Science.gov

Sample records for active protein phosphatase

  1. Methods to distinguish various types of protein phosphatase activity

    SciTech Connect

    Brautigan, D.L.; Shriner, C.L.

    1988-01-01

    To distinguish the action of protein Tyr(P) and protein Ser(P)/Thr(P) phosphatases on /sup 32/P-labeled phosphoproteins in subcellular fractions different inhibitors and activators are utilized. Comparison of the effects of added compounds provides a convenient, indirect method to characterize dephosphorylation reactions. Protein Tyr(P) phosphatases are specifically inhibited by micromolar Zn2+ or vanadate, and show maximal activity in the presence of EDTA. The other class of cellular phosphatases, specific for protein Ser(P) and Thr(P) residues, are inhibited by fluoride and EDTA. In this class of enzymes two major functional types can be distinguished: those sensitive to inhibition by the heat-stable protein inhibitor-2 and not stimulated by polycations, and those not sensitive to inhibition and stimulated by polycations. Preparation of /sup 32/P-labeled Tyr(P) and Ser(P) phosphoproteins also is presented for the direct measurement of phosphatase activities in preparations by the release of acid-soluble (/sup 32/P)phosphate.

  2. Centromeric binding and activity of Protein Phosphatase 4

    PubMed Central

    Lipinszki, Zoltan; Lefevre, Stephane; Savoian, Matthew S.; Singleton, Martin R.; Glover, David M.; Przewloka, Marcin R.

    2015-01-01

    The cell division cycle requires tight coupling between protein phosphorylation and dephosphorylation. However, understanding the cell cycle roles of multimeric protein phosphatases has been limited by the lack of knowledge of how their diverse regulatory subunits target highly conserved catalytic subunits to their sites of action. Phosphoprotein phosphatase 4 (PP4) has been recently shown to participate in the regulation of cell cycle progression. We now find that the EVH1 domain of the regulatory subunit 3 of Drosophila PP4, Falafel (Flfl), directly interacts with the centromeric protein C (CENP-C). Unlike other EVH1 domains that interact with proline-rich ligands, the crystal structure of the Flfl amino-terminal EVH1 domain bound to a CENP-C peptide reveals a new target-recognition mode for the phosphatase subunit. We also show that binding of Flfl to CENP-C is required to bring PP4 activity to centromeres to maintain CENP-C and attached core kinetochore proteins at chromosomes during mitosis. PMID:25562660

  3. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  4. Redox regulation of protein tyrosine phosphatase activity by hydroxyl radical.

    PubMed

    Meng, Fan-Guo; Zhang, Zhong-Yin

    2013-01-01

    Substantial evidence suggests that transient production of reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) is an important signaling event triggered by the activation of various cell surface receptors. Major targets of H(2)O(2) include protein tyrosine phosphatases (PTPs). Oxidation of the active site Cys by H(2)O(2) abrogates PTP catalytic activity, thereby potentially furnishing a mechanism to ensure optimal tyrosine phosphorylation in response to a variety of physiological stimuli. Unfortunately, H(2)O(2) is poorly reactive in chemical terms and the second order rate constants for the H(2)O(2)-mediated PTP inactivation are ~10M(-1)s(-1), which is too slow to be compatible with the transient signaling events occurring at the physiological concentrations of H(2)O(2). We find that hydroxyl radical is produced from H(2)O(2) solutions in the absence of metal chelating agent by the Fenton reaction. We show that the hydroxyl radical is capable of inactivating the PTPs and the inactivation is active site directed, through oxidation of the catalytic Cys to sulfenic acid, which can be reduced by low molecular weight thiols. We also show that hydroxyl radical is a kinetically more efficient oxidant than H(2)O(2) for inactivating the PTPs. The second-order rate constants for the hydroxyl radical-mediated PTP inactivation are at least 2-3 orders of magnitude higher than those mediated by H(2)O(2) under the same conditions. Thus, hydroxyl radical generated in vivo may serve as a more physiologically relevant oxidizing agent for PTP inactivation. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.

  5. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation

    PubMed Central

    Song, Gyun Jee; Kim, Jaehong; Kim, Jong-Heon; Song, Seungeun; Park, Hana; Zhang, Zhong-Yin

    2016-01-01

    Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases. PMID:27790059

  6. Sac phosphatase domain proteins.

    PubMed Central

    Hughes, W E; Cooke, F T; Parker, P J

    2000-01-01

    Advances in our understanding of the roles of phosphatidylinositol phosphates in controlling cellular functions such as endocytosis, exocytosis and the actin cytoskeleton have included new insights into the phosphatases that are responsible for the interconversion of these lipids. One of these is an entirely novel class of phosphatase domain found in a number of well characterized proteins. Proteins containing this Sac phosphatase domain include the yeast Saccharomyces cerevisiae proteins Sac1p and Fig4p. The Sac phosphatase domain is also found within the mammalian phosphoinositide 5-phosphatase synaptojanin and the yeast synaptojanin homologues Inp51p, Inp52p and Inp53p. These proteins therefore contain both Sac phosphatase and 5-phosphatase domains. This review describes the Sac phosphatase domain-containing proteins and their actions, with particular reference to the genetic and biochemical insights provided by study of the yeast Saccharomyces cerevisiae. PMID:10947947

  7. Protein kinase and phosphatase activities of thylakoid membranes

    SciTech Connect

    Michel, H.; Shaw, E.K.; Bennett, J.

    1987-01-01

    Dephosphorylation of the 25 and 27 kDa light-harvesting Chl a/b proteins (LHCII) of the thylakoid membranes is catalyzed by a phosphatase which differs from previously reported thylakoid-bound phosphatases in having an alkaline pH optimum (9.0) and a requirement for Mg/sup 2 +/ ions. Dephosphorylation of the 8.3 kDa psb H gene product requires a Mg/sup 2 +/ ion concentration more than 200 fold higher than that for dephosphorylation of LHC II. The 8.3 kDa and 27 kDa proteins appear to be phosphorylated by two distinct kinases, which differ in substrate specificity and sensitivity to inhibitors. The plastoquinone antagonist 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB) inhibits phosphorylation of the 27 kDa LHC II much more readily than phosphorylation of the 8.3 kDa protein. A similar pattern of inhibition is seen for two synthetic oligopeptides (MRKSATTKKAVC and ATQTLESSSRC) which are analogs of the phosphorylation sites of the two proteins. Possible modes of action of DBMIB are discussed. 45 refs., 7 figs., 3 tabs.

  8. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  9. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases

    PubMed Central

    Weber, Silvio; Meyer-Roxlau, Stefanie; Wagner, Michael; Dobrev, Dobromir; El-Armouche, Ali

    2015-01-01

    Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth. PMID:26617522

  10. Purification of a protein phosphatase from Acanthamoeba that dephosphorylates and activates myosin II.

    PubMed

    McClure, J A; Korn, E D

    1983-12-10

    The actin-activated ATPase activity of myosin II from Acanthamoeba castellanii is inhibited by phosphorylation of 3 serine residues near the carboxyl end of the heavy chain of the molecule. We have purified a protein phosphatase from Acanthamoeba using myosin II as a substrate. This phosphatase has a molecular weight of 39,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point in urea of 5.2. The enzyme also is active against other phosphoserine protein substrates such as turkey gizzard smooth muscle myosin light chain, but not against a synthetic phosphotyrosine protein substrate. It does not hydrolyze ATP or p-nitrophenol phosphate. No effector has been found to increase substantially the activity of the enzyme as isolated, but it is inhibited by ATP, pyrophosphate, and NaF. This inhibition is reduced in the presence of MnCl2. The Mg2+-dependent actin-activated ATPase of myosin II is activated by dephosphorylation of phosphorylated myosin II by the phosphatase. Its broad substrate specificity, molecular weight, and response to protein phosphatase inhibitors suggest that the Acanthamoeba protein phosphatase is a type 2A phosphatase (Cohen, P. (1982) Nature (Lond.) 206, 613-620).

  11. Activation of Mitochondrial Protein Phosphatase SLP2 by MIA40 Regulates Seed Germination1[OPEN

    PubMed Central

    Tang, Lay-Yin; Goudreault, Marilyn; Yeung, Edward; Gingras, Anne-Claude; Samuel, Marcus A.

    2017-01-01

    Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase. PMID:27923987

  12. The yeast regulator of transcription protein Rtr1 lacks an active site and phosphatase activity.

    PubMed

    Xiang, Kehui; Manley, James L; Tong, Liang

    2012-07-10

    The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of Kluyveromyces lactis Rtr1, which reveals a new type of zinc finger protein and does not have any close structural homologues. Importantly, the structure does not show evidence of an active site, and extensive experiments to demonstrate its CTD phosphatase activity have been unsuccessful, suggesting that Rtr1 has a non-catalytic role in CTD dephosphorylation.

  13. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  14. MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein.

    PubMed

    Masuda, K; Shima, H; Watanabe, M; Kikuchi, K

    2001-10-19

    Mitogen-activated protein kinase (MAPK) phosphatases (MKPs) negatively regulate MAPK activity. In the present study, we have identified a novel MKP, designated MKP-7, and mapped it to human chromosome 12p12. MKP-7 possesses a long C-terminal stretch containing both a nuclear export signal and a nuclear localization signal, in addition to the rhodanese-like domain and the dual specificity phosphatase catalytic domain, both of which are conserved among MKP family members. When expressed in mammalian cells MKP-7 protein was localized exclusively in the cytoplasm, but this localization became exclusively nuclear following leptomycin B treatment or introduction of a mutation in the nuclear export signal. These findings indicate that MKP-7 is the first identified leptomycin B-sensitive shuttle MKP. Forced expression of MKP-7 suppressed activation of MAPKs in COS-7 cells in the order of selectivity, JNK p38 > ERK. Furthermore, a mutant form MKP-7 functioned as a dominant negative particularly against the dephosphorylation of JNK, suggesting that MKP-7 works as a JNK-specific phosphatase in vivo. Co-immunoprecipitation experiments and histological analysis suggested that MKP-7 determines the localization of MAPKs in the cytoplasm.

  15. Zinc ions modulate protein tyrosine phosphatase 1B activity.

    PubMed

    Bellomo, Elisa; Massarotti, Alberto; Hogstrand, Christer; Maret, Wolfgang

    2014-07-01

    Protein tyrosine phosphatases (PTPs) are key enzymes in cellular regulation. The 107 human PTPs are regulated by redox signalling, phosphorylation, dimerisation, and proteolysis. Recent findings of very strong inhibition of some PTPs by zinc ions at concentrations relevant in a cellular environment suggest yet another mechanism of regulation. One of the most extensively investigated PTPs is PTP1B (PTPN1). It regulates the insulin and leptin signalling pathway and is implicated in cancer and obesity/diabetes. The development of novel assay conditions to investigate zinc inhibition of PTP1B provides estimates of about 5.6 nM affinity for inhibitory zinc(II) ions. Analysis of three PTP1B 3D structures (PDB id: 2CM2, 3I80 and 1A5Y) identified putative zinc binding sites and supports the kinetic studies in suggesting an inhibitory zinc only in the closed and cysteinyl-phosphate intermediate forms of the enzyme. These observations gain significance with regard to recent findings of regulatory roles of zinc ions released from the endoplasmic reticulum.

  16. Determinants of the tumor suppressor INPP4B protein and lipid phosphatase activities.

    PubMed

    Lopez, Sandra M; Hodgson, Myles C; Packianathan, Charles; Bingol-Ozakpinar, Ozlem; Uras, Fikriye; Rosen, Barry P; Agoulnik, Irina U

    2013-10-18

    The tumor suppressor INPP4B is an important regulator of phosphatidyl-inositol signaling in the cell. Reduced INPP4B expression is associated with poor outcomes for breast, prostate, and ovarian cancer patients. INPP4B contains a CX5R catalytic motif characteristic of dual-specificity phosphatases, such as PTEN. Lipid phosphatase activity of INPP4B has previously been described. In this report we show that INPP4B can dephosphorylate para-nitrophenyl phosphate (pNPP) and 6,8-difluoro-4-methylumbelliferyl (DiFMUP), synthetic phosphotyrosine analogs, suggesting that INPP4B has protein tyrosine phosphatase (PTP) activity. Using mutagenesis, we examined the functional role of specific amino acids within the INPP4B C842KSAKDR catalytic site. The K843M mutant displayed increased pNPP hydrolysis, the K846M mutant lost lipid phosphatase activity with no effect on PTP activity, and the D847E substitution ablated PTP activity and significantly reduced lipid phosphatase activity. Further, we show that INPP4B but not PTEN is able to reduce tyrosine phosphorylation of Akt1 and both the lipid and PTP activity of INPP4B likely contribute to the reduction of Akt1 phosphorylation. Taken together our data identified key residues in the INPP4B catalytic domain associated with lipid and protein phosphatase activities and found a robust downstream target regulated by INPP4B but not PTEN.

  17. Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism

    PubMed Central

    Haslbeck, Veronika; Drazic, Adrian; Eckl, Julia M.; Alte, Ferdinand; Helmuth, Martin; Popowicz, Grzegorz; Schmidt, Werner; Braun, Frank; Weiwad, Matthias; Fischer, Gunter; Gemmecker, Gerd; Sattler, Michael; Striggow, Frank; Groll, Michael; Richter, Klaus

    2015-01-01

    Protein phosphatase 5 (PP5) is an evolutionary conserved serine/threonine phosphatase. Its dephosphorylation activity modulates a diverse set of cellular factors including protein kinases and the microtubule-associated tau protein involved in neurodegenerative disorders. It is auto-regulated by its heat-shock protein (Hsp90)-interacting tetratricopeptide repeat (TPR) domain and its C-terminal α-helix. In the present study, we report the identification of five specific PP5 activators [PP5 small-molecule activators (P5SAs)] that enhance the phosphatase activity up to 8-fold. The compounds are allosteric modulators accelerating efficiently the turnover rate of PP5, but do barely affect substrate binding or the interaction between PP5 and the chaperone Hsp90. Enzymatic studies imply that the compounds bind to the phosphatase domain of PP5. For the most promising compound crystallographic comparisons of the apo PP5 and the PP5–P5SA-2 complex indicate a relaxation of the auto-inhibited state of PP5. Residual electron density and mutation analyses in PP5 suggest activator binding to a pocket in the phosphatase/TPR domain interface, which may exert regulatory functions. These compounds thus may expose regulatory mechanisms in the PP5 enzyme and serve to develop optimized activators based on these scaffolds. PMID:26182372

  18. Sucrose increases calcium-dependent protein kinase and phosphatase activities in potato plants.

    PubMed

    Raíces, M; MacIntosh, G C; Ulloa, R M; Gargantini, P R; Vozza, N F; Téllez-Inón, M T

    2003-09-01

    The effect of sucrose on tuber formation, calcium-dependent protein kinase (CDPK) and phosphatase activities was analysed using in vitro cultured potato plants. In short treatments, sucrose induced CDPK and phosphatase activities. In long treatments, sucrose induced tuber formation in the absence of other tuber inducing stimuli. Sorbitol caused a minor increase in CDPK activity and affected plant morphology but did not induce tuber development. The addition of the protein kinase inhibitor Staurosporine precluded sucrose-induced tuberization. Altogether, our results suggest that phosphorylation/dephosphorylation events are involved in sucrose-induced tuber development.

  19. Protein Phosphatases Decrease Their Activity during Capacitation: A New Requirement for This Event

    PubMed Central

    Signorelli, Janetti R.; Díaz, Emilce S.; Fara, Karla; Barón, Lina; Morales, Patricio

    2013-01-01

    There are few reports on the role of protein phosphatases during capacitation. Here, we report on the role of PP2B, PP1, and PP2A during human sperm capacitation. Motile sperm were resuspended in non-capacitating medium (NCM, Tyrode's medium, albumin- and bicarbonate-free) or in reconstituted medium (RCM, NCM plus 2.6% albumin/25 mM bicarbonate). The presence of the phosphatases was evaluated by western blotting and the subcellular localization by indirect immunofluorescence. The function of these phosphatases was analyzed by incubating the sperm with specific inhibitors: okadaic acid, I2, endothall, and deltamethrin. Different aliquots were incubated in the following media: 1) NCM; 2) NCM plus inhibitors; 3) RCM; and 4) RCM plus inhibitors. The percent capacitated sperm and phosphatase activities were evaluated using the chlortetracycline assay and a phosphatase assay kit, respectively. The results confirm the presence of PP2B and PP1 in human sperm. We also report the presence of PP2A, specifically, the catalytic subunit and the regulatory subunits PR65 and B. PP2B and PP2A were present in the tail, neck, and postacrosomal region, and PP1 was present in the postacrosomal region, neck, middle, and principal piece of human sperm. Treatment with phosphatase inhibitors rapidly (≤1 min) increased the percent of sperm depicting the pattern B, reaching a maximum of ∼40% that was maintained throughout incubation; after 3 h, the percent of capacitated sperm was similar to that of the control. The enzymatic activity of the phosphatases decreased during capacitation without changes in their expression. The pattern of phosphorylation on threonine residues showed a sharp increase upon treatment with the inhibitors. In conclusion, human sperm express PP1, PP2B, and PP2A, and the activity of these phosphatases decreases during capacitation. This decline in phosphatase activities and the subsequent increase in threonine phosphorylation may be an important requirement for the

  20. Partial purification and characterization of an enzyme from pea nuclei with protein tyrosine phosphatase activity.

    PubMed Central

    Guo, Y L; Roux, S J

    1995-01-01

    A pea (Pisum sativum L.) nuclear enzyme with protein tyrosine phosphatase activity has been partially purified and characterized. The enzyme has a molecular mass of 90 kD as judged by molecular sieve column chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Like animal protein tyrosine phosphatases it can be inhibited by low concentrations of molybdate and vanadate. It is also inhibited by heparin and spermine but not by either the acid phosphatase inhibitors citrate and tartrate or the protein serine/threonine phosphatase inhibitor okadaic acid. The enzyme does not require Ca2+, Mg2+, or Mn2+ for its activity but is stimulated by ethylenediaminetetraacetate and by ethyleneglycolbis(beta-aminoethyl ether)-N,N'-tetraacetic acid. It dephosphorylates phosphotyrosine residues on the four different 32P-tyrosine-labeled peptides tested but not the phosphoserine/threonine residues on casein and histone. Like some animal protein tyrosine phosphatases, it has a variable pH optimum depending on the substrate used: the optimum is 5.5 when the substrate is [32P]tyrosine-labeled lysozyme, but it is 7.0 when the substrate is [32P]tyrosine-labeled poly(glutamic acid, tyrosine). It has a Km of 4 microM when the lysozyme protein is used as a substrate. PMID:11536662

  1. Activation of DNA-PK by Ionizing Radiation Is Mediated by Protein Phosphatase 6

    PubMed Central

    Mi, Jun; Dziegielewski, Jaroslaw; Bolesta, Elzbieta; Brautigan, David L.; Larner, James M.

    2009-01-01

    DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA damage repair, especially in non-homologous end-joining repair of double-strand breaks such as those formed by ionizing radiation (IR) in the course of radiation therapy. Regulation of DNA-PK involves multisite phosphorylation but this is incompletely understood and little is known about protein phosphatases relative to DNA-PK. Mass spectrometry analysis revealed that DNA-PK interacts with the protein phosphatase-6 (PP6) SAPS subunit PP6R1. PP6 is a heterotrimeric enzyme that consists of a catalytic subunit, plus one of three PP6 SAPS regulatory subunits and one of three ankyrin repeat subunits. Endogenous PP6R1 co-immunoprecipitated DNA-PK, and IR enhanced the amount of complex and promoted its import into the nucleus. In addition, siRNA knockdown of either PP6R1 or PP6 significantly decreased IR activation of DNA-PK, suggesting that PP6 activates DNA-PK by association and dephosphorylation. Knockdown of other phosphatases PP5 or PP1γ1 and subunits PP6R3 or ARS-A did not reduce IR activation of DNA-PK, demonstrating specificity for PP6R1. Finally, siRNA knockdown of PP6R1 or PP6 but not other phosphatases increased the sensitivity of glioblastoma cells to radiation-induced cell death to a level similar to DNA-PK deficient cells. Our data demonstrate that PP6 associates with and activates DNA-PK in response to ionizing radiation. Therefore, the PP6/PP6R1 phosphatase is a potential molecular target for radiation sensitization by chemical inhibition. PMID:19198648

  2. Activation of SPS from darkened spinach leaves by an endogenous protein phosphatase

    SciTech Connect

    Huber, S.C.; Huber, J.L. )

    1990-05-01

    Sucrose-phosphate synthase from darkened spinach leaves has a low activation state but can undergo a time-dependent activation in desalted leaf extracts that is inhibited by Pi, molybdate, okadaic acid and vanadate, but stimulated by fluoride. SPS labeled in vivo with ({sup 32}P)Pi in excised leaves in the dark loses incorporated {sup 32}P with time when extracts are incubated at 25{degree}C. This loss is largely prevented by vanadate, suggesting that an endogenous protein phosphatase can use SPS as substrate. Changes in phosphorylation state are closely paralleled by changes in SPS activation state. The spontaneous activation achieved in the extracts can be reversed by addition of 2 mM MgATP. Feeding okadaic acid to darkened leaves prevents light activation of SPS suggesting that the endogenous protein phosphatase is similar to the type-1 enzyme of animal tissues. Overall, the results are consistent with the notion that light activation of SPS involves dephosphorylation of inhibitory phosphorylation site(s). Regulation of the protein phosphatase by Pi may be of physiological significance.

  3. A subset of RAB proteins modulates PP2A phosphatase activity.

    PubMed

    Sacco, Francesca; Mattioni, Anna; Boldt, Karsten; Panni, Simona; Santonico, Elena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2016-09-09

    Protein phosphatase 2A (PP2A) is one of the most abundant serine-threonine phosphatases in mammalian cells. PP2A is a hetero-trimeric holoenzyme participating in a variety of physiological processes whose deregulation is often associated to cancer. The specificity and activity of this phosphatase is tightly modulated by a family of regulatory B subunits that dock the catalytic subunit to the substrates. Here we characterize a novel and unconventional molecular mechanism controlling the activity of the tumor suppressor PP2A. By applying a mass spectrometry-based interactomics approach, we identified novel PP2A interacting proteins. Unexpectedly we found that a significant number of RAB proteins associate with the PP2A scaffold subunit (PPP2R1A), but not with the catalytic subunit (PPP2CA). Such interactions occur in vitro and in vivo in specific subcellular compartments. Notably we demonstrated that one of these RAB proteins, RAB9, competes with the catalytic subunit PPP2CA in binding to PPP2R1A. This competitive association has an important role in controlling the PP2A catalytic activity, which is compromised in several solid tumors and leukemias.

  4. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  5. α1-Antitrypsin Activates Protein Phosphatase 2A to Counter Lung Inflammatory Responses

    PubMed Central

    Geraghty, Patrick; Eden, Edward; Pillai, Manju; Campos, Michael; McElvaney, Noel G.

    2014-01-01

    Rationale: α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease. Objectives: Given their common effects, this study investigated whether A1AT acts via PP2A to alter tumor necrosis factor (TNF) signaling, inflammation, and proteolytic responses in this disease. Methods: PP2A activity was measured in peripheral blood neutrophils from A1AT-deficient (PiZZ) and healthy (PiMM) individuals and in alveolar macrophages from normal (60 mg/kg) and high-dose (120 mg/kg) A1AT-treated PiZZ subjects. PP2A activation was assessed in human neutrophils, airway epithelial cells, and peripheral blood monocytes treated with plasma purified A1AT protein. Similarly, lung PP2A activity was measured in mice administered intranasal A1AT. PP2A was silenced in lung epithelial cells treated with A1AT and matrix metalloproteinase and cytokine production was then measured following TNF-α stimulation. Measurements and Main Results: PP2A was significantly lower in neutrophils isolated from PiZZ compared with PiMM subjects. A1AT protein activated PP2A in human alveolar macrophages, monocytes, neutrophils, airway epithelial cells, and in mouse lungs. This activation required functionally active A1AT protein and protein tyrosine phosphatase 1B expression. A1AT treatment acted via PP2A to prevent p38 and IκBα phosphorylation and matrix metalloproteinase and cytokine induction in TNF-α–stimulated epithelial cells. Conclusions: Together, these data indicate that A1AT modulates PP2A to counter inflammatory and proteolytic responses induced by TNF signaling in the lung. PMID:25341065

  6. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  7. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  8. Insulin-receptor phosphotyrosyl-protein phosphatases.

    PubMed Central

    King, M J; Sale, G J

    1988-01-01

    Calmodulin-dependent protein phosphatase has been proposed to be an important phosphotyrosyl-protein phosphatase. The ability of the enzyme to attack autophosphorylated insulin receptor was examined and compared with the known ability of the enzyme to act on autophosphorylated epidermal-growth-factor (EGF) receptor. Purified calmodulin-dependent protein phosphatase was shown to catalyse the complete dephosphorylation of phosphotyrosyl-(insulin receptor). When compared at similar concentrations, 32P-labelled EGF receptor was dephosphorylated at greater than 3 times the rate of 32P-labelled insulin receptor; both dephosphorylations exhibited similar dependence on metal ions and calmodulin. Native phosphotyrosyl-protein phosphatases in cell extracts were also characterized. With rat liver, heart or brain, most (75%) of the native phosphatase activity against both 32P-labelled insulin and EGF receptors was recovered in the particulate fraction of the cell, with only 25% in the soluble fraction. This subcellular distribution contrasts with results of previous studies using artificial substrates, which found most of the phosphotyrosyl-protein phosphatase activity in the soluble fraction of the cell. Properties of particulate and soluble phosphatase activity against 32P-labelled insulin and EGF receptors are reported. The contribution of calmodulin-dependent protein phosphatase activity to phosphotyrosyl-protein phosphatase activity in cell fractions was determined by utilizing the unique metal-ion dependence of calmodulin-dependent protein phosphatase. Whereas Ni2+ (1 mM) markedly activated the calmodulin-dependent protein phosphatase, it was found to inhibit potently both particulate and soluble phosphotyrosyl-protein phosphatase activity. In fractions from rat liver, brain and heart, total phosphotyrosyl-protein phosphatase activity against both 32P-labelled receptors was inhibited by 99.5 +/- 6% (mean +/- S.E.M., 30 observations) by Ni2+. Results of Ni2+ inhibition

  9. [Protein phosphatases: structure and function].

    PubMed

    Bulanova, E G; Budagian, V M

    1994-01-01

    The process of protein and enzyme systems phosphorylation is necessary for cell growth, differentiation and preparation for division and mitosis. The conformation changes of protein as a result of phosphorylation lead to increased enzyme activity and enhanced affinity to substrates. A large group of enzymes--protein kinases--is responsible for phosphorylation process in cell, which are divided into tyrosine- and serine-threonine-kinases depending on their ability to phosphorylate appropriate amino acid residues. In this review has been considered the functional importance and structure of protein phosphatases--enzymes, which are functional antagonists of protein kinases.

  10. INHIBITION OF PROTEIN TYROSINE PHOSPHATASE ACTIVITY MEDIATES EPIDERMAL GROWTH FACTOR RECEPTOR SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    Epidemiological studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads t...

  11. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades

    PubMed Central

    Jiang, Cheng-shi; Liang, Lin-fu; Guo, Yue-wei

    2012-01-01

    This article provides an overview of approximately 300 secondary metabolites with inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), which were isolated from various natural sources or derived from synthetic process in the last decades. The structure-activity relationship and the selectivity of some compounds against other protein phosphatases were also discussed. Potential pharmaceutical applications of several PTP1B inhibitors were presented. PMID:22941286

  12. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress

    PubMed Central

    Topolska-Woś, Agnieszka M.; Shell, Steven M.; Kilańczyk, Ewa; Szczepanowski, Roman H.; Chazin, Walter J.; Filipek, Anna

    2015-01-01

    CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.—Topolska-Woś, A. M., Shell, S. M., Kilańczyk, E., Szczepanowski, R. H., Chazin, W. J., Filipek, A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. PMID:25609429

  13. Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation.

    PubMed

    Basu, Swarna; Campagnola, Paul J

    2004-01-01

    We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.

  14. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  15. Protein-tyrosine phosphatase activity regulates osteoclast formation and function: inhibition by alendronate.

    PubMed Central

    Schmidt, A; Rutledge, S J; Endo, N; Opas, E E; Tanaka, H; Wesolowski, G; Leu, C T; Huang, Z; Ramachandaran, C; Rodan, S B; Rodan, G A

    1996-01-01

    Alendronate (ALN), an aminobisphosphonate used in the treatment of osteoporosis, is a potent inhibitor of bone resorption. Its molecular target is still unknown. This study examines the effects of ALN on the activity of osteoclast protein-tyrosine phosphatase (PTP; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), called PTPepsilon. Using osteoclast-like cells generated by coculturing mouse bone marrow cells with mouse calvaria osteoblasts, we found by molecular cloning and RNA blot hybridization that PTPepsilon is highly expressed in osteoclastic cells. A purified fusion protein of PTPepsilon expressed in bacteria was inhibited by ALN with an IC50 of 2 microM. Other PTP inhibitors--orthovanadate and phenylarsine oxide (PAO)-inhibited PTPepsilon with IC50 values of 0.3 microM and 18 microM, respectively. ALN and another bisphosphonate, etidronate, also inhibited the activities of other bacterially expressed PTPs such as PTPsigma and CD45 (also called leukocyte common antigen). The PTP inhibitors ALN, orthovanadate, and PAO suppressed in vitro formation of multinucleated osteoclasts from osteoclast precursors and in vitro bone resorption by isolated rat osteoclasts (pit formation) with estimated IC50 values of 10 microM, 3 microM, and 0.05 microM, respectively. These findings suggest that tyrosine phosphatase activity plays an important role in osteoclast formation and function and is a putative molecular target of bisphosphonate action. Images Fig. 2 Fig. 3 PMID:8610169

  16. Stress-activated protein kinase-mediated down-regulation of the cell integrity pathway mitogen-activated protein kinase Pmk1p by protein phosphatases.

    PubMed

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Gacto, Mariano; Cansado, José

    2007-11-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process.

  17. Stress-activated Protein Kinase-mediated Down-Regulation of the Cell Integrity Pathway Mitogen-activated Protein Kinase Pmk1p by Protein Phosphatases

    PubMed Central

    Madrid, Marisa; Núñez, Andrés; Soto, Teresa; Vicente-Soler, Jero; Cansado, José

    2007-01-01

    Fission yeast mitogen-activated protein kinase (MAPK) Pmk1p is involved in morphogenesis, cytokinesis, and ion homeostasis as part of the cell integrity pathway, and it becomes activated under multiple stresses, including hyper- or hypotonic conditions, glucose deprivation, cell wall-damaging compounds, and oxidative stress. The only protein phosphatase known to dephosphorylate and inactivate Pmk1p is Pmp1p. We show here that the stress-activated protein kinase (SAPK) pathway and its main effector, Sty1p MAPK, are essential for proper deactivation of Pmk1p under hypertonic stress in a process regulated by Atf1p transcription factor. We demonstrate that tyrosine phosphatases Pyp1p and Pyp2p, and serine/threonine phosphatase Ptc1p, that negatively regulate Sty1p activity and whose expression is dependent on Sty1p-Atf1p function, are involved in Pmk1p dephosphorylation under osmostress. Pyp1p and Ptc1p, in addition to Pmp1p, also control the basal level of MAPK Pmk1p activity in growing cells and associate with, and dephosphorylate Pmk1p both in vitro and in vivo. Our results with Ptc1p provide the first biochemical evidence for a PP2C-type phosphatase acting on more than one MAPK in yeast cells. Importantly, the SAPK-dependent down-regulation of Pmk1p through Pyp1p, Pyp2p, and Ptc1p was not complete, and Pyp1p and Ptc1p phosphatases are able to negatively regulate MAPK Pmk1p activity by an alternative regulatory mechanism. Our data also indicate that Pmk1p phosphorylation oscillates as a function of the cell cycle, peaking at cell separation during cytokinesis, and that Pmp1p phosphatase plays a main role in regulating this process. PMID:17761528

  18. Purification and characterization of protein phosphatase 2C in rat parotid acinar cells: two forms of Mg(2+)-activated histone phosphatase and phosphorylation by cAMP-dependent protein kinase.

    PubMed

    Yokoyama, N; Kobayashi, T; Tamura, S; Sugiya, H

    1996-07-01

    Two forms of Mg(2+)-activated histone phosphatase activities were partially purified from rat parotid acinar cells using Mono Q and gel filtration chromatography. Both enzymes activities were dependent on the presence of Mg2+, showing little activity in the presence of EDTA. The activities fractionated on the Mono Q column into two peaks: the first was a minor peak of histone phosphatase activity; the second was a major peak. These two peaks eluted at distinct positions on the gel filtration column. The molecular masses of the two peak fractions corresponded to 46 and 55 kDa, respectively on SDS-gels. The first 46-kDa peak immunoreacted with anti-PP2Calpha phosphatase antibody and like PP2Calpha phosphatase could be phosphorylated by cAMP-dependent protein kinase. The second 55-kDa peak showed neither reactivity with anti-PP2Calpha phosphatase antibody nor phosphorylability by cAMP-dependent protein kinase, but retained a Mg2+ or Mn2+ dependence for its histone phosphatase activity. Ca2+ showed a strong inhibition on this activity. On the basis of these observations, we have identified the first peak enzyme as PP2Calpha phosphatase and the second peak as a novel PP2C-like phosphatase.

  19. Protein phosphatase 2A regulates interleukin-2 receptor complex formation and JAK3/STAT5 activation.

    PubMed

    Ross, Jeremy A; Cheng, Hanyin; Nagy, Zsuzsanna S; Frost, Jeffrey A; Kirken, Robert A

    2010-02-05

    Reversible protein phosphorylation plays a key role in interleukin-2 (IL-2) receptor-mediated activation of Janus tyrosine kinase 3 (JAK3) and signal transducer and activator of transcription 5 (STAT5) in lymphocytes. Although the mechanisms governing IL-2-induced tyrosine phosphorylation and activation of JAK3/STAT5 have been extensively studied, the role of serine/threonine phosphorylation in controlling these effectors remains to be elucidated. Using phosphoamino acid analysis, JAK3 and STAT5 were determined to be serine and tyrosine-phosphorylated in response to IL-2 stimulation of the human natural killer-like cell line, YT. IL-2 stimulation also induced serine/threonine phosphorylation of IL-2Rbeta, but not IL-2Rgamma. To investigate the regulation of serine/threonine phosphorylation in IL-2 signaling, the roles of protein phosphatase 1 (PP1) and 2A (PP2A) were examined. Inhibition of phosphatase activity by calyculin A treatment of YT cells resulted in a significant induction of serine phosphorylation of JAK3 and STAT5, and serine/threonine phosphorylation of IL-2Rbeta. Moreover, inhibition of PP2A, but not PP1, diminished IL-2-induced tyrosine phosphorylation of IL-2Rbeta, JAK3, and STAT5, and abolished STAT5 DNA binding activity. Serine/threonine phosphorylation of IL-2Rbeta by a staurosporine-sensitive kinase also blocked its association with JAK3 and IL-2Rgamma in YT cells. Taken together, these data indicate that serine/threonine phosphorylation negatively regulates IL-2 signaling at multiple levels, including receptor complex formation and JAK3/STAT5 activation, and that this regulation is counteracted by PP2A. These findings also suggest that PP2A may serve as a therapeutic target for modulating JAK3/STAT5 activation in human disease.

  20. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  1. Target-specific control of lymphoid-specific protein tyrosine phosphatase (Lyp) activity

    PubMed Central

    Walton, Zandra E.; Bishop, Anthony C.

    2010-01-01

    Lymphoid-specific protein tyrosine phosphatase (Lyp), a member of the protein tyrosine phosphatase (PTP) superfamily of enzymes, is an important mediator of human-leukocyte signaling. Lyp has also emerged as a potential anti-autoimmune therapeutic target, owing to the association of a Lyp-activating mutation with an array of autoimmune disorders. Toward the goal of generating a selective inhibitor of Lyp activity that could be used for investigating Lyp’s roles in cell signaling and autoimmune-disease progression, here we report that Lyp’s PTP domain can be readily sensitized to target-specific inhibition by a cell-permeable small molecule. Insertion of a tetracysteine-motif-containing peptide at a conserved position in Lyp’s catalytic domain generated a mutant enzyme (Lyp-CCPGCC) that retains activity comparable to that of wild-type Lyp in the absence of added ligand. Upon addition of a tetracysteine-targeting biarsenical compound (FlAsH), however, the activity of the Lyp-CCPGCC drops dramatically, as assayed with either small-molecule or phosphorylated-peptide PTP substrates. We show that FlAsH-induced Lyp-CCPGCC inhibition is potent, specific, rapid, and independent of the nature of the PTP substrate used in the inhibition assay. Moreover, we show that FlAsH can be used to specifically target overexpressed Lyp-CCPGCC in a complex proteomic mixture. Since the mammalian-cell permeability of FlAsH is well established, it is likely that FlAsH-mediated inhibition of Lyp-CCPGCC will be useful for specifically targeting Lyp activity in engineered leukocytes and autoimmune-disease models. PMID:20594861

  2. Genetic and chemical reductions in protein phosphatase activity alter auxin transport, gravity response, and lateral root growth

    NASA Technical Reports Server (NTRS)

    Rashotte, A. M.; DeLong, A.; Muday, G. K.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin transport is required for important growth and developmental processes in plants, including gravity response and lateral root growth. Several lines of evidence suggest that reversible protein phosphorylation regulates auxin transport. Arabidopsis rcn1 mutant seedlings exhibit reduced protein phosphatase 2A activity and defects in differential cell elongation. Here we report that reduced phosphatase activity alters auxin transport and dependent physiological processes in the seedling root. Root basipetal transport was increased in rcn1 or phosphatase inhibitor-treated seedlings but showed normal sensitivity to the auxin transport inhibitor naphthylphthalamic acid (NPA). Phosphatase inhibition reduced root gravity response and delayed the establishment of differential auxin-induced gene expression across a gravity-stimulated root tip. An NPA treatment that reduced basipetal transport in rcn1 and cantharidin-treated wild-type plants also restored a normal gravity response and asymmetric auxin-induced gene expression, indicating that increased basipetal auxin transport impedes gravitropism. Increased auxin transport in rcn1 or phosphatase inhibitor-treated seedlings did not require the AGR1/EIR1/PIN2/WAV6 or AUX1 gene products. In contrast to basipetal transport, root acropetal transport was normal in phosphatase-inhibited seedlings in the absence of NPA, although it showed reduced NPA sensitivity. Lateral root growth also exhibited reduced NPA sensitivity in rcn1 seedlings, consistent with acropetal transport controlling lateral root growth. These results support the role of protein phosphorylation in regulating auxin transport and suggest that the acropetal and basipetal auxin transport streams are differentially regulated.

