne; Chignard, Michel; Touqui, Lhousseine; Sallenave, Jean-Michel

    2010-11-01

    Lung epithelium guarantees gas-exchange (performed in the alveoli) and protects from external insults (pathogens, pollutants…) present within inhaled air. Both functions are facilitated by secretions lining airway surface liquid, mucus (in the upper airways) and pulmonary surfactant (in the alveoli). Mucins, the main glycoproteins present within the mucus, are responsible for its rheologic properties and participate in lung defense mechanisms. In parallel, lung collectins are pattern recognition molecules present in pulmonary surfactant that also modulate lung defense. During chronic airways diseases, excessive protease activity can promote mucus hypersecretion and degradation of lung collectins and therefore contribute to the pathophysiology of these diseases. Importantly, secretion of local and systemic anti-proteases might be crucial to equilibrate the protease/anti-protease unbalance and therefore preserve the function of lung host defense compounds and airway surface liquid homeostasis. In this review we will present information relative to proteases able to modulate mucin production and lung collectin integrity, two important compounds of innate immune defense. One strategy to preserve physiological mucus production and collectin integrity during chronic airways diseases might be the over-expression of local 'alarm' anti-proteases such as SLPI and elafin. Interestingly, a cross-talk between lung collectins and anti-protease activity has recently been described, implicating the presence within the lung of a complex network between proteases, anti-proteases and pattern recognition molecules, which aims to keep or restore homeostasis in resting or inflamed lungs. PMID:20493919

  4. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  5. Revisiting the mechanism of the autoactivation of the complement protease C1r in the C1 complex: structure of the active catalytic region of C1r.

    PubMed

    Kardos, József; Harmat, Veronika; Palló, Anna; Barabás, Orsolya; Szilágyi, Katalin; Gráf, László; Náray-Szabó, Gábor; Goto, Yuji; Závodszky, Péter; Gál, Péter

    2008-03-01

    C1r is a modular serine protease which is the autoactivating component of the C1 complex of the classical pathway of the complement system. We have determined the first crystal structure of the entire active catalytic region of human C1r. This fragment contains the C-terminal serine protease (SP) domain and the preceding two complement control protein (CCP) modules. The activated CCP1-CCP2-SP fragment makes up a dimer in a head-to-tail fashion similarly to the previously characterized zymogen. The present structure shows an increased number of stabilizing interactions. Moreover, in the crystal lattice there is an enzyme-product relationship between the C1r molecules of neighboring dimers. This enzyme-product complex exhibits the crucial S1-P1 salt bridge between Asp631 and Arg446 residues, and intermolecular interaction between the CCP2 module and the SP domain. Based on these novel structural information we propose a new split-and-reassembly model for the autoactivation of the C1r. This model is consistent with experimental results that have not been explained adequately by previous models. It allows autoactivation of C1r without large-scale, directed movement of C1q arms. The model is concordant with the stability of the C1 complex during activation of the next complement components. PMID:17996945

  6. Phosphoramidates as novel activity-based probes for serine proteases.

    PubMed

    Haedke, Ute R; Frommel, Sandra C; Hansen, Fabian; Hahne, Hannes; Kuster, Bernhard; Bogyo, Matthew; Verhelst, Steven H L

    2014-05-26

    Activity-based probes (ABPs) are small molecules that exclusively form covalent bonds with catalytically active enzymes. In the last decade, they have especially been used in functional proteomics studies of proteases. Here, we present phosphoramidate peptides as a novel type of ABP for serine proteases. These molecules can be made in a straightforward manner by standard Fmoc-based solid-phase peptide synthesis, allowing rapid diversification. The resulting ABPs covalently bind different serine proteases, depending on the amino acid recognition element adjacent to the reactive group. A reporter tag enables downstream gel-based analysis or LC-MS/MS-mediated identification of the targeted proteases. Overall, we believe that these readily accessible probes will provide new avenues for the functional study of serine proteases in complex proteomes. PMID:24817682

  7. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    PubMed

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  8. Mouse Ficolin B Has an Ability to Form Complexes with Mannose-Binding Lectin-Associated Serine Proteases and Activate Complement through the Lectin Pathway

    PubMed Central

    Endo, Yuichi; Iwaki, Daisuke; Ishida, Yumi; Takahashi, Minoru; Matsushita, Misao; Fujita, Teizo

    2012-01-01

    Ficolins are thought to be pathogen-associated-molecular-pattern-(PAMP-) recognition molecules that function to support innate immunity. Like mannose-binding lectins (MBLs), most mammalian ficolins form complexes with MBL-associated serine proteases (MASPs), leading to complement activation via the lectin pathway. However, the ability of murine ficolin B, a homologue of human M-ficolin, to perform this function is still controversial. The results of the present study show that ficolin B in mouse bone marrow is an oligomeric protein. Ficolin B, pulled down using GlcNAc-agarose, contained very low, but detectable, amounts of MASP-2 and small MBL-associated protein (sMAP) and showed detectable C4-deposition activity on immobilized N-acetylglucosamine. These biochemical features of ficolin B were confirmed using recombinant mouse ficolin B produced in CHO cells. Taken together, these results suggest that like other mammalian homologues, murine ficolin B has an ability to exert its function via the lectin pathway. PMID:22523468

  9. Transient ECM protease activity promotes synaptic plasticity.

    PubMed

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 - TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  10. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  11. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  12. Gastrointestinal absorption and biological activities of serine and cysteine proteases of animal and plant origin: review on absorption of serine and cysteine proteases

    PubMed Central

    Lorkowski, Gerhard

    2012-01-01

    Research has confirmed that peptides and larger protein molecules pass through the mucosal barrier of the gastrointestinal tract. Orally administered serine and cysteine proteases of plant and animal origin also reach blood and lymph as intact, high molecular weight and physiologically active protein molecules. Their absorption may be supported by a self-enhanced paracellular transport mechanism resulting in sub-nanomolar concentration of transiently free protease molecules or, in a complex with anti-proteases, at higher concentrations. Data from pharmacokinetic investigations reveals dose linearity for maximum plasma levels of free proteases not unusual for body proteases and a high inter-individual variability. There is no interference with each other after oral administration of protease combinations, and absorption follows an unusual invasion and elimination kinetic due to slow velocity of absorption and a fast 100% protein binding to anti-proteases. Oral application of proteases leads to increased proteolytic serum activity and increased plasma concentrations of the corresponding anti-proteases. Their biological activity is determined by their proteolytic activity as free proteases on soluble peptides/proteins or cell surface receptors (e.g. protease activated receptors) and their activity in the complex formed with their specific and/or unspecific anti-proteases. The anti-protease-complexes, during immune reaction and injuries often loaded with different cytokines, are cleared from body fluids and tissue by receptor mediated endocytosis on hepatocytes and/or blood cells. Oral administration of enteric coated tablets containing proteolytic enzymes of plant and animal origin may be a safe method to stabilize, positively influence or enhance physiological and immunological processes during disease processes and in healthy consumers. PMID:22461953

  13. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    SciTech Connect

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-08-15

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with /sup 14/C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition.

  14. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  15. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  16. Regulator of G protein signaling 8 inhibits protease-activated receptor 1/Gi/o signaling by forming a distinct G protein-dependent complex in live cells.

    PubMed

    Lee, Jinyong; Ghil, Sungho

    2016-05-01

    Activation of seven-transmembrane-domain-possessing G protein-coupled receptors (GPCRs) by extracellular stimuli elicits intracellular responses. One class of GPCRs-protease-activated receptors (PARs)-is activated by endogenous proteases, such as thrombin and trypsin. Members of the regulator of G protein signaling (RGS) family stimulate GTP hydrolysis of G protein alpha (Gα) subunits, thereby inhibiting GPCR/Gα-mediated signaling. We previously reported that RGS2 and RGS4 inhibit PAR1/Gα-mediated signaling by interacting with PAR1 in a Gα-dependent manner. Here, employing the bioluminescence resonance energy transfer (BRET) technique, we identified RGS8 as a novel PAR1-interacting protein. Very little BRET activity was observed between PAR1-Venus (PAR1-Ven) and RGS8-Luciferase (RGS8-Luc) in the absence of Gα. However, in the presence of Gαo, BRET activity was specifically and significantly increased. This interaction was confirmed by biochemical and immunofluorescence assays. Notably, RGS8 inhibited PAR1/Gαi/o-mediated adenylyl cyclase and ERK activation, and prevented Gαo-induced neurite outgrowth and activation of Necdin protein, a downstream target of Gαo. Our findings suggest a novel function of RGS8 and reveal cellular mechanisms by which RGS8 mediates PAR1 inhibition. PMID:26829215

  17. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin.

    PubMed Central

    Eytan, E; Ganoth, D; Armon, T; Hershko, A

    1989-01-01

    Previous studies have indicated that the ATP-dependent 26S protease complex that degrades proteins conjugated to ubiquitin is formed by the assembly of three factors in an ATP-requiring process. We now identify one of the factors as the 20S "multicatalytic" protease, a complex of low molecular weight subunits widely distributed in eukaryotic cells. Comparison of the subunit compositions of purified 20S and 26S complexes indicates that the former is an integral part of the latter. By the use of detergent treatment to activate latent protease activity, we show that the 20S protease becomes incorporated into the 26S complex in the ATP-dependent assembly process. It thus seems that the 20S protease is the "catalytic core" of the 26S complex of the ubiquitin proteolytic pathway. Images PMID:2554287

  18. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  19. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  20. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  1. Novel 2-oxoimidazolidine-4-carboxylic acid derivatives as Hepatitis C virus NS3-4A serine protease inhibitors: synthesis, activity, and X-ray crystal structure of an enzyme inhibitor complex

    SciTech Connect

    Arasappan, Ashok; Njoroge, F. George; Parekh, Tejal N.; Yang, Xiaozheng; Pichardo, John; Butkiewicz, Nancy; Prongay, Andrew; Yao, Nanhua; Girijavallabhan, Viyyoor

    2008-06-30

    Synthesis and HCV NS3 serine protease inhibitory activity of some novel 2-oxoimidazolidine-4-carboxylic acid derivatives are reported. Inhibitors derived from this new P2 core exhibited activity in the low {micro}M range. X-ray structure of an inhibitor, 15c bound to the protease is presented.

  2. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  3. German cockroach proteases and protease-activated receptor-2 regulate chemokine production and dendritic cell recruitment.

    PubMed

    Day, Scottie B; Ledford, John R; Zhou, Ping; Lewkowich, Ian P; Page, Kristen

    2012-01-01

    We recently showed that serine proteases in German cockroach (GC) feces (frass) decreased experimental asthma through the activation of protease-activated receptor (PAR)-2. Since dendritic cells (DCs) play an important role in the initiation of asthma, we queried the role of GC frass proteases in modulating CCL20 (chemokine C-C motif ligand 20) and granulocyte macrophage colony-stimulating factor (GM-CSF) production, factors that regulate pulmonary DCs. A single exposure to GC frass resulted in a rapid, but transient, increase in GM-CSF and a steady increase in CCL20 in the airways of mice. Instillation of protease-depleted GC frass or instillation of GC frass in PAR-2-deficient mice significantly decreased chemokine release. A specific PAR-2-activating peptide was also sufficient to induce CCL20 production. To directly assess the role of the GC frass protease in chemokine release, we enriched the protease from GC frass and confirmed that the protease was sufficient to induce both GM-CSF and CCL20 production in vivo. Primary airway epithelial cells produced both GM-CSF and CCL20 in a protease- and PAR-2-dependent manner. Finally, we show a decreased percentage of myeloid DCs in the lung following allergen exposure in PAR-2-deficient mice compared to wild-type mice. However, there was no difference in GC frass uptake. Our data indicate that, through the activation of PAR-2, allergen-derived proteases are sufficient to induce CCL20 and GM-CSF production in the airways. This leads to increased recruitment and/or differentiation of myeloid DC populations in the lungs and likely plays an important role in the initiation of allergic airway responses. PMID:21876326

  4. Crystal structures of multidrug-resistant HIV-1 protease in complex with two potent anti-malarial compounds

    SciTech Connect

    Yedidi, Ravikiran S.; Liu, Zhigang; Wang, Yong; Brunzelle, Joseph S.; Kovari, Iulia A.; Woster, Patrick M.; Kovari, Ladislau C.; Gupta, Deepak

    2012-06-19

    Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.

  5. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis.

    PubMed

    McEachron, Troy A; Pawlinski, Rafal; Richards, Kristy L; Church, Frank C; Mackman, Nigel

    2010-12-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  6. Protease-activated receptors mediate crosstalk between coagulation and fibrinolysis

    PubMed Central

    McEachron, Troy A.; Pawlinski, Rafal; Richards, Kristy L.; Church, Frank C.

    2010-01-01

    The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis. PMID:20736455

  7. Preliminary crystallographic studies of an anti-HIV-1 protease antibody that inhibits enzyme activity.

    PubMed Central

    Lescar, J.; Stouracova, R.; Riottot, M. M.; Chitarra, V.; Brynda, J.; Fabry, M.; Horejsi, M.; Sedlacek, J.; Bentley, G. A.

    1996-01-01

    F11.2.32, a monoclonal antibody directed against the HIV-1 protease, displays strong inhibitory effects toward the catalytic activity of the enzyme. The antibody cross-reacts with peptides 36-46 and 36-57 from the protease. Crystals of the Fab have been obtained both in the free state and as complexes formed with the protease peptide fragments, 36-46 and 36-57. Diffraction data have been collected for the free and complexed forms of Fab F11.2.32 and preliminary models for the crystal structures were obtained by molecular replacement. PMID:8732768

  8. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  9. Structure of the Protease Domain of Memapsin 2 (β-Secretase) Complexed with Inhibitor

    NASA Astrophysics Data System (ADS)

    Hong, Lin; Koelsch, Gerald; Lin, Xinli; Wu, Shili; Terzyan, Simon; Ghosh, Arun K.; Zhang, Xuenjun C.; Tang, Jordan

    2000-10-01

    Memapsin 2 (β-secretase) is a membrane-associated aspartic protease involved in the production of β-amyloid peptide in Alzheimer's disease and is a major target for drug design. We determined the crystal structure of the protease domain of human memapsin 2 complexed to an eight-residue inhibitor at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less hydrophobic than that of other human aspartic proteases. The subsite locations from S4 to S2' are well defined. A kink of the inhibitor chain at P2' and the change of chain direction of P3' and P4' may be mimicked to provide inhibitor selectivity.

  10. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  11. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  12. MOFzyme: Intrinsic protease-like activity of Cu-MOF.

    PubMed

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-01-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu₂(C₉H₃O₆)₄/₃ MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA. PMID:25342169

  13. MOFzyme: Intrinsic protease-like activity of Cu-MOF

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Daomei; Wang, Jiaqiang; Yan, Zhiying; Jiang, Liang; Deliang Duan; He, Jiao; Luo, Zhongrui; Zhang, Jinping; Yuan, Fagui

    2014-10-01

    The construction of efficient enzyme mimetics for the hydrolysis of peptide bonds in proteins is challenging due to the high stability of peptide bonds and the importance of proteases in biology and industry. Metal-organic frameworks (MOFs) consisting of infinite crystalline lattices with metal clusters and organic linkers may provide opportunities for protease mimic which has remained unknown. Herein, we report that Cu2(C9H3O6)4/3 MOF (which is well known as HKUST-1 and denoted as Cu-MOF here), possesses an intrinsic enzyme mimicking activity similar to that found in natural trypsin to bovine serum albumin (BSA) and casein. The Michaelis constant (Km) of Cu-MOF is about 26,000-fold smaller than that of free trypsin indicating a much higher affinity of BSA for Cu-MOF surface. Cu-MOF also exhibited significantly higher catalytic efficiency than homogeneous artificial metalloprotease Cu(II) complexes and could be reused for ten times without losing in its activity. Moreover, Cu-MOF was successfully used to simulate trypsinization in cell culture since it dissociated cells in culture even without EDTA.

  14. The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring

    PubMed Central

    Akopian, Tatos; Kandror, Olga; Raju, Ravikiran M; UnniKrishnan, Meera; Rubin, Eric J; Goldberg, Alfred L

    2012-01-01

    Mycobacterium tuberculosis (Mtb) contains two clpP genes, both of which are essential for viability. We expressed and purified Mtb ClpP1 and ClpP2 separately. Although each formed a tetradecameric structure and was processed, they lacked proteolytic activity. We could, however, reconstitute an active, mixed ClpP1P2 complex after identifying N-blocked dipeptides that stimulate dramatically (>1000-fold) ClpP1P2 activity against certain peptides and proteins. These activators function cooperatively to induce the dissociation of ClpP1 and ClpP2 tetradecamers into heptameric rings, which then re-associate to form the active ClpP1P2 2-ring mixed complex. No analogous small molecule-induced enzyme activation mechanism involving dissociation and re-association of multimeric rings has been described. ClpP1P2 possesses chymotrypsin and caspase-like activities, and ClpP1 and ClpP2 differ in cleavage preferences. The regulatory ATPase ClpC1 was purified and shown to increase hydrolysis of proteins by ClpP1P2, but not peptides. ClpC1 did not activate ClpP1 or ClpP2 homotetradecamers and stimulated ClpP1P2 only when both ATP and a dipeptide activator were present. ClpP1P2 activity, its unusual activation mechanism and ClpC1 ATPase represent attractive drug targets to combat tuberculosis. PMID:22286948

  15. Cleavage and activation of human factor IX by serine proteases

    SciTech Connect

    Enfield, D.L.; Thompson, A.R.

    1984-10-01

    Human factor IX circulates as a single-chain glycoprotein. Upon activation in vitro, it is cleaved into disulfide-linked light and heavy chains and an activation peptide. After reduction of activated /sup 125/I-factor IX, the heavy and light chains are readily identified by gel electrophoresis. A direct, immunoradiometric assay for factor IXa was developed to assess activation of factor IX for proteases that cleaved it. The assay utilized radiolabeled antithrombin III with heparin to identify the active site and antibodies to distinguish factor IX. After cleavage of factor IX by factor XIa, factor VIIa-tissue thromboplastin complex, or the factor X-activating enzyme from Russell's viper venom, antithrombin III bound readily to factor IXa. Cleavage of /sup 125/I-factor IX by trypsin, chymotrypsin, and granulocyte elastase in the presence of calcium yielded major polypeptide fragments of the sizes of the factor XIa-generated light and heavy chains. When the immunoradiometric assay was used to assess trypsin-cleaved factor IX, the product bound antithrombin III, but not maximally. After digesting with insolubilized trypsin, clotting activity confirmed activation. In evaluating activation of factor IX, physical evidence of activation cleavages does not necessarily correlate with generation of an active site.

  16. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease

    SciTech Connect

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander

    2010-09-28

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  17. Crystal Structures of Inhibitir Complexes of Human T-Cell Leukemia Virus (HTLV-1) Protease

    SciTech Connect

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander

    2010-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  18. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  19. Hydrophobic Core Flexibility Modulates Enzyme Activity in HIV-1 Protease

    SciTech Connect

    Mittal, Seema; Cai, Yufeng; Nalam, Madhavi N.L.; Bolon, Daniel N.A.; Schiffer, Celia A.

    2012-09-11

    Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the overall structure of the protease is retained. However, cross-linking the cysteines led to drastic loss in enzyme activity, which was regained upon reducing the disulfide cross-links. Molecular dynamics simulations showed that altered dynamics propagated throughout the enzyme from the engineered disulfide. Thus, altered flexibility within the hydrophobic core can modulate HIV-1 protease activity, supporting the hypothesis that drug resistant mutations distal from the active site can alter the balance between substrate turnover and inhibitor binding by modulating enzyme activity.

  20. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  1. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  2. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    PubMed

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification. PMID:27089515

  3. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  4. Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target.

    PubMed

    Phong, Wai Y; Moreland, Nicole J; Lim, Siew P; Wen, Daying; Paradkar, Prasad N; Vasudevan, Subhash G

    2011-10-01

    Flaviviral NS3 serine proteases require the NS2B cofactor region (cNS2B) to be active. Recent crystal structures of WNV (West Nile virus) protease in complex with inhibitors revealed that cNS2B participates in the formation of the protease active site. No crystal structures of ternary complexes are currently available for DENV (dengue virus) to validate the role of cNS2B in active site formation. In the present study, a GST (glutathione transferase) fusion protein of DENV-2 cNS2B49-95 was used as a bait to pull down DENV-2 protease domain (NS3pro). The affinity of NS3pro for cNS2B was strong (equilibrium-binding constant <200 nM) and the heterodimeric complex displayed a catalytic efficiency similar to that of single-chain DENV-2 cNS2B/NS3pro. Various truncations and mutations in the cNS2B sequence showed that conformational integrity of the entire 47 amino acids is critical for protease activity. Furthermore, DENV-2 NS3 protease can be pulled down and transactivated by cNS2B cofactors from DENV-1, -3, -4 and WNV, suggesting that mechanisms for activation are conserved across the flavivirus genus. To validate NS2B as a potential target in allosteric inhibitor development, a cNS2B-specific human monoclonal antibody (3F10) was utilized. 3F10 disrupted the interaction between cNS2B and NS3 in vitro and reduced DENV viral replication in HEK (human embryonic kidney)-293 cells. This provides proof-of-concept for developing assays to find inhibitors that block the interaction between NS2B and NS3 during viral translation. PMID:21329491

  5. Trichuris suis: thiol protease activity from adult worms.

    PubMed

    Hill, D E; Sakanari, J A

    1997-01-01

    Trichuris suis, the whipworm of swine, causes anemia, weight loss, anorexia, mucohemorrhagic diarrhea, and death in heavy infections. A zinc metalloprotease has been suggested to play a role in the severe enteric pathology associated with infection and the infiltration of opportunistic bacteria into deeper tissues in the swine colon. In this study, a thiol protease from gut extracts of adult T. suis and from excretory/secretory components (E/S) of adult worms was characterized using fluorogenic peptide substrates and protein substrate gels. The protease cleaved the fluorogenic substrate Z-Phe-Arg-AMC, and this cleavage was completely inhibited by the thiol protease inhibitors E-64, leupeptin, Z-Phe-Ala-CH2F, and Z-Phe-Arg-CH2F. Gelatin substrate gels and fluorescence assays using both the gut and the stichosome extracts and E/S revealed enhanced activity when 2 mM dithiothreitol or 5 mM cysteine was included in the incubation buffer, and optimal activity was seen over a pH range of 5.5 to 8.5. Incubation of gut extracts or E/S material with inhibitors of aspartic, serine, or metalloproteases had no effect on the cleavage of Z-Phe-Arg-AMC. Thiol protease activity was found in extracts of gut tissue but not in the extracts of stichocytes of adult worms. N-terminal amino acid sequencing of the protease revealed sequence homologies with cathepsin B-like thiol protease identified from parasitic and free-living nematodes. PMID:9024202

  6. Mature DIABLO/Smac Is Produced by the IMP Protease Complex on the Mitochondrial Inner Membrane

    PubMed Central

    Burri, Lena; Strahm, Yvan; Hawkins, Christine J.; Gentle, Ian E.; Puryer, Michelle A.; Verhagen, Anne; Callus, Bernard; Vaux, David; Lithgow, Trevor

    2005-01-01

    DIABLO/Smac is a mitochondrial protein that can promote apoptosis by promoting the release and activation of caspases. To do so, DIABLO/Smac must first be processed by a mitochondrial protease and then released into the cytosol, and we show this in an intact cellular system. We propose that the precursor form of DIABLO/Smac enters the mitochondria through a stop-transfer pathway and is processed to its active form by the inner membrane peptidase (IMP) complex. Catalytic subunits of the mammalian IMP complex were identified based on sequence conservation and functional complementation, and the novel sequence motif RX5P in Imp1 and NX5S in Imp2 distinguish the two catalytic subunits. DIABLO/Smac is one of only a few specific proteins identified as substrates for the IMP complex in the mitochondrial intermembrane space. PMID:15814844

  7. Active site conformational changes of prostasin provide a new mechanism of protease regulation by divalent cations

    SciTech Connect

    Spraggon, Glen; Hornsby, Michael; Shipway, Aaron; Tully, David C.; Bursulaya, Badry; Danahay, Henry; Harris, Jennifer L.; Lesley, Scott A.

    2010-01-12

    Prostasin or human channel-activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d-FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca{sup +2}. Comparison of the structures with each other and with other members of the trypsin-like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca{sup +2} cations. This induced fit active site provides a new possible mode of regulation of trypsin-like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.

  8. Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast-type interstitial collagenases.

    PubMed Central

    Sorsa, T; Ingman, T; Suomalainen, K; Haapasalo, M; Konttinen, Y T; Lindy, O; Saari, H; Uitto, V J

    1992-01-01

    Activation of latent human fibroblast-type and neutrophil interstitial procollagenases as well as degradation of native type I collagen by supra- and subgingival dental plaque extracts, an 80-kDa trypsinlike protease from Porphyromas gingivalis (ATCC 33277), a 95-kDa chymotrypsinlike protease from Treponema denticola (ATCC 29522), and selected bacterial species commonly isolated in periodontitis was studied. The bacteria included were Prevotella intermedia (ATCC 25261), Prevotella buccae (ES 57), Prevotella oris (ATCC 33573), Porphyromonas endodontalis (ES 54b), Actinobacillus actinomycetemcomitans (ATCC 295222), Fusobacterium nucleatum (ATCC 10953), Mitsuokella dentalis (DSM 3688), and Streptococcus mitis (ATCC 15909). None of the bacteria activated latent procollagenases; however, both sub- and supragingival dental plaque extracts (neutral salt extraction) and proteases isolated from cell extracts from potentially periodontopathogenic bacteria P. gingivalis and T. denticola were found to activate latent human fibroblast-type and neutrophil interstitial procollagenases. The fibroblast-type interstitial collagenase was more efficiently activated by bacterial proteases than the neutrophil counterpart, which instead preferred nonproteolytic activation by the oxidative agent hypochlorous acid. The proteases were not able to convert collagenase tissue inhibitor of metalloproteinase (TIMP-1) complexes into active form or to change the ability of TIMP-1 to inhibit interstitial collagenase. None of the studied bacteria, proteases from P. gingivalis and T. denticola, or extracts of supra- and subgingival dental plaque showed any significant collagenolytic activity. However, the proteases degraded native and denatured collagen fragments after cleavage by interstitial collagenase and gelatinase. Our results indicate that proteases from periodontopathogenic bacteria can act as direct proteolytic activators of human procollagenases and degrade collagen fragments. Thus, in

  9. The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding

    PubMed Central

    Bendjennat, Mourad; Saffarian, Saveez

    2016-01-01

    HIV virions assemble on the plasma membrane and bud out of infected cells using interactions with endosomal sorting complexes required for transport (ESCRTs). HIV protease activation is essential for maturation and infectivity of progeny virions, however, the precise timing of protease activation and its relationship to budding has not been well defined. We show that compromised interactions with ESCRTs result in delayed budding of virions from host cells. Specifically, we show that Gag mutants with compromised interactions with ALIX and Tsg101, two early ESCRT factors, have an average budding delay of ~75 minutes and ~10 hours, respectively. Virions with inactive proteases incorporated the full Gag-Pol and had ~60 minutes delay in budding. We demonstrate that during budding delay, activated proteases release critical HIV enzymes back to host cytosol leading to production of non-infectious progeny virions. To explain the molecular mechanism of the observed budding delay, we modulated the Pol size artificially and show that virion release delays are size-dependent and also show size-dependency in requirements for Tsg101 and ALIX. We highlight the sensitivity of HIV to budding “on-time” and suggest that budding delay is a potent mechanism for inhibition of infectious retroviral release. PMID:27280284

  10. The Protease Inhibitor HAI-2, but Not HAI-1, Regulates Matriptase Activation and Shedding through Prostasin*

    PubMed Central

    Friis, Stine; Sales, Katiuchia Uzzun; Schafer, Jeffrey Martin; Vogel, Lotte K.; Kataoka, Hiroaki; Bugge, Thomas H.

    2014-01-01

    The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation. PMID:24962579

  11. Study of protein complexes via homology modeling, applied to cysteine proteases and their protein inhibitors.

    PubMed

    Tastan Bishop, Ozlem; Kroon, Matthys

    2011-12-01

    This paper develops and evaluates large-scale calculation of 3D structures of protein complexes by homology modeling as a promising new approach for protein docking. The complexes investigated were papain-like cysteine proteases and their protein inhibitors, which play numerous roles in human and parasitic metabolisms. The structural modeling was performed in two parts. For the first part (evaluation set), nine crystal structure complexes were selected, 1325 homology models of known complexes were rebuilt by various templates including hybrids, allowing an analysis of the factors influencing the accuracy of the models. The important considerations for modeling the interface were protease coverage and inhibitor sequence identity. In the second part (study set), the findings of the evaluation set were used to select appropriate templates to model novel cysteine protease-inhibitor complexes from human and malaria parasites Plasmodium falciparum and Plasmodium vivax. The energy scores, considering the evaluation set, indicate that the models are of high accuracy. PMID:21365221

  12. Characterization of a Kunitz-type serine protease inhibitor from Solanum tuberosum having lectin activity.

    PubMed

    Shah, Kunal R; Patel, Dhaval K; Pappachan, Anju; Prabha, C Ratna; Singh, Desh Deepak

    2016-02-01

    Plant lectins and protease inhibitors constitute a class of proteins which plays a crucial role in plant defense. In our continuing investigations on lectins from plants, we have isolated, purified and characterized a protein of about 20 kDa, named PotHg, showing hemagglutination activity from tubers of Indian potato, Solanum tuberosum. De novo sequencing and MS/MS analysis confirmed that the purified protein was a Kunitz-type serine protease inhibitor having two chains (15 kDa and 5 kDa). SDS and native PAGE analysis showed that the protein was glycosylated and was a heterodimer of about 15 and 5 kDa subunits. PotHg agglutinated rabbit erythrocytes with specific activity of 640 H.U./mg which was inhibited by complex sugars like fetuin. PotHg retained hemagglutination activity over a pH range 4-9 and up to 80°C. Mannose and galactose interacted with the PotHg with a dissociation constant (Kd) of 1.5×10(-3) M and 2.8×10(-3) M, respectively as determined through fluorescence studies. Fluorescence studies suggested the involvement of a tryptophan in sugar binding which was further confirmed through modification of tryptophan residues using N-bromosuccinimide. Circular dichroism (CD) studies showed that PotHg contains mostly β sheets (∼45%) and loops which is in line with previously characterized protease inhibitors and modeling studies. There are previous reports of Kunitz-type protease inhibitors showing lectin like activity from Peltophorum dubium and Labramia bojeri. This is the first report of a Kunitz-type protease inhibitor showing lectin like activity from a major crop plant and this makes PotHg an interesting candidate for further investigation. PMID:26645142

  13. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3

    PubMed Central

    Burnier, Laurent

    2013-01-01

    The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC’s cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC’s cytoprotective versus thrombin’s proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects. PMID:23788139

  14. Tooth Bleaching Increases Dentinal Protease Activity

    PubMed Central

    Sato, C.; Rodrigues, F.A.; Garcia, D.M.; Vidal, C.M.P.; Pashley, D.H.; Tjäderhane, L.; Carrilho, M.R.; Nascimento, F.D.; Tersariol, I.L.S.

    2012-01-01

    Hydrogen peroxide is an oxidative agent commonly used for dental bleaching procedures. The structural and biochemical responses of enamel, dentin, and pulp tissues to the in vivo bleaching of human (n = 20) premolars were investigated in this study. Atomic force microscopy (AFM) was used to observe enamel nanostructure. The chemical composition of enamel and dentin was analyzed by infrared spectroscopy (FTIR). The enzymatic activities of dental cathepsin B and matrix metalloproteinases (MMPs) were monitored with fluorogenic substrates. The amount of collagen in dentin was measured by emission of collagen autofluorescence with confocal fluorescence microscopy. The presence of Reactive Oxygen Species (ROS) in the pulp was evaluated with a fluorogenic 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) probe. Vital bleaching of teeth significantly altered all tested parameters: AFM images revealed a corrosion of surface enamel nanostructure; FTIR analysis showed a loss of carbonate and proteins from enamel and dentin, along with an increase in the proteolytic activity of cathepsin-B and MMPs; and there was a reduction in the autofluorescence of collagen and an increase in both cathepsin-B activity and ROS in pulp tissues. Together, these results indicate that 35% hydrogen peroxide used in clinical bleaching protocols dramatically alters the structural and biochemical properties of dental hard and soft pulp tissue. PMID:23242228

  15. Moringa oleifera Lam.: Protease activity against blood coagulation cascade

    PubMed Central

    Satish, A; Sairam, Sudha; Ahmed, Faiyaz; Urooj, Asna

    2012-01-01

    Background: The present study evaluated the protease activity of aqueous extracts of Moringa oleifera (Moringaceae) leaf (MOL) and root (MOR). Materials and Methods: Protease activity was assayed using casein, human plasma clot and human fibrinogen as substrates. Results: Caseinolytic activity of MOL was significantly higher (P ≤ 0.05) than that of MOR. Similar observations were found in case of human plasma clot hydrolyzing activity, wherein MOL caused significantly higher (P ≤ 0.05) plasma clot hydrolysis than MOR. Zymographic techniques were used to detect proteolytic enzymes following electrophoretic separation in gels. Further, both the extracts exhibited significant procoagulant activity as reflected by a significant decrease (P ≤ 0.05) in recalcification time, accompanied by fibrinogenolytic and fibrinolytic activities; clotting time was decreased from 180 ± 10 sec to 119 ± 8 sec and 143 ± 10 sec by MOL and MOR, respectively, at a concentration of 2.5 mg/mL. Fibrinogenolytic (human fibrinogen) and fibrinolytic activity (human plasma clot) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), plate method and colorimetric method. Zymographic profile indicated that both the extracts exerted their procoagulant activity by selectively hydrolyzing Aα and Bβ subunits of fibrinogen to form fibrin clot, thereby exhibiting fibrinogenolytic activity. However, prolonged incubation resulted in degradation of the formed fibrin clot, suggesting fibrinolytic like activity. Conclusions: These findings support the traditional usage of M. oleifera extracts for wound healing. PMID:22224061

  16. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  17. Mammalian EGF receptor activation by the rhomboid protease RHBDL2.

    PubMed

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-05-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  18. Mammalian EGF receptor activation by the rhomboid protease RHBDL2

    PubMed Central

    Adrain, Colin; Strisovsky, Kvido; Zettl, Markus; Hu, Landian; Lemberg, Marius K; Freeman, Matthew

    2011-01-01

    The epidermal growth factor receptor (EGFR) has several functions in mammalian development and disease, particularly cancer. Most EGF ligands are synthesized as membrane-tethered precursors, and their proteolytic release activates signalling. In Drosophila, rhomboid intramembrane proteases catalyse the release of EGF-family ligands; however, in mammals this seems to be primarily achieved by ADAM-family metalloproteases. We report here that EGF is an efficient substrate of the mammalian rhomboid RHBDL2. RHBDL2 cleaves EGF just outside its transmembrane domain, thereby facilitating its secretion and triggering activation of the EGFR. We have identified endogenous RHBDL2 activity in several tumour cell lines. PMID:21494248

  19. Protease-induced immunoregulatory activity of platelet factor 4.

    PubMed Central

    Katz, I R; Thorbecke, G J; Bell, M K; Yin, J Z; Clarke, D; Zucker, M B

    1986-01-01

    Intravenous injection of human or mouse serum or platelet material secreted from appropriately stimulated platelets ("releasate") together with antigen alleviates the immunosuppression in SJL/J mice induced by injection of irradiated lymphoma cells or in (CB6)F1 mice induced by injection of concanavalin A. We now report that injection of releasate from 10(6) human platelets restores plaque-forming cells to the unsuppressed number; greater amounts increase responses further. Immunoregulatory activity is released from platelets exposed to thrombin in parallel with other alpha-granule components. Heparin-agarose absorbs activity. Purified platelet factor 4 (PF4) has activity; beta-thromboglobulin and platelet-derived growth factor have little or none. Activity in serum is neutralized by goat anti-human PF4. An enzymatic step is necessary for production of immunoregulatory activity. Releasates boiled immediately after platelet aggregation with 250 nM A23187 or those produced by adding A23187 in the presence of 100 microM serine protease inhibitor (p-amidinophenyl)methanesulfonyl fluoride (APMSF) are ineffective, whereas releasates boiled or mixed with APMSF after incubation for 60 min are active. Activity is generated by incubating a mixture of heparin-absorbed releasate (as enzyme source) and heparin-agarose eluate of releasate made in the presence of APMSF (as substrate source). The enzymatic step does not alter the heparin-neutralizing activity of PF4. Apparently a secreted platelet protease converts PF4 to a form with immunoregulatory activity. PMID:3517862

  20. Crystal Structures of a Multidrug-Resistant Human Immunodeficiency Virus Type 1 Protease Reveal an Expanded Active-Site Cavity

    SciTech Connect

    Logsdon, Bradley C.; Vickrey, John F.; Martin, Philip; Proteasa, Gheorghe; Koepke, Jay I.; Terlecky, Stanley R.; Wawrzak, Zdzislaw; Winters, Mark A.; Merigan, Thomas C.; Kovari, Ladislau C.

    2010-03-08

    The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-{angstrom} crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease 'flaps' stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 {angstrom}. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k{sub off} rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k{sub on} and k{sub off} data (K{sub d} = k{sub off}/k{sub on}) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.

  1. Structural analysis of specificity: alpha-lytic protease complexes with analogues of reaction intermediates.

    PubMed

    Bone, R; Frank, D; Kettner, C A; Agard, D A

    1989-09-19

    To better understand the structural basis of enzyme specificity, the structures of complexes formed between alpha-lytic protease, an extracellular serine protease of Lysobacter enzymogenes, and five inhibitory peptide boronic acids (R2-boroX, where R2 is methoxysuccinyl-Ala-Ala-Pro- and boroX is the alpha-aminoboronic acid analogue of Ala, Val, Ile, Norleu, or Phe) have been studied at high resolution by X-ray crystallography. The enzyme has primary specificity for Ala in the P1 position of peptide substrates with catalytic efficiency decreasing with increasing side-chain volume. Enzyme affinity for inhibitors with boroVal, boroIle, and boroPhe residues is much higher than expected on the basis of the catalytic efficiencies of homologous substrates. Covalent tetrahedral adducts are formed between the active-site serine and the boronic acid moieties of R2-boroAla, R2-boroVal R2-boroIle, and R2-boroNorleu. Though R2-boroVal is a slowly bound inhibitor and R2-boroAla is rapidly bound [Kettner, C. A., Bone, R., Agard, D. A., & Bachovchin, W. W. (1988) Biochemistry 27, 7682-7688], there appear to be no structural differences that could account for slow binding. The removal from solution of 20% more hydrophobic surface on binding accounts for the improved affinity of alpha-lytic protease for R2-boroVal relative to R2-boroAla. The high affinity of the enzyme for R2-boroIle derives from the selective binding of the L-allo stereoisomer of the boroIle residue, which can avoid bad steric interactions in the binding pocket.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611204

  2. Expression and activation of proteases in co-cultures.

    PubMed

    Paduch, Roman; Kandefer-Szerszeń, Martyna

    2011-01-01

    The present study concerned the expression and activation of metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and the urokinase plasminogen activator/urokinase plasminogen activator receptor (uPA/uPAR) system in co-cultures of human colon carcinoma cell spheroids (HT29, LS180, SW948) with human normal colon epithelium (CCD 841 CoTr), myofibroblasts (CCD-18Co) and endothelial cells (HUVEC). Additionally, the influence of monensin on the production and function of the proteases was tested. Tumor cells expressed small amounts of MMP-2, MMP-9 and uPA. Normal cells generally produced proportionally higher concentrations of these proteases (especially MMP-2, compared with significantly smaller yields of MMP-9 and significantly lower amounts of uPAR than tumors. In co-cultures of tumor spheroids with normal cell monolayers, the concentration of the proteases was equal to the sum of the enzymes produced in monocultures of both types of cells. The highest activity of uPA, measured as the reduction of the chromogenic substrate (S-2444), was detected in supernatants and lysates of endothelial cells. Interestingly, in normal cells, the higher expression of proteases, mainly uPA, measured as the level of protein concentration, was closely linked with their lower activity and inversely, in tumor cells, the low level of the expression of the enzymes correlated with their high enzymatic activity. In zymography analysis, mainly pro-MMPs were detected both in culture supernatants and cell lysates. The highest amounts of active forms of the MMPs were detected in tumor spheroids co-cultured with endothelial cells. Monensin inhibited MMPs and uPA secretion but significantly increased uPAR release, mainly from normal cells. In conclusion, during direct interactions of tumor cells with normal cells, MMPs and the uPA/uPAR system play an important role in the degradation of ECM and tumor development, but as we found, there is a reverse relationship between the concentration and the

  3. In vivo activation and functions of the protease factor XII.

    PubMed

    Björkqvist, Jenny; Nickel, Katrin F; Stavrou, Evi; Renné, Thomas

    2014-11-01

    Combinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. Factor XII (FXII, Hageman factor) is a plasma protease that initiates the contact system. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. The current review concentrates on activators and functions of the FXII-driven contact system in vivo. Elucidating its physiologic activities offers the exciting opportunity to develop strategies for the safe interference with both thrombotic and inflammatory diseases. PMID:25187064

  4. Small Molecule-Induced Allosteric Activation of the Vibrio Cholerae RTX Cysteine Protease Domain

    SciTech Connect

    Lupardus, P.J.; Shen, A.; Bogyo, M.; Garcia, K.C.

    2009-05-19

    Vibrio cholerae RTX (repeats in toxin) is an actin-disrupting toxin that is autoprocessed by an internal cysteine protease domain (CPD). The RTX CPD is efficiently activated by the eukaryote-specific small molecule inositol hexakisphosphate (InsP{sub 6}), and we present the 2.1 angstrom structure of the RTX CPD in complex with InsP{sub 6}. InsP{sub 6} binds to a conserved basic cleft that is distant from the protease active site. Biochemical and kinetic analyses of CPD mutants indicate that InsP{sub 6} binding induces an allosteric switch that leads to the autoprocessing and intracellular release of toxin-effector domains.

  5. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  6. Protease activity, localization and inhibition in the human hair follicle

    PubMed Central

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-01-01

    Synopsis Objective In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. Methods We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Results Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen® and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (UK, Brazil, China, first-generation Mexicans in the USA, Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. Conclusion These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen® and climbazole. This technology may have potential to reduce excessive hair shedding. Résumé Objectif Chez l'homme, le processus de perte de cheveux, désigné comme exog

  7. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  8. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.

  9. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  10. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  11. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min−1 g−1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  12. Protease activation in glycerol-based deep eutectic solvents.

    PubMed

    Zhao, Hua; Baker, Gary A; Holmes, Shaletha

    2011-11-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min(-1) g(-1)) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  13. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  14. Nitrogen-15 NMR spectroscopy of the catalytic-triad histidine of a serine protease in peptide boronic acid inhibitor complexes

    SciTech Connect

    Bachovchin, W.W.; Wong, W.Y.L.; Farr-Jones, S. ); Shenvi, A.B.; Kettner, C.A. )

    1988-10-04

    {sup 15}N NMR spectroscopy was used to examine the active-site histidyl residue of {alpha}-lytic protease in peptide boronic acid inhibitor complexes. Two distinct types of complexes were observed: (1) Boronic acids that are analogues of substrates form complexes in which the active-site imidazole ring is protonated and both imidazole N-H protons are strongly hydrogen bonded. (2) Boronic acids that are not substrate analogues form complexes in which N{sup {epsilon}2} of the active-site histidine is covalently bonded to the boron atom of the inhibitor. The proton bound to N{sup {delta}1} of the histidine in these histidine-boronate adducts remains strongly hydrogen bonded, presumably to the active-site aspartate. In both types of complexes the N-H protons of His-57 exchange unusually slowly as evidenced by the room temperature visibility of the low-field {sup 1}H resonances and the {sup 15}N-H spin couplings. These results indicate that occupancy of the specificity subsites may be required to fully form the transition-state binding site. The significance of these findings for understanding inhibitor binding and the catalytic mechanism of serine proteases is discussed.

  15. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets.

    PubMed

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  16. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets

    PubMed Central

    Verma, Sonia; Dixit, Rajnikant; Pandey, Kailash C.

    2016-01-01

    Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria, and parasite) to the higher organisms (mammals). Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases, and metalloproteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress, and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a prodomain (regulatory) and a mature domain (catalytic). The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein–protein interactions (PPIs) and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing) of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases. PMID:27199750

  17. Zingipain, a ginger protease with acetylcholinesterase inhibitory activity.

    PubMed

    Rungsaeng, Porlin; Sangvanich, Polkit; Karnchanatat, Aphichart

    2013-06-01

    In order to search for new acetylcholinesterase inhibitors (AChEIs), 15 Zingiberaceae plants were tested for AChEI activity in rhizome extracts. The crude homogenate and ammonium sulfate cut fraction of Zingiber officinale contained a significant AChEI activity. Eighty percent saturation ammonium sulfate precipitation and diethylaminoethyl cellulose ion exchange chromatography (unbound fraction) enriched the protein to a single band on nondenaturing and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (approximately 33.5 kDa). Gelatin-degrading zymography showed that the AChEI-containing band also contained cysteine protease activity. The AChEI activity was largely stable between -20 and 60 °C (at least over 120 min) and over a broad pH range (2-12). The AChEI activity was stimulated strongly by Mn(2+) and Cu(2+) at 1-10 mM and weakly by Ca(2+), Fe(2+), Mg(2+), and Zn(2+) at 1 mM, but was inhibited at 10 mM. In contrast, Hg(2+) and ethylenediaminetetraacetic acid were very and moderately strongly inhibitory, respectively. In-gel tryptic digestion with liquid chromatography-tandem mass spectroscopy resolution revealed two heterogeneous peptides, a 16-amino-acid-long fragment with 100 % similarity to zingipain-1, which is a cysteine protease from Z. officinale, and a 9-amino-acid-long fragment that was 100 % identical to actinidin Act 2a, suggesting that the preparation was heterogeneous. AChEI exhibited noncompetitive inhibition of AChE for the hydrolysis of acetylthiocholine iodide with a K(i) value of 9.31 mg/ml. PMID:23625608

  18. Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase.

    PubMed Central

    Nagy, K; Young, M; Baboonian, C; Merson, J; Whittle, P; Oroszlan, S

    1994-01-01

    The antiviral activities of two substrate-based inhibitors of human immunodeficiency virus type 1 (HIV-1) protease, UK-88,947 and Ro 31-8959, were studied in acute infections. H9 and HeLaCD4-LTR/beta-gal cells were infected either with HIV-1IIIB or a replication-defective virus, HIV-gpt(HXB-2). Both inhibitors were capable of blocking early steps of HIV-1 replication if added to cells prior to infection. Partial inhibition was also obtained by addition of inhibitor at the time of or as late as 15 min after infection. The inhibitors were ineffective if added 30 min postinfection. The inhibitory effects were studied by cDNA analysis with PCR followed by Southern blot hybridization and by infectivity assays allowing quantitation of HIV-1 in a single cycle of replication. When UK-88,947-treated H9 cells were coinfected with HIV-1 and human T-cell leukemia virus type I only the replication of HIV-1 was inhibited, demonstrating viral specificity. Pretreating the infectious virus stocks with the inhibitors also prevented replication, indicating that the inhibitors block the action of the viral protease and not a cellular protease. A panel of primer sets was used to analyze cDNA from cell lysates by PCR amplification at 4 and 18 h postinfection. Four hours after infection, viral specific cDNA was detected with all of the four primer pairs used: R/U5, nef/U3, 5' gag, and long terminal repeat (LTR)/gag. However, after 18 h, only the R/U5 and nef/U3 primer pairs and not the 5' gag or LTR/gag primer pair were able to allow amplification of cDNA. The results suggest a crucial role of HIV-1 protease in the early phase of viral replication. Although it is not clear what early steps are affected by the protease, it is likely that the target is the NC protein, as referred from our previous reports of the in situ cleavage of the nucleocapsid (NC) protein by the viral protease inside lentiviral capsids. The results suggest that it is not the inhibition of initiation and progression

  19. Comparative analysis on the distribution of protease activities among fruits and vegetable resources.

    PubMed

    Sun, Qian; Zhang, Bin; Yan, Qiao-Juan; Jiang, Zheng-Qiang

    2016-12-15

    In this study, a comparative analysis on the distribution of protease activities among 90 plant resources, including fruits and vegetables, has been performed. Protease activities of plant extracts were assayed at different pH values (pH 3.0, pH 7.5 and pH 10.5) using casein as a substrate. Ten fruits and thirteen vegetables show protease activities above 10U/g. Pineapple, fig and papaya, which are used for commercial protease production, exhibited high protease activities. Additionally, high protease activities were detected in kiwifruit (28.8U/g), broccoli (16.9U/g), ginger (16.6U/g), leek (32.7U/g) and red pepper (15.8U/g) at different pH values. SDS-PAGE and zymograms confirmed that various types of proteases existed in the five plant extracts and might be explored. Furthermore, five plant extracts were treated by different protease inhibitors. These results show that there are still many plant resources unexplored, which may be promising candidates for plant-derived protease production. PMID:27451238

  20. Structure of a Complex between Nedd8 and the Ulp/Senp Protease Family Member Den1

    SciTech Connect

    Reverter, David; Wu, Kenneth; Erdene, Tudeviin Gan; Pan, Zhen-Qiang; Wilkinson, Keith D.; Lima, Christopher D.

    2010-07-20

    The Nedd8 conjugation pathway is conserved from yeast to humans and is essential in many organisms. Nedd8 is conjugated to cullin proteins in a process that alters SCF E3 ubiquitin ligase activity, and it is presumed that Nedd8 deconjugation would reverse these effects. We now report the X-ray structures of the human Nedd8-specific protease, Den1, in a complex with the inhibitor Nedd8 aldehyde, thus revealing a model for the tetrahedral transition state intermediate generated during proteolysis. Although Den1 is closely related to the SUMO-specific protease family (Ulp/Senp family), structural analysis of the interface suggests determinants involved in Nedd8 selectivity by Den1 over other ubiquitin-like family members and suggests how the Ulp/Senp architecture has been modified to interact with different ubiquitin-like modifiers.

  1. Coupling of epithelial Na+ and Cl− channels by direct and indirect activation by serine proteases

    PubMed Central

    Gondzik, Veronika; Weber, Wolf Michael

    2012-01-01

    The mammalian collecting duct (CD) is continuously exposed to urinary proteases. The CD expresses an epithelial Na+ channel (ENaC) that is activated after cleavage by serine proteases. ENaC also exists at the plasma membrane in the uncleaved form, rendering activation by extracellular proteases an important mechanism for regulating Na+ transport. Many exogenous and a small number of endogenous extracellular serine proteases have been shown to activate the channel. Recently, kallikrein 1 (KLK1) was shown to increase γENaC cleavage in the native CD indicating a possible direct role of this endogenous protease in Na+ homeostasis. To explore this process, we examined the coordinated effect of this protease on Na+ and Cl− transport in a polarized renal epithelial cell line (Madin-Darby canine kidney). We also examined the role of native urinary proteases in this process. Short-circuit current (Isc) was used to measure transport of these ions. The Isc exhibited an ENaC-dependent Na+ component that was amiloride blockable and a cystic fibrosis transmembrane conductance regulator (CFTR)-dependent Cl− component that was blocked by inhibitor 172. Apical application of trypsin, an exogenous S1 serine protease, activated IENaC but was without effects on ICFTR. Subtilisin an exogenous S8 protease that mimics endogenous furin-type proteases activated both currents. A similar activation was also observed with KLK1 and native rat urinary proteases. Activation with urinary proteases occurred within minutes and at protease concentrations similar to those in the CD indicating physiological significance of this process. ENaC activation was irreversible and mediated by enhanced cleavage of γENaC. The activation of CFTR was indirect and likely dependent on activation of an endogenous apical membrane protease receptor. Collectively, these data demonstrate coordinated stimulation of separate Na+ and Cl− transport pathways in renal epithelia by extracellular luminal proteases. They

  2. Kallikrein Promotes Inflammation in Human Dental Pulp Cells Via Protease-Activated Receptor-1.

    PubMed

    Hayama, Tomomi; Kamio, Naoto; Okabe, Tatsu; Muromachi, Koichiro; Matsushima, Kiyoshi

    2016-07-01

    Plasma kallikrein (KLKB1), a serine protease, cleaves high-molecular weight kininogen to produce bradykinin, a potent vasodilator and pro-inflammatory peptide. In addition, KLKB1 activates plasminogen and other leukocyte and blood coagulation factors and processes pro-enkephalin, prorenin, and C3. KLKB1 has also been shown to cleave protease-activated receptors in vascular smooth muscle cells to regulate the expression of epidermal growth factor receptor. In this study, we investigated KLKB1-dependent inflammation and activation of protease-activated receptor-1 in human dental pulp cells. These cells responded to KLKB1 stimulation by increasing intracellular Ca(2+) , upregulating cyclooxygenase-2, and secreting prostaglandin E2 . Remarkably, SCH79797, an antagonist of protease-activated receptor-1, blocked these effects. Thus, these data indicate that KLKB1 induces inflammatory reactions in human dental tissues via protease-activated receptor 1. J. Cell. Biochem. 117: 1522-1528, 2016. © 2015 Wiley Periodicals, Inc. PMID:26566265

  3. Proteinaceous protease inhibitor from Lawsonia inermis: purification, characterization and antibacterial activity.

    PubMed

    Dabhade, Arvind; Patel, Priti; Pati, Ulhas

    2013-10-01

    A thermo-stable, proteinaceous protease inhibitor (LPI) from Lawsonia inermis is reported. The LPI was purified from Lawsonia inermis seeds by subsequent ammonium sulfate precipitation, ion exchange chromatography (DEAE-Cellulose) and gel permeation chromatography (Sephadex-50). The purified protease inhibitor is effective against a wide range of proteases viz. papain, trypsin, pepsin and metallo-protease. The apparent molecular weight of the protease inhibitor is 19 kDa, determined by SDS-PAGE electrophoresis. The protease inhibitor was found to be stable at 70 degrees C for 30 min. It was also examined for antibacterial activity against Pseudomonas aeruginosa MTCC 7926 and Staphylococcus aureus NCIM 2079; the IC50 values of the purified LPI were 11.4 microg/mL and 16.6 microg/mL respectively. PMID:24354203

  4. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state.