  3. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

    PubMed

    Kissmehl, R; Treptau, T; Hofer, H W; Plattner, H

    1996-07-01

    In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA

  4. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  5. Cell cycle regulation and p53 activation by protein phosphatase 2C alpha.

    PubMed

    Ofek, Paula; Ben-Meir, Daniella; Kariv-Inbal, Zehavit; Oren, Moshe; Lavi, Sara

    2003-04-18

    Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates, regulating stress response and growth-related pathways in both prokaryotes and eukaryotes. We now demonstrate that PP2C alpha, a major mammalian isoform, inhibits cell growth and activates the p53 pathway. In 293 cell clones, in which PP2C alpha expression is regulated by a tetracycline-inducible promoter, PP2C alpha overexpression led to G(2)/M cell cycle arrest and apoptosis. Furthermore, PP2C alpha induced the expression of endogenous p53 and the p53-responsive gene p21. Activation of the p53 pathway by PP2C alpha took place both in cells harboring endogenous p53, as well as in p53-null cells transfected with exogenous p53. Induction of PP2C alpha resulted in an increase in the overall levels of p53 protein as well as an augmentation of p53 transcription activity. The dephosphorylation activity of PP2C alpha is essential to the described phenomena, as none of these effects was detected when an enzymatically inactive PP2C alpha mutant was overexpressed. p53 plays an important role in PP2C alpha-directed cell cycle arrest and apoptosis because perturbation of p53 expression in human 293 cells by human papillomavirus E6 led to a significant increase in cell survival. The role of PP2C alpha in p53 activation is discussed.

  6. Protein tyrosine phosphatases as potential therapeutic targets

    PubMed Central

    He, Rong-jun; Yu, Zhi-hong; Zhang, Ruo-yu; Zhang, Zhong-yin

    2014-01-01

    Protein tyrosine phosphorylation is a key regulatory process in virtually all aspects of cellular functions. Dysregulation of protein tyrosine phosphorylation is a major cause of human diseases, such as cancers, diabetes, autoimmune disorders, and neurological diseases. Indeed, protein tyrosine phosphorylation-mediated signaling events offer ample therapeutic targets, and drug discovery efforts to date have brought over two dozen kinase inhibitors to the clinic. Accordingly, protein tyrosine phosphatases (PTPs) are considered next-generation drug targets. For instance, PTP1B is a well-known targets of type 2 diabetes and obesity, and recent studies indicate that it is also a promising target for breast cancer. SHP2 is a bona-fide oncoprotein, mutations of which cause juvenile myelomonocytic leukemia, acute myeloid leukemia, and solid tumors. In addition, LYP is strongly associated with type 1 diabetes and many other autoimmune diseases. This review summarizes recent findings on several highly recognized PTP family drug targets, including PTP1B, Src homology phosphotyrosyl phosphatase 2(SHP2), lymphoid-specific tyrosine phosphatase (LYP), CD45, Fas associated phosphatase-1 (FAP-1), striatal enriched tyrosine phosphatases (STEP), mitogen-activated protein kinase/dual-specificity phosphatase 1 (MKP-1), phosphatases of regenerating liver-1 (PRL), low molecular weight PTPs (LMWPTP), and CDC25. Given that there are over 100 family members, we hope this review will serve as a road map for innovative drug discovery targeting PTPs. PMID:25220640

  7. Attenuation of ribosomal protein S6 phosphatase activity in chicken embryo fibroblasts transformed by Rous sarcoma virus.

    PubMed Central

    Belandia, B; Brautigan, D; Martín-Pérez, J

    1994-01-01

    In chicken embryo fibroblasts, phosphorylation of the 40S ribosomal protein S6 increases during G1 but returns to basal level by mitosis. In contrast, in Rous sarcoma virus (RSV)-transformed fibroblasts, S6 remains highly phosphorylated throughout mitosis. This study investigated the mechanism by which RSV alters the pattern of S6 phosphorylation. Pulse-chase experiments demonstrate that phosphate turnover in S6 is rapid in normal cells and in cells infected with an RSV transformation-defective virus. In contrast, phosphate turnover in S6 is severely reduced in cells infected with temperature-sensitive RSV at a temperature permissive for transformation, indicating a diminished S6 phosphatase activity. Fractionation of cell lysates by DEAE chromatography showed an almost threefold lower S6 phosphatase activity in RSV-transformed versus normal cells. The S6 phosphatase was sensitive to inhibitor 2 and specifically recognized by an antibody to type 1 phosphatase (PP1). The S6 phosphatase activity recovered by immunoprecipitation of PP1 was threefold lower in transformed cells, but the steady-state level of expression and the rate of synthesis of PP1 were not altered by oncogenic transformation. Together, the results show that transformation by RSV reduced the S6-PP1 activity. Images PMID:8264587

  8. Activation of HIV-1 with Nanoparticle-Packaged Small-Molecule Protein Phosphatase-1-Targeting Compound

    PubMed Central

    Smith, Kahli A.; Lin, Xionghao; Bolshakov, Oleg; Griffin, James; Niu, Xiaomei; Kovalskyy, Dmytro; Ivanov, Andrey; Jerebtsova, Marina; Taylor, Robert E.; Akala, Emmanuel; Nekhai, Sergei

    2015-01-01

    Complete eradication of HIV-1 infection is impeded by the existence of latent HIV-1 reservoirs in which the integrated HIV-1 provirus is transcriptionally inactive. Activation of HIV-1 transcription requires the viral Tat protein and host cell factors, including protein phosphatase-1 (PP1). We previously developed a library of small compounds that targeted PP1 and identified a compound, SMAPP1, which induced HIV-1 transcription. However, this compound has a limited bioavailability in vivo and may not be able to reach HIV-1-infected cells and induce HIV-1 transcription in patients. We packaged SMAPP1 in polymeric polyethylene glycol polymethyl methacrylate nanoparticles and analyzed its release and the effect on HIV-1 transcription in a cell culture. SMAPP1 was efficiently packaged in the nanoparticles and released during a 120-hr period. Treatment of the HIV-1-infected cells with the SMAPP1-loaded nanoparticles induced HIV-1 transcription. Thus, nanoparticles loaded with HIV-1-targeting compounds might be useful for future anti-HIV-1 therapeutics. PMID:26839837

  9. Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2007-11-30

    Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006) 9086-9092]. Phosphorylation of Spc1 by treatment with methylglyoxal in S. pombe cells defective in glyoxalase I, an enzyme crucial for the metabolism of methylglyoxal, continues for a longer period than in wild-type cells. Here we show that methylglyoxal inhibits the activity of the protein phosphatase responsible for the dephosphorylation of Spc1 in vitro. In addition, we found that methylglyoxal inhibits human protein tyrosine phosphatase 1B (PTP1B) also. We propose a model for the regulation of the activity of the Spc1-SAPK signaling pathway by methylglyoxal in S. pombe.

  10. A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid.

    PubMed

    Pribat, Anne; Sormani, Rodnay; Rousseau-Gueutin, Mathieu; Julkowska, Magdalena M; Testerink, Christa; Joubès, Jerôme; Castroviejo, Michel; Laguerre, Michel; Meyer, Christian; Germain, Véronique; Rothan, Christophe

    2012-01-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3' phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.

  11. The Molecular Chaperone Hsp70 Activates Protein Phosphatase 5 (PP5) by Binding the Tetratricopeptide Repeat (TPR) Domain*

    PubMed Central

    Connarn, Jamie N.; Assimon, Victoria A.; Reed, Rebecca A.; Tse, Eric; Southworth, Daniel R.; Zuiderweg, Erik R. P.; Gestwicki, Jason E.; Sun, Duxin

    2014-01-01

    Protein phosphatase 5 (PP5) is auto-inhibited by intramolecular interactions with its tetratricopeptide repeat (TPR) domain. Hsp90 has been shown to bind PP5 to activate its phosphatase activity. However, the functional implications of binding Hsp70 to PP5 are not yet clear. In this study, we find that both Hsp90 and Hsp70 bind to PP5 using a luciferase fragment complementation assay. A fluorescence polarization assay shows that Hsp90 (MEEVD motif) binds to the TPR domain of PP5 almost 3-fold higher affinity than Hsp70 (IEEVD motif). However, Hsp70 binding to PP5 stimulates higher phosphatase activity of PP5 than the binding of Hsp90. We find that PP5 forms a stable 1:1 complex with Hsp70, but the interaction appears asymmetric with Hsp90, with one PP5 binding the dimer. Solution NMR studies reveal that Hsc70 and PP5 proteins are dynamically independent in complex, tethered by a disordered region that connects the Hsc70 core and the IEEVD-TPR contact area. This tethered binding is expected to allow PP5 to carry out multi-site dephosphorylation of Hsp70-bound clients with a range of sizes and shapes. Together, these results demonstrate that Hsp70 recruits PP5 and activates its phosphatase activity which suggests dual roles for PP5 that might link chaperone systems with signaling pathways in cancer and development. PMID:24327656

  12. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E. M.

    2004-01-01

    Serinehhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we resolved the mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a con served Aspn-271-M(sub 1):M(sub 2)-W(sup 1)-His-427-His-304-Asp-274 catalytic motif. The structure of PPSc provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  13. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B.

    PubMed

    Ali, Md Yousof; Jannat, Susoma; Jung, Hyun Ah; Jeong, Hyong Oh; Chung, Hae Young; Choi, Jae Sue

    2016-05-25

    In the present study, we investigated the anti-diabetic potential of six natural coumarins, 4-hydroxy Pd-C-III (1), 4'-methoxy Pd-C-I (2), decursinol (3), decursidin (4), umbelliferone 6-carboxylic acid (5), and 2'-isopropyl psoralene (6) isolated from Angelica decursiva and evaluated their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, and ONOO(-)-mediated protein tyrosine nitration. Coumarins 1-6 showed potent PTP1B and α-glucosidase inhibitory activities with ranges of IC50 values of 5.39-58.90 μM and 65.29-172.10 μM, respectively. In the kinetic study for PTP1B enzyme inhibition, compounds 1, 5, and 6 were competitive, whereas 2 and 4 showed mixed type, and 3 displayed noncompetitive type inhibition. For α-glucosidase enzyme inhibition, compounds 1 and 3 exhibited good mixed-type, while 2, 5, and 6 showed noncompetitive and 4 displayed competitive type inhibition. Furthermore, these coumarins also effectively suppressed ONOO(-)-mediated tyrosine nitration in a dose-dependent manner. To further investigate PTP1B inhibition, we generated a 3D structure of PTP1B using Autodock 4.2 and simulated the binding of compounds 1-6. Docking simulations showed that different residues of PTP1B interacted with different functional groups of compounds 1-6 through hydrogen and hydrophobic interactions. In addition, the binding energies of compounds 1-6 were negative, suggesting that hydrogen bonding may stabilize the open form of the enzyme and potentiate tight binding of the active site of PTP1B, thereby resulting in more effective PTP1B inhibition. These results demonstrate that the whole plant of A. decursiva and its coumarins are useful as potential functional food ingredients for the prevention and treatment of type 2 diabetes.

  14. Changes in the activities of protein phosphatase type 1 and type 2A in sea urchin embryos during early development.

    PubMed

    Kawamoto, M; Fujiwara, A; Yasumasu, I

    2000-08-01

    In the eggs and embryos of sea urchins, the activity of protein phosphatase type 2A (PP2A) increased during the developmental period between fertilization and the morula stage, decreased after the prehatching blastula stage and increased again after hatching. The PP2A activity changed keeping pace with alteration to the activities of cAMP-dependent protein kinase (A kinase), Ca2+/calmodulin-dependent protein kinase (CaM kinase) and casein kinase. Probably, PP2A contributes to the quick turning off of cellular signals because of protein phosphorylation. The activity of protein phosphatase type 1 (PP1) was not detectable up to the morula stage and appreciably increased thereafter. In the isolated nucleus fraction, specific activities of PP1 and PP2A were higher than in whole embryos at all stages in early development. Exponential increase in the number of nuclei because of egg cleavage probably makes PP1 activity detectable in whole embryos after the morula stage. In isolated nuclei, the activities of PP1 and PP2A appreciably decreased after hatching, whereas the activities of A kinase, Ca2+/phospholipid-dependent protein kinase (C kinase) and CaM kinase, as well as casein kinase, became higher. In nuclei, cellular signals caused by protein phosphorylation after hatching do not seem to be turned off by these protein kinases so quickly as before hatching. The PP1 and PP2A in nuclei also seem to contribute to the elimination of signal noise.

  15. Ceramide-Initiated Protein Phosphatase 2A Activation Contributes to Arterial Dysfunction In Vivo

    PubMed Central

    Bharath, Leena P.; Ruan, Ting; Li, Youyou; Ravindran, Anindita; Wan, Xin; Nhan, Jennifer Kim; Walker, Matthew Lewis; Deeter, Lance; Goodrich, Rebekah; Johnson, Elizabeth; Munday, Derek; Mueller, Robert; Kunz, David; Jones, Deborah; Reese, Van; Summers, Scott A.; Babu, Pon Velayutham Anandh; Holland, William L.; Zhang, Quan-Jiang; Abel, E. Dale

    2015-01-01

    Prior studies have implicated accumulation of ceramide in blood vessels as a basis for vascular dysfunction in diet-induced obesity via a mechanism involving type 2 protein phosphatase (PP2A) dephosphorylation of endothelial nitric oxide synthase (eNOS). The current study sought to elucidate the mechanisms linking ceramide accumulation with PP2A activation and determine whether pharmacological inhibition of PP2A in vivo normalizes obesity-associated vascular dysfunction and limits the severity of hypertension. We show in endothelial cells that ceramide associates with the inhibitor 2 of PP2A (I2PP2A) in the cytosol, which disrupts the association of I2PP2A with PP2A leading to its translocation to the plasma membrane. The increased association between PP2A and eNOS at the plasma membrane promotes dissociation of an Akt-Hsp90-eNOS complex that is required for eNOS phosphorylation and activation. A novel small-molecule inhibitor of PP2A attenuated PP2A activation, prevented disruption of the Akt-Hsp90-eNOS complex in the vasculature, preserved arterial function, and maintained normal blood pressure in obese mice. These findings reveal a novel mechanism whereby ceramide initiates PP2A colocalization with eNOS and demonstrate that PP2A activation precipitates vascular dysfunction in diet-induced obesity. Therapeutic strategies targeted to reducing PP2A activation might be beneficial in attenuating vascular complications that exist in the context of type 2 diabetes, obesity, and conditions associated with insulin resistance. PMID:26253611

  16. Small Molecule Receptor Protein Tyrosine Phosphatase γ (RPTPγ) Ligands That Inhibit Phosphatase Activity via Perturbation of the Tryptophan-Proline-Aspartate (WPD) Loop

    SciTech Connect

    Sheriff, Steven; Beno, Brett R; Zhai, Weixu; Kostich, Walter A; McDonnell, Patricia A; Kish, Kevin; Goldfarb, Valentina; Gao, Mian; Kiefer, Susan E; Yanchunas, Joseph; Huang, Yanling; Shi, Shuhao; Zhu, Shirong; Dzierba, Carolyn; Bronson, Joanne; Macor, John E; Appiah, Kingsley K; Westphal, Ryan S; O’Connell, Jonathan; Gerritz, Samuel W

    2012-11-09

    Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of tyrosine residues, a process that involves a conserved tryptophan-proline-aspartate (WPD) loop in catalysis. In previously determined structures of PTPs, the WPD-loop has been observed in either an 'open' conformation or a 'closed' conformation. In the current work, X-ray structures of the catalytic domain of receptor-like protein tyrosine phosphatase γ (RPTPγ) revealed a ligand-induced 'superopen' conformation not previously reported for PTPs. In the superopen conformation, the ligand acts as an apparent competitive inhibitor and binds in a small hydrophobic pocket adjacent to, but distinct from, the active site. In the open and closed WPD-loop conformations of RPTPγ, the side chain of Trp1026 partially occupies this pocket. In the superopen conformation, Trp1026 is displaced allowing a 3,4-dichlorobenzyl substituent to occupy this site. The bound ligand prevents closure of the WPD-loop over the active site and disrupts the catalytic cycle of the enzyme.

  17. Secretory fluorescent protein, a secretion green fluorescent fusion protein with alkaline phosphatase activity as a sensitive and traceable reporter in baculovirus expression system.

    PubMed

    Teng, Chao-Yi; Wu, Tzong-Yuan

    2007-07-01

    The advantages of using traceable fluorescent protein (enhanced green fluorescent protein; EGFP) and a secretory alkaline phosphatase (SEAP) have been used to generate a reporter gene: the secretory fluorescent protein (SEFP). Sf21 cells, infected with the recombinant baculovirus containing the SEFP gene, revealed both traceable fluorescence and easily detectable alkaline phosphatase activity in the culture medium. The distribution of SEFP within the cells revealed that it was excluded from the nucleus, implying that the accumulation of SEFP in a secretory pathway, similar to that of the secretion signal-tagged FPs. Furthermore, the time- and dose-dependent release from the blockage of brefeldin A (BFA) confirmed that the secretion of SEFP was mediated by the secretion pathway and excluded leakage from viral infection. This SEFP reporter gene with traceable fluorescence and alkaline phosphatase activity may become a useful tool for studies on secretory protein production.

  18. PME-1 modulates protein phosphatase 2A activity to promote the malignant phenotype of endometrial cancer cells.

    PubMed

    Wandzioch, Ewa; Pusey, Michelle; Werda, Amy; Bail, Sophie; Bhaskar, Aishwarya; Nestor, Mariya; Yang, Jing-Jing; Rice, Lyndi M

    2014-08-15

    Protein phosphatase 2A (PP2A) negatively regulates tumorigenic signaling pathways, in part, by supporting the function of tumor suppressors like p53. The PP2A methylesterase PME-1 limits the activity of PP2A by demethylating its catalytic subunit. Here, we report the finding that PME-1 overexpression correlates with increased cell proliferation and invasive phenotypes in endometrial adenocarcinoma cells, where it helps maintain activated ERK and Akt by inhibiting PP2A. We obtained evidence that PME-1 could bind and regulate protein phosphatase 4 (PP4), a tumor-promoting protein, but not the related protein phosphatase 6 (PP6). When the PP2A, PP4, or PP6 catalytic subunits were overexpressed, inhibiting PME-1 was sufficient to limit cell proliferation. In clinical specimens of endometrial adenocarcinoma, PME-1 levels were increased and we found that PME-1 overexpression was sufficient to drive tumor growth in a xenograft model of the disease. Our findings identify PME-1 as a modifier of malignant development and suggest its candidacy as a diagnostic marker and as a therapeutic target in endometrial cancer.

  19. Protein tyrosine phosphatase 1B inhibitory activities of ursane- and lupane-type triterpenes from Sorbus pohuashanensis.

    PubMed

    Li, Dongxia; Li, Wei; Higai, Koji; Koike, Kazuo

    2014-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is a non-transmembrane protein tyrosine phosphatase, and has received much attention as a molecular target for the treatment of insulin resistance diseases because of its critical roles in negatively regulating insulin- and leptin-signaling cascades. Six ursane-type triterpenes, 3β-acetoxy-urs-12-ene-28-oic acid (1), pomolic acid-3β-acetate (2), pomolic acid (3), ursolaldehyde (4), euscaphic acid (5) and 3β-acetoxy-urs-11-en-28,13-olide (6), and a lupane-type triterpene, betulinic acid (7), from the fruits of Sorbus pohuashanensis, exhibited significant PTP1B inhibitory activity, with IC50 values ranging from 3.5 to 54.8 μM. Kinetics analyses revealed that compounds 2, 3, and 7 are non-competitive PTP1B inhibitors, and compounds 1 and 6 are mixed-type PTP1B inhibitors.

  20. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity.

    PubMed

    Rodríguez, H; Rossolini, G M; Gonzalez, T; Li, J; Glick, B R

    2000-06-01

    A genomic library from Burkholderia cepacia IS-16 was constructed in Escherichia coli by partial Sau3AI digestion of the chromosomal DNA, with the plasmid vector Bluescript SK. This library was screened for clones able to grow as green stained colonies on selective medium developed for detecting phosphatase-positive colonies. Three green-stained clones (pFS1, pFS2, and pFS3) carried recombinant plasmids harboring DNA inserts of 5.0, 8.0, and 0.9 kb, respectively. DNA hybridization experiments demonstrated the presence of overlapping DNA fragments in the three clones and that these three clones were all derived from Burkholderia cepacia IS-16 genomic DNA. DNA sequence analysis, together with polyacrylamide gels of proteins encoded by E. coli containing pFS3, suggested that the isolated 0. 9-kb DNA fragment encodes the functional portion of a phosphate transport protein.

  1. Phosphatase activities analyzed by in vivo expressions.

    PubMed

    Schweighofer, Alois; Ayatollahi, Zahra; Meskiene, Irute

    2009-01-01

    Protein phosphatases act to reverse phosphorylation-related modifications induced by protein kinases. Type 2C protein phosphatases (PP2C) are monomeric Ser/Thr phosphatases that require a metal for their activity and are abundant in prokaryotes and eukaryotes. In plants, such as Medicago and Arabidopsis PP2Cs control several essential processes, including ABA signaling, development, and wound-induced mitogen-activated protein kinase (MAPK) pathways. In vitro assays with recombinant proteins and yeast two-hybrid systems usually provide initial information about putative PP2C substrates; however, these observations have to be verified in vivo. Therefore, a method for transient expression in isolated Arabidopsis suspension cell protoplasts was developed to assay PP2C action in living cells. This system has proven to be very useful in producing active enzymes and their substrates and in performing enzymatic reactions in vivo. Transient gene expression in isolated cells enabled assembly of functional protein kinase cascades and the creation of phosphorylated targets for PP2Cs. The method is based on the co-transformation and transient co-expression of different PP2C proteins with MAPK. It shows that epitope-tagged PP2C and MAPK proteins exhibit high enzymatic activities and produce substantial protein amounts easily monitored by Western blot analysis. Additionally, PP2C phosphatase activities can be directly tested in protein extracts from protoplasts, suggesting a possibility for analysis of activities of new PP2C family members.

  2. The activity of protein phosphatase 5 towards native clients is modulated by the middle- and C-terminal domains of Hsp90

    PubMed Central

    Haslbeck, Veronika; Eckl, Julia M.; Drazic, Adrian; Rutz, Daniel A.; Lorenz, Oliver R.; Zimmermann, Kerstin; Kriehuber, Thomas; Lindemann, Claudia; Madl, Tobias; Richter, Klaus

    2015-01-01

    Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex. PMID:26593036

  3. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  4. Protein tyrosine phosphatase: enzymatic assays.

    PubMed

    Montalibet, Jacqueline; Skorey, Kathryn I; Kennedy, Brian P

    2005-01-01

    Activity assays for tyrosine phosphatases are based on the hydrolysis of a arylphosphate moiety from a synthetic substrate yielding a spectroscopically active product. Many different substrates can be used for these assays with p-nitrophenyl phosphate (pNPP), fluorescein diphosphate (FDP), and 6,8-difluoro-4-methylumbellyferyl phosphate (DiFMUP) being the most efficient and versatile. Equally, larger molecules such as phosphotyrosyl peptides can also be used to mimic more natural substrates. Activity assays include the determinations of the rate of dephosphorylation and calculations of kinetic constants such as k(cat) and K(M). These assays are useful to identify and characterize tyrosine phosphatases and are commonly used to evaluate the efficiency of inhibitors.

  5. A role for protein phosphatase 2A in regulating p38 mitogen activated protein kinase activation and tumor necrosis factor-alpha expression during influenza virus infection.

    PubMed

    Law, Anna H Y; Tam, Alex H M; Lee, Davy C W; Lau, Allan S Y

    2013-04-02

    Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF)-alpha through p38 mitogen activated protein kinase (MAPK). However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1) and protein phosphatase type 2A (PP2A) in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac) infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  6. Bioassay-guided isolation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme by high-speed counter-current chromatography.

    PubMed

    Wang, Miao; Gu, Dongyu; Guo, Xinfeng; Li, Haoquan; Wang, Yi; Guo, Hong; Yang, Yi; Tian, Jing

    2016-11-01

    A rapid and efficient method using high-speed counter-current chromatography was established for the bioassay-guided separation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme. Under the bioassay guidance, the ethyl acetate extract with the best IC50 value of 0.37 ± 0.07 μg/mL exhibited a potential protein tyrosine phosphatase 1B inhibitory activity, which was further separated by high-speed counter-current chromatography. The separation was performed with a two-phase solvent system composed of n-hexane/methanol/water (5:4:1, v/v). As a result, dibutyl phthalate (19.7 mg) with the purity of 95.3% was obtained from 200 mg of the ethyl acetate extract. Its IC50 was 14.05 ± 0.06 μM, which was further explained by molecular docking. The result of molecular docking showed that dibutyl phthalate enfolded in the catalytic site of protein tyrosine phosphatase 1B. The main force between dibutyl phthalate and protein tyrosine phosphatase 1B was the hydrogen bond interaction with Gln266. In addition, hydrogen bond, van der Waals force and hydrophobic interaction with the amino acids (Ala217, Ile219, and Gly220) were also responsible for the stable protein-ligand complex.

  7. Role of Protein Tyrosine Phosphatases in Plants

    PubMed Central

    Shankar, Alka; Agrawal, Nisha; Sharma, Manisha; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    Reversible protein phosphorylation is a crucial regulatory mechanism that controls many biological processes in eukaryotes. In plants, phosphorylation events primarily occur on serine (Ser) and threonine (Thr) residues, while in certain cases, it was also discovered on tyrosine (Tyr) residues. In contrary to plants, extensive reports on Tyr phosphorylation regulating a large numbers of biological processes exist in animals. Despite of such prodigious function in animals, Tyr phosphorylation is a least studied mechanism of protein regulation in plants. Recently, various chemical analytical procedures have strengthened the view that Tyr phosphorylation is equally prevalent in plants as in animals. However, regardless of Tyr phosphorylation events occuring in plants, no evidence could be found for the existence of gene encoding for Tyr phosphorylation i.e. the typical Tyr kinases. Various methodologies have suggested that plant responses to stress signals and developmental processes involved modifications in protein Tyr phosphorylation. Correspondingly, various reports have established the role of PTPs (Protein Tyrosine Phosphatases) in the dephosphorylation and inactivation of mitogen activated protein kinases (MAPKs) hence, in the regulation of MAPK signaling cascade. Besides this, many dual specificity protein phosphatases (DSPs) are also known to bind starch and regulate starch metabolism through reversible phosphorylation. Here, we are emphasizing the significant progress on protein Tyr phosphatases to understand the role of these enzymes in the regulation of post-translational modification in plant physiology and development. PMID:26962298

  8. The protein tyrosine phosphatase SHP-1 modulates the suppressive activity of regulatory T cells

    PubMed Central

    Iype, Tessy; Sankarshanan, Mohan; Mauldin, Ileana S.; Mullins, David W.; Lorenz, Ulrike

    2010-01-01

    The importance of regulatory T cells (Treg) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. Here, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase SHP-1 as a novel ‘endogenous brake’ and modifier of the suppressive ability of Treg cells; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Treg cells to suppress inflammation in a mouse model. Second, specific pharmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate (SSG) potently augmented Treg cell suppressor activity both in vivo and ex vivo. Finally, through a quantitative imaging approach, we directly demonstrate that Treg cells prevent the activation of conventional T cells, and that SHP-1-deficient Treg cells are more efficient suppressors. Collectively, our data reveal SHP-1 as a critical modifier of Treg cell function, and a potential therapeutic target for augmenting Treg cell-mediated suppression in certain disease states. PMID:20952680

  9. Activation of serine/threonine protein phosphatase-1 is required for ceramide-induced survival of sympathetic neurons

    PubMed Central

    2004-01-01

    In sympathetic neurons, C6-ceramide, as well as endogenous ceramides, blocks apoptosis elicited by NGF (nerve growth factor) deprivation. The mechanism(s) involved in ceramide-induced neuronal survival are poorly understood. Few direct targets for the diverse cellular effects of ceramide have been identified. Amongst those proposed is PP-1c, the catalytic subunit of serine/threonine PP-1 (protein phosphatase-1). Here, we present the first evidence of PP-1c activation by ceramide in live cells, namely NGF-deprived sympathetic neurons. We first determined PP activity in cellular lysates from sympathetic neurons treated with exogenous ceramide and demonstrated a 2–3-fold increase in PP activity. PP activation was completely blocked by the addition of the specific type-1 PP inhibitor protein I-2 as well as by tautomycin, but unaffected by 2 nM okadaic acid, strongly indicating that the ceramide-activated phosphatase activity was PP-1c. Inhibition of PP activity by phosphatidic acid (which has been reported to be a selective inhibitor of PP-1c) and tautomycin (a PP-1 and PP-2A inhibitor), but not by 10 nM okadaic acid, abolished the anti-apoptotic effect of ceramide in NGF-deprived neurons, suggesting that activation of PP-1c is required for ceramide-induced neuronal survival. Ceramide was able to prevent pRb (retinoblastoma gene product) hyperphosphorylation by a mechanism dependent on PP-1c activation, suggesting that two consequences of NGF deprivation in sympathetic neurons are inhibition of PP-1c and subsequent hyperphosphorylation of pRb protein. These findings suggest a novel mechanism for ceramide-induced survival, and implicate the involvement of PPs in apoptosis induced by NGF deprivation. PMID:15361069

  10. Role of receptor desensitization, phosphatase induction and intracellular cyclic AMP in the termination of mitogen-activated protein kinase activity in UTP-stimulated EAhy 926 endothelial cells.

    PubMed Central

    Graham, A; McLees, A; Malarkey, K; Gould, G W; Plevin, R

    1996-01-01

    We have investigated the mechanisms that bring about the termination of mitogen-activated protein kinase (MAP kinase) activation in response to UTP in EAhy 926 endothelial cells. UTP-stimulated MAP kinase activity was transient, returning to basal values by 60 min. At this time MAP kinase activation was desensitized; re-application of UTP did not further activate MAP kinase, full re-activation of MAP kinase being only apparent after a 1-2 h wash period. However, activation of MAP kinase by UTP could be sustained beyond 60 min by preincubation of the cells with the protein synthesis inhibitor cycloheximide. UTP also stimulated expression of MAP kinase phosphatase-1 and this was abolished after pretreatment with cycloheximide. Pretreatment of cells with forskolin abolished the initial activation of MAP kinase kinase or c-Raf-1 by UTP, but only affected MAP kinase activity during prolonged stimulation. The effect of forskolin on prolonged MAP kinase activation was also prevented by cycloheximide. These results suggest that the termination of MAP kinase activity in response to UTP involves a number of interacting mechanisms including receptor desensitization and the induction of a phosphatase. However, several pieces of evidence do not support a major role for MAP kinase phosphatase-1 in termination of the MAP kinase signal. Raising intracellular cyclic AMP may also be involved but only after an initial protein-synthesis step and by a mechanism that does not involve the inactivation of c-Raf-1 or MAP kinase kinase. PMID:8615830

  11. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2

    PubMed Central

    Zeng, Kang; Bastos, Ricardo Nunes

    2010-01-01

    Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A–TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A–TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation. PMID:21187329

  12. Genetic Complementation Screen Identifies a Mitogen-activated Protein Kinase Phosphatase, MKP3, as a Regulator of Dopamine Transporter Trafficking

    PubMed Central

    Larsen, Mads Breum; Prasad, Balakrishna M.; Amara, Susan G.

    2008-01-01

    The antidepressant and cocaine sensitive plasma membrane monoamine transporters are the primary mechanism for clearance of their respective neurotransmitters and serve a pivotal role in limiting monoamine neurotransmission. To identify molecules in pathways that regulate dopamine transporter (DAT) internalization, we used a genetic complementation screen in Xenopus oocytes to identify a mitogen-activated protein (MAP) kinase phosphatase, MKP3/Pyst1/DUSP6, as a molecule that inhibits protein kinase C–induced (PKC) internalization of transporters, resulting in enhanced DAT activity. The involvement of MKP3 in DAT internalization was verified using both overexpression and shRNA knockdown strategies in mammalian cell models including a dopaminergic cell line. Although the isolation of MKP3 implies a role for MAP kinases in DAT internalization, MAP kinase inhibitors have no effect on internalization. Moreover, PKC-dependent down-regulation of DAT does not correlate with the phosphorylation state of several well-studied MAP kinases (ERK1/2, p38, and SAPK/JNK). We also show that MKP3 does not regulate PKC-induced ubiquitylation of DAT but acts at a more downstream step to stabilize DAT at the cell surface by blocking dynamin-dependent internalization and delaying the targeting of DAT for degradation. These results indicate that MKP3 can act to enhance DAT function and identifies MKP3 as a phosphatase involved in regulating dynamin-dependent endocytosis. PMID:18434601

  13. Analysis of Smad Phosphatase Activity In Vitro.

    PubMed

    Shen, Tao; Qin, Lan; Lin, Xia

    2016-01-01

    Phosphorylation of Smad1/5/8 at the C-terminal SXS motif by BMP type I receptors is one of the most critical events in BMP signaling. Conversely, protein phosphatases that dephosphorylate phospho-Smad1/5/8 can consequently prevent or terminate BMP signaling. PPM1H is an undercharacterized phosphatase in the PPM family. We recently demonstrated that PPM1H can dephosphorylate Smad1 in the cytoplasm and block BMP signaling responses in cellular assays. Here we describe in vitro method showing that PPM1H is a bona fide phosphatase for Smad1/5/8. PPM1H is produced as GST fusion protein in E. coli, and purified against glutathione sepharose beads. Bacterially purified recombinant PPM1H possesses phosphatase activity toward artificial substrate para-nitrophenyl phosphate (pNPP). Recombinant PPM1H also dephosphorylates immuno-purified phosphorylated Smad1 in test tubes. These direct in vitro phosphatase assays provide convincing evidence demonstrating the role of PPM1H as a specific phosphatase for P-Smad1.

  14. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action.

    PubMed

    Brautigan, D L; Brown, M; Grindrod, S; Chinigo, G; Kruszewski, A; Lukasik, S M; Bushweller, J H; Horal, M; Keller, S; Tamura, S; Heimark, D B; Price, J; Larner, A N; Larner, J

    2005-08-23

    Insulin-stimulated glucose disposal in skeletal muscle proceeds predominantly through a nonoxidative pathway with glycogen synthase as a rate-limiting enzyme, yet the mechanisms for insulin activation of glycogen synthase are not understood despite years of investigation. Isolation of putative insulin second messengers from beef liver yielded a pseudo-disaccharide consisting of pinitol (3-O-methyl-d-chiro-inositol) beta-1,4 linked to galactosamine chelated with Mn(2+) (called INS2). Here we show that chemically synthesized INS2 has biological activity that significantly enhances insulin reduction of hyperglycemia in streptozotocin diabetic rats. We used computer modeling to dock INS2 onto the known three-dimensional crystal structure of protein phosphatase 2C (PP2C). Modeling and FlexX/CScore energy minimization predicted a unique favorable site on PP2C for INS2 in a surface cleft adjacent to the catalytic center. Binding of INS2 is predicted to involve formation of multiple H-bonds, including one with residue Asp163. Wild-type PP2C activity assayed with a phosphopeptide substrate was potently stimulated in a dose-dependent manner by INS2. In contrast, the D163A mutant of PP2C was not activated by INS2. The D163A mutant and wild-type PP2C in the absence of INS2 had the same Mn(2+)-dependent phosphatase activity with p-nitrophenyl phosphate as a substrate, showing that this mutation did not disrupt the catalytic site. We propose that INS2 allosterically activates PP2C, fulfilling the role of a putative mediator mimetic of insulin signaling to promote protein dephosphorylation and metabolic responses.

  15. Sesquiterpene Hydroquinones with Protein Tyrosine Phosphatase 1B Inhibitory Activities from a Dysidea sp. Marine Sponge Collected in Okinawa.

    PubMed

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Takahashi, Ohgi; Kirikoshi, Ryota; Ukai, Kazuyo; Namikoshi, Michio

    2016-07-22

    Three new sesquiterpene hydroquinones, avapyran (1), 17-O-acetylavarol (2), and 17-O-acetylneoavarol (3), were isolated from a Dysidea sp. marine sponge collected in Okinawa together with five known congeners: avarol (4), neoavarol (5), 20-O-acetylavarol (6), 20-O-acetylneoavarol (7), and 3'-aminoavarone (8). The structures of 1-3 were assigned on the basis of their spectroscopic data. Compounds 1-3 inhibited the activity of protein tyrosine phosphatase 1B with IC50 values of 11, 9.5, and 6.5 μM, respectively, while known compounds 4-8 gave IC50 values of 12, >32, 10, 8.6, and 18 μM, respectively. In a preliminary investigation on structure-activity relationships, six ester and methoxy derivatives (9-14) were prepared from 4 and 5.

  16. Chronic Oxidative Stress Causes Amplification and Overexpression of ptprz1 Protein Tyrosine Phosphatase to Activate β-Catenin Pathway

    PubMed Central

    Liu, Yu-Ting; Shang, Donghao; Akatsuka, Shinya; Ohara, Hiroki; Dutta, Khokon Kumar; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu; Izumiya, Masashi; Abe, Kouichiro; Nakagama, Hitoshi; Noguchi, Noriko; Toyokuni, Shinya

    2007-01-01

    Ferric nitrilotriacetate induces oxidative renal tubular damage via Fenton-reaction, which subsequently leads to renal cell carcinoma (RCC) in rodents. Here, we used gene expression microarray and array-based comparative genomic hybridization analyses to find target oncogenes in this model. At the common chromosomal region of amplification (4q22) in rat RCCs, we found ptprz1, a tyrosine phosphatase (also known as protein tyrosine phosphatase ζ or receptor tyrosine phosphatase β) highly expressed in the RCCs. Analyses revealed genomic amplification up to eightfold. Despite scarcity in the control kidney, the amounts of PTPRZ1 were increased in the kidney after 3 weeks of oxidative stress, and mRNA levels were increased 16∼552-fold in the RCCs. Network analysis of the expression revealed the involvement of the β-catenin pathway in the RCCs. In the RCCs, dephosphorylated β-catenin was translocated to nuclei, resulting in the expression of its target genes cyclin D1, c-myc, c-jun, fra-1, and CD44. Furthermore, knockdown of ptprz1 with small interfering RNA (siRNA), in FRCC-001 and FRCC-562 cell lines established from the induced RCCs, decreased the amounts of nuclear β-catenin and suppressed cellular proliferation concomitant with a decrease in the expression of target genes. These results demonstrate that chronic oxidative stress can induce genomic amplification of ptprz1, activating β-catenin pathways without the involvement of Wnt signaling for carcinogenesis. Thus, iron-mediated persistent oxidative stress confers an environment for gene amplification. PMID:18055543

  17. Chronic oxidative stress causes amplification and overexpression of ptprz1 protein tyrosine phosphatase to activate beta-catenin pathway.

    PubMed

    Liu, Yu-Ting; Shang, Donghao; Akatsuka, Shinya; Ohara, Hiroki; Dutta, Khokon Kumar; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu; Izumiya, Masashi; Abe, Kouichiro; Nakagama, Hitoshi; Noguchi, Noriko; Toyokuni, Shinya

    2007-12-01

    Ferric nitrilotriacetate induces oxidative renal tubular damage via Fenton-reaction, which subsequently leads to renal cell carcinoma (RCC) in rodents. Here, we used gene expression microarray and array-based comparative genomic hybridization analyses to find target oncogenes in this model. At the common chromosomal region of amplification (4q22) in rat RCCs, we found ptprz1, a tyrosine phosphatase (also known as protein tyrosine phosphatase zeta or receptor tyrosine phosphatase beta) highly expressed in the RCCs. Analyses revealed genomic amplification up to eightfold. Despite scarcity in the control kidney, the amounts of PTPRZ1 were increased in the kidney after 3 weeks of oxidative stress, and mRNA levels were increased 16 approximately 552-fold in the RCCs. Network analysis of the expression revealed the involvement of the beta-catenin pathway in the RCCs. In the RCCs, dephosphorylated beta-catenin was translocated to nuclei, resulting in the expression of its target genes cyclin D1, c-myc, c-jun, fra-1, and CD44. Furthermore, knockdown of ptprz1 with small interfering RNA (siRNA), in FRCC-001 and FRCC-562 cell lines established from the induced RCCs, decreased the amounts of nuclear beta-catenin and suppressed cellular proliferation concomitant with a decrease in the expression of target genes. These results demonstrate that chronic oxidative stress can induce genomic amplification of ptprz1, activating beta-catenin pathways without the involvement of Wnt signaling for carcinogenesis. Thus, iron-mediated persistent oxidative stress confers an environment for gene amplification.

  18. Phosphorylation of inhibitor-2 and activation of MgATP-dependent protein phosphatase by rat skeletal muscle glycogen synthase kinase

    SciTech Connect

    Hegazy, M.G.; Reimann, E.M.; Thysseril, T.J.; Schlender, K.K.

    1986-05-01

    Rat skeletal muscle contains a glycogen synthase kinase (GSK-M) which is not stimulated by Ca/sup 2 +/ or cAMP. This kinase has an apparent Mr of 62,000 and uses ATP but not GTP as a phosphoryl donor. GSK-M phosphorylated glycogen synthase at sites 2 and 3. It phosphorylated ATP-citrate lyase and activated MgATP-dependent phosphatase in the presence of ATP but not GTP. As expected, the kinase also phosphorylated phosphatase inhibitor 2 (I-2). Phosphatase incorporation reached approximately 0.3 mol/mol of I-2. Phosphopeptide maps were obtained by digesting /sup 32/P-labeled I-2 with trypsin and separating the peptides by reversed phase HPLC. Two partially separated /sup 32/P-labeled peaks were obtained when I-2 was phosphorylated with either GSK-M or glycogen synthase kinase 3 (GSK-3) and these peptides were different from those obtained when I-2 was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase (CSU) or casein kinase II (CK-II). When I-2 was phosphorylated with GSK-M or GSK-3 and cleaved by CNBr, a single radioactive peak was obtained. Phosphoamino acid analysis showed that I-2 was phosphorylated by GSK-M or GSK-3 predominately in Thr whereas CSU and CK-II phosphorylated I-2 exclusively in Ser. These results indicate that GSK-M is similar to GSK-3 and to ATP-citrate lyase kinase. However, it appears to differ in Mr from ATP-citrate lyase kinase and it differs from GSK-3 in that it phosphorylates glycogen synthase at site 2 and it does not use GTP as a phosphoryl donor.

  19. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase.

    PubMed

    Kang, C M; Vijay, K; Price, C W

    1998-10-01

    The RsbT serine kinase has two known functions in the signal transduction pathway that activates the general stress factor sigmaB of Bacillus subtilis. First, RsbT can phosphorylate and inactivate its specific antagonist protein, RsbS. Second, upon phosphorylation of RsbS, RsbT is released to stimulate RsbU, a PP2C phosphatase, thereby initiating a signalling cascade that ultimately activates sigmaB. Here we describe a mutation that separates these two functions of RsbT. Although the mutant RsbT protein had essentially no kinase activity, it still retained the capacity to stimulate the RsbU phosphatase in vitro and to activate sigmaB when overexpressed in vivo. These results support the hypothesis that phosphatase activation is accomplished via a long-lived interaction between RsbT and RsbU. In contrast, RsbT kinase activity was found to be integral for the transmission of external stimuli to sigmaB. Thus, one route by which environmental stress signals could enter the sigmaB network is by modulation of the RsbT kinase activity, thereby controlling the magnitude of the partner switch between the RsbS-RsbT complex and the RsbT-RsbU complex.

  20. Crystallization and preliminary X-ray diffraction analysis of a high-affinity phosphate-binding protein endowed with phosphatase activity from Pseudomonas aeruginosa PAO1.

    PubMed

    Djeghader, Ahmed; Gotthard, Guillaume; Suh, Andrew; Gonzalez, Daniel; Scott, Ken; Chabriere, Eric; Elias, Mikael

    2013-10-01

    In prokaryotes, phosphate starvation induces the expression of numerous phosphate-responsive genes, such as the pst operon including the high-affinity phosphate-binding protein (PBP or pstS) and alkaline phosphatases such as PhoA. This response increases the cellular inorganic phosphate import efficiency. Notably, some Pseudomonas species secrete, via a type-2 secretion system, a phosphate-binding protein dubbed LapA endowed with phosphatase activity. Here, the expression, purification, crystallization and X-ray data collection at 0.87 Å resolution of LapA are described. Combined with biochemical and enzymatic characterization, the structure of this intriguing phosphate-binding protein will help to elucidate the molecular origin of its phosphatase activity and to decipher its putative role in phosphate uptake.

  1. Decreased activity of the Na+/H+ exchanger by phosphodiesterase 5A inhibition is attributed to an increase in protein phosphatase activity.

    PubMed

    Yeves, Alejandra M; Garciarena, Carolina D; Nolly, Mariela B; Chiappe de Cingolani, Gladys E; Cingolani, Horacio E; Ennis, Irene L

    2010-10-01

    The beneficial effect of phosphodiesterase 5A inhibition in ischemia/reperfusion injury and cardiac hypertrophy is well established. Inhibition of the cardiac Na(+)/H(+) exchanger (NHE-1) exerts beneficial effects on these same conditions, and a possible link between these therapeutic strategies was suggested. Experiments were performed in isolated cat cardiomyocytes to gain insight into the intracellular pathway involved in the reduction of NHE-1 activity by phosphodiesterase 5A inhibition. NHE-1 activity was assessed by the rate of intracellular pH recovery from a sustained acidic load in the absence of bicarbonate. Phosphodiesterase 5A inhibition with sildenafil (1 μmol/L) did not affect basal intracellular pH; yet, it did decrease proton efflux (J(H); in millimoles per liter per minute) after the acidic load (proton efflux: 6.97±0.43 in control versus 3.31±0.58 with sildenafil; P<0.05). The blockade of both protein phosphatase 1 and 2A with 100 nmol/L of okadaic acid reverted the sildenafil effect (proton efflux: 6.77±0.82). In contrast, selective inhibition of protein phosphatase 2A (1 nmol/L of okadaic acid or 100 μmol/L of endothall) did not (3.86±1.0 and 2.61±1.2), suggesting that only protein phosphatase 1 was involved in sildenafil-induced NHE-1 inhibition. Moreover, sildenafil prevented the acidosis-induced increase in NHE-1 phosphorylation without affecting activation of the extracellular signal-regulated kinase 1/2-p90(RSK) pathway. Our results suggest that phosphodiesterase 5A inhibition decreases NHE-1 activity, during intracellular pH recovery after an acidic load, by a protein phosphatase 1-dependent reduction in NHE-1 phosphorylation.

  2. Alcohol drives S-nitrosylation and redox activation of protein phosphatase 1, causing bovine airway cilia dysfunction.

    PubMed

    Price, Michael E; Pavlik, Jacqueline A; Liu, Miao; Ding, Shi-Jian; Wyatt, Todd A; Sisson, Joseph H

    2017-03-01

    Individuals with alcohol (ethanol)-use disorders are at increased risk for lung infections, in part, due to defective mucociliary clearance driven by motile cilia in the airways. We recently reported that isolated, demembranated bovine cilia (axonemes) are capable of producing nitric oxide ((∙)NO) when exposed to biologically relevant concentrations of alcohol. This increased presence of (∙)NO can lead to protein S-nitrosylation, a posttranslational modification signaling mechanism involving reversible adduction of nitrosonium cations or (∙)NO to thiolate or thiyl radicals, respectively, of proteins forming S-nitrosothiols (SNOs). We quantified and compared SNO content between isolated, demembranated axonemes extracted from bovine tracheae, with or without in situ alcohol exposure (100 mM × 24 h). We demonstrate that relevant concentrations of alcohol exposure shift the S-nitrosylation status of key cilia regulatory proteins, including 20-fold increases in S-nitrosylation of proteins that include protein phosphatase 1 (PP1). With the use of an ATP-reactivated axoneme motility system, we demonstrate that alcohol-driven S-nitrosylation of PP1 is associated with PP1 activation and dysfunction of axoneme motility. These new data demonstrate that alcohol can shift the S-nitrothiol balance at the level of the cilia organelle and highlight S-nitrosylation as a novel signaling mechanism to regulate PP1 and cilia motility.

  3. IGF-1R modulation of acute GH-induced STAT5 signaling: role of protein tyrosine phosphatase activity.

    PubMed

    Gan, Yujun; Zhang, Yue; Buckels, Ashiya; Paterson, Andrew J; Jiang, Jing; Clemens, Thomas L; Zhang, Zhong-Yin; Du, Keyong; Chang, Yingzi; Frank, Stuart J

    2013-11-01

    GH is a potent anabolic and metabolic factor that binds its cell surface receptor (GHR), activating the GHR-associated tyrosine kinase, Janus kinase 2, which phosphorylates and activates the latent transcription factor, signal transducer and activator of transcription 5 (STAT5). Some GH actions are mediated by the elaboration of IGF-1, which exerts effects by binding and activating the heterotetrameric tyrosine kinase growth factor receptor, IGF-1R. In addition to this GH-GHR-IGF-1-IGF-1R scheme, we have demonstrated in primary osteoblasts and in islet β-cells that then deletion or silencing of IGF-1R results in diminished GH-induced STAT5 phosphorylation, suggesting that the presence of IGF-1R may facilitate GH signaling. In this study, we explore potential roles for protein tyrosine phosphatase activity in modulating GH-induced signaling, comparing conditions in which IGF-1R is present or diminished. We confirm that in mouse primary osteoblasts harboring loxP sites flanking the IGF-1R gene, infection with an adenovirus that expresses the Cre recombinase results in IGF-1R deletion and diminished acute GH-induced STAT5 phosphorylation. Furthermore, we present a new model of IGF-1R silencing, in which expression of short hairpin RNA directed at IGF-1R greatly reduces IGF-1R abundance in LNCaP human prostate cancer cells. In both models, treatment with a chemical inhibitor of protein tyrosine phosphatase-1B (PTP-1B), but not one of src homology region 2 domain-containing phosphotase-1 (SHP-1) and SHP-2, reverses the loss of GH-induced STAT5 phosphorylation in cells lacking IGF-1R but has no effect in cells with intact IGF-1R. Furthermore, expression of either a dominant-negative PTP-1B or the PTP-1B-interacting inhibitory protein, constitutive photomorphogenesis 1, also rescues acute GH-induced STAT5 signaling in IGF-1R-deficient cells but has no effect in IGF-1R replete cells. By expressing a substrate-trapping mutant PTP-1B, we demonstrate that tyrosine

  4. Activation of Protein Kinases and Inhibition of Protein Phosphatases Play a Central Role in the Regulation of Exocytosis in Mouse Pancreatic β Cells

    NASA Astrophysics Data System (ADS)

    Ammala, Carina; Eliasson, Lena; Bokvist, Krister; Berggren, Per-Olof; Honkanen, Richard E.; Sjoholm, Ake; Rorsman, Patrik

    1994-05-01

    The mechanisms that regulate insulin secretion were investigated using capacitance measurements of exocytosis in single β cells maintained in tissue culture. Exocytosis was stimulated by voltage-clamp depolarizations to activate the voltage-dependent Ca2+ channels that mediate Ca2+ influx into the β cell. Under basal conditions, the exocytotic responses were small despite large Ca2+ currents. The exocytotic responses were dramatically increased (10- to 20-fold) by conditions that promote protein phosphorylation, such as activation of protein kinases A and C or inhibition of protein phosphatases. The stimulation of secretion was not due to an enhancement of Ca2+ influx and both peak and integrated Ca2+ currents were largely unaffected. Our data indicate that exocytosis in the insulin-secreting pancreatic β cell is determined by a balance between protein phosphorylation and dephosphorylation. They further suggest that although Ca2+ is required for the initiation of exocytosis, modulation of exocytosis by protein kinases and phosphatases, at a step distal to the elevation of Ca2+, is of much greater quantitative importance. Thus an elevation of Ca2+ may represent a permissive rather than a decisive factor in the regulation of the insulin secretory process.

  5. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  6. Avicin D: A Protein Reactive Plant Isoprenoid Dephosphorylates Stat 3 by Regulating Both Kinase and Phosphatase Activities

    PubMed Central

    Haridas, Valsala; Nishimura, Goshi; Xu, Zhi-Xiang; Connolly, Fiona; Hanausek, Margaret; Walaszek, Zbigniew; Zoltaszek, Robert; Gutterman, Jordan U.

    2009-01-01

    Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a) the cross-talk that occurs between redox and phosphorylation processes, and (b) the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways. PMID:19440292

  7. Sustained High Protein-tyrosine Phosphatase 1B Activity in the Sperm of Obese Males Impairs the Sperm Acrosome Reaction*

    PubMed Central

    Shi, Lei; Zhang, Qipeng; Xu, Binqiang; Jiang, Xiaohong; Dai, Yutian; Zhang, Chen-Yu; Zen, Ke

    2014-01-01

    Evidence of a causal link between male obesity and subfertility or infertility has been demonstrated previously. However, the mechanism underlying this link is incompletely understood. Here, we report that sustained high protein-tyrosine phosphatase 1B (PTP1B) activity in sperm of obese donors plays an essential role in coupling male obesity and subfertility or infertility. First, PTP1B level and activity were significantly higher in sperm from ob/ob mice than in wild-type littermates. High PTP1B level and activity in sperm was also observed in obese patients compared with non-obese donors. The enhanced sperm PTP1B level and activity in ob/ob mice and obese patients correlated with a defect of the sperm acrosome reaction (AR). Second, treating sperm from male ob/ob mice or obese men with a specific PTP1B inhibitor largely restored the sperm AR. Finally, blockade of sperm AR by enhanced PTP1B activity in male ob/ob mice or obese men was due to prolonged dephosphorylation of N-ethylmaleimide-sensitive factor by PTP1B, leading to the inability to reassemble the trans-SNARE complexes, which is a critical step in sperm acrosomal exocytosis. In summary, our study demonstrates for the first time that a sustained high PTP1B level or activity in the sperm of obese donors causes a defect of sperm AR and that PTP1B is a novel potential therapeutic target for male infertility treatment. PMID:24519936

  8. S-Adenosylmethionine Regulates Dual-Specificity Mitogen-Activated Protein Kinase Phosphatase Expression in Mouse and Human Hepatocytes

    PubMed Central

    Tomasi, Maria Lauda; Ramani, Komal; Lopitz-Otsoa, Fernando; Rodríguez, Manuel S.; Li, Tony W. H.; Ko, Kwangsuk; Yang, Heping; Bardag-Gorce, Fawzia; Iglesias-Ara, Ainhoa; Feo, Francesco; Pascale, Maria Rosa; Mato, José M.; Lu, Shelly C.

    2010-01-01

    Increased mitogen-activated protein kinase (MAPK) activity correlates with a more malignant hepatocellular carcinoma (HCC) phenotype. There is a reciprocal regulation between p44/42 MAPK (extracellular signal-regulated kinase [ERK]1/2) and the dual-specificity MAPK phosphatase MKP-1/DUSP1. ERK phosphorylates DUSP1, facilitating its proteasomal degradation, whereas DUSP1 inhibits ERK activity. Methionine adenosyltransferase 1a (Mat1a) knockout (KO) mice express hepatic S-adenosylmethionine (SAM) deficiency and increased ERK activity and develop HCC. The aim of this study was to examine whether DUSP1 expression is regulated by SAM and if so, elucidate the molecular mechanisms. Studies were conducted using Mat1a KO mice livers, cultured mouse and human hepatocytes, and 20S and 26S proteasomes. DUSP1 messenger RNA (mRNA) and protein levels were reduced markedly in livers of Mat1a KO mice and in cultured mouse and human hepatocytes with protein falling to lower levels than mRNA. SAM treatment protected against the fall in DUSP1 mRNA and protein levels in mouse and human hepatocytes. SAM increased DUSP1 transcription, p53 binding to DUSP1 promoter, and stability of its mRNA and protein. Proteasomal chymotrypsin-like and caspase-like activities were increased in Mat1a KO livers and cultured hepatocytes, which was blocked by SAM treatment. SAM inhibited chymotrypsin-like and caspase-like activities by 40% and 70%, respectively, in 20S proteasomes and caused rapid degradation of some of the 26S proteasomal subunits, which was blocked by the proteasome inhibitor MG132. SAM treatment in Mat1a KO mice for 7 days raised SAM, DUSP1, mRNA and protein levels and lowered proteosomal and ERK activities. Conclusion DUSP1 mRNA and protein levels are lower in Mat1a KO livers and fall rapidly in cultured hepatocytes. SAM treatment increases DUSP1 expression through multiple mechanisms, and this may suppress ERK activity and malignant degeneration. PMID:20196119

  9. Chimeric proteins combining phosphatase and cellulose-binding activities: proof-of-concept and application in the hydrolysis of paraoxon.

    PubMed

    Gonçalves, Larissa M; Chaimovich, Hernan; Cuccovia, Iolanda M; Marana, Sandro R

    2014-05-01

    Phosphatases for organophosphate degradation and carbohydrate-binding domains (CBMs) have potential biotechnological applications. As a proof-of-concept, a soluble chimeric protein that combines acid phosphatase (AppA) from Escherichia coli and a CBM from Xanthomonas axonopodis pv. citri (AppA-CBM) was produced in E.coli. AppACBM adsorbed in microcrystalline cellulose Avicel PH101 catalyzed the hydrolysis of p-nitrophenyl phosphate (PNPP). The binding to microcrystalline cellulose displayed saturation behavior with an apparent binding constant (Kb) of 22 ± 5 mg and a maximum binding (Bmax) of 1.500 ± 0.001 enzyme units. Binding was highest at pH 2.5 and decreased above pH 6.5, as previously observed for family 2 CBMs. The Km values for PNPP of AppA-CBM and native AppA were identical (2.7 mM). To demonstrate that this strategy for protein engineering has practical applications and is largely functional, even for phosphatases exhibiting diverse folds, a chimeric protein combining human paraoxonase 1 (hPON1) and the CBM was produced. Both PON1-CBM and hPON1 had identical Km values for paraoxon (1.3 mM). Additionally, hPON1 bound to microcrystalline cellulose with a Kb of 27 ± 3 mg, the same as that observed for AppA-CBM. These data show that the phosphatase domains are as functional in both of the chimeric proteins as they are in the native enzymes and that the CBM domain maintains the same cellulose affinity. Therefore, the engineering of chimeric proteins combining domains of phosphatases and CBMs is fully feasible, resulting in chimeric enzymes that exhibit potential for OP detoxification.

  10. Antidepressant Activity of Enicostemma littorale Blume in Shp2 (Protein Tyrosine Phosphatase)-inhibited Animal Model of Depression

    PubMed Central

    Doss, VA; Kuberapandian, Dharaniyambigai

    2016-01-01

    Background: The objective of this study is to develop a new animal model based on signaling pathways to understand the pathophysiology, therapy of depression, and to investigate the antidepressant activity of Enicostemma littorale which is not yet established. Methods: Animal models of depression were raised by physical methods and administration of methyl isobutyl ketone (100 mg/kg b.w., i.p.,) and a protein tyrosine phosphatase inhibitor, sodium orthovanadate (30 mg/kg b.w., i.p.,) to young Wistar rats. E. littorale aqueous extract (100 mg/kg b.w., oral) was administered. Forced swimming test (FST), biochemical, and histopathological parameters were performed with reference to fluoxetine (20 mg/kg b.w., oral) treatment. Results: High-performance thin-layer chromatography confirmed the presence of swertiamarin, a unique glycoside present in the Gentianaceae family. FST indicated high rates of immobility in depressed groups and low rates in plant extract-administered group with reference to fluoxetine. Biochemical assays indicated significantly (P < 0.05) increased levels of total protein, superoxide dismutase, triglycerides, and total serum cholesterol, whereas significant reduction (P < 0.05) of glutathione peroxidase, catalase, and lipid peroxidation in plant extract-administered groups in comparison to the depressed groups. Histopathological analysis indicated disorganized neuronal architecture during depression whereas rejuvenation of neuronal patterns was observed during treatment with plant extract and fluoxetine. Conclusions: This study shows that sodium orthovanadate induces depression in animals and also establishes the antidepressant activity of E. littorale. PMID:27761214

  11. Phosphatidylinositolphosphate phosphatase activities and cancer

    PubMed Central

    Rudge, Simon A.; Wakelam, Michael J. O.

    2016-01-01

    Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy. PMID:26302980

  12. Synthesis and protein tyrosine phosphatase 1B inhibition activities of two new synthetic bromophenols and their methoxy derivatives

    NASA Astrophysics Data System (ADS)

    Cui, Yongchao; Shi, Dayong; Hu, Zhiqiang

    2011-11-01

    3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol ( 1) is a natural bromophenol isolated from the red algae Rhodomela confervoides that exhibits significant inhibition against protein tyrosine phosphatase 1B (PTP1B). Based on its activity, we synthesized two new synthetic bromophenols and their methoxy derivatives from vanillin using the structure of natural bromophenol 1 as a scaffold. The structures of these bromophenols were elucidated from 1H NMR, 13C NMR, and high resolution electron ionization mass spectrometry as 2,3-dibromo-1-(2'-bromo-6'-(3″,4″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 2), 2,3-dibromo-1-(2'-bromo-6'-(2″-bromo-4″,5″-dimethoxybenzyl)-3',4'-dimethoxybenzyl)-4,5-dimethoxybenzene ( 3), 3,4-dibromo-5-(2'-bromo-6'-(2″-bromo-4″,5″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 4) and 3,4-dibromo-5-(2'-bromo-6'-(3″,4″-dihydroxybenzyl)-3',4'-dihydroxybenzyl)pyrocatechol ( 5). PTP1B inhibition activities of these compounds were evaluated using a colorimetric assay, and compounds 3 and 4 demonstrated interesting activity against PTP1B.

  13. Mitogen-Activated Protein Kinase Phosphatase 3 (MKP-3)–Deficient Mice Are Resistant to Diet-Induced Obesity

    PubMed Central

    Feng, Bin; Jiao, Ping; Helou, Ynes; Li, Yujie; He, Qin; Walters, Matthew S.; Salomon, Arthur

    2014-01-01

    Mitogen-activated protein kinase phosphatase 3 (MKP-3) is a negative regulator of extracellular signal–related kinase signaling. Our laboratory recently demonstrated that MKP-3 plays an important role in obesity-related hyperglycemia by promoting hepatic glucose output. This study shows that MKP-3 deficiency attenuates body weight gain induced by a high-fat diet (HFD) and protects mice from developing obesity-related hepatosteatosis. Triglyceride (TG) contents are dramatically decreased in the liver of MKP-3−/− mice fed an HFD compared with wild-type (WT) controls. The absence of MKP-3 also reduces adiposity, possibly by repressing adipocyte differentiation. In addition, MKP-3−/− mice display increased energy expenditure, enhanced peripheral glucose disposal, and improved systemic insulin sensitivity. We performed global phosphoproteomic studies to search for downstream mediators of MKP-3 action in liver lipid metabolism. Our results revealed that MKP-3 deficiency increases the phosphorylation of histone deacetylase (HDAC) 1 on serine 393 by 3.3-fold and HDAC2 on serine 394 by 2.33-fold. Activities of HDAC1 and 2 are increased in the livers of MKP-3−/− mice fed an HFD. Reduction of HDAC1/2 activities is sufficient to restore TG content of MKP-3−/− primary hepatocytes to a level similar to that in WT cells. PMID:24722245

  14. Reduced protein tyrosine phosphatase (PTPase) activity of CD45 on peripheral blood lymphocytes in patients with systemic lupus erythematosus (SLE).

    PubMed

    Takeuchi, T; Pang, M; Amano, K; Koide, J; Abe, T

    1997-07-01

    To disclose the mechanism of aberrant function of peripheral blood lymphocytes (PBL) in SLE, we focused on the catalytic function of CD45, and determined the CD45 PTPase activity in SLE patients. The sample population consisted of 32 SLE patients with different disease activity. PTPase activity of cell lysates immunoprecipitated by anti-CD45 MoAb was assayed against phosphotyrosine analogue PNPP, followed by measuring the release of para-nitro phenol at 410 nm. CD45 PTPase activity of PBL was significantly decreased in SLE patients, compared with that of normal controls and patients with systemic sclerosis (964 +/- 265, 1202 +/- 172, 1210 +/- 125, respectively; SLE versus normal, P<0.05). It was correlated with SLE Disease Activity Index (SLEDAI) score (r = 0.597, P = 0.0006), but not with the dose of prednisolone (r = 0.214, P = 0.2657), indicating that CD45 PTPase activity became reduced when the disease was active, but it was not affected by prednisolone. Moreover, it was not corrected by in vitro culture with or without stimulation. The expression of CD45 on PBL was comparable between normal and SLE, raising a possibility that it may be due to aberrant regulation of catalytic function of CD45 in SLE. Given the evidence that tyrosine phosphorylation of cellular proteins by tyrosine kinases and phosphatases is one of the key biochemical events in the signal transduction pathway, the decreased CD45 PTPase activity in SLE may account for the defective signal transduction via TCR/CD3, leading to dysregulated effector function of the lymphocytes.

  15. Mitogen-activated protein kinase phosphatase 1 is involved in tamoxifen resistance in MCF7 cells.

    PubMed

    Ma, Gang; Pan, Yixia; Zhou, Can; Sun, Ruifang; Bai, Jingjing; Liu, Peijun; Ren, Yu; He, Jianjun

    2015-11-01

    Tamoxifen resistance is a major clinical problem for ER-positive breast cancer, but the underlying mechanism is not completely elucidated. In the present study, we reported that mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1), a member of the family of MKPs, is involved in tamoxifen resistance. We found that MKP1 expression increased in tamoxifen resistant MCF7 cells. To explore the possible role of MKP1 in tamoxifen resistance, siRNA targeting MKP1 was transfected into tamoxifen resistant MCF7 cells. To our surprise, knockdown of MKP-1 promoted cell death induced by tamoxifen. On the other hand, the MKP1 overexpressed MCF7 cell clone was established and MKP1 overexpression effectively attenuated MCF7 cell death induced by tamoxifen. In addition, we revealed that MKP1 inhibited tamoxifen‑mediated JNK activation in tamoxifen resistant MCF7 and MCF7 cells, and by this mechanism MKP1 was able to inhibit tamoxifen-induced cell death. We also showed that combined appliaction of MKP1 inhibitor triptolide and tamoxifen can effectively increase tamoxifen sensitivity in tamoxifen resistant MCF7 cells. Collectively, our results indicated that MKP-1 can attenuate tamoxifen-induced cell death through inhibiting the JNK signal pathway, which represents a novel mechanism of tamoxifen resistance in MCF7 cells.

  16. Dynamic active-site protection by the M. tuberculosis protein tyrosine phosphatase PtpB lid domain.

    PubMed

    Flynn, E Megan; Hanson, Jeffrey A; Alber, Tom; Yang, Haw

    2010-04-07

    The Mycobacterium tuberculosis protein tyrosine phosphatase PtpB shows resistance to the oxidative conditions that prevail within an infected host macrophage, but the mechanism of this molecular adaptation is unknown. Crystal structures of PtpB revealed previously that a closed, two-helix lid covers the active site. By measuring single-molecule Forster-type resonance energy transfer to probe the dynamics of two helices that constitute the lid, we obtained direct evidence for large, spontaneous opening transitions of PtpB with the closed form of both helices favored approximately 3:1. Despite similar populations of conformers, the two helices move asynchronously as demonstrated by different opening and closing rates under our experimental conditions. Assuming that lid closure excludes oxidant, the rates of opening and closing quantitatively accounted for the slow observed rate of oxidative inactivation. Increasing solvent viscosity using glycerol but not PEG8000 resulted in higher rates of oxidative inactivation due to an increase in the population of open conformers. These results establish that the rapid conformational gating of the PtpB lid constitutes a reversible physical blockade that transiently masks the active site and retards oxidative inactivation.

  17. Mitogen-activated protein kinase phosphatase-1 inhibition and sustained extracellular signal-regulated kinase 1/2 activation in camptothecin-induced human colon cancer cell death

    PubMed Central

    Lee, Minyoung; Young Kim, Sun; Kim, JongGuk; Kim, Hak-Su; Kim, Sang-Man; Kim, Eun Ju

    2013-01-01

    Camptothecins are commonly used chemotherapeutics; in some models, they enhance signaling via the mitogen-activated protein kinase (MAPK) pathway through effects on upstream kinases. To evaluate the impact of camptothecin (CPT) on MAPKs in human colon cancer, we studied HCT116 and CaCo2 colon cancer cells. We found that HCT116 cells highly express mitogen-activated protein kinase phosphatase-1 (MKP1), which selectively inactivates extracellular signal-regulated kinase (ERK), whereas MKP1 levels were undetectable in CaCo2 cells. CPT did not affect ERK activity in CaCo2 cells, but did induce a striking increase in ERK activity in HCT116 cells in association with a corresponding decrease in MKP1. The reduction in MKP1 expression occurred at a posttranscriptional level and was blocked by the proteasome inhibitor MG132, whereas that CPT-induced downregulation of MKP1 was not due to proteasome-mediated degradation. Treatment of HCT116 cells with CPT induced a sustained activation of nuclear ERK, which was required for CPT-induced apoptosis. P38 and JNK activity were unaffected by CPT, suggesting that the effects of CPT are mediated specifically by ERK. These results suggest that targeting dual-specificity MAPK phosphatases in colon cancer cells may be a viable strategy for optimizing camptothecin-based therapeutic protocols. PMID:24005240

  18. PME-1 protects extracellular signal-regulated kinase pathway activity from protein phosphatase 2A-mediated inactivation in human malignant glioma.

    PubMed

    Puustinen, Pietri; Junttila, Melissa R; Vanhatupa, Sari; Sablina, Anna A; Hector, Melissa E; Teittinen, Kaisa; Raheem, Olayinka; Ketola, Kirsi; Lin, Shujun; Kast, Juergen; Haapasalo, Hannu; Hahn, William C; Westermarck, Jukka

    2009-04-01

    Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1-mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation in vivo. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (n=222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas.

  19. The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei.

    PubMed

    Nalaskowski, Marcus M; Metzner, Anja; Brehm, Maria A; Labiadh, Sena; Brauer, Helena; Grabinski, Nicole; Mayr, Georg W; Jücker, Manfred

    2012-03-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in hematopoietic cells. SHIP1 mediates its regulatory function after relocalization from the cytoplasm to the plasma membrane where it converts its substrate PI(3,4,5)P(3) to PI(3,4)P(2) thereby terminating PI3-kinase mediated signaling. In addition, SHIP1 converts Ins(1,3,4,5)P(4) to Ins(1,3,4)P(3) thereby regulating inositol phosphate metabolism. Here we report, that SHIP1 can be detected in nuclear puncta of Jurkat cells by confocal microscopy after expression of SHIP1 from a tetracycline inducible vector. SHIP1-containing nuclear puncta partially co-localize with FLASH, a multifunctional nuclear protein that has been linked to apoptotic signaling and transcriptional control. Nuclear localization was confirmed for endogenously expressed SHIP1 in the myeloid leukemia cell line TF1. In addition, enzymatically active SHIP1 was found in nuclear fractions of Jurkat cells with a similar specific activity as cytoplasmic SHIP1. Further analysis revealed that SHIP1 is a nucleocytoplasmic shuttling protein which is actively imported into and exported out of the nucleus. Nuclear import is mediated by two canonical nuclear localization signals (NLS) i.e. K(327)KSK and K(547)KLR. Mutational inactivation of each NLS motif inhibited nuclear import and reduced the proliferation of cells indicating a functional role of nuclear SHIP1 for cell growth. Our data indicate that SHIP1 is partly localized in the nucleus and suggest that SHIP1 plays a role for nuclear phosphoinositide and/or nuclear inositol phosphate signaling.

  20. Study of Protein Phosphatase 2A (PP2A) Activity in LPS-Induced Tolerance Using Fluorescence-Based and Immunoprecipitation-Aided Methodology.

    PubMed

    Sun, Lei; Ii, Adlai L Pappy; Pham, Tiffany T; Shanley, Thomas P

    2015-06-29

    Protein phosphatase 2A (PP2A) is one of the most abundant intracellular serine/threonine (Ser/Thr) phosphatases accounting for 1% of the total cellular protein content. PP2A is comprised of a heterodimeric core enzyme and a substrate-specific regulatory subunit. Potentially, at least seventy different compositions of PP2A exist because of variable regulatory subunit binding that accounts for various activity modulating numerous cell functions. Due to the constitutive phosphatase activity present inside cells, a sensitive assay is required to detect the changes of PP2A activity under various experimental conditions. We optimized a fluorescence assay (DIFMU assay) by combining it with prior anti-PP2A immunoprecipitation to quantify PP2A-specific phosphatase activity. It is also known that prior exposure to lipopolysaccharides (LPS) induces "immune tolerance" of the cells to subsequent stimulation. Herein we report that PP2A activity is upregulated in tolerized peritoneal macrophages, corresponding to decreased TNF-α secretion upon second LPS stimulation. We further examined the role of PP2A in the tolerance effect by using PP2ACαl°xl°x;lyM-Cre conditional knockout macrophages. We found that PP2A phosphatase activity cannot be further increased by tolerance. TNF-α secretion from tolerized PP2ACαl°xl°x;lyM-Cre macrophages is higher than tolerized control macrophages. Furthermore, we showed that the increased TNF-α secretion may be due to an epigenetic transcriptionally active signature on the promoter of TNF-α gene rather than regulation of the NFκB/IκB signaling pathway. These results suggest a role for increased PP2A activity in the regulation of immune tolerance.