    PubMed

    Farr-Jones, S; Smith, S O; Kettner, C A; Griffin, R G; Bachovchin, W W

    1989-09-01

    The effectiveness of boronic acids as inhibitors of serine proteases has been widely ascribed to the ability of the boronyl group to form a tetrahedral adduct with the active-site serine that closely mimics the putative tetrahedral intermediate or transition state formed with substrates. However, recent 15N NMR studies of alpha-lytic protease (EC 3.4.21.12) in solution have shown that some boronic acids and peptide boronic acids form adducts with the active-site histidine instead of with the serine. Such histidine-boron adducts have not thus far been reported in x-ray diffraction studies of boronic acid-serine protease complexes. Here, we report an 15N NMR study of the MeOSuc-Ala-Ala-Pro-boroPhe complex of alpha-lytic protease in the crystalline state using magic-angle spinning. Previous 15N NMR studies have shown this complex involves the formation of a histidine-boron bond in solution. The 15N NMR spectra of the crystalline complex are essentially identical to those of the complex in solution, thereby showing that the structure of this complex is the same in solution and in the crystal and that both involve formation of a histidine-boron adduct. PMID:2780549

  5. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and

  6. OMP Peptides Activate the DegS Stress-Sensor Protease by a Relief of Inhibition Mechanism

    SciTech Connect

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T.; MIT

    2010-03-19

    In the E. coli periplasm, C-terminal peptides of misfolded outer-membrane porins (OMPs) bind to the PDZ domains of the trimeric DegS protease, triggering cleavage of a transmembrane regulator and transcriptional activation of stress genes. We show that an active-site DegS mutation partially bypasses the requirement for peptide activation and acts synergistically with mutations that disrupt contacts between the protease and PDZ domains. Biochemical results support an allosteric model, in which these mutations, active-site modification, and peptide/substrate binding act in concert to stabilize proteolytically active DegS. Cocrystal structures of DegS in complex with different OMP peptides reveal activation of the protease domain with varied conformations of the PDZ domain and without specific contacts from the bound OMP peptide. Taken together, these results indicate that the binding of OMP peptides activates proteolysis principally by relieving inhibitory contacts between the PDZ domain and the protease domain of DegS.

  7. Nitrogen-15 NMR spectroscopy of the catalytic-triad histidine of a serine protease in peptide boronic acid inhibitor complexes.

    PubMed

    Bachovchin, W W; Wong, W Y; Farr-Jones, S; Shenvi, A B; Kettner, C A

    1988-10-01

    15N NMR spectroscopy was used to examine the active-site histidyl residue of alpha-lytic protease in peptide boronic acid inhibitor complexes. Two distinct types of complexes were observed: (1) Boronic acids that are analogues of substrates form complexes in which the active-site imidazole ring is protonated and both imidazole N-H protons are strongly hydrogen bonded. With the better inhibitors of the class this arrangement is stable over the pH range 4.0-10.5. The results are consistent with a putative tetrahedral intermediate like complex involving a negatively charged, tetrahedral boron atom covalently bonded to O gamma of the active-site serine. (2) Boronic acids that are not substrate analogues form complexes in which N epsilon 2 of the active-site histidine is covalently bonded to the boron atom of the inhibitor. The proton bound to N delta 1 of the histidine in these histidine-boronate adducts remains strongly hydrogen bonded, presumably to the active-site aspartate. Benzeneboronic acid, which falls in this category, forms an adduct with histidine. In both types of complexes the N-H protons of His-57 exchange unusually slowly as evidenced by the room temperature visibility of the low-field 1H resonances and the 15N-H spin couplings. These results, coupled with the kinetic data of the preceding paper [Kettner, C. A., Bone, R., Agard, D. A., & Bachovchin, W. W. (1988) Biochemistry (preceding paper in this issue)], indicate that occupancy of the specificity subsites may be required to fully form the transition-state binding site. The significance of these findings for understanding inhibitor binding and the catalytic mechanism of serine proteases is discussed. PMID:3207700

  8. Ostrinia furnacalis serpin-3 regulates melanization cascade by inhibiting a prophenoloxidase-activating protease.

    PubMed

    Chu, Yuan; Zhou, Fan; Liu, Yang; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Serine protease cascade-mediated prophenolxidase activation is a prominent innate immune response in insect defense against the invading pathogens. Serpins regulate this reaction to avoid excessive activation. However, the function of serpins in most insect species, especially in some non-model agriculture insect pests, is largely unknown. We here cloned a full-length cDNA for a serpin, named as serpin-3, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of serpin-3 encodes 462-amino acid residue protein with a 19-residue signal peptide. It contains a reactive center loop strikingly similar to the proteolytic activation site in prophenoloxidase. Sequence comparison indicates that O. furnacalis serpin-3 is an apparent ortholog of Manduca sexta serpin-3, a defined negative regulator of melanization reaction. Serpin-3 mRNA and protein levels significantly increase after a bacterial or fungal injection. Recombinant serpin-3 efficiently blocks prophenoloxidase activation in larval plasma in a concentration-dependent manner. It forms SDS-stable complexes with serine protease 13 (SP13), and prevents SP13 from cleaving prophenoloxidase. Injection of recombinant serpin-3 into larvae results in decreased fungi-induced melanin synthesis and reduced the expression of attacin, cecropin, gloverin, and peptidoglycan recognition protein-1 genes in the fat body. Altogether, serpin-3 plays important roles in the regulation of prophenoloxidase activation and antimicrobial peptide production in O. furnacalis larvae. PMID:25818483

  9. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    SciTech Connect

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga; Sieglová, Irena; Pichová, Iva; Řezáčová, Pavlína

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolated from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.

  10. Intestinal Protease-Activated Receptor-2 and Fecal Serine Protease Activity are Increased in Canine Inflammatory Bowel Disease and May Contribute to Intestinal Cytokine Expression

    PubMed Central

    MAEDA, Shingo; OHNO, Koichi; UCHIDA, Kazuyuki; IGARASHI, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; TSUJIMOTO, Hajime

    2014-01-01

    ABSTRACT Serine proteases elicit cellular responses via protease-activated receptor-2 (PAR-2) which is known to regulate inflammation and the immune response. Although the gastrointestinal tract is exposed to large amounts of proteolytic enzymes, the role of PAR-2 in canine inflammatory bowel disease (IBD) remains unclear. The objective of this study was to investigate the effects of PAR-2 activation on inflammatory cytokine/chemokine gene expression in canine intestine and the expression of intestinal PAR-2 and fecal serine protease activity in dogs with IBD. Duodenal biopsies from healthy dogs were cultured and treated ex vivo with trypsin or PAR-2 agonist peptide, and inflammatory cytokine/chemokine gene expression in the tissues was then quantified by real-time PCR. PAR-2 mRNA and protein expression levels in the duodenal mucosa were examined by real-time PCR and immunohistochemistry, respectively. Fecal serine protease activity was determined by azocasein assay. In ex vivo-cultured duodenum, trypsin and PAR-2 agonist peptide induced significant up-regulation of mRNA expression levels of interleukin-1 β (IL-1β), IL-8, mucosae-associated epithelial chemokine (MEC) and fractalkine, and this up-regulation was inhibited by a serine protease inhibitor. Duodenal PAR-2 mRNA and protein expression levels were higher in dogs with IBD than in healthy control dogs. Fecal serine protease activity was significantly elevated in dogs with IBD, and the level of activity correlated positively with the clinical severity score. These results suggest that PAR-2 may contribute to the pathogenesis of canine IBD by inducing expression of inflammatory mediators in response to luminal serine proteases. PMID:24829081

  11. Protease inhibitor in scorpion (Mesobuthus eupeus) venom prolongs the biological activities of the crude venom.

    PubMed

    Ma, Hakim; Xiao-Peng, Tang; Yang, Shi-Long; Lu, Qiu-Min; Lai, Ren

    2016-08-01

    It is hypothesized that protease inhibitors play an essential role in survival of venomous animals through protecting peptide/protein toxins from degradation by proteases in their prey or predators. However, the biological function of protease inhibitors in scorpion venoms remains unknown. In the present study, a trypsin inhibitor was purified and characterized from the venom of scorpion Mesobuthus eupeus, which enhanced the biological activities of crude venom components in mice when injected in combination with crude venom. This protease inhibitor, named MeKTT-1, belonged to Kunitz-type toxins subfamily. Native MeKTT-1 selectively inhibited trypsin with a Kivalue of 130 nmol·L(-1). Furthermore, MeKTT-1 was shown to be a thermo-stable peptide. In animal behavioral tests, MeKTT-1 prolonged the pain behavior induced by scorpion crude venom, suggesting that protease inhibitors in scorpion venom inhibited proteases and protect the functionally important peptide/protein toxins from degradation, consequently keeping them active longer. In conclusion, this was the first experimental evidence about the natural existence of serine protease inhibitor in the venom of scorpion Mesobuthus eupeus, which preserved the activity of venom components, suggests that scorpions may use protease inhibitors for survival. PMID:27608950

  12. Mapping Inhibitor Binding Modes on an Active Cysteine Protease via NMR Spectroscopy

    PubMed Central

    Lee, Gregory M.; Balouch, Eaman; Goetz, David H.; Lazic, Ana; McKerrow, James H.; Craik, Charles S.

    2013-01-01

    Cruzain is a member of the papain/cathepsin-L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. We report an auto-induction methodology that provides soluble-cruzain at high yields (> 30 mg per liter in minimal media). These increased yields provide sufficient quantities of active enzyme for use in NMR-based ligand mapping. Using CD and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective 15N-Cys, 15N-His, and 13C-Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verifies that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely covalent, non-covalent, and non-interacting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions in order to facilitate lead compound identification and subsequent structural studies. PMID:23181936

  13. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    SciTech Connect

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J.; Kursula, Petri

    2011-04-26

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki=1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1:2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.

  14. Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin.

    PubMed

    Shenoy, Rajesh T; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J

    2011-01-01

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation. PMID:21541315

  15. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    PubMed Central

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J.

    2011-01-01

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation. PMID:21541315

  16. Characterization of the protease activity that cleaves the extracellular domain of {beta}-dystroglycan

    SciTech Connect

    Zhong Di; Saito, Fumiaki; Saito, Yuko; Nakamura, Ayami; Shimizu, Teruo; Matsumura, Kiichiro . E-mail: k-matsu@med.teikyo-u.ac.jp

    2006-06-30

    Dystroglycan (DG) complex, composed of {alpha}DG and {beta}DG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of {beta}DG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of {beta}DG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of {beta}DG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of {beta}DG specifically and (2) that MMP-2 and MMP-9 may be involved in this process.

  17. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis.

    PubMed

    Molière, Noël; Hoßmann, Jörn; Schäfer, Heinrich; Turgay, Kürşad

    2016-01-01

    The Hsp100/Clp protease complexes of Bacillus subtilis ClpXP and ClpCP are involved in the control of many interconnected developmental and stress response regulatory networks, including competence, redox stress response, and motility. Here we analyzed the role of regulatory proteolysis by ClpXP and ClpCP in motility development. We have demonstrated that ClpXP acts on the regulation of motility by controlling the levels of the oxidative and heat stress regulator Spx. We obtained evidence that upon oxidative stress Spx not only induces the thiol stress response, but also transiently represses the transcription of flagellar genes. Furthermore, we observed that in addition to the known impact of ClpCP via the ComK/FlgM-dependent pathway, ClpCP also affects flagellar gene expression via modulating the activity and levels of the global regulator DegU-P. This adds another layer to the intricate involvement of Clp mediated regulatory proteolysis in different gene expression programs, which may allow to integrate and coordinate different signals for a better-adjusted response to the changing environment of B. subtilis cells. PMID:27014237

  18. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis

    PubMed Central

    Molière, Noël; Hoßmann, Jörn; Schäfer, Heinrich; Turgay, Kürşad

    2016-01-01

    The Hsp100/Clp protease complexes of Bacillus subtilis ClpXP and ClpCP are involved in the control of many interconnected developmental and stress response regulatory networks, including competence, redox stress response, and motility. Here we analyzed the role of regulatory proteolysis by ClpXP and ClpCP in motility development. We have demonstrated that ClpXP acts on the regulation of motility by controlling the levels of the oxidative and heat stress regulator Spx. We obtained evidence that upon oxidative stress Spx not only induces the thiol stress response, but also transiently represses the transcription of flagellar genes. Furthermore, we observed that in addition to the known impact of ClpCP via the ComK/FlgM-dependent pathway, ClpCP also affects flagellar gene expression via modulating the activity and levels of the global regulator DegU-P. This adds another layer to the intricate involvement of Clp mediated regulatory proteolysis in different gene expression programs, which may allow to integrate and coordinate different signals for a better-adjusted response to the changing environment of B. subtilis cells. PMID:27014237

  19. Protoporphyrins Enhance Oligomerization and Enzymatic Activity of HtrA1 Serine Protease

    PubMed Central

    Jo, Hakryul; Patterson, Victoria; Stoessel, Sean; Kuan, Chia-Yi; Hoh, Josephine

    2014-01-01

    High temperature requirement protein A1 (HtrA1), a secreted serine protease of the HtrA family, is associated with a multitude of human diseases. However, the exact functions of HtrA1 in these diseases remain poorly understood. We seek to unravel the mechanisms of HtrA1 by elucidating its interactions with chemical or biological modulators. To this end, we screened a small molecule library of 500 bioactive compounds to identify those that alter the formation of extracellular HtrA1 complexes in the cell culture medium. An initial characterization of two novel hits from this screen showed that protoporphyrin IX (PPP-IX), a precursor in the heme biosynthetic pathway, and its metalloporphyrin (MPP) derivatives fostered the oligomerization of HtrA1 by binding to the protease domain. As a result of the interaction with MPPs, the proteolytic activity of HtrA1 against Fibulin-5, a specific HtrA1 substrate in age-related macular degeneration (AMD), was increased. This physical interaction could be abolished by the missense mutations of HtrA1 found in patients with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Furthermore, knockdown of HtrA1 attenuated apoptosis induced by PPP-IX. These results suggest that PPP-IX, or its derivatives, and HtrA1 may function as co-factors whereby porphyrins enhance oligomerization and the protease activity of HtrA1, while active HtrA1 elevates the pro-apoptotic actions of porphyrin derivatives. Further analysis of this interplay may shed insights into the pathogenesis of diseases such as AMD, CARASIL and protoporphyria, as well as effective therapeutic development. PMID:25506911

  20. Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum.

    PubMed

    Yan, Liu; Qian, Yang

    2009-01-01

    Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi. Trichoderma harzianum mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. A gene (SS10) encoding a subtilisin-like protease was cloned from T. harzianum T88, a biocontrol agent effective against soil-borne fungal pathogens. The full-length cDNA was isolated by 5' and 3' rapid amplification of the cDNA ends. The coding region of the gene is 1302 bp long, encoding 433 amino acids of a predicted protein with a molecular mass of 45 kDa and a pI of 6.1. Analysis of the deduced amino acid sequence revealed that this protein had homology to the serine proteases of the subtilisin-like superfamily (subtilases) (EC 3.4.21.) and had a predicted active site made up of the catalytic residues Asp 187, His 218 and Ser 376. Northern experiments demonstrated that SS10 was induced in response to different fungal cell walls. Subtilisin-like protease gene SS10 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (17.8 U mL(-1)) 60 h after induction with galactose. The optimal enzyme reaction temperature was 50 degrees C and the optimal pH was 8. The subtilisin-like protease exerted broad-spectrum antifungal activity against Alternaria alternata, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Cytospora chrysosperma. PMID:19025577

  1. A simple methodology to assess endolysosomal protease activity involved in antigen processing in human primary cells

    PubMed Central

    2013-01-01

    Background Endolysosomes play a key role in maintaining the homeostasis of the cell. They are made of a complex set of proteins that degrade lipids, proteins and sugars. Studies involving endolysosome contribution to cellular functions such as MHC class I and II epitope production have used recombinant endolysosomal proteins, knockout mice that lack one of the enzymes or purified organelles from human tissue. Each of these approaches has some caveats in analyzing endolysosomal enzyme functions. Results In this study, we have developed a simple methodology to assess endolysosomal protease activity. By varying the pH in crude lysate from human peripheral blood mononuclear cells (PBMCs), we documented increased endolysosomal cathepsin activity in acidic conditions. Using this new method, we showed that the degradation of HIV peptides in low pH extracts analyzed by mass spectrometry followed similar kinetics and degradation patterns as those performed with purified endolysosomes. Conclusion By using crude lysate in the place of purified organelles this method will be a quick and useful tool to assess endolysosomal protease activities in primary cells of limited availability. This quick method will especially be useful to screen peptide susceptibility to degradation in endolysosomal compartments for antigen processing studies, following which detailed analysis using purified organelles may be used to study specific peptides. PMID:23937268

  2. Pharmacological properties and pathophysiological significance of a Kunitz-type protease inhibitor (Rusvikunin-II) and its protein complex (Rusvikunin complex) purified from Daboia russelii russelii venom.

    PubMed

    Mukherjee, Ashis K; Mackessy, Stephen P

    2014-10-01

    A 7.1 kDa basic peptide (Rusvikunin-II) was purified from a previously described protein complex (Rusvikunin complex, consists of Rusvikunin and Rusvikunin-II) of Daboia russelii russelii venom. The N-terminal sequence of Rusvikunin-II was found to be blocked, but peptide mass fingerprinting analysis indicated its identity as Kunitz-type basic protease inhibitor 2, previously reported from Russell's Viper venom. A tryptic peptide sequence of Rusvikunin-II containing the N-terminal sequence HDRPTFCNLFPESGR demonstrated significant sequence homology to venom basic protease inhibitors, Kunitz-type protease inhibitors and trypsin inhibitors. The secondary structure of Rusvikunin-II was dominated by β-sheets (60.4%), followed by random coil (38.2%), whereas α-helix (1.4%) contributes the least to its secondary structure. Both Rusvikunin-II and the Rusvikunin complex demonstrated dose-dependent anticoagulant activity; however, the anticoagulant potency of latter was found to be higher. Both inhibited the amidolytic activity of trypsin > plasmin > FXa, fibrinogen clotting activity of thrombin, and, to a lesser extent, the prothrombin activation property of FXa; however, the inhibitory effect of the Rusvikunin complex was more pronounced. Neither Rusvikunin-II nor Rusvikunin complex inhibited the amidolytic activity of chymotrypsin and thrombin. Rusvikunin-II at 10 μg/ml was not cytotoxic to Colo-205, MCF-7 or 3T3 cancer cells; conversely, Rusvikunin complex showed ∼30% reduction of MCF-7 cells under identical experimental conditions. Rusvikunin-II (5.0 mg/kg body weight, i.p. injection) was not lethal to mice or House Geckos; nevertheless, it showed in vivo anticoagulant action in mice. However, the Rusvikunin complex (at 5.0 mg/kg) was toxic to NSA mice, but not to House Geckos, suggesting it has prey-specific toxicity. Rusvikunin complex-treated mice exhibited dyspnea and hind-limb paresis prior to death. The present study indicates that the Kunitz

  3. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  4. Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation.

    PubMed

    Leen, Eoin N; Baeza, Gabriela; Curry, Stephen

    2012-01-01

    Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1-2, NS3, NS4, NS5, NS6(pro), NS7(pol)) by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6(pro), which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6(pro) within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6(pro) C-terminus is formed in vivo by NS6(pro) processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6(pro) specificity. PMID:22685603

  5. Activation mechanism of thiol protease precursor from broiler chicken specific Staphylococcus aureus strain CH-91.

    PubMed

    Wladyka, Benedykt; Dubin, Grzegorz; Dubin, Adam

    2011-01-10

    Staphylococcus aureus strain CH-91 isolated from chicken dermatitis lesions produces large quantities of thiol protease implicated in disease formation. Observed overproduction requires efficient activation of the protease precursor which mechanism is studied here in detail. Wild type and mutant precursor forms are expressed in E. coli to test different hypotheses on the activation process. It is demonstrated that wild type precursor undergoes rapid autocatalytic processing whereas proteolytically inactive catalytic triad cysteine mutant (C(249)A) of the precursor is stable, but can be processed by minute quantities of active protease. It is concluded that limited intramolecular proteolysis is mainly responsible for efficient activation but, a positive feedback loop also contributes to the process. Both activation pathways allow efficient production of mature extracellular thiol protease, a putative virulence factor specific for avian strains of S. aureus. PMID:20598816

  6. Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms

    PubMed Central

    2013-01-01

    Background Mucosal surfaces are coated with layers of mucus gel that protect the underlying tissues and promote colonization by members of the commensal microflora. Lactobacillus fermentum is a common inhabitant of the oral cavity, gastrointestinal and reproductive tracts and is one of the most important lactic acid bacteria contributing to the formation of a healthy intestinal microflora. We have investigated the proteolytic activity in L. fermentum in response to interactions with the MUC5B mucin, which is a major component of mucus gels at sites colonized by this micro-organism. Methods Biofilms of Lactobacillus fermentum were established in mini-flow cells in the presence or absence of human salivary MUC5B. The proteolytic activity of biofilm cells was examined in a confocal scanning laser microscope with a fluorescent protease substrate. Degradation of MUC5B by L. fermentum was analysed using SDS-PAGE followed by Western blotting with antisera raised against the MUC5B peptide. Cell surface proteins differentialy expressed in a MUC5B-rich environment were identified with the aid of comparative two-dimensional electrophoresis followed by LC-MS/MS. Results Lactobacillus fermentum adhered well to surfaces coated with MUC5B mucin and in biofilms of L. fermentum formed in a MUC5B environment, the proportion of proteolytically-active cells (47 ± 0.6% of the population), as shown by cleavage of a fluorescent casein substrate, was significantly greater (p < 0.01) than that in biofilms formed in nutrient broth (0.4 ± 0.04% of the population). Thus, the presence of MUC5B mucins enhanced bacterial protease activity. This effect was mainly attributable to contact with surface-associated mucins rather than those present in the fluid phase. Biofilms of L. fermentum were capable of degrading MUC5B mucins suggesting that this complex glycoprotein can be exploited as a nutrient source by the bacteria. Comparison of the surface proteomes of biofilm cells of L

  7. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    SciTech Connect

    Spannaus, Ralf; Bodem, Jochen

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies. The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.

  8. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    SciTech Connect

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie; Gatchalian, Jovylyn; Cornillez-Ty, Cromwell; Kuhn, Peter

    2010-03-04

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication by processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.

  9. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease. PMID

  10. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli.

    PubMed

    Liew, Lynette Sin Yee; Lee, Michelle Yueqi; Wong, Ying Lei; Cheng, Jinting; Li, Qingxin; Kang, CongBao

    2016-05-01

    Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease. PMID:26849963

  11. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    SciTech Connect

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.

  12. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape.

    PubMed

    Poret, Marine; Chandrasekar, Balakumaran; van der Hoorn, Renier A L; Avice, Jean-Christophe

    2016-05-01

    Oilseed rape (Brassica napus L.) is a crop plant characterized by a poor nitrogen (N) use efficiency that is mainly due to low N remobilization efficiency during the sequential leaf senescence of the vegetative stage. As a high leaf N remobilization efficiency was strongly linked to a high remobilization of proteins during leaf senescence of rapeseed, our objective was to identify senescence-associated protease activities implicated in the protein degradation. To reach this goal, leaf senescence processes and protease activities were investigated in a mature leaf becoming senescent in plants subjected to ample or low nitrate supply. The characterization of protease activities was performed by using in vitro analysis of RuBisCO degradation with or without inhibitors of specific protease classes followed by a protease activity profiling using activity-dependent probes. As expected, the mature leaf became senescent regardless of the nitrate treatment, and nitrate limitation enhanced the senescence processes associated with an enhanced degradation of soluble proteins. The characterization of protease activities revealed that: (i) aspartic proteases and the proteasome were active during senescence regardless of nitrate supply, and (ii) the activities of serine proteases and particularly cysteine proteases (Papain-like Cys proteases and vacuolar processing enzymes) increased when protein remobilization associated with senescence was accelerated by nitrate limitation. Short statement: Serine and particularly cysteine proteases (both PLCPs and VPEs) seem to play a crucial role in the efficient protein remobilization when leaf senescence of oilseed rape was accelerated by nitrate limitation. PMID:26993244

  13. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation.

    PubMed

    Estevez, Brian; Kim, Kyungho; Delaney, M Keegan; Stojanovic-Terpo, Aleksandra; Shen, Bo; Ruan, Changgeng; Cho, Jaehyung; Ruggeri, Zaverio M; Du, Xiaoping

    2016-02-01

    Thrombin-induced cellular response in platelets not only requires protease-activated receptors (PARs), but also involves another thrombin receptor, the glycoprotein Ib-IX complex (GPIb-IX). It remains controversial how thrombin binding to GPIb-IX stimulates platelet responses. It was proposed that GPIb-IX serves as a dock that facilitates thrombin cleavage of protease-activated receptors, but there are also reports suggesting that thrombin binding to GPIb-IX induces platelet activation independent of PARs. Here we show that GPIb is neither a passive thrombin dock nor a PAR-independent signaling receptor. We demonstrate a novel signaling-mediated cooperativity between PARs and GPIb-IX. Low-dose thrombin-induced PAR-dependent cell responses require the cooperativity of GPIb-IX signaling, and conversely, thrombin-induced GPIb-IX signaling requires cooperativity of PARs. This mutually dependent cooperativity requires a GPIb-IX-specific 14-3-3-Rac1-LIMK1 signaling pathway, and activation of this pathway also requires PAR signaling. The cooperativity between GPIb-IX signaling and PAR signaling thus drives platelet activation at low concentrations of thrombin, which are important for in vivo thrombosis. PMID:26585954

  14. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor.

    PubMed

    Lei, Jian; Hansen, Guido; Nitsche, Christoph; Klein, Christian D; Zhang, Linlin; Hilgenfeld, Rolf

    2016-07-29

    The ongoing Zika virus (ZIKV) outbreak is linked to severe neurological disorders. ZIKV relies on its NS2B/NS3 protease for polyprotein processing; hence, this enzyme is an attractive drug target. The 2.7 angstrom; crystal structure of ZIKV protease in complex with a peptidomimetic boronic acid inhibitor reveals a cyclic diester between the boronic acid and glycerol. The P2 4-aminomethylphenylalanine moiety of the inhibitor forms a salt-bridge with the nonconserved Asp(83) of NS2B; ion-pairing between Asp(83) and the P2 residue of the substrate likely accounts for the enzyme's high catalytic efficiency. The unusual dimer of the ZIKV protease:inhibitor complex seen in the crystal may provide a model for assemblies formed at high local concentrations of protease at the endoplasmatic reticulum membrane, the site of polyprotein processing. PMID:27386922

  15. Protonation state and free energy calculation of HIV-1 protease-inhibitor complex based on electrostatic polarisation effect

    NASA Astrophysics Data System (ADS)

    Yang, Maoyou; Jiang, Xiaonan; Jiang, Ning

    2014-06-01

    The protonation states of catalytic Asp25/25‧ residues remarkably affect the binding mechanism of the HIV-1 protease-inhibitor complex. Here we report a molecular dynamics simulation study, which includes electrostatic polarisation effect, to investigate the influence of Asp25/25‧ protonation states upon the binding free energy of the HIV-1 protease and a C2-symmetric inhibitor. Good agreements are obtained on inhibitor structure, hydrogen bond network, and binding free energy between our theoretical calculations and the experimental data. The calculations show that the Asp25 residue is deprotonated, and the Asp25‧ residue is protonated. Our results reveal that the Asp25/25‧ residues can have different protonation states when binding to different inhibitors although the protease and the inhibitors have the same symmetry. This study offers some insights into understanding the protonation state of HIV-1 protease-inhibitor complex, which could be helpful in designing new inhibitor molecules.

  16. Antithrombotic and Antioxidant Activity of Amaranth Hydrolysate Obtained by Activation of an Endogenous Protease.

    PubMed

    Sabbione, Ana Clara; Ibañez, Sabrina M; Martínez, E Nora; Añón, María Cristina; Scilingo, Adriana A

    2016-06-01

    Ingestion of diets with antithrombotic and antioxidant components offer a convenient and effective way to prevent and reduce the incidence of cardiovascular diseases. The aim of the present work was to obtain an amaranth hydrolysate by the activation of an endogenous aspartic protease, to establish adequate experimental conditions, and to evaluate its antithrombotic and antioxidant activity in order to assess its potential application as an ingredient in functional foods. The results obtained not only confirmed the presence of an endogenous protease in the amaranth isolate, but also allowed us to select an adequate incubation conditions (pH 2, 40 °C, 16 h). The hydrolysate obtained (degree of hydrolysis 5.3 ± 0.4 %) showed potential antithrombotic activity (IC50 = 5.9 ± 0.1 mg soluble protein/mL) and had more antioxidant activity than the isolate, indicating that the activation of the protease released bioactive peptides from amaranth proteins. Decreasing the pH is a simple and cheap process and is another way to obtain potential functional ingredients with bioactive compounds. PMID:27023251

  17. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation.

    PubMed

    Wright, S C; Wei, Q S; Zhong, J; Zheng, H; Kinder, D H; Larrick, J W

    1994-12-01

    We report the purification of a protease from tumor cells undergoing apoptosis that is involved in activating DNA fragmentation. Initial studies revealed that two inhibitors of serine proteases, N-1-tosylamide-2-phenylethylchloromethyl ketone and carbobenzoxy-Ala-Ala-borophe (DK120), suppressed tumor necrosis factor or ultraviolet (UV) light-induced DNA fragmentation in the U937 histiocytic lymphoma as well as UV light-induced DNA fragmentation in the BT-20 breast carcinoma, HL-60 myelocytic leukemia, and 3T3 fibroblasts. The protease was purified by affinity chromatography with DK120 as ligand and showed high activity on a synthetic substrate preferred by elastase-like enzymes (Ala-Ala-Pro-Val p-nitroanilide), but was inactive on the trypsin substrate, N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester, or the chymotrypsin substrate, Ala-Ala-Pro-Phe p-nitroanilide. The activity of the DK120-binding protease purified from U937 cells undergoing apoptosis was increased approximately 10-fold over that recovered from normal cells. Further purification to homogeneity by heparin-Sepharose affinity chromatography followed by reverse phase high-performance liquid chromatography revealed a single band of 24 kD on a silver-stained sodium dodecyl sulfate gel. In addition to protease activity, the purified enzyme induced DNA fragmentation into multiples of 180 basepairs in isolated U937 nuclei. These findings suggest the 24-kD protease is a novel enzyme that activates DNA fragmentation in U937 cells undergoing apoptosis. PMID:7964487

  18. Purification and characterization of a prothrombin-activating protease from Nephila clavata.

    PubMed

    Joo, Han-Seung; Park, Gun-Chun; Cho, Woo Ri; Tak, Eunsik; Paik, Seung R; Chang, Chung-Soon

    2002-03-01

    We report upon the purification and characterization of a novel prothrombin-activating enzyme from the body fluid (total homogenates of isolated digestive tract without eggs, spinnerets and silk glands) of the spider, Nephila clavata by a combination of acetone fractionation, ion exchange, and Soybean trypsin inhibitor-Sepharose chromatography. Analysis of the purified enzyme with SDS-PAGE and gel filtration revealed a single polypeptide chain with an apparent molecular weight of 24kDa. The proteolytic activity of the enzyme was stable up to 50 degrees C, however, it became unstable over 55 degrees C. The enzyme had an optimum pH of 8, and Ca(2+) was not required for the enzyme activity. According to inhibition profiles obtained with several serine protease inhibitors such as PMSF and benzamidine, the purified protease is a member of the serine proteases. Bz-Ile-Glu(gamma-OR)- Gly-Arg-pNA and Z-Arg-Gly-Arg-pNA which are known as substrates for factor Xa, were hydrolyzed favorably by the enzyme. And the Nephila protease could produce thrombin from prothrombin at nM range, and form the turbid ring using fibrinogen-agarose plate. The results obtained confirmed that the purified protease is a potent prothrombin-activating activity belonging to the family of serine protease. PMID:11711126

  19. A true autoactivating enzyme. Structural insight into mannose-binding lectin-associated serine protease-2 activations.

    PubMed

    Gál, Péter; Harmat, Veronika; Kocsis, Andrea; Bián, Tünde; Barna, László; Ambrus, Géza; Végh, Barbara; Balczer, Júlia; Sim, Robert B; Náray-Szabó, Gábor; Závodszky, Péter

    2005-09-30

    Few reports have described in detail a true autoactivation process, where no extrinsic cleavage factors are required to initiate the autoactivation of a zymogen. Herein, we provide structural and mechanistic insight into the autoactivation of a multidomain serine protease: mannose-binding lectin-associated serine protease-2 (MASP-2), the first enzymatic component in the lectin pathway of complement activation. We characterized the proenzyme form of a MASP-2 catalytic fragment encompassing its C-terminal three domains and solved its crystal structure at 2.4 A resolution. Surprisingly, zymogen MASP-2 is capable of cleaving its natural substrate C4, with an efficiency about 10% that of active MASP-2. Comparison of the zymogen and active structures of MASP-2 reveals that, in addition to the activation domain, other loops of the serine protease domain undergo significant conformational changes. This additional flexibility could play a key role in the transition of zymogen MASP-2 into a proteolytically active form. Based on the three-dimensional structures of proenzyme and active MASP-2 catalytic fragments, we present model for the active zymogen MASP-2 complex and propose a mechanism for the autoactivation process. PMID:16040602

  20. Design, synthesis, and activity of nanocellulosic protease sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we contrast the molecular assembly, and biochemical utility of nanocellulosic materials prepared from cotton and wood as protease sensors. The cotton-based nanocellulosic substrates were prepared in a variety of ways to produce nanocrystals, films and aerogels, which were derivatized with eithe...

  1. Crystal Structure of Feline Infectious Peritonitis Virus Main Protease in Complex with Synergetic Dual Inhibitors

    PubMed Central

    Wang, Fenghua; Chen, Cheng; Liu, Xuemeng; Yang, Kailin

    2015-01-01

    ABSTRACT Coronaviruses (CoVs) can cause highly prevalent diseases in humans and animals. Feline infectious peritonitis virus (FIPV) belongs to the genus Alphacoronavirus, resulting in a lethal systemic granulomatous disease called feline infectious peritonitis (FIP), which is one of the most important fatal infectious diseases of cats worldwide. No specific vaccines or drugs have been approved to treat FIP. CoV main proteases (Mpros) play a pivotal role in viral transcription and replication, making them an ideal target for drug development. Here, we report the crystal structure of FIPV Mpro in complex with dual inhibitors, a zinc ion and a Michael acceptor. The complex structure elaborates a unique mechanism of two distinct inhibitors synergizing to inactivate the protease, providing a structural basis to design novel antivirals and suggesting the potential to take advantage of zinc as an adjunct therapy against CoV-associated diseases. IMPORTANCE Coronaviruses (CoVs) have the largest genome size among all RNA viruses. CoV infection causes various diseases in humans and animals, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). No approved specific drugs or vaccinations are available to treat their infections. Here, we report a novel dual inhibition mechanism targeting CoV main protease (Mpro) from feline infectious peritonitis virus (FIPV), which leads to lethal systemic granulomatous disease in cats. Mpro, conserved across all CoV genomes, is essential for viral replication and transcription. We demonstrated that zinc ion and a Michael acceptor-based peptidomimetic inhibitor synergistically inactivate FIPV Mpro. We also solved the structure of FIPV Mpro complexed with two inhibitors, delineating the structural view of a dual inhibition mechanism. Our study provides new insight into the pharmaceutical strategy against CoV Mpro through using zinc as an adjuvant therapy to enhance the efficacy of an irreversible

  2. Cathepsin B Activity Initiates Apoptosis via Digestive Protease Activation in Pancreatic Acinar Cells and Experimental Pancreatitis.

    PubMed

    Sendler, Matthias; Maertin, Sandrina; John, Daniel; Persike, Maria; Weiss, F Ulrich; Krüger, Burkhard; Wartmann, Thomas; Wagh, Preshit; Halangk, Walter; Schaschke, Norbert; Mayerle, Julia; Lerch, Markus M

    2016-07-01

    Pancreatitis is associated with premature activation of digestive proteases in the pancreas. The lysosomal hydrolase cathepsin B (CTSB) is a known activator of trypsinogen, and its deletion reduces disease severity in experimental pancreatitis. Here we studied the activation mechanism and subcellular compartment in which CTSB regulates protease activation and cellular injury. Cholecystokinin (CCK) increased the activity of CTSB, cathepsin L, trypsin, chymotrypsin, and caspase 3 in vivo and in vitro and induced redistribution of CTSB to a secretory vesicle-enriched fraction. Neither CTSB protein nor activity redistributed to the cytosol, where the CTSB inhibitors cystatin-B/C were abundantly present. Deletion of CTSB reduced and deletion of cathepsin L increased intracellular trypsin activation. CTSB deletion also abolished CCK-induced caspase 3 activation, apoptosis-inducing factor, as well as X-linked inhibitor of apoptosis protein degradation, but these depended on trypsinogen activation via CTSB. Raising the vesicular pH, but not trypsin inhibition, reduced CTSB activity. Trypsin inhibition did not affect apoptosis in hepatocytes. Deletion of CTSB affected apoptotic but not necrotic acinar cell death. In summary, CTSB in pancreatitis undergoes activation in a secretory, vesicular, and acidic compartment where it activates trypsinogen. Its deletion or inhibition regulates acinar cell apoptosis but not necrosis in two models of pancreatitis. Caspase 3-mediated apoptosis depends on intravesicular trypsinogen activation induced by CTSB, not CTSB activity directly, and this mechanism is pancreas-specific. PMID:27226576

  3. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation

    PubMed Central

    Zhang, Huiyun; Zeng, Xiaoning; He, Shaoheng

    2014-01-01

    Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy. PMID:24876677

  4. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes.

    PubMed

    Edgington, Laura E; Verdoes, Martijn; Bogyo, Matthew

    2011-12-01

    Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases. PMID:22098719

  5. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro

    PubMed Central

    Lü, Jian-Ming; Yan, Shaoyu; Jamaluddin, Saha; Weakley, Sarah M.; Liang, Zhengdong; Siwak, Edward B.; Yao, Qizhi; Chen, Changyi

    2012-01-01

    Summary Background Several HIV protease mutations, which are resistant to clinical HIV protease inhibitors (PIs), have been identified. There is a great need for second-generation PIs with different chemical structures and/or with an alternative mode of inhibition. Ginkgolic acid is a natural herbal substance and a major component of the lipid fraction in the nutshells of the Ginkgo biloba tree. The objective of this study was to determine whether ginkgolic acid could inhibit HIV protease activity in a cell free system and HIV infection in human cells. Material/Methods Purified ginkgolic acid and recombinant HIV-1 HXB2 KIIA protease were used for the HIV protease activity assay. Human peripheral blood mononuclear cells (PBMCs) were used for HIV infection (HIV-1SF162 virus), determined by a p24gag ELISA. Cytotoxicity was also determined. Results Ginkgolic acid (31.2 μg/ml) inhibited HIV protease activity by 60%, compared with the negative control, and the effect was concentration-dependent. In addition, ginkgolic acid treatment (50 and 100 μg/ml) effectively inhibited the HIV infection at day 7 in a concentration-dependent manner. Ginkgolic acid at a concentration of up to 150 μg/ml demonstrated very limited cytotoxicity. Conclusions Ginkgolic acid effectively inhibits HIV protease activity in a cell free system and HIV infection in PBMCs without significant cytotoxicity. Ginkgolic acid may inhibit HIV protease through different mechanisms than current FDA-approved HIV PI drugs. These properties of ginkgolic acid make it a promising therapy for HIV infection, especially as the clinical problem of viral resistance to HIV PIs continues to grow. PMID:22847190

  6. The role of the second binding loop of the cysteine protease inhibitor, cystatin A (stefin A), in stabilizing complexes with target proteases is exerted predominantly by Leu73.

    PubMed

    Pavlova, Alona; Björk, Ingemar

    2002-11-01

    The aim of this work was to elucidate the roles of individual residues within the flexible second binding loop of human cystatin A in the inhibition of cysteine proteases. Four recombinant variants of the inhibitor, each with a single mutation, L73G, P74G, Q76G or N77G, in the most exposed part of this loop were generated by PCR-based site-directed mutagenesis. The binding of these variants to papain, cathepsin L, and cathepsin B was characterized by equilibrium and kinetic methods. Mutation of Leu73 decreased the affinity for papain, cathepsin L and cathepsin B by approximately 300-fold, >10-fold and approximately 4000-fold, respectively. Mutation of Pro74 decreased the affinity for cathepsin B by approximately 10-fold but minimally affected the affinity for the other two enzymes. Mutation of Gln76 and Asn77 did not alter the affinity of cystatin A for any of the proteases studied. The decreased affinities were caused exclusively by increased dissociation rate constants. These results show that the second binding loop of cystatin A plays a major role in stabilizing the complexes with proteases by retarding their dissociation. In contrast with cystatin B, only one amino-acid residue of the loop, Leu73, is of principal importance for this effect, Pro74 assisting to a minor extent only in the case of cathepsin B binding. The contribution of the second binding loop of cystatin A to protease binding varies with the protease, being largest, approximately 45% of the total binding energy, for inhibition of cathepsin B. PMID:12423365

  7. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  8. Characterization of the Protease Activity of Detergents: Laboratory Practicals for Studying the Protease Profile and Activity of Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-01-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body…

  9. In vivo imaging and biochemical characterization of protease function using fluorescent activity-based probes

    PubMed Central

    Edgington, Laura E.; Bogyo, Matthew

    2013-01-01

    Activity-based probes (ABPs) are reactive small molecules that covalently bind to active enzymes. When tagged with a fluorophore, ABPs serve as powerful tools to investigate enzymatic activity across a wide variety of applications. In this article, we will provide detailed protocols for using fluorescent ABPs to biochemically characterize the activity of proteases in vitro. Furthermore, we will describe how these probes can be applied to image protease activity in live animals and tissues along with subsequent analysis by histology, flow cytometry, and SDS-PAGE. PMID:23788323

  10. Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction

    NASA Astrophysics Data System (ADS)

    Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.

    1986-04-01

    A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.

  11. Effect of Insect Larval Midgut Proteases on the Activity of Bacillus thuringiensis Cry Toxins▿

    PubMed Central

    Fortier, Mélanie; Vachon, Vincent; Frutos, Roger; Schwartz, Jean-Louis; Laprade, Raynald

    2007-01-01

    To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities. PMID:17693568

  12. MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.

    PubMed

    Schmitt, Anja; Grondona, Paula; Maier, Tabea; Brändle, Marc; Schönfeld, Caroline; Jäger, Günter; Kosnopfel, Corinna; Eberle, Franziska C; Schittek, Birgit; Schulze-Osthoff, Klaus; Yazdi, Amir S; Hailfinger, Stephan

    2016-04-01

    The protease activity of the paracaspase mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor nuclear factor-κB and is thus essential for the expression of inflammatory target genes. MALT1 is not only present in cells of the hematopoietic lineage, but is ubiquitously expressed. Here we report that stimulation with zymosan or Staphylococcus aureus induced MALT1 protease activity in human primary keratinocytes. Inhibition of the Src family of kinases or novel protein kinase C isoforms as well as silencing of CARMA2 or BCL10 interfered with activation of MALT1 protease. Silencing or inhibition of MALT1 protease strongly decreased the expression of important inflammatory genes such as TNFα, IL-17C, CXCL8 and HBD-2. MALT1-inhibited cells were unable to mount an antimicrobial response upon zymosan stimulation or phorbolester/ionomycin treatment, demonstrating a central role of MALT1 protease activity in keratinocyte immunity and suggesting MALT1 as a potential target in inflammatory skin diseases. PMID:26767426

  13. Production, characterization, gene cloning, and nematocidal activity of the extracellular protease from Stenotrophomonas maltophilia N4.

    PubMed

    Jankiewicz, Urszula; Larkowska, Ewa; Swiontek Brzezinska, Maria

    2016-06-01

    A rhizosphere strain of the bacterium Stenotrophomonas maltophilia N4 secretes the serine protease PN4, whose molecular mass is approximately 42 kDa. The optimal temperature for the enzyme activity of the 11-fold purified protein was 50°C and the optimal pH was 10.5. The activity of the enzyme was strongly inhibited by specific serine protease inhibitors, which allowed for its classification as an alkaline serine protease family. Ca(2+) ions stimulated the activity of the protease PN4, while Mg(2+) ions stabilized its activity, and Zn(2+) and Cd(2+) ions strongly inhibited its activity. The enzyme has broad substrate specificity. For example, it is able to hydrolyse casein, keratin, albumin, haemoglobin, and gelatin, as well as the insoluble modified substrates azure keratin and azocoll. The gene that encodes the 1740 bp precursor form of the enzyme (accession number: LC031815) was cloned. We then deduced that its amino acid sequence includes the region of the conserved domain of the S8 family of peptidases as well as the catalytic triad Asp/His/Ser. The bacterial culture fluid as well as the purified protease PN4 demonstrated biocidal activity with regard to the nematodes Caenorhabditis elegans and Panagrellus spp. PMID:26896861

  14. Conformational Lability in Serine Protease Active Sites: Structures of Hepatocyte Growth Factor Activator (HGFA) Alone and with the Inhibitory Domain from HGFA Inhibitor-1B

    SciTech Connect

    Shia, Steven; Stamos, Jennifer; Kirchhofer, Daniel; Fan, Bin; Wu, Judy; Corpuz, Raquel T.; Santell, Lydia; Lazarus, Robert A.; Eigenbrot, Charles

    2010-07-20

    Hepatocyte growth factor activator (HGFA) is a serine protease that converts hepatocyte growth factor (HGF) into its active form. When activated HGF binds its cognate receptor Met, cellular signals lead to cell growth, differentiation, and migration, activities which promote tissue regeneration in liver, kidney and skin. Intervention in the conversion of HGF to its active form has the potential to provide therapeutic benefit where HGF/Met activity is associated with tumorigenesis. To help identify ways to moderate HGF/Met effects, we have determined the molecular structure of the protease domain of HGFA. The structure we determined, at 2.7 {angstrom} resolution, with no pseudo-substrate or inhibitor bound is characterized by an unconventional conformation of key residues in the enzyme active site. In order to find whether this apparently non-enzymatically competent arrangement would persist in the presence of a strongly-interacting inhibitor, we also have determined, at 2.6 {angstrom} resolution, the X-ray structure of HGFA complexed with the first Kunitz domain (KD1) from the physiological inhibitor hepatocyte growth factor activator inhibitor 1B (HAI-1B). In this complex we observe a rearranged substrate binding cleft that closely mirrors the cleft of other serine proteases, suggesting an extreme conformational dynamism. We also characterize the inhibition of 16 serine proteases by KD1, finding that the previously reported enzyme specificity of the intact extracellular region of HAI-1B resides in KD1 alone. We find that HGFA, matriptase, hepsin, plasma kallikrein and trypsin are potently inhibited, and use the complex structure to rationalize the structural basis of these results.

  15. Periodontal Treatment Downregulates Protease-Activated Receptor 2 in Human Gingival Crevicular Fluid Cells

    PubMed Central

    Euzebio Alves, Vanessa Tubero; Bueno da Silva, Henrique Aparecido; de França, Bruno Nunes; Eichler, Rosangela Santos; Saraiva, Luciana; de Carvalho, Maria Helena Catelli

    2013-01-01

    Protease-activated receptor 2 (PAR2) is implicated in the pathogenesis of chronic inflammatory diseases, including periodontitis; it can be activated by gingipain and produced by Porphyromonas gingivalis and by neutrophil protease 3 (P3). PAR2 activation plays a relevant role in inflammatory processes by inducing the release of important inflammatory mediators associated with periodontal breakdown. The effects of periodontal treatment on PAR2 expression and its association with levels of proinflammatory mediators and activating proteases were investigated in chronic periodontitis patients. Positive staining for PAR2 was observed in gingival crevicular fluid cells and was reflective of tissue destruction. Overexpression of PAR2 was positively associated with inflammatory clinical parameters and with the levels of interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha, matrix metalloprotease 2 (MMP-2), MMP-8, hepatocyte growth factor, and vascular endothelial growth factor. Elevated levels of gingipain and P3 and decreased levels of dentilisin and the protease inhibitors secretory leukocyte protease inhibitor and elafin were also associated with PAR2 overexpression. Healthy periodontal sites from individuals with chronic periodontitis showed diminished expression of PAR2 mRNA and the PAR2 protein (P < 0.05). Furthermore, periodontal treatment resulted in decreased PAR2 expression and correlated with decreased expression of inflammatory mediators and activating proteases. We concluded that periodontal treatment resulted in decreased levels of proteases and that proinflammatory mediators are associated with decreased PAR2 expression, suggesting that PAR2 expression is influenced by the presence of periodontal infection and is not a constitutive characteristic favoring periodontal inflammation. PMID:24042113

  16. A conserved activation cluster is required for allosteric communication in HtrA-family proteases.

    PubMed

    de Regt, Anna K; Kim, Seokhee; Sohn, Jungsan; Grant, Robert A; Baker, Tania A; Sauer, Robert T

    2015-03-01

    In E. coli, outer-membrane stress causes a transcriptional response through a signaling cascade initiated by DegS cleavage of a transmembrane antisigma factor. Each subunit of DegS, an HtrA-family protease, contains a protease domain and a PDZ domain. The trimeric protease domain is autoinhibited by the unliganded PDZ domains. Allosteric activation requires binding of unassembled outer-membrane proteins (OMPs) to the PDZ domains and protein substrate binding. Here, we identify a set of DegS residues that cluster together at subunit-subunit interfaces in the trimer, link the active sites and substrate binding sites, and are crucial for stabilizing the active enzyme conformation in response to OMP signaling. These residues are conserved across the HtrA-protease family, including orthologs linked to human disease, supporting a common mechanism of allosteric activation. Indeed, mutation of residues at homologous positions in the DegP quality-control protease also eliminates allosteric activation. PMID:25703375

  17. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.

    PubMed

    Wu, Miao; Petryayeva, Eleonora; Algar, W Russ

    2014-11-18

    Protease expression, activity, and inhibition play crucial roles in a multitude of biological processes; however, these three aspects of their function are difficult for any one bioanalytical probe to measure. To help address this challenge, we report a multifunctional concentric Förster resonance energy transfer (FRET) configuration that combines two modes of biorecognition using aptamers and peptide substrates coassembled to a central semiconductor quantum dot (QD). The aptamer is sensitive to the concentration of protease and the peptide is sensitive to its hydrolytic activity. The role of the QD is to serve as a nanoscale scaffold and initial donor for energy transfer with both Cyanine 3 (Cy3) and Alexa Fluor 647 (A647) fluorescent dyes associated with the aptamer and peptide, respectively. Using thrombin as a model protease, we show that a ratiometric analysis of the emission from the QD, Cy3, and A647 permits discrimination between thrombin and thrombin-like activity, and distinguishes between active, reversibly inhibited, and irreversibly inhibited thrombin. Reliable quantitative results were obtained from a kinetic analysis of the changes in FRET. This concentric FRET format, which capitalizes on both the physical and optical properties of QDs, should be adaptable to other protease targets for which both peptide substrates and binding aptamers are known. It is thus expected to become valuable a tool for the real-time analysis of protease activity and regulation. PMID:25361050

  18. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  19. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura.

    PubMed

    Furlan, M; Robles, R; Solenthaler, M; Wassmer, M; Sandoz, P; Lämmle, B

    1997-05-01

    In patients with thrombotic thrombocytopenic purpura (TTP), excessive intravascular platelet aggregation has been associated with appearance in plasma of unusually large von Willebrand factor (vWF) multimers. These extremely adhesive vWF multimers may arise due to deficiency of a "depolymerase" cleaving vWF to smaller molecular forms, either by reducing the interdimeric disulfide bridges or by proteolytic degradation. We studied the activity of a recently described vWF-cleaving protease in four patients with chronic relapsing TTP. Diluted plasma samples of TTP patients were incubated with purified normal human vWF in the presence of a serine protease inhibitor, at low ionic strength, and in the presence of urea and barium ions. The extent of vWF degradation was assayed by electrophoresis in sodium dodecyl sulfate-agarose gels and immunoblotting. Four patients, that included two brothers, with chronic relapsing TTP displayed either substantially reduced levels or a complete absence of vWF-cleaving protease activity. In none of these patient plasmas was an inhibitor of or an antibody against the vWF-cleaving protease established. Our data suggest that the unusually large vWF multimers found in TTP patients may be caused by deficient vWF-cleaving protease activity. Deficiency of this protease may be inherited in an autosomal recessive manner and seems to predispose to chronic relapsing TTP. The assay of the vWF-cleaving protease activity may be used as a sensitive diagnostic tool for identification of subjects with a latent TTP tendency. PMID:9129011

  20. Cadmium-induced changes of gypsy moth larval mass and protease activity.

    PubMed

    Vlahović, Milena; Ilijin, Larisa; Lazarević, Jelica; Mrdaković, Marija; Gavrilović, Anja; Matić, Dragana; Mataruga, Vesna Perić

    2014-03-01

    Cadmium uptake takes place mainly through food. Lymantria dispar larvae were exposed to dietary cadmium in concentrations of 10 and 30μg Cd/g dry food (NOEC, no-observed-effect and LOEC, lowest-observed-effect concentration, respectively) for acute and chronic treatment and recovery. We established that metal contamination decreased mass only during the chronic treatment at 30μg Cd/dry food with no recovery on removal of cadmium for 3days. Significant reduction of protease activity was detected at LOEC after the acute and chronic treatments. Protease showed enhanced plasticity with regard to the fitness trait (mass) during environmental stress and the higher cadmium load, when it changed. The statistically significant higher index of phenotypic plasticity for protease correlated with lower variability. Protease isoforms at the same cadmium treatments differed between genotypes, while some protease isoforms from one egg-mass differed between cadmium treatments. Owing to the low sensitivity and plasticity of mass change during exposure to cadmium, as well as its small influence, we concluded that larval mass is not a good indicator of cadmium presence in food. We suggest that proteases, with further research, might be a suitable indicator of dietary cadmium contamination, as well as nutriment utilization during heavy metal stress. PMID:24230976

  1. Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice.