  1. Desialylated alkaline phosphatase: activation by 4-nitrophenol.

    PubMed

    Nayudu, P R

    1984-01-01

    Mouse ileal alkaline phosphatase is a sialyl enzyme (12-14 moles per mole of enzyme). When partially desialylated by treatment with neuraminidase, the enzyme loses most of its activity, associated with reduced apparent Vmax and Km. Part of that loss, however, is recovered as the product 4-nitrophenol's concentration builds up in the cuvette. Experimental results are presented to demonstrate that the activation is due to the binding of 4-nitrophenol as a ligand by the partially desialylated enzyme and that both the loss of activity by sialic acid removal and activation by ligand-binding are correlated with changes in protein conformation.

  2. Cdk5/p35 phosphorylates lemur tyrosine kinase-2 to regulate protein phosphatase-1C phosphorylation and activity.

    PubMed

    Manser, Catherine; Vagnoni, Alessio; Guillot, Florence; Davies, Jennifer; Miller, Christopher C J

    2012-05-01

    Cyclin-dependent kinase-5 (cdk5)/p35 and protein phosphatase-1 (PP1) are two major enzymes that control a variety of physiological processes within the nervous system including neuronal differentiation, synaptic plasticity and axonal transport. Defective cdk5/p35 and PP1 function are also implicated in several major human neurodegenerative diseases. Cdk5/p35 and the catalytic subunit of PP1 (PP1C) both bind to the brain-enriched, serine-threonine kinase lemur tyrosine kinase-2 (LMTK2). Moreover, LMTK2 phosphorylates PP1C on threonine-320 (PP1Cthr³²⁰) to inhibit its activity. Here, we demonstrate that LMTK2 is phosphorylated on serine-1418 (LMTK2ser¹⁴¹⁸) by cdk5/p35 and present evidence that this regulates its ability to phosphorylate PP1Cthr³²⁰. We thus describe a new signalling pathway within the nervous system that links cdk5/p35 with PP1C and which has implications for a number of neuronal functions and neuronal dysfunction.

  3. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen

    PubMed Central

    Dutta, Noton K.; He, Rongjun; Pinn, Michael L.; He, Yantao; Burrows, Francis; Zhang, Zhong-Yin; Karakousis, Petros C.

    2016-01-01

    Novel drugs are required to shorten the duration of treatment for tuberculosis (TB) and to combat the emergence of drug resistance. One approach has been to identify and target Mycobacterium tuberculosis (Mtb) virulence factors, which promote the establishment of TB infection and pathogenesis. Mtb produces a number of virulence factors, including two protein tyrosine phosphatases (PTPs), mPTPA and mPTPB, to evade the antimicrobial functions of host macrophages. To assess the therapeutic potential of targeting the virulent Mtb PTPs, we developed highly potent and selective inhibitors of mPTPA (L335-M34) and mPTPB (L01-Z08) with drug-like properties. We tested the bactericidal activity of L335-M34 and L01-Z08 alone or together in combination with the standard antitubercular regimen of isoniazid-rifampicin-pyrazinamide (HRZ) in the guinea pig model of chronic TB infection, which faithfully recapitulates some of the key histological features of human TB lesions. Following a single dose of L335-M34 50mg/kg and L01-Z08 20 mg/kg, plasma levels were maintained at levels 10-fold greater than the biochemical IC50 for 12–24 hours. Although neither PTP inhibitor alone significantly enhanced the antibacterial activity of HRZ, dual inhibition of mPTPA and mPTPB in combination with HRZ showed modest synergy, even after 2 weeks of treatment. After 6 weeks of treatment, the degree of lung inflammation correlated with the bactericidal activity of each drug regimen. This study highlights the potential utility of targeting Mtb virulence factors, and specifically the Mtb PTPs, as a strategy for enhancing the activity of standard anti-TB treatment. PMID:27478867

  4. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1.

    PubMed

    Knutson, K L; Hmama, Z; Herrera-Velit, P; Rochford, R; Reiner, N E

    1998-01-02

    Lipoarabinomannan (LAM) is a putative virulence factor of Mycobacterium tuberculosis that inhibits monocyte functions, and this may involve antagonism of cell signaling pathways. The effects of LAM on protein tyrosine phosphorylation in cells of the human monocytic cell line THP-1 were examined. LAM promoted tyrosine dephosphorylation of multiple cell proteins and attenuated phorbol 12-myristate 13-acetate-induced activation of mitogen-activated protein kinase. To examine whether these effects of LAM could be related to activation of a phosphatase, fractions from LAM-treated cells were analyzed for dephosphorylation of para-nitrophenol phosphate. The data show that LAM induced increased phosphatase activity associated with the membrane fraction. The Src homology 2 containing tyrosine phosphatase 1 (SHP-1) is important for signal termination and was examined as a potential target of LAM. Exposure of cells to LAM brought about (i) an increase in tyrosine phosphorylation of SHP-1, and (ii) translocation of the phosphatase to the membrane. Phosphatase assay of SHP-1 immunoprecipitated from LAM-treated cells, using phosphorylated mitogen-activated protein kinase as substrate, indicated that LAM promoted increased activity of SHP-1 in vivo. LAM also activated SHP-1 directly in vitro. Exposure of cells to LAM also attenuated the expression of tumor necrosis factor-alpha, interleukin-12, and major histocompatibility class II molecules. These results suggest that one mechanism by which LAM deactivates monocytes involves activation of SHP-1.

  5. A Role for Prefrontal Calcium-Sensitive Protein Phosphatase and Kinase Activities in Working Memory

    ERIC Educational Resources Information Center

    Runyan, Jason D.; Moore, Anthony N.; Dash, Pramod K.

    2005-01-01

    The prefrontal cortex is involved in the integration and interpretation of information for directing thoughts and planning action. Working memory is defined as the active maintenance of information in mind and is thought to lie at the core of many prefrontal functions. Although dopamine and other neurotransmitters have been implicated, the…

  6. Reciprocal regulation of extracellular signal regulated kinase 1/2 and mitogen activated protein kinase phosphatase-3

    SciTech Connect

    Zeliadt, Nicholette A.; Mauro, Laura J.; Wattenberg, Elizabeth V.

    2008-11-01

    Mitogen activated protein kinase phosphatase-3 (MKP-3) is a putative tumor suppressor. When transiently overexpressed, MKP-3 dephosphorylates and inactivates extracellular signal regulated kinase (ERK) 1/2. Little is known about the roles of endogenous MKP-3, however. We previously showed that MKP-3 is upregulated in cell lines that express oncogenic Ras. Here we tested the roles of endogenous MKP-3 in modulating ERK1/2 under conditions of chronic stimulation of the Ras/Raf/MEK1/2/ERK1/2 pathway by expression of oncogenic Ras. We used two cell lines: H-ras MCF10A, breast epithelial cells engineered to express H-Ras, and DLD-1, colon cancer cells that express endogenous Ki-Ras. First, we found that MKP-3 acts in a negative feedback loop to suppress basal ERK1/2 when oncogenic Ras stimulates the Ras/Raf/MEK1/2/ERK1/2 cascade. ERK1/2 was required to maintain elevated MKP-3, indicative of a negative feedback loop. Accordingly, knockdown of MKP-3, via siRNA, increased ERK1/2 phosphorylation. Second, by using siRNA, we found that MKP-3 helps establish the sensitivity of ERK1/2 to extracellular activators by limiting the duration of ERK1/2 phosphorylation. Third, we found that the regulation of ERK1/2 by MKP-3 is countered by the complex regulation of MKP-3 by ERK1/2. Potent ERK1/2 activators stimulated the loss of MKP-3 within 30 min due to an ERK1/2-dependent decrease in MKP-3 protein stability. MKP-3 levels recovered within 120 min due to ERK1/2-dependent resynthesis. Preventing MKP-3 resynthesis, via siRNA, prolonged ERK1/2 phosphorylation. Altogether, these results suggest that under the pressure of oncogenic Ras expression, MKP-3 reins in ERK1/2 by serving in ERK1/2-dependent negative feedback pathways.

  7. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  8. [Interaction of two tumor suppressors: Phosphatase CTDSPL and Rb protein].

    PubMed

    Beniaminov, A D; Krasnov, G S; Dmitriev, A A; Puzanov, G A; Snopok, B A; Senchenko, V N; Kashuba, V I

    2016-01-01

    Earlier we established that CTDSPL gene encoding small carboxy-terminal domain serine phosphatase can be considered a classical tumor suppressor gene. Besides, transfection of tumor cell line MCF-7 with CTDSPL led to the content decrease of inactive phosphorylated form of another tumor suppressor, retinoblastoma protein (Rb), and subsequently to cell cycle arrest at the G1/S boundary. This result implied that small phosphatase CTDSPL is able to specifically dephosphorylate and activate Rb protein. In order to add some fuel to this hypothesis, in the present work we studied the interaction of two tumor suppressors CTDSPL and Rb in vitro. GST pool-down assay revealed that CTDSPL is able to precipitate Rb protein from MCF-7 cell extracts, while surface plasmon resonance technique showed that interaction of the two proteins is direct. Results of this study reassert that phosphatase CTDSPL and Rb could be involved in the common mechanism of cell cycle regulation.

  9. Conservative Tryptophan Mutants of the Protein Tyrosine Phosphatase YopH Exhibit Impaired WPD-Loop Function and Crystallize with Divanadate Esters in Their Active Sites

    PubMed Central

    Moise, Gwendolyn; Gallup, Nathan M.; Alexandrova, Anastassia N.; Hengge, Alvan C.; Johnson, Sean J.

    2016-01-01

    Catalysis in protein tyrosine phosphatases (PTPs) involves movement of a protein loop called the WPD loop that brings a conserved aspartic acid into the active site to function as a general acid. Mutation of the tryptophan in the WPD loop of the PTP YopH to any other residue with a planar, aromatic side chain (phenylalanine, tyrosine, or histidine) disables general acid catalysis. Crystal structures reveal these conservative mutations leave this critical loop in a catalytically unproductive, quasi-open position. Although the loop positions in crystal structures are similar for all three conservative mutants, the reasons inhibiting normal loop closure differ for each mutant. In the W354F and W354Y mutants, steric clashes result from six-membered rings occupying the position of the five-membered ring of the native indole side chain. The histidine mutant dysfunction results from new hydrogen bonds stabilizing the unproductive position. The results demonstrate how even modest modifications can disrupt catalytically important protein dynamics. Crystallization of all the catalytically compromised mutants in the presence of vanadate gave rise to vanadate dimers at the active site. In W354Y and W354H, a divanadate ester with glycerol is observed. Such species have precedence in solution and are known from the small molecule crystal database. Such species have not been observed in the active site of a phosphatase, as a functional phosphatase would rapidly catalyze their decomposition. The compromised functionality of the mutants allows the trapping of species that undoubtedly form in solution and are capable of binding at the active sites of PTPs, and, presumably, other phosphatases. In addition to monomeric vanadate, such higher-order vanadium-based molecules are likely involved in the interaction of vanadate with PTPs in solution. PMID:26445170

  10. Protein tyrosine phosphatase 1B inhibitory activity of Indonesian herbal medicines and constituents of Cinnamomum burmannii and Zingiber aromaticum.

    PubMed

    Saifudin, Azis; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2013-04-01

    We screened water and methanol extracts of 28 Indonesian medicinal plants for their protein tyrosine phosphatase 1B (PTP1B) inhibitory activities. Nine water extracts, i.e., Alstonia scholaris leaf, Blumea balsamifera, Cinnamomum burmannii, Cymbopogon nardus, Melaleuca leucadendra, Phyllanthus niruri, Piper nigrum, Syzygium aromaticum, and Sy. polyanthum, exhibited ≥70 % inhibition at 25 μg/mL, whereas 11 methanol extracts, i.e., Als. scholaris, Andrographis paniculata, B. balsamifera, Ci. burmannii, Curcuma heyneana, Glycyrrhiza glabra, M. leucadendra, Punica granatum, Rheum palmatum, Sy. polyanthum, and Z. aromaticum, exhibited ≥70 % inhibition at 25 μg/mL. Water extracts of B. balsamifera (IC50, 2.26 μg/mL) and M. leucadendra (IC50, 2.05 μg/mL), and methanol extracts of Ci. burmannii (IC50, 2.47 μg/mL), Pu. granatum (IC50, 2.40 μg/mL), and Sy. polyanthum (IC50, 1.03 μg/mL) exhibited strong inhibitory activity, which was comparable with that of the positive control, RK-682 (IC50, 2.05 μg/mL). The PTP1B inhibitory activity of the constituents of Ci. burmannii and Z. aromaticum was then evaluated. 5'-Hydroxy-5-hydroxymethyl-4″,5″-methylenedioxy-1,2,3,4-dibenzo-1,3,5-cycloheptatriene (2; IC50, 29.7 μM) and trans-cinnamaldehyde (5; IC50, 57.6 μM) were the active constituents of Ci. burmannii, while humulatrien-5-ol-8-one (21; IC50, 27.7 μM), kaempferol-3,4'-di-O-methyl ether (32; IC50, 17.5 μM), and (S)-6-gingerol (33; IC50, 28.1 μM) were those of Z. aromaticum. These results suggest that these medicinal plants may contribute to the treatment and/or prevention of type II diabetes and/or obesity through PTP1B inhibition.

  11. Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer

    PubMed Central

    2012-01-01

    Introduction Signal transducer and activator of transcription 3 (STAT3) is over-activated or phosphorylated in breast cancers. The hyper-phosphorylation of STAT3 was attributed to either up-regulated phosphorylation by several tyrosine-kinases or down-regulated activity of phosphatases. Although several factors have been identified to phosphorylate STAT3, it remains unclear how STAT3 is dephosphorylated by PTPMeg2. The aim of this study was to determine the role of PTPMeg2 as a phosphatase in regulation of the activity of STAT3 in breast cancers. Methods Immunoprecipitation assays were used to study the interaction of STAT3 with PTPMeg2. A series of biochemistry experiments were performed to evaluate the role of PTPMeg2 in the dephosphorylation of STAT3. Two breast cancer cell lines MCF7 (PTPMeg2 was depleted as it was endogenously high) and MDA-MB-231 (PTPMeg2 was overexpressed as it was endogenously low) were used to compare the level of phosphorylated STAT3 and the tumor growth ability in vitro and in vivo. Samples from breast carcinoma (n = 73) were subjected to a pair-wise Pearson correlation analysis for the correlation of levels of PTPMeg2 and phosphorylated STAT3. Results PTPMeg2 directly interacts with STAT3 and mediates its dephosphorylation in the cytoplasm. Over-expression of PTPMeg2 decreased tyrosine phosphorylation of STAT3 while depletion of PTPMeg2 increased its phosphorylation. The decreased tyrosine phosphorylation of STAT3 is coupled with suppression of STAT3 transcriptional activity and reduced tumor growth in vitro and in vivo. Levels of PTPMeg2 and phosphorylated STAT3 were inversely correlated in breast cancer tissues (P = 0.004). Conclusions PTPMeg2 is an important phosphatase for the dephosphorylation of STAT3 and plays a critical role in breast cancer development. PMID:22394684

  12. Distinct phosphatase activity profiles in two strains of Trypanosoma cruzi.

    PubMed

    Morales-Neto, R; Hulshof, L; Ferreira, C V; Gadelha, F R

    2009-12-01

    Phosphorylation of parasite proteins plays a key role in the process of cell invasion by Trypanosoma cruzi, the etiologic agent of Chagas' disease. In this sense, characterization of parasite kinases and phosphatases could open new possibilities for the rational design of chemotherapeutic agents for the treatment of Chagas' disease. In this work, we analyzed phosphatase activities in T. cruzi homogenates from 2 strains belonging to different lineages and with different resistance to oxidative stress. Tulahuen 2 cells (Lineage I) showed higher phosphatase activities and specificity constants when compared to the Y strain (Lineage II). Tulahuen 2 had an optimum phosphatase activity at pH 4.0 and the Y strain at pH 7.0. In both cases, neutral–basic, but not acid, phosphatase activities were increased in the presence of Mg2+. Although calcium had an inhibitory effect at a pH of 7.0 and 8.0 in the Y strain, this inhibition was restricted to pH 8.0 in the other strain. Different substrates and acid phosphotyrosine and alkaline phosphatase inhibitors exhibited distinct effects on the phosphatase activity of both strains. Our results provide a better understanding of T. cruzi phosphatases and reinforce the notion of heterogeneity among T. cruzi populations.

  13. Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A

    PubMed Central

    Persad, Amit; Venkateswaran, Geetha; Hao, Li; Garcia, Maria E.; Yoon, Jenny; Sidhu, Jaskiran; Persad, Sujata

    2016-01-01

    Dysregulation of Wnt/β-catenin signaling has been associated with the development and progression of many cancers. The stability and subcellular localization of β-catenin, a dual functional protein that plays a role in intracellular adhesion and in regulating gene expression, is tightly regulated. However, little is known about the transcriptionally active form of β-catenin, Active Beta Catenin (ABC), that is unphosphorylated at serine 37 (Ser37) and threonine 41 (Thr41). Elucidating the mechanism by which β-catenin is activated to generate ABC is vital to the development of therapeutic strategies to block β-catenin signaling for cancer treatment. Using melanoma, breast and prostate cancer cell lines, we show that while cellular β-catenin levels are regulated by the Wnt pathway, cellular ABC levels are mainly regulated by the PI3K pathway and are dependent on the phosphatase activity of the protein phosphatase PP2A. Furthermore, we demonstrate that although the PI3K/PTEN pathway does not regulate total β-catenin protein levels within the cell, it plays a role in regulating the subcellular localization of β-catenin. Our results support a novel functional interaction/cross-talk between the PTEN/PI3K and Wnt pathways in the regulation of the subcellular/nuclear levels of ABC, which is crucially important for the protein's activity as a transcription factor and its biological effects in health and disease. PMID:28191283

  14. Manganese modulation of MAPK pathways: effects on upstream mitogen activated protein kinase kinases (MKKs) and mitogen activated kinase phosphatase-1 (MKP-1) in microglial cells

    PubMed Central

    Crittenden, Patrick L.; Filipov, Nikolay M.

    2010-01-01

    Multiple studies demonstrate that manganese (Mn) exposure potentiates inflammatory mediator output from activated glia; this increased output is associated with enhanced mitogen activated protein kinase (MAPK: p38, ERK, and JNK) activity. We hypothesized that Mn activates MAPK by activating the kinases upstream of MAPK, i.e., MKK-3/6, MKK-1/2, and MKK-4 (responsible for activation of p38, ERK, and JNK, respectively), and/or by inhibiting a major phosphatase responsible for MAPK inactivation, MKP-1. Exposure of N9 microglia to Mn (250μM), LPS (100 ng/ml), or Mn+LPS increased MKK-3/6 and MKK-4 activity at 1 h; the effect of Mn+LPS on MKK-4 activation was greater than the rest. At 4 h, Mn, LPS, and Mn+LPS increased MKK-3/6 and MKK-1/2 phosphorylation, whereas MKK-4 was activated only by Mn and Mn+LPS. Besides activating MKK-4 via Ser257/Thr261 phosphorylation, Mn (4 h) prevented MKK-4’s phosphorylation on Ser80, which negatively regulates MKK-4 activity. Exposure to Mn or Mn+LPS (1 h) decreased both mRNA and protein expression of MKP-1, the negative MAPK regulator. In addition, we observed that at 4 h, but not at 1 h, a time point coinciding with increased MAPK activity, Mn+LPS markedly increased TNF-α , IL-6, and Cox-2 mRNA, suggesting a delayed effect. The fact that all three major groups of MKKs, MKK-1/2, MKK-3/6, and MKK-4 are activated by Mn suggests that Mn-induced activation of MAPK occurs via traditional mechanisms, which perhaps involve the MAPKs farthest upstream, MKKKs (MAP3Ks). In addition, for all MKKs, Mn-induced activation was persistent at least for 4 h, indicating a long-term effect. PMID:20589745

  15. Tyrosine phosphatase activity in mitochondria: presence of Shp-2 phosphatase in mitochondria.

    PubMed

    Salvi, M; Stringaro, A; Brunati, A M; Agostinelli, E; Arancia, G; Clari, G; Toninello, A

    2004-09-01

    Tyrosine phosphorylation by unidentified enzymes has been observed in mitochondria, with recent evidence indicating that non-receptorial tyrosine kinases belonging to the Src family, which represent key players in several transduction pathways, are constitutively present in mitochondria. The extent of protein phosphorylation reflects a coordination balance between the activities of specific kinases and phophatases. The present study demonstrates that purified rat brain mitochondria possess endogenous tyrosine phosphatase activity. Mitochondrial phosphatases were found to be capable of dephosphorylating different exogenous substrates, including paranitrophenylphosphate, (32)P-poly(Glu-Tyr)(4:1) and (32)P-angiotensin. These activities are strongly inhibited by peroxovanadate, a well-known inhibitor of tyrosine phosphatases, but not by inhibitors of alkali or Ser/Thr phosphatases, and mainly take place in the intermembrane space and outer mitochondrial membrane. Using a combination of approaches, we identified the tyrosine phosphatase Shp-2 in mitochondria. Shp-2 plays a crucial role in a number of intracellular signalling cascades and is probably involved in several human diseases. It thus represents the first tyrosine phosphatase shown to be present in mitochondria.

  16. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  17. Activation of lysophosphatidic acid receptor by gintonin inhibits Kv1.2 channel activity: involvement of tyrosine kinase and receptor protein tyrosine phosphatase α.

    PubMed

    Lee, Jun-Ho; Choi, Sun-Hye; Lee, Byung-Hwan; Hwang, Sung-Hee; Kim, Hyeon-Joong; Rhee, Jeehae; Chung, Chihye; Nah, Seung-Yeol

    2013-08-26

    Gintonin is a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand. The primary action of gintonin is to elicit a transient increase in [Ca(2+)]i via activation of LPA receptor subtypes. Voltage-gated potassium (Kv) channels play important roles in synaptic transmission in nervous systems. The previous reports have shown that Kv channels can be regulated by Gαq/11 protein-coupled receptor ligands. In the present study, we examined the effects of gintonin on Kv1.2 channel activity expressed in Xenopus oocytes after injection of RNA encoding the human Kv1.2 α subunit. Gintonin treatment inhibited Kv1.2 channel activity in reversible and concentration-dependent manners. The inhibitory effect of gintonin on Kv1.2 channel activity was blocked by active phospholipase C inhibitor, inositol 1,4,5-triphosphate receptor antagonist, and intracellular Ca(2+) chelator. The co-expression of active receptor protein tyrosine phosphatase α (RPTPα) with Kv1.2 channel greatly attenuated gintonin-mediated inhibition of Kv1.2 channel activity, but attenuation was not observed with catalytically inactive RPTPα. Furthermore, neither genistein, a tyrosine kinase inhibitor, nor site-directed mutation of a tyrosine residue (Y132 to Y132F), which is phosphorylated by tyrosine kinase of the N-terminal of the Kv1.2 channel α subunit, significantly attenuated gintonin-mediated inhibition of Kv1.2 channel activity. These results indicate that the gintonin-mediated Kv1.2 channel regulation involves the dual coordination of both tyrosine kinase and RPTPα coupled to this receptor. Finally, gintonin-mediated regulation of Kv1.2 channel activity might explain one of the modulations of gintonin-mediated neuronal activities in nervous systems.

  18. Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways*

    PubMed Central

    Dickinson, Robin J.; Delavaine, Laurent; Cejudo-Marín, Rocío; Stewart, Graeme; Staples, Christopher J.; Didmon, Mark P.; Trinidad, Antonio Garcia; Alonso, Andrés; Pulido, Rafael; Keyse, Stephen M.

    2011-01-01

    MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site 55RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo. PMID:21908610

  19. Isolation of betulinic acid, its methyl ester and guaiane sesquiterpenoids with protein tyrosine phosphatase 1B inhibitory activity from the roots of Saussurea lappa C.B.Clarke.

    PubMed

    Choi, Ji Young; Na, Minkyun; Hyun Hwang, In; Ho Lee, Seung; Young Bae, Eun; Yeon Kim, Bo; Seog Ahn, Jong

    2009-01-08

    Activity-guided fractionation of a MeOH extract of the roots of Saussurea lappa C.B.Clarke (Compositae), using an in vitro protein tyrosine phosphatase 1B (PTP1B) inhibition assay, led to the isolation of four active constituents: betulinic acid (1), betulinic acid methyl ester (2), mokko lactone (3) and dehydrocostuslactone (4), along with nine inactive compounds. Our findings indicate that betulinic acid (1) and its methyl ester 2, as well as the two guaiane sesquiterpenoids 3 and 4 are potential lead moieties for the development of new PTP1B inhibitors.

  20. Structure and Mechanism of the Phosphotyrosyl Phosphatase Activator

    SciTech Connect

    Chao,Y.; Xing, Y.; Chen, Y.; Xu, Y.; Lin, Z.; Li, Z.; Jeffrey, P.; Stock, J.; Shi, Y.

    2006-01-01

    Phosphotyrosyl phosphatase activator (PTPA), also known as PP2A phosphatase activator, is a conserved protein from yeast to human. Here we report the 1.9 {angstrom} crystal structure of human PTPA, which reveals a previously unreported fold consisting of three subdomains: core, lid, and linker. Structural analysis uncovers a highly conserved surface patch, which borders the three subdomains, and an associated deep pocket located between the core and the linker subdomains. The conserved surface patch and the deep pocket are responsible for binding to PP2A and ATP, respectively. PTPA and PP2A A-C dimer together constitute a composite ATPase. PTPA binding to PP2A results in a dramatic alteration of substrate specificity, with enhanced phosphotyrosine phosphatase activity and decreased phosphoserine phosphatase activity. This function of PTPA strictly depends on the composite ATPase activity. These observations reveal significant insights into the function and mechanism of PTPA and have important ramifications for understanding PP2A function.

  1. Phosphorylation status of the SCR homeodomain determines its functional activity: essential role for protein phosphatase 2A,B′

    PubMed Central

    Berry, Meera; Gehring, Walter

    2000-01-01

    Sex combs reduced (SCR) is a Drosophila Hox protein that determines the identity of the labial and prothoracic segments. In search of factors that might associate with SCR to control its activity and/or specificity, we performed a yeast two-hybrid screen. A Drosophila homologue of the regulatory subunit (B′/PR61) of serine-threonine protein phosphatase 2A (dPP2A,B′) specifically interacted with the SCR homeodomain. The N-terminal arm within the SCR homeodomain was shown to be a target of phosphorylation/dephosphorylation by cAMP-dependent protein kinase A and protein phosphatase 2A, respectively. In vivo analyses revealed that mutant forms of SCR mimicking constitutively dephosphorylated or phosphorylated states of the homeodomain were active or inactive, respectively. Inactivity of the phosphorylated mimic form was attributed to impaired DNA binding. Specific ablation of dPP2A,B′ gene activity by double-stranded RNA-mediated genetic interference resulted in embryos without salivary glands, an SCR null phenotype. Our data demonstrate an essential role for Drosophila PP2A,B′ in positively modulating SCR function. PMID:10856239

  2. Purification and characterization of two wheat-embryo protein phosphatases.

    PubMed

    Polya, G M; Haritou, M

    1988-04-15

    Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.

  3. Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides.

    PubMed

    Xiao, Qing; Luechapanichkul, Rinrada; Zhai, Yujing; Pei, Dehua

    2013-07-03

    A combinatorial library method was developed to systematically profile the substrate specificity of protein phosphatases toward phosphoseryl (pS) and phosphothreonyl (pT) peptides. Application of this method and a previously reported phosphotyrosyl (pY) library screening technique to dual-specificity phosphatase (DUSP) VH1 of vaccinia virus revealed that VH1 is highly active toward both pS/pT and pY peptides. VH1 exhibits different and more stringent sequence specificity toward pS/pT than pY substrates. Unlike previously characterized protein tyrosine phosphatases (PTPs), the activity and specificity of VH1 are primarily determined by the amino acid residues C-terminal to the pS, pT, or pY residue. In contrast, the mammalian VH1-related (VHR) DUSP has intrinsically low catalytic activity toward pS and pT substrates, suggesting that its primary physiological function is to dephosphorylate pY residues in substrate proteins. This method is applicable to other DUSPs and protein-serine/threonine phosphatases, and the substrate specificity data will be useful for identifying the physiological substrates of these enzymes.

  4. [Phosphatase activity in Amoeba proteus at pH 9.0].

    PubMed

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).

  5. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury.

  6. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases.

    PubMed

    Adler, E; Donella-Deana, A; Arigoni, F; Pinna, L A; Stragler, P

    1997-01-01

    Bacillus subtilis SpoIIE is a Ser protein phosphatase whose action on the phosphoprotein SpoIIAA triggers the cell type-specific activation of a sporulation transcription factor. Here we report that SpoIIE displays sequence similarity to the PP2C family of eukaryotic Ser/Thr protein phosphatases, and that residues common to these proteins are required for the function of both SpoIIE and TPD1, a yeast PP2C. These findings suggest that SpoIIE and the PP2C protein phosphatases are structurally related, and reveal a striking formal similarity between the SpoIIAA regulatory circuit and that of mammalian mitochondrial pyruvate dehydrogenase. This similarity may reflect an evolutionarily conserved mechanism of biological regulation based on the interplay of His protein kinase-like Ser kinases and PP2C-like protein phosphatases.

  7. K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD

    PubMed Central

    Zhang, Yan; Lin, Dao-Hong; Wang, Zhi-Jian; Jin, Yan; Yang, Baofeng; Wang, Wen-Hui

    2009-01-01

    We used Western blot analysis to examine the effect of dietary K intake on the expression of serine/threonine protein phosphatase in the kidney. K restriction significantly decreased the expression of catalytic subunit of protein phosphatase (PP)2B but increased the expression of PP2B regulatory subunit in both rat and mouse kidney. However, K depletion did not affect the expression of PP1 and PP2A. Treatment of M-1 cells, mouse cortical collecting duct (CCD) cells, or 293T cells with glucose oxidase (GO), which generates superoxide anions through glucose metabolism, mimicked the effect of K restriction on PP2B expression and significantly decreased expression of PP2B catalytic subunits. However, GO treatment increased expression of regulatory subunit of PP2B and had no effect on expression of PP1, PP2A, and protein tyrosine phosphatase 1D. Moreover, deletion of gp91-containing NADPH oxidase abolished the effect of K depletion on PP2B. Thus superoxide anions or related products may mediate the inhibitory effect of K restriction on the expression of PP2B catalytic subunit. We also used patch-clamp technique to study the effect of inhibiting PP2B on renal outer medullary K (ROMK) channels in the CCD. Application of cyclosporin A or FK506, inhibitors of PP2B, significantly decreased ROMK channels, and the effect of PP2B inhibitors was abolished by blocking p38 mitogen-activated protein kinase (MAPK) and ERK. Furthermore, Western blot demonstrated that inhibition of PP2B with cyclosporin A or small interfering RNA increased the phosphorylation of ERK and p38 MAPK. We conclude that K restriction suppresses the expression of PP2B catalytic subunits and that inhibition of PP2B decreases ROMK channel activity through stimulation of MAPK in the CCD. PMID:18184875

  8. Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B).

    PubMed

    Donella-Deana, A; Krinks, M H; Ruzzene, M; Klee, C; Pinna, L A

    1994-01-15

    38 (6-32 residues) enzymically phosphorylated synthetic peptides have been assayed as substrates for calcineurin, a Ca2+/calmodulin-dependent protein phosphatase (PP-2B) belonging to the family of Ser/Thr-specific enzymes but also active on phosphotyrosine residues. Many peptides reproduce, with suitable modifications, naturally occurring phosphoacceptor sites. While protein phosphatases 2A and 2C are also very active on short phosphopeptides, an extended N-terminal stretch appears to be a necessary, albeit not sufficient, condition for an optimal dephosphorylation, comparable to that of protein substrates, of both phosphoseryl and phosphotyrosyl peptides by calcineurin. This finding corroborates the view that higher-order structure is an important determinant for the substrate specificity of calcineurin. However, a number of shorter peptides are also appreciably dephosphorylated by this enzyme, their efficiency as substrates depending on local structural features. All the peptides that are appreciably dephosphorylated by calcineurin contain basic residue(s) on the N-terminal side. A basic residue located at position -3 relative to the phosphorylated residue plays a particularly relevant positive role in determining the dephosphorylation of short phosphopeptides. Acidic residue(s) adjacent to the C-terminal side of the phosphoamino acid are conversely powerful negative determinants, preventing the dephosphorylation of otherwise suitable peptide substrates. However, calcineurin displays an only moderate preference for phosphothreonyl peptides which are conversely strikingly preferred over their phosphoseryl counterparts by the other classes of Ser/Thr-specific protein phosphatases. Moreover calcineurin does not perceive as a strong negative determinant the motif Ser/Thr-Pro in peptides where this motif prevents dephosphorylation by the other classes of Ser/Thr protein phosphatases. Whenever tested on phosphotyrosyl peptides, calcineurin exhibits a specificity which

  9. Calyculin A Reveals Serine/Threonine Phosphatase Protein Phosphatase 1 as a Regulatory Nodal Point in Canonical Signal Transducer and Activator of Transcription 3 Signaling of Human Microvascular Endothelial Cells

    PubMed Central

    Zgheib, Carlos; Zouein, Fouad A.; Chidiac, Rony; Kurdi, Mazen

    2012-01-01

    Vascular inflammation is initiated by stimuli acting on endothelial cells. A clinical feature of vascular inflammation is increased circulating interleukin 6 (IL-6) type cytokines such as leukemia inhibitory factor (LIF), but their role in vascular inflammation is not fully defined. IL-6 type cytokines activate transcription factor signal transducer and activator of transcription 3 (STAT3), which has a key role in inflammation and the innate immune response. Canonical STAT3 gene induction is due to phosphorylation of (1) Y705, leading to STAT3 dimerization and DNA binding and (2) S727, enhancing homodimerization and DNA binding by recruiting p300/CBP. We asked whether enhancing S727 STAT3 phosphorylation using the protein phosphatase 1 (PP1) inhibitor, calyculin A, would enhance LIF-induced gene expression in human microvascular endothelial cells (HMEC-1). Cotreatment with calyculin A and LIF markedly increased STAT3 S727 phosphorylation, without affecting the increase in the nuclear fraction of STAT3 phosphorylated on Y705. PP2A inhibitors, okadaic acid and fostriecin, did not enhance STAT3 S727 phosphorylation. Surprisingly, calyculin A eliminated LIF-induced gene expression: (1) calyculin A reduced binding of nuclear extracts to a STAT3 consensus site, thereby reducing the overall level of binding observed with LIF; and (2) calyculin A caused p300/CBP phosphorylation, thus resulting in reduced acetylation activity and degradation. Together, these findings reveal a pivotal role of a protein serine/threonine phosphatases that is likely PP1 in HMEC in controlling STAT3 transcriptional activity. PMID:22142222

  10. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities.

    PubMed

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2001-04-01

    Phosphatases extracted from a human brain were resolved into two main groups, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue binding phosphatases were further separated into four different phosphatase activities, designated P1-P4, and described previously. In the present study we describe the affi-gel blue-nonbinding phosphatases which were separated into seven different phosphatase activities, designated P5-P11 by poly-(L-lysine)-agarose and aminohexyl Sepharose 4B chromatographies. These seven phosphatase activities were active toward nonprotein phosphoester. P7-P11 and to some extent P5 could also dephosphorylate a phosphoprotein. They displayed different enzyme kinetics. On the basis of activity peak, the apparent molecular mass as estimated by Sephadex G-200 column chromatography for P5 was 49 kDa; P6, 32 kDa; P7, 150 kDa; P8, 250 kDa; P9, 165 kDa; P10, 90 kDa and P11, 165 kDa. Immunoblot analysis indicated that P8-P11 may belong to PP2B family, whereas P7 may associate with PP2A. The phosphatases P7-P11 were found to be effective in the dephosphorylation of Alzheimer's disease abnormally hyperphosphorylated tau. The resulting dephosphorylated tau regained its activity in promoting the microtubule assembly, suggesting that P7-P11 might regulate the phosphorylation of tau protein in the brain.

  11. In vitro enzymatic assays of protein tyrosine phosphatase 1B.

    PubMed

    Lubben, T; Clampit, J; Stashko, M; Trevillyan, J; Jirousek, M R

    2001-08-01

    Many hormone or growth factor receptors signal via the activation of protein-tyrosine kinases and phosphatases. Alteration of the phosphorylation state of tyrosine residues in certain proteins can directly regulate enzyme activity or cause formation of protein complexes necessary for transducing intracellular signals. Genetic and biochemical evidence also implicates protein-tyrosine phosphatases in several disease processes, including negative regulation of insulin receptor signaling at the level of the insulin receptor and perhaps in signaling at the IRS-1 level. The expression of protein tyrosine phosphatase-1B (PTP1B) is elevated in muscle and adipose tissue in insulin-resistant states both in man and rodents suggesting that PTP1B may play a role in the insulin-resistant state associated with diabetes and obesity. As described in this unit, PTP1B activity can be determined with the small molecule substrate, p-nitrophenyl phosphate (pNPP), in which the cleavage of the phosphate results in production of p-nitrophenol (pNP) and an increase in absorbance at 405 nm. Alternatively, PTP1B activity can be measured as described using model phosphotyrosyl-containing peptide substrates in which the release of free phosphate from the peptide is determined using a malachite green colorimetric assay.

  12. Protein phosphatase type 2C PP2CA together with ABI1 inhibits SnRK2.4 activity and regulates plant responses to salinity

    PubMed Central

    Krzywińska, Ewa; Kulik, Anna; Bucholc, Maria; Fernandez, Maria A.; Rodriguez, Pedro L.; Dobrowolska, Grażyna

    2016-01-01

    ABSTRACT Protein phosphatases 2C (PP2Cs) are important regulators of plant responses to abiotic stress. It is established that clade A PP2Cs inhibit ABA-activated SNF1-related protein kinases 2 (SnRK2s). Our recently published results show that ABI1, a member of clade A of PP2C is also a negative regulator of SnRK2.4, a kinase not activated in response to ABA. Here, we show that another member of this clade - PP2CA, interacts with and inhibits SnRK2.4. The salt-induced SnRK2.4/SnRK2.10 activity is higher in abi1–2 pp2ca-1 mutant than in wild type or single abi1 or pp2ca mutants, indicating that both phosphatases are inhibitors of SnRK2.4 and are at least partially redundant. Moreover, PP2CA together with ABI1 and SnRK2.4 regulates root growth in response to salinity. PMID:27901636

  13. Molecular enzymology underlying regulation of protein phosphatase-1 by natural toxins.

    PubMed

    Holmes, C F B; Maynes, J T; Perreault, K R; Dawson, J F; James, M N G

    2002-11-01

    The protein serine/threonine phosphatases constitute a unique class of enzymes that are critical for cell regulation, as they must counteract the activities of thousands of protein kinases in human cells. Uncontrolled inhibition of phosphatase activity by toxic inhibitors can lead to widespread catastrophic effects. Over the past decade, a number of natural product toxins have been identified that specifically and potently inhibit protein phosphatase-1 and 2A. Amongst these are the cyanobacteria-derived cyclic heptapeptide microcystin-LR and the polyether fatty acid okadaic acid from dinoflagellate sources. The molecular mechanism underlying potent inhibition of protein phosphatase-1 by these toxins is becoming clear through insights gathered from diverse sources. These include: 1. Comparison of structure-activity relationships amongst the different classes of toxins. 2. Delineation of the structural differences between protein phosphatase-1 and 2A that account for their differing sensitivity to toxins, particularly okadaic acid and microcystin-LR. 3. Determination of the crystal structure of protein phosphatase-1 with microcystin-LR, okadaic acid and calyculin bound. 4. Site-specific mutagenesis and biochemical analysis of protein phosphatase-1 mutants. Taken together, these data point to a common binding site on protein phosphatase-1 for okadaic acid, microcystin-LR and the calyculins. However, careful analysis of these data suggest that each toxin binds to the common binding site in a subtly different way, relying on distinct structural interactions such as hydrophobic binding, hydrogen bonding and electrostatic interactions to different degrees. The insights derived from studying the molecular enzymology of protein phosphatase-1 may help explain the different sensitivities of other structurally conserved protein serine/theonine phosphatases to toxin inhibition. Furthermore, studies on the binding of structurally diverse toxins at the active site of protein

  14. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin-Proteasome Pathway.

    PubMed

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-12-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18.

  15. Arabidopsis ABA-Activated Kinase MAPKKK18 is Regulated by Protein Phosphatase 2C ABI1 and the Ubiquitin–Proteasome Pathway

    PubMed Central

    Mitula, Filip; Tajdel, Malgorzata; Cieśla, Agata; Kasprowicz-Maluśki, Anna; Kulik, Anna; Babula-Skowrońska, Danuta; Michalak, Michal; Dobrowolska, Grazyna; Sadowski, Jan; Ludwików, Agnieszka

    2015-01-01

    Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18. PMID:26443375

  16. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells.

    PubMed

    Hales, Eric C; Orr, Steven M; Larson Gedman, Amanda; Taub, Jeffrey W; Matherly, Larry H

    2013-08-02

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.

  17. Protein Phosphatase Methyl-Esterase PME-1 Protects Protein Phosphatase 2A from Ubiquitin/Proteasome Degradation.

    PubMed

    Yabe, Ryotaro; Miura, Akane; Usui, Tatsuya; Mudrak, Ingrid; Ogris, Egon; Ohama, Takashi; Sato, Koichi

    2015-01-01

    Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.

  18. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    PubMed

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways.

  19. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.

    PubMed

    Dounay, A B; Forsyth, C J

    2002-11-01

    As the first recognized member of the "okadaic acid class" of phosphatase inhibitors, the marine natural product okadaic acid is perhaps the most well-known member of a diverse array of secondary metabolites that have emerged as valuable probes for studying the roles of various cellular protein serine/threonine phosphatases. This review provides a historical perspective on the role that okadaic acid has played in stimulating a broad spectrum of modern scientific research as a result of the natural product's ability to bind to and inhibit important classes of protein serine / threonine phosphatases. The relationships between the structure and biological activities of okadaic acid are briefly reviewed, as well as the structural information regarding the particular cellular receptors protein phosphatases 1 (PP1) and 2A. Laboratory syntheses of okadaic acid and its analogs are thoroughly reviewed. Finally, an interpretation of the critical contacts observed between okadaic acid and PP1 by X-ray crystallography is provided, and specific molecular recognition hypotheses that are testable via the synthesis and assay of non-natural analogs of okadaic acid are suggested.

  20. The protein-tyrosine phosphatase SHP-1 associates with the phosphorylated immunoreceptor tyrosine-based activation motif of Fc gamma RIIa to modulate signaling events in myeloid cells.

    PubMed

    Ganesan, Latha P; Fang, Huiqing; Marsh, Clay B; Tridandapani, Susheela

    2003-09-12

    Fc gamma RIIa is a low affinity IgG receptor uniquely expressed in human cells that promotes phagocytosis of immune complexes and induces inflammatory cytokine gene transcription. Recent studies have revealed that phagocytosis initiated by Fc gamma RIIa is tightly controlled by the inositol phosphatase SHIP-1, and the protein-tyrosine phosphatase SHP-1. Whereas the molecular nature of SHIP-1 involvement with Fc gamma RIIa has been well studied, it is not clear how SHP-1 is activated by Fc gamma RIIa to mediate its regulatory effect. Here we report that Fc gamma RIIa clustering induces SHP-1 phosphatase activity in THP-1 cells. Using synthetic phosphopeptides, and stable transfectants expressing immunoreceptor tyrosine-based activation motif (ITAM) tyrosine mutants of Fc gamma RIIa, we demonstrate that SHP-1 associates with the phosphorylated amino-terminal ITAM tyrosine of Fc gamma RIIa, whereas the tyrosine kinase Syk associates with the carboxyl-terminal ITAM tyrosine. Association of SHP-1 with Fc gamma RIIa ITAM appears to suppress total cellular tyrosine phosphorylation. Furthermore, Fc gamma RIIa clustering results in the association of SHP-1 with key signaling molecules such as Syk, p85 subunit of PtdIns 3-kinase, and p62dok, suggesting that these molecules may be substrates of SHP-1 in this system. Finally, overexpression of wild-type SHP-1 but not catalytically deficient SHP-1 led to a down-regulation of NF kappa B-dependent gene transcription in THP-1 cells activated by clustering Fc gamma RIIa.

  1. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  2. Structural and functional basis of protein phosphatase 5 substrate specificity.

    PubMed

    Oberoi, Jasmeen; Dunn, Diana M; Woodford, Mark R; Mariotti, Laura; Schulman, Jacqualyn; Bourboulia, Dimitra; Mollapour, Mehdi; Vaughan, Cara K

    2016-08-09

    The serine/threonine phosphatase protein phosphatase 5 (PP5) regulates hormone- and stress-induced cellular signaling by association with the molecular chaperone heat shock protein 90 (Hsp90). PP5-mediated dephosphorylation of the cochaperone Cdc37 is essential for activation of Hsp90-dependent kinases. However, the details of this mechanism remain unknown. We determined the crystal structure of a Cdc37 phosphomimetic peptide bound to the catalytic domain of PP5. The structure reveals PP5 utilization of conserved elements of phosphoprotein phosphatase (PPP) structure to bind substrate and provides a template for many PPP-substrate interactions. Our data show that, despite a highly conserved structure, elements of substrate specificity are determined within the phosphatase catalytic domain itself. Structure-based mutations in vivo reveal that PP5-mediated dephosphorylation is required for kinase and steroid hormone receptor release from the chaperone complex. Finally, our data show that hyper- or hypoactivity of PP5 mutants increases Hsp90 binding to its inhibitor, suggesting a mechanism to enhance the efficacy of Hsp90 inhibitors by regulation of PP5 activity in tumors.

  3. Assay of phosphotyrosyl protein phosphatase using synthetic peptide 1142-1153 of the insulin receptor.

    PubMed

    King, M J; Sale, G J

    1988-09-12

    Synthetic peptide 1142-1153 of the insulin receptor was phosphorylated on tyrosine by the insulin receptor and found to be a potent substrate for dephosphorylation by rat liver particulate and soluble phosphotyrosyl protein phosphatases. Apparent Km values were approximately 5 microM. Vm values (nmol phosphate removed/min per mg protein) were 0.62 (particulate) and 0.2 (soluble). This corresponds to 80% of total activity being membrane-associated, indicating that membrane-bound phosphatases are important receptor phosphatases. The phosphatase activities were distinct from acid and alkaline phosphatase. In conclusion peptide 1142-1153 provides a useful tool for the further study and characterization of phosphotyrosyl protein phosphatases.

  4. Plasiatine, an Unprecedented Indole–Phenylpropanoid Hybrid from Plantago asiatica as a Potent Activator of the Nonreceptor Protein Tyrosine Phosphatase Shp2

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Hua; Shi, Yi-Ming; Qiang, Zhe; Wang, Xia; Shang, Shan-Zhai; Yang, Yan; Du, Bao-Wen; Peng, Hui-Pan; Ji, Xu; Li, Honglin; Wang, Fei; Xiao, Wei-Lie

    2016-04-01

    Plasiatine (1), isolated from the seeds of Plantago asiatica, is an unprecedented indole analogue linked to a phenylpropanoid moiety via a carbon bond that builds up a novel heteromeric construction with a C19N2 scaffold. Its structure was determined by spectroscopic data and computational evidence. Notably, experimental assay demonstrated that 1 significantly enhanced the activity of the nonreceptor protein tyrosine phosphatase Shp2 in vitro in a concentration-dependent manner with an EC50 value of 0.97 μM, and activated phosphorylation of ERK, a known target of Shp2. Moreover, plasiatine (1) promoted hepatocellular HepG2 cells migration. Molecular docking suggested that plasiatine (1) binds to the catalytic cleft of Shp2. These results identified plasiatine (1) as the first small molecule Shp2 activator, and it warrants further investigation as a novel pharmaceutical tool to study the function of Shp2 in tumorigenesis.

  5. Acid phosphatase activities during the germination of Glycine max seeds.

    PubMed

    dos Prazeres, Janaina Nicanuzia; Ferreira, Carmen Veríssima; Aoyama, Hiroshi

    2004-01-01

    In this paper, we describe a study concerning the determination of some characteristics of soybean seedlings and the detection of acid phosphatase activities towards different substrates during the germination. Enzyme activities with p-nitrophenylphosphate (pNPP) and inorganic pyrophosphate (PPi) as substrates were detected from the 5th and 7th days after germination, respectively. Acid phosphatase activities with tyrosine phosphate (TyrP), glucose-6-phosphate (G6P) and phosphoenol pyruvate (PEP) were also observed but to a lesser extent. Under the same conditions, no enzyme activity was detected with phytic acid (PhyAc) as substrate. The appearance of phosphatase activity was coincident with the decrease of inorganic phosphate content during germination; over the same period, the protein content increased up to the 5th day, decreased until the 8th day, and remained constant after this period. Relative to phosphatase activity in the cotyledons, the activities detected in the hypocotyl and roots were 82% and 38%, respectively. During storage the enzyme maintained about 63% of its activity for 3 months at 5 degrees C. The specificity constant (Vmax/Km) values for pNPP and PPi were 212 and 64 mu kat mM-1 mg-1, respectively. Amongst the substrates tested, PPi could be a potential physiological substrate for acid phosphatase during the germination of soybean seeds.

  6. Hypervalent Organochalcogenanes as Inhibitors of Protein Tyrosine Phosphatases

    PubMed Central

    Piovan, Leandro; Wu, Li; Zhang, Zhong-Yin; Andrade, Leandro H.

    2011-01-01

    A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes. PMID:21240419

  7. Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae.

    PubMed

    Sharmin, Dilruba; Sasano, Yu; Sugiyama, Minetaka; Harashima, Satoshi

    2015-04-01

    The phosphorylation status of cellular proteins results from an equilibrium between the activities of protein kinases and protein phosphatases (PPases). Reversible protein phosphorylation is an important aspect of signal transduction that regulate many biological processes in eukaryotic cells. The Saccharomyces cerevisiae genome encodes 40 PPases, including seven members of the protein phosphatase 2C subfamily (PTC1 to PTC7). In contrast to other PPases, the cellular roles of PTCs have not been investigated in detail. Here, we sought to determine the cellular role of PTC6 in S. cerevisiae with disruption of PTC genes. We found that cells with Δptc6 disruption were tolerant to the cell wall-damaging agents Congo red (CR) and calcofluor white (CFW); however, cells with simultaneous disruption of PTC1 and PTC6 were very sensitive to these agents. Thus, simultaneous disruption of PTC1 and PTC6 gave a synergistic response to cell wall damaging agents. The level of phosphorylated Slt2 increased significantly after CR treatment in Δptc1 cells and more so in Δptc1Δptc6 cells; therefore, deletion of PTC6 enhanced Slt2 phosphorylation in the Δptc1 disruptant. The level of transcription of KDX1 upon exposure to CR increased to a greater extent in the Δptc1Δptc6 double disruptant than the Δptc1 single disruptant. The Δptc1Δptc6 double disruptant cells showed normal vacuole formation under standard growth conditions, but fragmented vacuoles were present in the presence of CR or CFW. Our analyses indicate that S. cerevisiae PTC6 participates in the negative regulation of Slt2 phosphorylation and vacuole morphogenesis under cell wall stress conditions.

  8. Substrate analysis of Arabidopsis PP2C-type protein phosphatases.

    PubMed

    Umbrasaite, Julija; Schweighofer, Alois; Meskiene, Irute

    2011-01-01

    Protein phosphorylation by protein kinases can be reversed by the action of protein phosphatases. In plants, the Ser/Thr-specific phosphatases dominate among the protein phosphatase families with the type 2C protein phosphatases (PP2Cs) being the most abundant among them. PP2Cs are monomeric enzymes that require metal cations for their activity and are insensitive to known phosphatase inhibitors. PP2Cs were shown to counteract the mitogen-activated protein kinase (MAP kinase/MAPK) activities in plants and to regulate developmental and stress signaling pathways. Studies of PP2C activities can be performed in vitro using recombinant proteins. The potential substrates of PP2Cs can be tested for dephosphorylation by the phosphatase in vitro. We have found that the stress-induced PP2Cs from alfalfa and Arabidopsis interact with stress-activated MAPKs in yeast two-hybrid (Y2H) screens. Consequently, recombinant MAPKs were employed as substrates for dephosphorylation by selected PP2Cs from different family clusters. The members of the PP2C phosphatase family demonstrated specificity toward the substrate already in vitro, supporting the notion that protein phosphatases are specific enzymes. The PP2C from Arabidopsis thaliana cluster B, Arabidopsis PP2C-type phosphatase (AP2C1), and its homolog from Medicago sativa, Medicago PP2C-type phosphatase (MP2C), were able to dephosphorylate and inactivate MAPKs, whereas the ABSCISIC ACID (ABA)-INSENSITIVE 2 (ABI2) and HOMOLOGY TO ABI1 (HAB1) PP2Cs from the distinct Arabidopsis cluster A were not able to do so. The method described here can be used for the determination of PP2C protein activity and for studying the effect of mutations introduced into their catalytic domains.

  9. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    NASA Technical Reports Server (NTRS)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  10. Assessing the biological activity of the glucan phosphatase laforin

    PubMed Central

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S.; Sanz, Pascual

    2017-01-01

    Summary Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin’s unique glycogen phosphatase activity. PMID:27514803

  11. Phosphatase activities as biosignatures of extant life

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.

    It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the

  12. Regulated protein kinases and phosphatases in cell cycle decisions.

    PubMed

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2010-12-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle.

  13. Targeting Protein Tyrosine Phosphatases for Anticancer Drug Discovery

    PubMed Central

    Scott, Latanya. M.; Lawrence, Harshani. R.; Sebti, Saïd. M.; Lawrence, Nicholas. J.; Wu, Jie.

    2010-01-01

    Protein tyrosine phosphatases (PTPs) are a diverse family of enzymes encoded by 107 genes in the human genome. Together with protein tyrosine kinases (PTKs), PTPs regulate various cellular activities essential for the initiation and maintenance of malignant phenotypes. While PTK inhibitors are now used routinely for cancer treatment, the PTP inhibitor development field is still in the discovery phase. In this article, the suitability of targeting PTPs for novel anticancer drug discovery is discussed. Examples are presented for PTPs that have been targeted for anticancer drug discovery as well as potential new PTP targets for novel anticancer drug discovery. PMID:20337577

  14. Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling.

    PubMed

    Illi, Barbara; Dello Russo, Claudio; Colussi, Claudia; Rosati, Jessica; Pallaoro, Michele; Spallotta, Francesco; Rotili, Dante; Valente, Sergio; Ragone, Gianluca; Martelli, Fabio; Biglioli, Paolo; Steinkuhler, Christian; Gallinari, Paola; Mai, Antonello; Capogrossi, Maurizio C; Gaetano, Carlo

    2008-01-04

    Nitric oxide (NO) modulates important endothelial cell (EC) functions and gene expression by a molecular mechanism which is still poorly characterized. Here we show that in human umbilical vein ECs (HUVECs) NO inhibited serum-induced histone acetylation and enhanced histone deacetylase (HDAC) activity. By immunofluorescence and Western blot analyses it was found that NO induced class II HDAC4 and 5 nuclear shuttling and that class II HDACs selective inhibitor MC1568 rescued serum-dependent histone acetylation above control level in NO-treated HUVECs. In contrast, class I HDACs inhibitor MS27-275 had no effect, indicating a specific role for class II HDACs in NO-dependent histone deacetylation. In addition, it was found that NO ability to induce HDAC4 and HDAC5 nuclear shuttling involved the activation of the protein phosphatase 2A (PP2A). In fact, HDAC4 nuclear translocation was impaired in ECs expressing small-t antigen and exposed to NO. Finally, in cells engineered to express a HDAC4-Flag fusion protein, NO induced the formation of a macromolecular complex including HDAC4, HDAC3, HDAC5, and an active PP2A. The present results show that NO-dependent PP2A activation plays a key role in class II HDACs nuclear translocation.

  15. Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse

    PubMed Central

    Forrest, Alistair R.R.; Ravasi, Timothy; Taylor, Darrin; Huber, Thomas; Hume, David A.; Grimmond, Sean

    2003-01-01

    With the completion of the human and mouse genome sequences, the task now turns to identifying their encoded transcripts and assigning gene function. In this study, we have undertaken a computational approach to identify and classify all of the protein kinases and phosphatases present in the mouse gene complement. A nonredundant set of these sequences was produced by mining Ensembl gene predictions and publicly available cDNA sequences with a panel of InterPro domains. This approach identified 561 candidate protein kinases and 162 candidate protein phosphatases. This cohort was then analyzed using TribeMCL protein sequence similarity clustering followed by CLUSTALV alignment and hierarchical tree generation. This approach allowed us to (1) distinguish between true members of the protein kinase and phosphatase families and enzymes of related biochemistry, (2) determine the structure of the families, and (3) suggest functions for previously uncharacterized members. The classifications obtained by this approach were in good agreement with previous schemes and allowed us to demonstrate domain associations with a number of clusters. Finally, we comment on the complementary nature of cDNA and genome-based gene detection and the impact of the FANTOM2 transcriptome project. PMID:12819143

  16. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed Central

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. Images PMID:7522329

  17. Cell Surface Expression of the Major Amyloid-β Peptide (Aβ)-degrading Enzyme, Neprilysin, Depends on Phosphorylation by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) and Dephosphorylation by Protein Phosphatase 1a*

    PubMed Central

    Kakiya, Naomasa; Saito, Takashi; Nilsson, Per; Matsuba, Yukio; Tsubuki, Satoshi; Takei, Nobuyuki; Nawa, Hiroyuki; Saido, Takaomi C.

    2012-01-01

    Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain. PMID:22767595

  18. Phosphonate derivatives of tetraazamacrocycles as new inhibitors of protein tyrosine phosphatases.

    PubMed

    Kobzar, Oleksandr L; Shevchuk, Michael V; Lyashenko, Alesya N; Tanchuk, Vsevolod Yu; Romanenko, Vadim D; Kobelev, Sergei M; Averin, Alexei D; Beletskaya, Irina P; Vovk, Andriy I; Kukhar, Valery P

    2015-07-21

    α,α-Difluoro-β-ketophosphonated derivatives of tetraazamacrocycles were synthesized and found to be potential inhibitors of protein tyrosine phosphatases. N-Substituted conjugates of cyclam and cyclen with bioisosteric phosphonate groups displayed good activities toward T-cell protein tyrosine phosphatase with IC50 values in the micromolar to nanomolar range and showed selectivity over PTP1B, CD45, SHP2, and PTPβ. Kinetic studies indicated that the inhibitors can occupy the region of the active site of TC-PTP. This study demonstrates a new approach which employs tetraazamacrocycles as a molecular platform for designing inhibitors of protein tyrosine phosphatases.

  19. Protein tyrosine phosphatases: structure-function relationships.

    PubMed

    Tabernero, Lydia; Aricescu, A Radu; Jones, E Yvonne; Szedlacsek, Stefan E

    2008-03-01

    Structural analysis of protein tyrosine phosphatases (PTPs) has expanded considerably in the last several years, producing more than 200 structures in this class of enzymes (from 35 different proteins and their complexes with ligands). The small-medium size of the catalytic domain of approximately 280 residues plus a very compact fold makes it amenable to cloning and overexpression in bacterial systems thus facilitating crystallographic analysis. The low molecular weight PTPs being even smaller, approximately 150 residues, are also perfect targets for NMR analysis. The availability of different structures and complexes of PTPs with substrates and inhibitors has provided a wealth of information with profound effects in the way we understand their biological functions. Developments in mammalian expression technology recently led to the first crystal structure of a receptor-like PTP extracellular region. Altogether, the PTP structural work significantly advanced our knowledge regarding the architecture, regulation and substrate specificity of these enzymes. In this review, we compile the most prominent structural traits that characterize PTPs and their complexes with ligands. We discuss how the data can be used to design further functional experiments and as a basis for drug design given that many PTPs are now considered strategic therapeutic targets for human diseases such as diabetes and cancer.

  20. [Phosphatase activity in Amoeba proteus at low pH].

    PubMed

    Sopina, V A

    2009-01-01

    In free-living Amoeba proteus (strain B), three forms of tartrate-sensitive phosphatase were revealed using PAGE of the supernatant of ameba homogenates obtained with 1% Triton X-100 or distilled water and subsequent staining of gels with 2-naphthyl phosphate as substrate (pH 4.0). The form with the highest mobility in the ameba supernatant was sensitive to all tested phosphatase activity modulators. Two other forms with the lower mobilities were completely or significantly inactivated not only by sodium L-(+)-tartrate, but also by L-(+)-tartaric acid, sodium orthovanadate, ammonium molybdate, EDTA, EGTA, o-phospho-L-tyrosine, DL-dithiotreitol, H2O2, 2-mercaptoethanol, and ions of heavy metals - Fe2+, Fe3+, and Cu2+. Based on results of inhibitory analysis, lysosome location in the ameba cell, and wide substrate specificity of these two forms, it has been concluded that they belong to nonspecific acid phosphomonoesterases (AcP, EC 3.1.3.2). This AcP is suggested to have both phosphomonoesterase and phosphotyrosyl-protein phosphatase activitis. Two ecto-phosphatases were revealed in the culture medium, in which amebas were cultivated. One of them was inhibited by the same reagents as the ameba tartrate-sensitive AcP and seems to be the AcP released into the culture medium in the process of exocytosis of the content of food vacuoles. In the culture medium, apart from this AcP, another phosphatase was revealed, which was not inhibited by any tested inhibitors of AcP and alkaline phosphatase. It cannot be ruled out that this phosphatase belong to the ecto-ATPases found in many protists; however, its ability to hydrolyze ATP has not yet been proven.

  1. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    PubMed

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  2. Inhibition of a protein tyrosine phosphatase using mesoporous oxides.

    PubMed

    Kapoor, S; Girish, T S; Mandal, S S; Gopal, B; Bhattacharyya, A J

    2010-03-11

    The feasibility of utilizing mesoporous matrices of alumina and silica for the inhibition of enzymatic activity is presented here. These studies were performed on a protein tyrosine phosphatase by the name chick retinal tyrosine phosphotase-2 (CRYP-2), a protein that is identical in sequence to the human glomerular epithelial protein-1 and involved in hepatic carcinoma. The inhibition of CRYP-2 is of tremendous therapeutic importance. Inhibition of catalytic activity was examined using the sustained delivery of p-nitrocatechol sulfate (pNCS) from bare and amine functionalized mesoporous silica (MCM-48) and mesoporous alumina (Al(2)O(3)). Among the various mesoporous matrices employed, amine functionalized MCM-48 exhibited the best release of pNCS and also inhibition of CRYP-2. The maximum speed of reaction v(max) (=160 +/- 10 micromol/mnt/mg) and inhibition constant K(i) (=85.0 +/- 5.0 micromol) estimated using a competitive inhibition model were found to be very similar to inhibition activities of protein tyrosine phosphatases using other methods.

  3. Characterization of the protein tyrosine phosphatase PRL from Entamoeba histolytica.

    PubMed

    Ramírez-Tapia, Ana Lilia; Baylón-Pacheco, Lidia; Espíritu-Gordillo, Patricia; Rosales-Encina, José Luis

    2015-12-01

    Protein tyrosine phosphatase of regenerating liver (PRL) is a group of phosphatases that has not been broadly studied in protozoan parasites. In humans, PRLs are involved in metastatic cancer, the promotion of cell migration and invasion. PTPs have been increasingly recognized as important effectors of host-pathogen interactions. We characterized the only putative protein tyrosine phosphatase PRL (PTP EhPRL) in the eukaryotic human intestinal parasite Entamoeba histolytica. Here, we reported that the EhPRL protein possessed the classical HCX5R catalytic motif of PTPs and the CAAX box characteristic of the PRL family and exhibited 31-32% homology with the three human PRL isoforms. In amebae, the protein was expressed at low but detectable levels. The recombinant protein (rEhPRL) had enzymatic activity with the 3-o-methyl fluorescein phosphate (OMFP) substrate; this enzymatic activity was inhibited by the PTP inhibitor o-vanadate. Using immunofluorescence we showed that native EhPRL was localized to the cytoplasm and plasma membrane. When the trophozoites interacted with collagen, EhPRL relocalized over time to vesicle-like structures. Interaction with fibronectin increased the presence of the enzyme in the cytoplasm. Using RT-PCR, we demonstrated that EhPRL mRNA expression was upregulated when the trophozoites interacted with collagen but not with fibronectin. Trophozoites recovered from amoebic liver abscesses showed higher EhPRL mRNA expression levels than normal trophozoites. These results strongly suggest that EhPRL may play an important role in the biology and adaptive response of the parasite to the host environment during amoebic liver abscess development, thereby participating in the pathogenic mechanism.

  4. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  5. Characterization of the Proteomic Profiles of the Brown Tide Alga Aureoumbra lagunensis under Phosphate- and Nitrogen-Limiting Conditions and of Its Phosphate Limitation-Specific Protein with Alkaline Phosphatase Activity

    PubMed Central

    Sun, Ming-Ming; Sun, Jin; Qiu, Jian-Wen; Jing, Hongmei

    2012-01-01

    The persistent bloom of the brown tide alga Aureoumbra lagunensis has been reported in coastal embayments along southern Texas, but the molecular mechanisms that sustain such algal bloom are unknown. We compared the proteome and physiological parameters of A. lagunensis grown in phosphate (P)-depleted, P- and nitrogen (N)-depleted, and nutrient-replete cultures. For the proteomic analysis, samples from three conditions were subjected to two-dimensional electrophoresis and tandem mass spectrometry analysis. Because of the paucity of genomic resources in this species, a de novo cross-species protein search was used to identify the differentially expressed proteins, which revealed their involvement in several key biological processes, such as chlorophyll synthesis, antioxidative protection, and protein degradation, suggesting that A. lagunensis may adopt intracellular nutrient compensation, extracellular organic nutrient regeneration, and damage protection to thrive in P-depleted environments. A highly abundant P limitation-specific protein, tentatively identified as a putative alkaline phosphatase, was further characterized by enzyme activity assay on nondenaturing gel and confocal microscopy, which confirmed that this protein has alkaline phosphatase activity, is a cytoplasmic protein, and is closely associated with the cell membrane. The abundance, location, and functional expression of this alkaline phosphatase all indicate the importance of organic P utilization for A. lagunensis under P limitation and the possible role of this alkaline phosphatase in regenerating phosphate from extra- or intracellular organic phosphorus. PMID:22247172

  6. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  7. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling.

    PubMed Central

    Janssens, V; Goris, J

    2001-01-01

    Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon. PMID:11171037

  8. Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor.

    PubMed

    Sakata, Souhei; Okamura, Yasushi

    2014-03-01

    The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor.

  9. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors

    PubMed Central

    Lee, Erwin M.; Harrison, Celeste; Kahl, Richard; Flanagan, Hayley; Panicker, Nikita; Mashkani, Baratali; Don, Anthony S.; Morris, Jonathan; Toop, Hamish; Lock, Richard B.; Powell, Jason A.; Thomas, Daniel; Guthridge, Mark A.; Moore, Andrew; Ashman, Leonie K.; Skelding, Kathryn A.; Enjeti, Anoop; Verrills, Nicole M.

    2016-01-01

    Constitutive activation of the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3), via co-expression of its ligand or by genetic mutation, is common in acute myeloid leukemia (AML). In this study we show that FLT3 activation inhibits the activity of the tumor suppressor, protein phosphatase 2A (PP2A). Using BaF3 cells transduced with wildtype or mutant FLT3, we show that FLT3-induced PP2A inhibition sensitizes cells to the pharmacological PP2A activators, FTY720 and AAL(S). FTY720 and AAL(S) induced cell death and inhibited colony formation of FLT3 activated cells. Furthermore, PP2A activators reduced the phosphorylation of ERK and AKT, downstream targets shared by both FLT3 and PP2A, in FLT3/ITD+ BaF3 and MV4-11 cell lines. PP2A activity was lower in primary human bone marrow derived AML blasts compared to normal bone marrow, with blasts from FLT3-ITD patients displaying lower PP2A activity than WT-FLT3 blasts. Reduced PP2A activity was associated with hyperphosphorylation of the PP2A catalytic subunit, and reduced expression of PP2A structural and regulatory subunits. AML patient blasts were also sensitive to cell death induced by FTY720 and AAL(S), but these compounds had minimal effect on normal CD34+ bone marrow derived monocytes. Finally, PP2A activating compounds displayed synergistic effects when used in combination with tyrosine kinase inhibitors in FLT3-ITD+ cells. A combination of Sorafenib and FTY720 was also synergistic in the presence of a protective stromal microenvironment. Thus combining a PP2A activating compound and a FLT3 inhibitor may be a novel therapeutic approach for treating AML. PMID:27329844

  10. Mitogen-Activated Protein Kinase Phosphatase-1 Is a Key Regulator of Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Vessel Density in Lung

    PubMed Central

    Shields, Kristin M.; Panzhinskiy, Evgeniy; Burns, Nana; Zawada, W. Michael; Das, Mita

    2011-01-01

    Although mitogen-activated protein kinase phosphatase-1 (MKP-1) is a key deactivator of MAP kinases, known effectors of lung vessel formation, whether it plays a role in the expression of proangiogenic vascular endothelial growth factor (VEGF) in hypoxic lung is unknown. We therefore hypothesized that MKP-1 is a crucial modulator of hypoxia-stimulated vessel development by regulating lung VEGF levels. Wild-type MKP-1+/+, heterozygous MKP-1+/−, and deficient MKP-1−/− mice were exposed to sea level (SL), Denver altitude (DA) (1609 m [5280 feet]), and severe high altitude (HYP) (∼5182 m [∼17,000 feet]) for 6 weeks. Hypoxia enhanced phosphorylation of p38 MAP kinase, a substrate of MKP-1, as well as α smooth muscle actin (αSMA) expression in vessels, respiratory epithelium, and interstitium of phosphatase-deficient lung. αSMA-positive vessel (<50 μm outside diameter) densities were markedly reduced, whereas vessel wall thickness was increased in hypoxic MKP-1−/− lung. Mouse embryonic fibroblasts (MEFs) of all three genotypes were isolated to pinpoint the mechanism involved in hypoxia-induced vascular abnormalities of MKP-1−/− lung. Sustained phosphorylation of p38 MAP kinase was observed in MKP-1-null MEFs in response to hypoxia exposure. Although hypoxia up-regulated VEGF levels in MKP-1+/+ MEFs eightfold, only a 70% increase in VEGF expression was observed in MKP-1-deficient cells. Therefore, our data strongly suggest that MKP-1 might be the key regulator of vascular densities through the regulation of VEGF levels in hypoxic lung. PMID:21224048

  11. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    PubMed

    Chen, Xi'en; Lü, Shumin; Zhang, Yalin

    2014-01-01

    Protein phosphatase 5 (PP5), a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa), 490 (55.82 kDa) and 491 (56.07 kDa) amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat) domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests.

  12. EX VIVIO DETECTION OF KINASE AND PHOSPHATASE ACTIVITIES IN HUMAN BRONCHIAL BIOPSIES

    EPA Science Inventory

    Protein phosphorylation is a posttranslational modification involved in every aspect cellular function. Levels of protein phosphotyrosine, phosphoserine and phosphothreonine are regulated by the opposing activities of kinases and phosphatases, the expression of which can be alt...

  13. [Changes of activity and expression of protein phosphatase type 2A during the apoptosis of NB4 and MR2 cells induced by arsenic trioxide].

    PubMed

    Xu, Xi-Hui; Ouyang, Jian; Xie, Pin-Hao; Chen, Jun-Hao

    2008-10-01

    This study was aimed to investigate the change of expression and activity of protein phosphatases type 2A (PP2A) during the apoptosis of NB4 and MR2 cells induced by Arsenic trioxide (ATO). NB4 and MR2 cells were incubated with Okadaic acid (OKA) (0.5 nmol/L), ATO (0.5 - 2.0 micromol/L), and the combination of OKA and ATO at the same doses as in the single-agent treatment respectively. Then the proliferation of NB4 and MR2 cells was determined by MTT assay, the morphologic changes of cells were evaluated by Wright's staining, the apoptosis rates were detected by flow cytometry. At last, the activities of PP2A were evaluated by the serine/threonine phosphatase assay system, and the levels of PP2A subunits were detected by Western blot analysis. The results showed that ATO inhibited proliferation of NB4 and MR2 cells, and the inhibition rates of ATO on the two cells significantly increased after the addition of OKA. OKA could augment the apoptosis of NB4 and MR2 cells induced by ATO. During the apoptosis of NB4 and MR2 cells, the activity of PP2A decreased with increasing concentration of ATO, and OKA augmented the inhibitory effect of ATO on the activity. The level of PP2A structural subunit (PP2A-A) decreased during ATO-induced apoptosis of NB4 and MR2 cells, that expressions of B and C subunits of PP2A were relatively unaltered. It is concluded that the activity of PP2A decreases with increasing concentration of ATO during the apoptosis of NB4 and MR2 cells, and the decrease of the activity of PP2A maybe is related to the repression of expression of PP2A -A subunit; the inhibition of the activity of PP2A can promote the ATO induced apoptosis of NB4 and MRL cells.

  14. Protein phosphatase 2A is essential to maintain active Wnt signaling and its Aβ tumor suppressor subunit is not expressed in colon cancer cells.

    PubMed

    Carmen Figueroa-Aldariz, M; Castañeda-Patlán, M Cristina; Santoyo-Ramos, Paula; Zentella, Alejandro; Robles-Flores, Martha

    2015-11-01

    Canonical Wnt signaling is altered in most cases of colorectal cancer. Experimental evidence indicates that protein phosphatase 2A (PP2A) may play either positive or negative roles in Wnt signaling but its precise in vivo functions remain elusive. In this work, using colon cultured cell lines we showed that basal PP2A activity is markedly reduced in malignant cells compared to non-malignant counterparts. We found that whereas normal or cancer cells displaying not altered Wnt signaling express mRNAs coding for PP2A-A scaffold α and β isoforms, cancer cells which have altered Wnt signaling do not express the Aβ isoform mRNA. Remarkably, we found that the Aβ protein levels are lost in all colon cancer cells, and in patients' tumor biopsies. In addition, all cancer cells exhibit higher levels of RalA activity, compared to non-malignant cells. Rescue experiments to restore Aβ expression in malignant RKO cells, diminished the RalGTPase activation and cell proliferation, indicating that the Aβ isoform acts as tumor suppressor in colon cancer cells. Reciprocal co-immunoprecipitation and immunofluorescence studies showed that the PP2A-C and -Aα subunits, expressed in all colon cells, interact in vivo with β-catenin only in malignant cells. Selective inhibition of PP2A did not significantly affect cellular apoptosis but induced dose-dependent negative effects in β-catenin-mediated transcriptional activity and in cell proliferation of malignant cells, indicating that the residual PP2A activity found in malignant cells, mediated by -C and Aα core subunits, is essential to maintain active Wnt signaling and cell proliferation in colon cancer cells.