    PubMed

    Shimura, Sakiko; Takai, Toshiro; Iida, Hideo; Maruyama, Natsuko; Ochi, Hirono; Kamijo, Seiji; Nishioka, Izumi; Hara, Mutsuko; Matsuda, Akira; Saito, Hirohisa; Nakae, Susumu; Ogawa, Hideoki; Okumura, Ko; Ikeda, Shigaku

    2016-07-01

    Allergen sources such as mites, insects, fungi, and pollen contain proteases. Airway exposure to proteases induces allergic airway inflammation and IgE/IgG1 responses via IL-33-dependent mechanisms in mice. We examined the epicutaneous sensitization of mice to a model protease allergen, papain; the effects of tape stripping, which induces epidermal barrier dysfunction; and the atopic march upon a subsequent airway challenge. Papain painting on ear skin and tape stripping cooperatively promoted dermatitis, the skin gene expression of proinflammatory cytokines and growth factors, up-regulation of serum total IgE, and papain-specific IgE/IgG1 induction. Epicutaneous sensitization induced T helper (Th) 2 cells and Th17 differentiation in draining lymph nodes. Ovalbumin and protease inhibitor-treated papain induced no or weak responses, whereas the co-administration of ovalbumin and papain promoted ovalbumin-specific IgE/IgG1 induction. Wild-type and IL-33-deficient mice showed similar responses in the epicutaneous sensitization phase. The subsequent airway papain challenge induced airway eosinophilia and maintained high papain-specific IgE levels in an IL-33-dependent manner. These results suggest that allergen source-derived protease activity and mechanical barrier damage such as that caused by scratching cooperatively promote epicutaneous sensitization and skin inflammation and that IL-33 is dispensable for epicutaneous sensitization but is crucial in the atopic march upon a subsequent airway low-dose encounter with protease allergens. PMID:26987428

  2. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  3. A new fusion protein platform for quantitatively measuring activity of multiple proteases

    PubMed Central

    2014-01-01

    Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with

  4. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology

    PubMed Central

    Gonçalves, Rayane Natshe; Gozzini Barbosa, Suellen Duarte

    2016-01-01

    Extracts of leaves, seeds, roots, and stem from a tropical legume, C. ensiformis, were prepared employing buffers and detergent in aqueous solution. Leaf extracts had the highest protein content and the most pronounced peptidase activity with optimal pH in the neutral to alkaline range. All extracts exhibited peaks of activity at various pH values, suggesting the presence of distinctive classes of proteases. N-α-Tosyl-L-arginine methyl ester hydrolysis was maximal at 30°C to 60°C and peptidase activity from all extracts presented very good thermal stability after 24 h incubation at 70°C. C. ensiformis proteases exhibited molecular masses of about 200–57, 40–37, and 20–15 kDa by SDS-PAGE analysis. These enzymes cleaved hemoglobin, bovine serum albumin, casein, and gelatin at different levels. Serine and metalloproteases are the major proteases in C. ensiformis extracts, modulated by divalent cations, stable at 1% of surfactant Triton X-100 and at different concentrations of the reducing agent β-mercaptoethanol. Thus, C. ensiformis expresses a particular set of proteases in distinctive organs with high activity and stability, making this legume an important source of proteases with biotechnological potential.

  5. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  6. A potential Kazal-type serine protease inhibitor involves in kinetics of protease inhibition and bacteriostatic activity.

    PubMed

    Kumaresan, Venkatesh; Harikrishnan, Ramaswamy; Arockiaraj, Jesu

    2015-02-01

    Kazal-type serine protease inhibitor (KSPI) is a pancreatic secretary trypsin inhibitor which involves in various cellular component regulations including development and defense process. In this study, we have characterized a KSPI cDNA sequence of freshwater striped murrel fish Channa striatus (Cs) at molecular level. Cellular location analysis predicted that the CsKSPI was an extracellular protein. The domain analysis showed that the CsKSPI contains a Kazal domain at 47-103 along with its family signature between 61 and 83. Phylogenetically, CsKSPI is closely related to KSPI from Maylandia zebra and formed a sister group with mammals. The 2D structure of CsKSPI showed three α-helical regions which are connected with random coils, one helix at signal sequence and two at the Kazal domain region. The relative gene expression showed that the CsKSPI was highly expressed in gills and its expression was induced upon fungus (Aphanomyces invadans), bacteria (Aeromonas hydrophila) and poly I:C (a viral analogue) challenge. The CsKSPI recombinant protein was produced to characterize and study the CsKSPI gene specific functions. The recombinant CsKSPI strongly inhibited trypsin compared to other tested proteases. The results of the kinetic activity of CsKSPI against trypsin was V(max)s = 1.62 nmol/min, K(M)s = 0.21 mM and K(i)s = 15.37 nM. Moreover, the recombinant CsKSPI inhibited the growth of Gram-negative bacteria A. hydrophila at 20 μM and Gram-positive bacteria Bacillus subtilis at the MIC50 of 15 μM. Overall, the study indicated that the CsKSPI was a potential trypsin inhibitor which involves in antimicrobial activity. PMID:25433138

  7. Heparin Modulates the Endopeptidase Activity of Leishmania mexicana Cysteine Protease Cathepsin L-Like rCPB2.8

    PubMed Central

    Judice, Wagner A. S.; Manfredi, Marcella A.; Souza, Gerson P.; Sansevero, Thiago M.; Almeida, Paulo C.; Shida, Cláudio S.; Gesteira, Tarsis F.; Juliano, Luiz; Westrop, Gareth D.; Sanderson, Sanya J.; Coombs, Graham H.; Tersariol, Ivarne L. S.

    2013-01-01

    Background Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity. Methodology/Principal Findings The data analysis revealed that the presence of heparin affects all steps of the enzyme reaction: (i) it decreases 3.5-fold the k1 and 4.0-fold the k−1, (ii) it affects the acyl-enzyme accumulation with pronounced decrease in k2 (2.7-fold), and also decrease in k3 (3.5-fold). The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys25)-S−/(His163)-Im+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme. Conclusions/Significance Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface. PMID:24278253

  8. Purified and Recombinant Hemopexin: Protease Activity and Effect on Neutrophil Chemotaxis

    PubMed Central

    Lin, Tian; Liu, Jialin; Huang, Feng; van Engelen, Tjitske SR; Thundivalappil, Sujatha R; Riley, Frank E; Super, Michael; Watters, Alexander L; Smith, Ann; Brinkman, Nathan; Ingber, Donald E; Warren, H Shaw

    2016-01-01

    Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Amidolytic assay was performed to measure the protease activity of several plasma-derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of lipopolysaccharides (LPS), and also injected into mice intravenously (i.v.) 30 min before inducing neutrophil migration via intraperitoneal (i.p.) injection of thioglycolate. Control groups received the same amount of albumin. Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on tumor necrosis factor (TNF) production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. These results suggest that hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme. PMID:26772775

  9. Dimerization-Induced Allosteric Changes of the Oxyanion-Hole Loop Activate the Pseudorabies Virus Assemblin pUL26N, a Herpesvirus Serine Protease

    PubMed Central

    Zühlsdorf, Martin; Werten, Sebastiaan; Klupp, Barbara G.; Palm, Gottfried J.; Mettenleiter, Thomas C.; Hinrichs, Winfried

    2015-01-01

    Herpesviruses encode a characteristic serine protease with a unique fold and an active site that comprises the unusual triad Ser-His-His. The protease is essential for viral replication and as such constitutes a promising drug target. In solution, a dynamic equilibrium exists between an inactive monomeric and an active dimeric form of the enzyme, which is believed to play a key regulatory role in the orchestration of proteolysis and capsid assembly. Currently available crystal structures of herpesvirus proteases correspond either to the dimeric state or to complexes with peptide mimetics that alter the dimerization interface. In contrast, the structure of the native monomeric state has remained elusive. Here, we present the three-dimensional structures of native monomeric, active dimeric, and diisopropyl fluorophosphate-inhibited dimeric protease derived from pseudorabies virus, an alphaherpesvirus of swine. These structures, solved by X-ray crystallography to respective resolutions of 2.05, 2.10 and 2.03 Å, allow a direct comparison of the main conformational states of the protease. In the dimeric form, a functional oxyanion hole is formed by a loop of 10 amino-acid residues encompassing two consecutive arginine residues (Arg136 and Arg137); both are strictly conserved throughout the herpesviruses. In the monomeric form, the top of the loop is shifted by approximately 11 Å, resulting in a complete disruption of the oxyanion hole and loss of activity. The dimerization-induced allosteric changes described here form the physical basis for the concentration-dependent activation of the protease, which is essential for proper virus replication. Small-angle X-ray scattering experiments confirmed a concentration-dependent equilibrium of monomeric and dimeric protease in solution. PMID:26161660

  10. A novel protease activity assay method based on an engineered autoinhibited protein using an enzyme-linked immunoassay.

    PubMed

    Yoon, Hyun Kyung; Yoo, Tae Hyeon

    2013-12-01

    Proteases are involved in various biological phenomena, and their aberrant activity can be an important indicator of disease. Thus, various methods have been developed to analyze the activities of proteases, but their wide application has been hampered because each method has drawbacks. In this report, we propose a new protease assay method based on an engineered autoinhibited protein and enzyme-linked immunoassay (ELISA) in which a protease of interest activates the autoinhibited protein and the signal is amplified via ELISA. Using this concept a sensitive assay method for MMP2 and caspase-3 was developed. The limit of detection for the two proteases was as low as 7 pM for MMP2 and 0.1 pM for caspase-3. The autoinhibited protein is designed modularly, and the new platform is general enough for the development of assay methods for other proteases with minimal modification. PMID:24106734

  11. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1.

    PubMed

    Sharma, Mehul; Merkulova, Yulia; Raithatha, Sheetal; Parkinson, Leigh G; Shen, Yue; Cooper, Dawn; Granville, David J

    2016-05-01

    Granzymes are a family of serine proteases that were once thought to function exclusively as mediators of cytotoxic lymphocyte-induced target cell death. However, non-apoptotic roles for granzymes, including granzyme K (GzK), have been proposed. As recent studies have observed elevated levels of GzK in the plasma of patients diagnosed with clinical sepsis, we hypothesized that extracellular GzK induces a proinflammatory response in endothelial cells. In the present study, extracellular GzK proteolytically activated protease-activated receptor-1 leading to increased interleukin 6 and monocyte chemotactic protein 1 production in endothelial cells. Enhanced expression of intercellular adhesion molecule 1 along with an increased capacity for adherence of THP-1 cells was also observed. Characterization of downstream pathways implicated the mitogen-activated protein kinase p38 pathway for intercellular adhesion molecule 1 expression, and both the p38 and the extracellular signal-regulated protein kinases 1 and 2 pathways in cytokine production. GzK also increased tumour necrosis factor α-induced inflammatory adhesion molecule expression. Furthermore, the physiological inhibitor of GzK, inter-α-inhibitor protein, significantly inhibited GzK activity in vitro. In summary, extracellular GzK promotes a proinflammatory response in endothelial cells. PMID:26936634

  12. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals.

    PubMed

    Wagstaff, Carol; Leverentz, Michael K; Griffiths, Gareth; Thomas, Brian; Chanasut, Usawadee; Stead, Anthony D; Rogers, Hilary J

    2002-02-01

    The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA. PMID:11807127

  13. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities.

    PubMed

    Benitez, Jorge A; Silva, Anisia J

    2016-06-01

    Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera. PMID:26952544

  14. Tracing an allosteric pathway regulating the activity of the HslV protease.

    PubMed

    Shi, Lichi; Kay, Lewis E

    2014-02-11

    The HslU-HslV complex functions as a bacterial proteasome, degrading substrate polypeptides to preserve cellular homeostasis. Here, we use methyl-Transverse Relaxation-Optimized Spectroscopy (TROSY) and highly deuterated, methyl-protonated samples to study the 230 kDa dodecameric HslV protease component that is structurally homologous to the stacked pair of β7-rings of the proteasome. Chemical shift assignments for over 95% of the methyl groups are reported. From the pH dependence of methyl chemical shifts, a pKa of 7.7 is measured for the amine group of the catalytic residue T1, confirming that it can act as a proton acceptor during the initial step in substrate proteolysis. Analyses involving a series of single site mutants in HslV, localized to HslU binding sites or regions undergoing significant changes on HslU binding, have identified hot spots whose perturbation leads to an allosteric pathway of propagated changes in structure and ultimately, substrate proteolysis efficiency. HslV plasticity is explored through methyl-TROSY (13)C relaxation dispersion experiments that are sensitive to millisecond timescale dynamics. The data support a dynamic coupling between residues involved in both HslU and substrate binding and residues localized to the active sites of HslV that facilitate the allostery between these distal sites. An important role for dynamics has also been observed in the archaeal proteasome, suggesting a more generally conserved role of motion in the function of these barrel-like protease structures. PMID:24469799

  15. Host Factors That Interact with the Pestivirus N-Terminal Protease, Npro, Are Components of the Ribonucleoprotein Complex

    PubMed Central

    Jefferson, Matthew; Donaszi-Ivanov, Andras; Pollen, Sean; Dalmay, Tamas; Saalbach, Gerhard

    2014-01-01

    ABSTRACT The viral N-terminal protease Npro of pestiviruses counteracts cellular antiviral defenses through inhibition of IRF3. Here we used mass spectrometry to identify a new role for Npro through its interaction with over 55 associated proteins, mainly ribosomal proteins and ribonucleoproteins, including RNA helicase A (DHX9), Y-box binding protein (YBX1), DDX3, DDX5, eIF3, IGF2BP1, multiple myeloma tumor protein 2, interleukin enhancer binding factor 3 (IEBP3), guanine nucleotide binding protein 3, and polyadenylate-binding protein 1 (PABP-1). These are components of the translation machinery, ribonucleoprotein particles (RNPs), and stress granules. Significantly, we found that stress granule formation was inhibited in MDBK cells infected with a noncytopathic bovine viral diarrhea virus (BVDV) strain, Kyle. However, ribonucleoproteins binding to Npro did not inhibit these proteins from aggregating into stress granules. Npro interacted with YBX1 though its TRASH domain, since the mutant C112R protein with an inactive TRASH domain no longer redistributed to stress granules. Interestingly, RNA helicase A and La autoantigen relocated from a nuclear location to form cytoplasmic granules with Npro. To address a proviral role for Npro in RNP granules, we investigated whether Npro affected RNA interference (RNAi), since interacting proteins are involved in RISC function during RNA silencing. Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) silencing with small interfering RNAs (siRNAs) followed by Northern blotting of GAPDH, expression of Npro had no effect on RNAi silencing activity, contrasting with other viral suppressors of interferon. We propose that Npro is involved with virus RNA translation in the cytoplasm for virus particle production, and when translation is inhibited following stress, it redistributes to the replication complex. IMPORTANCE Although the pestivirus N-terminal protease, Npro, has been shown to have an important role in degrading IRF3 to

  16. Real-time fluorometric turn-on assay for protease activity and inhibitor screening with a benzoperylene probe.

    PubMed

    Zhou, Chuibei; Li, Wenying; Chen, Jian; Yang, Meiding; Li, Yang; Zhu, Jintao; Yu, Cong

    2014-03-01

    A real-time fluorescence turn-on strategy for protease activity and inhibitor screening has been developed. A negatively charged benzo[ghi]perylene derivative (probe 1) was employed. Protamine is a cationic protein which can induce aggregation of probe 1 via strong electrostatic and hydrophobic interactions. The fluorescence of probe 1 was efficiently quenched. In the presence of a protease, protamine was enzymatically hydrolyzed and probe 1 de-aggregated. The recovery of the probe 1 monomer fluorescence could be detected. The protease activity could be monitored in real-time. In addition, upon addition of a protease inhibitor, the protease-catalyzed hydrolysis was inhibited, which led to a decreased fluorescence recovery. The fluorometric assay thus could also be employed for screening protease inhibitors. PMID:24427771

  17. Activity of calcium activated protease in skeletal muscles and its changes in atrophy and stretch

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Nagainis, P. A.

    1984-01-01

    The reduction of protein content in skeletal muscle undergoing disuse-induced atrophy is correlated with accelerated rates of protein degradation and reduced rates of protein synthesis (Goldspink, 1977). It is not known in what manner myofibers are partially disassembled during disuse atrophy to fibers of smaller diameter; nor is it known which proteases are responsible for this morphological change in contractile protein mass. Dayton and colleagues (1975) have suggested that the Ca(2+)-activated protease (CaP) may initiate myofibril degradation. The discovery of a form of CaP that is activatable by nano-molar concentrations of Ca(2+) indicates that CaP activity may be regulated by physiological concentrations of Ca(2+) (Mellgren, 1980). The enhancement of proteolysis by the Ca(2+) ionophore A23187, reported by Etlinger (1979), is consistent with a significant role for CaP in protein degradation. It was of interest, therefore, to measure the levels of CaP activity and the CaP inhibitor in extracts obtained from skeletal muscles of rat and chicken limbs undergoing disuse atrophy or stretch hypertrophy, respectively.

  18. Thrombin stimulates fibroblast procollagen production via proteolytic activation of protease-activated receptor 1.

    PubMed Central

    Chambers, R C; Dabbagh, K; McAnulty, R J; Gray, A J; Blanc-Brude, O P; Laurent, G J

    1998-01-01

    Thrombin is a multifunctional serine protease that has a crucial role in blood coagulation. It is also a potent mesenchymal cell mitogen and chemoattractant and might therefore have an important role in the recruitment and local proliferation of mesenchymal cells at sites of tissue injury. We hypothesized that thrombin might also affect the deposition of connective tissue proteins at these sites by directly stimulating fibroblast procollagen production. To address this hypothesis, the effect of thrombin on procollagen production and gene expression by human foetal lung fibroblasts was assessed over 48 h. Thrombin stimulated procollagen production at concentrations of 1 nM and above, with maximal increases of between 60% and 117% at 10 nM thrombin. These effects of thrombin were, at least in part, due to increased steady-state levels of alpha1(I) procollagen mRNA. They could furthermore be reproduced with thrombin receptor-activating peptides for the protease-activated receptor 1 (PAR-1) and were completely abolished when thrombin was rendered proteolytically inactive with the specific inhibitors d-Phe-Pro-ArgCH2Cl and hirudin, indicating that thrombin is mediating these effects via the proteolytic activation of PAR-1. These results suggest that thrombin might influence the deposition of connective tissue proteins during normal wound healing and the development of tissue fibrosis by stimulating fibroblast procollagen production. PMID:9639571

  19. Human eosinophil innate response to Alternaria fungus through protease-activated receptor-2.

    PubMed

    Matsuwaki, Yoshinori; Wada, Kota; Moriyama, Hiroshi; Kita, Hirohito

    2011-01-01

    Eosinophils are multifunctional leukocytes implicated in the pathogenesis of allergic diseases. An association between eosinophilic inflammation and infection or colonization by fungi has also been long recognized. However, the mechanisms underlying how eosinophils are activated and how they release proinflammatory and immunomodulatory mediators such as major basic protein (MBP) and eosinophil-derived neurotoxin remain largely unknown. We used a fungus, i.e. Alternaria, as a model microbe relevant to human asthma and chronic rhinosinusitis (CRS) to investigate the molecular mechanisms involved in the immune recognition of ubiquitous environmental allergens. Human eosinophils are activated by live Alternaria alternata organisms, release their granule proteins, and kill the fungi. Eosinophils, but not neutrophils, respond to secreted products from A. alternata. We found that eosinophils are equipped with innate cellular activation machinery that responds to an extracellular aspartate protease secreted by Alternaria. Aspartate protease activation of protease-activated receptor (PAR)-2 probably involves a novel mechanism different from that for serine protease activation of PAR-2. Thus, human eosinophils may recognize certain danger signals or virulence factors produced by fungi and provoke inflammatory responses against these organisms. Dysregulation of such an innate immune mechanism may be involved in the pathophysiology of certain human inflammatory diseases, including asthma and CRS. PMID:21646807

  20. NMR study of xenotropic murine leukemia virus-related virus protease in a complex with amprenavir

    SciTech Connect

    Furukawa, Ayako; Okamura, Hideyasu; Morishita, Ryo; Matsunaga, Satoko; Kobayashi, Naohiro; Ikegami, Takahisa; Kodaki, Tsutomu; Takaori-Kondo, Akifumi; Ryo, Akihide; Nagata, Takashi; Katahira, Masato

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Protease (PR) of XMR virus (XMRV) was successfully synthesized with cell-free system. Black-Right-Pointing-Pointer Interface of XMRV PR with an inhibitor, amprenavir (APV), was identified with NMR. Black-Right-Pointing-Pointer Structural heterogeneity is induced for two PR protomers in the APV:PR = 1:2 complex. Black-Right-Pointing-Pointer Structural heterogeneity is transmitted even to distant regions from the interface. Black-Right-Pointing-Pointer Long-range transmission of structural change may be utilized for drug discovery. -- Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a virus created through recombination of two murine leukemia proviruses under artificial conditions during the passage of human prostate cancer cells in athymic nude mice. The homodimeric protease (PR) of XMRV plays a critical role in the production of functional viral proteins and is a prerequisite for viral replication. We synthesized XMRV PR using the wheat germ cell-free expression system and carried out structural analysis of XMRV PR in a complex with an inhibitor, amprenavir (APV), by means of NMR. Five different combinatorially {sup 15}N-labeled samples were prepared and backbone resonance assignments were made by applying Otting's method, with which the amino acid types of the [{sup 1}H, {sup 15}N] HSQC resonances were automatically identified using the five samples (Wu et al., 2006) . A titration experiment involving APV revealed that one APV molecule binds to one XMRV PR dimer. For many residues, two distinct resonances were observed, which is thought to be due to the structural heterogeneity between the two protomers in the APV:XMRV PR = 1:2 complex. PR residues at the interface with APV have been identified on the basis of chemical shift perturbation and identification of the intermolecular NOEs by means of filtered NOE experiments. Interestingly, chemical shift heterogeneity between the two protomers of XMRV PR has

  1. Broad Spectrum Activity of a Lectin-Like Bacterial Serine Protease Family on Human Leukocytes

    PubMed Central

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E.; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  2. Pressure-Enhanced Activity and Stability of a Hyperthermophilic Protease from a Deep-Sea Methanogen

    PubMed Central

    Michels, P. C.; Clark, D. S.

    1997-01-01

    We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988). PMID:16535711

  3. Broad spectrum activity of a lectin-like bacterial serine protease family on human leukocytes.

    PubMed

    Ayala-Lujan, Jorge Luis; Vijayakumar, Vidhya; Gong, Mei; Smith, Rachel; Santiago, Araceli E; Ruiz-Perez, Fernando

    2014-01-01

    The serine protease autotransporter from Enterobacteriaceae (SPATE) family, which number more than 25 proteases with apparent diverse functions, have been phylogenetically divided into two distinct classes, designated 1 and 2. We recently demonstrated that Pic and Tsh, two members of the class-2 SPATE family produced by intestinal and extraintestinal pathogenic E. coli, were able to cleave a number of O-glycosylated proteins on neutrophils and lymphocytes resulting in impaired leukocyte functions. Here we show that most members of the class-2 SPATE family have lectin-like properties and exhibit differential protease activity reliant on glycoprotein type and cell lineage. Protease activity was seen in virtually all tested O-glycosylated proteins including CD34, CD55, CD164, TIM1, TIM3, TIM4 and C1-INH. We also show that although SPATE proteins bound and cleaved glycoproteins more efficiently on granulocytes and monocytes, they also targeted glycoproteins on B, T and natural killer lymphocytes. Finally, we found that the characteristic domain-2 of class-2 SPATEs is not required for glycoprotease activity, but single amino acid mutations in Pic domain-1 to those residues naturally occurring in domain-1 of SepA, were sufficient to hamper Pic glycoprotease activity. This study shows that most class-2 SPATEs have redundant activities and suggest that they may function as immunomodulators at several levels of the immune system. PMID:25251283

  4. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    PubMed

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis. PMID:22579962

  5. Protease activity at invadopodial focal digestive areas is dependent on NHE1-driven acidic pHe.

    PubMed

    Greco, Maria Raffaella; Antelmi, Ester; Busco, Giovanni; Guerra, Lorenzo; Rubino, Rosa; Casavola, Valeria; Reshkin, Stephan Joel; Cardone, Rosa Angela

    2014-02-01

    Degradation of the extracellular matrix (ECM) is a critical step of tumor cell invasion and requires protease-dependent proteolysis focalized at the invadopodia where the proteolysis of the ECM occurs. Most of the extracellular proteases belong to serine- or metallo-proteases and the invadopodia is where protease activity is regulated. While recent data looking at global protease activity in the growth medium reported that their activity and role in invasion is dependent on Na+/H+ exchanger 1 (NHE1)-driven extracellular acidification, there is no data on this aspect at the invadopodia, and an open question remains whether this acid extracellular pH (pHe) activation of proteases in tumor cells occurs preferentially at invadopodia. We previously reported that the NHE1 is expressed in breast cancer invadopodia and that the NHE1‑dependent acidification of the peri-invadopodial space is critical for ECM proteolysis. In the present study, using, for the first time, in situ zymography analysis, we demonstrated a concordance between NHE1 activity, extracellular acidification and protease activity at invadopodia to finely regulate ECM digestion. We demonstrated that: (i) ECM proteolysis taking place at invadopodia is driven by acidification of the peri-invadopodia microenvironment; (ii) that the proteases have a functional pHe optimum that is acidic; (iii) more than one protease is functioning to digest the ECM at these invadopodial sites of ECM proteolysis; and (iv) lowering pHe or inhibiting the NHE1 increases protease secretion while blocking protease activity changes NHE1 expression at the invadopodia. PMID:24337203

  6. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects

    PubMed Central

    Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242

  7. Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4.

    PubMed

    Kasperkiewicz, Paulina; Poreba, Marcin; Snipas, Scott J; Lin, S Jack; Kirchhofer, Daniel; Salvesen, Guy S; Drag, Marcin

    2015-01-01

    Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optimal substrates and visualization probes for NSP4 that distinguish it from other NSPs we have employed a Hybrid Combinatorial Substrate Library approach that utilizes natural and unnatural amino acids to explore protease subsite preferences. Library results were validated by synthesizing individual substrates, leading to the identification of an optimal substrate peptide. This substrate was converted to a covalent diphenyl phosphonate probe with an embedded biotin tag. This probe demonstrated high inhibitory activity and stringent specificity and may be suitable for visualizing NSP4 in the background of other NSPs. PMID:26172376

  8. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters

    SciTech Connect

    Shen, Chen-Hsiang; Wang, Yuan-Fang; Kovalevsky, Andrey Y.; Harrison, Robert W.; Weber, Irene T.

    2010-10-22

    The structural and kinetic effects of amprenavir (APV), a clinical HIV protease (PR) inhibitor, were analyzed with wild-type enzyme and mutants with single substitutions of V32I, I50V, I54V, I54M, I84V and L90M that are common in drug resistance. Crystal structures of the APV complexes at resolutions of 1.02-1.85 {angstrom} reveal the structural changes due to the mutations. Substitution of the larger side chains in PR{sub V32I}, PR{sub I54M} and PR{sub L90M} resulted in the formation of new hydrophobic contacts with flap residues, residues 79 and 80, and Asp25, respectively. Mutation to smaller side chains eliminated hydrophobic interactions in the PR{sub I50V} and PR{sub I54V} structures. The PR{sub I84V}-APV complex had lost hydrophobic contacts with APV, the PR{sub V32I}-APV complex showed increased hydrophobic contacts within the hydrophobic cluster and the PR{sub I50V} complex had weaker polar and hydrophobic interactions with APV. The observed structural changes in PR{sub I84V}-APV, PR{sub V32I}-APV and PR{sub I50V}-APV were related to their reduced inhibition by APV of six-, 10- and 30-fold, respectively, relative to wild-type PR. The APV complexes were compared with the corresponding saquinavir complexes. The PR dimers had distinct rearrangements of the flaps and 80's loops that adapt to the different P1{prime} groups of the inhibitors, while maintaining contacts within the hydrophobic cluster. These small changes in the loops and weak internal interactions produce the different patterns of resistant mutations for the two drugs.

  9. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains.

    PubMed Central

    Reinholdt, J; Kilian, M

    1997-01-01

    Immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region are produced constitutively by a number of pathogens, including Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and Streptococcus pneumoniae, as well as by some members of the resident oropharyngeal flora. Whereas IgA1 proteases have been shown to interfere with the functions of IgA antibodies in vitro, the exact role of these enzymes in the relationship of bacteria to a human host capable of responding with enzyme-neutralizing antibodies is not clear. Conceivably, the role of IgA1 proteases may depend on the quantity of IgA1 protease generated as well as on the balance between secreted and cell-associated forms of the enzyme. Therefore, we have compared levels of IgA1 protease activity in cultures of 38 bacterial strains representing different genera and species as well as strains of different pathogenic potential. Wide variation in activity generation rate was found overall and within some species. High activity was not an exclusive property of bacteria with documented pathogenicity. Almost all activity of H. influenzae, N. meningitidis, and N. gonorrhoeae strains was present in the supernatant. In contrast, large proportions of the activity in Streptococcus, Prevotella, and Capnocytophaga species was cell associated at early stationary phase, suggesting that the enzyme may play the role of a surface antigen. Partial release of cell-associated activity occurred during stationary phase. Within some taxa, the degree of activity variation correlated with degree of antigenic diversity of the enzyme as determined previously. This finding may indicate that the variation observed is of biological significance. PMID:9353019

  10. Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis

    PubMed Central

    2014-01-01

    Background The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells. Results The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells. Conclusions Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma. PMID:24670244

  11. Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous nepenthes plants.

    PubMed

    Buch, Franziska; Kaman, Wendy E; Bikker, Floris J; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992

  12. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  13. Nepenthesin Protease Activity Indicates Digestive Fluid Dynamics in Carnivorous Nepenthes Plants

    PubMed Central

    Buch, Franziska; Kaman, Wendy E.; Bikker, Floris J.; Yilamujiang, Ayufu; Mithöfer, Axel

    2015-01-01

    Carnivorous plants use different morphological features to attract, trap and digest prey, mainly insects. Plants from the genus Nepenthes possess specialized leaves called pitchers that function as pitfall-traps. These pitchers are filled with a digestive fluid that is generated by the plants themselves. In order to digest caught prey in their pitchers, Nepenthes plants produce various hydrolytic enzymes including aspartic proteases, nepenthesins (Nep). Knowledge about the generation and induction of these proteases is limited. Here, by employing a FRET (fluorescent resonance energy transfer)-based technique that uses a synthetic fluorescent substrate an easy and rapid detection of protease activities in the digestive fluids of various Nepenthes species was feasible. Biochemical studies and the heterologously expressed Nep II from Nepenthes mirabilis proved that the proteolytic activity relied on aspartic proteases, however an acid-mediated auto-activation mechanism was necessary. Employing the FRET-based approach, the induction and dynamics of nepenthesin in the digestive pitcher fluid of various Nepenthes plants could be studied directly with insect (Drosophila melanogaster) prey or plant material. Moreover, we observed that proteolytic activity was induced by the phytohormone jasmonic acid but not by salicylic acid suggesting that jasmonate-dependent signaling pathways are involved in plant carnivory. PMID:25750992

  14. Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus.

    PubMed

    Yang, Jinkui; Zhao, Xuna; Liang, Lianming; Xia, Zhenyuan; Lei, Liping; Niu, Xuemei; Zou, Chenggang; Zhang, Ke-Qin

    2011-03-01

    Due to their ability to degrade the proteins in nematode cuticle, serine proteases play an important role in the pathogenicity of nematophagous fungi against nematodes. The serine protease Ver112 was identified from the nematophagous fungus Lecanicillium psalliotae capable of degrading the nematode cuticle and killing nematodes effectively. In this study, the gene ver112 was introduced into the commercial biocontrol fungal agent Paecilomyces lilacinus by the restriction enzyme-mediated integration transformation. Compared to the wild strain, the transformant P. lilacinus 112 showed significantly greater protease activity, with nematicidal activities increased by 79% and 96% to Panagrellus redivivus and Caenorhabditis elegans at the second day, respectively. The crude protein extract isolated from the culture filtrate of P. lilacinus 112 also showed 20-25% higher nematicidal activity than that of the wild-type strain. Reverse transcription PCR results showed that the expression of gene ver112 in P. lilacinus 112 was correlated to protease activity of the culture filtrate. Our results demonstrated the first successful transfer of a virulence gene from one nematophagous fungus to another nematophagous fungus, and improved the pathogenicity of the recipient fungus against pest nematodes. PMID:21110018

  15. Crystal Structure of An FIV/HIV Chimeric Protease Complexed With the Broad-Based Inhibitor, TL-3

    SciTech Connect

    Heaslet, H.; Lin, Y.-C.; Tam, K.; Torbett, B.E.; Elder, J.E.; Stout, C.D.; /Pfizer Global Res. Devel. /Scripps Res. Inst.

    2007-07-09

    We have obtained the 1.7 angstrom crystal structure of FIV protease (PR) in which 12 critical residues around the active site have been substituted with the structurally equivalent residues of HIV PR (12X FIV PR). The chimeric PR was crystallized in complex with the broad-based inhibitor TL-3, which inhibits wild type FIV and HIV PRs, as well as 12X FIV PR and several drug-resistant HIV mutants [1-4]. Biochemical analyses have demonstrated that TL-3 inhibits these PRs in the order HIV PR > 12X FIV PR > FIV PR, with Ki values of 1.5 nM, 10 nM, and 41 nM, respectively [2-4]. Comparison of the crystal structures of the TL-3 complexes of 12X FIV and wild-typeFIV PR revealed the formation of additional van der Waals interactions between the enzyme inhibitor in the mutant PR. The 12X FIV PR retained the hydrogen bonding interactions between residues in the flap regions and active site involving the enzyme and the TL-3 inhibitor in comparison to both FIV PR and HIV PR. However, the flap regions of the 12X FIV PR more closely resemble those of HIV PR, having gained several stabilizing intra-flap interactions not present in wild type FIV PR. These findings offer a structural explanation for the observed inhibitor/substrate binding properties of the chimeric PR.

  16. Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations

    PubMed Central

    Snelgrove, Robert J.; Gregory, Lisa G.; Peiró, Teresa; Akthar, Samia; Campbell, Gaynor A.; Walker, Simone A.; Lloyd, Clare M.

    2014-01-01

    Background The fungal allergen Alternaria alternata is implicated in severe asthma and rapid onset life-threatening exacerbations of disease. However, the mechanisms that underlie this severe pathogenicity remain unclear. Objective We sought to investigate the mechanism whereby Alternaria was capable of initiating severe, rapid onset allergic inflammation. Methods IL-33 levels were quantified in wild-type and ST2−/− mice that lacked the IL-33 receptor given inhaled house dust mite, cat dander, or Alternaria, and the effect of inhibiting allergen-specific protease activities on IL-33 levels was assessed. An exacerbation model of allergic airway disease was established whereby mice were sensitized with house dust mite before subsequently being challenged with Alternaria (with or without serine protease activity), and inflammation, remodeling, and lung function assessed 24 hours later. Results Alternaria, but not other common aeroallergens, possessed intrinsic serine protease activity that elicited the rapid release of IL-33 into the airways of mice through a mechanism that was dependent upon the activation of protease activated receptor-2 and adenosine triphosphate signaling. The unique capacity of Alternaria to drive this early IL-33 release resulted in a greater pulmonary inflammation by 24 hours after challenge relative to the common aeroallergen house dust mite. Furthermore, this Alternaria serine protease–IL-33 axis triggered a rapid, augmented inflammation, mucus release, and loss of lung function in our exacerbation model. Conclusion Alternaria-specific serine protease activity causes rapid IL-33 release, which underlies the development of a robust TH2 inflammation and exacerbation of allergic airway disease. PMID:24636086

  17. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    PubMed Central

    Obbard, Darren J; Welch, John J; Little, Tom J

    2009-01-01

    Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed. PMID:19497100

  18. The N-terminal Arg Residue Is Essential for Autocatalytic Activation of a Lipopolysaccharide-responsive Protease Zymogen*

    PubMed Central

    Kobayashi, Yuki; Shiga, Takafumi; Shibata, Toshio; Sako, Miyuki; Maenaka, Katsumi; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2014-01-01

    Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules. PMID:25077965

  19. The N-terminal Arg residue is essential for autocatalytic activation of a lipopolysaccharide-responsive protease zymogen.

    PubMed

    Kobayashi, Yuki; Shiga, Takafumi; Shibata, Toshio; Sako, Miyuki; Maenaka, Katsumi; Koshiba, Takumi; Mizumura, Hikaru; Oda, Toshio; Kawabata, Shun-ichiro

    2014-09-12

    Factor C, a serine protease zymogen involved in innate immune responses in horseshoe crabs, is known to be autocatalytically activated on the surface of bacterial lipopolysaccharides, but the molecular mechanism of this activation remains unknown. In this study, we show that wild-type factor C expressed in HEK293S cells exhibits a lipopolysaccharide-induced activity equivalent to that of native factor C. Analysis of the N-terminal addition, deletion, or substitution mutants shows that the N-terminal Arg residue and the distance between the N terminus and the tripartite of lipopolysaccharide-binding site are essential factors for autocatalytic activation, and that the positive charge of the N terminus may interact with an acidic amino acid(s) of the molecule to convert the zymogen into an active form. Chemical cross-linking experiments indicate that the N terminus is required to form a complex of the factor C molecules in a sufficiently close vicinity to be chemically cross-linked on the surface of lipopolysaccharides. We propose a molecular mechanism of the autocatalytic activation of the protease zymogen on lipopolysaccharides functioning as a platform to induce specific protein-protein interaction between the factor C molecules. PMID:25077965

  20. Antagonism of protease-activated receptor 2 protects against experimental colitis.

    PubMed

    Lohman, Rink-Jan; Cotterell, Adam J; Suen, Jacky; Liu, Ligong; Do, Anh T; Vesey, David A; Fairlie, David P

    2012-02-01

    Many trypsin-like serine proteases such as β-tryptase are involved in the pathogenesis of colitis and inflammatory bowel diseases. Inhibitors of individual proteases show limited efficacy in treating such conditions, but also probably disrupt digestive and defensive functions of proteases. Here, we investigate whether masking their common target, protease-activated receptor 2 (PAR2), is an effective therapeutic strategy for treating acute and chronic experimental colitis in rats. A novel PAR2 antagonist (5-isoxazoyl-Cha-Ile-spiro[indene-1,4'-piperidine]; GB88) was evaluated for the blockade of intracellular calcium release in colonocytes and anti-inflammatory activity in acute (PAR2 agonist-induced) versus chronic [2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced] models of colitis in Wistar rats. Disease progression (disease activity index, weight loss, and mortality) and postmortem colonic histopathology (inflammation, bowel wall thickness, and myeloperoxidase) were measured. PAR2 and tryptase colocalization were investigated by using immunohistochemistry. GB88 was a more potent antagonist of PAR2 activation in colonocytes than another reported compound, N¹-3-methylbutyryl-N⁴-6-aminohexanoyl-piperazine (ENMD-1068) (IC₅₀ 8 μM versus 5 mM). Acute colonic inflammation induced in rats by the PAR2 agonist SLIGRL-NH₂ was inhibited by oral administration of GB88 (10 mg/kg) with markedly reduced edema, mucin depletion, PAR2 receptor internalization, and mastocytosis. Chronic TNBS-induced colitis in rats was ameliorated by GB88 (10 mg/kg/day p.o.), which reduced mortality and pathology (including colon obstruction, ulceration, wall thickness, and myeloperoxidase release) more effectively than the clinically used drug sulfasalazine (100 mg/kg/day p.o.). These disease-modifying properties for the PAR2 antagonist in both acute and chronic experimental colitis strongly support a pathogenic role for PAR2 and PAR2-activating proteases and therapeutic potential for

  1. Plasminogen activator and serine protease inhibitor-E2 (protease nexin-1) expression by bovine granulosa cells in vitro.

    PubMed

    Cao, Mingju; Sahmi, Malha; Lussier, Jacques G; Price, Christopher A

    2004-09-01

    Remodeling of the extracellular matrix (ECM) occurs during antral follicle growth, and the plasminogen activators (PA) have been implicated in this process in rodents. In the present study, we measured the expression and secretion of PA and the PA inhibitor protease nexin-1 (SerpinE2) in antral and basal bovine granulosa cells from small (<6 mm), medium (6-8 mm), and large follicles (>8 mm) during 6 days of culture in serum-free medium. Casein zymography revealed that the cells secreted predominantly tissue-type PA (tPA) with urokinase (uPA) being associated mainly with cell lysates, and Western blot demonstrated that the cells secreted SerpinE2. Overall, secreted tPA activity was higher in cultures of cells from small follicles compared with large follicles, and secreted SerpinE2 levels were higher in cultures of cells from large follicles. In cultures of cells from small follicles, secreted tPA levels increased with time of culture for antral but not basal cells, and SerpinE2 levels increased with time for basal but not antral cells. In cultures of granulosa cells from large follicles, tPA activity increased significantly with time of culture, whereas SerpinE2 levels decreased. Cell-associated uPA activity decreased with time in cells from medium and large follicles. Reverse-transcription polymerase chain reaction and Northern blot analysis showed that SerpinE2 secretion was regulated largely at the transcriptional level, whereas tPA secretion was not. The data suggest stage-dependent regulation of granulosa cell PA and SerpinE2 production, consistent with a role in ECM remodeling during follicle growth. PMID:15128599

  2. A Serine Protease Isolated from the Bristles of the Amazonic Caterpillar, Premolis semirufa, Is a Potent Complement System Activator

    PubMed Central

    Villas Boas, Isadora Maria; Pidde-Queiroz, Giselle; Magnoli, Fabio Carlos; Gonçalves-de-Andrade, Rute M.; van den Berg, Carmen W.; Tambourgi, Denise V.

    2015-01-01

    Background The caterpillar of the moth Premolis semirufa, commonly named pararama, is found in the Brazilian Amazon region. Accidental contact with the caterpillar bristles causes an intense itching sensation, followed by symptoms of an acute inflammation, which last for three to seven days after the first incident. After multiple accidents a chronic inflammatory reaction, called “Pararamose”, characterized by articular synovial membrane thickening with joint deformities common to chronic synovitis, frequently occurs. Although complement mediated inflammation may aid the host defense, inappropriate or excessive activation of the complement system and generation of anaphylatoxins can lead to inflammatory disorder and pathologies. The aim of the present study was to evaluate, in vitro, whether the Premolis semirufa’s bristles extract could interfere with the human complement system. Results The bristles extract was able to inhibit the haemolytic activity of the alternative pathway, as well as the activation of the lectin pathway, but had no effect on the classical pathway, and this inhibition seemed to be caused by activation and consumption of complement components. The extract induced the production of significant amounts of all three anaphylatoxins, C3a, C4a and C5a, promoted direct cleavage of C3, C4 and C5 and induced a significant generation of terminal complement complexes in normal human serum. By using molecular exclusion chromatography, a serine protease of 82 kDa, which activates complement, was isolated from P. semirufa bristles extract. The protease, named here as Ps82, reduced the haemolytic activity of the alternative and classical pathways and inhibited the lectin pathway. In addition, Ps82 induced the cleavage of C3, C4 and C5 and the generation of C3a and C4a in normal human serum and it was capable to cleave human purified C5 and generate C5a. The use of Phenanthroline, metalloprotease inhibitor, in the reactions did not significantly

  3. Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2.

    PubMed

    Chen, Lei-Lei; Liu, Li-Jun; Shi, Mei; Song, Xiao-Yan; Zheng, Chang-Ying; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2009-10-01

    Trichoderma pseudokoningii SMF2 is a biocontrol fungus with inhibitory ability against phytopathogenic fungi. Here, a crude extract of strain SMF2 in a solid ferment exhibited strong nematicidal activity against Meloidogyne incognita, and a novel serine protease SprT with nematicidal activity was purified from the crude extract. Protease SprT has a molecular mass of 31 kDa, a pH optimum of 8.5, and a temperature optimum of 60-65 degrees C. It had good thermostability, and was stable in an alkaline environment. SprT could degrade bovine serum albumin, lysozyme, and gelatin, and its activity was enhanced by many metal ions. The cuticles of nematodes treated by protease SprT obviously crimpled. Purified protease SprT could kill juveniles of M. incognita and inhibit egg hatch, suggesting that it is involved in the nematicidal process of T. pseudokoningii SMF2. The full-length cDNA gene-encoding protease SprT was cloned by rapid amplification of cDNA ends. Sequence analysis showed that SprT is a monodomain subtilase containing 284 amino acid residues. It had higher identities and a closer relation to the nematicidal serine proteases (59-69%) from nematode parasitic fungi than to the serine proteases (<50%) from Trichoderma. Protease SprT represents the first well-characterized subtilase with nematicidal activity from Trichoderma. PMID:19702879

  4. Role of enteric nerves in immune-mediated changes in protease activated receptor 2 effects on gut function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease activated receptors (PARs) are expressed on structural cells and immune cells. Control of the initiation, duration, and magnitude of the PAR effects are linked to the level of receptor expression, the availability of proteases, and the intracellular signal transduction machinery. We inve...

  5. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  6. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  7. Structural characterization reveals the keratinolytic activity of an arthrobacter nicotinovorans protease.

    PubMed

    Sone, Teruo; Haraguchi, Yumiko; Kuwahara, Aki; Ose, Toyoyuki; Takano, Megumi; Abe, Ayumi; Tanaka, Michiko; Tanaka, Isao; Asano, Kozo

    2015-01-01

    Elevated cadmium (Cd) concentrations in fishery byproducts are an environmental concern, that might be reduced by enzymatic removal and adsorption of the contaminants during recycling the byproducts as animal food. We cloned the gene for Arthrobacter nicotinovorans serine protease (ANISEP), which was isolated from the hepatopancreas of the Japanese scallop (Patiopecten yessoensis) and has been found to be an effective enzyme for Cd(II) removal. The gene is 993 bp in length and encodes 330 amino acids, including the pre (1-30) and pro (31-111) sequences. The catalytic triad consists of His, Asp, and Ser. Sequence similarities indicate that ANISEP is a extracellular serine protease. X-ray crystallography revealed structural similarities between ANISEP and the trypsin-like serine protease NAALP from Nesterenkonia sp. Site-directed mutagenesis identified Ser171 as catalytic residue. The keratinolytic activity of ANISEP was 10-fold greater than that of trypsin. ANISEP digested Cd(II)-bound recombinant metallothionein MT-10a from Laternula elliptica, but did not release Cd. These results further suggest ANISEP is a trypsin-like serine protease that can release Cd from the Japanese scallop hepatopancreas because of its strong keratinolytic activity. PMID:25256266

  8. Collagenolytic activity related to metalloproteases (and serine proteases) in the fish parasite Hysterothylacium aduncum (Nematoda: Anisakidae).

    PubMed

    Malagón, David; Adroher, Francisco Javier; Díaz-López, Manuel; Benítez, Rocío

    2010-06-11

    Proteases play a vital role in both the life cycle of parasites and the parasite-host relationship and are considered important virulence factors. In the present study, the presence of proteases with collagenolytic activity was investigated in the fish nematode Hysterothylacium aduncum during in vitro development. Collagenolytic activity was found in all studied developmental stages of the nematode (third [L3] and fourth [L4] larval stages and adults). In L3, the activity was maximum at pH 6.5 and, in the other stages, at 7.0. Pepsin is known to favour in vitro development of the worm, but, in this study, collagenolytic activity was shown to be significantly greater when no pepsin was added to the culture medium (at pH 6.5, p = 0.011). At pH 7.0, most activity was observed in the immature adult, after the final moult, suggesting that the collagenolytic activity may be involved in remodelling of the cuticle and in sexual maturity. On the other hand, at pH 6.5, activity may be related to tissue migration by L3 within the host. Using specific inhibitors, it was demonstrated that most of the collagenolytic activity detected in all the developmental stages was due to metalloproteases (40 to 100%), although serine proteases were also detected in L4 and adults (10 to 30%). PMID:20662369

  9. Effects of urine composition on epithelial Na+ channel-targeted protease activity.

    PubMed

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-11-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H(+)-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15-515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0-500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm-Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  10. Investigations with Protease.

    ERIC Educational Resources Information Center

    Yip, Din Yan

    1997-01-01

    Presents two simple and reliable ways for measuring protease activity that can be used for a variety of investigations in a range of biology class levels. The investigations use protease from a variety of sources. (DDR)

  11. Inhibitors of rhomboid proteases.

    PubMed

    Wolf, Eliane V; Verhelst, Steven H L

    2016-03-01

    Rhomboid proteases form one of the most widespread families of intramembrane proteases. They utilize a catalytic serine-histidine dyad located several Å below the surface of the membrane for substrate hydrolysis. Multiple studies have implicated rhomboid proteases in biologically and medically relevant processes. Several assays have been developed that are able to monitor rhomboid activity. With the aid of these assays, different types of inhibitors have been found, all based on electrophiles that covalently react with the active site machinery. Although the currently available inhibitors have limited selectivity and moderate potency, they can function as research tools and as starting point for the development of activity-based probes, which are reagents that can specifically detect active rhomboid species. Structural studies on complexes of inhibitors with the Escherichia coli rhomboid GlpG have provided insight into how substrate recognition may occur. Future synthetic efforts, aided by high-throughput screening or structure-based design, may lead to more potent and selective inhibitors for this interesting family of proteases. PMID:26166068

  12. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  13. An ER Complex of ODR-4 and ODR-8/Ufm1 Specific Protease 2 Promotes GPCR Maturation by a Ufm1-Independent Mechanism

    PubMed Central

    Chen, Changchun; Itakura, Eisuke; Weber, Katherine P.; Hegde, Ramanujan S.; de Bono, Mario

    2014-01-01

    Despite the importance of G-protein coupled receptors (GPCRs) their biogenesis is poorly understood. Like vertebrates, C. elegans uses a large family of GPCRs as chemoreceptors. A subset of these receptors, such as ODR-10, requires the odr-4 and odr-8 genes to be appropriately localized to sensory cilia. The odr-4 gene encodes a conserved tail-anchored transmembrane protein; the molecular identity of odr-8 is unknown. Here, we show that odr-8 encodes the C. elegans ortholog of Ufm1-specific protease 2 (UfSP2). UfSPs are cysteine proteases identified biochemically by their ability to liberate the ubiquitin-like modifier Ufm1 from its pro-form and protein conjugates. ODR-8/UfSP2 and ODR-4 are expressed in the same set of twelve chemosensory neurons, and physically interact at the ER membrane. ODR-4 also binds ODR-10, suggesting that an ODR-4/ODR-8 complex promotes GPCR folding, maturation, or export from the ER. The physical interaction between human ODR4 and UfSP2 suggests that this complex's role in GPCR biogenesis may be evolutionarily conserved. Unexpectedly, mutant versions of ODR-8/UfSP2 lacking catalytic residues required for protease activity can rescue all odr-8 mutant phenotypes tested. Moreover, deleting C. elegans ufm-1 does not alter chemoreceptor traffic to cilia, either in wild type or in odr-8 mutants. Thus, UfSP2 proteins have protease- and Ufm1-independent functions in GPCR biogenesis. PMID:24603482

  14. Cleavage and activation of a Toll-like receptor by microbial proteases

    PubMed Central

    de Zoete, Marcel R.; Bouwman, Lieneke I.; Keestra, A. Marijke; van Putten, Jos P. M.

    2011-01-01

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB–dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  15. Cleavage and activation of a Toll-like receptor by microbial proteases.

    PubMed

    de Zoete, Marcel R; Bouwman, Lieneke I; Keestra, A Marijke; van Putten, Jos P M

    2011-03-22

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB-dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  16. [Physiology of protease-activated receptors (PARs): involvement of PARs in digestive functions].

    PubMed

    Kawabata, A; Kuroda, R; Hollenberg, M D

    1999-10-01

    The protease-activated receptor (PAR), a G protein-coupled receptor present on cell surface, mediates cellular actions of extracellular proteases. Proteases cleave the extracellular N-terminal of PAR molecules at a specific site, unmasking and exposing a novel N-terminal, a tethered ligand, that binds to the body of receptor molecules resulting in receptor activation. Amongst four distinct PARs that have been cloned, PARs 1, 3 and 4 are activated by thrombin, but PAR-2 is activated by trypsin or mast cell tryptase. Human platelets express two distinct thrombin receptors, PAR-1 and PAR-4, while murine platelets express PAR-3 and PAR-4. Apart from roles of PARs in platelet activation, PARs are distributed to a number of organs in various species, predicting their physiological importance. We have been evaluating agonists specific for each PAR, using multiple procedures including a HEK cell calcium signal receptor desensitization assay. Using specific agonists that we developed, we found the following: 1) the salivary glands express PAR-2 mRNA and secret saliva in response to PAR-2 activation; 2) pancreatic juice secretion occurs following in vivo PAR-2 activation; 3) PAR-1 and PAR-2 modulate duodenal motility. Collectively, PAR plays various physiological and/or pathophysiological roles, especially in the digestive systems, and could be a novel target for drug development. PMID:10629876

  17. Analysis of prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro region is required for activity.

    PubMed Central

    Silen, J L; Frank, D; Fujishige, A; Bone, R; Agard, D A

    1989-01-01

    The alpha-lytic protease of Lysobacter enzymogenes was successfully expressed in Escherichia coli by fusing the promoter and signal sequence of the E. coli phoA gene to the proenzyme portion of the alpha-lytic protease gene. Following induction, active enzyme was found both within cells and in the extracellular medium, where it slowly accumulated to high levels. Use of a similar gene fusion to express the protease domain alone produced inactive enzyme, indicating that the large amino-terminal pro region is necessary for activity. The implications for protein folding are discussed. Furthermore, inactivation of the protease by mutation of the catalytic serine residue resulted in the production of a higher-molecular-weight form of the alpha-lytic protease, suggesting that the enzyme is self-processing in E. coli. Images PMID:2646278

  18. A new principle of oligomerization of plant DEG7 protease based on interactions of degenerated protease domains

    PubMed Central

    Schuhmann, Holger; Mogg, Ulrike; Adamska, Iwona

    2011-01-01

    Deg/HtrA proteases are a large group of ATP-independent serine endoproteases found in almost every organism. Their usual domain arrangement comprises a trypsin-type protease domain and one or more PDZ domains. All Deg/HtrA proteases form homo-oligomers with trimers as the basic unit, where the active protease domain mediates the interaction between individual monomers. Among the members of the Deg/HtrA protease family, the plant protease DEG7 is unique since it contains two protease domains (one active and one degenerated) and four PDZ domains. In the present study, we investigated the oligomerization behaviour of this unusual protease using yeast two-hybrid analysis in vivo and with recombinant protein in vitro. We show that DEG7 forms trimeric complexes, but in contrast with other known Deg/HtrA proteases, it shows a new principle of oligomerization, where trimerization is based on the interactions between degenerated protease domains. We propose that, during evolution, a duplicated active protease domain degenerated and specialized in protein–protein interaction and complex formation. PMID:21247409

  19. Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm

    PubMed Central

    Smuder, Ashley J.; Wu, Min; Hudson, Matthew B.; Nelson, W. Bradley; Powers, Scott K.

    2010-01-01

    Prolonged mechanical ventilation (MV) results in diaphragmatic weakness due to fiber atrophy and contractile dysfunction. Recent work reveals that activation of the proteases calpain and caspase-3 is required for MV-induced diaphragmatic atrophy and contractile dysfunction. However, the mechanism(s) responsible for activation of these proteases remains unknown. To address this issue, we tested the hypothesis that oxidative stress is essential for the activation of calpain and caspase-3 in the diaphragm during MV. Cause-and-effect was established by prevention of MV-induced diaphragmatic oxidative stress using the antioxidant Trolox. Treatment of animals with Trolox prevented MV-induced protein oxidation and lipid peroxidation in the diaphragm. Importantly, the Trolox-mediated protection from MV-induced oxidative stress prevented the activation of calpain and caspase-3 in the diaphragm during MV. Furthermore, the avoidance of MV-induced oxidative stress not only averted the activation of these proteases but also rescued the diaphragm from MV-induced diaphragmatic myofiber atrophy and contractile dysfunction. Collectively, these findings support the prediction that oxidative stress is required for MV-induced activation of calpain and caspase-3 in the diaphragm and are consistent with the concept that antioxidant therapy can retard MV-induced diaphragmatic weakness. PMID:20203072

  20. Characterization of protease from Alcaligens faecalis and its antibacterial activity on fish pathogens.

    PubMed

    Annamalai, N; Kumar, Arun; Saravanakumar, A; Vijaylakshmi, S; Balasubramanian, T

    2011-11-01

    Alcaligens faecalis AU01 isolated from seafood industry effluent produced an alkaline protease. The optimum culture conditions for growth as well as enzyme production were 37 degrees C and pH 8. The partially purified protease had specific activity of 9.66 with 17.77% recovery with the molecular weight of 33 kDa and it was active between 30-70 degrees C and optimum being at 55 degrees C and pH 9. The enzyme retains more than 85% activity at 70 degrees C and 78% even at pH 10. The enzyme inhibited the growth of fish pathogens such as Flavobacterium sp., Pseudomonas fluorescens, Vibrio harveyi, Proteus sp. and Vibrio parahaemolyticus. From the present study it can be concluded that Alcaligens faecalis AU01 has the potential for aquaculture as probiotic agent and other several applications. PMID:22471216

  1. Differential Expression of Extracellular Lipase and Protease Activities of Mycelial and Yeast Forms in Malassezia furfur.

    PubMed

    Juntachai, Weerapong; Kajiwara, Susumu

    2015-10-01

    Malassezia furfur is a dimorphic yeast that is part of the human skin microflora. This fungus is a pathogen of a certain skin diseases, such as pityriasis versicolor, and in rare cases causes systemic infection in neonates. However, the role of dimorphism in the pathogenicity remains unclear. A modified induction medium (IM) was successfully able to induce mycelial growth of M. furfur under both solid and liquid condition. Filamentous elements with branching hyphae were observed when cultured in the IM. Furthermore, addition of bovine fetus serum into the liquid IM did not promote hyphal formation; on the contrary, it retrograded hyphae to the yeast form. Plate-washing assay showed that M. furfur hyphae did not possess the ability of invasive growth. Secretory proteins from both yeast and hyphal forms were isolated, and lipase and protease activities were analyzed. Intriguingly, the hyphal form showed higher activities than those of the yeast form, particularly the protease activity. PMID:26173769

  2. Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials. Compensatory modulations of binding and activity.

    PubMed

    Schock, H B; Garsky, V M; Kuo, L C

    1996-12-13

    Site-specific substitutions of as few as four amino acids (M46I/L63P/V82T/I84V) of the human immunodeficiency virus type 1 (HIV-1) protease engenders cross-resistance to a panel of protease inhibitors that are either in clinical trials or have recently been approved for HIV therapy (Condra, J. H., Schleif, W. A., Blahy, O. M. , Gadryelski, L. J., Graham, D. J., Quintero, J. C., Rhodes, A., Robbins, H. L., Roth, E., Shivaprakash, M., Titus, D., Yang, T., Teppler, H., Squires, K. E., Deutsch, P. J., and Emini, E. A. (1995) Nature 374, 569-571). These four substitutions are among the prominent mutations found in primary HIV isolates obtained from patients undergoing therapy with several protease inhibitors. Two of these mutations (V82T/I84V) are located in, while the other two (M46I/L63P) are away from, the binding cleft of the enzyme. The functional role of these mutations has now been delineated in terms of their influence on the binding affinity and catalytic efficiency of the protease. We have found that the double substitutions of M46I and L63P do not affect binding but instead endow the enzyme with a catalytic efficiency significantly exceeding (110-360%) that of the wild-type enzyme. In contrast, the double substitutions of V82T and I84V are detrimental to the ability of the protease to bind and, thereby, to catalyze. When combined, the four amino acid replacements institute in the protease resistance against inhibitors and a significantly higher catalytic activity than one containing only mutations in its active site. The results suggest that in raising drug resistance, these four site-specific mutations of the protease are compensatory in function; those in the active site diminish equilibrium binding (by increasing Ki), and those away from the active site enhance catalysis (by increasing kcat/KM). This conclusion is further supported by energy estimates in that the Gibbs free energies of binding and catalysis for the quadruple mutant are quantitatively

  3. Monitoring Activation of the Antiviral Pattern Recognition Receptors RIG-I And PKR By Limited Protease Digestion and Native PAGE

    PubMed Central

    Weber, Michaela; Weber, Friedemann

    2014-01-01

    Host defenses to virus infection are dependent on a rapid detection by pattern recognition receptors (PRRs) of the innate immune system. In the cytoplasm, the PRRs RIG-I and PKR bind to specific viral RNA ligands. This first mediates conformational switching and oligomerization, and then enables activation of an antiviral interferon response. While methods to measure antiviral host gene expression are well established, methods to directly monitor the activation states of RIG-I and PKR are only partially and less well established. Here, we describe two methods to monitor RIG-I and PKR stimulation upon infection with an established interferon inducer, the Rift Valley fever virus mutant clone 13 (Cl 13). Limited trypsin digestion allows to analyze alterations in protease sensitivity, indicating conformational changes of the PRRs. Trypsin digestion of lysates from mock infected cells results in a rapid degradation of RIG-I and PKR, whereas Cl 13 infection leads to the emergence of a protease-resistant RIG-I fragment. Also PKR shows a virus-induced partial resistance to trypsin digestion, which coincides with its hallmark phosphorylation at Thr 446. The formation of RIG-I and PKR oligomers was validated by native polyacrylamide gel electrophoresis (PAGE). Upon infection, there is a strong accumulation of RIG-I and PKR oligomeric complexes, whereas these proteins remained as monomers in mock infected samples. Limited protease digestion and native PAGE, both coupled to western blot analysis, allow a sensitive and direct measurement of two diverse steps of RIG-I and PKR activation. These techniques are relatively easy and quick to perform and do not require expensive equipment. PMID:25146252

  4. Delivery of a Protease-Activated Cytolytic Peptide Prodrug by Perfluorocarbon Nanoparticles.

    PubMed

    Jallouk, Andrew P; Palekar, Rohun U; Marsh, Jon N; Pan, Hua; Pham, Christine T N; Schlesinger, Paul H; Wickline, Samuel A

    2015-08-19

    Melittin is a cytolytic peptide derived from bee venom that inserts into lipid membranes and oligomerizes to form membrane pores. Although this peptide is an attractive candidate for treatment of cancers and infectious processes, its nonspecific cytotoxicity and hemolytic activity have limited its therapeutic applications. Several groups have reported the development of cytolytic peptide prodrugs that only exhibit cytotoxicity following activation by site-specific proteases. However, systemic administration of these constructs has proven difficult because of their poor pharmacokinetic properties. Here, we present a platform for the design of protease-activated melittin derivatives that may be used in conjunction with a perfluorocarbon nanoparticle delivery system. Although native melittin was substantially hemolytic (HD50: 1.9 μM) and cytotoxic (IC50: 2.4 μM), the prodrug exhibited 2 orders of magnitude less hemolytic activity (HD50: > 100 μM) and cytotoxicity (IC50: > 100 μM). Incubation with matrix metalloproteinase-9 (MMP-9) led to cleavage of the prodrug at the expected site and restoration of hemolytic activity (HD50: 3.4 μM) and cytotoxicity (IC50: 8.1 μM). Incubation of the prodrug with perfluorocarbon nanoparticles led to stable loading of 10,250 peptides per nanoparticle. Nanoparticle-bound prodrug was also cleaved and activated by MMP-9, albeit at a fourfold slower rate. Intravenous administration of prodrug-loaded nanoparticles in a mouse model of melanoma significantly decreased tumor growth rate (p = 0.01). Because MMPs and other proteases play a key role in cancer invasion and metastasis, this platform holds promise for the development of personalized cancer therapies directed toward a patient's individual protease expression profile. PMID:26083278

  5. Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt.

    PubMed

    Satheesh, L Shilpa; Murugan, K

    2011-05-01

    Antimicrobial activity of protease inhibitor isolated from Coccinia grandis (L.) Voigt. has been reported. A 14.3 kDa protease inhibitor (PI) was isolated and purified to homogeneity by ammonium sulfate precipitation (20-85% saturation), sephadex G-75, DEAE sepharose column and trypsin-sepharose affinity chromatography from the leaves of C. grandis. The purity was checked by reverse phase high performance liquid chromatography. PI exhibited marked growth inhibitory effects on colon cell lines in a dose-dependent manner. PI was thermostable and showed antimicrobial activity without hemolytic activity. PI strongly inhibited pathogenic microbial strains, including Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Eschershia coli, Bacillus subtilis and pathogenic fungus Candida albicans, Mucor indicus, Penicillium notatum, Aspergillus flavus and Cryptococcus neoformans. Examination by bright field microscopy showed inhibition of mycelial growth and sporulation. Morphologically, PI treated fungus showed a significant shrinkage of hyphal tips. Reduced PI completely lost its activity indicating that disulfide bridge is essential for its protease inhibitory and antifungal activity. Results reported in this study suggested that PI may be an excellent candidate for development of novel oral or other anti-infective agents. PMID:21615062

  6. Protease-Activated Pore-Forming Peptides for the Treatment and Imaging of Prostate Cancer

    PubMed Central

    LeBeau, Aaron M.; Denmeade, Samuel R.

    2015-01-01

    A common hallmark of cancers with highly aggressive phenotypes is increased proteolysis in the tumor and the surrounding microenvironment. Prostate cancer has a number of proteases uniquely associated with it that may play various important roles in disease progression. In this report, we utilize the peritumoral proteolytic activity of prostate cancer to activate engineered peptide constructs for the treatment and noninvasive imaging of prostate cancer. Using a modular "propeptide" approach, a cationic diastereomeric pore-forming peptide domain was linked to an inactivating acidic peptide domain. The inactivating acidic peptide domain was engineered to be a cleavable substrate for the secreted serine protease prostate-specific antigen (PSA) or the transmembrane metalloprotease prostate-specific membrane antigen (PSMA). The propeptides were then evaluated in a direct comparison study. Both the PSA and PSMA activated propeptides were found to be cytotoxic to prostate cancer cells in vitro. In vivo, however, treatment of LNCaP and CWR22Rv1 xenografts with the PSMA propeptide resulted in a pronounced cytostatic effect when compared with xenografts treated with the PSA propeptide or the cationic diastereomeric peptide alone. The PSMA activated propeptide also proved to be an effective optical imaging probe in vivo when labeled with a near-infrared fluorophore. These data suggest that protease-activated pore-forming peptides could potentially be used for both imaging and treating prostate cancer. PMID:25537662

  7. Suboptimal Activation of Protease-activated Receptors Enhances α2β1 Integrin-mediated Platelet Adhesion to Collagen*

    PubMed Central

    Marjoram, Robin J.; Voss, Bryan; Pan, Yumei; Dickeson, S. Kent; Zutter, Mary M.; Hamm, Heidi E.; Santoro, Samuel A.

    2009-01-01

    Thrombin and fibrillar collagen are potent activators of platelets at sites of vascular injury. Both agonists cause platelet shape change, granule secretion, and aggregation to form the primary hemostatic plug. Human platelets express two thrombin receptors, protease-activated receptors 1 and 4 (PAR1 and PAR4) and two collagen receptors, the α2β1 integrin (α2β1) and the glycoprotein VI (GPVI)/FcRγ chain complex. Although these receptors and their signaling mechanisms have been intensely studied, it is not known whether and how these receptors cooperate in the hemostatic function of platelets. This study examined cooperation between the thrombin and collagen receptors in platelet adhesion by utilizing a collagen-related peptide (α2-CRP) containing the α2β1-specific binding motif, GFOGER, in conjunction with PAR-activating peptides. We demonstrate that platelet adhesion to α2-CRP is substantially enhanced by suboptimal PAR activation (agonist concentrations that do not stimulate platelet aggregation) using the PAR4 agonist peptide and thrombin. The enhanced adhesion induced by suboptimal PAR4 activation was α2β1-dependent and GPVI/FcRγ-independent as revealed in experiments with α2β1- or FcRγ-deficient mouse platelets. We further show that suboptimal activation of other platelet Gq-linked G protein-coupled receptors (GPCRs) produces enhanced platelet adhesion to α2-CRP. The enhanced α2β1-mediated platelet adhesion is controlled by phospholipase C (PLC), but is not dependent on granule secretion, activation of αIIbβ3 integrin, or on phosphoinositol-3 kinase (PI3K) activity. In conclusion, we demonstrate a platelet priming mechanism initiated by suboptimal activation of PAR4 or other platelet Gq-linked GPCRs through a PLC-dependent signaling cascade that promotes enhanced α2β1 binding to collagens containing GFOGER sites. PMID:19815553

  8. Crystallization and preliminary crystallographic study of Feline infectious peritonitis virus main protease in complex with an inhibitor.

    PubMed

    Wang, Jinshan; Wang, Fenghua; Tan, Yusheng; Chen, Xia; Zhao, Qi; Fu, Sheng; Li, Shuang; Chen, Cheng; Yang, Haitao

    2014-12-01

    Feline infectious peritonitis virus (FIPV) causes a lethal systemic granulomatous disease in wild and domestic cats around the world. Currently, no effective vaccines or drugs have been developed against it. As a member of the genus Alphacoronavirus, FIPV encodes two polyprotein precursors required for genome replication and transcription. Each polyprotein undergoes extensive proteolytic processing, resulting in functional subunits. This process is mainly mediated by its genome-encoded main protease, which is an attractive target for antiviral drug design. In this study, the main protease of FIPV in complex with a Michael acceptor-type inhibitor was crystallized. The complex crystals diffracted to 2.5 Å resolution and belonged to space group I422, with unit-cell parameters a = 112.3, b = 112.3, c = 102.1 Å. There is one molecule per asymmetric unit. PMID:25484209

  9. Crystallization and preliminary crystallographic study of human coronavirus NL63 main protease in complex with an inhibitor

    PubMed Central

    Wang, Fenghua; Tan, Yusheng; Li, Huiyan; Chen, Xia; Wang, Jinshan; Li, Shuang; Fu, Sheng; Zhao, Qi; Chen, Cheng; Su, Dan; Yang, Haitao

    2014-01-01

    Human coronavirus NL63 mainly infects younger children and causes cough, fever, rhinorrhoea, bronchiolitis and croup. It encodes two polyprotein precursors required for genome replication and transcription. Each polyprotein undergoes extensive proteolytic processing, resulting in functional subunits. This process is mainly mediated by its genome-encoded main protease, which is an attractive target for antiviral drug design. In this study, the main protease of human coronavirus NL63 was crystallized in complex with a Michael acceptor. The complex crystals diffracted to 2.85 Å resolution and belonged to space group P41212, with unit-cell parameters a = b = 87.2, c = 212.1 Å. Two molecules were identified per asymmetric unit. PMID:25084384

  10. Insights into the structural function of the complex of HIV-1 protease with TMC-126: molecular dynamics simulations and free-energy calculations

    SciTech Connect

    Li, Dan; Han, Ju-Guang; Chen, Hang; Li, Liang; Zhao, Run-Ning Zhao; Liu, Guang; Duan, Yuhua

    2012-05-01

    The binding properties of the protein-inhibitor complex of human immunodeficiency virus type 1 (HIV-1) protease with the inhibitor TMC-126 are investigated by combining computational alanine scanning (CAS) mutagenesis with binding free-energy decomposition (BFED). The calculated results demonstrate that the flap region (residues 38-58) and the active site region (residues 23-32) in HIV-1 protease contribute 63.72% of the protease to the binding of the inhibitor. In particular, the mechanisms for the interactions of key residues of these species are fully explored and analyzed. Interestingly, the regression analyses show that both CAS and BFED based on the generalized Born model yield similar results, with a correlation coefficient of 0.94. However, compared to CAS, BFED is faster and can decompose the per-residue binding free-energy contributions into backbone and sidechain contributions. The results obtained in this study are useful for studying the binding mechanism between receptor and ligand and for designing potent inhibitors that can combat diseases.

  11. Protease proteomics: revealing protease in vivo functions using systems biology approaches.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2008-10-01

    Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow

  12. Peptide-Modulated Activity Enhancement of Acidic Protease Cathepsin E at Neutral pH

    PubMed Central

    Komatsu, Masayuki; Biyani, Madhu; Ghimire Gautam, Sunita; Nishigaki, Koichi

    2012-01-01

    Enzymes are regulated by their activation and inhibition. Enzyme activators can often be effective tools for scientific and medical purposes, although they are more difficult to obtain than inhibitors. Here, using the paired peptide method, we report on protease-cathepsin-E-activating peptides that are obtained at neutral pH. These selected peptides also underwent molecular evolution, after which their cathepsin E activation capability improved. Thus, the activators we obtained could enhance cathepsin-E-induced cancer cell apoptosis, which indicated their potential as cancer drug precursors. PMID:23365585

  13. IgA Protease Activity in Haemophilus parasuis in the Absence of a Recognizable IgA Protease Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Haemophilus parasuis, the bacterium responsible for Glasser’s disease, is a pathogen of significant concern in modern high-health swine production systems. Little is known regarding the molecular mechanisms of H. parasuis infection. In some Pasteurellaceae species, IgA proteases aid in d...

  14. Design, Synthesis and Biological Evaluation of a Library of Thiocarbazates and their Activity as Cysteine Protease Inhibitors

    PubMed Central

    Liu, Zhuqing; Myers, Michael C.; Shah, Parag P.; Beavers, Mary Pat; Benedetti, Phillip A.; Diamond, Scott L.

    2010-01-01

    Recently, we identified a novel class of potent cathepsin L inhibitors, characterized by a thiocarbazate warhead. Given the potential of these compounds to inhibit other cysteine proteases, we designed and synthesized a library of thiocarbazates containing diversity elements at three positions. Biological characterization of this library for activity against a panel proteases indicated a significant preference for members of the papain family of cysteine proteases over serine, metallo-, and certain classes of cysteine proteases, such as caspases. Several very potent inhibitors of Cathepsin L and S were identified. The SAR data was employed in docking studies in an effort to understand the structural elements required for Cathepsin S inhibition. This study provides the basis for the design of highly potent and selective inhibitors of the papain family of cysteine proteases. PMID:20438448

  15. Is dihydrolipoic acid among the reductive activators of parasite CysHis proteases?

    PubMed

    Lockwood, Thomas D

    2008-04-01

    Activities of mature CysHis proteases depend upon relative rates of oxidations vs. reductions of catalytic sulfur by multiple enzymatic and non-enzymatic reactions. CysHis peptidolysis is inhibited by Fe3+ but not Fe2+. Others report the paradox that malarial parasites require exogenous free lipoic acid (LA) from human host, although the apicoplast organelle produces it. Extra-cellular LA disulfide can be taken up and reduced to dihydrolipoic acid (DHLA) by reductases of any cell type. Here, the opposing effects of DHLA vs. Fe3+ on the falcipain-2 hemoglobinase were investigated employing Z-Phe-Arg-AMC substrate. Despite limited solubility, non-regenerated DHLA (10 microM, threshold 2 microM) was found to be the most potent activator of the air-inactivated (sulfoxygenated) protease discovered thus far. Activation was preemptively opposed by Fe3+, but not Fe2+. However, cruzain from T. cruzi, and cathepsin B from mammal were indistinguishable in their responsiveness to DHLA and Fe redox. Thus, DHLA activation vs. Fe3+ inhibition is not unique to falcipain-2 or apicomplexans but is rather a primordial feature of CysHis peptidolysis. Free LA and/or unassociated lipoylated enzyme subunits could be among multiple pathways shuttling reducing equivalents to reduction of proteins, including CysHis proteases. It is discussed that opposing DHLA-Fe3+ modification of plasmodial proteolysis might be a specialized adaptation to intra-erythrocytic growth. PMID:18068706

  16. Influence of skin penetration enhancers on skin barrier function and skin protease activity.

    PubMed

    Mohammed, Diar; Hirata, Kazumasa; Hadgraft, Jonathan; Lane, Majella E

    2014-01-23

    In order to overcome the skin's excellent barrier function formulation scientists often employ skin penetration enhancers (SPEs) in topical and transdermal formulations. The effects of these compounds on skin health is still not well understood at the molecular level. The aim of the present work was to probe the effects of some common SPEs on desquamatory protease activity in healthy skin. The SPEs studied were isopropyl myristate (IPM), propylene glycol, (PG), propylene glycol laurate (PGL) and Transcutol™ (TC). Occluded infinite doses of each SPE were applied to human volunteers for 24 h. Transepidermal water loss (TEWL) measurements were taken before and after application of SPEs. Tape strips were collected from the treated sites to determine protein content and the activity of two desquamatory proteases kallikrein 5 (KLK5) and kallikrein 7 (KLK7). TEWL values were also measured after tape stripping. PG was found to elevate both TEWL values and KLK7 activity to a significant extent (p<0.05). No significant effects were observed for the other SPEs. The ability of PG to alter the skin barrier at the macroscopic level and the influence of the molecule on protease activity reported here may have implications for its use in topical formulations used for the management of impaired skin barrier function such as atopic eczema or psoriasis. PMID:24063883

  17. Differential Signaling by Protease-Activated Receptors: Implications for Therapeutic Targeting

    PubMed Central

    Sidhu, Tejminder S.; French, Shauna L.; Hamilton, Justin R.

    2014-01-01

    Protease-activated receptors (PARs) are a family of four G protein-coupled receptors that exhibit increasingly appreciated differences in signaling and regulation both within and between the receptor class. By nature of their proteolytic self-activation mechanism, PARs have unique processes of receptor activation, “ligand” binding, and desensitization/resensitization. These distinctive aspects have presented both challenges and opportunities in the targeting of PARs for therapeutic benefit—the most notable example of which is inhibition of PAR1 on platelets for the prevention of arterial thrombosis. However, more recent studies have uncovered further distinguishing features of PAR-mediated signaling, revealing mechanisms by which identical proteases elicit distinct effects in the same cell, as well as how distinct proteases produce different cellular consequences via the same receptor. Here we review this differential signaling by PARs, highlight how important distinctions between PAR1 and PAR4 are impacting on the progress of a new class of anti-thrombotic drugs, and discuss how these more recent insights into PAR signaling may present further opportunities for manipulating PAR activation and signaling in the development of novel therapies. PMID:24733067

  18. The fibrinolytic activity of a novel protease derived from a tempeh producing fungus, Fusarium sp. BLB.

    PubMed

    Sugimoto, Satoshi; Fujii, Tadashi; Morimiya, Tatsuo; Johdo, Osamu; Nakamura, Takumi

    2007-09-01

    Tempeh is a traditional Indonesian soybean-fermented food produced by filamentous fungi, Rhizopus sp. and Fusarium sp. We isolated and sequenced the genomic gene and a cDNA clone encoding a novel protease (FP) from Fusarium sp. BLB. The genomic gene was 856 bp in length and contained two introns. An isolated cDNA clone encoded a protein of 250 amino acids. The predicted amino acid sequence of FP showed highest homology, of 76%, with that of trypsin from Fusarium oxysporum. The hydrolysis activity of FP toward synthetic peptide was higher than that of any other protease tested, including Nattokinases. Furthermore, the thrombolytic activity of FP was about 2.1-fold higher than that of Nattokinase when the concentration of plasminogen was 24 units/ml. These results suggest that FP is superior to Nattokinases in dissolving fibrin when absorbed into the blood. PMID:17827689

  19. Synergistic Caseinolytic Activity and Differential Fibrinogenolytic Action of Multiple Proteases of Maclura spinosa (Roxb. ex Willd.) latex

    PubMed Central

    Venkatesh, B. K.; Achar, Raghu Ram; Sharanappa, P.; Priya, B. S.; Swamy, S. Nanjunda

    2015-01-01

    Background: Kollamalayaali tribes of South India use latex of Maclura spinosa for milk curdling. This action is implicated to proteases which exhibit strong pharmacological potential in retardation of blood flow and acceleration of wound healing. Objective: To validate the presence of a proteolytic enzyme(s) in Maclura spinosa latex (MSL), and to investigate their probable role in hemostasis. Materials and Methods: Processed latex was examined for proteolytic and hemostatic activity using casein and human fibrinogen as substrates, respectively. Caseinoltyic activity was compared with two standard proteases viz., trypsin I and trypsin II. Effect of various standard protease inhibitors viz., iodoacetic acid (IAA), phenylmethylsulfonyl fluoride (PMSF), ethylene glycol tetraacetic acid, and ethylenediaminetetraacetic acid on both caseinolytic and fibrinogenolytic activities were examined. Electrophoretogram of fibrinogenolytic assays were subjected to densitometric analysis. Results: Proteolytic action of MSL was found to be highly efficient over trypsin I and trypsin II in dose-dependent caseinolytic activity (P < 0.05; specific activity of 1,080 units/mg protein). The Aα and Bβ bands of human fibrinogen were readily cleaved by MSL (for 1 μg crude protein and 30 min of incubation time). Furthermore, MSL cleaved γ subunit in dose- and time-dependent manner. Quantitative correlation of these results was obtained by densitometric analysis. The caseinolytic activity of MSL was inhibited by IAA, PMSF. While, only PMSF inhibited fibrinogenolytic activity. Conclusions: MSL contains proteolytic enzymes belonging to two distinct superfamilies viz., serine protease and cysteine proteases. The fibrinogenolytic activity of MSL is restricted to serine proteases only. The study extrapolates the use of M. spinosa latex from milk curdling to hemostasis. SUMMARY Proteolytic enzymes present in latex of Maclura spinosa can be assigned to two different protease superfamilies viz

  20. The Effect of Clade-Specific Sequence Polymorphisms on HIV-1 Protease Activity and Inhibitor Resistance Pathways

    SciTech Connect

    Bandaranayake, Rajintha M.; Kolli, Madhavi; King, Nancy M.; Nalivaika, Ellen A.; Heroux, Annie; Kakizawa, Junko; Sugiura, Wataru; Schiffer, Celia A.

    2010-09-08

    The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01{_}AE (AE) strain is seen principally in Southeast Asia. AE protease differs by {approx}10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B and AE protease variants. The relationship between clade-specific sequence variations and pathways to inhibitor resistance was also assessed. AE protease has a lower catalytic turnover rate than clade B protease, and it also has weaker affinity for both NFV and darunavir (DRV). This weaker affinity may lead to the nonactive-site N88S variant in AE, which exhibits significantly decreased affinity for both NFV and DRV. The D30N/N88D mutations in clade B resulted in a significant loss of affinity for NFV and, to a lesser extent, for DRV. A comparison of crystal structures of AE protease shows significant structural rearrangement in the flap hinge region compared with those of clade B protease and suggests insights into the alternative pathways to NFV resistance. In combination, our studies show that sequence polymorphisms within clades can alter protease activity and inhibitor binding and are capable of altering the pathway to inhibitor resistance.

  1. Structural Basis for the Magnesium-Dependent Activation and Hexamerization of the Lon AAA+ Protease.

    PubMed

    Su, Shih-Chieh; Lin, Chien-Chu; Tai, Hui-Chung; Chang, Mu-Yueh; Ho, Meng-Ru; Babu, C Satheesan; Liao, Jiahn-Haur; Wu, Shih-Hsiung; Chang, Yuan-Chih; Lim, Carmay; Chang, Chung-I

    2016-05-01

    The Lon AAA+ protease (LonA) plays important roles in protein homeostasis and regulation of diverse biological processes. LonA behaves as a homomeric hexamer in the presence of magnesium (Mg(2+)) and performs ATP-dependent proteolysis. However, it is also found that LonA can carry out Mg(2+)-dependent degradation of unfolded protein substrate in an ATP-independent manner. Here we show that in the presence of Mg(2+) LonA forms a non-secluded hexameric barrel with prominent openings, which explains why Mg(2+)-activated LonA can operate as a diffusion-based chambered protease to degrade unstructured protein and peptide substrates efficiently in the absence of ATP. A 1.85 Å crystal structure of Mg(2+)-activated protease domain reveals Mg(2+)-dependent remodeling of a substrate-binding loop and a potential metal-binding site near the Ser-Lys catalytic dyad, supported by biophysical binding assays and molecular dynamics simulations. Together, these findings reveal the specific roles of Mg(2+) in the molecular assembly and activation of LonA. PMID:27041593

  2. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A

    PubMed Central

    Mallorquí-Fernández, Noemí; Manandhar, Surya P.; Mallorquí-Fernández, Goretti; Usón, Isabel; Wawrzonek, Katarzyna; Kantyka, Tomasz; Solà, Maria; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan; Gomis-Rüth, F.Xavier

    2009-01-01

    Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defences and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and its self-processed mature form. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin and a latency flap in the zymogen. Dramatic rearrangement of up to 20Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain. PMID:17993455

  3. Cordysobin, a novel alkaline serine protease with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Cordyceps sobolifera.

    PubMed

    Wang, Shou-Xian; Liu, Yu; Zhang, Guo-Qing; Zhao, Shuang; Xu, Feng; Geng, Xiao-Li; Wang, He-Xiang

    2012-01-01

    A novel serine protease, designated as cordysobin, was purified from dried fruiting bodies of the mushroom Cordyceps sobolifera. The isolation procedure utilized ion exchange chromatography on DEAE-cellulose and SP-Sepharose followed by gel filtration on Superdex 75. The protease did not adsorb on DEAE-cellulose but bound to SP-Sepharose. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the protease resolved as a single band with an apparent molecular mass of 31 kDa. Its optimal pH was 10.0, and the optimal temperature was 65°C. The protease displayed a K(m) value of 0.41 μM and 13.44 μM·min⁻¹ using Suc-Leu-Leu-Val-Tyr-MCA as substrate at pH 10.0 and 37°C. Protease activity was enhanced by the Fe²⁺ ion at low concentration range of 1.25-10 mM and was strongly inhibited by Hg²⁺ up to 1.25 mM. The protease was strongly inhibited by chymostatin and phenylmethylsulfonyl fluoride (PMSF), suggesting that it is a serine protease. It manifested significant inhibitory activity toward HIV-1 reverse transcriptase (RT) with an IC₅₀ value of 8.2×10⁻³ μM, which is the highest anti-HIV-1 RT activity of reported mushroom proteins. PMID:22014786

  4. An 11-kDa form of human immunodeficiency virus protease expressed in Escherichia coli is sufficient for enzymatic activity.

    PubMed Central

    Graves, M C; Lim, J J; Heimer, E P; Kramer, R A

    1988-01-01

    In order to define the protease domain of human immunodeficiency virus 1, various regions of the pol open reading frame were cloned and expressed in Escherichia coli. Antiserum directed against the conserved retroviral protease active site was used to identify pol precursor and processed species containing the presumed protease domain. The smallest product that accumulates is about 11 kDa as measured by NaDodSO4/PAGE. This size agrees with that predicted from the presence in this region of two Phe-Pro sequences, which is one of the cleavage sites recognized by HIV protease. DNA encoding only the predicted 11-kDa protein was cloned, bypassing the need for autoprocessing, and the protein was expressed to a high level in E. coli. This form is active as demonstrated by its ability to specifically cleave protease-deficient pol protein in vivo in E. coli. Extracts of E. coli containing the 11-kDa protease also process human immunodeficiency virus gag substrates in vitro. These results demonstrate that the 11-kDa protease is sufficient for enzymatic activity and are consistent with a major role for this form in virus maturation. Images PMID:3282230

  5. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.

    PubMed

    Banani, Houda; Spadaro, Davide; Zhang, Dianpeng; Matic, Slavica; Garibaldi, Angelo; Gullino, Maria Lodovica

    2014-07-16

    The yeast-like fungus Aureobasidium pullulans PL5 is a microbial antagonist against postharvest pathogens of fruits. The strain is able to produce hydrolases, including glucanases, chitinases and proteases. The alkaline serine protease gene ALP5 from A. pullulans was cloned, inserted into the vector pPIC9 to construct pPIC9/ALP5, and then expressed in Pichia pastoris strain KM71. ALP5 had a molecular mass of 42.9kDa after 5days growth with 1% methanol induction at 28°C. The recombinant protease expressed in P. pastoris showed its highest activity under alkaline conditions (at pH10) and a temperature of 50°C. The antifungal activity of the recombinant protease was investigated against Penicillium expansum, Botrytis cinerea, Monilinia fructicola and Alternaria alternata in vitro and on apple. The recombinant protease reduced significantly the spore germination and the germ tube length of the tested pathogens in PDB medium. The highest level of protease efficacy was observed against M. fructicola and B. cinerea, whereas a lower efficacy was observed against P. expansum and A. alternata indicating a possible effect of the pathogen cell wall composition on the proteolytic activity of the recombinant protease. The presence of protease was able to cause the swelling of the hyphae of B. cinerea, under an optical microscope. The recombinant protease expressed in P. pastoris was more active against the pathogens in vitro than the same enzyme expressed in E. coli in previous studies. The efficacy of ALP5 was also evaluated against the pathogens in vivo on cv Golden Delicious apples. The protease was more efficient in controlling M. fructicola, B. cinerea and P. expansum than A. alternata. However, the extent of the activity was dependent on the enzyme concentration and the length of fruit storage. This study demonstrated the capacity of the alkaline serine protease to keep its enzymatic activity for some days in the unfavorable environment of the fruit wounds. The alkaline

  6. The Zinc-Dependent Protease Activity of the Botulinum Neurotoxins

    PubMed Central

    Lebeda, Frank J.; Cer, Regina Z.; Mudunuri, Uma; Stephens, Robert; Singh, Bal Ram; Adler, Michael

    2010-01-01

    The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov). PMID:22069621

  7. Evaluation of trypanocidal activity of combinations of anti-sleeping sickness drugs with cysteine protease inhibitors.

    PubMed

    Steverding, Dietmar

    2015-01-01

    Chemotherapy of human African trypanosomiasis (HAT) is unsatisfactory because only a few drugs, with serious side effects and poor efficacy, are available. As drug combination regimes often achieve greater therapeutic efficacy than monotherapies, here the trypanocidal activity of the cysteine protease inhibitor K11777 in combination with current anti-HAT drugs using bloodstream forms of Trypanosoma brucei was investigated. Isobolographic analysis was used to determine the interaction between cysteine protease inhibitors (K11777, CA-074Me and CAA0225) and anti-HAT drugs (suramin, pentamidine, melarsoprol and eflornithine). Bloodstream forms of T. brucei were incubated in culture medium containing cysteine protease inhibitors or anti-HAT drugs alone or in combination at a 1:1 fixed-dose ratio. After 48 h incubation, live cells were counted, the 50% growth inhibition values determined and combination indices calculated. The general cytotoxicity of drug combinations was evaluated with human leukaemia HL-60 cells. Combinations of K11777 with suramin, pentamidine and melarsoprol showed antagonistic effects while with eflornithine a synergistic effect was observed. Whereas eflornithine antagonises with CA-074Me, an inhibitor inactivating the targeted TbCATL only under reducing conditions, it synergises with CAA0255, an inhibitor structurally related to CA-074Me which inactivates TbCATL independently of thiols. These findings indicate an essential role of thiols for the synergistic interaction between K11777 and eflornithine. Encouragingly, the K11777/eflornithine combination displayed higher trypanocidal than cytotoxic activity. The results of this study suggest that the combination of the cysteine protease inhibitor K11777 and eflornithine display promising synergistic trypanocidal activity that warrants further investigation of the drug combination as possible alternative treatment of HAT. PMID:25662707

  8. Bacterial IgA protease-mediated degradation of agIgA1 and agIgA1 immune complexes as a potential therapy for IgA Nephropathy.

    PubMed

    Wang, Li; Li, Xueying; Shen, Hongchun; Mao, Nan; Wang, Honglian; Cui, Luke; Cheng, Yuan; Fan, Junming

    2016-01-01

    Mesangial deposition of aberrantly glycosylated IgA1 (agIgA1) and its immune complexes is a key pathogenic mechanism of IgA nephropathy (IgAN). However, treatment of IgAN remains ineffective. We report here that bacteria-derived IgA proteases are capable of degrading these pathogenic agIgA1 and derived immune complexes in vitro and in vivo. By screening 14 different bacterial strains (6 species), we found that 4 bacterial IgA proteases from H. influenzae, N. gonorrhoeae and N. meningitidis exhibited high cleaving activities on serum agIgA1 and artificial galactose-depleted IgA1 in vitro and the deposited agIgA1-containing immune complexes in the mesangium of renal biopsy from IgAN patients and in a passive mouse model of IgAN in vitro. In the modified mouse model of passive IgAN with abundant in situ mesangial deposition of the agIgA-IgG immune complexes, a single intravenous delivery of IgA protease from H. influenzae was able to effectively degrade the deposited agIgA-IgG immune complexes within the glomerulus, demonstrating a therapeutic potential for IgAN. In conclusion, the bacteria-derived IgA proteases are biologically active enzymes capable of cleaving the circulating agIgA and the deposited agIgA-IgG immune complexes within the kidney of IgAN. Thus, the use of such IgA proteases may represent a novel therapy for IgAN. PMID:27485391

  9. Bacterial IgA protease-mediated degradation of agIgA1 and agIgA1 immune complexes as a potential therapy for IgA Nephropathy

    PubMed Central

    Wang, Li; Li, Xueying; Shen, Hongchun; Mao, Nan; Wang, Honglian; Cui, Luke; Cheng, Yuan; Fan, Junming

    2016-01-01

    Mesangial deposition of aberrantly glycosylated IgA1 (agIgA1) and its immune complexes is a key pathogenic mechanism of IgA nephropathy (IgAN). However, treatment of IgAN remains ineffective. We report here that bacteria-derived IgA proteases are capable of degrading these pathogenic agIgA1 and derived immune complexes in vitro and in vivo. By screening 14 different bacterial strains (6 species), we found that 4 bacterial IgA proteases from H. influenzae, N. gonorrhoeae and N. meningitidis exhibited high cleaving activities on serum agIgA1 and artificial galactose-depleted IgA1 in vitro and the deposited agIgA1-containing immune complexes in the mesangium of renal biopsy from IgAN patients and in a passive mouse model of IgAN in vitro. In the modified mouse model of passive IgAN with abundant in situ mesangial deposition of the agIgA-IgG immune complexes, a single intravenous delivery of IgA protease from H. influenzae was able to effectively degrade the deposited agIgA-IgG immune complexes within the glomerulus, demonstrating a therapeutic potential for IgAN. In conclusion, the bacteria-derived IgA proteases are biologically active enzymes capable of cleaving the circulating agIgA and the deposited agIgA-IgG immune complexes within the kidney of IgAN. Thus, the use of such IgA proteases may represent a novel therapy for IgAN. PMID:27485391

  10. 7-hydroxycalamenene Effects on Secreted Aspartic Proteases Activity and Biofilm Formation of Candida spp.

    PubMed Central

    Azevedo, Mariana M. B.; Almeida, Catia A.; Chaves, Francisco C. M.; Rodrigues, Igor A.; Bizzo, Humberto R.; Alviano, Celuta S.; Alviano, Daniela S.

    2016-01-01

    Background: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. Materials and Methods: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. Results: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 μg/ml to 78.12 μg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 μg/ml). Conclusion: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity. SUMMARY Croton cajucara Benth. essential oil provides high amounts of 7-hydroxycalamenene7-Hydroxycalameneneisolated from C. cajucarais active against Candida spp7-Hydroxycalameneneinhibits C. albicans aspartic protease activity7-Hydroxycalamenene was not active against C. albicans biofilm formation. Figure PMID:27019560

  11. A biosensor for the protease TACE reveals actin damage induced TACE activation

    PubMed Central

    Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong

    2016-01-01

    Ligand shedding has gained increased attention as a major posttranslational modification mechanism used by cells to respond to diverse environmental conditions. The TACEadam17 protease is a critical mediator of such ligand shedding, regulating the maturation and release of an impressive range of extracellular substrates that drive diverse cellular responses. Exactly how this protease is itself activated remains unclear, in part due to the lack of available tools to measure TACE activity with temporal and spatial resolution in live cells. We have developed a FRET based biosensor for TACE activity (TSen), which is capable of reporting TACE activation kinetics in live cells with a high degree of specificity. TSen was used in combination with chemical biology to probe the dependence of various means of TACE activation on p38 and Erk kinase activities, as well as to identify a novel connection between actin cytoskeletal disruption and TACE activation. Such cytoskeletal disruption leads to rapid and robust TACE activation in some cell types and accumulation of TACE at the plasma membrane, allowing for increased cleavage of endogenous substrates. Our study highlights both the versatility of TSen as a tool to understand the mechanisms of TACE activation in live cells and the importance of actin cytoskeletal integrity as a modulator of TACE activity. PMID:25714465

  12. Characterization of a novel otubain-like protease with deubiquitination activity from Nosema bombycis (Microsporidia).

    PubMed

    Wang, Ying; Dang, Xiaoqun; Luo, Bo; Li, Chunfeng; Long, Mengxian; Li, Tian; Li, Zhi; Pan, Guoqing; Zhou, Zeyang

    2015-10-01

    Otubains are a recently identified family of deubiquitinating enzymes (DUBs). They are involved in diverse biological processes including protein degradation, signal transduction, and cell immune response. Several microsporidian genomes have been published in the last decade; however, little is known about the otubain-like protease in these widely-spread obligate intracellular parasites. Here, we characterized a 25 kDa otubain-like protease (NbOTU1) from the microsporidian Nosema bombycis, the pathogen causing pebrine disease in the economically important insect Bombyx mori. Sequence analysis showed that this protein contained a conserved catalytic triad of otubains composed of aspartate, cysteine, and histidine residues. The expression of Nbotu1 began on day 3 postinfection as determined by the RT-PCR method. Immunofluorescence analysis indicated that NbOTU1 is localized on the spore wall of N. bombycis. The subcellular localization of the NbOTU1 was further detected with immunoelectron microscopy, which showed that NbOTU1 is localized at the regions around endospore wall and plasma membrane. Deubiquitination analysis confirmed that the recombinant NbOTU1 possessed deubiquitination activity in vitro. Taken together, a novel microsporidian otubain-like protease NbOTU1 was partially characterized in N. bombycis, demonstrating its subcellular location and deubiquitination activity. This study provided a basic reference for further dissecting the function of otubains in microsporidia. PMID:26177898

  13. Cysteine Protease Activity of Feline Tritrichomonas foetus Promotes Adhesion-Dependent Cytotoxicity to Intestinal Epithelial Cells

    PubMed Central

    Tolbert, M. K.; Stauffer, S. H.; Brand, M. D.

    2014-01-01

    Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis. PMID:24752513

  14. Cysteine protease activity of feline Tritrichomonas foetus promotes adhesion-dependent cytotoxicity to intestinal epithelial cells.

    PubMed

    Tolbert, M K; Stauffer, S H; Brand, M D; Gookin, J L

    2014-07-01

    Trichomonads are obligate protozoan parasites most renowned as venereal pathogens of the reproductive tract of humans and cattle. Recently, a trichomonad highly similar to bovine venereal Tritrichomonas foetus but having a unique tropism for the intestinal tract was recognized as a significant cause of colitis in domestic cats. Despite a high prevalence, worldwide distribution, and lack of consistently effective drugs for treatment of the infection, the cellular mechanisms of T. foetus pathogenicity in the intestinal tract have not been examined. The aims of this study were to determine the pathogenic effect of feline T. foetus on porcine intestinal epithelial cells, the dependence of T. foetus pathogenicity on adhesion of T. foetus to the intestinal epithelium, and the identity of mediators responsible for these effects. Using an in vitro coculture approach to model feline T. foetus infection of the intestinal epithelium, these studies demonstrate that T. foetus promotes a direct contact-dependent activation of intestinal epithelial cell apoptosis signaling and progressive monolayer destruction. Moreover, these pathological effects were demonstrated to be largely dependent on T. foetus cell-associated cysteine protease activity. Finally, T. foetus cysteine proteases were identified as enabling cytopathic effects by promoting adhesion of T. foetus to the intestinal epithelium. The present studies are the first to examine the cellular mechanisms of pathogenicity of T. foetus toward the intestinal epithelium and support further investigation of the cysteine proteases as virulence factors in vivo and as potential therapeutic targets for ameliorating the pathological effects of intestinal trichomonosis. PMID:24752513

  15. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities.

    PubMed

    Shivaprasad, H V; Riyaz, M; Venkatesh Kumar, R; Dharmappa, K K; Tarannum, Shaista; Siddesha, J M; Rajesh, R; Vishwanath, B S

    2009-10-01

    In the present study we evaluated the presence of cysteine protease from the latex of four plants Asclepias curassavica L., Calotropis gigantea R.Br., Pergularia extensa R.Br. and Cynanchum puciflorum R.Br. belongs to the family Asclepiadaceae. Cysteine proteases from these plants latex exhibited both thrombin and plasmin like activities. Latex enzyme fraction in a concentration dependent manner induced the formation of clot in citrated blood plasma. Direct incubation of fibrinogen with latex enzyme fraction resulted in the formation of fibrin clot similar to thrombin enzyme. However prolonged incubation resulted in degradation of the formed fibrin clot suggesting plasmin like activity. Latex enzyme fraction preferentially hydrolyzed Aalpha and Bbeta chains of fibrinogen to form fibrin clot. Latex enzyme fraction also hydrolyzed the subunits of fully cross linked fibrin efficiently, the order of hydrolysis was alpha-polymer > alpha-chains > beta-chain and gamma-gamma dimer. Cysteine proteases from all the four Asclepiadaceae plants latex exhibited similar action on fibrinogen and fibrin. This study scientifically validate the use of plant latex in stop bleeding and wound healing by traditional healers all over the world. PMID:18979066

  16. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation.

    PubMed

    Ramasamy, Vijay Sankar; Islam, Md Imamul; Haque, Md Aminul; Shin, Song Yub; Park, Il-Seon

    2016-06-01

    β-Amyloid (Aβ), a hallmark peptide of Alzheimer's disease, induces both caspase-dependent apoptosis and non-apoptotic cell death. In this study, we examined caspase-independent non-apoptotic cell death preceding caspase activation in Aβ42-treated cells. We first determined the optimal treatment conditions for inducing cell death without caspase activation and selected a double-treatment method involving the incubation of cells with Aβ42 for 4 and 6h (4+6h sample). We observed that levels of lamin A (LA) and lamin B (LB) were reduced in the 4+6h samples. This reduction was decreased by treatment with suc-AAPF-CMK, an inhibitor of nuclear scaffold (NS) protease, but not by treatment with z-VAD-FMK, a pan-caspase inhibitor. In addition, suc-AAPF-CMK decreased the changes in nuclear morphology observed in cells in the 4+6h samples, which were different from nuclear fragmentation observed in STS-treated cells. Furthermore, suc-AAPF-CMK inhibited cell death in the 4+6h samples. LA and LB fragmentation occurred in the isolated nuclei and was also inhibited by suc-AAPF-CMK. Together, these data indicated that the fragmentation of LA and LB in the Aβ42-treated cells was induced by an NS protease, whose identity is not clearly determined yet. A correlation between Aβ42 toxicity and the lamin fragmentation by NS protease suggests that inhibition of the protease could be an effective method for controlling the pathological process of AD. PMID:26876308

  17. Measuring Chitinase and Protease Activity in Cultures of Fungal Entomopathogens.

    PubMed

    Cheong, Peter; Glare, Travis R; Rostás, Michael; Haines, Stephen R

    2016-01-01

    Entomopathogenic fungi produce a variety of destructive enzymes and metabolites to overcome the unique defense mechanisms of insects. In a first step, fungal chitinases and proteinases need to break down the insect's cuticle. Both enzyme classes support the infection process by weakening the chitin barrier and by producing nutritional cleavage products for the fungus. In a second step, the pathogen can now mechanically penetrate the weakened cuticle and reach the insect's hemolymph where it starts proliferating. The critical enzymes chitinase and proteinase are also excreted into the supernatants of fungal cultures and can be used as indicators of virulence. Chromogenic assays adapted for 96-well microtiter plates that measure these enzymes provide a sensitive, fast, and easy screening method for evaluating the potential biocontrol activity of fungal isolates and may be considered as an alternative to laborious and time-consuming bioassays. Furthermore, monitoring fungal enzyme production in dependence of time, nutrient sources, or other factors can facilitate in establishing optimal growth and harvesting conditions for selected isolates with the aim of achieving maximum biocontrol activity. PMID:27565500

  18. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  19. Assessing the impact of long term frozen storage of faecal samples on protein concentration and protease activity

    PubMed Central

    Morris, Laura S.; Marchesi, Julian R.

    2016-01-01

    Background The proteome is the second axis of the microbiome:host interactome and proteases are a significant aspect in this interaction. They interact with a large variety of host proteins and structures and in many situations are implicated in pathogenesis. Furthermore faecal samples are commonly collected and stored frozen so they can be analysed at a later date. So we were interested to know whether long term storage affected the integrity of proteases and total protein and whether historical native faecal samples were still a viable option for answering research questions around the functional proteome. Methods Faecal samples were collected from 3 healthy volunteers (3 biological replicates) and processed in order to be stored at both − 20 °C and − 80 °C and in a variety of storage buffers. Protein extraction, protein content and protease activity were assessed at the time of collection, after 24 h, 1 week, 1 month, 3 months 6 months and finally 1 year. Results Beadbeating impacted the quantity of protein extracted, while sodium azide did not impact protease assays. Long term storage of extracted proteins showed that both total protein and protease activity were affected when they were stored as extracted protein. Intact faecal samples were shown to maintain both protein levels and protease activity regardless of time and temperature. Conclusions Beadbeating increases the protein and protease activity when extracting from a faecal sample, however, the extracted protein is not stable and activity is lost, even with a suitable storage buffer. The most robust solution is to store the proteins in an intact frozen native faecal matrix and extract at the time of assay or analysis, this approach was shown to be suitable for samples in which, there are low levels of protease activity and which had been frozen for a year. PMID:26853125

  20. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors.

    PubMed

    Birkus, Gabriel; Bam, Rujuta A; Willkom, Madeleine; Frey, Christian R; Tsai, Luong; Stray, Kirsten M; Yant, Stephen R; Cihlar, Tomas

    2016-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  1. Staphylococcal SplB serine protease utilizes a novel molecular mechanism of activation.

    PubMed

    Pustelny, Katarzyna; Zdzalik, Michal; Stach, Natalia; Stec-Niemczyk, Justyna; Cichon, Przemyslaw; Czarna, Anna; Popowicz, Grzegorz; Mak, Pawel; Drag, Marcin; Salvesen, Guy S; Wladyka, Benedykt; Potempa, Jan; Dubin, Adam; Dubin, Grzegorz

    2014-05-30

    Staphylococcal SplB protease belongs to the chymotrypsin family. Chymotrypsin zymogen is activated by proteolytic processing at the N terminus, resulting in significant structural rearrangement at the active site. Here, we demonstrate that the molecular mechanism of SplB protease activation differs significantly and we characterize the novel mechanism in detail. Using peptide and protein substrates we show that the native signal peptide, or any N-terminal extension, has an inhibitory effect on SplB. Only precise N-terminal processing releases the full proteolytic activity of the wild type analogously to chymotrypsin. However, comparison of the crystal structures of mature SplB and a zymogen mimic show no rearrangement at the active site whatsoever. Instead, only the formation of a unique hydrogen bond network, distant form the active site, by the new N-terminal glutamic acid of mature SplB is observed. The importance of this network and influence of particular hydrogen bond interactions at the N terminus on the catalytic process is demonstrated by evaluating the kinetics of a series of mutants. The results allow us to propose a consistent model where changes in the overall protein dynamics rather than structural rearrangement of the active site are involved in the activation process. PMID:24713703

  2. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus.

    PubMed

    Salles, Hévila Oliveira; Braga, Ana Carolina Linhares; Nascimento, Maria Thayana dos Santos Canuto do; Sousa, Ana Márjory Paiva; Lima, Adriano Rodrigues; Vieira, Luiz da Silva; Cavalcante, Antônio Cézar Rocha; Egito, Antonio Silvio do; Andrade, Lúcia Betânia da Silva

    2014-01-01

    Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (<12 kDa) for Albizia lebbeck, Ipomoea asarifolia, Jatropha curcas, Libidibia ferrea, Moringa oleifera and Ricinus communis (P<0.05, Bonferroni test). The two fractions of Crotalaria spectabilis showed the same ovicidal activity (P>0.05, Bonferroni test). Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties. PMID:25054490

  3. Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop.