  15. Effect of aluminum phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria.

    PubMed

    Ramalingam, N; Prasanna, B Gowtham

    2006-09-01

    The impact of insoluble phosphorus such as aluminum and rock phosphate on alkaline phosphatase activity of polyurethane foam immobilized cyanobacteria was assessed. Polyurethane foam immobilized Nodularia recorded the highest alkaline phosphatase activity of 9.04 (m. mol p-nitrophenol released h(-1) mg(-1) protein) in vitro. A higher concentration of aluminum phosphate was recorded a 25% reduction in alkaline phosphatase activity, ammonia content, and available phosphorus in culture filtrate of polyurethane foam immobilized cyanobacteria. In general, immobilized cyanobacteria exhibited a higher alkaline phosphatase activity in rock phosphate than aluminum phosphate.

  16. Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn{sup 2+}

    SciTech Connect

    Tal, T.L.; Graves, L.M.; Silbajoris, R.; Bromberg, P.A.; Wu, W.; Samet, J.M. . E-mail: samet.james@epa.gov

    2006-07-01

    Epidemiological studies have implicated zinc (Zn{sup 2+}) in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to metal-laden PM inhibits protein tyrosine phosphatase (PTP) activity in human primary bronchial epithelial cells (HAEC) and leads to Src-dependent activation of EGFR signaling in B82 and A431 cells. In order to elucidate the mechanism of Zn{sup 2+}-induced EGFR activation in HAEC, we treated HAEC with 500 {mu}M ZnSO{sub 4} for 5-20 min and measured the state of activation of EGFR, c-Src and PTPs. Western blots revealed that exposure to Zn{sup 2+} results in increased phosphorylation at both trans- and autophosphorylation sites in the EGFR. Zn{sup 2+}-mediated EGFR phosphorylation did not require ligand binding and was ablated by the EGFR kinase inhibitor PD153035, but not by the Src kinase inhibitor PP2. Src activity was inhibited by Zn{sup 2+} treatment of HAEC, consistent with Src-independent EGFR transactivation in HAEC exposed to Zn{sup 2+}. The rate of exogenous EGFR dephosphorylation in lysates of HAEC exposed to Zn{sup 2+} or V{sup 4+} was significantly diminished. Moreover, exposure of HAEC to Zn{sup 2+} also resulted in a significant impairment of dephosphorylation of endogenous EGFR. These data show that Zn{sup 2+}-induced activation of EGFR in HAEC involves a loss of PTP activities whose function is to dephosphorylate EGFR in opposition to baseline EGFR kinase activity. These findings also suggest that there are marked cell-type-specific differences in the mechanism of EGFR activation induced by Zn{sup 2+} exposure.

  17. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates.

    PubMed

    Shen, Congcong; Li, Xiangzhi; Rasooly, Avraham; Guo, Linyan; Zhang, Kaina; Yang, Minghui

    2016-11-15

    Protein kinase (PKA) and alkaline phosphatase (ALP) are clinically relevant enzymes for a number of diseases. In this work, we developed a new simple electrochemical biosensor for the detection of the activity and inhibition of both PKA and ALP. One common feature of the PKA and ALP catalyzing process is that PKA can hydrolysis adenosine-5'-triphosphate (ATP) and ALP can hydrolysis pyrophosphate, both reactions produce phosphate ions, and the amount of phosphate ion produced is proportional to enzyme activity. Our assay is based on the principle that phosphate ions react with molybdate to form redox molybdophosphate precipitates on the electrode surface, thus generating electrochemical current. The detection limit for PKA and ALP were much lower than existing assays. The biosensor has good specificity and was used to measure drug-stimulated PKA from lysates of HeLa cells. We also evaluated the use of the biosensor as a screening tool for enzyme inhibitors. To the best of our knowledge, this is the first report of a biosensor capable of detecting the activity of both PKA and ALP. This tool has the potential to simplify PKA and ALP clinical measurement, thereby improving diagnostics of relevant diseases. It also may serve as the basis for a simple screening method for new enzyme inhibitors for disease treatment.

  18. Heterologous Protein Secretion Directed by a Repressible Acid Phosphatase System of Kluyveromyces lactis: Characterization of Upstream Region-Activating Sequences in the KIPHO5 Gene

    PubMed Central

    Fermiñán, Encarnación; Domínguez, Angel

    1998-01-01

    Transcription of the repressible acid phosphatase gene (KIPHO5) in Kluyveromyces lactis is strongly regulated in response to the level of inorganic phosphate (Pi) present in the growth medium. We have begun a study of the promoter region of this gene in order to identify sequences involved in the phosphate control of KIPHO5 expression and to design new expression-secretion systems in K. lactis. Deletion analysis and directed mutagenesis revealed two major identical upstream activating sequences (UAS) CACGTG at positions −430 (UAS1) and −192 (UAS2) relative to the ATG initiation codon. These sequences are identical to those described for Saccharomyces cerevisiae for the binding of Pho4p. Deletion or directed mutagenesis of either one or both UAS reduce KIPHO5 expression by the same amount (approximately 80%). When fused to the coding region of trout growth hormone cDNA (tGH-II), the promoter and signal peptide-encoding region of the phosphate-repressible KIPHO5 gene drives the expression of this gene and the secretion of the tGHII protein. Synthesis of tGHIIp in K. lactis transformants carrying this construct was found to be regulated by the Pi present in the medium; derepression of heterologous protein expression can therefore be achieved by lowering the Pi concentration. PMID:9647807

  19. Myosin phosphatase and RhoA-activated kinase modulate arginine methylation by the regulation of protein arginine methyltransferase 5 in hepatocellular carcinoma cells.

    PubMed

    Sipos, Adrienn; Iván, Judit; Bécsi, Bálint; Darula, Zsuzsanna; Tamás, István; Horváth, Dániel; Medzihradszky, Katalin F; Erdődi, Ferenc; Lontay, Beáta

    2017-01-11

    Myosin phosphatase (MP) holoenzyme is a protein phosphatase-1 (PP1) type Ser/Thr specific enzyme that consists of a PP1 catalytic (PP1c) and a myosin phosphatase target subunit-1 (MYPT1). MYPT1 is an ubiquitously expressed isoform and it targets PP1c to its substrates. We identified the protein arginine methyltransferase 5 (PRMT5) enzyme of the methylosome complex as a MYPT1-binding protein uncovering the nuclear MYPT1-interactome of hepatocellular carcinoma cells. It is shown that PRMT5 is regulated by phosphorylation at Thr80 by RhoA-associated protein kinase and MP. Silencing of MYPT1 increased the level of the PRMT5-specific symmetric dimethylation on arginine residues of histone 2 A/4, a repressing gene expression mark, and it resulted in a global change in the expression of genes affecting cellular processes like growth, proliferation and cell death, also affecting the expression of the retinoblastoma protein and c-Myc. The phosphorylation of the MP inhibitory MYPT1(T850) and the regulatory PRMT5(T80) residues as well as the symmetric dimethylation of H2A/4 were elevated in human hepatocellular carcinoma and in other types of cancers. These changes correlated positively with the grade and state of the tumors. Our results suggest the tumor suppressor role of MP via inhibition of PRMT5 thereby regulating gene expression through histone arginine dimethylation.

  20. Myosin phosphatase and RhoA-activated kinase modulate arginine methylation by the regulation of protein arginine methyltransferase 5 in hepatocellular carcinoma cells

    PubMed Central

    Sipos, Adrienn; Iván, Judit; Bécsi, Bálint; Darula, Zsuzsanna; Tamás, István; Horváth, Dániel; Medzihradszky, Katalin F.; Erdődi, Ferenc; Lontay, Beáta

    2017-01-01

    Myosin phosphatase (MP) holoenzyme is a protein phosphatase-1 (PP1) type Ser/Thr specific enzyme that consists of a PP1 catalytic (PP1c) and a myosin phosphatase target subunit-1 (MYPT1). MYPT1 is an ubiquitously expressed isoform and it targets PP1c to its substrates. We identified the protein arginine methyltransferase 5 (PRMT5) enzyme of the methylosome complex as a MYPT1-binding protein uncovering the nuclear MYPT1-interactome of hepatocellular carcinoma cells. It is shown that PRMT5 is regulated by phosphorylation at Thr80 by RhoA-associated protein kinase and MP. Silencing of MYPT1 increased the level of the PRMT5-specific symmetric dimethylation on arginine residues of histone 2 A/4, a repressing gene expression mark, and it resulted in a global change in the expression of genes affecting cellular processes like growth, proliferation and cell death, also affecting the expression of the retinoblastoma protein and c-Myc. The phosphorylation of the MP inhibitory MYPT1T850 and the regulatory PRMT5T80 residues as well as the symmetric dimethylation of H2A/4 were elevated in human hepatocellular carcinoma and in other types of cancers. These changes correlated positively with the grade and state of the tumors. Our results suggest the tumor suppressor role of MP via inhibition of PRMT5 thereby regulating gene expression through histone arginine dimethylation. PMID:28074910

  1. Oxidative Impairment of Hippocampal Long-term Potentiation Involves Activation of Protein Phosphatase 2A and Is Prevented by Ketone Bodies

    PubMed Central

    Maalouf, Marwan; Rho, Jong M.

    2008-01-01

    Previous studies have shown that ketone bodies (KB) exert antioxidant effects in experimental models of neurological disease. In the present study, we explored the effects of the KB acetoacetate (ACA) and β-hydroxybutyrate (BHB) on impairment of hippocampal long-term potentiation (LTP) in rats by hydrogen peroxide (H2O2) using electrophysiological, fluorescence imaging and enzyme assay techniques. We found that: (1) a combination of ACA and BHB (1 mM each) prevented impairment of LTP by H2O2 (200 μM); (2) KB significantly lowered intracellular levels of reactive oxygen species (ROS) — measured with the fluorescent indicator carboxy-H2DCFDA — in CA1 pyramidal neurons exposed to H2O2; (3) the effect of KB on LTP was replicated by the protein phosphatase 2A (PP2A) inhibitor fostriecin; (4) KB prevented impairment of LTP by the PP2A activator C6 ceramide; (5) fostriecin did not prevent the increase in ROS levels in CA1 pyramidal neurons exposed to H2O2, and C6 ceramide did not increase ROS levels; (6) PP2A activity was enhanced by both H2O2and rotenone – a mitochondrial complex I inhibitor that increases endogenous superoxide production; and (7) KB inhibited PP2A activity in protein extracts from brain tissue treated with either H2O2 or ceramide. We propose that oxidative impairment of hippocampal LTP is associated with PP2A activation, and that KB prevent this impairment in part by inducing PP2A inhibition through an antioxidant mechanism. PMID:18646208

  2. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  3. New functional aspects of the atypical protein tyrosine phosphatase VHZ.

    PubMed

    Kuznetsov, Vyacheslav I; Hengge, Alvan C

    2013-11-12

    LDP3 (VHZ) is the smallest classical protein tyrosine phosphatase (PTP) known to date and was originally misclassified as an atypical dual-specificity phosphatase. Kinetic isotope effects with steady-state and pre-steady-state kinetics of VHZ and mutants with p-nitrophenol phosphate have revealed several unusual properties. VHZ is significantly more active than previously reported but remains one of the least active PTPs. Highly unusual for a PTP, VHZ possesses two acidic residues (E134 and D65) in the active site. D65 occupies the position corresponding to the typical general acid in the PTP family. However, VHZ primarily utilizes E134 as the general acid, with D65 taking over this role when E134 is mutated. This unusual behavior is facilitated by two coexisting, but unequally populated, substrate binding modes. Unlike most classical PTPs, VHZ exhibits phosphotransferase activity. Despite the presence of the Q-loop that normally prevents alcoholysis of the phosphoenzyme intermediate in other classical PTPs, VHZ readily phosphorylates ethylene glycol. Although mutations of Q-loop residues affect this phosphotransferase activity, mutations on the IPD loop that contains the general acid exert more control over this process. A single P68V substitution on this loop completely abolishes phosphotransferase activity. The ability of native VHZ to catalyze transphosphorylation may lead to an imbalance of intracellular phosphorylation, which could explain the correlation of its overexpression with several types of cancer.

  4. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions.

    PubMed Central

    Prinz, W A; Beckwith, J

    1994-01-01

    To compare two approaches to analyzing membrane protein topology, a number of alkaline phosphatase fusions to membrane proteins were converted to beta-lactamase fusions. While some alkaline phosphatase fusions near the N terminus of cytoplasmic loops of membrane proteins have anomalously high levels of activity, the equivalent beta-lactamase fusions do not. This disparity may reflect differences in the folding of beta-lactamase and alkaline phosphatase in the cytoplasm. PMID:7929016

  5. A human phospholipid phosphatase activated by a transmembrane control module.

    PubMed

    Halaszovich, Christian R; Leitner, Michael G; Mavrantoni, Angeliki; Le, Audrey; Frezza, Ludivine; Feuer, Anja; Schreiber, Daniela N; Villalba-Galea, Carlos A; Oliver, Dominik

    2012-11-01

    In voltage-sensitive phosphatases (VSPs), a transmembrane voltage sensor domain (VSD) controls an intracellular phosphoinositide phosphatase domain, thereby enabling immediate initiation of intracellular signals by membrane depolarization. The existence of such a mechanism in mammals has remained elusive, despite the presence of VSP-homologous proteins in mammalian cells, in particular in sperm precursor cells. Here we demonstrate activation of a human VSP (hVSP1/TPIP) by an intramolecular switch. By engineering a chimeric hVSP1 with enhanced plasma membrane targeting containing the VSD of a prototypic invertebrate VSP, we show that hVSP1 is a phosphoinositide-5-phosphatase whose predominant substrate is PI(4,5)P(2). In the chimera, enzymatic activity is controlled by membrane potential via hVSP1's endogenous phosphoinositide binding motif. These findings suggest that the endogenous VSD of hVSP1 is a control module that initiates signaling through the phosphatase domain and indicate a role for VSP-mediated phosphoinositide signaling in mammals.

  6. A superoxide-mediated mitogen-activated protein kinase phosphatase-1 degradation and c-Jun NH(2)-terminal kinase activation pathway for luteolin-induced lung cancer cytotoxicity.

    PubMed

    Bai, Lang; Xu, Xiuling; Wang, Qiong; Xu, Shanling; Ju, Wei; Wang, Xia; Chen, Wenshu; He, Weiyang; Tang, Hong; Lin, Yong

    2012-04-01

    Although luteolin is identified as a potential cancer therapeutic and preventive agent because of its potent cancer cell-killing activity, the molecular mechanisms by which its cancer cell cytotoxicity is achieved have not been well elucidated. In this report, luteolin-induced cellular signaling was systematically investigated, and a novel pathway for luteolin's lung cancer killing was identified. The results show that induction of superoxide is an early and crucial step for luteolin-induced apoptotic and nonapoptotic death in lung cancer cells. The c-Jun N-terminal kinase (JNK) was potently activated after superoxide accumulation. Suppression of superoxide completely blocked luteolin-induced JNK activation, which was well correlated to alleviation of luteolin's cytotoxicity. Although luteolin slightly stimulated the JNK-activating kinase mitogen-activated protein kinase kinase 7, the latter was not dependent on superoxide. We further found that luteolin triggers a superoxide-dependent rapid degradation of the JNK-inactivating phosphatase mitogen-activated protein kinase phosphatase-1 (MKP-1). Introduction of a degradation-resistant MKP-1 mutant effectively attenuated luteolin-induced JNK activation and cytotoxicity, suggesting that inhibition of the JNK suppressor MKP-1 plays a major role in luteolin-induced lung cancer cell death. Taken together, our results unveil a novel pathway consisting of superoxide, MKP-1, and JNK for luteolin's cytotoxicity in lung cancer cells, and manipulation of this pathway could be a useful approach for applying luteolin for lung cancer prevention and therapy.

  7. Type 2C Protein Phosphatases in Fungi ▿ †

    PubMed Central

    Ariño, Joaquín; Casamayor, Antonio; González, Asier

    2011-01-01

    Type 2C Ser/Thr phosphatases are a remarkable class of protein phosphatases, which are conserved in eukaryotes and involved in a large variety of functional processes. Unlike in other Ser/Thr phosphatases, the catalytic polypeptide is not usually associated with regulatory subunits, and functional specificity is achieved by encoding multiple isoforms. For fungi, most information comes from the study of type 2C protein phosphatase (PP2C) enzymes in Saccharomyces cerevisiae, where seven PP2C-encoding genes (PTC1 to -7) with diverse functions can be found. More recently, data on several Candida albicans PP2C proteins became available, suggesting that some of them can be involved in virulence. In this work we review the available literature on fungal PP2Cs and explore sequence databases to provide a comprehensive overview of these enzymes in fungi. PMID:21076010

  8. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation.

    PubMed

    Venable, C L; Frevert, E U; Kim, Y B; Fischer, B M; Kamatkar, S; Neel, B G; Kahn, B B

    2000-06-16

    Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires activation of PI3K, 2) a novel PI3K-independent pathway may play a role in insulin-induced glucose transport in adipocytes, and 3) overexpression of PTP1B alone in adipocytes does not impair glucose transport.

  9. Deletion of Mitogen-Activated Protein Kinase Phosphatase 1 Modifies the Response to Mechanical Bone Marrow Ablation in a Mouse Model

    PubMed Central

    Carlson, Jodi; Zhang, Qing; Bennett, Anton; Vignery, Agnès

    2009-01-01

    The maintenance of bone mass results from a delicate balance between bone formation by osteoblasts and bone resorption by osteoclasts. Understanding these processes is essential for the development of effective treatments for skeletal diseases. Mechanical bone marrow ablation provides a unique animal model to study bone repair and the roles of specific genes in this process. Ablation of marrow induces the formation of intramembranous bone in the medullary cavity, which is subsequently resorbed by osteoclasts. We used this model to ask whether mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP1) affects the bone formed in response to marrow ablation. MKP1 is a negative regulator of MAPK signaling, which is essential for a wide variety of cellular mechanisms, including those critical for osteoblast and osteoclast function. At 10 d after mechanical bone marrow ablation, the femurs of male mkp1+/+ and mkp1−/− mice were compared with those of unoperated baseline mice by using radiography, peripheral quantitative computed tomography, and microcomputed tomography. Both genotypes developed increased bone mass after marrow ablation, but the increase was more pronounced in mkp1−/− mice compared with mkp1+/+ mice. These results indicate that MKP1 affects the bone formed in response to marrow ablation and suggest encouraging possibilities for the use of inhibitors of MKP1 to modulate bone repair. PMID:19619411

  10. Purification and characterization of a phosphotyrosyl-protein phosphatase from wheat seedlings.

    PubMed

    Cheng, H F; Tao, M

    1989-10-19

    A neutral phosphatase which catalyzes the hydrolysis of p-nitrophenylphosphate has been purified to homogeneity from wheat seedlings. The enzyme is a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 260 nm, and sedimentation coefficient of 3.2 S. That the enzyme is a glycoprotein is surmised from its chromatographic property on Concanavalin A-Sepharose column. An examination of the substrate specificity indicates that the enzyme exhibits a preference for phosphotyrosine over a number of phosphocompounds, including p-nitrophenylphosphate and several glycolytic intermediates. Both phosphoserine and phosphothreonine are not hydrolyzed by the enzyme. The phosphatase activity is not affected by high concentrations of chelating agents and does not require metal ions. Molybdate, orthovanadate, Zn2+, and Hg2+ are all potent inhibitors of the phosphatase activity. The ability of the phosphatase to dephosphorylate protein phosphotyrosine has been investigated. [32P-Tyr]poly(Glu,Tyr)n, [32P-Tyr]alkylated bovine serum albumin, [32P-Tyr]angiotensin-I, and [32P-Tyr]band 3 (from human erythrocyte) are all substrates of the phosphatase. On the other hand, the enzyme has no activity toward protein phosphoserine and phosphothreonine. Our result further indicates that the neutral phosphatase is distinct from the wheat germ acid phosphatase. The latter enzyme is found to dephosphorylate phosphotyrosyl as well as phosphoseryl and phosphothreonyl groups in proteins. In light of the many similarities in properties to phosphotyrosyl protein phosphatases isolated from several sources, it is suggested that the wheat seedling phosphatase may participate in cellular regulation involving protein tyrosine phosphorylation.

  11. The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles

    PubMed Central

    Agrawal, Parul

    2016-01-01

    In Drosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns of Drosophila phosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons when Lar expression is knocked down during development, but not in adults. Loss of Lar function eliminates sLNv dorsal projections, but PDF expression persists in sLNv and large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF, Lar RNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate that Lar is required for sLNv dorsal projection development and suggest that PDF expression in LNv cell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian

  12. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g-C3N4, PAMAM Dendrimer, and Alkaline Phosphatase.

    PubMed

    Li, Xue; Zhu, Lusheng; Zhou, Yunlei; Yin, Huanshun; Ai, Shiyun

    2017-02-21

    A novel photoelectrochemical (PEC) assay is developed for sensitive detection of protein kinase A (PKA) activity based on PKA-catalyzed phosphorylation reaction in solution and signal amplification strategy triggered by PAMAM dendrimer and alkaline phosphatase (ALP). In this strategy, it is noteworthy at this point that PKA phosphorylation was achieved in solution instead of on the surface of the electrode, which has advantages of the good contact in reactants and simple experimental procedure. For immobilizing the phosphorylated peptide (P-peptide) on electrode surface, graphite-like carbon nitride (g-C3N4) and titanium dioxide (TiO2) complex is synthesized and characterized, which plays a significant role for TiO2 conjugating phosphate groups and g-C3N4 providing PEC signal. Subsequently, PAMAM dendrimer and ALP can be captured on P-peptide and TiO2/g-C3N4 modified ITO electrode via interaction between the -COOH groups on the surface of PAMAM dendrimer and the -NH2 groups of peptide and ALP, which can lead to the increase of ALP amount on the modified electrode surface assisted with the PAMAM dendrimer. As a result, the amount of ALP catalyzes of L-ascorbic acid 2-phosphate trisodium salt (AAP) to produce electron donor of ascorbic acid (AA), resulting in an increased photocurrent. The proposed detection assay displays high selectivity and low detection limit of 0.048 U/mL (S/N = 3) for PKA activity. This biosensor can also be applied for the evaluation of PKA inhibition and PKA activity assay in cell samples. Therefore, the fabricated PEC biosensor is potentionally well in PKA activity detection and inhibitor screening.

  13. An acid phosphatase in the plasma membranes of human astrocytoma showing marked specificity toward phosphotyrosine protein.

    PubMed

    Leis, J F; Kaplan, N O

    1982-11-01

    The plasma membrane from the human tumor astrocytoma contains an active acid phosphatase activity based on hydrolysis of p-nitrophenyl phosphate. Other acid phosphatase substrates--beta-glycerophosphate, O-phosphorylcholine, and 5'-AMP--are not hydrolyzed significantly. The phosphatase activity is tartrate insensitive and is stimulated by Triton X-100 and EDTA. Of the three known phosphoamino acids, only free O-phosphotyrosine is hydrolyzed by the membrane phosphatase activity. Other acid phosphatases tested from potato, wheat germ, milk, and bovine prostate did not show this degree of specificity. The plasma membrane activity also dephosphorylated phosphotyrosine histone at a much greater rate than did the other acid phosphatases. pH profiles for free O-phosphotyrosine and phosphotyrosine histone showed a shift toward physiological pH, indicating possible physiological significance. Phosphotyrosine histone dephosphorylation activity was nearly 10 times greater than that seen for phosphoserine histone dephosphorylation, and Km values were much lower for phosphotyrosine histone dephosphorylation (0.5 microM vs. 10 microM). Fluoride and zinc significantly inhibited phosphoserine histone dephosphorylation. Vanadate, on the other hand, was a potent inhibitor of phosphotyrosine histone dephosphorylation (50% inhibition at 0.5 microM) but not of phosphoserine histone. ATP stimulated phosphotyrosine histone dephosphorylation (160-250%) but inhibited phosphoserine histone dephosphorylation (95%). These results suggest the existence of a highly specific phosphotyrosine protein phosphatase activity associated with the plasma membrane of human astrocytoma.

  14. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting?

    PubMed

    Petrone, A; Sap, J

    2000-07-01

    Transmembrane (receptor) tyrosine phosphatases are intimately involved in responses to cell-cell and cell-matrix contact. Several important issues regarding the targets and regulation of this protein family are now emerging. For example, these phosphatases exhibit complex interactions with signaling pathways involving SRC family kinases, which result from their ability to control phosphorylation of both activating and inhibitory sites in these kinases and possibly also their substrates. Similarly, integrin signaling illustrates how phosphorylation of a single protein, or the activity of a pathway, can be controlled by multiple tyrosine phosphatases, attesting to the intricate integration of these enzymes in cellular regulation. Lastly, we are starting to appreciate the roles of intracellular topology, tyrosine phosphorylation and oligomerization among the many mechanisms regulating tyrosine phosphatase activity.

  15. Identification of AKAP79 as a Protein Phosphatase 1 catalytic binding protein

    PubMed Central

    Le, Andrew. V.; Tavalin, Steven. J.

    2011-01-01

    The ubiquitously expressed and highly promiscuous Protein Phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit co-purified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC50 of 811±0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and Surface Plasmon Resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggestion additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150–250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity towards specific targets in the AKAP79 complex. PMID:21561082

  16. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.

    PubMed

    Ku, Bonsu; Keum, Chae Won; Lee, Hye Seon; Yun, Hye-Yeoung; Shin, Ho-Chul; Kim, Bo Yeon; Kim, Seung Jun

    2016-09-23

    Streptococcus pyogenes, or Group A Streptococcus (GAS), is a pathogenic bacterium that causes a variety of infectious diseases. The GAS genome encodes one protein tyrosine phosphatase, SP-PTP, which plays an essential role in the replication and virulence maintenance of GAS. Herein, we present the crystal structure of SP-PTP at 1.9 Å resolution. Although SP-PTP has been reported to have dual phosphatase specificity for both phosphorylated tyrosine and serine/threonine, three-dimensional structural analysis showed that SP-PTP shares high similarity with typical low molecular weight protein tyrosine phosphatases (LMWPTPs), which are specific for phosphotyrosine, but not with dual-specificity phosphatases, in overall folding and active site composition. In the dephosphorylation activity test, SP-PTP consistently acted on phosphotyrosine substrates, but not or only minimally on phosphoserine/phosphothreonine substrates. Collectively, our structural and biochemical analyses verified SP-PTP as a canonical tyrosine-specific LMWPTP.

  17. The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, induces c-Jun expression, and activates Jun N-terminal kinase.

    PubMed

    Beltman, J; McCormick, F; Cook, S J

    1996-10-25

    The role of protein kinase C (PKC) in inflammation, mitogenesis, and differentiation has been deduced in part through the use of a variety of PKC inhibitors. Two widely used inhibitors are the structurally related compounds GF109203X and Ro-31-8220, both of which potently inhibit PKC activity and are believed to be highly selective. While using GF109203X and Ro-31-8220 to address the role of PKC in immediate early gene expression, we observed striking differential effects by each of these two compounds. Growth factors induce the expression of the immediate early gene products MAP kinase phosphatase-1 (MKP-1), c-Fos and c-Jun. Ro-31-8220 inhibits growth factor-stimulated expression of MKP-1 and c-Fos but strongly stimulated c-Jun expression, even in the absence of growth factors. GF109203X displays none of these properties. These data suggest that Ro-31-8220 may have other pharmacological actions in addition to PKC inhibition. Indeed, Ro-31-8220 strongly stimulates the stress-activated protein kinase, JNK1. Furthermore, Ro-31-8220 apparently activates JNK in a PKC-independent manner. Neither the down-regulation of PKC by phorbol esters nor the inhibition of PKC by GF109203X affected the ability of Ro-31-8220 to activate JNK1. These data suggest that, in addition to potently inhibiting PKC, Ro-31-8220 exhibits novel pharmacological properties which are independent of its ability to inhibit PKC.

  18. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity.

    PubMed

    Nguyen, Phi-Hung; Zhao, Bing-Tian; Ali, Md Yousof; Choi, Jae-Sue; Rhyu, Dong-Young; Min, Byung-Sun; Woo, Mi-Hee

    2015-01-23

    As part of an ongoing search for new antidiabetic agents from medicinal plants, three new (2, 4, and 5) and two known selaginellin derivatives (1 and 3) were isolated from a methanol extract of Selaginella tamariscina. The structures of the new compounds were determined by spectroscopic data analysis. All isolates showed strong glucose uptake stimulatory effects in 3T3-L1 adipocyte cells at a concentration of 5 μM. Furthermore, these compounds were found to possess inhibitory effects on PTP1B enzyme activity with IC50 values ranging from 4.6 ± 0.1 to 21.6 ± 1.5 μM. Compound 2 showed the greatest potency, with an IC50 value of 4.6 ± 0.1 μM, when compared with the positive control (ursolic acid, IC50 = 3.5 ± 0.1 μM). Therefore, these selaginellin derivatives may have value as new lead compounds for the development of agents against type 2 diabetes.

  19. Protein Phosphatase-1 Regulates Expression of Neuregulin-1

    PubMed Central

    Ammosova, Tatiana; Washington, Kareem; Rotimi, Jamie; Kumari, Namita; Smith, Kahli A.; Niu, Xiaomei; Jerebtsova, Marina; Nekhai, Sergei

    2016-01-01

    Protein phosphatase 1 (PP1), a cellular serine/threonine phosphatase, is targeted to cellular promoters by its major regulatory subunits, PP1 nuclear targeting subunit, nuclear inhibitor of PP1 (NIPP1) and RepoMan. PP1 is also targeted to RNA polymerase II (RNAPII) by NIPP1 where it can dephosphorylate RNAPII and cycle-dependent kinase 9 (CDK9). Here, we show that treatment of cells with a small molecule activator of PP1 increases the abundance of a neuregulin-1 (NRG-1)-derived peptide. NRG-1 mRNA and protein levels were increased in the cells stably or transiently expressing mutant NIPP1 (mNIPP1) that does not bind PP1, but not in the cells expressing NIPP1. Expression of mNIPP1 also activated the NRG-1 promoter in an NF-κB-dependent manner. Analysis of extracts from mNIPP1 expressing cells by glycerol gradient centrifugation showed a redistribution of PP1 and CDK9 between large and small molecular weight complexes, and increased CDK9 Thr-186 phosphorylation. This correlated with the increased CDK9 activity. Further, RNAPII co-precipitated with mNIPP1, and phosphorylation of RNAPII C-terminal domain (CTD) Ser-2 residues was greater in cells expressing mNIPP1. In mNIPP1 expressing cells, okadaic acid, a cell-permeable inhibitor of PP1, did not increase Ser-2 CTD phosphorylation inhibited by flavopiridol, in contrast to the NIPP1 expressing cells, suggesting that PP1 was no longer involved in RNAPII dephosphorylation. Finally, media conditioned with mNIPP1 cells induced the proliferation of wild type 84-31 cells, consistent with a role of neuregulin-1 as a growth promoting factor. Our study indicates that deregulation of PP1/NIPP1 holoenzyme activates NRG-1 expression through RNAPII and CDK9 phosphorylation in a NF-κB dependent manner. PMID:27918433

  20. Phosphorylation and activation of nuclear Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) by Ca{sup 2+}/calmodulin-dependent protein kinase I (CaMKI)

    SciTech Connect

    Onouchi, Takashi; Sueyoshi, Noriyuki; Ishida, Atsuhiko; Kameshita, Isamu

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer CaMKP-N/PPM1E underwent proteolytic processing and translocated to cytosol. Black-Right-Pointing-Pointer The proteolysis was effectively inhibited by the proteasome inhibitors. Black-Right-Pointing-Pointer Ser-480 of zebrafish CaMKP-N was phosphorylated by cytosolic CaMKI. Black-Right-Pointing-Pointer Phosphorylation-mimic mutants of CaMKP-N showed enhanced activity. Black-Right-Pointing-Pointer These results suggest that CaMKP-N is regulated by CaMKI. -- Abstract: Nuclear Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) is an enzyme that dephosphorylates and downregulates multifunctional Ca{sup 2+}/calmodulin-dependent protein kinases (CaMKs) as well as AMP-dependent protein kinase. In our previous study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing and translocated to cytosol in a proteasome inhibitor-sensitive manner. In the present study, we found that zCaMKP-N is regulated by phosphorylation at Ser-480. When zCaMKP-N was incubated with the activated CaMKI, time-dependent phosphorylation of the enzyme was observed. This phosphorylation was significantly reduced when Ser-480 was replaced by Ala, suggesting that CaMKI phosphorylates Ser-480 of zCaMKP-N. Phosphorylation-mimic mutants, S480D and S480E, showed higher phosphatase activities than those of wild type and S480A mutant in solution-based phosphatase assay using various substrates. Furthermore, autophosphorylation of CaMKII after ionomycin treatment was more severely attenuated in Neuro2a cells when CaMKII was cotransfected with the phosphorylation-mimic mutant of zCaMKP-N than with the wild-type or non-phosphorylatable zCaMKP-N. These results strongly suggest that phosphorylation of zCaMKP-N at Ser-480 by CaMKI activates CaMKP-N catalytic activity and thereby downregulates multifunctional CaMKs in the cytosol.

  1. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman*

    PubMed Central

    Hafver, Tandekile Lubelwana; Hodne, Kjetil; Wanichawan, Pimthanya; Aronsen, Jan Magnus; Dalhus, Bjørn; Lunde, Per Kristian; Lunde, Marianne; Martinsen, Marita; Enger, Ulla Helene; Fuller, William; Sjaastad, Ivar; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-01-01

    The sodium (Na+)-calcium (Ca2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca2+ homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na+/K+-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca2+ binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5–8Φ1Φ2-X8–9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation. PMID:26668322

  2. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman.

    PubMed

    Hafver, Tandekile Lubelwana; Hodne, Kjetil; Wanichawan, Pimthanya; Aronsen, Jan Magnus; Dalhus, Bjørn; Lunde, Per Kristian; Lunde, Marianne; Martinsen, Marita; Enger, Ulla Helene; Fuller, William; Sjaastad, Ivar; Louch, William Edward; Sejersted, Ole Mathias; Carlson, Cathrine Rein

    2016-02-26

    The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.

  3. Evolution of the metazoan protein phosphatase 2C superfamily.

    PubMed

    Stern, Adi; Privman, Eyal; Rasis, Michal; Lavi, Sara; Pupko, Tal

    2007-01-01

    Members of the protein phosphatase 2C (PP2C) superfamily are Mg(2+)/Mn(2+)-dependent serine/threonine phosphatases, which are essential for regulation of cell cycle and stress signaling pathways in cells. In this study, a comprehensive genomic analysis of all available metazoan PP2C sequences was conducted. The phylogeny of PP2C was reconstructed, revealing the existence of 15 vertebrate families which arose following a series of gene duplication events. Relative dating of these duplications showed that they occurred in two active periods: before the divergence of bilaterians and before vertebrate diversification. PP2C families which duplicated during the first period take part in different signaling pathways, whereas PP2C families which diverged in the second period display tissue expression differences yet participate in similar signaling pathways. These differences were found to involve variation of expression in tissues which show higher complexity in vertebrates, such as skeletal muscle and the nervous system. Further analysis was performed with the aim of identifying the functional domains of PP2C. The conservation pattern across the entire PP2C superfamily revealed an extensive domain of more than 50 amino acids which is highly conserved throughout all PP2C members. Several insertion or deletion events were found which may have led to the specialization of each PP2C family.

  4. Effect of Bacteria and Amoebae on Rhizosphere Phosphatase Activity

    PubMed Central

    Gould, W. Douglas; Coleman, David C.; Rubink, Amy J.

    1979-01-01

    The contributions of various components of soil microflora and microfauna to rhizosphere phosphatase activity were determined with hydroponic cultures. Three treatments were employed: (i) plants alone (Bouteloua gracilis (H.B.K.) Lag. ex Steud.) (ii) plants plus bacteria (Pseudomonas sp.), and (iii) plants plus bacteria plus amoebae (Acanthamoeba sp.). No alkaline phosphatase was detected, but an appreciable amount of acid phosphatase activity (120 to 500 nmol of p-nitrophenylphosphate hydrolyzed per h per plant) was found in the root culture solutions. The presence of bacteria or bacteria and amoebae increased the amount of acid phosphatase in solution, and properties of additional activity were identical to properties of plant acid phosphatase. The presence of bacteria or bacteria and amoebae increased both solution and root phosphatase activities at most initial phosphate concentrations. PMID:16345390

  5. Purification and characterization of a low-molecular-weight acid phosphatase--a phosphotyrosyl-protein phosphatase from bovine heart.