    PubMed Central

    Giannelli, V; Fontana, M R; Giuliani, M M; Guangcai, D; Rappuoli, R; Pizza, M

    1997-01-01

    To generate nontoxic derivatives of Escherichia coli heat-labile enterotoxin (LT), site-directed mutagenesis has been used to change either the amino acid residues located in the catalytic site (M. Pizza, M. Domenighini, W. Hol, V. Giannelli, M. R. Fontana, M. M. Giuliani, C. Magagnoli, S. Peppoloni, R. Manetti, and R. Rappuoli, Mol. Microbiol. 14:51-60, 1994) or those located in the proteolytically sensitive loop that joins the A1 and A2 moieties of the A subunit (C. C. R. Grant, R. J. Messer, and W. J. Cieplack, Infect. Immun. 62:4270-4278, 1994; B. L. Dickinson and J. D. Clements, Infect. Immun. 63:1617-1623, 1995). In this work, we compared the in vitro and in vivo toxic properties and the resistance to protease digestion of the prototype molecules obtained by both approaches (LT-K63 and LT-R192G, respectively). As expected, LT-K63 was normally processed by proteases, while LT-R192G showed increased resistance to trypsin in vitro and was digested by trypsin only under denaturing conditions (3.5 M urea) or by intestinal proteases. No toxicity was detected with the LT-K63 mutant, even when 40 micrograms and 1 mg were used in the in vitro and in vivo assays, respectively. In marked contrast, LT-R192G showed only a modest (10-fold) reduction in toxicity in Y1 cells with a delay in the appearance of the toxic activity and had toxicity comparable to that of wild-type LT in the rabbit ileal loop assay. We conclude that mutagenesis of the active site generates molecules that are fully devoid of toxicity, while mutagenesis of the A1-A2 loop generates molecules that are resistant to trypsin in vitro but still susceptible to proteolytic activation by proteases other than trypsin, and therefore they may still be toxic in tissue culture and in vivo. PMID:8975934

  4. The Catalytic Activity of the Ubp3 Deubiquitinating Protease Is Required for Efficient Stress Granule Assembly in Saccharomyces cerevisiae

    PubMed Central

    Nostramo, Regina; Varia, Sapna N.; Zhang, Bo; Emerson, Megan M.

    2015-01-01

    The interior of the eukaryotic cell is a highly compartmentalized space containing both membrane-bound organelles and the recently identified nonmembranous ribonucleoprotein (RNP) granules. This study examines in Saccharomyces cerevisiae the assembly of one conserved type of the latter compartment, known as the stress granule. Stress granules form in response to particular environmental cues and have been linked to a variety of human diseases, including amyotrophic lateral sclerosis. To further our understanding of these structures, a candidate genetic screen was employed to identify regulators of stress granule assembly in quiescent cells. These studies identified a ubiquitin-specific protease, Ubp3, as having an essential role in the assembly of these RNP granules. This function was not shared by other members of the Ubp protease family and required Ubp3 catalytic activity as well as its interaction with the cofactor Bre5. Interestingly, the loss of stress granules was correlated with a decrease in the long-term survival of stationary-phase cells. This phenotype is similar to that observed in mutants defective for the formation of a related RNP complex, the Processing body. Altogether, these observations raise the interesting possibility of a general role for these types of cytoplasmic RNP granules in the survival of G0-like resting cells. PMID:26503781

  5. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    PubMed Central

    Cotârleţ, Mihaela; Negoiţă, Teodor Gh.; Bahrim, Gabriela E.; Stougaard, Peter

    2011-01-01

    The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20°C, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20°C. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures. PMID:24031702

  6. Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals.

    PubMed

    Gupta, Bakul; Mai, Kelly; Lowe, Stuart B; Wakefield, Denis; Di Girolamo, Nick; Gaus, Katharina; Reece, Peter J; Gooding, J Justin

    2015-10-01

    Herein is presented a microsensor technology as a diagnostic tool for detecting specific matrix metalloproteinases (MMPs) at very low concentrations. MMP-2 and MMP-9 are detected using label free porous silicon (PSi) photonic crystals that have been made selective for a given MMP by filling the nanopores with synthetic polymeric substrates containing a peptide sequence for that MMP. Proteolytic cleavage of the peptide sequence results in a shift in wavelength of the main peak in the reflectivity spectrum of the PSi device, which is dependent on the amount of MMP present. The ability to detect picogram amounts of MMP-2 and MMP-9 released by primary retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells stimulated with lipopolysaccharide (LPS) is demonstrated. It was found that both cell types secrete higher amounts of MMP-2 than MMP-9 in their stimulated state, with RPE cells producing higher amounts of MMPs than IPE cells. The microsensor performance was compared to conventional protease detection systems, including gelatin zymography and enzyme linked immunosorbent assay (ELISA). It was found that the PSi microsensors were more sensitive than gelatin zymography; PSi microsensors detected the presence of both MMP-2 and MMP-9 while zymography could only detect MMP-2. The MMP-2 and MMP-9 quantification correlated well with the ELISA. This new method of detecting protease activity shows superior performance to conventional protease assays and has the potential for translation to high-throughput multiplexed analysis. PMID:26312479

  7. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense.

    PubMed

    Caffrey, C R; Hansell, E; Lucas, K D; Brinen, L S; Alvarez Hernandez, A; Cheng, J; Gwaltney, S L; Roush, W R; Stierhof, Y D; Bogyo, M; Steverding, D; McKerrow, J H

    2001-11-01

    Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine. PMID:11704274

  8. A serine protease zymogen in insect plasma. Purification and activation by microbial cell wall components.

    PubMed

    Katsumi, Y; Kihara, H; Ochiai, M; Ashida, M

    1995-03-15

    A protease zymogen present in the plasma fraction of the hemolymph of silkworm, Bombyx mori, was purified to homogeneity as judged by SDS/PAGE and IEF/PAGE. An activating system for the zymogen was also isolated from the plasma fraction and was shown to be triggered by zymosan (yeast cell wall polysaccharide containing beta-1,3-glucan) or peptidoglycan. Using this system, the purified zymogen was activated and the active enzyme was purified to homogeneity. The physiological function of the zymogen or its active form is not yet known, but the active form was shown to have narrower substrate specificity than trypsin. Among 33 peptide derivatives examined, Boc-Gln-Arg-Arg-NH-Mec and Boc-Val-Pro-Arg-NH-Mec (Boc = tert-butoxycarbonyl, NH-Mec = 4-methylcoumaryl-7-amide) were the best and the second best substrates, respectively. The purified zymogen was determined to be a 39-kDa protein consisting of a single polypeptide. The active form of the zymogen was labeled with [3H]diisopropylfluorophosphate and was completely inactivated by (p-amidinophenyl)methanesulfonyl fluoride. The molecular mass of the [3H]-labeled enzyme was determined to be 38 kDa in SDS/PAGE under reducing conditions. These results indicate that the 39-kDa protein purified in the present study is a zymogen of a serine-type protease and that the activation of the zymogen occurs by limited proteolysis. PMID:7737188

  9. Novel Ca2+-activated neutral protease from an aquatic fungus, Allomyces arbuscula.

    PubMed Central

    Ojha, M; Wallace, C J

    1988-01-01

    A Ca2+-activated neutral protease was purified to homogeneity from an aquatic Phycomycete fungus, Allomyces arbuscula. It requires millimolar concentrations of Ca2+ for activation (1.8 to 2 mM for 50% activation). Sr2+ can replace Ca2+ but at higher concentrations (4 mM for 50% activation). The enzyme is a dimer of 40-kilodalton subunits and contains six cysteine residues, three of which are revealed only after the addition of micromolar concentrations of Ca2+; the other three are free. Enzyme activity is strongly inhibited by SH-group inhibitors and some trypsin inhibitors (leupeptin and alpha-N-tosyl-L-lysine chloromethyl ketone). The enzyme lacks general trypsinlike specificity, since substrates containing tryptic cleavage sites are not cleaved nor is enzyme activity inhibited by other trypsin inhibitors. The enzyme has many functional similarities to the extensively characterized mammalian and avian Ca2+-activated neutral proteases but differs in its substrate specificity, inhibition by alpha-N-tosyl-L-phenylalanine chloromethyl ketone, and subunit structure. It is, nevertheless, presumed that this enzyme has a similar high order of specificity and is involved in the regulation of a specific growth function. Images PMID:2830232

  10. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    PubMed

    Mukherjee, Ashis K

    2014-01-01

    Proteases from Russell's viper venom (RVV) induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis. PMID:24520323

  11. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering

    PubMed Central

    Flynn, Andrea N.; Hoffman, Justin; Tillu, Dipti V.; Sherwood, Cara L.; Zhang, Zhenyu; Patek, Renata; Asiedu, Marina N. K.; Vagner, Josef; Price, Theodore J.; Boitano, Scott

    2013-01-01

    Protease-activated receptor-2 (PAR2) is a G-protein coupled receptor (GPCR) associated with a variety of pathologies. However, the therapeutic potential of PAR2 is limited by a lack of potent and specific ligands. Following proteolytic cleavage, PAR2 is activated through a tethered ligand. Hence, we reasoned that lipidation of peptidomimetic ligands could promote membrane targeting and thus significantly improve potency and constructed a series of synthetic tethered ligands (STLs). STLs contained a peptidomimetic PAR2 agonist (2-aminothiazol-4-yl-LIGRL-NH2) bound to a palmitoyl group (Pam) via polyethylene glycol (PEG) linkers. In a high-throughput physiological assay, these STL agonists displayed EC50 values as low as 1.47 nM, representing a ∼200 fold improvement over the untethered parent ligand. Similarly, these STL agonists were potent activators of signaling pathways associated with PAR2: EC50 for Ca2+ response as low as 3.95 nM; EC50 for MAPK response as low as 9.49 nM. Moreover, STLs demonstrated significant improvement in potency in vivo, evoking mechanical allodynia with an EC50 of 14.4 pmol. STLs failed to elicit responses in PAR2−/− cells at agonist concentrations of >300-fold their EC50 values. Our results demonstrate that the STL approach is a powerful tool for increasing ligand potency at PAR2 and represent opportunities for drug development at other protease activated receptors and across GPCRs.—Flynn, A. N., Hoffman, J., Tillu, D. V., Sherwood, C. L., Zhang, Z., Patek, R., Asiedu, M. N. K., Vagner, J., Price, T. J., Boitano, S. Development of highly potent protease-activated receptor 2 agonists via synthetic lipid tethering. PMID:23292071

  12. Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae.

    PubMed

    Mondal, Ayan; Tapader, Rima; Chatterjee, Nabendu Sekhar; Ghosh, Amit; Sinha, Ritam; Koley, Hemanta; Saha, Dhira Rani; Chakrabarti, Manoj K; Wai, Sun Nyunt; Pal, Amit

    2016-05-01

    Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses. PMID:26930702

  13. Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot

    PubMed Central

    Gulla, Krishana C; Gupta, Kshitij; Krarup, Anders; Gal, Peter; Schwaeble, Wilhelm J; Sim, Robert B; O’Connor, C David; Hajela, Krishnan

    2010-01-01

    The lectin pathway of complement is activated upon binding of mannan-binding lectin (MBL) or ficolins (FCNs) to their targets. Upon recognition of targets, the MBL-and FCN-associated serine proteases (MASPs) are activated, allowing them to generate the C3 convertase C4b2a. Recent findings indicate that the MASPs also activate components of the coagulation system. We have previously shown that MASP-1 has thrombin-like activity whereby it cleaves and activates fibrinogen and factor XIII. MASP-2 has factor Xa-like activity and activates prothrombin through cleavage to form thrombin. We now report that purified L-FCN-MASPs complexes, bound from serum to N-acetylcysteine-Sepharose, or MBL-MASPs complexes, bound to mannan-agarose, generate clots when incubated with calcified plasma or purified fibrinogen and factor XIII. Plasmin digestion of the clot and analysis using anti-D-dimer antibodies revealed that the clot was made up of fibrin and was similar to that generated by thrombin in normal human plasma. Fibrinopeptides A and B (FPA and FPB, respectively) were released after fibrinogen cleavage by L-FCN-MASPs complexes captured on N-acetylcysteine-Sepharose. Studies of inhibition of fibrinopeptide release indicated that the dominant pathway for clotting catalysed by the MASPs is via MASP-2 and prothrombin activation, as hirudin, a thrombin inhibitor that does not inhibit MASP-1 and MASP-2, substantially inhibits fibrinopeptide release. In the light of their potent chemoattractant effects on neutrophil and fibroblast recruitment, the MASP-mediated release of FPA and FPB may play a role in early immune activation. Additionally, MASP-catalysed deposition and polymerization of fibrin on the surface of micro-organisms may be protective by limiting the dissemination of infection. PMID:20002787

  14. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities

    PubMed Central

    Mielech, Anna M.; Kilianski, Andy; Baez-Santos, Yahira M.; Mesecar, Andrew D.; Baker, Susan C.

    2014-01-01

    Coronaviruses encode papain-like proteases (PLpro) that are often multifunctional enzymes with protease activity to process the viral replicase polyprotein and deubiquitinating (DUB)/deISGylating activity, which is hypothesized to modify the innate immune response to infection. Here, we investigate the predicted DUB activity of the PLpro domain of the recently described Middle East Respiratory Syndrome Coronavirus (MERS-CoV). We found that expression of MERS-CoV PLpro reduces the levels of ubiquitinated and ISGylated host cell proteins; consistent with multifunctional PLpro activity. Further, we compared the ability of MERS-CoV PLpro and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) PLpro to block innate immune signaling of proinflammatory cytokines. We show that expression of SARS-CoV and MERS-CoV PLpros blocks upregulation of cytokines CCL5, IFN-β and CXCL10 in stimulated cells. Overall these results indicate that the PLpro domains of MERS-CoV and SARS-CoV have the potential to modify the innate immune response to viral infection and contribute to viral pathogenesis. PMID:24503068

  15. The role of protease-activated receptor type 2 in nociceptive signaling and pain.

    PubMed

    Mrozkova, P; Palecek, J; Spicarova, D

    2016-07-18

    Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and in the development of chronic pain states. This short review focuses on the role of PAR2 receptors in nociceptive transmission with the emphasis on the modulation at the spinal cord level. PAR2 are cleaved and subsequently activated by endogenous proteases such as tryptase and trypsin. In vivo, peripheral and intrathecal administration of PAR2 agonists induces thermal and mechanical hypersensitivity that is thought to be mediated by PAR2-induced release of pronociceptive neuropeptides and modulation of different receptors. PAR2 activation leads also to sensitization of transient receptor potential channels (TRP) that are crucial for nociceptive signaling and modulation. PAR2 receptors may play an important modulatory role in the development and maintenance of different pathological pain states and could represent a potential target for new analgesic treatments. PMID:27070742

  16. Purification and characterization of a serine protease with fibrinolytic activity from Tenodera sinensis (praying mantis).

    PubMed

    Hahn, B S; Cho, S Y; Wu, S J; Chang, I M; Baek, K; Kim, Y C; Kim, Y S

    1999-03-19

    Mantis egg fibrolase (MEF) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The protease was assessed homogeneous by SDS-polyacrylamide gel electrophoresis and has a molecular mass of 31500 Da. An isoelectric point of 6.1 was determined by isoelectric focusing. Amino acid sequencing of the N-terminal region established a primary structure composed of Ala-Asp-Val-Val-Gln-Gly-Asp-Ala-Pro-Ser. MEF readily digested the Aalpha- and Bbeta-chains of fibrinogen and more slowly the gamma-chain. The nonspecific action of the enzyme results in extensive hydrolysis of fibrinogen and fibrin releasing a variety of fibrinopeptide. The enzyme is inactivated by Cu2+ and Zn2+ and inhibited by PMSF and chymostatin, yet elastinal, aprotinin, TLCK, TPCK, EDTA, EGTA, cysteine, beta-mercaptoethanol, iodoacetate, E64, benzamidine and soybean trypsin inhibitor do not affect activity. Antiplasmin was not sensitive to MEF but antithrombin III inhibited the enzymatic activity of MEF. Among chromogenic protease substrates, the most sensitive to MEF hydrolysis was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 30 degrees C. MEF preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. D-Dimer concentrations increased on incubation of cross-linked fibrin with MEF, indicating the enzyme has a strong fibrinolytic activity. PMID:10082965

  17. Consideration of cysteine protease activity for serological M-typing of clinical Streptococcus pyogenes isolates.

    PubMed

    Morita, Masatomo; Ikebe, Tadayoshi; Watanabe, Haruo

    2004-01-01

    Clinical isolates of Streptococcus pyogenes were classified by serological typing of their surface M protein. Non-M typeable strains with the emm1 gene were characterized as the degradation of M protein caused by overproduction of the extracellular cysteine protease, SpeB. These events are dependent on the growth phase. M protein produced prior to expression of SpeB is degraded in the stationary phase when the active form of SpeB is detected. The proteolytic degradation of M protein should be considered for precise M typing analysis. PMID:15502412

  18. Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection

    PubMed Central

    Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe

    2016-01-01

    The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162

  19. 15N NMR spectroscopy of hydrogen-bonding interactions in the active site of serine proteases: evidence for a moving histidine mechanism.

    PubMed

    Bachovchin, W W

    1986-11-18

    Nitrogen-15 NMR spectroscopy has been used to study the hydrogen-bonding interactions involving the histidyl residue in the catalytic triad of alpha-lytic protease in the resting enzyme and in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The 15N shifts indicate that a strong hydrogen bond links the active site histidine and serine residues in the resting enzyme in solution. This result is at odds with interpretations of the X-ray diffraction data of alpha-lytic protease and of other serine proteases, which indicate that the serine and histidine residues are too far apart and not properly aligned for the formation of a hydrogen bond. In addition, the nitrogen-15 shifts demonstrate that protonation of the histidine imidazole ring at low pH in the transition-state or tetrahedral intermediate analogue complexes formed with phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate triggers the disruption of the aspartate-histidine hydrogen bond. These results suggest a catalytic mechanism involving directed movement of the imidazole ring of the active site histidyl residue. PMID:3542033

  20. Inhibition of sulfur mustard-increased protease activity by niacinamide, N-acetyl-L-cysteine or dexamethasone

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-03-11

    The pathologic mechanism of sulfur mustard-induced skin vesication is as yet undefined. Papirmeister et al. have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving sequelae of DNA alkylation, metabolic disruption resulting in NAD+ depletion and activation of protease. The authors have utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed 24 hr previously to sulfur mustard exhibited an increase in proteolytic activity. Doses of compounds known to alter the biochemical events associated with sulfur mustard exposure or reduce protease activity were tested in this system for their ability to block the sulfur mustard-induced protease activity. Treatment with niacinamide 1 hr after or with N-acetyl-L-cysteine or dexamethasone 24 hr prior to sulfur mustard exposure resulted in a decrease of 39%, 33% and 42% respectively of sulfur mustard-increased protease activity. These data suggest that therapeutic intervention into the biochemical pathways that culminate in protease activation might serve as an approach to treatment of sulfur mustard-induced pathology.

  1. Structural determinants of tobacco vein mottling virus protease substrate specificity

    SciTech Connect

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef; Waugh, David

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.

  2. Nonenzymatic anticoagulant activity of the mutant serine protease Ser360Ala-activated protein C mediated by factor Va.

    PubMed Central

    Gale, A. J.; Sun, X.; Heeb, M. J.; Griffin, J. H.

    1997-01-01

    The human plasma serine protease, activated protein C (APC), primarily exerts its anticoagulant function by proteolytic inactivation of the blood coagulation cofactors Va and VIIIa. A recombinant active site Ser 360 to Ala mutation of protein C was prepared, and the mutant protein was expressed in human 293 kidney cells and purified. The activation peptide of the mutant protein C zymogen was cleaved by a snake venom activator, Protac C, but the "activated" S360A APC did not have amidolytic activity. However, it did exhibit significant anticoagulant activity both in clotting assays and in a purified protein assay system that measured prothrombinase activity. The S360A APC was compared to plasma-derived and wild-type recombinant APC. The anticoagulant activity of the mutant, but not native APC, was resistant to diisopropyl fluorophosphate, whereas all APCs were inhibited by monoclonal antibodies against APC. In contrast to native APC, S360A APC was not inactivated by serine protease inhibitors in plasma and did not bind to the highly reactive mutant protease inhibitor M358R alpha 1 antitrypsin. Since plasma serpins provide the major mechanism for inactivating APC in vivo, this suggests that S360A APC would have a long half-life in vivo, with potential therapeutic advantages. S360A APC rapidly inhibited factor Va in a nonenzymatic manner since it apparently did not proteolyze factor Va. These data suggest that native APC may exhibit rapid nonenzymatic anticoagulant activity followed by enzymatic irreversible proteolysis of factor Va. The results of clotting assays and prothrombinase assays showed that S360A APC could not inhibit the variant Gln 506-FVa compared with normal Arg 506-FVa, suggesting that the active site of S360A APC binds to FVa at or near Arg 506. PMID:9007985

  3. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    PubMed

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  4. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases.

    PubMed Central

    Juo, P; Kuo, C J; Reynolds, S E; Konz, R F; Raingeaud, J; Davis, R J; Biemann, H P; Blenis, J

    1997-01-01

    The Fas receptor mediates a signalling cascade resulting in programmed cell death (apoptosis) within hours of receptor cross-linking. In this study Fas activated the stress-responsive mitogen-activated protein kinases, p38 and JNK, within 2 h in Jurkat T lymphocytes but not the mitogen-responsive kinase ERK1 or pp70S6k. Fas activation of p38 correlated temporally with the onset of apoptosis, and transfection of constitutively active MKK3 (glu), an upstream regulator of p38, potentiated Fas-induced cell death, suggesting a potential involvement of the MKK3/p38 activation pathway in Fas-mediated apoptosis. Fas has been shown to require ICE (interleukin-1 beta-converting enzyme) family proteases to induce apoptosis from studies utilizing the cowpox ICE inhibitor protein CrmA, the synthetic tetrapeptide ICE inhibitor YVAD-CMK, and the tripeptide pan-ICE inhibitor Z-VAD-FMK. In this study, crmA antagonized, and YVAD-CMK and Z-VAD-FMK completely inhibited, Fas activation of p38 kinase activity, demonstrating that Fas-dependent activation of p38 requires ICE/CED-3 family members and conversely that the MKK3/p38 activation cascade represents a downstream target for the ICE/CED-3 family proteases. Intriguingly, p38 activation by sorbitol and etoposide was resistant to YVAD-CMK and Z-VAD-FMK, suggesting the existence of an additional mechanism(s) of p38 regulation. The ICE/CED-3 family-p38 regulatory relationship described in the current work indicates that in addition to the previously described destructive cleavage of substrates such as poly(ADP ribose) polymerase, lamins, and topoisomerase, the apoptotic cysteine proteases also function to regulate stress kinase signalling cascades. PMID:8972182

  5. Protease with collagenolytic activity produced by Bacillus sp. DPUA 1728 from Amazonian soil

    PubMed Central

    Lima, Lorena A.; Cruz, Raimundo F.; dos Santos, Januário G.; Silva, Wilson C.

    2015-01-01

    Qualitative analyses were carried out on solid medium with insoluble collagen 0.25% (w/v) to detect proteases with collagenolytic activity produced by Bacillus sp. In cultures incubated for 24 h, a 23 full factorial design with four repetitions at the center point was developed to analyze the effects and interactions between initial pH, temperature and the concentration of gelatin. Based on the results of the first 23 full factorial design, a successive 23 full factorial design was performed. The most favorable production conditions were found to be 1.5% (w/v) gelatin, pH 9.0 and 37 °C with enzymatic activity of 86.27 U/mL. The enzyme showed optimal activity at 50 °C and pH 9.0, and it was stable over wide pH (7.2-10.0) and temperature (45 °C-60 °C) ranges. These results indicate that Bacillus sp DPUA 1728 is a potential source for producing collagenolytic protease with possible biotechnological applications, such as in the food, cosmetics and leather industries. PMID:26691484

  6. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

    PubMed Central

    Koizumi, Shun; Irie, Taro; Hirayama, Shoshiro; Sakurai, Yasuyuki; Yashiroda, Hideki; Naguro, Isao; Ichijo, Hidenori; Hamazaki, Jun; Murata, Shigeo

    2016-01-01

    In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001 PMID:27528193

  7. A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis

    PubMed Central

    van der Plas, Mariena J. A.; Andersen, Anders S.; Nazir, Sheresma; van Tilburg, Nico H.; Oestergaard, Peter R.; Krogfelt, Karen A.; van Dissel, Jaap T.; Hensbergen, Paul J.

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis. PMID:24647546

  8. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR. PMID:19447031

  9. Effect of leather industry effluents on soil microbial and protease activity.

    PubMed

    Pradeep, M Reddi; Narasimha, G

    2012-01-01

    Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)). PMID:23033641

  10. Synthesis and Inhibiting Activity of Some 4-Hydroxycoumarin Derivatives on HIV-1 Protease

    PubMed Central

    Stanchev, Stancho; Jensen, Frank; Hinkov, Anton; Atanasov, Vasil; Genova-Kalou, Petia; Argirova, Radka; Manolov, Ilia

    2011-01-01

    Six novel 4-hydroxycoumarin derivatives were rationally synthesized, verified, and characterized by molecular docking using crystal HIV-1 protease. Molecular docking studies predicted antiprotease activity of (7) and (10). The most significant functional groups, responsible for the interaction with HIV-1 protease by hydrogen bonds formation are pyran oxygen, atom, lactone carbonyl oxygen and one of the hydroxyl groups. The newly synthesized compounds were biologically tested in MT-4 cells for inhibiting HIV-1 replication, exploring the protection of cells from the cytopathic effect of HIV measured by cell survival in MTT test. One derivative −7 showed 76–78% inhibition of virus infectivity with IC50 = 0.01 nM, much less than the maximal nontoxic concentration (1 mM). Antiprotease activity of 7 in two different concentrations was detected to be 25%. Nevertheless, the results of study of (7) encourage using it as a pharmacophore for further synthesis and evaluation of anti-HIV activity. PMID:22389842

  11. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases.

    PubMed

    Tsilikounas, E; Rao, T; Gutheil, W G; Bachovchin, W W

    1996-02-20

    The hemiketal hydroxyl groups in chloromethyl ketone (cmk) complexes of trypsin and chymotrypsin have been reported to ionize to the oxyanion with pK(a) values 2-4 pK(a) units below expectations for such a functional group on the basis of the behavior of the hemiketal carbon atom in 13C NMR spectra [Finucane, M. D., & Malthouse, J. P. G. (1992) Biochem. J. 286, 889-900]. The low pK(a) indicates the enzymes selectively stabilize the oxyanion form of the bound inhibitor, and therefore that cmk complexes may be good models of enzyme-mediated transition-state stabilization. However, the 13C NMR studies could not rule out His57 as the titrating group. Here we report the behavior of the ring 15N atoms of His57 in the Ala-Ala-Pro-Val-cmk complex of alpha-lytic protease. Both N(delta 1) and N(epsilon 2) of His57 respond to an ionization with a pK(a) of approximately 7.5, but His57 itself does not titrate as N(epsilon 2) remains alkylated and N(delta 1) remains bonded to a proton over the entire pH range. The species titrating with a pK(a) of approximately 7.5 must therefore be the hemiketal hydroxyl. The results also show that the 1H NMR signal from the proton in the Asp-His hydrogen bond behaves in a characteristic manner in cmk complexes and can be used diagnostically to confirm that His57 does not titrate and to measure the pK(a) of the hemiketal hydroxyl in cmk-protease complexes without resorting to 15N-labeling. We have used the behavior of this signal to directly confirm that His57 does not titrate in the trypsin and chymotrypsin complexes that were the subjects of the original 13C NMR studies. PMID:8652587

  12. Toxin-Antitoxin Modules Are Pliable Switches Activated by Multiple Protease Pathways

    PubMed Central

    Muthuramalingam, Meenakumari; White, John C.; Bourne, Christina R.

    2016-01-01

    Toxin-antitoxin (TA) modules are bacterial regulatory switches that facilitate conflicting outcomes for cells by promoting a pro-survival phenotypic adaptation and/or by directly mediating cell death, all through the toxin activity upon degradation of antitoxin. Intensive study has revealed specific details of TA module functions, but significant gaps remain about the molecular details of activation via antitoxin degradation used by different bacteria and in different environments. This review summarizes the current state of knowledge about the interaction of antitoxins with cellular proteases Lon and ClpP to mediate TA module activation. An understanding of these processes can answer long-standing questions regarding stochastic versus specific activation of TA modules and provide insight into the potential for manipulation of TA modules to alter bacterial growth. PMID:27409636

  13. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  14. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  15. Fibrinogen cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of antibodies that inhibit enzyme proteolytic activity.

    PubMed

    Matsuka, Y V; Pillai, S; Gubba, S; Musser, J M; Olmsted, S B

    1999-09-01

    The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen alpha chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH(2)-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein. PMID:10456870

  16. Fibrinogen Cleavage by the Streptococcus pyogenes Extracellular Cysteine Protease and Generation of Antibodies That Inhibit Enzyme Proteolytic Activity

    PubMed Central

    Matsuka, Yury V.; Pillai, Subramonia; Gubba, Siddeswar; Musser, James M.; Olmsted, Stephen B.

    1999-01-01

    The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen α chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH2-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein. PMID:10456870

  17. TRY-5 Is a Sperm-Activating Protease in Caenorhabditis elegans Seminal Fluid

    PubMed Central

    Smith, Joseph R.; Stanfield, Gillian M.

    2011-01-01

    Seminal fluid proteins have been shown to play important roles in male reproductive success, but the mechanisms for this regulation remain largely unknown. In Caenorhabditis elegans, sperm differentiate from immature spermatids into mature, motile spermatozoa during a process termed sperm activation. For C. elegans males, sperm activation occurs during insemination of the hermaphrodite and is thought to be mediated by seminal fluid, but the molecular nature of this activity has not been previously identified. Here we show that TRY-5 is a seminal fluid protease that is required in C. elegans for male-mediated sperm activation. We observed that TRY-5::GFP is expressed in the male somatic gonad and is transferred along with sperm to hermaphrodites during mating. In the absence of TRY-5, male seminal fluid loses its potency to transactivate hermaphrodite sperm. However, TRY-5 is not required for either hermaphrodite or male fertility, suggesting that hermaphrodite sperm are normally activated by a distinct hermaphrodite-specific activator to which male sperm are also competent to respond. Within males, TRY-5::GFP localization within the seminal vesicle is antagonized by the protease inhibitor SWM-1. Together, these data suggest that TRY-5 functions as an extracellular activator of C. elegans sperm. The presence of TRY-5 within the seminal fluid couples the timing of sperm activation to that of transfer of sperm into the hermaphrodite uterus, where motility must be rapidly acquired. Our results provide insight into how C. elegans has adopted sex-specific regulation of sperm motility to accommodate its male-hermaphrodite mode of reproduction. PMID:22125495

  18. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease.

    PubMed

    Burns, E H; Marciel, A M; Musser, J M

    1996-11-01

    Human umbilical vein endothelial cells (HUVECs) were used to gain insight into the molecular mechanism whereby the major extracellular protease from group A streptococci damages host tissue. HUVECs exposed to streptococcal cysteine protease (SCP) for various times exhibited cytopathic effect and cell detachment from the culture vessel. Gelatin substrate zymography showed that a time- and concentration-dependent increase in the level of activity of an approximately 66-kDa gelatinase occurred in culture medium taken from cells exposed to enzymatically active SCP. This gelatinase comigrated in gelatin zymograms with the activated form of purified recombinant matrix metalloprotease 2 (MMP-2) and had type IV collagenase activity. In contrast, medium taken from cells exposed to inactivated (boiled) SCP and cells exposed to SCP inhibited by treatment with N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethyl ketone lacked the 66-kDa gelatinase. Appearance of the 66-kDa gelatinase activity was also prevented by 1,10-phenanthroline, a zinc chelator and MMP inhibitor. Inasmuch as proteolytically active SCP is required for the emergence of this gelatinase and MMP activation occurs by proteolytic processing, the 66-kDa gelatinase may be a proteolytic cleavage product of a latent MMP expressed extracellularly by HUVECs. Direct SCP treatment of culture supernatant taken from HUVECs not exposed to SCP also produced the 66-kDa gelatinase. The data show that SCP activates an MMP produced by human endothelial cells, a process that may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive group A streptococcal infection. PMID:8890235

  19. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease.

    PubMed Central

    Burns, E H; Marciel, A M; Musser, J M

    1996-01-01

    Human umbilical vein endothelial cells (HUVECs) were used to gain insight into the molecular mechanism whereby the major extracellular protease from group A streptococci damages host tissue. HUVECs exposed to streptococcal cysteine protease (SCP) for various times exhibited cytopathic effect and cell detachment from the culture vessel. Gelatin substrate zymography showed that a time- and concentration-dependent increase in the level of activity of an approximately 66-kDa gelatinase occurred in culture medium taken from cells exposed to enzymatically active SCP. This gelatinase comigrated in gelatin zymograms with the activated form of purified recombinant matrix metalloprotease 2 (MMP-2) and had type IV collagenase activity. In contrast, medium taken from cells exposed to inactivated (boiled) SCP and cells exposed to SCP inhibited by treatment with N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethyl ketone lacked the 66-kDa gelatinase. Appearance of the 66-kDa gelatinase activity was also prevented by 1,10-phenanthroline, a zinc chelator and MMP inhibitor. Inasmuch as proteolytically active SCP is required for the emergence of this gelatinase and MMP activation occurs by proteolytic processing, the 66-kDa gelatinase may be a proteolytic cleavage product of a latent MMP expressed extracellularly by HUVECs. Direct SCP treatment of culture supernatant taken from HUVECs not exposed to SCP also produced the 66-kDa gelatinase. The data show that SCP activates an MMP produced by human endothelial cells, a process that may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive group A streptococcal infection. PMID:8890235

  20. Novel proteases: common themes and surprising features.

    PubMed

    Vandeputte-Rutten, Lucy; Gros, Piet

    2002-12-01

    Proteases perform a wide variety of functions, inside and outside cells, regulating many biological processes. Recent years have witnessed a number of significant advances in the structural biology of proteases, including aspects of intracellular protein and peptide degradation by self-compartmentalizing proteases, activation of proteases in proteolytic cascades of regulatory pathways, and mechanisms of microbial proteases in pathogenicity. PMID:12504673

  1. Protease activity in the plasma of American oysters, Crassostrea virginica, experimentally infected with the protozoan parasite Perkinsus marinus.

    PubMed

    Muñoz, P; Vance, K; Gómez-Chiarri, M

    2003-10-01

    Perkinsus marinus is responsible for disease and mortality of the American oyster, Crassostrea virginica. To investigate the interactions between P. marinus and oyster hemocytes, protease activity was measured in plasma of oysters collected 4 hr, 24 hr, 4 days, and 2 mo after experimental infection with P. marinus. A significant increase in protease activity was observed in oyster plasma 4 hr after injection with P. marinus, followed by a sharp decrease within 24 hr. Gelatin-impregnated gel electrophoresis showed the presence of 2 major bands (60 and 112 kDa) and 3 less prevalent bands (35, 92, and 200 kDa) with metalloproteinaselike activity in the plasma of noninfected oysters. Additional bands in the 40- to 60-kDa range, corresponding to P. marinus serine proteases, were observed in oyster plasma at early time points after infection. A transient, but significant, decrease in the activity of oyster metalloproteinases was observed at early time points after infection. Coincubation of oyster plasma with P. marinus extracellular products resulted in a decrease in oyster metalloproteinases and several P. marinus proteases. This study provides insights into the role of proteases in the pathogenesis of Dermo disease. PMID:14627141

  2. Identification of interface residues in protease-inhibitor and antigen-antibody complexes: a support vector machine approach

    PubMed Central

    Honavar, Vasant; Dobbs, Drena

    2010-01-01

    In this paper, we describe a machine learning approach for sequence-based prediction of protein-protein interaction sites. A support vector machine (SVM) classifier was trained to predict whether or not a surface residue is an interface residue (i.e., is located in the protein-protein interaction surface), based on the identity of the target residue and its ten sequence neighbors. Separate classifiers were trained on proteins from two categories of complexes, antibody-antigen and protease-inhibitor. The effectiveness of each classifier was evaluated using leave-one-out (jack-knife) cross-validation. Interface and non-interface residues were classified with relatively high sensitivity (82.3% and 78.5%) and specificity (81.0% and 77.6%) for proteins in the antigen-antibody and protease-inhibitor complexes, respectively. The correlation between predicted and actual labels was 0.430 and 0.462, indicating that the method performs substantially better than chance (zero correlation). Combined with recently developed methods for identification of surface residues from sequence information, this offers a promising approach to predict residues involved in protein-protein interactions from sequence information alone. PMID:20526429

  3. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement.

    PubMed

    Homa, Joanna; Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  4. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  5. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres.

    PubMed

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A; El-Toni, Ahmed M; Almaary, Khalid S; El-Tayeb, Mohamed A; Elbadawi, Yahya B; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS-NH₂ nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher V(max), k(cat) and k(cat)/K(m), than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  6. Enhancement of Alkaline Protease Activity and Stability via Covalent Immobilization onto Hollow Core-Mesoporous Shell Silica Nanospheres

    PubMed Central

    Ibrahim, Abdelnasser Salah Shebl; Al-Salamah, Ali A.; El-Toni, Ahmed M.; Almaary, Khalid S.; El-Tayeb, Mohamed A.; Elbadawi, Yahya B.; Antranikian, Garabed

    2016-01-01

    The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media. PMID:26840303

  7. The Role of Calcium Activated Protease Calpain in Experimental Retinal Pathology

    PubMed Central

    Azuma, M.; Shearer, T.R.

    2008-01-01

    The purpose of this review is to present the recent evidence linking the family of ubiquitous proteases called calpains (EC 3.4.22.17) to neuropathologies of the retina. The hypothesis being tested in such studies is that over-activation of calpains by elevated intracellular calcium contributes to retinal cell death produced by conditions such as elevated intraocular pressure and hypoxia. Recent x-ray diffraction studies have provided insight into the molecular events causing calpain activation. Further, x-ray diffraction data has provided details on how side chains on calpain inhibitors affect docking into the active site of calpain 1. This opens the possibility of testing calpain-specific inhibitors, such as SJA6017 and SNJ1945, for human safety and as a site-directed form of treatment for retinal pathologies. PMID:18348880

  8. Caspase-dependant activation of chymotrypsin-like proteases mediates nuclear events during Jurkat T cell apoptosis

    SciTech Connect

    O'Connell, A.R.; Lee, B.W.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-06-30

    Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events.

  9. Structural and biochemical characterization of the inhibitor complexes of xenotropic murine leukemia virus-related virus protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Matúz, Krisztina; Tözsér, Jozsef; Namwong, Sirilak; Goldfarb, Nathan E.; Dunn, Ben M.; Wlodawer, Alexander

    2012-10-23

    Interactions between the protease (PR) encoded by the xenotropic murine leukemia virus-related virus and a number of potential inhibitors have been investigated by biochemical and structural techniques. It was observed that several inhibitors used clinically against HIV PR exhibit nanomolar or even subnanomolar values of K{sub i}, depending on the exact experimental conditions. Both TL-3, a universal inhibitor of retroviral PRs, and some inhibitors originally shown to inhibit plasmepsins were also quite potent, whereas inhibition by pepstatin A was considerably weaker. Crystal structures of the complexes of xenotropic murine leukemia virus-related virus PR with TL-3, amprenavir and pepstatin A were solved at high resolution and compared with the structures of complexes of these inhibitors with other retropepsins. Whereas TL-3 and amprenavir bound in a predictable manner, spanning the substrate-binding site of the enzyme, two molecules of pepstatin A bound simultaneously in an unprecedented manner, leaving the catalytic water molecule in place.

  10. C-Terminal extension of a plant cysteine protease modulates proteolytic activity through a partial inhibitory mechanism.

    PubMed

    Dutta, Sruti; Choudhury, Debi; Dattagupta, Jiban K; Biswas, Sampa

    2011-09-01

    The amino acid sequence of ervatamin-C, a thermostable cysteine protease from a tropical plant, revealed an additional 24-amino-acid extension at its C-terminus (CT). The role of this extension peptide in zymogen activation, catalytic activity, folding and stability of the protease is reported. For this study, we expressed two recombinant forms of the protease in Escherichia coli, one retaining the CT-extension and the other with it truncated. The enzyme with the extension shows autocatalytic zymogen activation at a higher pH of 8.0, whereas deletion of the extension results in a more active form of the enzyme. This CT-extension was not found to be cleaved during autocatalysis or by limited proteolysis by different external proteases. Molecular modeling and simulation studies revealed that the CT-extension blocks some of the substrate-binding unprimed subsites including the specificity-determining subsite (S2) of the enzyme and thereby partially occludes accessibility of the substrates to the active site, which also corroborates the experimental observations. The CT-extension in the model structure shows tight packing with the catalytic domain of the enzyme, mediated by strong hydrophobic and H-bond interactions, thus restricting accessibility of its cleavage sites to the protease itself or to the external proteases. Kinetic stability analyses (T(50) and t(1/2) ) and refolding experiments show similar thermal stability and refolding efficiency for both forms. These data suggest that the CT-extension has an inhibitory role in the proteolytic activity of ervatamin-C but does not have a major role either in stabilizing the enzyme or in its folding mechanism. PMID:21707922

  11. Deregulated hepsin protease activity confers oncogenicity by concomitantly augmenting HGF/MET signalling and disrupting epithelial cohesion.

    PubMed

    Tervonen, T A; Belitškin, D; Pant, S M; Englund, J I; Marques, E; Ala-Hongisto, H; Nevalaita, L; Sihto, H; Heikkilä, P; Leidenius, M; Hewitson, K; Ramachandra, M; Moilanen, A; Joensuu, H; Kovanen, P E; Poso, A; Klefström, J

    2016-04-01

    Hepsin belongs to a family of cell-surface serine proteases, which have sparked interest as therapeutic targets because of the accessibility of extracellular protease domain for inhibitors. Hepsin is frequently amplified and/or overexpressed in epithelial cancers, but it is not clear how enhanced hepsin expression confers a potential for oncogenicity. We show that hepsin is consistently overexpressed in more than 40% of examined breast cancers, including all major biological subtypes. The effects of doxycycline-induced hepsin overexpression were examined in mammary epithelial organoids, and we found that induced hepsin acutely downmodulates its cognate inhibitor, hepatocyte growth factor (HGF) activator inhibitor type 1 (HAI-1). Hepsin-induced depletion of cellular HAI-1 led to a sharp increase in pericellular serine protease activity. The derepressed hepsin proteolytically activated downstream serine proteases, augmented HGF/MET signalling and caused deterioration of desmosomes and hemidesmosomes; structures important for cell cohesion and cell-basement membrane interaction. Moreover, chronic induction of hepsin considerably shortened the latency of Myc-dependent tumourigenesis in the mouse mammary gland. The serine protease and uPA system inhibitor WX-UK1, identified as a micromolar range hepsin inhibitor, prevented hepsin from augmenting HGF/MET signalling and disrupting desmosomes and hemidesmosomes. The findings suggest that the oncogenic activity of hepsin arises not only from elevated expression level but also from depletion of HAI-1, events which together trigger gain-of-function activity impacting HGF/MET signalling and epithelial cohesion. Thus, hepsin overexpression is a major oncogenic conferrer to a serine protease activity involved in breast cancer dissemination. PMID:26165838

  12. Protease-Activated Receptor 2 Is Involved in Th2 Responses against Trichinella spiralis Infection

    PubMed Central

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Yun Seong; Kim, Ki Uk; Ahn, Soon Cheol; Kim, Dong-Hee

    2011-01-01

    In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection. PMID:22072823

  13. Basis Tetrapeptides as Potent Intracellular Inhibitors of type A Botulinum Neurotoxin Protease Activity

    SciTech Connect

    Hale, M.; Swaminathan, S.; Oyler, G.; Ahmed, S. A.

    2011-01-21

    Botulinum neurotoxins (BoNT) are the most potent of all toxins that cause flaccid muscle paralysis leading to death. They are also potential biothreat agents. A systematic investigation of various short peptide inhibitors of the BoNT protease domain with a 17-residue peptide substrate led to arginine-arginine-glycine-cysteine having a basic tetrapeptide structure as the most potent inhibitor. When assayed in the presence of dithiothreitol (DTT), the inhibitory effect was drastically reduced. Replacing the terminal cysteine with one hydrophobic residue eliminated the DTT effect but with two hydrophobic residues made the pentapeptide a poor inhibitor. Replacing the first arginine with cysteine or adding an additional cysteine at the N terminus did not improve inhibition. When assessed using mouse brain lysates, the tetrapeptides also inhibited BoNT/A cleavage of the endogenous SNAP-25. The peptides penetrated the neuronal cell lines, N2A and BE(2)-M17, without adversely affecting metabolic functions as measured by ATP production and P-38 phosphorylation. Biological activity of the peptides persisted within cultured chick motor neurons and rat and mouse cerebellar neurons for more than 40 h and inhibited BoNT/A protease action inside the neurons in a dose- and time-dependent fashion. Our results define a tetrapeptide as the smallest peptide inhibitor in the backdrop of a large substrate protein of 200+ amino acids having multiple interaction regions with its cognate enzyme. The inhibitors should also be valuable candidates for drug development.

  14. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  15. Highly efficient recombinant production and purification of streptococcal cysteine protease streptopain with increased enzymatic activity.

    PubMed

    Lane, Michael D; Seelig, Burckhard

    2016-05-01

    Streptococcus pyogenes produces the cysteine protease streptopain (SpeB) as a critical virulence factor for pathogenesis. Despite having first been described seventy years ago, this protease still holds mysteries which are being investigated today. Streptopain can cleave a wide range of human proteins, including immunoglobulins, the complement activation system, chemokines, and structural proteins. Due to the broad activity of streptopain, it has been challenging to elucidate the functional results of its action and precise mechanisms for its contribution to S. pyogenes pathogenesis. To better study streptopain, several expression and purification schemes have been developed. These methods originally involved isolation from S. pyogenes culture but were more recently expanded to include recombinant Escherichia coli expression systems. While substantially easier to implement, the latter recombinant approach can prove challenging to reproduce, often resulting in mostly insoluble protein and poor purification yields. After extensive optimization of a wide range of expression and purification conditions, we applied the autoinduction method of protein expression and developed a two-step column purification scheme that reliably produces large amounts of purified soluble and highly active streptopain. This method reproducibly yielded 3 mg of streptopain from 50 mL of expression culture at >95% purity, with an activity of 5306 ± 315 U/mg, and no remaining affinity tags or artifacts from recombinant expression. This improved method therefore enables the facile production of the important virulence factor streptopain at higher yields, with no purification scars that might bias functional studies, and with an 8.1-fold increased enzymatic activity compared to previously described procedures. PMID:26773742

  16. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA. PMID:16394504

  17. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex.

    PubMed

    Chen, Xiaojuan; Yang, Xingxing; Zheng, Yang; Yang, Yudong; Xing, Yaling; Chen, Zhongbin

    2014-05-01

    SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKKε-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKKε, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3-TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity. PMID:24622840

  18. Subunits of the Plastid ClpPR Protease Complex Have Differential Contributions to Embryogenesis, Plastid Biogenesis, and Plant Development in Arabidopsis[C][W

    PubMed Central

    Kim, Jitae; Rudella, Andrea; Ramirez Rodriguez, Verenice; Zybailov, Boris; Olinares, Paul Dominic B.; van Wijk, Klaas J.

    2009-01-01

    The plastid ClpPR protease complex in Arabidopsis thaliana consists of five catalytic ClpP and four noncatalytic ClpR subunits. An extensive analysis of the CLPR family and CLPP5 is presented to address this complexity. Null alleles for CLPR2 and CLPR4 showed delayed embryogenesis and albino embryos, with seedling development blocked in the cotyledon stage; this developmental block was overcome under heterotrophic conditions, and seedlings developed into small albino to virescent seedlings. By contrast, null alleles for CLPP5 were embryo lethal. Thus, the ClpPR proteins make different functional contributions. To further test for redundancies and functional differences between the ClpR proteins, we overexpressed full-length cDNAs for ClpR1, R2, R3, R4 in clpr1, clpr2 and clpr4 mutants. This showed that overexpression of ClpR3 can complement for the loss of ClpR1, but not for the loss of ClpR2 or ClpR4, indicating that ClpR3 can functionally substitute ClpR1. By contrast, ClpR1, R2 and R4 could not substitute each other. Double mutants of weak CLPR1 and 2 alleles were seedling lethal, showing that a minimum concentration of different ClpR proteins is essential for Clp function. Microscopy and large-scale comparative leaf proteome analyses of a CLPR4 null allele demonstrate a central role of Clp protease in chloroplast biogenesis and protein homeostasis; substrates are discussed. Lack of transcriptional and translational feedback regulation within the CLPPR gene family indicates that regulation of Clp activity occurs through Clp complex assembly and substrate delivery. PMID:19525416

  19. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  20. Protease-activated receptor 1 and 4 signal inhibition reduces preterm neonatal hemorrhagic brain injury

    PubMed Central

    Lekic, Tim; Klebe, Damon; McBride, Devin W; Manaenko, Anatol; Rolland, William B.; Flores, Jerry J.; Altay, Orhan; Tang, Jiping; Zhang, John H.

    2015-01-01

    Background and Purpose This study examines the role of thrombin’s protease-activated receptors (PAR)-1,-4 in mediating cyclooxygenase (COX)-2 and mammalian target of rapamycin (mTOR) following germinal matrix hemorrhage (GMH). Methods GMH was induced by intraparenchymal infusion of bacterial collagenase into the right ganglionic eminence of P7 rat pups. Animals were treated with either PAR-1, -4, COX-2, or mTOR inhibitors by 1 hour, and up to five days. Results We found increased thrombin activity 6–24 hrs after GMH, and PAR-1, -4, inhibition normalized COX-2 and mTOR by 72 hrs. Early treatment with NS398 or rapamycin substantially improved long-term outcomes in juvenile animals. Conclusions Suppressing early PAR signal transduction, and postnatal NS398 or rapamycin treatment, may help reduce GMH severity in susceptible preterm infants. PMID:25931468

  1. A Structural Study of Norovirus 3C Protease Specificity: Binding of a Designed Active Site-Directed Peptide Inhibitor†

    PubMed Central

    2010-01-01

    Noroviruses are the major cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.7 Å resolution. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, which is based on the most rapidly cleaved recognition sequence in the 200 kDa polyprotein substrate, reacts covalently through its propenyl ethyl ester group (X) with the active site nucleophile, Cys 139. The structure permits, for the first time, the identification of substrate recognition and binding groups in a noroviral 3C protease and thus provides important new information for the development of antiviral prophylactics. PMID:21128685

  2. Hydrolytic and autolytic behavior of two forms of calcium-activated neutral protease (CANP).

    PubMed

    Inomata, M; Hayashi, M; Nakamura, M; Imahori, K; Kawashima, S

    1985-08-01

    Some endogenous substrates were incubated with two forms of calcium-activated neutral protease (CANP) with high (muCANP) and low (mCANP) sensitivities to calcium ions. In addition to analyses of the processes of their degradation, changes in the molecular properties of these CANPs were also examined. Among the tested substrate proteins, the myosin heavy chain of rabbit skeletal muscle myofibrils and spectrin or band 3 protein of human erythrocyte membranes were degraded relatively rapidly. So far as these proteins were concerned, a higher degradation velocity was observed for muCANP than for mCANP. Vimentin from ascites tumor cells was degraded most rapidly and no difference was observed in degradation velocity between muCANP and mCANP. In all cases, muCANP and mCANP produced different proteolytic peptide fragments, suggesting the different substrate-specificities of these CANPs. The degradation of substrates always accompanied the autodigestion of CANPs, and the small subunits of both CANPs were degraded in the early stage of the autodigestion. The large subunit of muCANP (79K) was converted to a 76K polypeptide via a 77K polypeptide as an intermediate. The autodigested muCANP with 76K polypeptide retained sufficient protease activity and, moreover, its calcium-sensitivity was higher than that of intact muCANP. The possibility is thus proposed that restricted autodigestion is a necessary activation step for the appearance of activity of muCANP. No such transition was observed for mCANP. PMID:2999095

  3. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications.

    PubMed

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A; Caruso, Joseph A; Kotb, Malak

    2014-07-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues (47)Cys and (195)His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  4. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  5. Structure of the mexicain-E-64 complex and comparison with other cysteine proteases of the papain family.

    PubMed

    Gavira, J A; González-Ramírez, L A; Oliver-Salvador, M C; Soriano-García, M; García-Ruiz, J M

    2007-05-01

    Mexicain is a 23.8 kDa cysteine protease from the tropical plant Jacaratia mexicana. It is isolated as the most abundant product after cation-exchange chromatography of the mix of proteases extracted from the latex of the fruit. The purified enzyme inhibited with E-64 [N-(3-carboxyoxirane-2-carbonyl)-leucyl-amino(4-guanido)butane] was crystallized by sitting-drop vapour diffusion and the structure was solved by molecular replacement at 2.1 A resolution and refined to an R factor of 17.7% (R(free) = 23.8%). The enzyme belongs to the alpha+beta class of proteins and the structure shows the typical papain-like fold composed of two domains, the alpha-helix-rich (L) domain and the beta-barrel-like (R) domain, separated by a groove containing the active site formed by residues Cys25 and His159, one from each domain. The four monomers in the asymmetric unit show one E-64 molecule covalently bound to Cys25 in the active site and differences have been found in the placement of E-64 in each monomer. PMID:17452780

  6. Increased Capillary Endothelial Cell Protease Activity in Response to Angiogenic Stimuli in vitro

    NASA Astrophysics Data System (ADS)

    Gross, Janet L.; Moscatelli, David; Rifkin, Daniel B.

    1983-05-01

    Bovine capillary endothelial (BCE) cells produce increased amounts of the proteases plasminogen activator (PA) and latent collagenase when cultured in the presence of the following preparations which are known to contain angiogenic activities: bovine retinal extract, mouse adipocyte conditioned medium, and human hepatoma cell lysate. These preparations stimulated both BCE cell PA and collagenase activities in a dose-dependent manner. Both activities were increased to about the same level by these preparations as by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate. Mitogens that are not angiogenic, such as insulin, epidermal and fibroblast growth factors, and endothelial cell growth supplement, had no effect on BCE cell PA and collagenase activities. Two of the angiogenic preparations (retinal extract and mouse adipocyte-conditioned medium) had no effect on PA activity in endothelial cells derived from bovine aortae (BAE cells). The angiogenic preparations had little (human hepatoma cell lysate, mouse adipocyte-conditioned medium) or no (bovine retinal extract) effect on BAE cell collagenase activities. In the bovine system, the induction of high levels of both PA and collagenase activities by angiogenic preparations is limited to capillary endothelial cells.

  7. Fibrin(ogen)olytic and antiplatelet activities of a subtilisin-like protease from Solanum tuberosum (StSBTc-3).

    PubMed

    Pepe, Alfonso; Frey, María Eugenia; Muñoz, Fernando; Fernández, María Belén; Pedraza, Anabela; Galbán, Gustavo; García, Diana Noemí; Daleo, Gustavo Raúl; Guevara, María Gabriela

    2016-06-01

    Plant serine proteases have been widely used in food science and technology as well as in medicine. In this sense, several plant serine proteases have been proposed as potential anti-coagulants and anti-platelet agents. Previously, we have reported the purification and identification of a plant serine protease from Solanum tuberosum leaves. This potato enzyme, named as StSBTc-3, has a molecular weight of 72 kDa and it was characterized as a subtilisin like protease. In this work we determine and characterize the biochemical and medicinal properties of StSBTc-3. Results obtained show that, like the reported to other plant serine proteases, StSBTc-3 is able to degrade all chains of human fibrinogen and to produces fibrin clot lysis in a dose dependent manner. The enzyme efficiently hydrolyzes β subunit followed by partially hydrolyzed α and γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate specificity using oxidized insulin β-chain as substrate, show seven cleavage sites: Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23 and Phe25-Tyr26, all of them were previously reported for other serine proteases with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity was determined at pH 8.0 and at 37 C. Additionally, we demonstrate that StSBTc-3 is able to inhibit platelet aggregation and is unable to exert cytotoxic activity on human erythrocytes in vitro at all concentrations assayed. These results suggest that StSBTc-3 could be evaluated as a new agent to be used in the treatment of thromboembolic disorders such as strokes, pulmonary embolism and deep vein thrombosis. PMID:27039890

  8. Suppression of ischaemia-induced injuries in rat brain by protease-activated receptor-1 (PAR-1) activating peptide.

    PubMed

    Zhen, Xia; Ng, Ethel Sau Kuen; Lam, Francis Fu Yuen

    2016-09-01

    Ischaemic stroke has become one of the leading causes of death and disability worldwide. The role of protease activated receptor-1 (PAR-1) in this disease is uncertain. In the present study, the actions of a protease activated receptor-1 activating peptide (PAR-1 AP) SFLLRN-NH2 were investigated in an in vivo rat model of ischaemic stroke induced by middle cerebral artery occlusion (MCAO) and in an in vitro model induced by oxygen and glucose deprivation (OGD) in primary cultured rat embryonic cortical neurones. Rats subjected to MCAO exhibited increased brain infarct volume, oedema, and neurological deficit. Rat cortical neurones subjected to OGD showed increased lactate dehydrogenase, caspase-3 activity and TUNEL positive cells, whereas, mitochondrial membrane potential and cell viability were decreased. Furthermore, both models had elevated levels of reactive oxygen species, nitrite, and malondialdehyde, while anti-oxidant enzymes and bcl-2/bax ratio were decreased. These detrimental changes were suppressed by SFLLRN-NH2, and its protective actions were inhibited by a PAR-1 antagonist (BMS-200261). In summary, SFLLRN-NH2 was found to possess anti-oxidant and anti-apoptotic properties, and it produced marked inhibition on the detrimental effects of ischaemia in in vivo and in vitro models of ischaemic stroke. The present findings suggest PAR-1 is a promising target for development of novel treatments of ischaemic brain disease. PMID:27238976

  9. Prognostic Value of Protease Activated Receptor-1 in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Hagag, Adel A.; Nosair, Nahla A.; Ghaith, Fatma M.; Elshenawy, Eman H.

    2014-01-01

    Background Acute Lymphoblastic leukemia (ALL) is a malignant disorder of lymphoid progenitor cells that proliferate and replace the normal hematopoietic cells of the bone marrow. Protease-activated receptors (PARs) comprise a family of trans-membrane G-protein coupled receptors. Protease-activated receptor 1 (PAR-1) is a typical member of this family of receptors that mediate cellular responses to thrombin and related proteases. PAR1 is expressed by a wide range of tumor cells and can promote tumor growth, invasion and metastasis. The aim of this work was to study the role of PAR-1 expression in newly diagnosed ALL patients. Patients and methods This study was conducted on 44 children with newly diagnosed ALL who were admitted to Hematology Unit, Pediatric department, Tanta University Hospital including 24 males and 20 females with their age ranged from 4–17 years and their mean age value of 9.06±3.26. All patients were subjected to complete history taking, thorough clinical examination, bone marrow aspiration and flow cytometric analysis for detection of PAR-1 expression by malignant cells. Results PAR-1 was positive in 18 cases (41%) and negative in 26 cases (59%) of studied patients. This study showed no significant relation between PAR-1 expression and age, sex and most of the clinical data including hepatomegaly, splenomegaly and purpura while generalized lymphadenopathy was significantly higher in PAR-1 positive group. PAR-1 positive expression was associated with some bad prognostic laboratory parameters including higher hemoglobin, higher white blood cells, higher peripheral blood and bone marrow blast cells, higher serum LDH and lower platelets count. No significant association was detected between PAR-1 expression and immunophenotyping. There were significantly higher remission rates in PAR-1 negative group and significantly higher relapse and death rates in PAR-1 positive group. Conclusion From this study, it could be concluded that PAR-1 expression

  10. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer.

    PubMed

    Whitley, Melodi Javid; Cardona, Diana M; Lazarides, Alexander L; Spasojevic, Ivan; Ferrer, Jorge M; Cahill, Joan; Lee, Chang-Lung; Snuderl, Matija; Blazer, Dan G; Hwang, E Shelley; Greenup, Rachel A; Mosca, Paul J; Mito, Jeffrey K; Cuneo, Kyle C; Larrier, Nicole A; O'Reilly, Erin K; Riedel, Richard F; Eward, William C; Strasfeld, David B; Fukumura, Dai; Jain, Rakesh K; Lee, W David; Griffith, Linda G; Bawendi, Moungi G; Kirsch, David G; Brigman, Brian E

    2016-01-01

    Local recurrence is a common cause of treatment failure for patients with solid tumors. Intraoperative detection of microscopic residual cancer in the tumor bed could be used to decrease the risk of a positive surgical margin, reduce rates of reexcision, and tailor adjuvant therapy. We used a protease-activated fluorescent imaging probe, LUM015, to detect cancer in vivo in a mouse model of soft tissue sarcoma (STS) and ex vivo in a first-in-human phase 1 clinical trial. In mice, intravenous injection of LUM015 labeled tumor cells, and residual fluorescence within the tumor bed predicted local recurrence. In 15 patients with STS or breast cancer, intravenous injection of LUM015 before surgery was well tolerated. Imaging of resected human tissues showed that fluorescence from tumor was significantly higher than fluorescence from normal tissues. LUM015 biodistribution, pharmacokinetic profiles, and metabolism were similar in mouse and human subjects. Tissue concentrations of LUM015 and its metabolites, including fluorescently labeled lysine, demonstrated that LUM015 is selectively distributed to tumors where it is activated by proteases. Experiments in mice with a constitutively active PEGylated fluorescent imaging probe support a model where tumor-selective probe distribution is a determinant of increased fluorescence in cancer. These co-clinical studies suggest that the tumor specificity of protease-activated imaging probes, such as LUM015, is dependent on both biodistribution and enzyme activity. Our first-in-human data support future clinical trials of LUM015 and other protease-sensitive probes. PMID:26738797

  11. Design and structure-activity relationships of novel inhibitors of human rhinovirus 3C protease.

    PubMed

    Kawatkar, S P; Gagnon, M; Hoesch, V; Tiong-Yip, C; Johnson, K; Ek, M; Nilsson, E; Lister, T; Olsson, L; Patel, J; Yu, Q

    2016-07-15

    Human rhinovirus (HRV) is a primary cause of common cold and is linked to exacerbation of underlying respiratory diseases such as asthma and COPD. HRV 3C protease, which is responsible for cleavage of viral polyprotein in to proteins essential for viral life-cycle, represents an important target. We have designed proline- and azetidine-based analogues of Rupintrivir that target the P2 pocket of the binding site. Potency optimization, aided with X-ray crystallography and quantum mechanical calculations, led to compounds with activity against a broad spectrum of HRV serotypes. Altogether, these compounds represent alternative starting points to identify promising leads in our continual efforts to treat HRV infections. PMID:27265257

  12. Antioxidant Activities of Hydrolysates of Arca Subcrenata Prepared with Three Proteases

    PubMed Central

    Song, Liyan; Li, Tingfei; Yu, Rongmin; Yan, Chunyan; Ren, Shengfang; Zhao, Yu

    2008-01-01

    In order to get products with antioxidant activity from Arca subcrenata Lischke, the optimal hydrolase and hydrolysis conditions were investigated in the paper. Three proteases (neutrase, alcalase and papain) were applied to hydrolyze the homogenate of A. subcrenata. An orthogonal design was used to optimize hydrolysis conditions, and the pH-stat methods was used to determine the degree of hydrolysis. Viewed from the angle of reducing power, such as scavenging activities against α,α-diphenyl-β-picrylhydrazyl (DPPH) radical and hydrogen peroxide, the antioxidant activities of the alcalase hydrolysate (AH) were superior to neutrase hydrolysate (NH) and papain hydrolysate (PH), and its EC50 values in DPPH radical and hydrogen peroxide scavenging effect were 6.23 mg/ml and 19.09 mg/ml, respectively. Moreover, compared with products hydrolyzed by neutrase and papain, the molecular mass of AH was lower and its content of amino acid of peptides was higher. Therefore, alcalase was selected as the optimal enzyme to produce active ingredients since its hydrolysate exhibited the best antioxidant activity among them and possessed large amount of potential active peptides. PMID:19172198

  13. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity.

    PubMed

    González-Fernández, Eva; Avlonitis, Nicolaos; Murray, Alan F; Mount, Andrew R; Bradley, Mark

    2016-10-15

    Electrochemical peptide-based biosensors are attracting significant attention for the detection and analysis of proteins. Here we report the optimisation and evaluation of an electrochemical biosensor for the detection of protease activity using self-assembled monolayers (SAMs) on gold surfaces, using trypsin as a model protease. The principle of detection was the specific proteolytic cleavage of redox-tagged peptides by trypsin, which causes the release of the redox reporter, resulting in a decrease of the peak current as measured by square wave voltammetry. A systematic enhancement of detection was achieved through optimisation of the properties of the redox-tagged peptide; this included for the first time a side-by-side study of the applicability of two of the most commonly applied redox reporters used for developing electrochemical biosensors, ferrocene and methylene blue, along with the effect of changing both the nature of the spacer and the composition of the SAM. Methylene blue-tagged peptides combined with a polyethylene-glycol (PEG) based spacer were shown to be the best platform for trypsin detection, leading to the highest fidelity signals (characterised by the highest sensitivity (signal gain) and a much more stable background than that registered when using ferrocene as a reporter). A ternary SAM (T-SAM) configuration, which included a PEG-based dithiol, minimised the non-specific adsorption of other proteins and was sensitive towards trypsin in the clinically relevant range, with a Limit of Detection (LoD) of 250pM. Kinetic analysis of the electrochemical response with time showed a good fit to a Michaelis-Menten surface cleavage model, enabling the extraction of values for kcat and KM. Fitting to this model enabled quantitative determination of the solution concentration of trypsin across the entire measurement range. Studies using an enzyme inhibitor and a range of real world possible interferents demonstrated a selective response to trypsin

  14. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation.

    PubMed

    Tillmann, V; Shalet, S M; Price, D A; Wales, J K; Pennells, L; Soden, J; Gill, M S; Whatmore, A J; Clayton, P E

    1998-01-01

    The relationship between peak growth hormone (GH), insulin-like growth factor I (IGF-I), IGF-I binding protein 3 (IGFBP-3) and IGFBP-3 protease activity was studied in 28 children and adolescents undergoing investigation of pituitary function 0.4-14.2 years after cranial or craniospinal irradiation for the treatment of CNS tumours distant from the hypothalamic-pituitary axis (n = 16) or prophylaxis against CNS leukaemia (n = 12). Seven out of 15 patients with GH deficiency (GHD) (defined as a peak GH concentration <7.5 ng/ml in a stimulation test) had IGF-I <-2 standard deviation score (SDS). None of the 28 patients had serum IGFBP-3 concentrations measured by radioimmunoassay (RIA) <-1.5 SDS with no difference between those with and without GHD. IGFBP-3 concentrations measured by RIA were strongly correlated to IGFBP-3 band density on Western ligand blot (WLB) (r = 0.71; p < 0.0001). IGFBP-3 protease activity was negatively correlated to IGFBP-3 by RIA (r = -0.55; p < 0.01) and to IGFBP-3 by WLB (r = -0.51; p < 0.01). Twenty-two patients had normal IGFBP-3 protease activity (<30% of the activity in pregnancy serum) indicating that serum IGFBP-3 protease activity does not account for the normal levels of IGFBP-3 in RIA. Low serum IGF-I but normal IGFBP-3 concentrations and in the majority normal IGFBP-3 protease activity was found in patients in the years after CNS irradiation. Neither serum IGF-I nor IGFBP-3 can be used as a reliable index of the development of radiation-induced GHD. PMID:9701699

  15. FliT Selectively Enhances Proteolysis of FlhC Subunit in FlhD4C2 Complex by an ATP-dependent Protease, ClpXP*

    PubMed Central

    Sato, Yoshiharu; Takaya, Akiko; Mouslim, Chakib; Hughes, Kelly T.; Yamamoto, Tomoko

    2014-01-01

    We previously reported that the ClpXP ATP-dependent protease specifically recognizes and degrades the flagellar master transcriptional activator complex, FlhD4C2, to negatively control flagellar biogenesis. The flagellum-related protein, FliT, is also a negative regulator of flagellar regulon by inhibiting the binding of FlhD4C2 to the promoter DNA. We have found a novel pathway of FliT inhibition of FlhD4C2 activity connected to ClpXP proteolysis. An in vitro degradation assay using purified proteins shows that FliT selectively increases ClpXP proteolysis of the FlhC subunit in the FlhD4C2 complex. FliT behaves specifically to ClpXP-dependent proteolysis of FlhC. An in vitro interaction assay detects the ternary complex of FliT-FlhD4C2-ClpX. FliT promotes the affinity of ClpX against FlhD4C2 complex, whereas FliT does not directly interact with ClpX. Thus, FliT interacts with the FlhC in FlhD4C2 complex and increases the presentation of the FlhC recognition region to ClpX. The DNA-bound form of FlhD4C2 complex is resistant to ClpXP proteolysis. We suggest that the role of FliT in negatively controlling the flagellar gene expression involves increasing free molecules of FlhD4C2 sensitive to ClpXP proteolysis by inhibiting the binding to the promoter DNA as well as enhancing the selective proteolysis of FlhC subunit by ClpXP. PMID:25278020

  16. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  17. Profiling Gene Expression Induced by Protease-Activated Receptor 2 (PAR2) Activation in Human Kidney Cells

    PubMed Central

    Suen, Jacky Y.; Gardiner, Brooke; Grimmond, Sean; Fairlie, David P.

    2010-01-01

    Protease-Activated Receptor-2 (PAR2) has been implicated through genetic knockout mice with cytokine regulation and arthritis development. Many studies have associated PAR2 with inflammatory conditions (arthritis, airways inflammation, IBD) and key events in tumor progression (angiogenesis, metastasis), but they have relied heavily on the use of single agonists to identify physiological roles for PAR2. However such probes are now known not to be highly selective for PAR2, and thus precisely what PAR2 does and what mechanisms of downstream regulation are truly affected remain obscure. Effects of PAR2 activation on gene expression in Human Embryonic Kidney cells (HEK293), a commonly studied cell line in PAR2 research, were investigated here by comparing 19,000 human genes for intersecting up- or down-regulation by both trypsin (an endogenous protease that activates PAR2) and a PAR2 activating hexapeptide (2f-LIGRLO-NH2). Among 2,500 human genes regulated similarly by both agonists, there were clear associations between PAR2 activation and cellular metabolism (1,000 genes), the cell cycle, the MAPK pathway, HDAC and sirtuin enzymes, inflammatory cytokines, and anti-complement function. PAR-2 activation up-regulated four genes more than 5 fold (DUSP6, WWOX, AREG, SERPINB2) and down-regulated another six genes more than 3 fold (TXNIP, RARG, ITGB4, CTSD, MSC and TM4SF15). Both PAR2 and PAR1 activation resulted in up-regulated expression of several genes (CD44, FOSL1, TNFRSF12A, RAB3A, COPEB, CORO1C, THBS1, SDC4) known to be important in cancer. This is the first widespread profiling of specific activation of PAR2 and provides a valuable platform for better understanding key mechanistic roles of PAR2 in human physiology. Results clearly support the development of both antagonists and agonists of human PAR2 as potential disease modifying therapeutic agents. PMID:21072196

  18. RbdB, a Rhomboid Protease Critical for SREBP Activation and Virulence in Aspergillus fumigatus

    PubMed Central

    Dhingra, Sourabh; Kowlaski, Caitlin H.; Thammahong, Arsa; Beattie, Sarah R.; Bultman, Katherine M.

    2016-01-01

    ABSTRACT SREBP transcription factors play a critical role in fungal virulence; however, the mechanisms of sterol regulatory element binding protein (SREBP) activation in pathogenic fungi remains ill-defined. Screening of the Neurospora crassa whole-genome deletion collection for genes involved in hypoxia responses identified a gene for an uncharacterized rhomboid protease homolog, rbdB, required for growth under hypoxic conditions. Loss of rbdB in Aspergillus fumigatus also inhibited growth under hypoxic conditions. In addition, the A. fumigatus ΔrbdB strain also displayed phenotypes consistent with defective SREBP activity, including increased azole drug susceptibility, reduced siderophore production, and full loss of virulence. Expression of the basic helix-loop-helix (bHLH) DNA binding domain of the SREBP SrbA in ΔrbdB restored all of the phenotypes linking RdbB activity with SrbA function. Furthermore, the N-terminal domain of SrbA containing the bHLH DNA binding region was absent from ΔrbdB under inducing conditions, suggesting that RbdB regulates the protein levels of this important transcription factor. As SrbA controls clinically relevant aspects of fungal pathobiology in A. fumigatus, understanding the mechanisms of SrbA activation provides opportunities to target this pathway for therapeutic development. IMPORTANCE Aspergillus fumigatus causes life-threatening infections, and treatment options remain limited. Thus, there is an urgent need to find new therapeutic targets to treat this deadly disease. Previously, we have shown that SREBP transcription factors and their regulatory components are critical for the pathobiology of A. fumigatus. Here we identify a role for RbdB, a rhomboid protease, as an essential component of SREBP activity. Our results indicate that mutants lacking rbdB have growth defects under hypoxic conditions, are hypersusceptible to voriconazole, lack extracellular siderophore production, and fail to cause disease in a murine

  19. Neutrophil-Derived Proteases in the Microenvironment of Pancreatic Cancer -Active Players in Tumor Progression

    PubMed Central

    Felix, Klaus; Gaida, Matthias M.

    2016-01-01

    A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma. PMID:26929737

  20. Structural insights into the initiating complex of the lectin pathway of complement activation.

    PubMed

    Kjaer, Troels R; Le, Le T M; Pedersen, Jan Skov; Sander, Bjoern; Golas, Monika M; Jensenius, Jens Christian; Andersen, Gregers R; Thiel, Steffen

    2015-02-01

    The proteolytic cascade of the complement system is initiated when pattern-recognition molecules (PRMs) bind to ligands, resulting in the activation of associated proteases. In the lectin pathway of complement, the complex of mannan-binding lectin (MBL) and MBL-associated serine protease-1 (MASP-1) initiates the pathway by activating a second protease, MASP-2. Here we present a structural study of a PRM/MASP complex and derive the overall architecture of the 450 kDa MBL/MASP-1 complex using small-angle X-ray scattering and electron microscopy. The serine protease (SP) domains from the zymogen MASP-1 dimer protrude from the cone-like MBL tetramer and are separated by at least 20 nm. This suggests that intracomplex activation within a single MASP-1 dimer is unlikely and instead supports intercomplex activation, whereby the MASP SP domains are accessible to nearby PRM-bound MASPs. This activation mechanism differs fundamentally from the intracomplex initiation models previously proposed for both the lectin and the classical pathway. PMID:25579818

  1. Crystallisation and preliminary X-ray diffraction analysis of the protease from Southampton norovirus complexed with a Michael-acceptor inhibitor

    SciTech Connect

    Coates, Leighton; Cooper, Jon; Hussey, Robert

    2008-01-01

    Noroviruses are the predominant cause of human epidemic nonbacterial gastroenteritis. Viral replication requires a cysteine protease that cleaves a 200 kDa viral polyprotein into its constituent functional parts. Here, the crystallization of the recombinant protease from the Southampton norovirus is described. While the native crystals were found to diffract only to medium resolution (2.9 {angstrom}), cocrystals of an inhibitor complex diffracted X-rays to 1.7 {angstrom} resolution. The polypeptide inhibitor (Ac-EFQLQ-propenyl ethyl ester) possesses an amino-acid sequence designed to match the substrate specificity of the enzyme, but was synthesized with a reactive Michael acceptor group at the C-terminal end.

  2. A Functional Interplay between Human Immunodeficiency Virus Type 1 Protease Residues 77 and 93 Involved in Differential Regulation of Precursor Autoprocessing and Mature Protease Activity

    PubMed Central

    Counts, Christopher J.; Ho, P. Shing; Donlin, Maureen J.; Tavis, John E.; Chen, Chaoping

    2015-01-01

    HIV-1 protease (PR) is a viral enzyme vital to the production of infectious virions. It is initially synthesized as part of the Gag-Pol polyprotein precursor in the infected cell. The free mature PR is liberated as a result of precursor autoprocessing upon virion release. We previously described a model system to examine autoprocessing in transfected mammalian cells. Here, we report that a covariance analysis of miniprecursor (p6*-PR) sequences derived from drug naïve patients identified a series of amino acid pairs that vary together across independent viral isolates. These covariance pairs were used to build the first topology map of the miniprecursor that suggests high levels of interaction between the p6* peptide and the mature PR. Additionally, several PR-PR covariance pairs are located far from each other (>12 Å Cα to Cα) relative to their positions in the mature PR structure. Biochemical characterization of one such covariance pair (77–93) revealed that each residue shows distinct preference for one of three alkyl amino acids (V, I, and L) and that a polar or charged amino acid at either of these two positions abolishes precursor autoprocessing. The most commonly observed 77V is preferred by the most commonly observed 93I, but the 77I variant is preferred by other 93 variances (L, V, or M) in supporting precursor autoprocessing. Furthermore, the 77I93V covariant enhanced precursor autoprocessing and Gag polyprotein processing but decreased the mature PR activity. Therefore, both covariance and biochemical analyses support a functional association between residues 77 and 93, which are spatially distant from each other in the mature PR structure. Our data also suggests that these covariance pairs differentially regulate precursor autoprocessing and the mature protease activity. PMID:25893662

  3. Pravastatin and C reactive protein modulate protease- activated receptor-1 expression in vitro blood platelets.

    PubMed

    Chu, L-X; Zhou, S-X; Yang, F; Qin, Y-Q; Liang, Z-S; Mo, C-G; Wang, X-D; Xie, J; He, L-P

    2016-01-01

    Protease-activated receptor-1 (PAR-1) plays an important role in mediating activation of human platelets by thrombin. However, mechanism of statin in ADP-induced platelet PAR-1 expression is also unknown. Aggregometry, flow cytometry, immunoblotting and ELISA were used to determine role of pravastatin participating in ADP-induced platelet activation and PAR-1 expression. ADP stimulation significantly increased PAR-1 expression on platelets. PAR-1 antagonist SCH-79797 inhibited platelet aggregation as well as decreased platelet P-selectin expression induced by ADP. CRP inhibited PAR-1 expression induced by ADP in a concentration-dependent manner. Pravastatin treatment reduced PAR-1 expression in a concentration-dependent manner. Combination treatment of CRP and Pravastatin significantly reduced platelet PAR-1 expression induced by ADP. By western-blot analysis, pravastatin treatment did not influence total PAR-1 after ADP treatment. CRP decreased platelet total PAR-1 expression induced by ADP. Pravastatin and CRP reduced TXB2 formation by ADP significantly. CRP decreased thrombin fragment F1+2 level with ADP treatment. Pravastatin, in contrast, did not influence F1+2 level. Upon treatment with Pravastatin reduced platelet LOX-1 expression induced by ADP. In conclusion, PAR-1 served as a critical mechanism to relay platelet activation process induced by ADP. CRP and pravastatin reduce PAR-1 expression in platelet by ADP pathway. PMID:26950455

  4. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection

    PubMed Central

    Kawabata, Atsufumi; Kinoshita, Mitsuhiro; Nishikawa, Hiroyuki; Kuroda, Ryotaro; Nishida, Minoru; Araki, Hiromasa; Arizono, Naoki; Oda, Yasuo; Kakehi, Kazuaki

    2001-01-01

    Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2–activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsaicin, which stimulates and ablates specific sensory neurons, but it was resistant to cyclo-oxygenase inhibition. In contrast, capsaicin treatment failed to block PAR-2–mediated secretion from the salivary glands. Intravenous calcitonin gene–related peptide (CGRP) and neurokinin A markedly elicited gastric mucus secretion, as did substance P to a lesser extent. Specific antagonists of the CGRP1 and NK2, but not the NK1, receptors inhibited PAR-2–mediated mucus secretion. Pretreatment with the PAR-2 agonist strongly prevented gastric injury caused by HCl-ethanol or indomethacin. Thus, PAR-2 activation triggers the cytoprotective secretion of gastric mucus by stimulating the release of CGRP and tachykinins from sensory neurons. In contrast, the PAR-2–mediated salivary exocrine secretion appears to be independent of capsaicin-sensitive sensory neurons. PMID:11390426

  5. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  6. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2016-01-01

    Endogenously administered activated protein C ameliorates diabetic nephropathy (DN) in a protease-activated receptor-1 (PAR-1)-dependent manner, suggesting that PAR-1 activation limits the progression of DN. Activation of PAR-1 in fibroblast-like cells, however, induces proliferation and extracellular matrix production, thereby driving fibrotic disease. Considering the key role of mesangial proliferation and extracellular matrix production during DN, PAR-1 may in fact potentiate diabetes-induced kidney injury. To determine the net effect of PAR-1 in DN, streptozotocin-induced DN was studied in wild type and PAR-1 deficient mice. Subsequent mechanistic insight was obtained by assessing profibrotic responses of mesangial and tubular epithelial cells in vitro, following PAR-1 stimulation and inhibition. Despite having similar glucose levels, PAR-1 deficient mice developed less kidney damage after induction of diabetes, as evidenced by diminished proteinuria, plasma cystatin C levels, expansion of the mesangial area, and tubular atrophy. In vitro, PAR-1 signaling in mesangial cells led to increased proliferation and expression of matrix proteins fibronectin and collagen IV. Conversely, a reduction in both proliferation and fibronectin deposition was observed in diabetic PAR-1 deficient mice. Overall, we show that PAR-1 plays an important role in the development of DN and PAR-1 might therefore be an attractive therapeutic target to pursue in DN. PMID:27618774

  7. Targeting Protease-Activated Receptor-1 with Cell-Penetrating Pepducins in Lung Cancer

    PubMed Central

    Cisowski, Jaroslaw; O'Callaghan, Katie; Kuliopulos, Athan; Yang, John; Nguyen, Nga; Deng, Qing; Yang, Eric; Fogel, Michael; Tressel, Sarah; Foley, Caitlin; Agarwal, Anika; Hunt, Stephen W.; McMurry, Tom; Brinckerhoff, Larry; Covic, Lidija

    2011-01-01

    Protease-activated receptors (PARs) are G-protein–coupled receptors that are activated by proteolytic cleavage and generation of a tethered ligand. High PAR1 expression has been documented in a variety of invasive cancers of epithelial origin. In the present study, we investigated the contribution of the four PAR family members to motility of lung carcinomas and primary tumor samples from patients. We found that of the four PARs, only PAR1 expression was highly increased in the lung cancer cell lines. Primary lung cancer cells isolated from patient lung tumors migrated at a 10- to 40-fold higher rate than epithelial cells isolated from nonmalignant lung tissue. Cell-penetrating pepducin inhibitors were generated against the first (i1) and third (i3) intracellular loops of PAR1 and tested for their ability to inhibit PAR1-driven migration and extracellular regulated kinase (ERK)1/2 activity. The PAR1 pepducins showed significant inhibition of cell migration in both primary and established cell lines similar to silencing of PAR1 expression with short hairpin RNA (shRNA). Unlike i1 pepducins, the i3 loop pepducins were effective inhibitors of PAR1-mediated ERK activation and tumor growth. Comparable in efficacy with Bevacizumab, monotherapy with the PAR1 i3 loop pepducin P1pal-7 provided significant 75% inhibition of lung tumor growth in nude mice. We identify the PAR1–ERK1/2 pathway as a feasible target for therapy in lung cancer. PMID:21703428

  8. alpha-lytic protease can exist in two separately stable conformations with different His57 mobilities and catalytic activities.

    PubMed

    Haddad, Kristin Coffman; Sudmeier, James L; Bachovchin, Daniel A; Bachovchin, William W

    2005-01-25

    alpha-Lytic protease is a bacterial serine protease widely studied as a model system of enzyme catalysis. Here we report that lyophilization induces a structural change in the enzyme that is not reversed by redissolution in water. The structural change reduces the mobility of the active-site histidine residue and the catalytic activity of the enzyme. The application of mild pressure to solutions of the altered enzyme reverses the lyophilization-induced structural change and restores the mobility of the histidine residue and the enzyme's catalytic activity. This effect of lyophilization permits a unique opportunity for investigating the relationship between histidine ring dynamics and catalytic activity. The results demonstrate that His57 in resting enzymes is more mobile than previously thought, especially when protonated. The histidine motion and its correlation to enzyme activity lend support to the reaction-driven ring flip hypothesis. PMID:15657134

  9. α-Lytic protease can exist in two separately stable conformations with different His57 mobilities and catalytic activities

    PubMed Central

    Haddad, Kristin Coffman; Sudmeier, James L.; Bachovchin, Daniel A.; Bachovchin, William W.

    2005-01-01

    α-Lytic protease is a bacterial serine protease widely studied as a model system of enzyme catalysis. Here we report that lyophilization induces a structural change in the enzyme that is not reversed by redissolution in water. The structural change reduces the mobility of the active-site histidine residue and the catalytic activity of the enzyme. The application of mild pressure to solutions of the altered enzyme reverses the lyophilization-induced structural change and restores the mobility of the histidine residue and the enzyme's catalytic activity. This effect of lyophilization permits a unique opportunity for investigating the relationship between histidine ring dynamics and catalytic activity. The results demonstrate that His57 in resting enzymes is more mobile than previously thought, especially when protonated. The histidine motion and its correlation to enzyme activity lend support to the reaction-driven ring flip hypothesis. PMID:15657134

  10. [Studies on human alpha-2 macroglobulin structure and its complexes with proteases, using polyacrylamide gel electrophoresis].

    PubMed

    Fine, J M; Lambin, P; Steinbuch, M

    1975-09-01

    Pure alpha2M is prepared with fresh plasma as starting material, to prevent the interaction of alpha2M from proteolytic enzymes of plasma such as thrombin, plasmin and kallikrein. During the purification steps, polybrene and aprotin are used as inhibitors and plasminogen is absorbed onto bentonite. When alpha 2M is submitted to polyacrylamide gel electrophoresis (PAA) containing 0.1% SDS, a complete dissociation in two half-molecules of MW 380,000 occurs. When alpha2M is incubated in 1% SDS and 1% beta-mercaptoethanol as reducing agent, only one component of MW 190,000 is observed in PAA-SDS. This experiments show that the alpha2M molecule consist of two symetric halves of same MW (380,000) linked by non covalent bonds. Each two-half-molecules is made of two polypeptides chains MW 190,000 linked by disulfide bonds. Thus alpha2M molecule contains four polypeptides chains having a same MW. The same techniques were applied to the study of alaph2M proteinases complexes. Three different proteinases (plasmin, trypsin and papain) were used in these experiments. Trypsin and papain are commercialy available. Plasminogen was obtained by affinity chromatography and activated into plasmin by insoluble streptokinase fixed on PAB cellulose. PMID:59941

  11. Characterization of the in vitro activities of the P1 and helper component proteases of Soybean mosaic virus Strain G2 and Tobacco vein mottling virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potyviruses express their RNA genomes through the production of polyproteins that are processed in host cells by three virus-encoded proteases. Soybean plants produce large amounts of protease inhibitors during seed development and in response to wounding that could affect the activities of these pr...

  12. Assessment of protease activity in hydrolysed extracts from SSF of hair waste by and indigenous consortium of microorganisms.

    PubMed

    Yazid, Noraziah Abu; Barrena, Raquel; Sánchez, Antoni

    2016-03-01

    Hair wastes from the tannery industry were assessed for its suitability as substrates for protease production by solid-state fermentation (SSF) using a pilot-batch mode operation and anaerobically digested sludge as co-substrate. Maximum protease activity (52,230±1601Ug(-1)DM) was observed at the 14th day of SSF. Single step purification resulted in 2 fold purification with 74% of recovery by ultrafiltration with 10kDa cut-off. The recovered enzyme was stable at a temperature of 30°C and pH 11; optimal conditions that were determined by a central composite full factorial experimental design. The enzyme activity was inhibited by phenylmethylsulfonyl fluoride, which indicates that it belongs to serine protease group. The remaining solid material after protease extraction could be easily stabilized to obtain a final good quality compost-like material as the final dynamic respiration index was lower than 1gO2kg(-1)OMh(-1). The lyophilized recovered enzymes were a good alternative in the process of cowhides dehairing with respect to the current chemical treatment, avoiding the production of solid wastes and highly polluted wastewaters. In conclusion, the entire process can be considered a low-cost sustainable technology for the dehairing process, closing the organic matter cycle in the form of value added product and a compost-like material from a waste. PMID:26856443

  13. Transcriptional activation of the human cytotoxic serine protease gene CSP-B in T lymphocytes.

    PubMed Central

    Hanson, R D; Ley, T J

    1990-01-01

    The cytotoxic serine protease B (CSP-B) gene is activated during cytotoxic T-lymphocyte maturation. In this report, we demonstrate that the PEER T-cell line (bearing gamma/delta T-cell receptors) accumulates CSP-B mRNA following exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) and N6-2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (bt2cAMP) because of transcriptional activation of the CSP-B gene. TPA and bt2cAMP act synergistically to induce CSP-B expression, since neither agent alone causes activation of CSP-B transcription or mRNA accumulation. Chromatin upstream from the CSP-B gene is resistant to DNase I digestion in untreated PEER cells, but becomes sensitive following TPA-bt2cAMP treatment. Upon activation of PEER cells, a DNase I-hypersensitive site forms upstream from the CSP-B gene within a region that is highly conserved in the mouse. Transient transfection of CSP-B promoter constructs identified two regulatory regions in the CSP-B 5'-flanking sequence, located at positions -609 to -202 and positions -202 to -80. The region from -615 to -63 is sufficient to activate a heterologous promoter in activated PEER cells, but activation is orientation specific, suggesting that this region behaves as an upstream promoter element rather than a classical enhancer. Consensus AP-1, AP-2, and cAMP response elements are found upstream from the CSP-B gene (as are several T-cell-specific consensus elements), but the roles of these elements in CSP-B gene activation have yet to be determined. Images PMID:2233710

  14. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome.

    PubMed

    Hachem, Jean-Pierre; Wagberg, Fredrik; Schmuth, Matthias; Crumrine, Debra; Lissens, Willy; Jayakumar, Arumugam; Houben, Evi; Mauro, Theodora M; Leonardsson, Göran; Brattsand, Maria; Egelrud, Torbjorn; Roseeuw, Diane; Clayman, Gary L; Feingold, Kenneth R; Williams, Mary L; Elias, Peter M

    2006-07-01

    Mutations in the SPINK5 gene encoding the serine protease (SP) inhibitor, lymphoepithelial-Kazal-type 5 inhibitor (LEKTI), cause Netherton syndrome (NS), a life-threatening disease, owing to proteolysis of the stratum corneum (SC). We assessed here the basis for phenotypic variations in nine patients with "mild", "moderate", and "severe" NS. The magnitude of SP activation correlated with both the barrier defect and clinical severity, and inversely with residual LEKTI expression. LEKTI co-localizes within the SC with kallikreins 5 and 7 and inhibits both SP. The permeability barrier abnormality in NS was further linked to SC thinning and proteolysis of two lipid hydrolases (beta-glucocerebrosidase and acidic sphingomyelinase), with resultant disorganization of extracellular lamellar membranes. SC attenuation correlated with phenotype-dependent, SP activation, and loss of corneodesmosomes, owing to desmoglein (DSG)1 and desmocollin (DSC)1 degradation. Although excess SP activity extended into the nucleated layers in NS, degrading desmosomal mid-line structures with loss of DSG1/DSC1, the integrity of the nucleated epidermis appears to be maintained by compensatory upregulation of DSG3/DSC3. Maintenance of sufficient permeability barrier function for survival correlated with a compensatory acceleration of lamellar body secretion, providing a partial permeability barrier in NS. These studies provide a mechanistic basis for phenotypic variations in NS, and describe compensatory mechanisms that permit survival of NS patients in the face of unrelenting SP attack. PMID:16601670

  15. Protease activated receptor-1 regulates macrophage-mediated cellular senescence: a risk for idiopathic pulmonary fibrosis

    PubMed Central

    Lin, Cong; Rezaee, Farhad; Waasdorp, Maaike; Shi, Kun; van der Poll, Tom

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive disease in part resulting from premature or mature cellular aging. Protease-activated receptor-1 (PAR-1) recently emerged as a critical component in the context of fibrotic lung diseases. Therefore, we aimed to study the role of macrophages in PAR-1-mediated idiopathic pulmonary fibrosis. The number of macrophages were significantly reduced in lungs of PAR-1 antagonist (P1pal-12) treated animals upon bleomycin instillation. In line with these data, PAR-1 stimulation increased monocyte/macrophage recruitment in response to epithelium injury in in vitro trans-well assays. Moreover, macrophages induced fibroblasts migration, differentiation and secretion of collagen, which were inhibited in the presence of TGF-β receptor inhibitors. Interestingly, these profibrotic effects were partially inhibited by treatment with the PAR-1 inhibitor P1pal-12. Using shRNA mediated PAR-1 knock down in fibroblasts, we demonstrate that fibroblast PAR-1 contributes to TGF-β activation and production. Finally, we show that the macrophage-dependent induction of PAR-1 driven TGF-β activation was mediated by FXa. Our data identify novel mechanisms by which PAR-1 stimulation on different cell types can contribute to IPF and identify macrophages as key players in PAR-1 dependent development of this devastating disease. IPF may result from cellular senescence mediated by macrophages in the lung. PMID:26474459

  16. Protease-activated receptor 4 deficiency offers cardioprotection after acute ischemia reperfusion injury.

    PubMed

    Kolpakov, Mikhail A; Rafiq, Khadija; Guo, Xinji; Hooshdaran, Bahman; Wang, Tao; Vlasenko, Liudmila; Bashkirova, Yulia V; Zhang, Xiaoxiao; Chen, Xiongwen; Iftikhar, Sahar; Libonati, Joseph R; Kunapuli, Satya P; Sabri, Abdelkarim

    2016-01-01

    Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury. PMID:26643815

  17. 3D Traction Stresses Activate Protease-Dependent Invasion of Cancer Cells

    PubMed Central

    Aung, Aereas; Seo, Young N.; Lu, Shaoying; Wang, Yingxiao; Jamora, Colin; del Álamo, Juan C.; Varghese, Shyni

    2014-01-01

    Cell invasion and migration that occurs, for example, in cancer metastasis is rooted in the ability of cells to navigate through varying levels of physical constraint exerted by the extracellular matrix. Cancer cells can invade matrices in either a protease-independent or a protease-dependent manner. An emerging critical component that influences the mode of cell invasion is the traction stresses generated by the cells in response to the physicostructural properties of the extracellular matrix. In this study, we have developed a reference-free quantitative assay for measuring three-dimensional (3D) traction stresses generated by cells during the initial stages of invasion into matrices exerting varying levels of mechanical resistance. Our results show that as cells encounter higher mechanical resistance, a larger fraction of them shift to protease-mediated invasion, and this process begins at lower values of cell invasion depth. On the other hand, the compressive stress generated by the cells at the onset of protease-mediated invasion is found to be independent of matrix stiffness, suggesting that 3D traction stress is a key factor in triggering protease-mediated cancer cell invasion. At low 3D compressive traction stresses, cells utilize bleb formation to indent the matrix in a protease independent manner. However, at higher stress values, cells utilize invadopodia-like structures to mediate protease-dependent invasion into the 3D matrix. The critical value of compressive traction stress at the transition from a protease-independent to a protease-dependent mode of invasion is found to be ∼165 Pa. PMID:25468332

  18. The factor VII-activating protease (FSAP) enhances the activity of bone morphogenetic protein-2 (BMP-2).

    PubMed

    Roedel, Elfie Kathrin; Schwarz, Elisabeth; Kanse, Sandip Madhav

    2013-03-01

    Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg(282)↓Gln(283)), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg(289)↓Lys(290)). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg(289)↓Lys(290)). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases. PMID:23341458

  19. Effects of L- and iso-ascorbic acid on meat protein hydrolyzing activity of four commercial plant and three microbial protease preparations.

    PubMed

    Ha, Minh; Bekhit, Alaa El-Din; Carne, Alan

    2014-04-15

    The present study investigated the effects of both l- and iso-ascorbic acid (AA) on the activity of four plant proteases (papain, bromelain, actinidin and zingibain) and three microbial proteases (Bacterial Protease G, Fungal 31,000 and Fungal 60,000) preparations using fluorescent-labelled casein, meat myofibrillar and connective tissue extracts to explore their effects on meat structure components upon treatment with individual proteases. While l-AA in the range 0.8-3.2mM inhibited the activity of papain, bromelain and zingibain, iso-AA acted as an inhibitor of papain but as an activator of zingibain and had no significant effect on bromelain. Both AA isoforms acted as an activator of the actinidin protease and the concentration of AA isoforms appeared to affect the level of activation of the protease. The effect of the two AA isoforms on collagen and myofibrillar protein hydrolyzing activity varied depending on the concentration of the two AA isoforms. The results indicate the ability to up and down regulate the activity of the investigated proteases by using an appropriate concentration of the AA isoform. PMID:24295669

  20. Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype

    PubMed Central

    Villares, Gabriel J.; Zigler, Maya; Dobroff, Andrey S.; Wang, Hua; Song, Renduo; Melnikova, Vladislava O.; Huang, Li; Braeuer, Russell R.; Bar-Eli, Menashe

    2011-01-01

    The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1–silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1–silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation. PMID:21187389

  1. Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype.

    PubMed

    Villares, Gabriel J; Zigler, Maya; Dobroff, Andrey S; Wang, Hua; Song, Renduo; Melnikova, Vladislava O; Huang, Li; Braeuer, Russell R; Bar-Eli, Menashe

    2011-01-11

    The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1-silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1-silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation. PMID:21187389

  2. Intrinsic activity of human immunodeficiency virus type 1 protease heterologous fusion proteins in mammalian cells.

    PubMed

    Arrigo, S J; Haines, J K; Huffman, K M

    1995-01-01

    We have generated various mammalian expression constructs that produce fusion proteins of human immunodeficiency virus type 1 (HIV-1) protease (PR) with the HIV-1 Nef protein. The expression of these proteins is inducible by the HIV-1 Tat protein. High-level expression of proteolytically active PR was produced from PR imbedded into Nef coding sequences, flanked by PR cleavage sites. The fusion protein was cleaved nearly to completion and did not exhibit the regulated processing that is seen with the virally encoded PR. No cytotoxic effect of PR expression was detected. The self-cleavage of PR could be inhibited by a specific inhibitor of HIV-1 PR (U75875). Elimination of the aminoterminal PR cleavage site did not have a measurable effect on cleavage of the precursor fusion protein. The cleaved fusion proteins appeared to be extremely unstable in the transfected cells. These findings demonstrate the intrinsic activity of HIV-1 PR in mammalian cells, in the context of a heterologous fusion protein. PMID:7832989

  3. Protease Activated Receptor-1 (PAR-1) Mediated Platelet Aggregation is Dependant on Clopidogrel Response

    PubMed Central

    Kreutz, Rolf P.; Breall, Jeffrey A.; Kreutz, Yvonne; Owens, Janelle; Lu, Deshun; Bolad, Islam; von der Lohe, Elisabeth; Sinha, Anjan; Flockhart, David A.

    2012-01-01

    Introduction Clopidogrel inhibits ADP mediated platelet aggregation through inhibition of the P2Y12 receptor by its active metabolite. Thrombin induces platelet aggregation by binding to protease activated receptor-1 (PAR-1), and inhibition of PAR-1 has been evaluated in patients treated with clopidogrel to reduce ischemic events after acute coronary syndromes. Residual PAR-1 mediated platelet aggregation may be dependent on extent of clopidogrel response. Material and Methods Platelet aggregation was measured in 55 patients undergoing elective PCI at 16-24 hours after 600mg clopidogrel loading dose by light transmittance aggregometry using ADP 20μM and thrombin receptor agonist peptide (TRAP) at 15 μM and 25 μM as agonists. Genomic DNA was genotyped for common CYP2C19 variants. Results Increasing quartiles of 20 μM ADP induced platelet aggregation after clopidogrel loading were associated with increasing levels of TRAP mediated platelet aggregation. Patients in the highest quartile (clopidogrel non-responders) of post treatment ADP aggregation had significantly higher TRAP mediated aggregation than the patients in the lowest quartile (clopidogrel responders) [TRAP 15 μM: 79.6±5% vs. 69.5±8%, p<0.001]. Conclusions Non-responders to clopidogrel show increased residual platelet aggregation induced by TRAP, whereas clopidogrel responders exhibit attenuated response to TRAP. Addition of PAR-1 antiplatelet drugs may be most effective in patients with reduced clopidogrel response and high residual TRAP mediated platelet aggregation. PMID:22459907

  4. Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity.

    PubMed Central

    Rosé, J R; Babé, L M; Craik, C S

    1995-01-01

    The human immunodeficiency virus type 1 (HIV-1) protease is the enzyme required for processing of the Gag and Gag-Pol polyproteins to yield mature, infectious virions. Although the complete absence of proteolytic activity prevents maturation, the level of activity sufficient for maturation and subsequent infectivity has not been determined. Amino acid substitutions that reduce catalytic activity without affecting substrate recognition have been engineered into the active site of the HIV-1 protease. The catalytic efficiency (kcat) of the HIV-1 protease is decreased 4-fold when threonine 26 is replaced by serine (T26S) and approximately 50-fold when alanine 28 is replaced by serine (A28S). Genes containing these mutations were cloned into a proviral vector for analysis of their effects on virion maturation and infectivity. The results show that virions containing the T26S protease variant, in which only 25% of the protease is active, are very similar to wild-type virions, although slight reductions in infectivity are observed. Virions containing the A28S protease variant are not infectious, even though a limited amount of polyprotein processing does occur. There appears to be a linear correlation between the level of protease activity and particle infectivity. Our observations suggest that a threshold of protease activity exists between a 4-fold and 50-fold reduction, below which processing is insufficient to yield infectious particles. Our data also suggest that a reduction of protease activity by 50-fold or greater is sufficient to prevent the formation of infectious particles. PMID:7535864

  5. Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition.

    PubMed

    Fodor, Krisztián; Harmat, Veronika; Hetényi, Csaba; Kardos, József; Antal, József; Perczel, András; Patthy, András; Katona, Gergely; Gráf, László

    2005-07-01

    We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use. PMID:15922357

  6. Insight to structural subsite recognition in plant thiol protease-inhibitor complexes : Understanding the basis of differential inhibition and the role of water

    PubMed Central

    Bhattacharya, Suparna; Ghosh, Sreya; Chakraborty, Sibani; Bera, Asim K; Mukhopadhayay, Bishnu P; Dey, Indrani; Banerjee, Asok

    2001-01-01

    Background This work represents an extensive MD simulation / water-dynamics studies on a series of complexes of inhibitors (leupeptin, E-64, E-64-C, ZPACK) and plant cysteine proteases (actinidin, caricain, chymopapain, calotropin DI) of papain family to understand the various interactions, water binding mode, factors influencing it and the structural basis of differential inhibition. Results The tertiary structure of the enzyme-inhibitor complexes were built by visual interactive modeling and energy minimization followed by dynamic simulation of 120 ps in water environment. DASA study with and without the inhibitor revealed the potential subsite residues involved in inhibition. Though the interaction involving main chain atoms are similar, critical inspection of the complexes reveal significant differences in the side chain interactions in S2-P2 and S3-P3 pairs due to sequence differences in the equivalent positions of respective subsites leading to differential inhibition. Conclusion The key finding of the study is a conserved site of a water molecule near oxyanion hole of the enzyme active site, which is found in all the modeled complexes and in most crystal structures of papain family either native or complexed. Conserved water molecules at the ligand binding sites of these homologous proteins suggest the structural importance of the water, which changes the conventional definition of chemical geometry of inhibitor binding domain, its shape and complimentarity. The water mediated recognition of inhibitor to enzyme subsites (Pn...H2O....Sn) of leupeptin acetyl oxygen to caricain, chymopapain and calotropinDI is an additional information and offer valuable insight to potent inhibitor design. PMID:11602025

  7. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid

    PubMed Central

    Joo, Yeon Ah; Chung, Hyunjin; Yoon, Sohyun; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Hwang, Jae Sung

    2016-01-01

    Atopic dermatitis (AD) results from gene and environment interactions that lead to a range of immunological abnormalities and breakdown of the skin barrier. Protease-activated receptor 2 (PAR2) belongs to a family of G-protein coupled receptors and is expressed in suprabasal layers of the epidermis. PAR2 is activated by both trypsin and a specific agonist peptide, SLIGKV-NH2 and is involved in both epidermal permeability barrier homeostasis and epithelial inflammation. In this study, we investigated the effect of lobaric acid on inflammation, keratinocyte differentiation, and recovery of the skin barrier in hairless mice. Lobaric acid blocked trypsin-induced and SLIGKV-NH2-induced PAR2 activation resulting in decreased mobilization of intracellular Ca2+ in HaCaT keratinocytes. Lobaric acid reduced expression of interleukin-8 induced by SLIGKV-NH2 and thymus and activation regulated chemokine (TARC) induced by tumor necrosis factor-a (TNF-α) and IFN-γ in HaCaT keratinocytes. Lobaric acid also blocked SLIGKV-NH2-induced activation of ERK, which is a downstream signal of PAR2 in normal human keratinocytes (NHEKs). Treatment with SLIGKV-NH2 downregulated expression of involucrin, a differentiation marker protein in HaCaT keratinocytes, and upregulated expression of involucrin, transglutamase1 and filaggrin in NHEKs. However, lobaric acid antagonized the effect of SLIGKV-NH2 in HaCaT keratinocytes and NHEKs. Topical application of lobaric acid accelerated barrier recovery kinetics in a SKH-1 hairless mouse model. These results suggested that lobaric acid is a PAR2 antagonist and could be a possible therapeutic agent for atopic dermatitis. PMID:27169822

  8. Functional regulation of PVBV Nuclear Inclusion protein-a protease activity upon interaction with Viral Protein genome-linked and phosphorylation

    SciTech Connect

    Mathur, C.; Jimsheena, V.K.; Banerjee, S.; Makinen, K.; Gowda, L.R.; Savithri, H.S.

    2012-01-20

    Regulation of NIa-Pro is crucial for polyprotein processing and hence, for successful infection of potyviruses. We have examined two novel mechanisms that could regulate NIa-Pro activity. Firstly, the influence of VPg domain on the proteolytic activity of NIa-Pro was investigated. It was shown that the turnover number of the protease increases when these two domains interact (cis: two-fold; trans: seven-fold) with each other. Secondly, the protease activity of NIa-Pro could also be modulated by phosphorylation at Ser129. A mutation of this residue either to aspartate (phosphorylation-mimic) or alanine (phosphorylation-deficient) drastically reduces the protease activity. Based on these observations and molecular modeling studies, we propose that interaction with VPg as well as phosphorylation of Ser129 could relay a signal through Trp143 present at the protein surface to the active site pocket by subtle conformational changes, thus modulating protease activity of NIa-Pro.

  9. Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43.

    PubMed

    Villares, Gabriel J; Dobroff, Andrey S; Wang, Hua; Zigler, Maya; Melnikova, Vladislava O; Huang, Li; Bar-Eli, Menashe

    2009-08-15

    Protease-activated receptor-1 (PAR-1) is a key player in melanoma metastasis with higher expression seen in metastatic melanoma cell lines and tissue specimens. cDNA microarray and Western blot analyses reveal that the gap junctional intracellular communication molecule connexin 43 (Cx-43), known to be involved in tumor cell diapedesis and attachment to endothelial cells, is significantly decreased after PAR-1 silencing in metastatic melanoma cell lines. Furthermore, Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells, suggesting that PAR-1 regulates Cx-43 at the transcriptional level. Chromatin immunoprecipitation studies showed a reduction in the binding of SP-1 and AP-1 transcription factors to the promoter of Cx-43. Both transcription factors have been shown previously to be required for maximal Cx-43 promoter activity. These results were corroborated by mutating the AP-1 and SP-1 binding sites resulting in decreased Cx-43 promoter activity in PAR-1-positive cells. Moreover, as Cx-43 has been shown to facilitate arrest of circulating tumor cells at the vascular endothelium, melanoma cell attachment to endothelial cells was significantly decreased in PAR-1-silenced cells, with this effect being abrogated after PAR-1 rescue. Herein, we report that up-regulation of PAR-1 expression, seen in melanoma progression, mediates high levels of Cx-43 expression. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Indeed, Cx-43 expression was restored following PAR-1 rescue in PAR-1-silenced cells. Taken together, our data support the tumor promoting function of Cx-43 in melanoma. PMID:19679555

  10. Overexpression of Protease Activated Receptor-1 Contributes to Melanoma Metastasis via Regulation of Connexin 43

    PubMed Central

    Villares, Gabriel J.; Dobroff, Andrey S.; Wang, Hua; Zigler, Maya; Melnikova, Vladislava O.; Huang, Li; Bar-Eli, Menashe

    2009-01-01

    Protease Activated Receptor-1 (PAR-1) is a key player in melanoma metastasis with higher expression seen in metastatic melanoma cell lines and tissue specimens. cDNA microarray and Western blot analyses reveal that the gap junctional intracellular communication molecule, Connexin 43 (Cx-43), known to be involved in tumor cell diapedesis and attachment to endothelial cells, is significantly decreased after PAR-1 silencing in metastatic melanoma cell lines. Furthermore, Cx-43 promoter activity was significantly inhibited in PAR-1 silenced cells suggesting that PAR-1 regulates Cx-43 at the transcriptional level. Chromatin Immunoprecipitation studies found a reduction in the binding of SP-1 and AP-1 transcription factors to the promoter of Cx-43. Both transcription factors have previously been shown to be required for maximal Cx-43 promoter activity. These results were corroborated by mutating the AP-1 and SP-1 binding sites resulting in decreased Cx-43 promoter activity in PAR-1 positive cells. Moreover, as Cx-43 has been shown to facilitate arrest of circulating tumor cells at the vascular endothelium, melanoma cell attachment to endothelial cells was significantly decreased in PAR-1 silenced cells with this effect being abrogated after PAR-1 rescue. Herein, we report that upregulation of PAR-1 expression seen in melanoma progression, mediates high levels of Cx-43 expression. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Indeed, Cx-43 expression was restored following PAR-1 rescue in PAR-1 silenced cells. Taken together, our data support the tumor promoting function of Connexin 43 in melanoma. PMID:19679555

  11. Protease-Activated Receptor 4 Induces Bladder Pain through High Mobility Group Box-1

    PubMed Central

    Kouzoukas, Dimitrios E.; Ma, Fei; Meyer-Siegler, Katherine L.; Westlund, Karin N.; Hunt, David E.; Vera, Pedro L.