    PubMed

    Zhang, Z Y; Van Etten, R L

    1990-10-01

    A low-molecular-weight acid phosphatase that is representative of a group recently shown to be phosphotyrosyl protein phosphatases was purified to homogeneity from bovine heart. The enzyme was a monomer with a molecular mass of 18 kDa and had an isoelectric point of 7.0. The absorption coefficient, E1% 1cm was 9.65 at 280 nm. The enzyme had pH optima of 5.3 and 6.0 with the substrates p-nitrophenyl phosphate and tyrosine phosphate, respectively. When measured at pH 5 and 37 degrees C, the enzyme had specific activities of 114 and 86 mumol min-1 mg-1 for p-nitrophenyl phosphate and tyrosine O-phosphate, respectively, while the Km values were 0.38 and 14 mM. The enzyme was highly specific for aryl monophosphate esters and showed little or no activity toward aliphatic phosphate esters, with the remarkable exception of flavin mononucleotide (FMN) and certain of its structural analogs. As shown by 31P NMR data, the activity toward FMN was due to the hydrolysis of one of the eight components present in the (commercial) sample. Both molybdate and vanadate were potent inhibitors, with inhibition constants of 37 and 29 microM, respectively; tartrate and fluoride had little effect on enzymatic activity. A two-stage reversible denaturation of the enzyme by guanidine HCl was observed with midpoints of 0.25 and 1.75 M, respectively. The amino acid composition was homologous to the low-molecular-weight acid phosphatases from other tissue. The enzyme showed immunological cross-reactivity against low-molecular-weight human liver acid phosphatase. There were 7 or 8 accessible cysteines on the monomeric protein and at least one was essential for enzyme activity. The enzyme also had phosphotransferase activity, for example transferring phosphate from p-nitrophenyl phosphate to a wide variety of alcohol acceptors.

  6. Nitric oxide-proton stimulation of trigeminal ganglion neurons increases mitogen-activated protein kinase and phosphatase expression in neurons and satellite glial cells.

    PubMed

    Freeman, S E; Patil, V V; Durham, P L

    2008-12-02

    Elevated nitric oxide (NO) and proton levels in synovial fluid are implicated in joint pathology. However, signaling pathways stimulated by these molecules that mediate inflammation and pain in the temporomandibular joint (TMJ) have not been investigated. The goal of this study was to determine the effect of NO-proton stimulation of rat trigeminal neurons on the in vivo expression of mitogen-activated protein kinases (MAPKs) and phosphatases (MKPs) in trigeminal ganglion neurons and satellite glial cells. Low levels of the active MAPKs extracellular signal-regulated kinase (ERK), Jun amino-terminal kinase (JNK), and p38 were localized in the cytosol of neurons and satellite glial cells in unstimulated animals. However, increased levels of active ERK and p38, but not JNK, were detected in the cytosol and nucleus of V3 neurons and satellite glial cells 15 min and 2 h following bilateral TMJ injections of an NO donor diluted in pH 5.5 medium. While ERK levels returned to near basal levels 24 h after stimulation, p38 levels remained significantly elevated. In contrast to MKP-2 and MKP-3 levels that were barely detectable in neurons or satellite glial cells, MKP-1 staining was readily observed in satellite glial cells in ganglia from unstimulated animals. However, neuronal and satellite glial cell staining for MKP-1, MKP-2, and MKP-3 was significantly increased in response to NO-protons. Increased active ERK and p38 levels as well as elevated MKP levels were also detected in neurons and satellite glial cells located in V2 and V1 regions of the ganglion. Our data provide evidence that NO-proton stimulation of V3 neurons results in temporal and spatial changes in expression of active ERK and p38 and MKPs in all regions of the ganglion. We propose that in trigeminal ganglia these cellular events, which are involved in peripheral sensitization as well as control of inflammatory and nociceptive responses, may play a role in TMJ pathology.

  7. Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1.

    PubMed

    Kaur, Amanpreet; Westermarck, Jukka

    2016-12-15

    Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.

  8. Purinergic receptor-mediated rapid depletion of nuclear phosphorylated Akt depends on pleckstrin homology domain leucine-rich repeat phosphatase, calcineurin, protein phosphatase 2A, and PTEN phosphatases.

    PubMed

    Mistafa, Oras; Ghalali, Aram; Kadekar, Sandeep; Högberg, Johan; Stenius, Ulla

    2010-09-03

    Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3-5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21(cip1) complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.

  9. CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity

    PubMed Central

    Claywell, Ja E.

    2016-01-01

    ABSTRACT Protein phosphorylation has become increasingly recognized for its role in regulating bacterial physiology and virulence. Chlamydia spp. encode two validated Hanks'-type Ser/Thr protein kinases, which typically function with cognate protein phosphatases and appear capable of global protein phosphorylation. Consequently, we sought to identify a Ser/Thr protein phosphatase partner for the chlamydial kinases. CTL0511 from Chlamydia trachomatis L2 434/Bu, which has homologs in all sequenced Chlamydia spp., is a predicted type 2C Ser/Thr protein phosphatase (PP2C). Recombinant maltose-binding protein (MBP)-tagged CTL0511 (rCTL0511) hydrolyzed p-nitrophenyl phosphate (pNPP), a generic phosphatase substrate, in a MnCl2-dependent manner at physiological pH. Assays using phosphopeptide substrates revealed that rCTL0511 can dephosphorylate phosphorylated serine (P-Ser), P-Thr, and P-Tyr residues using either MnCl2 or MgCl2, indicating that metal usage can alter substrate preference. Phosphatase activity was unaffected by PP1, PP2A, and PP3 phosphatase inhibitors, while mutation of conserved PP2C residues significantly inhibited activity. Finally, phosphatase activity was detected in elementary body (EB) and reticulate body (RB) lysates, supporting a role for protein dephosphorylation in chlamydial development. These findings support that CTL0511 is a metal-dependent protein phosphatase with broad substrate specificity, substantiating a reversible phosphorylation network in C. trachomatis. IMPORTANCE Chlamydia spp. are obligate intracellular bacterial pathogens responsible for a variety of diseases in humans and economically important animal species. Our work demonstrates that Chlamydia spp. produce a PP2C capable of dephosphorylating P-Thr, P-Ser, and P-Tyr and that Chlamydia trachomatis EBs and RBs possess phosphatase activity. In conjunction with the chlamydial Hanks'-type kinases Pkn1 and PknD, validation of CTL0511 fulfills the enzymatic requirements for a

  10. Rac GTPase signaling through the PP5 protein phosphatase

    PubMed Central

    Gentile, Saverio; Darden, Thomas; Erxleben, Christian; Romeo, Charles; Russo, Angela; Martin, Negin; Rossie, Sandra; Armstrong, David L.

    2006-01-01

    We have investigated the Rac-dependent mechanism of KCNH2 channel stimulation by thyroid hormone in a rat pituitary cell line, GH4C1, with the patch-clamp technique. Here we present physiological evidence for the protein serine/threonine phosphatase, PP5, as an effector of Rac GTPase signaling. We also propose and test a specific molecular mechanism for PP5 stimulation by Rac-GTP. Inhibition of PP5 with the microbial toxin, okadaic acid, blocked channel stimulation by thyroid hormone and by Rac, but signaling was restored by expression of a toxin-insensitive mutant of PP5, Y451A, which we engineered. PP5 is unique among protein phosphatases in that it contains an N-terminal regulatory domain with three tetratricopeptide repeats (TPR) that inhibit its activity. Expression of the TPR domain coupled to GFP blocked channel stimulation by the thyroid hormone. We also show that the published structures of the PP5 TPR domain and the TPR domain of p67, the Rac-binding subunit of NADPH oxidase, superimpose over 92 α carbons. Mutation of the PP5 TPR domain at two predicted contact points with Rac-GTP prevents the TPR domain from functioning as a dominant negative and blocks the ability of Y451A to rescue signaling in the presence of okadaic acid. PP5 stimulation by Rac provides a unique molecular mechanism for the antagonism of Rho-dependent signaling through protein kinases in many cellular processes, including metastasis, immune cell chemotaxis, and neuronal development. PMID:16549782

  11. A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A.

    PubMed

    Ogris, E; Du, X; Nelson, K C; Mak, E K; Yu, X X; Lane, W S; Pallas, D C

    1999-05-14

    Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.

  12. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions.

    PubMed

    Couzens, Amber L; Knight, James D R; Kean, Michelle J; Teo, Guoci; Weiss, Alexander; Dunham, Wade H; Lin, Zhen-Yuan; Bagshaw, Richard D; Sicheri, Frank; Pawson, Tony; Wrana, Jeffrey L; Choi, Hyungwon; Gingras, Anne-Claude

    2013-11-19

    The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.

  13. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1)

    PubMed Central

    Shah, Suharsh; Mostafa, Mahmoud M.; McWhae, Andrew; Traves, Suzanne L.; Newton, Robert

    2016-01-01

    TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3′-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies. PMID:26546680

  14. Protein phosphatase 1 and LTD: synapses are the architects of depression.

    PubMed

    Isaac, J

    2001-12-20

    NMDAR-dependent long-term depression involves the activation of protein phosphatase 1 (PP1) and 2B (calcineurin) and the subsequent dephosphorylation of synaptic proteins. In this issue of Neuron, Morishita et al. (2001) provide evidence that precise targeting of PP1 to synaptic substrates is critical for the expression of LTD.

  15. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  16. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases

    PubMed Central

    Cheng, Aiyang; Ross, Karen E.; Kaldis, Philipp; Solomon, Mark J.

    1999-01-01

    Activating phosphorylation of cyclin-dependent protein kinases (CDKs) is necessary for their kinase activity and cell cycle progression. This phosphorylation is carried out by the Cdk-activating kinase (CAK); in contrast, little is known about the corresponding protein phosphatase. We show that type 2C protein phosphatases (PP2Cs) are responsible for this dephosphorylation of Cdc28p, the major budding yeast CDK. Two yeast PP2Cs, Ptc2p and Ptc3p, display Cdc28p phosphatase activity in vitro and in vivo, and account for ∼90% of Cdc28p phosphatase activity in yeast extracts. Overexpression of PTC2 or PTC3 results in synthetic lethality in strains temperature-sensitive for yeast CAK1, and disruptions of PTC2 and PTC3 suppress the growth defect of a cak1 mutant. Furthermore, PP2C-like enzymes are the predominant phosphatases toward human Cdk2 in HeLa cell extracts, indicating that the substrate specificity of PP2Cs toward CDKs is evolutionarily conserved. PMID:10580002

  17. Inhibition of CDC25B Phosphatase Through Disruption of Protein-Protein Interaction

    SciTech Connect

    Lund, George; Dudkin, Sergii; Borkin, Dmitry; Ni, Wendi; Grembecka, Jolanta; Cierpicki, Tomasz

    2015-04-29

    CDC25 phosphatases are key cell cycle regulators and represent very attractive but challenging targets for anticancer drug discovery. Here, we explored whether fragment-based screening represents a valid approach to identify inhibitors of CDC25B. This resulted in identification of 2-fluoro-4-hydroxybenzonitrile, which directly binds to the catalytic domain of CDC25B. Interestingly, NMR data and the crystal structure demonstrate that this compound binds to the pocket distant from the active site and adjacent to the protein–protein interaction interface with CDK2/Cyclin A substrate. Furthermore, we developed a more potent analogue that disrupts CDC25B interaction with CDK2/Cyclin A and inhibits dephosphorylation of CDK2. Based on these studies, we provide a proof of concept that targeting CDC25 phosphatases by inhibiting their protein–protein interactions with CDK2/Cyclin A substrate represents a novel, viable opportunity to target this important class of enzymes.

  18. Protein tyrosine phosphatase 1B inhibitors isolated from Artemisia roxburghiana.

    PubMed

    Shah, Muhammad Raza; Ishtiaq; Hizbullah, Syed Muhammad; Habtemariam, Solomon; Zarrelli, Armando; Muhammad, Akhtar; Collina, Simona; Khan, Inamulllah

    2016-08-01

    Artemisia roxburghiana is used in traditional medicine for treating various diseases including diabetes. The present study was designed to evaluate the antidiabetic potential of active constituents by using protein tyrosine phosphatase 1B (PTP1B) as a validated target for management of diabetes. Various compounds were isolated as active principles from the crude methanolic extract of aerial parts of A. roxburghiana. All compounds were screened for PTP1B inhibitory activity. Molecular docking simulations were performed to investigate the mechanism behind PTP1B inhibition of the isolated compound and positive control, ursolic acid. Betulinic acid, betulin and taraxeryl acetate were the active PTP1B principles with IC50 values 3.49 ± 0.02, 4.17 ± 0.03 and 87.52 ± 0.03 µM, respectively. Molecular docking studies showed significant molecular interactions of the triterpene inhibitors with Gly220, Cys215, Gly218 and Asp48 inside the active site of PTP1B. The antidiabetic activity of A. roxburghiana could be attributed due to PTP1B inhibition by its triterpene constituents, betulin, betulinic acid and taraxeryl acetate. Computational insights of this study revealed that the C-3 and C-17 positions of the compounds needs extensive optimization for the development of new lead compounds.

  19. A Conserved Non-Canonical Docking Mechanism Regulates the Binding of Dual Specificity Phosphatases to Cell Integrity Mitogen-Activated Protein Kinases (MAPKs) in Budding and Fission Yeasts

    PubMed Central

    Sacristán-Reviriego, Almudena; Madrid, Marisa; Cansado, José; Martín, Humberto; Molina, María

    2014-01-01

    Dual-specificity MAPK phosphatases (MKPs) are essential for the negative regulation of MAPK pathways. Similar to other MAPK-interacting proteins, most MKPs bind MAPKs through specific docking domains known as D-motifs. However, we found that the Saccharomyces cerevisiae MKP Msg5 binds the MAPK Slt2 within the cell wall integrity (CWI) pathway through a distinct motif (IYT). Here, we demonstrate that the IYT motif mediates binding of the Msg5 paralogue Sdp1 to Slt2 as well as of the MKP Pmp1 to its CWI MAPK counterpart Pmk1 in the evolutionarily distant yeast Schizosaccharomyces pombe. As a consequence, removal of the IYT site in Msg5, Sdp1 and Pmp1 reduces MAPK trapping caused by the overexpression of catalytically inactive versions of these phosphatases. Accordingly, an intact IYT site is necessary for inactive Sdp1 to prevent nuclear accumulation of Slt2. We also show that both Ile and Tyr but not Thr are essential for the functionality of the IYT motif. These results provide mechanistic insight into MKP-MAPK interplay and stress the relevance of this conserved non-canonical docking site in the regulation of the CWI pathway in fungi. PMID:24465549

  20. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  1. Mitogen-activated protein kinase phosphatase-3 (MKP-3) in the surgical wound is necessary for the resolution of postoperative pain in mice

    PubMed Central

    Skopelja-Gardner, Sladjana; Saha, Madhurima; Alvarado-Vazquez, Perla Abigail; Liponis, Brenna S; Martinez, Elena; Romero-Sandoval, E Alfonso

    2017-01-01

    Mitogen-activated protein kinase (MAPK) phosphatase-3 (MKP-3) and its substrates (extracellular signal-regulated kinase [ERK] and p38) play an important role in pathophysiological mechanisms of acute postoperative and chronic neuropathic pain in the spinal cord. This study aimed to understand the role of MKP-3 and its target MAPKs at the site of surgical incision in nociceptive behavior. Wild-type (WT) and MKP-3 knockout (KO) mice underwent unilateral plantar hind paw incision. Mechanical allodynia was assessed by using von Frey filaments. Peripheral ERK-1/2 and p38 phosphorylation were measured by Western blot. Cell infiltration was determined using hematoxylin and eosin histological staining. Peripheral phosphorylated ERK-1/2 (p-ERK-1/2) inhibition was performed in MKP-3 KO mice. In WT mice, mechanical hypersensitivity was observed on postoperative day 1 (0.69±0.17 g baseline vs 0.13±0.08 g day 1), which resolved normally by postoperative day 12 (0.46±0.08 g, N=6). In MKP-3 KO mice, this hypersensitivity persisted at least 12 days after surgery (0.19±0.06 g; N=6). KO mice displayed higher numbers of infiltrating cells (51.4±6 cells/0.1 mm2) than WT mice (8.7±1.2 cells/0.1 mm2) on postoperative day 1 (vs 5–6 cells/0.1 mm2 at baseline) that returned to baseline 12 days after surgery (10–12 cells/0.1 mm2). In WT mice, peripheral p-p38 and p-ERK-1/2 expression increased (5- and 3-fold, respectively) on postoperative days 1 and 5, and returned to basal levels 7–12 days after surgery (N=3 per group). Peripheral p-p38 levels in MKP-3 KO mice followed a similar expression pattern as WT mice. Peripheral p-ERK-1/2 levels in MKP-3 KO mice remained elevated 12 days after surgery (2.5-fold, N=3 per group). Administration of PD98059 (MEK inhibitor, N=8, vehicle N=9) reduced p-ERK-1/2 expression in the incised tissue and blocked hypersensitivity in MKP-3 KO mice (N=6). The findings of this study suggest that MKP-3 is pivotal for normal resolution of acute

  2. Reduced expression of CD45 Protein-Tyrosine Phosphatase Pr

    DTIC Science & Technology

    2009-05-08

    complex ( MHC ) I (28-14-8), MHC II (M5/114.15.2), CD44 (IM7), and Ly6G (1A8). Cells (1 106) were resuspended in Fc block (anti CD16/CD32 antibody diluted...enzyme (supplemental Fig. 3). Themajority of the phosphatases tested in this panel belong to the class of protein-tyrosine phosphatases (SHP-1, SHP- 2 ...and Sina Bavari‡ 2 From the ‡United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702-5011, §Target Structure

  3. MECHANISM OF PROTEIN TYROSINE PHOSPHATASE INHIBITION IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZN2+

    EPA Science Inventory

    A number of studies have implicated zinc in the toxicity of ambient particulate matter (PM) inhalation. We previously showed that exposure to Zn2+ inhibits protein tyrosine phosphatase (PTP) activity and leads to activation of epidermal growth factor receptor (EGFR) signaling in ...

  4. Protein phosphatase 2A is a critical regulator of protein kinase C zeta signaling targeted by SV40 small t to promote cell growth and NF-kappaB activation.

    PubMed Central

    Sontag, E; Sontag, J M; Garcia, A

    1997-01-01

    We have reported that inhibition of protein phosphatase 2A (PP2A) by expression of SV40 small t stimulates the mitogenic MAP kinase cascade. Here, we show that SV40 small t can substitute for tumor necrosis factor-alpha (TNF-alpha) or serum and stimulate atypical protein kinase C zeta (PKC zeta) activity, resulting in MEK activation, cell proliferation and NF-kappaB-dependent gene transcriptional activation in CV-1 and NIH 3T3 cells. These effects were abrogated by co-expression of kinase-deficient PKC zeta and inhibition of phosphatidylinositol 3-kinase p85alpha-p110 by wortmannin, LY294002 and a dominant-negative mutant of p85alpha. In contrast, expression of kinase-inactive ERK2 inhibited small t-dependent cell growth but was unable to abolish small t-induced NF-kappaB transactivation. Our results provide the first in vivo evidence for a critical regulatory role of PP2A in bifunctional PKC zeta signaling pathways controlled by phosphatidylinositol 3-kinase. Constitutive activation of PKC zeta and NF-kappaB following inhibition of PP2A supports new mechanisms by which SV40 small t promotes cell growth and transformation. By establishing PP2A as a key player in the response of cells to growth factors and stress signals like TNF-alpha, our findings could explain why PP2A is a primary target utilized during SV40 infection to alter cellular behavior. PMID:9312025

  5. Ganglioside contained in the neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) fraction prepared from the detergent-resistant membrane microdomain of rat brain inhibits the phosphatase activity of calcineurin.

    PubMed

    Kobayashi, Yuumi; da Silva, Ronan; Kumanogoh, Haruko; Miyata, Shinji; Sato, Chihiro; Kitajima, Ken; Nakamura, Shun; Morita, Mistuhiro; Hayashi, Fumio; Maekawa, Shohei

    2015-09-01

    Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). Neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) is one of the major protein components of neuronal DRM. To determine the cellular function of NAP-22, interacting proteins were screened with an immunoprecipitation assay, and calcineurin (CaN) was detected. Further studies with NAP-22 prepared from DRM and CaN expressed in bacteria showed the binding of these proteins and a dose-dependent inhibitory effect of the NAP-22 fraction on the phosphatase activity of CaN. On the other hand, NAP-22 expressed in bacteria showed low binding to CaN and a weak inhibitory effect on phosphatase activity. To solve this discrepancy, identification of a nonprotein component that modulates CaN activity in the DRM-derived NAP-22 fraction was attempted. After lyophilization, a lipid fraction was extracted with chloroform/methanol. The lipid fraction showed an inhibitory effect on CaN without NAP-22, and further fractionation of the extract with thin-layer chromatography showed the presence of several lipid bands having an inhibitory effect on CaN. The mobility of these bands coincided with that of authentic ganglioside (GM1a, GD1a, GD1b, and GT1b), and authentic ganglioside showed an inhibitory effect on CaN. Treatment of lipid with endoglycoceramidase, which degrades ganglioside to glycochain and ceramide, caused a diminution of the inhibitory effect. These results show that DRM-derived NAP-22 binds several lipids, including ganglioside, and that ganglioside inhibits the phosphatase activity of CaN.

  6. Carcinogenic Aspects of Protein Phosphatase 1 and 2A Inhibitors

    NASA Astrophysics Data System (ADS)

    Fujiki, Hirota; Suganuma, Masami

    Okadaic acid is functionally a potent tumor promoter working through inhibition of protein phosphatases 1 and 2A (PP1 and PP2A), resulting in sustained phosphorylation of proteins in cells. The mechanism of tumor promotion with oka-daic acid is thus completely different from that of the classic tumor promoter phorbol ester. Other potent inhibitors of PP1 and PP2A - such as dinophysistoxin-1, calyculins A-H, microcystin-LR and its derivatives, and nodularin - were isolated from marine organisms, and their structural features including the crystal structure of the PP1-inhibitor complex, tumor promoting activities, and biochemical and biological effects, are here reviewed. The compounds induced tumor promoting activity in three different organs, including mouse skin, rat glandular stomach and rat liver, initiated with three different carcinogens. The results indicate that inhibition of PP1 and PP2A is a general mechanism of tumor promotion applicable to various organs. This study supports the concept of endogenous tumor promoters in human cancer development.

  7. Structural and mechanistic characterization of L-histidinol phosphate phosphatase from the polymerase and histidinol phosphatase family of proteins.

    PubMed

    Ghodge, Swapnil V; Fedorov, Alexander A; Fedorov, Elena V; Hillerich, Brandan; Seidel, Ronald; Almo, Steven C; Raushel, Frank M

    2013-02-12

    L-Histidinol phosphate phosphatase (HPP) catalyzes the hydrolysis of L-histidinol phosphate to L-histidinol and inorganic phosphate, the penultimate step in the biosynthesis of L-histidine. HPP from the polymerase and histidinol phosphatase (PHP) family of proteins possesses a trinuclear active site and a distorted (β/α)(7)-barrel protein fold. This group of enzymes is closely related to the amidohydrolase superfamily of enzymes. The mechanism of phosphomonoester bond hydrolysis by the PHP family of HPP enzymes was addressed. Recombinant HPP from Lactococcus lactis subsp. lactis that was expressed in Escherichia coli contained a mixture of iron and zinc in the active site and had a catalytic efficiency of ~10(3) M(-1) s(-1). Expression of the protein under iron-free conditions resulted in the production of an enzyme with a 2 order of magnitude improvement in catalytic efficiency and a mixture of zinc and manganese in the active site. Solvent isotope and viscosity effects demonstrated that proton transfer steps and product dissociation steps are not rate-limiting. X-ray structures of HPP were determined with sulfate, L-histidinol phosphate, and a complex of L-histidinol and arsenate bound in the active site. These crystal structures and the catalytic properties of variants were used to identify the structural elements required for catalysis and substrate recognition by the HPP family of enzymes within the amidohydrolase superfamily.

  8. NGF-activated protein tyrosine phosphatase 1B mediates the phosphorylation and degradation of I-kappa-Balpha coupled to NF-kappa-B activation, thereby controlling dendrite morphology.

    PubMed

    Chacón, Pedro J; Arévalo, María Angeles; Tébar, Alfredo Rodríguez

    2010-04-01

    NGF diminishes dendrite complexity in cultured hippocampal neurons by decreasing the number of primary and secondary dendrites, while increasing the length of those that remain. The transduction pathway used by NGF to provoke dendrite elongation involves the activation of NF-kappa-B and the expression of the homologues of Enhancer-of-split 1 gene. Here, we define important steps that link NGF with NF-kappa-B activation, through the activity of protein tyrosine phosphatase 1B (PTP1B). Binding of NGF to p75(NTR) stimulates PTP1B activity, which can be blocked by either pharmacological inhibition of the phosphatase or by transfecting neurons with a dn PTP1B isoform, whereby NGF is no longer able to stimulate dendrite growth. Indeed, overexpressing PTP1B alone provoked dendrite growth and further studies revealed a role for the src kinase downstream of PTP1B. Again, loss of src activity largely cancelled out the capacity of NGF to promote dendrite growth, whereas overexpression of v-src in neurons was sufficient to promote dendrite growth. Finally, the NGF/p75(NTR)/PTP1B/src kinase pathway led to the tyrosine phosphorylation of I-kappa-Balpha prior to its degradation, an event that is necessary for NF-kappa-B activation. Indeed, the dendrite growth response to NGF was lost when neurons were transfected with a mutant form of I-kappa-Balpha that lacks tyr42. Thus, our data suggest that PTP1B fulfils a central role in the NGF signalling that controls dendrite patterning in hippocampal neurons.

  9. Targeting the Reversibly Oxidized Protein Tyrosine Phosphatase Superfamily

    PubMed Central

    Boivin, Benoit; Yang, Ming; Tonks, Nicholas K.

    2010-01-01

    Controlled production of reactive oxygen species leads to reversible oxidation of protein tyrosine phosphatases (PTPs) and has emerged as an important tier of regulation over phosphorylation-dependent signal transduction. We present a modified cysteinyl-labeling assay that detects reversible oxidation of members of each of the different PTP subclasses. Here, we describe the methods for enriching reversibly oxidized PTPs from complex protein extracts, illustrating the procedure in IMR90 fibroblasts. PMID:20807953

  10. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  11. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes.

    PubMed Central

    Sneddon, A A; Cohen, P T; Stark, M J

    1990-01-01

    Two genes (PPH21 and PPH22) encoding the yeast homologues of protein serine-threonine phosphatase 2A have been cloned from a Saccharomyces cerevisiae genomic library using a rabbit protein phosphatase 2A cDNA as a hybridization probe. The PPH genes are genetically linked on chromosome IV and are predicted to encode polypeptides each with 74% amino acid sequence identity to rabbit type 2A protein phosphatase, indicating once again the extraordinarily high degree of sequence conservation shown by protein-phosphatases from different species. The two PPH genes show less than 10% amino acid sequence divergence from each other and while disruption of either PPH gene alone is without any major effect, the double disruption is lethal. This indicates that protein phosphatase 2A activity is an essential cellular function in yeast. Measurement of type 2A protein phosphatase activity in yeast strains lacking one or other of the genes indicates that they account for most, if not all, protein phosphatase 2A activity in the cell. Images Fig. 5. PMID:2176150

  12. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues.

    PubMed

    Bork, P; Brown, N P; Hegyi, H; Schultz, J

    1996-07-01

    A thorough sequence analysis of the various members of the eukaryotic protein serine/threonine phosphatase 2C (PP2C) family revealed the conservation of 11 motifs. These motifs could be identified in numerous other sequences, including fungal adenylate cyclases that are predicted to contain a functionally active PP2C domain, and a family of prokaryotic serine/threonine phosphatases including SpoIIE. Phylogenetic analysis of all the proteins indicates a widespread sequence family for which a considerable number of isoenzymes can be inferred.

  13. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock

    PubMed Central

    Agrawal, Parul; Hardin, Paul E.

    2016-01-01

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. PMID:27784754

  14. An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.

    PubMed

    Agrawal, Parul; Hardin, Paul E

    2016-12-07

    Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans.

  15. Therapeutic insulin and hepatic glucose-6-phosphatase activity in preterm infants

    PubMed Central

    Burchell, A; McGeechan, A; Hume, R

    2000-01-01

    BACKGROUND—Hepatic glucose-6-phosphatase activity is low at birth, and in term infants rises rapidly to adult levels. In contrast, in most preterm infants, it remains low postnatally making them vulnerable to repeated hypoglycaemic episodes, resultant cerebral damage, or risk of sudden and unexpected death.
AIMS—To investigate the clinical features of preterm infants with low glucose-6-phosphatase enzyme activity to determine the influencing factors.
METHODS—Clinical data from 36 preterm infants were correlated by stepwise multiple regression analysis with Vmax of hepatic glucose-6-phosphatase as the dependent variable.
RESULTS—The most significant correlation was with the administration of insulin (units/kg/h postnatal life) with lesser effects of respiratory distress syndrome and dopamine administration. The Vmax changes reflected changes in the level of expression of the glucose-6-phosphatase protein.
CONCLUSION—In a variety of animal models, hepatic glucose-6-phosphatase levels have been shown to decrease in response to insulin, which also decreases transcription of the glucose-6-phosphatase gene. The association of insulin administration with high levels of hepatic glucose-6-phosphatase activity and protein expression was therefore most unexpected. Results from model systems, or adults, must be extrapolated to the metabolism of preterm infants with caution.

 PMID:10794792

  16. Giardia lamblia: Characterization of ecto-phosphatase activities.

    PubMed

    Amazonas, Juliana Natal; Cosentino-Gomes, Daniela; Werneck-Lacerda, Aline; Pinheiro, Ana Acácia de Sá; Lanfredi-Rangel, Adriana; De Souza, Wanderley; Meyer-Fernandes, José R

    2009-01-01

    Ecto-phosphatase activities of Giardia lamblia were characterized in intact cells, which are able to hydrolyze the artificial substrate p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 8.4+/-0.8 nmol p-NP/h/10(7) cells. The ecto-phosphatase activities were inhibited at high pH as well as by classical inhibitors of acid phosphatases, such as sodium fluoride and sodium molybdate and by inorganic phosphate, the final product of the reaction. Experiments using a classical inhibitor of phosphotyrosine phosphatase, sodium orthovanadate, also showed that the ecto-phosphatase activity was inhibited in a dose-dependent manner. Different phosphorylated amino acids were used as substrates for the G. lamblia ecto-phosphatase activities the highest rate of phosphate release was achieved using phosphotyrosine. Not only p-NPP hydrolysis but also phosphotyrosine hydrolysis was inhibited by sodium orthovanadate. Phosphotyrosine but not phospho-serine or phospho-threonine inhibited the p-nitrophenylphosphatase activity. We also observed a positive correlation between the ecto-phosphatase activity and the capacity to encystation of G. lamblia trophozoites.

  17. Protein Phosphatase-1 Regulates Rift Valley Fever Virus Replication

    PubMed Central

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M.; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  18. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target.

  19. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    PubMed Central

    Hadler, Kieran S; Huber, Thomas; Cassady, A Ian; Weber, Jane; Robinson, Jodie; Burrows, Allan; Kelly, Gregory; Guddat, Luke W; Hume, David A; Schenk, Gerhard; Flanagan, Jack U

    2008-01-01

    Background Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism. PMID:18771593

  20. Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase.

    PubMed

    Hou, Hsin-Han; Liao, Yi-Jen; Hsiao, Sheng-Huang; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2015-08-25

    Soluble epoxide hydrolase (sEH) has C-terminal epoxide hydrolase and N-terminal lipid phosphatase activity. Its hydrolase activity is associated with endothelial nitric oxide synthase (eNOS) dysfunction. However, little is known about the role of sEH phosphatase in regulating eNOS activity. Simvastatin, a clinical lipid-lowering drug, also has a pleiotropic effect on eNOS activation. However, whether sEH phosphatase is involved in simvastatin-activated eNOS activity remains elusive. We investigated the role of sEH phosphatase activity in simvastatin-mediated activation of eNOS in endothelial cells (ECs). Simvastain increased the phosphatase activity of sEH, which was diminished by pharmacological inhibitors of sEH phosphatase. In addition, pharmacological inhibition of sEH phosphatase or overexpressing the inactive phosphatase domain of sEH enhanced simvastatin-induced NO bioavailability, tube formation and phosphorylation of eNOS, Akt, and AMP-activated protein kinase (AMPK). In contrast, overexpressing the phosphatase domain of sEH limited the simvastatin-increased NO biosynthesis and eNOS phosphorylation at Ser1179. Simvastatin evoked epidermal growth factor receptor-c-Src-increased Tyr phosphorylation of sEH and formation of an sEH-Akt-AMPK-eNOS complex, which was abolished by the c-Src kinase inhibitor PP1 or c-Src dominant-negative mutant K298M. These findings suggest that sEH phosphatase activity negatively regulates simvastatin-activated eNOS by impeding the Akt-AMPK-eNOS signaling cascade.

  1. Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase

    PubMed Central

    Hou, Hsin-Han; Liao, Yi-Jen; Hsiao, Sheng-Huang; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2015-01-01

    Soluble epoxide hydrolase (sEH) has C-terminal epoxide hydrolase and N-terminal lipid phosphatase activity. Its hydrolase activity is associated with endothelial nitric oxide synthase (eNOS) dysfunction. However, little is known about the role of sEH phosphatase in regulating eNOS activity. Simvastatin, a clinical lipid-lowering drug, also has a pleiotropic effect on eNOS activation. However, whether sEH phosphatase is involved in simvastatin-activated eNOS activity remains elusive. We investigated the role of sEH phosphatase activity in simvastatin-mediated activation of eNOS in endothelial cells (ECs). Simvastain increased the phosphatase activity of sEH, which was diminished by pharmacological inhibitors of sEH phosphatase. In addition, pharmacological inhibition of sEH phosphatase or overexpressing the inactive phosphatase domain of sEH enhanced simvastatin-induced NO bioavailability, tube formation and phosphorylation of eNOS, Akt, and AMP-activated protein kinase (AMPK). In contrast, overexpressing the phosphatase domain of sEH limited the simvastatin-increased NO biosynthesis and eNOS phosphorylation at Ser1179. Simvastatin evoked epidermal growth factor receptor–c-Src–increased Tyr phosphorylation of sEH and formation of an sEH–Akt–AMPK–eNOS complex, which was abolished by the c-Src kinase inhibitor PP1 or c-Src dominant-negative mutant K298M. These findings suggest that sEH phosphatase activity negatively regulates simvastatin-activated eNOS by impeding the Akt–AMPK–eNOS signaling cascade. PMID:26304753

  2. Okadaic acid-induced inhibition of B-50 dephosphorylation by presynaptic membrane-associated protein phosphatases.

    PubMed

    Han, Y F; Dokas, L A

    1991-10-01

    The neuronal tissue-specific protein kinase C (PKC) substrate B-50 can be dephosphorylated by endogenous protein phosphatases (PPs) in synaptic plasma membranes (SPMs). The present study characterizes membrane-associated B-50 phosphatase activity by using okadaic acid (OA) and purified 32P-labeled substrates. At a low concentration of [gamma-32P]ATP, PKC-mediated [32P]phosphate incorporation into B-50 in SPMs reached a maximal value at 30 s, followed by dephosphorylation. OA, added 30 s after the initiation of phosphorylation, partially prevented the dephosphorylation of B-50 at 2 nM, a dose that inhibits PP-2A. At the higher concentration of 1 microM, a dose of OA that inhibits PP-1 as well as PP-2A, a nearly complete blockade of B-50 dephosphorylation was seen. Heat-stable PP inhibitor-2 (I-2) also inhibited dephosphorylation of B-50. The effects of OA and I-2 on B-50 phosphatase activity were additive. Endogenous PP-1- and PP-2A-like activities in SPMs were also demonstrated by their capabilities of dephosphorylating [32P]phosphorylase a and [32P]casein. With these exogenous substrates, sensitivities of the membrane-bound phosphatases to OA and I-2 were found to be similar to those of purified forms of these enzymes. These results indicate that PP-1- and PP-2A-like enzymes are the major B-50 phosphatases in SPMs.

  3. Phosphorylation of phosphatase inhibitor-2 (i-2) by a bovine thymus tyrosine protein kinase, p40

    SciTech Connect

    DePaoli-Roach, A.A.; Votaw, P.; Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1987-05-01

    Phosphatase inhibitor-2, a heat stable protein of Mr 22,800, is a regulatory component of the ATP-Mg-dependent phosphatase. It has been shown that in the cell tyrosine kinase activation can result in altered phosphorylation at serine and/or threonine residues, but the mechanism involved is unknown. The authors have found that i-2 is a substrate for a tyrosine specific protein kinase, p40, purified from bovine thymus. The purified enzyme is a monomer of Mr 40,000 that is autophosphorylated at tyrosine residue(s). The stoichiometry of phosphorylation of i-2 by this tyrosine protein kinase is up to 1 mol of phosphate per mol of i-2. Phosphoaminoacid analysis revealed that all the phosphate introduced was associated with tyrosine residues. Mapping of TSP-tryptic peptides by TLE and isoelectric focusing showed one major labeled fragment. Using the ATP-Mg-dependent phosphatase, a lesser extent of phosphorylation of i-2 by p40 was obtained although partial activation of the phosphatase was observed. The effect on the activity was not due to FA/GSK-3 contamination. These results could provide an important link between tyrosine protein kinase activity and modulation of phosphorylation at serine and/or threonine residues.