    2016-01-01

    Pain is the significant presenting symptom in Interstitial Cystitis/Painful Bladder Syndrome (IC/PBS). Activation of urothelial protease activated receptor 4 (PAR4) causes pain through release of urothelial macrophage migration inhibitory factor (MIF). High Mobility Group Box-1 (HMGB1), a chromatin-binding protein, mediates bladder pain (but not inflammation) in an experimental model (cyclophosphamide) of cystitis. To determine if PAR4-induced bladder hypersensitivity depends on HMGB1 downstream, we tested whether: 1) bladder PAR4 stimulation affected urothelial HMGB1 release; 2) blocking MIF inhibited urothelial HMGB1 release; and 3) blocking HMGB1 prevented PAR4-induced bladder hypersensitivity. HMGB1 release was examined in immortalized human urothelial cultures (UROtsa) exposed to PAR4-activating peptide (PAR4-AP; 100 μM; 2 hours) or scrambled control peptide. Female C57BL/6 mice, pretreated with a HMGB1 inhibitor (glycyrrhizin: 50 mg/kg; ip) or vehicle, received intravesical PAR4-AP or a control peptide (100 μM; 1 hour) to determine 1) HMGB1 levels at 1 hour in the intravesical fluid (released HMGB1) and urothelium, and 2) abdominal hypersensitivity to von Frey filament stimulation 24 hours later. We also tested mice pretreated with a MIF blocker (ISO-1: 20 mg/kg; ip) to determine whether MIF mediated PAR4-induced urothelial HMGB1 release. PAR4-AP triggered HMGB1 release from human (in vitro) and mice (in vivo) urothelial cells. Intravesical PAR4 activation elicited abdominal hypersensitivity in mice that was prevented by blocking HMGB1. MIF inhibition prevented PAR4-mediated HMGB1 release from mouse urothelium. Urothelial MIF and HGMB1 represent novel targets for therapeutic intervention in bladder pain conditions. PMID:27010488

  12. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart

    PubMed Central

    Napoli, Claudio; Cicala, Carla; Wallace, John L.; de Nigris, Filomena; Santagada, Vincenzo; Caliendo, Giuseppe; Franconi, Flavia; Ignarro, Louis J.; Cirino, Giuseppe

    2000-01-01

    Protease-activated receptor-2 (PAR-2) is a member of seven transmembrane domain G protein-coupled receptors activated by proteolytic cleavage whose better known member is the thrombin receptor. The pathophysiological role of PAR-2 remains poorly understood. Because PAR-2 is involved in inflammatory and injury response events, we investigated the role of PAR-2 in experimental myocardial ischemia-reperfusion injury. We show for the first time that PAR-2 activation protects against reperfusion-injury. After PAR-2-activating peptide (2AP) infusion, we found a significant recovery of myocardial function and decrease in oxidation at reflow. Indeed, the glutathione cycle (glutathione and oxidized glutathione) and lipid peroxidation analysis showed a reduced oxidative reperfusion-injury. Moreover, ischemic risk zone and creatine kinase release were decreased after PAR-2AP treatment. These events were coupled to elevation of PAR-2 and tumor necrosis factor α (TNFα) expression in both nuclear extracts and whole heart homogenates. The recovery of coronary flow was not reverted by L-nitroarginine methylester, indicating a NO-independent pathway for this effect. Genistein, a tyrosine kinase inhibitor, did not revert the PAR-2AP effect. During early reperfusion injury in vivo not only oxygen radicals are produced but also numerous proinflammatory mediators promoting neutrophil and monocyte targeting. In this context, we show that TNFα and PAR-2 are involved in signaling in pathophysiological conditions, such as myocardial ischemia-reperfusion. At the same time, because TNFα may exert pro-inflammatory actions and PAR-2 may constitute one of the first protective mechanisms that signals a primary inflammatory response, our data support the concept that this network may regulate body responses to tissue injury. PMID:10737808

  13. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart.

    PubMed

    Napoli, C; Cicala, C; Wallace, J L; de Nigris, F; Santagada, V; Caliendo, G; Franconi, F; Ignarro, L J; Cirino, G

    2000-03-28

    Protease-activated receptor-2 (PAR-2) is a member of seven transmembrane domain G protein-coupled receptors activated by proteolytic cleavage whose better known member is the thrombin receptor. The pathophysiological role of PAR-2 remains poorly understood. Because PAR-2 is involved in inflammatory and injury response events, we investigated the role of PAR-2 in experimental myocardial ischemia-reperfusion injury. We show for the first time that PAR-2 activation protects against reperfusion-injury. After PAR-2-activating peptide (2AP) infusion, we found a significant recovery of myocardial function and decrease in oxidation at reflow. Indeed, the glutathione cycle (glutathione and oxidized glutathione) and lipid peroxidation analysis showed a reduced oxidative reperfusion-injury. Moreover, ischemic risk zone and creatine kinase release were decreased after PAR-2AP treatment. These events were coupled to elevation of PAR-2 and tumor necrosis factor alpha (TNFalpha) expression in both nuclear extracts and whole heart homogenates. The recovery of coronary flow was not reverted by L-nitroarginine methylester, indicating a NO-independent pathway for this effect. Genistein, a tyrosine kinase inhibitor, did not revert the PAR-2AP effect. During early reperfusion injury in vivo not only oxygen radicals are produced but also numerous proinflammatory mediators promoting neutrophil and monocyte targeting. In this context, we show that TNFalpha and PAR-2 are involved in signaling in pathophysiological conditions, such as myocardial ischemia-reperfusion. At the same time, because TNFalpha may exert pro-inflammatory actions and PAR-2 may constitute one of the first protective mechanisms that signals a primary inflammatory response, our data support the concept that this network may regulate body responses to tissue injury. PMID:10737808

  14. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs.

    PubMed

    Keane, Fiona M; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G; Chowdhury, Sumaiya; Poplawski, Sarah E; Lai, Jack H; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M T; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M; McLennan, Susan V; McCaughan, Geoffrey W; Bachovchin, William W; Gorrell, Mark D

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721

  15. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs☆

    PubMed Central

    Keane, Fiona M.; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G.; Chowdhury, Sumaiya; Poplawski, Sarah E.; Lai, Jack H.; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M.T.; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A. Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M.; McLennan, Susan V.; McCaughan, Geoffrey W.; Bachovchin, William W.; Gorrell, Mark D.

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721

  16. Crystal structure of the caseinolytic protease gene regulator, a transcriptional activator in actinomycetes.

    PubMed

    Russo, Santina; Schweitzer, Jens-Eric; Polen, Tino; Bott, Michael; Pohl, Ehmke

    2009-02-20

    Human pathogens of the genera Corynebacterium and Mycobacterium possess the transcriptional activator ClgR (clp gene regulator) which in Corynebacterium glutamicum has been shown to regulate the expression of the ClpCP protease genes. ClgR specifically binds to pseudo-palindromic operator regions upstream of clpC and clpP1P2. Here, we present the first crystal structure of a ClgR protein from C. glutamicum. The structure was determined from two different crystal forms to resolutions of 1.75 and 2.05 A, respectively. ClgR folds into a five-helix bundle with a helix-turn-helix motif typical for DNA-binding proteins. Upon dimerization the two DNA-recognition helices are arranged opposite to each other at the protein surface in a distance of approximately 30 A, which suggests that they bind into two adjacent major grooves of B-DNA in an anti-parallel manner. A binding pocket is situated at a strategic position in the dimer interface and could possess a regulatory role altering the positions of the DNA-binding helices. PMID:19019826

  17. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  18. Clinical significance of serum protease-activated receptor-1 levels in gastric cancer patients

    PubMed Central

    TAS, FARUK; KARABULUT, SENEM; TASTEKIN, DIDEM; DURANYILDIZ, DERYA

    2016-01-01

    Protease-activated receptor-1 (PAR-1) has a significant role in the pathogenesis of various malignancies and its expression mainly affects the survivals of cancer patients. The aim of the present study was to determine the clinical significance of the serum concentrations of PAR-1 in patients with gastric carcinoma. A total of 63 pathologically confirmed gastric cancer patients were enrolled in this study, with a median age of 62 years. Serum PAR-1 concentrations were determined by the enzyme-linked immunosorbent assay method and no significant difference in the baseline serum PAR-1 concentrations was found between patients and normal controls (P=0.5). The investigated clinical variables, including patient age, gender, localization of lesion, histology, grade of pathology, disease stage and serum tumor markers (lactate dehydrogenase, carcinoembryonic antigen and carbohydrate antigen 19-9) were not correlated with serum PAR-1 levels (P>0.05). Furthermore, no association was identified between the serum PAR-1 level and chemotherapy responsiveness (P=0.43). Serum PAR-1 level also had no prognostic role for survival (P=0.27). In conclusion, the serum PAR-1 concentration has no diagnostic, predictive and prognostic values in gastric cancer patients. PMID:27073639

  19. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  20. Nelfinavir and other protease inhibitors in cancer: mechanisms involved in anticancer activity

    PubMed Central

    Koltai, Tomas

    2015-01-01

    Objective: To review the mechanisms of anti-cancer activity of nelfinavir and other protease inhibitors (PIs) based on evidences reported in the published literature. Methods: We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. Conclusions: The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes. PMID:26097685

  1. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease.

    PubMed

    Pokorná, Jana; Heyda, Jan; Konvalinka, Jan

    2013-01-01

    Human immunodeficiency virus 1 protease (HIV-1 PR), an important therapeutic target for the treatment of AIDS, is one of the most well-studied enzymes. However, there is still much to learn about the regulation of the activity and inhibition of this key viral enzyme. Specifically, the mechanism of activation of HIV-1 PR from the viral polyprotein upon HIV maturation is still not understood. It has been suggested that external factors like pH or salt concentration might contribute to regulation of this crucial step in the viral life cycle. Recently, we analyzed the activity of HIV-1 PR in aqueous solutions of sodium and potassium chloride by experimental determination of enzyme kinetics and molecular dynamics simulations. We showed that the effect of salt concentration is cation-specific [Heyda et al., Phys. Chem. Chem. Phys., 2009 (11), 7599]. In this study, we extended this analysis for other alkali cations and found that the dependence of the initial velocity of peptide substrate hydrolysis on the nature of the cation follows the Hofmeister series, with the exception of caesium. Significantly higher catalytic efficiencies both in terms of substrate binding (K(M)) and turnover number (kcat) are observed in the presence of K+ compared to Na+ or Li+ at corresponding salt concentrations. Molecular dynamics simulations suggest that both lithium and sodium are attracted more strongly than potassium and caesium to the protein surface, mostly due to stronger interactions with carboxylate side chain groups of aspartates and glutamates. Furthermore, we observed a surprising decrease in the K(M) value for a specific substrate at very low salt concentration. The molecular mechanism of this phenomenon will be further analyzed. PMID:23795510

  2. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease.

    PubMed

    Kiat, Tan Siew; Pippen, Richard; Yusof, Rohana; Ibrahim, Halijah; Khalid, Norzulaani; Rahman, Noorsaadah Abd

    2006-06-15

    Boesenbergia rotunda (L.) cyclohexenyl chalcone derivatives, 4-hydroxypanduratin A and panduratin A, showed good competitive inhibitory activities towards dengue 2 virus NS3 protease with the Ki values of 21 and 25 microM, respectively, whilst those of pinostrobin and cardamonin were observed to be non-competitive. NMR and GCMS spectroscopic data formed the basis of assignment of structures of the six compounds isolated. PMID:16621533

  3. A unique loop extension in the serine protease domain of haptoglobin is essential for CD163 recognition of the haptoglobin-hemoglobin complex.

    PubMed

    Nielsen, Marianne Jensby; Petersen, Steen Vang; Jacobsen, Christian; Thirup, Søren; Enghild, Jan Johannes; Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2007-01-12

    Haptoglobin and haptoglobin-related protein are homologous hemoglobin-binding proteins consisting of a complement control repeat (alpha-chain) and a serine protease domain (beta-chain). Haptoglobin-hemoglobin complex formation promotes high affinity binding of hemoglobin to the macrophage scavenger receptor CD163 leading to endocytosis and degradation of the haptoglobin-hemoglobin complex. In contrast, complex formation between haptoglobin-related protein and hemoglobin does not promote high affinity interaction with CD163. To define structural components of haptoglobin important for CD163 recognition, we exploited this functional difference to design and analyze recombinant haptoglobin/haptoglobin-related protein chimeras complexed to hemoglobin. These data revealed that only the beta-chain of haptoglobin is involved in receptor recognition. Substitution of 4 closely spaced amino acid residues of the haptoglobin beta-chain (valine 259, glutamate 261, lysine 262, and threonine 264) abrogated the high affinity receptor binding. The 4 residues are encompassed by a part of the primary structure not present in other serine protease domain proteins. Structural modeling based on the well characterized serine protease domain fold suggests that this sequence represents a loop extension unique for haptoglobin and haptoglobin-related protein. A synthetic peptide representing the haptoglobin loop sequence exhibited a pronounced inhibitory effect on receptor binding of haptoglobin-hemoglobin. PMID:17102136

  4. Labeling of active proteases in fresh-frozen tissues by topical application of quenched activity-based probes.

    PubMed

    Withana, Nimali P; Garland, Megan; Verdoes, Martijn; Ofori, Leslie O; Segal, Ehud; Bogyo, Matthew

    2016-01-01

    Active enzymes, such as proteases, often serve as valuable biomarkers for various disease pathologies. Therefore, methods to detect specific enzyme activities in biological samples can provide information to guide disease detection and diagnosis and to increase our understanding of the biological roles of specific enzyme targets. In this protocol, we outline methods for the topical application of fluorescently quenched activity-based probes (qABPs) to fresh-frozen tissue samples. This technique enables rapid imaging of enzyme activity at cellular resolution, and it can be combined with antibody labeling for immunodiagnosis. In this method, fresh-frozen tissue sections are fixed, incubated with the probe and imaged using fluorescence microscopy. This provides an advance over classical immunohistochemistry (IHC) in that it is rapid (4-8 h) and inexpensive, and it provides information on enzyme activity. Furthermore, it can be used with any of the growing number of fluorescent ABPs to provide data for more effective disease monitoring and diagnosis. PMID:26716706

  5. Effects of catechin polyphenols and preparations from the plant-parasitic nematode Heterodera glycines on protease activity and behavior in three nematode species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease activities in preparations from the plant-parasitic nematodes Heterodera glycines and Meloidogyne incognita and the free-living nematode Panagrellus redivivus were inhibited by exposure to a series of 8 catechin polyphenol analogs, (+)-catechin, (-)- epicatechin (EC), (-)-gallocatechin (GC)...

  6. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency.

    PubMed

    Fernandez Falcon, Maria F; Echague, Charlene G; Hair, Pamela S; Nyalwidhe, Julius O; Cunnion, Kenji M

    2011-10-01

    Staphylococcus aureus is a major pathogen for immunologically intact humans and its pathogenesis is a model system for evasion of host defences. Antibodies and complement are essential elements of the humoral immune system for prevention and control of S. aureus infections. The specific hypothesis for the proposed research is that S. aureus modifies humoral host defences by cleaving IgG that has bound to the bacterial surface, thereby inhibiting opsonophagocytosis. S. aureus was coated with pooled, purified human IgG and assayed for the shedding of cleaved IgG fragments using ELISA and Western blot analysis. Surface-bound IgG was shed efficiently from S. aureus in the absence of host blood proteins. Broad-spectrum protease inhibitors prevented cleavage of IgG from the S. aureus surface, suggesting that staphylococcal proteases are responsible for IgG cleavage. Serine protease inhibitors and cysteine protease inhibitors decreased the cleavage of surface-bound IgG; however, a metalloprotease inhibitor had no effect. Using protease inhibitors to prevent the cleavage of surface-bound IgG increased the binding of complement C3 fragments on the surface of S. aureus, increased the association with human neutrophils and increased phagocytosis by human neutrophils. PMID:21636671

  7. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  8. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  9. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  10. Unique Residues Involved in Activation of the Multitasking Protease/Chaperone HtrA from Chlamydia trachomatis

    PubMed Central

    Huston, Wilhelmina M.; Tyndall, Joel D. A.; Lott, William B.; Stansfield, Scott H.; Timms, Peter

    2011-01-01

    DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly. PMID:21931748

  11. Unique residues involved in activation of the multitasking protease/chaperone HtrA from Chlamydia trachomatis.

    PubMed

    Huston, Wilhelmina M; Tyndall, Joel D A; Lott, William B; Stansfield, Scott H; Timms, Peter

    2011-01-01

    DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly. PMID:21931748

  12. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Muchumarri, Ramamohan R.; Reddy, Raju C.

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs’ electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease. PMID:27119365

  13. CONTRIBUTION OF PROTEASE-ACTIVATED RECEPTOR 1 IN STATUS EPILEPTICUS-INDUCED EPILEPTOGENESIS

    PubMed Central

    Isaev, D.; Lushnikova, I.; Lunko, O.; Zapukhliak, O.; Maximyuk, O.; Romanov, A.; Skibo, G.G.; Tian, C.; Holmes, G.L.; Isaeva, E.

    2015-01-01

    Clinical observations and studies on different animal models of acquired epilepsy consistently demonstrate that blood-brain barrier (BBB) leakage can be an important risk factor for developing recurrent seizures. However, the involved signaling pathways remain largely unclear. Given the important role of thrombin and its major receptor in the brain, protease-activated receptor 1 (PAR1), in the pathophysiology of neurological injury, we hypothesized that PAR1 may contribute to status epilepticus (SE)-induced epileptogenesis and that its inhibition shortly after SE will have neuroprotective and antiepileptogenic effects. Adult rats subjected to lithium-pilocarpine SE were administrated SCH79797 (a PAR1 selective antagonist) after SE termination. Thrombin and PAR1 levels and neuronal cell survival were evaluated 48 hr following SE. The effect of PAR1 inhibition on animal survival, interictal spikes (IIS) and electrographic seizures during the first two weeks after SE and behavioral seizures during the chronic period were evaluated. SE resulted in a high mortality rate and incidence of IIS and seizures in the surviving animals. There was a marked increase in thrombin, decrease in PAR1 immunoreactivity and hippocampal cell loss in the SE-treated rats. Inhibition of PAR1 following SE resulted in a decrease in mortality and morbidity, increase in neuronal cell survival in the hippocampus and suppression of IIS, electrographic and behavioral seizures following SE. These data suggest that the PAR1 signaling pathway contributes to epileptogenesis following SE. Because breakdown of the BBB occurs frequently in brain injuries, PAR1 inhibition may have beneficial effects in a variety of acquired injuries leading to epilepsy. PMID:25843668

  14. A novel carboxyl-terminal protease derived from Paenibacillus lautus CHN26 exhibiting high activities at multiple sites of substrates

    PubMed Central

    2013-01-01

    Background Carboxyl-terminal protease (CtpA) plays essential functions in posttranslational protein processing in prokaryotic and eukaryotic cells. To date, only a few bacterial ctpA genes have been characterized. Here we cloned and characterized a novel CtpA. The encoding gene, ctpAp (ctpA of Paenibacillus lautus), was derived from P. lautus CHN26, a Gram-positive bacterium isolated by functional screening. Recombinant protein was obtained from protein over-expression in Escherichia coli and the biochemical properties of the enzyme were investigated. Results Screening of environmental sediment samples with a skim milk-containing medium led to the isolation of a P. lautus CHN26 strain that exhibited a high proteolytic activity. A gene encoding a carboxyl-terminal protease (ctpAp) was cloned from the isolate and characterized. The deduced mature protein contains 466 aa with a calculated molecular mass of 51.94 kDa, displaying 29-38% amino acid sequence identity to characterized bacterial CtpA enzymes. CtpAp contains an unusual catalytic dyad (Ser309-Lys334) and a PDZ substrate-binding motif, characteristic for carboxyl-terminal proteases. CtpAp was expressed as a recombinant protein and characterized. The purified enzyme showed an endopeptidase activity, which effectively cleaved α S1- and β- casein substrates at carboxyl-terminus as well as at multiple internal sites. Furthermore, CtpAp exhibited a high activity at room temperature and strong tolerance to conventional protease inhibitors, demonstrating that CtpAp is a novel endopeptidase. Conclusions Our work on CtpA represents the first investigation of a member of Family II CtpA enzymes. The gene was derived from a newly isolated P. lautus CHN26 strain exhibiting a high protease activity in the skim milk assay. We have demonstrated that CtpAp is a novel endopeptidase with distinct cleavage specificities, showing a strong potential in biotechnology and industry applications. PMID:24161150

  15. Clustering of OB-fold domains of the partner protease complexed with trimeric stomatin from Thermococcales.

    PubMed

    Yokoyama, Hideshi; Matsui, Eriko; Hiramoto, Kana; Forterre, Patrick; Matsui, Ikuo

    2013-07-01

    The C-terminal soluble domain of stomatin operon partner protein (STOPP) of the hyperthermophilic archaeon Pyrococcus horikoshii has an oligonucleotide binding-fold (OB-fold). STOPP lacks the conserved surface residues necessary for binding to DNA/RNA. A tryptophan (W) residue is conserved instead at the molecular surface. Solvent-accessible W residues are often found at interfaces of protein-protein complexes, which suggested the possibility of self-assembling of STOPP. Protein-protein interactions among the C-terminal soluble domains of STOPP PH1510 (1510-C) were then analyzed by chemical linking and blue native polyacrylamide gel electrophoresis (BN-PAGE) methods. These results suggest that the soluble domains of STOPP could assemble into homo-oligomers. Since hexameric subcomplex I from archaeal proteasome consists of coiled-coil segments and OB-fold domains, molecular modeling of 1510-C was performed using hexameric subcomplex I as a template. Although 1510-C is a comparatively small polypeptide consisting of approximately 60 residues, numerous salt bridges and hydrophobic interactions were observed in the predicted hexamer of 1510-C, suggesting the stability of the homo-oligomeric structure. This oligomeric property of STOPP may be favorable for triplicate proteolysis of the trimer of prokaryotic stomatin. PMID:23587725

  16. A Novel Aspartic Protease with HIV-1 Reverse Transcriptase Inhibitory Activity from Fresh Fruiting Bodies of the Wild Mushroom Xylaria hypoxylon

    PubMed Central

    Hu, Qing-Xiu; Zhang, Guo-Qing; Zhang, Rui-Ying; Hu, Dan-Dan; Wang, He-Xiang; Ng, Tzi Bun

    2012-01-01

    A novel aspartic protease with HIV-1 RT inhibitory activity was isolated and characterized from fruiting bodies of the wild mushroom Xylaria hypoxylon. The purification protocol comprised distilled water homogenization and extraction step, three ion exchange chromatographic steps (on DEAE-cellulose, Q-Sepharose, and CM-cellulose in succession), and final purification was by FPLC on Superdex 75. The protease was adsorbed on all the three ion exchangers. It was a monomeric protein with a molecular mass of 43 kDa as estimated by SDS-PAGE and FPLC. Its N-terminal amino acid sequence was HYTELLSQVV, which exhibited no sequence homology to other proteases reported. The activity of the protease was adversely affected by Pepstatin A, indicating that it is an aspartic protease. The protease activity was maximal or nearly so in the pH range 6–8 and in the temperature range 35–60°C. The purified enzyme exhibited HIV-1 RT inhibitory activity with an IC50 value of 8.3 μM, but was devoid of antifungal, ribonuclease, and hemagglutinating activities. PMID:22675256

  17. Purification, bacteriolytic activity, and specificity of beta-lytic protease from Lysobacter sp. IB-9374.

    PubMed

    Ahmed, Kashfia; Chohnan, Shigeru; Ohashi, Hiroyuki; Hirata, Takeshi; Masaki, Takeharu; Sakiyama, Fumio

    2003-01-01

    Lysobacter sp. IB-9374, which was isolated from soil as a high lysyl endopeptidase-producing strain (Chohnanet al., FEMS Microbiol. Lett., 213, 13-20, 2002), was found to produce a beta-lytic protease capable of lysing gram-positive bacteria such as Staphylococcus aureus, Microccocuseus, and Bacillus subtilis. The Lysobacter strain secreted the beta-lytic protease into the culture medium at a 2.4-fold higher level than Achromobacter lyticus. The enzyme was highly purified through a series of six steps with a high yield. The enzyme was strongly inhibited by tetraethylene-pentamine and 1,10-phenanthroline. The purified enzyme lysed more efficiently almost all the gram-positive bacteria tested than lysozyme, lysostaphin, and mutanolysin. The enzyme was very similar to Achromobacter beta-lytic protease containing one zinc atom in terms of amino acid composition and N-terminal sequence. The nucleotide sequence revealed that the mature enzyme was composed of 179 amino acid residues with additional 198 amino acids at the amino-terminal end of the enzyme. The deduced amino acid sequence of the mature enzyme coincided with that of the Achromobacter enzyme, although the prepro-region showed a 41% sequence identity with the counterpart. These results indicate that Lysobacter sp. is a useful strain for an efficient large-scale preparation of beta-lytic protease capable of lysing bacteria. PMID:16233362

  18. Insights into affinity and specificity in the complexes of α-lytic protease and its inhibitor proteins: binding free energy from molecular dynamics simulation†

    PubMed Central

    Cieplak, Piotr

    2014-01-01

    We report the binding free energy calculation and its decomposition for the complexes of α-lytic protease and its protein inhibitors using molecular dynamics simulation. Standard mechanism serine protease inhibitors eglin C and OMTKY3 are known to have strong binding affinity for many serine proteases. Their binding loops have significant similarities, including a common P1 Leu as the main anchor in the binding interface. However, recent experiments demonstrate that the two inhibitors have vastly different affinity towards α-lytic protease (ALP), a bacterial serine protease. OMTKY3 inhibits the enzyme much more weakly (by ~106 times) than eglin C. Moreover, a variant of OMTKY3 with five mutations, OMTKY3M, has been shown to inhibit 104 times more strongly than the wild-type inhibitor. The underlying mechanisms for the unusually large difference in binding affinities and the effect of mutation are not well understood. Here we use molecular dynamics simulation with molecular mechanics–Poisson Boltzmann/surface area method (MM-PB/SA) to investigate quantitatively the binding specificity. The calculated absolute binding free energies correctly differentiate the thermodynamic stabilities of these protein complexes, but the magnitudes of the binding affinities are systematically overestimated. Analysis of the binding free energy components provides insights into the molecular mechanism of binding specificity. The large ΔΔGbind between eglin C and wild type OMTKY3 towards ALP is mainly attributable to the stronger nonpolar interactions in the ALP-eglin C complex, arising from a higher degree of structural complementarity. Here the electrostatic interaction contributes to a lesser extent. The enhanced inhibition in the penta-mutant OMTKY3M over its wild type is entirely due to an overall improvement in the solvent-mediated electrostatic interactions in the ALP-OMTKY3M complex. The results suggest that for these protein-complexes and similar enzyme-inhibitor systems

  19. Insights into affinity and specificity in the complexes of alpha-lytic protease and its inhibitor proteins: binding free energy from molecular dynamics simulation.

    PubMed

    Deng, Nan-Jie; Cieplak, Piotr

    2009-07-01

    We report the binding free energy calculation and its decomposition for the complexes of alpha-lytic protease and its protein inhibitors using molecular dynamics simulation. Standard mechanism serine protease inhibitors eglin C and OMTKY3 are known to have strong binding affinity for many serine proteases. Their binding loops have significant similarities, including a common P1 Leu as the main anchor in the binding interface. However, recent experiments demonstrate that the two inhibitors have vastly different affinity towards alpha-lytic protease (ALP), a bacterial serine protease. OMTKY3 inhibits the enzyme much more weakly (by approximately 10(6) times) than eglin C. Moreover, a variant of OMTKY3 with five mutations, OMTKY3M, has been shown to inhibit 10(4) times more strongly than the wild-type inhibitor. The underlying mechanisms for the unusually large difference in binding affinities and the effect of mutation are not well understood. Here we use molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to investigate quantitatively the binding specificity. The calculated absolute binding free energies correctly differentiate the thermodynamic stabilities of these protein complexes, but the magnitudes of the binding affinities are systematically overestimated. Analysis of the binding free energy components provides insights into the molecular mechanism of binding specificity. The large DeltaDeltaG(bind) between eglin C and wild type OMTKY3 towards ALP is mainly attributable to the stronger nonpolar interactions in the ALP-eglin C complex, arising from a higher degree of structural complementarity. Here the electrostatic interaction contributes to a lesser extent. The enhanced inhibition in the penta-mutant OMTKY3M over its wild type is entirely due to an overall improvement in the solvent-mediated electrostatic interactions in the ALP-OMTKY3M complex. The results suggest that for these protein-complexes and

  20. X-ray structure at 1.75 resolution of a norovirus 3C protease linked to an active site-directed peptide inhibitor

    SciTech Connect

    Cooper, Jon; Coates, Leighton; Hussey, Robert

    2010-01-01

    Noroviruses are recognized universally as the most important cause of human epidemic non-bacterial gastroenteritis. Viral replication requires a 3C cysteine protease that cleaves a 200kDa viral polyprotein into its constituent functional proteins. Here we describe the X-ray structure of the Southampton norovirus 3C protease (SV3CP) bound to an active site-directed peptide inhibitor (MAPI) which has been refined at 1.75 resolution, following initial MAD phasing with a selenomethionine derivative. The inhibitor, acetyl-Glu-Phe-Gln-Leu-Gln-X, based on a 3C protease cleavage recognition sequences in the 200kDa polyprotein substrate, reacts covalently through its propenylethylester group (X) with the active site nucleophile, Cys 139. The 3C protease-inhibitor structure permits, for the first time, the identification of substrate recognition and binding groups and provides important new information for the development of antiviral prophylactics.

  1. Effect of the Active Site D25N Mutation on the Structure, Stability and Ligand Binding of the Mature HIV-1 Protease

    SciTech Connect

    Sayer, Jane M.; Liu, Fengling; Ishima, Rieko; Weber, Irene T.; Louis, John M.

    2008-09-03

    All aspartic proteases, including retroviral proteases, share the triplet DTG critical for the active site geometry and catalytic function. These residues interact closely in the active, dimeric structure of HIV-1 protease (PR). We have systematically assessed the effect of the D25N mutation on the structure and stability of the mature PR monomer and dimer. The D25N mutation (PR{sub D25N}) increases the equilibrium dimer dissociation constant by a factor >100-fold (1.3 {+-} 0.09 {mu}m) relative to PR. In the absence of inhibitor, NMR studies reveal clear structural differences between PR and PR{sub D25N} in the relatively mobile P1 loop (residues 79-83) and flap regions, and differential scanning calorimetric analyses show that the mutation lowers the stabilities of both the monomer and dimer folds by 5 and 7.3 C, respectively. Only minimal differences are observed in high resolution crystal structures of PR{sub D25N} complexed to darunavir (DRV), a potent clinical inhibitor, or a non-hydrolyzable substrate analogue, Ac-Thr-Ile-Nle-r-Nle-Gln-Arg-NH{sub 2} (RPB), as compared with PR{center_dot}DRV and PR{center_dot}RPB complexes. Although complexation with RPB stabilizes both dimers, the effect on their T{sub m} is smaller for PR{sub D25N} (6.2 C) than for PR (8.7 C). The T{sub m} of PR{sub D25N}{center_dot}DRV increases by only 3 C relative to free PR{sub D25N}, as compared with a 22 C increase for PR{center_dot}DRV, and the mutation increases the ligand dissociation constant of PR{sub D25N}{center_dot}DRV by a factor of {approx}10{sup 6} relative to PR{center_dot}DRV. These results suggest that interactions mediated by the catalytic Asp residues make a major contribution to the tight binding of DRV to PR.

  2. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: Discovery and SAR of ML354.

    PubMed

    Wen, Wandong; Young, Summer E; Duvernay, Matthew T; Schulte, Michael L; Nance, Kellie D; Melancon, Bruce J; Engers, Julie; Locuson, Charles W; Wood, Michael R; Daniels, J Scott; Wu, Wenjun; Lindsley, Craig W; Hamm, Heidi E; Stauffer, Shaun R

    2014-10-01

    Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbβ3 activation assay this probe molecule antagonist was found to have an IC50 of 140nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50=10μM). PMID:25176330

  3. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  4. Structure of a Switchable Subtilisin Complexed with a Substrate and with the Activator Azide

    SciTech Connect

    Gallagher, Travis; Ruan, Biao; London, Mariya; Bryan, Molly A.; Bryan, Philip N.; NIST

    2010-01-12

    An engineered variant of the protease subtilisin from Bacillus amyloliquefaciens, in which the D32A mutation renders the enzyme's activity dependent on the presence of certain small anions such as fluoride or azide, has been produced. This modified enzyme has applications as an azide or fluoride-triggered expression-purification tool. We report activity measurements showing that the enzyme is activated more than 3000-fold by azide and describe the 1.8 {angstrom} resolution structure of an inactive form (by replacing the catalytic nucleophile Ser 221 with alanine) of the protease, in complex with azide and with a substrate that spans the active site. Both enzyme and substrate have been engineered to increase their stability and the affinity of their interaction. The substrate is based on a stabilized subtilisin prodomain, extended across the active site by the addition of four residues at its C-terminus. In the crystal structure, the substrate is well-ordered across the active site, and the azide anion is observed bound adjacent to Ala 32. The structures of the substrate complex in three different crystals (anion-free, fluoride-soaked, and azide-soaked) are compared. These structures provide extensive information for understanding subtilisin's substrate binding and catalytic mechanism, and for the development of biotechnology tools based on anion-activated proteolysis. The mechanism of anion-dependent proteolysis appears to be a slight modification of the accepted charge-relay mechanism for serine proteases.

  5. A Bacteriophage Lambda-Based Genetic Screen for Characterization of the Activity and Phenotype of the Human Immunodeficiency Virus Type 1 Protease

    PubMed Central

    Martínez, Miguel-Angel; Cabana, Marta; Parera, Mariona; Gutierrez, Arantxa; Esté, José A.; Clotet, Bonaventura

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) resistance to antiretroviral drugs is the main cause of patient treatment failure. Despite the problems associated with interpretation of HIV-1 resistance testing, resistance monitoring should help in the rational design of initial or rescue antiretroviral therapies. It has previously been shown that the activity of the HIV-1 protease can be monitored by using a bacteriophage lambda-based genetic assay. This genetic screening system is based on the bacteriophage lambda regulatory circuit in which the viral repressor cI is specifically cleaved to initiate the lysogenic to lytic switch. We have adapted this simple lambda-based genetic assay for the analysis of the activities and phenotypes of different HIV-1 proteases. Lambda phages that encode HIV-1 proteases either from laboratory strains (strain HXB2) or from clinical samples are inhibited in a dose-dependent manner by the HIV-1 protease inhibitors indinavir, ritonavir, saquinavir, and nelfinavir. Distinct susceptibilities to different drugs were also detected among phages that encode HIV-1 proteases carrying different resistance mutations, further demonstrating the specificity of this assay. Differences in proteolytic processing activity can also be directly monitored with this genetic screen system since two phage populations compete in culture with each other until one phage outgrows the other. In summary, we present here a simple, safe, and rapid genetic screening system that may be used to predict the activities and phenotypes of HIV-1 proteases in the course of viral infection and antiretroviral therapy. This assay responds appropriately to well-known HIV-1 protease inhibitors and can be used to search for new protease inhibitors. PMID:10770741

  6. Evaluation of cytotoxic and anti-tumor activity of partially purified serine protease isolate from the Indian earthworm Pheretima posthuma

    PubMed Central

    Verma, Mahendra Kumar; Xavier, Francies; Verma, Yogendra Kumar; Sobha, Kota

    2013-01-01

    Objective To isolate, partially purify and evaluate the cytotoxic and antitumor activity of a serine protease from the chosen Indian earthworm Pheretima posthuma. Methods Whole animal extract was prepared and purified its protein constituents by size and charge based chromatographic separation techniques using Sephadex G-50 and DEAE-Cellulose resin respectively. Average molecular weight of the protein isolate was determined and analyzed for its cytotoxic property against Vero cells in different dilutions (1: 20 and 1: 40) and anti-tumor activity by MTT assay (a colorimetric assay) using breast cancer cell line MCF-7, with tamoxifen as standard. Results One of the protein constituents after purification was characterized as serine protease by Caseinolytic plate diffusion assay. Average molecular weight of this purified isolate was determined, by SDS-PAGE analysis with standard protein ladder, as of 15 kDa. The performed tests suggested that the 15kDa fraction has potent cytotoxic activity and satisfactory antitumor activity as well in vitro. Conclusions Exact molecular mechanism of the cytotoxic and antitumor activities is yet to be explored and currently we are working on ultra-purification and biophysical characterization of this fraction. Further investigation into the mechanism(s) of cytotoxic and antitumor activities at molecular level would be useful in treatment of various classes of cancer and viral infections in future.

  7. Control of Natural Transformation in Salivarius Streptococci through Specific Degradation of σX by the MecA-ClpCP Protease Complex

    PubMed Central

    Wahl, Astrid; Servais, Florence; Drucbert, Anne-Sophie; Foulon, Catherine

    2014-01-01

    Competence for natural DNA transformation is a tightly controlled developmental process in streptococci. In mutans and salivarius species, the abundance of the central competence regulator σX is regulated at two levels: transcriptional, by the ComRS signaling system via the σX/ComX/SigX-inducing peptide (XIP), and posttranscriptional, by the adaptor protein MecA and its associated Clp ATPase, ClpC. In this study, we further investigated the mechanism and function of the MecA-ClpC control system in the salivarius species Streptococcus thermophilus. Using in vitro approaches, we showed that MecA specifically interacts with both σX and ClpC, suggesting the formation of a ternary σX-MecA-ClpC complex. Moreover, we demonstrated that MecA ultimately targets σX for its degradation by the ClpCP protease in an ATP-dependent manner. We also identify a short sequence (18 amino acids) in the N-terminal domain of σX as essential for the interaction with MecA and subsequent σX degradation. Finally, increased transformability of a MecA-deficient strain in the presence of subinducing XIP concentrations suggests that the MecA-ClpCP proteolytic complex acts as an additional locking device to prevent competence under inappropriate conditions. A model of the interplay between ComRS and MecA-ClpCP in the control of σX activity is proposed. PMID:24837292

  8. Control of natural transformation in salivarius Streptococci through specific degradation of σX by the MecA-ClpCP protease complex.

    PubMed

    Wahl, Astrid; Servais, Florence; Drucbert, Anne-Sophie; Foulon, Catherine; Fontaine, Laetitia; Hols, Pascal

    2014-08-01

    Competence for natural DNA transformation is a tightly controlled developmental process in streptococci. In mutans and salivarius species, the abundance of the central competence regulator σ(X) is regulated at two levels: transcriptional, by the ComRS signaling system via the σ(X)/ComX/SigX-inducing peptide (XIP), and posttranscriptional, by the adaptor protein MecA and its associated Clp ATPase, ClpC. In this study, we further investigated the mechanism and function of the MecA-ClpC control system in the salivarius species Streptococcus thermophilus. Using in vitro approaches, we showed that MecA specifically interacts with both σ(X) and ClpC, suggesting the formation of a ternary σ(X)-MecA-ClpC complex. Moreover, we demonstrated that MecA ultimately targets σ(X) for its degradation by the ClpCP protease in an ATP-dependent manner. We also identify a short sequence (18 amino acids) in the N-terminal domain of σ(X) as essential for the interaction with MecA and subsequent σ(X) degradation. Finally, increased transformability of a MecA-deficient strain in the presence of subinducing XIP concentrations suggests that the MecA-ClpCP proteolytic complex acts as an additional locking device to prevent competence under inappropriate conditions. A model of the interplay between ComRS and MecA-ClpCP in the control of σ(X) activity is proposed. PMID:24837292

  9. Protease-activated receptors modulate excitability of murine colonic smooth muscles by differential effects on interstitial cells

    PubMed Central

    Sung, Tae Sik; Kim, Heung Up; Kim, Jeong Hwan; Lu, Hongli; Sanders, Kenton M; Koh, Sang Don

    2015-01-01

    Abstract Protease-activated receptors (PARs) are G protein-coupled receptors activated by proteolytic cleavage at their amino termini by serine proteases. PAR activation contributes to the inflammatory response in the gastrointestinal (GI) tract and alters GI motility, but little is known about the specific cells within the tunica muscularis that express PARs and the mechanisms leading to contractile responses. Using real time PCR, we found PARs to be expressed in smooth muscle cells (SMCs), interstitial cells of Cajal (ICC) and platelet-derived growth factor receptor α positive (PDGFRα+) cells. The latter cell-type showed dominant expression of F2r (encodes PAR1) and F2rl1 (encodes PAR2). Contractile and intracellular electrical activities were measured to characterize the integrated responses to PAR activation in whole muscles. Cells were isolated and ICC and PDGFRα+ cells were identified by constitutive expression of fluorescent reporters. Thrombin (PAR1 agonist) and trypsin (PAR2 agonist) caused biphasic responses in colonic muscles: transient hyperpolarization and relaxation followed by repolarization and excitation. The inhibitory phase was blocked by apamin, revealing a distinct excitatory component. Patch clamp studies showed that the inhibitory response was mediated by activation of small conductance calcium-activated K+ channels in PDGFRα+ cells, and the excitatory response was mediated by activation of a Cl− conductance in ICC. SMCs contributed little to PAR responses in colonic muscles. In summary, PARs regulate the excitability of colonic muscles; different conductances are activated in each cell type of the SMC–ICC–PDGFRα+ cell (SIP) syncytium. Motor responses to PAR agonists are integrated responses of the SIP syncytium. Key points Activation of protease-activated receptors (PAR) regulates gastrointestinal (GI) motility but little is known about the cells and mechanisms in GI muscles responsible for PAR responses. Using mouse cells, we

  10. Increased Expression of Cathelicidin by Direct Activation of Protease-Activated Receptor 2: Possible Implications on the Pathogenesis of Rosacea

    PubMed Central

    Kim, Ji Young; Kim, Yoon Jee; Lim, Beom Jin; Sohn, Hyo Jung; Shin, Dongyun

    2014-01-01

    Purpose Recent findings of increased cathelicidin protein and its proteolytic fragments in rosacea suggest a pathogenic role for cathelicidin in this disease. The relationship between cathelicidin and protease-activated receptor 2 (PAR-2) is therefore of interest, as PAR-2, expressed principally in keratinocytes, regulates pro-inflammatory cytokine expression in the skin. The purpose of this study was to determine the relationship between expression of PAR-2 and cathelicidin in rosacea and to test the effect of direct PAR-2 activation on cathelicidin expression in keratinocytes. Materials and Methods Samples from 40 patients with clinicopathologic diagnosis of rosacea and facial skin tissue samples from 20 patients with no specific findings or milium without inflammation were retrieved. Intensities of immunohistochemical staining for PAR-2 and cathelicidin were compared between normal and rosacea-affected skin tissues. Additionally, correlations between PAR-2 and cathelicidin staining intensities within rosacea patients were analyzed. In cultured keratinocytes, changes in PAR-2, cathelicidin, and vascular endothelial growth factor (VEGF) mRNA and protein were analyzed after treatment with PAR-2 activating peptide (AP). Results Cathelicidin expression was significantly higher in rosacea skin tissues than in normal tissues (p<0.001), while PAR-2 expression was not significantly higher in rosacea tissues than in normal skin tissues. A positive correlation between PAR-2 and cathelicidin within rosacea samples was observed (R=0.330, p=0.037). After treatment of PAR-2 AP, both mRNA and protein levels for PAR-2, cathelicidin, and VEGF significantly increased in cultured keratinocytes, compared with PAR-2 control peptide treatment. Conclusion PAR-2 may participate in the pathogenesis of rosacea through activation of cathelicidin LL-37, a mediator of innate immune responses in the skin. PMID:25323904

  11. α-enolase Causes Pro-Inflammatory Activation of Pulmonary Microvascular Endothelial Cells and Primes Neutrophils through Plasmin Activation of Protease-Activated Receptor-2

    PubMed Central

    Bock, Ashley; Tucker, Nicole; Kelher, Marguerite R.; Khan, Samina Y.; Gonzalez, Eduardo; Wohlauer, Max; Hansen, Kirk; Dzieciatkowska, Monika; Sauaia, Angels; Banerjee, Anirban; Moore, Ernest E.; Silliman, Christopher C.

    2015-01-01

    Pro-inflammatory activation of vascular endothelium leading to increased surface expression of adhesion molecules and neutrophil (PMN) sequestration and subsequent activation is paramount in the development of acute lung (ALI) and organ injury in injured patients. We hypothesize that α-enolase, which accumulates in injured patients primes PMNs and causes pro-inflammatory activation of endothelial cells leading to PMN-mediated cytotoxicity. Methods Proteomic analyses of field plasma samples from injured vs. healthy patients was used for protein identification. Human pulmonary microvascular endothelial cells (HMVECs) were incubated with α-enolase or thrombin, and ICAM-1 surface expression was measured by flow cytometry. A two-event in vitro model of PMN cytotoxicity HMVECs activated with α-enolase, thrombin, or buffer was used as targets for lysophosphatidylcholine-primed or buffer-treated PMNs. The PMN priming activity of α-enolase was completed, and lysates from both PMNs and HMVECs were immunoblotted for protease activated receptor-1 (PAR-1) and PAR-2 and co-precipitation of α-enolase with PAR-2 and plasminogen/plasmin. Results α-enolase increased 10.8-fold in injured patients (p<0.05). Thrombin and α-enolase significantly increased ICAM-1 surface expression on HMVECs, which was inhibited by anti-proteases, induced PMN adherence, and served as the first event in the two-event model of PMN cytotoxicity. α-enolase co-precipitated with PAR-2 and plasminogen/plasmin on HMVECs and PMNs and induced PMN priming, which was inhibited by tranexamic acid, and enzymatic activity was not required. We conclude that α-enolase increases post-injury and may activate pulmonary endothelial cells and prime PMNs through plasmin activity and PAR-2 activation. Such pro-inflammatory endothelial activation may predispose to PMN-mediated organ injury. PMID:25944790

  12. Identification of active-site residues in protease 3C of hepatitis A virus by site-directed mutagenesis.

    PubMed Central

    Gosert, R; Dollenmaier, G; Weitz, M

    1997-01-01

    Picornavirus 3C proteases (3Cpro) are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Comparisons of 3Cpro of hepatitis A virus (HAV) to those of other picornaviruses have resulted in prediction of active-site residues: histidine at position 44 (H44), aspartic acid (D98), and cysteine (C172). To test whether these residues are key members of a putative catalytic triad, oligonucleotide-directed mutagenesis was targeted to 3Cpro in the context of natural polypeptide precursor P3. Autocatalytic processing of the polyprotein containing wild-type or variant 3Cpro was tested by in vivo expression of vaccinia virus-HAV chimeras in an animal cell-T7 hybrid system and by in vitro translation of corresponding RNAs. Comparison with proteins present in HAV-infected cells showed that both expression systems mimicked authentic polyprotein processing. Individual substitutions of H44 by tyrosine and of C172 by glycine or serine resulted in complete loss of the virus-specific proteolytic cascade. In contrast, a P3 polyprotein in which D98 was substituted by asparagine underwent only slightly delayed processing, while an additional substitution of valine (V47) by glycine within putative protein 3A caused a more pronounced loss of processing. Therefore, apparently H44 and C172 are active-site constituents whereas D98 is not. The results, furthermore, suggest that substitution of amino acid residues distant from polyprotein cleavage sites may reduce proteolytic activity, presumably by altering substrate conformation. PMID:9060667

  13. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  14. Characterization of a salt-activated protease with temperature-dependent secretion in Stenotrophomonas maltophilia FF11 isolated from frozen Antarctic krill.

    PubMed

    Wang, Qingling; Ji, Fangling; Wang, Jingyun; Jiang, Bo; Li, Lu; An, Lijia; Li, Yachen; Bao, Yongming

    2016-06-01

    Seafood is sometimes wasted due to the growth of psychrotolerant microbes which secrete proteases and break down proteins. Stenotrophomonas maltophilia FF11, isolated from frozen Antarctic krill, grows at a wide range of temperatures and secretes more proteases at low temperatures. According to zymogram analysis, two kinds of proteases were produced from this strain. A major protease was produced largely at 15 °C, but not at 37 °C. The temperature-dependent secreted protease was purified to homogeneity. Its molecular mass was determined at 37.4 kDa and its amino acid sequence was also obtained. This protease is a member of the subtilase group according to the NCBI blast analysis. The enzyme was highly stable at high salt concentration (4 M). Interestingly, its activity increased about 1.6-fold under high salt condition. The enzyme remains active and stable in different organic solvents (50 %, v/v) such as dimethylsulfoxide, dimethyl formamide, dioxane and acetone. These properties may provide potential applications in quality control for sea foods, in protein degradation at high salt concentration, in biocatalysis and biotransformation within non-aqueous media, such as detergent and transesterification. PMID:27001262

  15. Conditional Inducible Triple-Transgenic Mouse Model for Rapid Real-Time Detection of HCV NS3/4A Protease Activity

    PubMed Central

    Yang, Jing; Zhao, Haiwei; Qiao, Qinghua; Han, Peijun; Xu, Zhikai; Yin, Wen

    2016-01-01

    Hepatitis C virus (HCV) frequently establishes persistent infections that can develop into severe liver disease. The HCV NS3/4A serine protease is not only essential for viral replication but also cleaves multiple cellular targets that block downstream interferon activation. Therefore, NS3/4A is an ideal target for the development of anti-HCV drugs and inhibitors. In the current study, we generated a novel NS3/4A/Lap/LC-1 triple-transgenic mouse model that can be used to evaluate and screen NS3/4A protease inhibitors. The NS3/4A protease could be conditionally inducibly expressed in the livers of the triple-transgenic mice using a dual Tet-On and Cre/loxP system. In this system, doxycycline (Dox) induction resulted in the secretion of Gaussia luciferase (Gluc) into the blood, and this secretion was dependent on NS3/4A protease-mediated cleavage at the 4B5A junction. Accordingly, NS3/4A protease activity could be quickly assessed in real time simply by monitoring Gluc activity in plasma. The results from such monitoring showed a 70-fold increase in Gluc activity levels in plasma samples collected from the triple-transgenic mice after Dox induction. Additionally, this enhanced plasma Gluc activity was well correlated with the induction of NS3/4A protease expression in the liver. Following oral administration of the commercial NS3/4A-specific inhibitors telaprevir and boceprevir, plasma Gluc activity was reduced by 50% and 65%, respectively. Overall, our novel transgenic mouse model offers a rapid real-time method to evaluate and screen potential NS3/4A protease inhibitors. PMID:26943641

  16. Conditional Inducible Triple-Transgenic Mouse Model for Rapid Real-Time Detection of HCV NS3/4A Protease Activity.

    PubMed

    Yao, Min; Lu, Xin; Lei, Yingfeng; Yang, Jing; Zhao, Haiwei; Qiao, Qinghua; Han, Peijun; Xu, Zhikai; Yin, Wen

    2016-01-01

    Hepatitis C virus (HCV) frequently establishes persistent infections that can develop into severe liver disease. The HCV NS3/4A serine protease is not only essential for viral replication but also cleaves multiple cellular targets that block downstream interferon activation. Therefore, NS3/4A is an ideal target for the development of anti-HCV drugs and inhibitors. In the current study, we generated a novel NS3/4A/Lap/LC-1 triple-transgenic mouse model that can be used to evaluate and screen NS3/4A protease inhibitors. The NS3/4A protease could be conditionally inducibly expressed in the livers of the triple-transgenic mice using a dual Tet-On and Cre/loxP system. In this system, doxycycline (Dox) induction resulted in the secretion of Gaussia luciferase (Gluc) into the blood, and this secretion was dependent on NS3/4A protease-mediated cleavage at the 4B5A junction. Accordingly, NS3/4A protease activity could be quickly assessed in real time simply by monitoring Gluc activity in plasma. The results from such monitoring showed a 70-fold increase in Gluc activity levels in plasma samples collected from the triple-transgenic mice after Dox induction. Additionally, this enhanced plasma Gluc activity was well correlated with the induction of NS3/4A protease expression in the liver. Following oral administration of the commercial NS3/4A-specific inhibitors telaprevir and boceprevir, plasma Gluc activity was reduced by 50% and 65%, respectively. Overall, our novel transgenic mouse model offers a rapid real-time method to evaluate and screen potential NS3/4A protease inhibitors. PMID:26943641

  17. Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery

    PubMed Central

    2015-01-01

    There is a need for new molecular-guided contrast agents to enhance surgical procedures such as tumor resection that require a high degree of precision. Cysteine cathepsins are highly up-regulated in a wide variety of cancers, both in tumor cells and in the tumor-supporting cells of the surrounding stroma. Therefore, tools that can be used to dynamically monitor their activity in vivo could be used as imaging contrast agents for intraoperative fluorescence image guided surgery (FGS). Although multiple classes of cathepsin-targeted substrate probes have been reported, most suffer from overall fast clearance from sites of protease activation, leading to reduced signal intensity and duration in vivo. Here we describe the design and synthesis of a series of near-infrared fluorogenic probes that exploit a latent cationic lysosomotropic effect (LLE) to promote cellular retention upon protease activation. These probes show tumor-specific retention, fast activation kinetics, and rapid systemic distribution. We demonstrate that they are suitable for detection of diverse cancer types including breast, colon and lung tumors. Most importantly, the agents are compatible with the existing, FDA approved, da Vinci surgical system for fluorescence guided tumor resection. Therefore, our data suggest that the probes reported here can be used with existing clinical instrumentation to detect tumors and potentially other types of inflammatory lesions to guide surgical decision making in real time. PMID:26039341

  18. Zingipain, A cysteine protease from Zingiber ottensii Valeton rhizomes with antiproliferative activities against fungi and human malignant cell lines.

    PubMed

    Karnchanatat, Aphichart; Tiengburanatam, Nathachai; Boonmee, Apaporn; Puthong, Songchan; Sangvanich, Polkit

    2011-01-01

    The objective of this study was to investigate the activity of a protein identified as cysteine protease, purified from Zingiber ottensii Valeton rhizomes, in terms of antiproliferation against fungi, bacteria, and human malignant cell lines. By means of buffer extraction followed by (NH(4))(2)SO(4) precipitation and ion-exchange chromatography, the obtained dominant protein (designated F50) was submitted to non-denaturing and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), where a single band and three bands were revealed from eletrophoretic patterns, respectively. It could be concluded at this point that the F50 was potentially a heterotrimer or heterodimer composed of either two small (∼13.8 and ∼15.2 kD) subunits or these two together with a larger (∼32.5 kD) one. In-gel digestion was carried out for the most intense band from reducing SDS-PAGE, and to the resulting material was applied liquid chromatography (LC)-mass spectroscopy (MS)/MS. The main F50 subunit was found to contain fragments with 100% similarity to zingipain-1, a cysteine protease first discovered in Zingiber officinale. The activity corresponding to the identified data, cysteine protease, was then confirmed in the F50 by azocasein assay and a positive result was obtained. The F50 then was further investigated for antiproliferation against three plant pathogenic fungi species by disk diffusion test, four bacterial species by direct exposure in liquid culture and dish diffusion tests, and five human malignant cell lines by tissue culture assay. It was found that a dose of 23.6 µg F50/0.3 cm(2) of paper disk exhibited the best inhibitory effect against Collectotrichum cassiicola, while lesser effects were found in Exserohilum turicicum and Fusarium oxysporum, respectively. No inhibitory effect against bacterial proliferation was detected in all studied bacterial strains. However, relatively strong antiproliferative effects were found against five human

  19. SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans

    PubMed Central

    Fenker, Kristin E.; Hansen, Angela A.; Chong, Conrad A.; Jud, Molly C.; Duffy, Brittany A.; Norton, J. Paul; Hansen, Jody M.; Stanfield, Gillian M.

    2014-01-01

    Summary Motility of sperm is crucial for their directed migration to the egg. The acquisition and modulation of motility are regulated to ensure that sperm move when and where needed, thereby promoting reproductive success. One specific example of this phenomenon occurs during differentiation of the amoeboid sperm of C. elegans as they activate from a round spermatid to a mature, crawling spermatozoon. Sperm activation is regulated by redundant pathways to occur at a specific time and place for each sex. Here, we report the identification of the solute carrier 6 (SLC6) transporter protein SNF-10 as a key regulator of C. elegans sperm activation in response to male protease activation signals. We find that SNF-10 is present in sperm and is required for activation by the male but not by the hermaphrodite. Loss of both snf-10 and a hermaphrodite activation factor render sperm completely insensitive to activation. Using in vitro assays, we find that snf-10 mutant sperm show a specific deficit in response to protease treatment but not to other activators. Prior to activation, SNF-10 is present in the plasma membrane, where it represents a strong candidate to receive signals that lead to subcellular morphogenesis. After activation, it shows polarized localization to the cell body region that is dependent on membrane fusions mediated by the dysferlin FER-1. Our discovery of snf-10 offers insight into the mechanisms differentially employed by the two sexes to accomplish the common goal of producing functional sperm, as well as how the physiology of nematode sperm may be regulated to control motility as it is in mammals. PMID:24929237

  20. A substitution at His-120 in the LasA protease of Pseudomonas aeruginosa blocks enzymatic activity without affecting propeptide processing or extracellular secretion.

    PubMed Central

    Gustin, J K; Kessler, E; Ohman, D E

    1996-01-01

    The LasA protease of Pseudomonas aeruginosa can degrade elastin and is an important contributor to the pathogenesis of this organism. LasA (20 kDa) is a member of the beta-lytic endopeptidase family of extracellular bacterial proteases, and it shows high-level staphylolytic activity. We sequenced the lasA gene from strain FRD1 and overexpressed it in Escherichia coli. The lasA gene encodes a precursor, known as pre-proLasA, of 45,582 Da. Amino-terminal sequence analysis allowed the identification of the signal peptidase cleavage site and revealed that the 31-amino-acid signal peptide was removed in E. coli. The remaining proLasA (42 kDa) did not undergo autoproteolytic processing and showed little staphylolytic activity. However, it was readily processed to a 20-kDa active staphylolytic protease by incubation with trypsin or with the culture filtrate of a P. aeruginosa lasAdelta mutant. Thus, removal of the propeptide (22 kDa) was required to convert proLasA into an active protease. Although LasA protease was critical for staphylolytic activity, other proteases like elastase were found to enhance staphylolysis. Under the control of an inducible trc promoter, lasA was overexpressed in P. aeruginosa and the processing intermediates were examined. Compared with wild-type cells, the overproducing cells accumulated more 42-kDa proLasA species, and the culture supernatants of the overproducing cells showed increased levels of active 20-kDa LasA protease. Small amounts of a 25-kDa extracellular LasA-related protein, which could represent a potential processing intermediate, were also observed. To better understand the structure-function relationships in LasA protease, we tested whether His-120-X-His-122 in the mature portion of LasA plays a role in activity. This motif and surrounding sequences are conserved in the related beta-lytic protease of Achromobacter lyticus. Oligonucleotide-directed mutagenesis was used to change His-120 to Ala-120, thus forming the lasA5 allele

  1. Irritant activation of epithelial cells is mediated via protease-dependent EGFR activation.

    PubMed

    White, Kellie J; Maffei, Vincent J; Newton-West, Marvin; Swerlick, Robert A

    2011-02-01

    Although numerous studies have examined in vivo and in vitro effects of irritants, most focused on events developing hours to days after exposure. Molecular events occurring immediately after skin contact remain incompletely defined. Characterization of early events could lead to the identification of key molecular signals necessary for the production of inflammatory mediators responsible for the signs and symptoms of irritant contact dermatitis (ICD). HaCaT cells treated with sodium lauryl sulfate (SLS), a model irritant, were used to examine early molecular events of ICD. Western analysis showed SLS-mediated induction of early growth response-1 (egr-1), a transcription factor capable of regulating hallmarks of ICD such as angiogenesis, hyperproliferation, and inflammation. Additionally, de novo egr-1 expression was commensurate with transcriptional activation of egr-1 mRNA and heteronuclear RNA. Use of pharmacological inhibitors demonstrated that SLS-induced egr-1 was dependent on MEK1/p44/42 ERK, but not on p38 or JNK signaling. The EGFR inhibitor PD168393 and the metalloprotease inhibitor TAPI-2 both inhibited SLS-induced egr-1. Finally, small interfering RNA silencing of the EGFR diminished SLS-induced egr-1 mRNA. These studies suggest a role of the EGFR in SLS signaling as well as a, to our knowledge, previously unreported association between ICD and EGFR induction of egr-1. PMID:20981109

  2. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  3. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1.

    PubMed

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. PMID:27528192

  4. Potential antimicrobial and antiproliferative activities of autochthonous starter cultures and protease EPg222 in dry-fermented sausages.

    PubMed

    Fernández, Margarita; Ruiz-Moyano, Santiago; Benito, María José; Martín, Alberto; Hernández, Alejandro; Córdoba, María de Guía

    2016-05-18

    This work studied the presence of nitrogen compounds with bioactive properties in Iberian pork sausages that were manufactured using different autochthonous starter cultures (Pediococcus acidilactici MS200 and Staphylococcus vitulus RS34) and protease EPg222. Nitrogen compounds were extracted and evaluated for their antimicrobial effect against spoilage and pathogenic bacteria, such as Bacillus cereus, Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus and Listeria monocytogenes, and antiproliferative activity on the HT-29 colon adenocarcinoma cell line. Dry-fermented sausages elaborated with starter cultures P200S34 and protease EPg222 generate extracts that cause inhibition of the growth of pathogens reaching 25% inhibition of Bacillus cereus, making this a promising tool for biocontrol in the meat industry. On the other hand, the inoculation of well-adapted starter cultures with high proteolytic activity also increased the antiproliferative activity of these extracts, around 45% inhibition at 72 h, mainly due to an increase in free amino acids, such as Lys and Pro, but also small peptides. PMID:27112426

  5. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1

    PubMed Central

    Lehrbach, Nicolas J; Ruvkun, Gary

    2016-01-01

    Proteasomes are essential for protein homeostasis in eukaryotes. To preserve cellular function, transcription of proteasome subunit genes is induced in response to proteasome dysfunction caused by pathogen attacks or proteasome inhibitor drugs. In Caenorhabditis elegans, this response requires SKN-1, a transcription factor related to mammalian Nrf1/2. Here, we use comprehensive genetic analyses to identify the pathway required for C. elegans to detect proteasome dysfunction and activate SKN-1. Genes required for SKN-1 activation encode regulators of ER traffic, a peptide N-glycanase, and DDI-1, a conserved aspartic protease. DDI-1 expression is induced by proteasome dysfunction, and we show that DDI-1 is required to cleave and activate an ER-associated isoform of SKN-1. Mammalian Nrf1 is also ER-associated and subject to proteolytic cleavage, suggesting a conserved mechanism of proteasome surveillance. Targeting mammalian DDI1 protease could mitigate effects of proteasome dysfunction in aging and protein aggregation disorders, or increase effectiveness of proteasome inhibitor cancer chemotherapies. DOI: http://dx.doi.org/10.7554/eLife.17721.001 PMID:27528192

  6. Novel thrombolytic protease from edible and medicinal plant Aster yomena (Kitam.) Honda with anticoagulant activity: purification and partial characterization.

    PubMed

    Choi, Jun-Hui; Kim, Dae-Won; Park, Se-Eun; Choi, Bong-Suk; Sapkota, Kumar; Kim, Seung; Kim, Sung-Jun

    2014-10-01

    A thrombolytic protease named kitamase possessing anticoagulant property was purified from edible and medicinal plant Aster yomena (Kitam.) Honda. Kitamase showed a molecular weight of 50 kDa by SDS-PAGE and displayed a strong fibrin zymogram lysis band corresponding to the similar molecular mass. The enzyme was active at high temperatures (50°C). The fibrinolytic activity of kitamase was strongly inhibited by EDTA, EGTA, TPCK and PMSF, inhibited by Zn(2+). The Km and Vmax values for substrate S-2251 were determined as 4.31 mM and 23.81 mM/mg respectively. It dissolved fibrin clot directly and specifically cleaved the α, Aα and γ-γ chains of fibrin and fibrinogen. In addition, kitamase delayed the coagulation time and increased activated partial thromboplastin time and prothrombin time. Kitamase exerted a significant protective effect against collagen and epinephrine induced pulmonary thromboembolism in mice. These results suggest that kitamase may have the property of metallo-protease like enzyme, novel fibrino(geno)lytic enzyme and a potential to be a therapeutic agent for thrombosis. PMID:24746735

  7. Comparison in effect of different metal ions, pH and reducing agent on the protease activity in human hyper mature and mature cataract

    PubMed Central

    Sami, Amtul Jamil; Sami, Amtul Naseer; Kanwal, Noreen

    2007-01-01

    This study was undertaken to isolate and characterize the protease activity of human eye lens sample of mature and hyper mature cataract. Samples were collected just after surgery of the cataract lens and were stored at −20 °C. The total protein extract was isolated from 5 samples in each case (mature and hyper mature cataract) and clear supernatant obtained after centrifugation was used as an enzyme source. The optimum pH for the proteases of mature cataract was 7.5 while the proteases of hyper mature cataract were recorded for maximum activity at pH 5.5 and 7.5. The optimum temperature for both enzyme sources was 50 °C. Effect of different metal ions such as potassium, lead, silver, zinc and borate was studied. In each case protease activity was increased. Reducing agent e.g. β mercaptoethanol also caused an increase in activity indicating the involvement of sulfhydryl groups. Protease activity was also located on agar plates. PMID:17657864

  8. Comparison in effect of different metal ions, pH and reducing agent on the protease activity in human hyper mature and mature cataract.

    PubMed

    Sami, Amtul Jamil; Sami, Amtul Naseer; Kanwal, Noreen

    2007-08-01

    This study was undertaken to isolate and characterize the protease activity of human eye lens sample of mature and hyper mature cataract. Samples were collected just after surgery of the cataract lens and were stored at -20 degrees C. The total protein extract was isolated from 5 samples in each case (mature and hyper mature cataract) and clear supernatant obtained after centrifugation was used as an enzyme source. The optimum pH for the proteases of mature cataract was 7.5 while the proteases of hyper mature cataract were recorded for maximum activity at pH 5.5 and 7.5. The optimum temperature for both enzyme sources was 50 degrees C. Effect of different metal ions such as potassium, lead, silver, zinc and borate was studied. In each case protease activity was increased. Reducing agent e.g. beta mercaptoethanol also caused an increase in activity indicating the involvement of sulfhydryl groups. Protease activity was also located on agar plates. PMID:17657864

  9. 11B NMR spectroscopy of peptide boronic acid inhibitor complexes of alpha-lytic protease. Direct evidence for tetrahedral boron in both boron-histidine and boron-serine adduct complexes.

    PubMed

    Tsilikounas, E; Kettner, C A; Bachovchin, W W

    1993-11-30

    We have previously shown, using 15N and 1H NMR spectroscopy, that MeOSuc-Ala-Ala-Pro-boroPhe and certain other boronic acid inhibitors form boron-histidine adducts with alpha-lytic protease instead of transition-state-like tetrahedral boron-serine adducts as is generally supposed [Bachovchin, W. W., Wong, W. Y. L., Farr-Jones, S., Shenvi, A. B., & Kettner, C. (1988) Biochemistry 27, 7689-7697]. An X-ray crystallographic study of the MeOSuc-Ala-Ala-Pro-boroPhe complex with alpha-lytic protease [Bone, R., Frank, D., Kettner, C. A., & Agard, D. A. (1989) Biochemistry 28, 7600-7609] has confirmed the existence of the boron-histidine bond but has concluded that the boron atom is trigonal rather than tetrahedral. Here we report a 11B NMR study at 160.46 MHz of this histidine adduct complex and of two other complexes known to be serine adducts: alpha-lytic protease with MeOSuc-Ala-Ala-Pro-boroVal and chymotrypsin with MeOSucAla-Ala-Pro-boroPhe. The 11B NMR chemical shifts demonstrate that the boron atom is tetrahedral in both the histidine and serine adduct complexes.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8251483

  10. Quantitative characterization of the activation steps of mannan-binding lectin (MBL)-associated serine proteases (MASPs) points to the central role of MASP-1 in the initiation of the complement lectin pathway.

    PubMed

    Megyeri, Márton; Harmat, Veronika; Major, Balázs; Végh, Ádám; Balczer, Júlia; Héja, Dávid; Szilágyi, Katalin; Datz, Dániel; Pál, Gábor; Závodszky, Péter; Gál, Péter; Dobó, József

    2013-03-29

    Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process. PMID:23386610

  11. Quantitative Characterization of the Activation Steps of Mannan-binding Lectin (MBL)-associated Serine Proteases (MASPs) Points to the Central Role of MASP-1 in the Initiation of the Complement Lectin Pathway*

    PubMed Central

    Megyeri, Márton; Harmat, Veronika; Major, Balázs; Végh, Ádám; Balczer, Júlia; Héja, Dávid; Szilágyi, Katalin; Datz, Dániel; Pál, Gábor; Závodszky, Péter; Gál, Péter; Dobó, József

    2013-01-01

    Mannan-binding lectin (MBL)-associated serine proteases, MASP-1 and MASP-2, have been thought to autoactivate when MBL/ficolin·MASP complexes bind to pathogens triggering the complement lectin pathway. Autoactivation of MASPs occurs in two steps: 1) zymogen autoactivation, when one proenzyme cleaves another proenzyme molecule of the same protease, and 2) autocatalytic activation, when the activated protease cleaves its own zymogen. Using recombinant catalytic fragments, we demonstrated that a stable proenzyme MASP-1 variant (R448Q) cleaved the inactive, catalytic site Ser-to-Ala variant (S646A). The autoactivation steps of MASP-1 were separately quantified using these mutants and the wild type enzyme. Analogous mutants were made for MASP-2, and rate constants of the autoactivation steps as well as the possible cross-activation steps between MASP-1 and MASP-2 were determined. Based on the rate constants, a kinetic model of lectin pathway activation was outlined. The zymogen autoactivation rate of MASP-1 is ∼3000-fold higher, and the autocatalytic activation of MASP-1 is about 140-fold faster than those of MASP-2. Moreover, both activated and proenzyme MASP-1 can effectively cleave proenzyme MASP-2. MASP-3, which does not autoactivate, is also cleaved by MASP-1 quite efficiently. The structure of the catalytic region of proenzyme MASP-1 R448Q was solved at 2.5 Å. Proenzyme MASP-1 R448Q readily cleaves synthetic substrates, and it is inhibited by a specific canonical inhibitor developed against active MASP-1, indicating that zymogen MASP-1 fluctuates between an inactive and an active-like conformation. The determined structure provides a feasible explanation for this phenomenon. In summary, autoactivation of MASP-1 is crucial for the activation of MBL/ficolin·MASP complexes, and in the proenzymic phase zymogen MASP-1 controls the process. PMID:23386610

  12. Activity-Modulating Monoclonal Antibodies to the Human Serine Protease HtrA3 Provide Novel Insights into Regulating HtrA Proteolytic Activities

    PubMed Central

    Singh, Harmeet; Nero, Tracy L.; Wang, Yao; Parker, Michael W.; Nie, Guiying

    2014-01-01

    Mammalian HtrA (high temperature requirement factor A) proteases, comprising 4 multi-domain members HtrA1-4, play important roles in a number of normal cellular processes as well as pathological conditions such as cancer, arthritis, neurodegenerative diseases and pregnancy disorders. However, how HtrA activities are regulated is not well understood, and to date no inhibitors specific to individual HtrA proteins have been identified. Here we investigated five HtrA3 monoclonal antibodies (mAbs) that we have previously produced, and demonstrated that two of them regulated HtrA3 activity in an opposing fashion: one inhibited while the other stimulated. The inhibitory mAb also blocked HtrA3 activity in trophoblast cells and enhanced migration and invasion, confirming its potential in vivo utility. To understand how the binding of these mAbs modulated HtrA3 protease activity, their epitopes were visualized in relation to a 3-dimensional HtrA3 homology model. This model suggests that the inhibitory HtrA3 mAb blocks substrate access to the protease catalytic site, whereas the stimulatory mAb may bind to the PDZ domain alone or in combination with the N-terminal and protease domains. Since HtrA1, HtrA3 and HtrA4 share identical domain organization, our results establish important foundations for developing potential therapeutics to target these HtrA proteins specifically for the treatment of a number of diseases, including cancer and pregnancy disorders. PMID:25248123

  13. Enhanced Activity of Meprin-α, a Pro-Migratory and Pro-Angiogenic Protease, in Colorectal Cancer

    PubMed Central

    Noël, Agnès; Blacher, Silvia; Huguenin, Maya; Nievergelt, Alexandra; Niggli, Verena; Kern, Alexander; Müller, Stefan; Seibold, Frank; Friess, Helmut; Becker-Pauly, Christoph; Stöcker, Walter; Sterchi, Erwin E.

    2011-01-01

    Meprin-α is a metalloprotease overexpressed in cancer cells, leading to the accumulation of this protease in a subset of colorectal tumors. The impact of increased meprin-α levels on tumor progression is not known. We investigated the effect of this protease on cell migration and angiogenesis in vitro and studied the expression of meprin-α mRNA, protein and proteolytic activity in primary tumors at progressive stages and in liver metastases of patients with colorectal cancer, as well as inhibitory activity towards meprin-α in sera of cancer patient as compared to healthy controls. We found that the hepatocyte growth factor (HGF)- induced migratory response of meprin-transfected epithelial cells was increased compared to wild-type cells in the presence of plasminogen, and that the angiogenic response in organ-cultured rat aortic explants was enhanced in the presence of exogenous human meprin-α. In patients, meprin-α mRNA was expressed in colonic adenomas, primary tumors UICC (International Union Against Cancer) stage I, II, III and IV, as well as in liver metastases. In contrast, the corresponding protein accumulated only in primary tumors and liver metastases, but not in adenomas. However, liver metastases lacked meprin-α activity despite increased expression of the corresponding protein, which correlated with inefficient zymogen activation. Sera from cancer patients exhibited reduced meprin-α inhibition compared to healthy controls. In conclusion, meprin-α activity is regulated differently in primary tumors and metastases, leading to high proteolytic activity in primary tumors and low activity in liver metastases. By virtue of its pro-migratory and pro-angiogenic activity, meprin-α may promote tumor progression in colorectal cancer. PMID:22096485

  14. Studies on the effects of polyaspartate protease fertilizer enhancer in the absorptions of soil nutrition and the enzymatic activities of crops

    NASA Astrophysics Data System (ADS)

    Guoliang, Jiang; Dong, Yang; Yun, Liu; Guanghua, Zhang; Zhongjun, Li; Xinhua, Zhang

    2003-04-01

    The effects of polyaspartate protease fertilizer enhancer, made from oyster shell proteins, on the absorption of soil nutrition and the enzymatic activities of crops were studied. It has been found that the enhancer contributes 30%, 50% and 50% augmentation of nitrogen (N), phosphate (P) and potassium (K) absorption respectively and about 20% of nitrate reductase and peroxide enzyme activities of crops. These results show that polyaspartate protease fertilizer enhancer could improve significantly the absorption and utilization efficiencies of soil nutrition and the activities of nitrate reductase and peroxide enzyme of crops, thus elevating the utilization rates of chemical fertilizers to a certain extent.

  15. Roles of the N domain of the AAA+ Lon protease in substrate recognition, allosteric regulation and chaperone activity.

    PubMed

    Wohlever, Matthew L; Baker, Tania A; Sauer, Robert T

    2014-01-01

    Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell-division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross-linking and scanning for mutations that prevent sul20-peptide binding. These N-domain mutations limit the rates of proteolysis of model sul20-tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon-mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP-dependent biological activities do not require translocation. PMID:24205897

  16. A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors

    PubMed Central

    Matsunaga, Satoko; Masaoka, Takashi; Sawasaki, Tatsuya; Morishita, Ryo; Iwatani, Yasumasa; Tatsumi, Masashi; Endo, Yaeta; Yamamoto, Naoki; Sugiura, Wataru; Ryo, Akihide

    2015-01-01

    Due to their high frequency of genomic mutations, human retroviruses often develop resistance to antiretroviral drugs. The emergence of drug-resistant human immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term treatment of HIV infection. The development of a rapid and versatile drug-susceptibility assay would enable acquisition of phenotypic information and facilitate determination of the appropriate choice of antiretroviral agents. In this study, we developed a novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR). The CFDSA utilizes a wheat germ cell-free protein production system to synthesize enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1 molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) in the presence or absence of clinically used protease inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious cell-based phenotypic assays for evaluation of PI-resistant HIV-1. PMID:26583013

  17. Matriptase-2 mutations in iron-refractory iron deficiency anemia patients provide new insights into protease activation mechanisms.

    PubMed

    Ramsay, Andrew J; Quesada, Victor; Sanchez, Mayka; Garabaya, Cecilia; Sardà, María P; Baiget, Montserrat; Remacha, Angel; Velasco, Gloria; López-Otín, Carlos

    2009-10-01

    Mutations leading to abrogation of matriptase-2 proteolytic activity in humans are associated with an iron-refractory iron deficiency anemia (IRIDA) due to elevated hepcidin levels. Here we describe two novel heterozygous mutations within the matriptase-2 (TMPRSS6) gene of monozygotic twin girls exhibiting an IRIDA phenotype. The first is the frameshift mutation (P686fs) caused by the insertion of the four nucleotides CCCC in exon 16 (2172_2173insCCCC) that is predicted to terminate translation before the catalytic serine. The second mutation is the di-nucleotide substitution c.467C>A and c.468C>T in exon 3 that causes the missense mutation A118D in the SEA domain of the extracellular stem region of matriptase-2. Functional analysis of both variant matriptase-2 proteases has revealed that they lead to ineffective suppression of hepcidin transcription. We also demonstrate that the A118D SEA domain mutation causes an intra-molecular structural imbalance that impairs matriptase-2 activation. Collectively, these results extend the pattern of TMPRSS6 mutations associated with IRIDA and functionally demonstrate that mutations affecting protease regions other than the catalytic domain may have a profound impact in the regulatory role of matriptase-2 during iron deficiency. PMID:19592582

  18. Effect of gastrointestinal proteases on purified human intrinsic factor-vitamin B12 (IF-B12) complex.

    PubMed

    Srikumar, K; Premalatha, R

    2003-04-01

    Intrinsic factor (IF) from human gastric juice was purified and complexed with vitamin B12 (IF-B12 complex) on Sepharose-vitamin B12 affinity matrix. By labeling studies, using [(57)Co] vitamin B12 and (125)I, the specific B12 binding activity of IF was found to be 23 microg B12/mg protein, and the molecular size by gel filtration 60 kDa. Proteolysis of the IF-B12 complex by sequential treatment with pepsin, trypsin, alpha-chymotrypsin and carboxypeptidase A, followed by chromatography of proteolysed complex and IF-B12 showed higher mobility of proteolysed fraction. Gel filtration, however, showed same molecular size for both proteolysed and the IF-B12 complex. On SDS-PAGE, purified IF-B12 appeared as a single band of 60 kDa. The proteolysed complex had higher mobility on SDS-PAGE and did not bind to zirconium phosphate gel. Immunodiffusion with rabbit antisera had positive reaction with IF-B12, but there was no reaction with the proteolysed sample. PMID:22900303

  19. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates.

    PubMed

    Lowe, Stuart B; Dick, John A G; Cohen, Bruce E; Stevens, Molly M

    2012-01-24

    Nanoparticle-based labels are emerging as simpler and more sensitive alternatives to traditional fluorescent small molecules and radioactive reporters in biomarker assays. The determination of biomarker levels is a recommended clinical practice for the assessment of many diseases, and detection of multiple analytes in a single assay, known as multiplexing, can increase predictive accuracy. While multiplexed detection can also simplify assay procedures and reduce systematic variability, combining multiple assays into a single procedure can lead to complications such as substrate cross-reactivity, signal overlap, and loss of sensitivity. By combining the specificity of biomolecular interactions with the tunability of quantum dot optical properties, we have developed a detection system capable of simultaneous evaluation of the activity of two critical enzyme classes, proteases and kinases. We avoid cross-reactivity and signal overlap by synthesizing enzyme-specific peptide sequences with orthogonal terminal functionalization for attachment to quantum dots with distinct emission spectra. Enzyme activity is reported via binding of either gold nanoparticle-peptide conjugates or FRET acceptor dye-labeled antibodies, which mediate changes in quantum dot emission spectra. To the best of our knowledge, this is the first demonstration of the multiplexed sensing of the activity of two different classes of enzymes via a nanoparticle-based activity assay. Using the quantum dot-based assay described herein, we were able to detect the protease activity of urokinase-type plasminogen activator at concentrations ≥ 50 ng/mL and the kinase activity of human epidermal growth factor receptor 2 at concentrations ≥ 7.5 nM, levels that are clinically relevant for determination of breast cancer prognosis. The modular nature of this assay design allows for the detection of different classes of enzymes simultaneously and represents a generic platform for high-throughput enzyme screening in

  20. Synthesis and structure-activity relationship of α-keto amides as enterovirus 71 3C protease inhibitors.

    PubMed

    Zeng, Debin; Ma, Yuying; Zhang, Rui; Nie, Quandeng; Cui, Zhengjie; Wang, Yaxin; Shang, Luqing; Yin, Zheng

    2016-04-01

    α-Keto amide derivatives as enterovirus 71 (EV71) 3C protease (3C(pro)) inhibitors have been synthesized and assayed for their biochemical and antiviral activities. structure-activity relationship (SAR) study indicated that small moieties were primarily tolerated at P1' and the introduction of para-fluoro benzyl at P2 notably improved the potency of inhibitor. Inhibitors 8v, 8w and 8x exhibited satisfactory activity (IC50=1.32±0.26μM, 1.88±0.35μM and 1.52±0.31μM, respectively) and favorable CC50 values (CC50>100μM). α-Keto amide may represent a good choice as a warhead for EV71 3C(pro) inhibitor. PMID:26916437

  1. Crystallization of a Nonclassical Kazal-type Carcinoscorpius Rotundicauda Serine Protease Inhibitor, CrSPI-1, Complexed with Subtilisin

    SciTech Connect

    Tulsidas, S.; Thangamani, S; Ho, B; Sivaraman, J; Ding, J

    2009-01-01

    Serine proteases play a major role in host-pathogen interactions. The innate immune system is known to respond to invading pathogens in a nonspecific manner. The serine protease cascade is an essential component of the innate immune system of the horseshoe crab. The serine protease inhibitor CrSPI isoform 1 (CrSPI-1), a unique nonclassical Kazal-type inhibitor of molecular weight 9.3 kDa, was identified from the hepatopancreas of the horseshoe crab Carcinoscorpius rotundicauda. It potently inhibits subtilisin and constitutes a powerful innate immune defence against invading microbes. Here, the cloning, expression, purification and cocrystallization of CrSPI-1 with subtilisin are reported. The crystals diffracted to 2.6 {angstrom}resolution and belonged to space group P2{sub 1}, with unit-cell parameters a = 73.8, b = 65.0, c = 111.9 {angstrom}, {beta} = 95.4. The Matthews coefficient (VM = 2.64 {angstrom}3 Da-1, corresponding to 53% solvent content) and analysis of the preliminary structure solution indicated the presence of one heterotrimer (1:2 ratio of CrSPI-1:subtilisin) and one free subtilisin molecule in the asymmetric unit.

  2. Japanese encephalitis virus NS2B-NS3 protease induces caspase 3 activation and mitochondria-mediated apoptosis in human medulloblastoma cells.

    PubMed

    Yang, Tsuey-Ching; Shiu, Su-Lian; Chuang, Pei-Hsin; Lin, Ying-Ju; Wan, Lei; Lan, Yu-Ching; Lin, Cheng-Wen

    2009-07-01

    Japanese encephalitis virus (JEV) causes severe neurological diseases with a high fatality rate. Clinical, neurophysiological and radiological features of Japanese encephalitis JE patients showed that JEV infection resulted in widespread involvement of the nervous system, including thalamus, basal ganglia, brainstem, cerebellum, cerebral cortex and spinal cord. In this study, we characterized the apoptotic effect of JEV infection and its viral proteins on the TE671 human medulloblastoma cells. JEV replicated in TE671 cells, inducing caspase 3-mediated apoptosis in MOI- and time-dependent manners. Of viral proteins, co-expression of JEV NS3 protease with NS2B cofactor significantly induced higher degrees of apoptosis and triggered higher caspase 3 activities than single expression of E, NS1, NS2B or NS3 protease in human medulloblastoma cells. Moreover, JEV NS2B-NS3 protease induced reduction of mitochondrial membrane potential and release of mitochondrial cytochrome C, which were responsible for the mitochondria-mediated apoptosis. In addition, the production of reactive oxygen species production and activation of ASK1-p38 MAPK signaling pathway might be associated with JEV NS2B-NS3 protease-induced mitochondria-mediated apoptosis. The results demonstrated that the JEV infection and the co-expression of JEV NS3 protease with NS2B cofactor induced caspase 3 activation and mitochondria-mediated apoptosis in human medulloblastoma cells, being valuable insight for cellular and molecular levels of JEV pathogenesis. PMID:19463724

  3. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    PubMed

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  4. Hepatocyte injury by activated neutrophils in vitro is mediated by proteases.

    PubMed Central

    Harbrecht, B G; Billiar, T R; Curran, R D; Stadler, J; Simmons, R L

    1993-01-01

    OBJECTIVE: This study determined the mechanism used by neutrophils (PMNs) to induce hepatocellular injury. SUMMARY BACKGROUND DATA: Neutrophils have been shown to be potent mediators of cell and tissue injury and have been hypothesized to contribute to the hepatic injury that occurs after trauma and infection. Oxygen radical scavengers protect the liver in vivo from inflammatory injury and it has been suggested that PMNs are the source of these toxic oxygen radicals. The specific mechanism used by PMNs to produce hepatocellular damage, however, has not been determined. METHODS: Neutrophils were cultured in vitro with hepatocytes (HCs) and stimulated with phorbol 12-myristate 13-acetate (PMA) to induce HC injury in the presence of oxygen radical scavengers and protease inhibitors. RESULTS: PMA induced a PMN-mediated HC injury that was dependent on the number of PMNs present and the concentration of PMA. Protease inhibitors reduced the extent of HC injury, while oxygen radical scavengers had no effect. Hydrogen peroxide, directly applied, was able to injure HCs, but only at concentrations greater than those that could be produced by PMA-stimulated PMNs. CONCLUSIONS: PMNs are cytotoxic to cultured HCs, predominantly due to the release of proteolytic enzymes, while HCs appear relatively resistant to oxidative injury. Involvement of neutrophil toxic oxygen radicals in hepatic damage in vivo may require impairment of HC antioxidant defenses or may involve injury to nonparenchymal liver cells with secondary effects on HCs. PMID:8342991

  5. Ubiquitin-SUMO circuitry controls activated fanconi anemia ID complex dosage in response to DNA damage.

    PubMed

    Gibbs-Seymour, Ian; Oka, Yasuyoshi; Rajendra, Eeson; Weinert, Brian T; Passmore, Lori A; Patel, Ketan J; Olsen, Jesper V; Choudhary, Chunaram; Bekker-Jensen, Simon; Mailand, Niels

    2015-01-01

    We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage. PMID:25557546

  6. Genome Assembly of Chryseobacterium polytrichastri ERMR1:04, a Psychrotolerant Bacterium with Cold Active Proteases, Isolated from East Rathong Glacier in India.

    PubMed

    Kumar, Rakshak; Singh, Dharam; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Kumar, Sanjay

    2015-01-01

    We report here the genome assembly of a psychrotolerant bacterium, Chryseobacterium polytrichastri ERMR1:04, which secretes cold-active proteases. The bacterium was isolated from a pristine location, the East Rathong Glacier in the Sikkim Himalaya. The 5.53-Mb genome provides insight into the cold-active industrial enzyme and adaptation in the cold environment. PMID:26543128

  7. Genome Assembly of Chryseobacterium polytrichastri ERMR1:04, a Psychrotolerant Bacterium with Cold Active Proteases, Isolated from East Rathong Glacier in India

    PubMed Central

    Singh, Dharam; Swarnkar, Mohit Kumar; Singh, Anil Kumar; Kumar, Sanjay

    2015-01-01

    We report here the genome assembly of a psychrotolerant bacterium, Chryseobacterium polytrichastri ERMR1:04, which secretes cold-active proteases. The bacterium was isolated from a pristine location, the East Rathong Glacier in the Sikkim Himalaya. The 5.53-Mb genome provides insight into the cold-active industrial enzyme and adaptation in the cold environment. PMID:26543128

  8. P1-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors with Potent Antiviral Activity against Drug-Resistant Viruses

    SciTech Connect

    DeGoey, David A.; Grampovnik, David J.; Chen, Hui-Ju; Flosi, William J.; Klein, Larry L.; Dekhtyar, Tatyana; Stoll, Vincent; Mamo, Mulugeta; Molla, Akhteruzzaman; Kempf, Dale J.

    2013-03-07

    Because there is currently no cure for HIV infection, patients must remain on long-term drug therapy, leading to concerns over potential drug side effects and the emergence of drug resistance. For this reason, new and safe antiretroviral agents with improved potency against drug-resistant strains of HIV are needed. A series of HIV protease inhibitors (PIs) with potent activity against both wild-type (WT) virus and drug-resistant strains of HIV was designed and synthesized. The incorporation of substituents with hydrogen bond donor and acceptor groups at the P1 position of our symmetry-based inhibitor series resulted in significant potency improvements against the resistant mutants. By this approach, several compounds, such as 13, 24, and 29, were identified that demonstrated similar or improved potencies compared to 1 against highly mutated strains of HIV derived from patients who previously failed HIV PI therapy. Overall, compound 13 demonstrated the best balance of potency against drug resistant strains of HIV and oral bioavailability in pharmacokinetic studies. X-ray analysis of an HIV PI with an improved resistance profile bound to WT HIV protease is also reported.

  9. Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: Effects on virion morphogenesis and RNA maturation

    SciTech Connect

    Moore, Michael D.; Fu, William; Soheilian, Ferri; Nagashima, Kunio; Ptak, Roger G.; Pathak, Vinay K.; Hu, Wei-Shau

    2008-09-15

    Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC{sub 90}), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation.

  10. Structure-guided mutagenesis of active site residues in the dengue virus two-component protease NS2B-NS3

    PubMed Central

    2010-01-01

    Background The dengue virus two-component protease NS2B/NS3 mediates processing of the viral polyprotein precursor and is therefore an important determinant of virus replication. The enzyme is now intensively studied with a view to the structure-based development of antiviral inhibitors. Although 3-dimensional structures have now been elucidated for a number of flaviviral proteases, enzyme-substrate interactions are characterized only to a limited extend. The high selectivity of the dengue virus protease for the polyprotein precursor offers the distinct advantage of designing inhibitors with exquisite specificity for the viral enzyme. To identify important determinants of substrate binding and catalysis in the active site of the dengue virus NS3 protease, nine residues, L115, D129, G133, T134, Y150, G151, N152, S163 and I165, located within the S1 and S2 pockets of the enzyme were targeted by alanine substitution mutagenesis and effects on enzyme activity were fluorometrically assayed. Methods Alanine substitutions were introduced by site-directed mutagenesis at residues L115, D129, G133, T134, Y150, G151, N152, S163 and I165 and recombinant proteins were purified from overexpressing E. coli. Effects of these substitutions on enzymatic activity of the NS3 protease were assayed by fluorescence release from the synthetic model substrate GRR-amc and kinetic parameters Km, kcat and kcat/Km were determined. Results Kinetic data for mutant derivatives in the active site of the dengue virus NS3 protease were essentially in agreement with a functional role of the selected residues for substrate binding and/or catalysis. Only the L115A mutant displayed activity comparable to the wild-type enzyme, whereas mutation of residues Y150 and G151 to alanine completely abrogated enzyme activity. A G133A mutant had an approximately 10-fold reduced catalytic efficiency thus suggesting a critical role for this residue seemingly as part of the oxyanion binding hole. Conclusions Kinetic

  11. Autocatalytic processing of m-AAA protease subunits in mitochondria.

    PubMed

    Koppen, Mirko; Bonn, Florian; Ehses, Sarah; Langer, Thomas

    2009-10-01

    m-AAA proteases are ATP-dependent proteolytic machines in the inner membrane of mitochondria which are crucial for the maintenance of mitochondrial activities. Conserved nuclear-encoded subunits, termed paraplegin, Afg3l1, and Afg3l2, form various isoenzymes differing in their subunit composition in mammalian mitochondria. Mutations in different m-AAA protease subunits are associated with distinct neuronal disorders in human. However, the biogenesis of m-AAA protease complexes or of individual subunits is only poorly understood. Here, we have examined the processing of nuclear-encoded m-AAA protease subunits upon import into mitochondria and demonstrate autocatalytic processing of Afg3l1 and Afg3l2. The mitochondrial processing peptidase MPP generates an intermediate form of Afg3l2 that is matured autocatalytically. Afg3l1 or Afg3l2 are also required for maturation of newly imported paraplegin subunits after their cleavage by MPP. Our results establish that mammalian m-AAA proteases can act as processing enzymes in vivo and reveal overlapping activities of Afg3l1 and Afg3l2. These findings might be of relevance for the pathogenesis of neurodegenerative disorders associated with mutations in different m-AAA protease subunits. PMID:19656850

  12. Mutation in the Pro-Peptide Region of a Cysteine Protease Leads to Altered Activity and Specificity—A Structural and Biochemical Approach

    PubMed Central

    Dutta, Sruti; Choudhury, Debi; Roy, Sumana; Dattagupta, Jiban Kanti; Biswas, Sampa

    2016-01-01

    Papain-like proteases contain an N-terminal pro-peptide in their zymogen form that is important for correct folding and spatio-temporal regulation of the proteolytic activity of these proteases. Catalytic removal of the pro-peptide is required for the protease to become active. In this study, we have generated three different mutants of papain (I86F, I86L and I86A) by replacing the residue I86 in its pro-peptide region, which blocks the specificity determining S2-subsite of the catalytic cleft of the protease in its zymogen form with a view to investigate the effect of mutation on the catalytic activity of the protease. Steady-state enzyme kinetic analyses of the corresponding mutant proteases with specific peptide substrates show significant alteration of substrate specificity—I86F and I86L have 2.7 and 29.1 times higher kcat/Km values compared to the wild-type against substrates having Phe and Leu at P2 position, respectively, while I86A shows lower catalytic activity against majority of the substrates tested. Far-UV CD scan and molecular mass analyses of the mature form of the mutant proteases reveal similar CD spectra and intact masses to that of the wild-type. Crystal structures of zymogens of I86F and I86L mutants suggest that subtle reorganization of active site residues, including water, upon binding of the pro-peptide may allow the enzyme to achieve discriminatory substrate selectivity and catalytic efficiency. However, accurate and reliable predictions on alteration of substrate specificity require atomic resolution structure of the catalytic domain after zymogen activation, which remains a challenging task. In this study we demonstrate that through single amino acid substitution in pro-peptide, it is possible to modify the substrate specificity of papain and hence the pro-peptide of a protease can also be a useful target for altering its catalytic activity/specificity. PMID:27352302

  13. The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis.

    PubMed

    Fortugno, Paola; Furio, Laetitia; Teson, Massimo; Berretti, Matteo; El Hachem, May; Zambruno, Giovanna; Hovnanian, Alain; D'Alessio, Marina

    2012-10-01

    Lymphoepithelial Kazal-type related inhibitor (LEKTI) is a multidomain serine protease inhibitor which plays a central role in skin permeability barrier and allergy. Loss-of-function mutations in the LEKTI encoding gene SPINK5 cause Netherton syndrome, a rare and severe genetic skin disease with a profound skin barrier defect and atopic manifestations. Several studies also reported genetic association between the multifactorial disease atopic dermatitis (AD) and a frequent and non-conservative LEKTI variant, E420K, in different populations. Here, we provide evidence that the 420K variant impacts on LEKTI function by increasing the likelihood of furin-dependent LEKTI precursor cleavage within the linker region D6-D7. This results in the reversal of the cleavage priorities for LEKTI proteolytic activation and prevents the formation of the LEKTI fragment D6D9 known to display the strongest inhibitory activity against kallikrein (KLK) 5-mediated desmoglein-1 (DSG1) degradation. Using in situ and gel zymographies, we show that the modification of the subtle balance in LEKTI inhibitory fragments leads to enhanced KLK5, KLK7 and elastase-2 (ELA-2) activities in 420KK epidermis. By immunohistochemistry and western blot analyses, we found that increased epidermal protease activity correlates with reduced DSG1 protein expression and accelerated profilaggrin proteolysis. All changes determined by the presence of residue 420K within the LEKTI sequence likely contribute to defective skin barrier permeability. Remarkably, LEKTI 420KK epidermis displays an increased expression of the proallergic cytokine thymic stromal lymphopoietin (TSLP). This is the first functional evidence supporting association studies which identified the 420K LEKTI variant as a predisposing factor to AD, in combination with other genetic and environmental factors. PMID:22730493

  14. Proteasome inhibitors exacerbate interleukin-8 production induced by protease-activated receptor 2 in intestinal epithelial cells.

    PubMed

    Ghouzali, Ibtissem; Azhar, Saïda; Bôle-Feysot, Christine; Ducrotté, Philippe; Déchelotte, Pierre; Coëffier, Moïse

    2016-10-01

    Protease activated receptors (PARs) and the ubiquitin-proteasome system (UPS) regulate inflammatory response in intestinal cells. We aimed to elucidate putative connections between PARs and UPS pathways in intestinal epithelial cells. Caco-2 cells were treated by agonist peptides of PARs and/or IL-1β and/or proteasome inhibitors, bortezomib or MG132. Inflammatory response was evaluated by measuring IL-8 production. Proteasome activities were also evaluated. We showed that PAR-1 and -2 activation increased release of IL-8 compared with vehicle and independently of IL-1β. In contrast, PAR-4 agonist peptide had no effect. Caspase-like and chymotrypsin-like proteasomal activities were increased by PAR-2 activation only in the presence of IL-1β. Interestingly, in polarized Caco-2 cells, the release of IL-8 was predominantly upregulated in the side where PAR-2 agonist peptide was added, apical or basalolateral. In contrast, proteasome activities were only affected when PAR-2 agonist peptide was added in the apical side. Proteasome inhibitors, bortezomib and MG132, enhanced IL-8 production in both sides, apical and basolateral. In conclusion, PAR-2 activation alone did not affect proteasome but needed inflammatory stimulus IL-1β to synergistically increase chymotrypsin-like activity in intestinal epithelial cells. However, proteasome inhibition led to exacerbate inflammatory response induced by PAR-2 activation. PMID:27455449

  15. A Semi-Synthetic Ion Channel Platform for Detection of Phosphatase and Protease Activity

    PubMed Central

    Macrae, Michael X.; Blake, Steven; Jiang, Xiayun; Capone, Ricardo; Estes, Daniel J.; Mayer, Michael; Yang, Jerry

    2009-01-01

    Sensitive methods to probe the activity of enzymes are important for clinical assays and for elucidating the role of these proteins in complex biochemical networks. This paper describes a semi-synthetic ion channel platform for detecting the activity of two different classes of enzymes with high sensitivity. In the first case, this method uses single ion channel conductance measurements to follow the enzyme-catalyzed hydrolysis of a phosphate group attached to the C-terminus of gramicidin A (gA, an ion channel-forming peptide) in the presence of alkaline phosphatase (AP). Enzymatic hydrolysis of this phosphate group removes negative charges from the entrance of the gA pore, resulting in a product with measurably reduced single ion channel conductance compared to the original gA-phosphate substrate. This technique employs a standard, commercial bilayer setup and takes advantage of the catalytic turnover of enzymes and the amplification characteristics of ion flux through individual gA pores to detect picomolar concentrations of active AP in solution. Furthermore, this technique makes it possible to study the kinetics of an enzyme and provides an estimate for the observed rate constant (kcat) and the Michaelis constant (KM) by following the conversion of the gA-phosphate substrate to product over time in the presence of different concentrations of AP. In the second case, modification of gA with a substrate for proteolytic cleavage by anthrax lethal factor (LF) afforded a sensitive method for detection of LF activity, illustrating the utility of ion channel-based sensing for detection of a potential biowarfare agent. This ion channel-based platform represents a powerful, novel approach to monitor the activity of femtomoles to picomoles of two different classes of enzymes in solution. Furthermore, this platform has the potential for realizing miniaturized, cost-effective bioanalytical assays that complement currently established assays. PMID:19860382

  16. Fuzzy ARTMAP prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set.

    PubMed

    Andonie, Răzvan; Fabry-Asztalos, Levente; Abdul-Wahid, Christopher Badi'; Abdul-Wahid, Sarah; Barker, Grant I; Magill, Lukas C

    2011-01-01

    Obtaining satisfactory results with neural networks depends on the availability of large data samples. The use of small training sets generally reduces performance. Most classical Quantitative Structure-Activity Relationship (QSAR) studies for a specific enzyme system have been performed on small data sets. We focus on the neuro-fuzzy prediction of biological activities of HIV-1 protease inhibitory compounds when inferring from small training sets. We propose two computational intelligence prediction techniques which are suitable for small training sets, at the expense of some computational overhead. Both techniques are based on the FAMR model. The FAMR is a Fuzzy ARTMAP (FAM) incremental learning system used for classification and probability estimation. During the learning phase, each sample pair is assigned a relevance factor proportional to the importance of that pair. The two proposed algorithms in this paper are: 1) The GA-FAMR algorithm, which is new, consists of two stages: a) During the first stage, we use a genetic algorithm (GA) to optimize the relevances assigned to the training data. This improves the generalization capability of the FAMR. b) In the second stage, we use the optimized relevances to train the FAMR. 2) The Ordered FAMR is derived from a known algorithm. Instead of optimizing relevances, it optimizes the order of data presentation using the algorithm of Dagher et al. In our experiments, we compare these two algorithms with an algorithm not based on the FAM, the FS-GA-FNN introduced in [4], [5]. We conclude that when inferring from small training sets, both techniques are efficient, in terms of generalization capability and execution time. The computational overhead introduced is compensated by better accuracy. Finally, the proposed techniques are used to predict the biological activities of newly designed potential HIV-1 protease inhibitors. PMID:21071799

  17. Active site gating regulates substrate selectivity in a chymotrypsin-like serine protease. The structure of Haemophilus influenzae IgA1 protease†

    PubMed Central

    Johnson, Troy A.; Qiu, Jiazhou; Plaut, Andrew G.; Holyoak, Todd

    2009-01-01

    We report here the first structure of a member of the IgA protease family at 1.75Å resolution. This protease is a founding member of the Type V (autotransporter) secretion system and is considered a virulence determinant among the bacteria expressing the enzyme. The structure of the enzyme fits that of a classical autotransporter in which several unique domains necessary for protein function are appended to a central, 100 Å long β-helical domain. The N-terminal domain of the IgA protease is found to possess a chymotrypsin-like fold. However, this catalytic domain contains a unique loop D that extends over the active site acting as a lid, gating substrate access. The data presented provide a structural basis for the known ability of IgA proteases to only cleave the P/S/T rich hinge peptide unique to IgA1 in the context of the intact fold of the immunoglobulin. Based upon the structural data as well as molecular modeling, a model is presented that suggests the unique, extended loop D in this IgA protease sterically occludes the active site binding cleft in the absence of immunoglobulin binding. Only in the context of binding of the IgA1 immunoglobulin Fc domain in a valley formed between the N-terminal protease domain and another domain appended to the β-helix spine (domain-2) is the lid stabilized in an open conformation. The stabilization of this open conformation through Fc association subsequently allows access of the hinge peptide to the active site resulting in recognition and cleavage of the substrate. PMID:19393662

  18. HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts.

    PubMed

    Ye, Meiping; Sharma, Kavita; Thakur, Meghna; Smith, Alexis A; Buyuktanir, Ozlem; Xiang, Xuwu; Yang, Xiuli; Promnares, Kamoltip; Lou, Yongliang; Yang, X Frank; Pal, Utpal

    2016-08-01

    High-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity. PMID:27271745

  19. Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells

    PubMed Central

    Ovaa, Huib; Kessler, Benedikt M.; Rolén, Ulrika; Galardy, Paul J.; Ploegh, Hidde L.; Masucci, Maria G.

    2004-01-01

    The family of ubiquitin (Ub)-specific proteases (USP) removes Ub from Ub conjugates and regulates a variety of cellular processes. The human genome contains many putative USP-encoding genes, but little is known about USP tissue distribution, pattern of expression, activity, and substrate specificity. We have used a chemistry-based functional proteomics approach to identify active USPs in normal, virus-infected, and tumor-derived human cells. Depending on tissue origin and stage of activation/differentiation, different USP activity profiles were revealed. The activity of specific USPs, including USP5, -7, -9, -13, -15, and -22, was up-regulated by mitogen activation or virus infection in normal T and B lymphocytes. UCH-L1 was highly expressed in tumor cell lines of epithelial and hematopoietic cell origin but was not detected in freshly isolated and mitogen-activated cells. Up-regulation of this USP was a late event in the establishment of Epstein–Barr virus-immortalized lymphoblastoid cell lines and correlated with enhanced proliferation, suggesting a possible role in growth transformation. PMID:14982996

  20. Discovery of 2-aryloxy-4-amino-quinazoline derivatives as novel protease-activated receptor 2 (PAR2) antagonists.

    PubMed

    Cho, Nam-Chul; Cha, Ji Hyoun; Kim, Hyojin; Kwak, Jinsook; Kim, Dohee; Seo, Seung-Hwan; Shin, Ji-Sun; Kim, TaeHun; Park, Ki Duk; Lee, Jiyoun; No, Kyoung Tai; Kim, Yun Kyung; Lee, Kyung-Tae; Pae, Ae Nim

    2015-12-15

    Protease-activated receptor 2 (PAR2) is a member of G protein-coupled receptor and its activation initiates diverse inflammatory responses. Recent studies suggest that antagonists of PAR2 may provide a novel therapeutic strategy for inflammatory diseases. In this study, we have developed a series of 2-aryloxy-4-amino-quinazoline derivatives as PAR2 antagonists and examined their effects against LPS-induced inflammatory responses in RAW 264.7 macrophages. Among these derivatives, compound 2f displayed the greatest antagonistic activity with the IC50 value of 2.8μM. Binding modes of the newly identified PAR2 antagonists were analyzed by molecular docking using IFD/MM-GBSA methods in the putative binding site of PAR2 homology model. Moreover, 2f demonstrated significant inhibitory effects on the LPS-activated pro-inflammatory mediators including nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) through the regulation of various intracellular signaling pathways involving nuclear factor-κB (NF-κB), activator protein 1 (AP-1) and the mitogen-activated protein kinases (MAPK). Furthermore, administration of 2f significantly reduced the mortality of LPS-induced sepsis in mice. These results provide useful insights into the development of novel PAR2 antagonists with anti-inflammatory activity in vitro and in vivo. PMID:26631441

  1. An ethoxylated alkyl phosphate (anionic surfactant) for the promotion of activities of proteases and its potential use in the enzymatic processing of wool.

    PubMed

    Zhang, Qinghua; Smith, Edward; Shen, Jinsong; Bishop, David

    2006-05-01

    Pretreatments of wool fabrics with cationic, anionic or non-ionic surfactants were investigated to reduce surface tension and improve the wettability of the fibres in order to promote protease activity on the fibres in subsequent processes. Results showed that an ethoxylated alkyl phosphate (specific anionic surfactant) as well as the widely used non-ionic surfactant was compatible with proteases in the enzymatic treatment of wool. There is therefore a potential for using specific anionic surfactants to achieve efficient enzymatic scouring processes. PMID:16791726

  2. Active