  4. Protein Phosphatase 1α Mediates Ceramide-induced ERM Protein Dephosphorylation

    PubMed Central

    Canals, Daniel; Roddy, Patrick; Hannun, Yusuf A.

    2012-01-01

    ERM (ezrin, radixin, and moesin) proteins are cytoskeletal interacting proteins that bind cortical actin, the plasma membrane, and membrane proteins, which are found in specialized plasma membrane structures such as microvilli and filopodia. ERM proteins are regulated by phosphatidylinositol 4, 5-biphosphate (PIP2) and by phosphorylation of a C-terminal threonine, and its inactivation involves PIP2 hydrolysis and/or myosin phosphatase (MP). Recently, we demonstrated that ERM proteins are also subject to counter regulation by the bioactive sphingolipids ceramide and sphingosine 1-phosphate. Plasma membrane ceramide induces ERM dephosphorylation whereas sphingosine 1-phosphate induces their phosphorylation. In this work, we pursue the mechanisms by which ceramide regulates dephosphorylation. We found that this dephosphorylation was independent of hydrolysis and localization of PIP2 and MP. However, the results show that ERM dephosphorylation was blocked by treatment with protein phosphatase 1 (PP1) pharmacological inhibitors and specifically by siRNA to PP1α, whereas okadaic acid, a PP2A inhibitor, failed. Moreover, a catalytic inactive mutant of PP1α acted as dominant negative of the endogenous PP1α. Additional results showed that the ceramide mechanism of PP1α activation is largely independent of PIP2 hydrolysis and MP. Taken together, these results demonstrate a novel, acute mechanism of ERM regulation dependent on PP1α and plasma membrane ceramide. PMID:22311981

  5. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  6. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.

  7. Regulation of the phosphatase PP2B by protein–protein interactions

    PubMed Central

    Nygren, Patrick J.; Scott, John D.

    2016-01-01

    Protein dephosphorylation is important for regulating cellular signaling in a variety of contexts. Protein phosphatase-2B (PP2B), or calcineurin, is a widely expressed serine/threonine phosphatase that acts on a large cross section of potential protein substrates when activated by increased levels of intracellular calcium in concert with calmodulin. PxIxIT and LxVP targeting motifs are important for maintaining specificity in response to elevated calcium. In the present study, we describe the mechanism of PP2B activation, discuss its targeting by conserved binding motifs and review recent advances in the understanding of an A-kinase anchoring protein 79/PP2B/protein kinase A complex’s role in synaptic long-term depression. Finally, we discuss potential for targeting PP2B anchoring motifs for therapeutic benefit. PMID:27911714

  8. Interplay of myosin phosphatase and protein phosphatase-2A in the regulation of endothelial nitric-oxide synthase phosphorylation and nitric oxide production

    PubMed Central

    Bátori, Róbert; Bécsi, Bálint; Nagy, Dénes; Kónya, Zoltán; Hegedűs, Csaba; Bordán, Zsuzsanna; Verin, Alexander; Lontay, Beáta; Erdődi, Ferenc

    2017-01-01

    The inhibitory phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) at Thr497 (eNOSpThr497) by protein kinase C or RhoA-activated kinase is a major regulatory determinant of eNOS activity. The signalling mechanisms involved in the dephosphorylation of eNOSpThr497 have not yet been clarified. This study identifies myosin phosphatase (MP) holoenzyme consisting of protein phosphatase-1 catalytic subunit (PP1c) and MP target subunit-1 (MYPT1) as an eNOSpThr497 phosphatase. In support of this finding are: (i) eNOS and MYPT1 interacts in various endothelial cells (ECs) and in in vitro binding assays (ii) MYPT1 targets and stimulates PP1c toward eNOSpThr497 substrate (iii) phosphorylation of MYPT1 at Thr696 (MYPT1pThr696) controls the activity of MP on eNOSpThr497. Phosphatase inhibition suppresses both NO production and transendothelial resistance (TER) of ECs. In contrast, epigallocatechin-3-gallate (EGCG) signals ECs via the 67 kDa laminin-receptor (67LR) resulting in protein kinase A dependent activation of protein phosphatase-2A (PP2A). PP2A dephosphorylates MYPT1pThr696 and thereby stimulates MP activity inducing dephosphorylation of eNOSpThr497 and the 20 kDa myosin II light chains. Thus an interplay of MP and PP2A is involved in the physiological regulation of EC functions implying that an EGCG dependent activation of these phosphatases leads to enhanced NO production and EC barrier improvement. PMID:28300193

  9. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  10. Mechanistic aspects of the low-molecular-weight phosphatase activity of the calmodulin-activated phosphatase, calcineurin.

    PubMed

    Martin, B L; Graves, D J

    1986-11-05

    Product and substrate analogs have been employed as inhibitors of the low-molecular-weight phosphatase activity of calcineurin, a calmodulin-activated protein phosphatase. Product inhibition kinetics demonstrate that both products, para-nitrophenol and inorganic phosphate, inhibit para-nitrophenyl phosphate hydrolysis in a competitive manner. Inorganic phosphate is a linear competitive inhibitor, whereas the inhibition by para-nitrophenol is more complex. An analog of para-nitrophenol, pentafluorophenol, was found to be a linear competitive inhibitor. These patterns indicate a rapid equilibrium random kinetic mechanism for calcineurin. This mechanism suggests that calcineurin does not generate a phosphoryl enzyme during its catalytic reaction. Application of sulfate analogs indicates that binding of substrate occurs via the phosphoryl moiety. It is suggested that binding is a function of the affinity of ligand for the metal ion involved in calcineurin action. The dependence of the kinetic parameters of calcineurin upon pH was examined to provide information concerning the role of protonation in the activity and specificity of calcineurin. Log (VM) versus pH data for two low-molecular-weight substrates, para-nitrophenyl phosphate and tyrosine-O-phosphate, reveal a pKa value for the enzyme-substrate complex. Analysis of log (VM/KM) data yields a pKa value for the free enzyme of 8.0. Protonation of the phenolic leaving group during hydrolysis is not the rate-limiting step in calcineurin catalysis.

  11. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    Escherichia coli alkaline phosphatase (AP) is a proficient phosphomonoesterase with two Zn(2+) ions in its active site. Sequence homology suggests a distant evolutionary relationship between AP and alkaline phosphodiesterase/nucleotide pyrophosphatase, with conservation of the catalytic metal ions. Furthermore, many other phosphodiesterases, although not evolutionarily related, have a similar active site configuration of divalent metal ions in their active sites. These observations led us to test whether AP could also catalyze the hydrolysis of phosphate diesters. The results described herein demonstrate that AP does have phosphodiesterase activity: the phosphatase and phosphodiesterase activities copurify over several steps; inorganic phosphate, a strong competitive inhibitor of AP, inhibits the phosphodiesterase and phosphatase activities with the same inhibition constant; a point mutation that weakens phosphate binding to AP correspondingly weakens phosphate inhibition of the phosphodiesterase activity; and mutation of active site residues substantially reduces both the mono- and diesterase activities. AP accelerates the rate of phosphate diester hydrolysis by 10(11)-fold relative to the rate of the uncatalyzed reaction [(k(cat)/K(m))/k(w)]. Although this rate enhancement is substantial, it is at least 10(6)-fold less than the rate enhancement for AP-catalyzed phosphate monoester hydrolysis. Mutational analysis suggests that common active site features contribute to hydrolysis of both phosphate monoesters and phosphate diesters. However, mutation of the active site arginine to serine, R166S, decreases the monoesterase activity but not the diesterase activity, suggesting that the interaction of this arginine with the nonbridging oxygen(s) of the phosphate monoester substrate provides a substantial amount of the preferential hydrolysis of phosphate monoesters. The observation of phosphodiesterase activity extends the previous observation that AP has a low level of

  12. The role of serine/threonine protein phosphatases in exocytosis.

    PubMed Central

    Sim, Alistair T R; Baldwin, Monique L; Rostas, John A P; Holst, Jeff; Ludowyke, Russell I

    2003-01-01

    Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission. PMID:12749763

  13. Phosphorylation and dephosphorylation of human platelet surface proteins by an ecto-protein kinase/phosphatase system.

    PubMed

    Naik, U P; Kornecki, E; Ehrlich, Y H

    1991-04-17

    We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.

  14. Arabidopsis protein phosphatase DBP1 nucleates a protein network with a role in regulating plant defense.

    PubMed

    Carrasco, José Luis; Castelló, María José; Naumann, Kai; Lassowskat, Ines; Navarrete-Gómez, Marisa; Scheel, Dierk; Vera, Pablo

    2014-01-01

    Arabidopsis thaliana DBP1 belongs to the plant-specific family of DNA-binding protein phosphatases. Although recently identified as a novel host factor mediating susceptibility to potyvirus, little is known about DBP1 targets and partners and the molecular mechanisms underlying its function. Analyzing changes in the phosphoproteome of a loss-of-function dbp1 mutant enabled the identification of 14-3-3λ isoform (GRF6), a previously reported DBP1 interactor, and MAP kinase (MAPK) MPK11 as components of a small protein network nucleated by DBP1, in which GRF6 stability is modulated by MPK11 through phosphorylation, while DBP1 in turn negatively regulates MPK11 activity. Interestingly, grf6 and mpk11 loss-of-function mutants showed altered response to infection by the potyvirus Plum pox virus (PPV), and the described molecular mechanism controlling GRF6 stability was recapitulated upon PPV infection. These results not only contribute to a better knowledge of the biology of DBP factors, but also of MAPK signalling in plants, with the identification of GRF6 as a likely MPK11 substrate and of DBP1 as a protein phosphatase regulating MPK11 activity, and unveils the implication of this protein module in the response to PPV infection in Arabidopsis.

  15. Leishmania amazonensis: characterization of an ecto-phosphatase activity.

    PubMed

    de Almeida-Amaral, Elmo Eduardo; Belmont-Firpo, Rodrigo; Vannier-Santos, Marcos André; Meyer-Fernandes, José Roberto

    2006-12-01

    We have characterized a phosphatase activity present on the external surface of Leishmania amazonensis, using intact living parasites. This enzyme hydrolyzes the substrate p-nitrophenylphosphate (p-NPP) at the rate of 25.70+/-1.17 nmol Pi x h(-1) x 10(-7)cells. The dependence on p-NPP concentration shows a normal Michaelis-Menten kinetics for this ecto-phosphatase activity present a V(max) of 31.93+/-3.04 nmol Pi x h(-1) x 10(-7)cells and apparent K(m) of 1.78+/-0.32 mM. Inorganic phosphate inhibited the ecto-phoshatase activity in a dose-dependent manner with the K(i) value of 2.60 mM. Experiments using classical inhibitor of acid phosphatase, such as ammonium molybdate, as well as inhibitors of phosphotyrosine phosphatase, such as sodium orthovanadate and [potassiumbisperoxo(1,10-phenanthroline)oxovanadate(V)] (bpV-PHEN), inhibited the ecto-phosphatase activity, with the K(i) values of 0.33 microM, 0.36 microM and 0.25 microM, respectively. Zinc chloride, another classical phosphotyrosine phosphatase inhibitor, also inhibited the ecto-phosphatase activity in a dose-dependent manner with K(i) 2.62 mM. Zinc inhibition was reversed by incubation with reduced glutathione (GSH) and cysteine, but not serine, showing that cysteine residues are important for enzymatic activity. Promastigote growth in a medium supplemented with 1mM sodium orthovanadate was completely inhibited as compared to the control medium. Taken together, these results suggest that L. amazonensis express a phosphohydrolase ectoenzyme with phosphotyrosine phosphatase activity.

  16. [Phosphatase activity of Bacillus subtilis IMV B-7023].

    PubMed

    Bulavenko, L V; Kurdysh, I K

    2005-01-01

    Phosphatase activity of two strains of bacteria - Bacillus subtilis IMV B-7023 and B. megaterium 12 is investigated. The phosphatase activity is found to reach 260 mkmol/g x hour for B. subtilis IMV B-7023 and 12-100 mkmol/g x hour for B. megaterium 12 at optimal temperature (55 degrees C) and pH (9.5-10.0). Synthesis of alkaline phosphatase is shown to reach its maximum values at the end of logarithmic phase of the culture growth. It is revealed that Mg2+, Ca2+ cations increase phosphotase activity of B. subtilis IMV B-7023, at the same time Cu2+, Mn2+, Zn2+ cations and inorganic phosphate decrease it. Dependence of the rate of phosphatase reaction of B. subtilis IMV B-7023 on substrate concentration is determined.

  17. Association of Protein Phosphatase PPM1G With Alcohol Use Disorder and Brain Activity During Behavioral Control in a Genome-Wide Methylation Analysis

    PubMed Central

    Ruggeri, Barbara; Nymberg, Charlotte; Vuoksimaa, Eero; Lourdusamy, Anbarasu; Wong, Cybele P.; Carvalho, Fabiana M.; Jia, Tianye; Cattrell, Anna; Macare, Christine; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L.W.; Bromberg, Uli; Büchel, Christian; Conrod, Patricia J.; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Nees, Frauke; Pausova, Zdenka; Paus, Tomáš; Rietschel, Marcella; Robbins, Trevor; Smolka, Michael N.; Spanagel, Rainer; Bakalkin, Georgy; Mill, Jonathan; Sommer, Wolfgang H.; Rose, Richard J.; Yan, Jia; Aliev, Fazil; Dick, Danielle; Kaprio, Jaakko; Desrivières, Sylvane; Schumann, Gunter

    2016-01-01

    Objective The genetic component of alcohol use disorder is substantial, but monozygotic twin discordance indicates a role for nonheritable differences that could be mediated by epigenetics. Despite growing evidence associating epigenetics and psychiatric disorders, it is unclear how epigenetics, particularly DNA methylation, relate to brain function and behavior, including drinking behavior. Method The authors carried out a genome-wide analysis of DNA methylation of 18 monozygotic twin pairs discordant for alcohol use disorder and validated differentially methylated regions. After validation, the authors characterized these differentially methylated regions using personality trait assessment and functional MRI in a sample of 499 adolescents. Results Hypermethylation in the 3′-protein-phosphatase-1G (PPM1G) gene locus was associated with alcohol use disorder. The authors found association of PPM1G hypermethylation with early escalation of alcohol use and increased impulsiveness. They also observed association of PPM1G hypermethylation with increased blood-oxygen-level-dependent response in the right subthalamic nucleus during an impulsiveness task. Conclusions Overall, the authors provide first evidence for an epigenetic marker associated with alcohol consumption and its underlying neurobehavioral phenotype. PMID:25982659

  18. Probing Mechanistic Similarities Between Response Regulator Signaling Proteins and HAD Phosphatases

    PubMed Central

    Immormino, Robert M.; Starbird, Chrystal; Silversmith, Ruth E.; Bourret, Robert B.

    2015-01-01

    Response regulator signaling proteins and phosphatases of the haloacid dehalogenase (HAD) superfamily share strikingly similar folds, active site geometries, and reaction chemistry. Proteins from both families catalyze the transfer of a phosphoryl group from a substrate to one of their own aspartyl residues, and subsequent hydrolysis of the phosphoprotein. Notable differences include an additional Asp that functions as an acid/base catalyst and an active site well-structured prior to phosphorylation in HAD phosphatases. Both features contribute to substantially faster reactions than for response regulators. To investigate mechanisms underlying the functional differences between response regulators and HAD phosphatases, we characterized five double mutants of the response regulator CheY designed to mimic HAD phosphatases. Each mutant contained the extra Asp paired with a phosphatase-inspired substitution to potentially position the Asp properly. Only CheY DR (Arg as anchor) exhibited enhanced rates of both autophosphorylation with phosphoramidate and autodephosphorylation compared to wild type CheY. Crystal structures of CheY DR complexed with MoO42− or WO42− revealed active site hydrogen-bonding networks similar to those in HAD·substrate complexes, with the extra Asp positioned for direct interaction with a leaving group (phosphorylation) or nucleophile (dephosphorylation). However, CheY DR reaction kinetics did not exhibit the pH sensitivities expected for acid/base catalysis. Biochemical analysis indicated CheY DR had an enhanced propensity to adopt the active conformation without phosphorylation, but a crystal structure revealed unphosphorylated CheY DR was not locked in the active conformation. Thus, the enhanced reactivity of CheY DR reflected partial acquisition of catalytic and structural features of HAD phosphatases. PMID:25928369

  19. Structural Stability of Human Protein Tyrosine Phosphatase ρ Catalytic Domain: Effect of Point Mutations

    PubMed Central

    Knapp, Stefan; Alfano, Ivan; Ardini, Matteo; Stefanini, Simonetta; Chiaraluce, Roberta

    2012-01-01

    Protein tyrosine phosphatase ρ (PTPρ) belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ∼4.0 M urea. PMID:22389709

  20. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  1. Activation of extracellular signal-regulated kinase (ERK) and induction of mitogen-activated protein kinase phosphatase 1 (MKP-1) by perifused thyrotropin-releasing hormone (TRH) stimulation in rat pituitary GH3 cells.

    PubMed

    Oride, Aki; Kanasaki, Haruhiko; Mutiara, Sandra; Purwana, Indri Nuryani; Miyazaki, Kohji

    2008-12-16

    We investigated the pattern of extracellular signal-regulated kinase (ERK) phosphorylation and the induction of mitogen-activated protein kinase phosphatase 1 (MKP-1) by thyrotropin-releasing hormone (TRH) under various stimulation conditions in pituitary GH3 cells. In static culture, ERK activation by continuous TRH was maximal at 10 min and persisted for up to 60 min, with a return to the basal level by 2h. Stimulation with continuous TRH in perifused cells resulted in a similar level of ERK phosphorylation. MKP-1 was expressed 60 min following either static or perifused, continuous TRH stimulation. When cells were stimulated with pulsatile TRH every 30 min, ERK activation was maximal at 10 min and returned to its baseline level by 30 min. ERK was phosphorylated again with each subsequent pulse. Pulsatile TRH did not induce MKP-1. Prolactin promoter activity following continuous, static TRH stimulation was higher than that following perifused TRH stimulation. TRH at a frequency of one pulse every 30 min increased prolactin promoter activity similar to that of perifused, continuous TRH stimulation. Additionally, changes in pulse frequency resulted in alterations in the level of prolactin promoter. Following static stimulation, a 10 min exposure to TRH was sufficient to obtain full activation of the prolactin promoter. Additionally, a 5-10 min exposure of TRH was sufficient to maintain ERK activation. A single 5-min pulse of TRH stimulation resulted in low activation of the prolactin promoter. ERK activation was necessary for prolactin gene transcription; however, prolactin gene transcription is not entirely determined by the strength or duration of TRH-induced ERK activation.

  2. The Arabidopsis AtPP2CA Protein Phosphatase Inhibits the GORK K+ Efflux Channel and Exerts a Dominant Suppressive Effect on Phosphomimetic-activating Mutations*

    PubMed Central

    Lefoulon, Cécile; Boeglin, Martin; Moreau, Bertrand; Véry, Anne-Aliénor; Szponarski, Wojciech; Dauzat, Myriam; Michard, Erwan; Gaillard, Isabelle; Chérel, Isabelle

    2016-01-01

    The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K+ efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with “phosphorylated” or “dephosphorylated” GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure. PMID:26801610

  3. Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL.

    PubMed

    Rajala, Raju V S; Kanan, Yogita; Anderson, Robert E

    2016-01-01

    Serine/threonine kinase Akt is a downstream effector of insulin receptor/PI3K pathway that is involved in many processes, including providing neuroprotection to stressed rod photoreceptor cells. Akt signaling is known to be regulated by the serine/threonine phosphatases, PHLPP (PH domain and leucine rich repeat protein phosphatase) and PHLPPL (PH domain and leucine rich repeat protein phosphatase-like). We previously reported that both phosphatases are expressed in the retina, as well as in photoreceptor cells. In this study, we examined the PHLPP and PHLPPL phosphatase activities towards non-physiological and physiological substrates. Our results suggest that PHLPP was more active than PHLPPL towards non-physiological substrates, whereas both PHLPP and PHLPP dephosphorylated the physiological substrates of Akt1 and Akt3 with similar efficiencies. Our results also suggest that knockdown of PHLPPL alone does not increase Akt phosphorylation, due to a compensatory increase of PHLPP, which results in the dephosphorylation of Akt. Therefore, PHLPP and PHLPPL regulate Akt activation together when both phosphatases are expressed.

  4. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase.

    PubMed

    Jeong, Myeong Seon; Kim, Eunha; Kang, Hyo Jin; Choi, Eun Joung; Cho, Alvin R; Chung, Sang J; Park, Seung Bum

    2012-07-04

    We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).

  5. Detailed Structural Characterization of Unbound Protein Phosphatase 1 Inhibitors

    PubMed Central

    Dancheck, Barbara; Nairn, Angus C.; Peti, Wolfgang

    2009-01-01

    Protein Phosphatase 1 (PP1) is an essential and ubiquitous serine/threonine protein phosphatase that is regulated by more than 100 known inhibitor and targeting proteins. It is currently unclear how protein inhibitors distinctly and specifically regulate PP1 to enable rapid responses to cellular alterations. We demonstrate that two PP1 inhibitors, I-2 and DARPP-32, belong to the class of intrinsically unstructured proteins (IUPs). We show that both inhibitors have distinct preferences for transient local and long range structure. These preferences are likely their structural signature for their interaction with PP1. Furthermore, we show that upon phosphorylation of Thr34 in DARPP-32, which turns DARPP-32 into a potent inhibitor of PP1, neither local nor long range structure of DARPP-32 is altered. Therefore, our data suggests a role for these transient 3-dimensional topologies in binding mechanisms that enable extensive contacts with PP1's invariant surfaces. Together, these interactions enable potent and selective inhibition of PP1. PMID:18954090

  6. Effect of vanadium compounds on acid phosphatase activity.

    PubMed

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  7. Possible protein phosphatase inhibition by bis(hydroxyethyl) sulfide, a hydrolysis product of mustard gas

    SciTech Connect

    Brimfield, A.A.

    1995-12-31

    Recently, the natural vesicant cantharidin was shown to bind exclusively to and inhibit protein phosphatase 2A (PP2A) in mouse tissue extracts (Li and Casida (1992) Proc. Nati. Acad. Sci. USA 89, 11867-11870). To explore the generality of this effect in vesicant action, we measured the protein serinelthreonine phosphatase activity in mouse liver cytosol (in the form of the okadaic acid inhibitable increment of p-nitrophenyl phosphate (p-NPP) phosphatase activity) in the presence of aqueous sulfur mustard or its hydrolysis product, bis(hydroxyethyl)sulfide (TDG). Sulfur mustard inhibited p-NPP hydrolysis. However, inhibition correlated with the time elapsed between thawing and the addition of mustard to the enzyme preparation, not with concentration. TDG exhibited a direct, concentration-related inhibition of p-NPP hydrolysis between 30 and 300 1LM. We conclude that sulfur mustard also has an inhibitory effect on protein serinelthreonine phosphatases. However, the inhibition is an effect of its non-alkykating hydrolysis product TDG, not of sulfur mustard itself.

  8. Immobilized E. coli alkaline phosphatase. Its properties, stability, and utility in studying the dephosphorylation of proteins.

    PubMed

    Basheeruddin, K; Rothman, V; Margolis, S

    1985-04-01

    We have immobilized E. coli alkaline phosphatase (EC 3.1.3.1) by linking it covalently to sepharose 4B. This preparation has several advantages over the soluble enzyme. The immobilized enzyme is easily separable from other constituents in incubation mixtures. The immobilized enzyme can be reused repeatedly and is more stable than the soluble enzyme to heat treatment in the presence of 10 mM Mg2+. The insoluble and soluble phosphatases removed 75 and 77%, respectively, of the inorganic phosphorus from casein. The immobilized enzyme inactivated two enzymes believed to be active in the phosphorylated state, acyl-CoA:cholesterol acyltransferase (ACAT) by 39% and NADPH-cytochrome P-450 reductase by 89%. The utility of immobilized alkaline phosphatase for studying the phosphorylation and dephosphorylation of soluble or membrane-bound enzymes and proteins is discussed.

  9. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins.

    PubMed

    Ghorbel, Mouna; Cotelle, Valérie; Ebel, Chantal; Zaidi, Ikram; Ormancey, Mélanie; Galaud, Jean-Philippe; Hanin, Moez

    2017-04-01

    Plant MAP kinase phosphatases (MKPs) are major regulators of MAPK signaling pathways and play crucial roles in controlling growth, development and stress responses. The presence of several functional domains in plant MKPs such as a dual specificity phosphatase catalytic domain, gelsolin, calmodulin-binding and serine-rich domains, suggests that MKPs can interact with distinct cellular partners, others than MAPKs. In this report, we identified a canonical mode I 14-3-3-binding motif (574KLPSLP579) located at the carboxy-terminal region of the wheat MKP, TMKP1. We found that this motif is well-conserved among other MKPs from monocots including Hordeum vulgare, Brachypodium distachyon and Aegilops taushii. Using co-immunoprecipitation assays, we provide evidence for interaction between TMKP1 and 14-3-3 proteins in wheat. Moreover, the phosphatase activity of TMKP1 is increased in a phospho-dependent manner by either Arabidopsis or yeast 14-3-3 isoforms. TMKP1 activation by 14-3-3 proteins is enhanced by Mn(2+), whereas in the presence of Ca(2+) ions, TMKP1 activation was limited to Arabidopsis 14-3-3φ (phi), an isoform harboring an EF-hand motif. Such findings strongly suggest that 14-3-3 proteins, in conjunction with specific divalent cations, may stimulate TMKP1 activity and point-out that 14-3-3 proteins bind and regulate the activity of a MKP in eukaryotes.

  10. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation.

    PubMed

    González-Fernández, L; Ortega-Ferrusola, C; Macias-Garcia, B; Salido, G M; Peña, F J; Tapia, J A

    2009-06-01

    rapid and reversible. Pervanadate also increased tyrosine phosphorylation of different proteins in capacitated and noncapacitated spermatozoa. Results showed that the phosphatases PTPN11, DUSP4, and DUSP3 are present in boar, stallion, and dog spermatozoa. PTPRB is also present in boar and stallion spermatozoa but was not detected in dog. The subcellular distribution of the identified phosphatases is diverse, suggesting that they likely have specific roles in sperm. Finally, PTP activity has a positive role in the regulation of motility and is involved in protein tyrosine phosphorylation in mammalian sperm.

  11. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2.

    PubMed

    Fachinger, G; Deutsch, U; Risau, W

    1999-10-21

    During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.

  12. Disruption of striatal-enriched protein tyrosine phosphatase (STEP) function in neuropsychiatric disorders

    PubMed Central

    Karasawa, Takatoshi; Lombroso, Paul J.

    2014-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific tyrosine phosphatase that plays a major role in the development of synaptic plasticity. Recent findings have implicated STEP in several psychiatric and neurological disorders, including Alzheimer’s disease, schizophrenia, fragile X syndrome, Huntington’s disease, stroke/ischemia, and stress-related psychiatric disorders. In these disorders, STEP protein expression levels and activity are dysregulated, contributing to the cognitive deficits that are present. In this review, we focus on the most recent findings on STEP, discuss how STEP expression and activity are maintained during normal cognitive function, and how disruptions in STEP activity contribute to a number of illnesses. PMID:25218562

  13. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae.

    PubMed Central

    Doi, K; Gartner, A; Ammerer, G; Errede, B; Shinkawa, H; Sugimoto, K; Matsumoto, K

    1994-01-01

    Pheromone-stimulated yeast cells and haploid gpa1 deletion mutants arrest their cell cycle in G1. Overexpression of a novel gene called MSG5 suppresses this inhibition of cell division. Loss of MSG5 function leads to a diminished adaptive response to pheromone. Genetic analysis indicates that MSG5 acts at a stage where the protein kinases STE7 and FUS3 function to transmit the pheromone-induced signal. Since loss of MSG5 function causes an increase in FUS3 enzyme activity but not STE7 activity, we propose that MSG5 impinges on the pathway at FUS3. Sequence analysis suggests that MSG5 encodes a protein tyrosine phosphatase. This is supported by the finding that recombinant MSG5 has phosphatase activity in vitro and is able to inactivate autophosphorylated FUS3. Thus MSG5 might stimulate recovery from pheromone by regulating the phosphorylation state of FUS3. Images PMID:8306972

  14. NV Proteins of Fish Novirhabdovirus Recruit Cellular PPM1Bb Protein Phosphatase and Antagonize RIG-I-Mediated IFN Induction.

    PubMed

    Biacchesi, Stéphane; Mérour, Emilie; Chevret, Didier; Lamoureux, Annie; Bernard, Julie; Brémont, Michel

    2017-03-09

    Non virion (NV) protein expression is critical for fish Novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV), in vivo pathogenesis. However, the mechanism by which NV promotes the viral replication is still unclear. We developed an approach based on reverse genetics and interactomic and identified several NV-associated cellular partners underlying cellular pathways as potential viral targets. Among these cell partners, we showed that NV proteins specifically interact with a protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1Bb (PPM1Bb) and recruit it in the close vicinity of mitochondria, a subcellular compartment important for retinoic acid-inducible gene-I- (RIG-I)-mediated interferon induction pathway. PPM1B proteins belong to the PP2C family of serine/threonine (Ser/Thr) protein phosphatase and have recently been shown to negatively regulate the host antiviral response via dephosphorylating Traf family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1). We demonstrated that NV proteins and PPM1Bb counteract RIG-I- and TBK1-dependent interferon (IFN) and IFN-stimulated gene promoter induction in fish cells and, hence, the establishment of an antiviral state. Furthermore, the expression of VHSV NV strongly reduced TBK1 phosphorylation and thus its activation. Our findings provide evidence for a previously undescribed mechanism by which a viral protein recruits PPM1Bb protein phosphatase to subvert innate immune recognition.

  15. NV Proteins of Fish Novirhabdovirus Recruit Cellular PPM1Bb Protein Phosphatase and Antagonize RIG-I-Mediated IFN Induction

    PubMed Central

    Biacchesi, Stéphane; Mérour, Emilie; Chevret, Didier; Lamoureux, Annie; Bernard, Julie; Brémont, Michel

    2017-01-01

    Non virion (NV) protein expression is critical for fish Novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV), in vivo pathogenesis. However, the mechanism by which NV promotes the viral replication is still unclear. We developed an approach based on reverse genetics and interactomic and identified several NV-associated cellular partners underlying cellular pathways as potential viral targets. Among these cell partners, we showed that NV proteins specifically interact with a protein phosphatase, Mg2+/Mn2+-dependent, 1Bb (PPM1Bb) and recruit it in the close vicinity of mitochondria, a subcellular compartment important for retinoic acid-inducible gene-I- (RIG-I)-mediated interferon induction pathway. PPM1B proteins belong to the PP2C family of serine/threonine (Ser/Thr) protein phosphatase and have recently been shown to negatively regulate the host antiviral response via dephosphorylating Traf family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1). We demonstrated that NV proteins and PPM1Bb counteract RIG-I- and TBK1-dependent interferon (IFN) and IFN-stimulated gene promoter induction in fish cells and, hence, the establishment of an antiviral state. Furthermore, the expression of VHSV NV strongly reduced TBK1 phosphorylation and thus its activation. Our findings provide evidence for a previously undescribed mechanism by which a viral protein recruits PPM1Bb protein phosphatase to subvert innate immune recognition. PMID:28276468

  16. Tailoring a low-molecular weight protein tyrosine phosphatase into an efficient reporting protein

    SciTech Connect

    Liu, Xiao-Yan; Li, Lan-Fen; Su, Xiao-Dong

    2009-05-15

    Fusion reporter methods are important tools for biology and biotechnology. An ideal reporter protein in a fusion system should have little effects on its fusion partner and provide an easy and accurate readout. Therefore, a small monomeric protein with high activity for detection assays often has advantages as a reporter protein. For this purpose, we have tailored the human B-form low-molecular-weight phosphotyrosyl phosphatase (HPTP-B) to increase its general applicability as a potent reporter protein. With the aim to eliminate interference from cysteine residues in the native HPTP-B, combined with a systematic survey of N- and C-terminal truncated variants, a series of cysteine to serine mutations were introduced, which allowed isolation of an engineered soluble protein with suitable biophysical properties. When we deleted both the first six residues and the last two residues, we still obtained a soluble mutant protein with correct folding and similar activity with wild-type protein. This mutant with two cysteine to serine mutations, HPTP-B{sup N{sub {Delta}}6-C{sub {Delta}}2-C90S-C109S}, has good potential as an optimal reporter.

  17. Identification of proteins suppressing the functions of oncogenic phosphatase of regenerating liver 1 and 3

    PubMed Central

    Lee, Ju-Dong; Jung, Haiyoung; Min, Sang-Hyun

    2016-01-01

    The phosphatase of regenerating liver (PRL) family, including PRL-1, PRL-2, and PRL-3, comprises protein tyrosine phosphatases whose deregulation is associated with the tumorigenesis and metastasis of many types of cancer. However, the underlying mechanism is poorly understood. In this study, aiming to increase understanding of the molecular mechanisms underlying the functions of PRL-1 and PRL-3, a yeast two-hybrid system was employed to screen for their interacting proteins. Alignment with the NCBI BLAST database revealed 12 interactive proteins: Synaptic nuclear envelope protein 2, emerin, mannose 6-phosphate receptor-binding protein 1, low-density lipoprotein receptor-related protein 10, Rab acceptor 1, tumor protein D52-like 2, selectin P ligand (SELPLG), guanylate binding protein 1, transmembrane and ubiquitin-like domain-containing 2, NADH:ubiquinone oxidoreductase subunit B8, syndecan 4 and FK506-binding protein 8 (FKBP8). These proteins are associated with cell proliferation, apoptosis, immune response, cell fate specification and metabolic process in biological process categories, and involved in various signaling pathways, including Alzheimer's disease, Parkinson's disease, Huntington's disease, hypertrophic cardiomyopathy and cell adhesion molecules. Interactions of PRL-1 with the prey proteins SELPLG and FKBP8 were confirmed by immunoprecipitation or immunostaining. Furthermore, SELPLG and FKBP8 suppressed PRL-1− or PRL-3-mediated p53 activity. Identification of the proteins interacting with PRL family proteins may provide valuable information to better understand the mechanism of PRL-mediated signal transduction in cancer and other diverse diseases. PMID:27882103

  18. AR-v7 protein expression is regulated by protein kinase and phosphatase.

    PubMed

    Li, Yinan; Xie, Ning; Gleave, Martin E; Rennie, Paul S; Dong, Xuesen

    2015-10-20

    Failure of androgen-targeted therapy and progression of castration-resistant prostate cancer (CRPC) are often attributed to sustained expression of the androgen receptor (AR) and its major splice variant, AR-v7. Although the new generation of anti-androgens such as enzalutamide effectively inhibits AR activity, accumulating pre-clinical and clinical evidence indicates that AR-v7 remains constitutively active in driving CRPC progression. However, molecular mechanisms which control AR-v7 protein expression remain unclear. We apply multiple prostate cancer cell models to demonstrate that enzalutamide induces differential activation of protein phosphatase-1 (PP-1) and Akt kinase depending on the gene context of cancer cells. The balance between PP-1 and Akt activation governs AR phosphorylation status and activation of the Mdm2 ubiquitin ligase. Mdm2 recognizes phosphorylated serine 213 of AR-v7, and induces AR-v7 ubiquitination and protein degradation. These findings highlight the decisive roles of PP-1 and Akt for AR-v7 protein expression and activities when AR is functionally blocked.

  19. Phosphatase activity on the cell wall of Fonsecaea pedrosoi.

    PubMed

    Kneipp, L F; Palmeira, V F; Pinheiro, A A S; Alviano, C S; Rozental, S; Travassos, L R; Meyer-Fernandes, J R

    2003-12-01

    The activity of a phosphatase was characterized in intact mycelial forms of Fonsecaea pedrosoi, a pathogenic fungus that causes chromoblastomycosis. At pH 5.5, this fungus hydrolyzed p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 12.78 +/- 0.53 nmol p-NP per h per mg hyphal dry weight. The values of Vmax and apparent Km for p-NPP hydrolyses were measured as 17.89 +/- 0.92 nmol p-NP per h per mg hyphal dry weight and 1.57 +/- 0.26 mmol/l, respectively. This activity was inhibited at increased pH, a finding compatible with an acid phosphatase. The enzymatic activity was strongly inhibited by classical inhibitors of acid phosphatases such as sodium orthovanadate (Ki = 4.23 micromol/l), sodium molybdate (Ki = 7.53 micromol/l) and sodium fluoride (Ki = 126.78 micromol/l) in a dose-dependent manner. Levamizole (1 mmol/l) and sodium tartrate (10 mmol/l), had no effect on the enzyme activity. Cytochemical localization of the acid phosphatase showed electrondense cerium phosphate deposits on the cell wall, as visualized by transmission electron microscopy. Phosphatase activity in F. pedrosoi seems to be associated with parasitism, as sclerotic cells, which are the fungal forms mainly detected in chromoblastomycosis lesions, showed much higher activities than conidia and mycelia did. A strain of F. pedrosoi recently isolated from a human case of chromoblastomycosis also showed increased enzyme activity, suggesting that the expression of surface phosphatases may be stimulated by interaction with the host.

  20. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    DTIC Science & Technology

    2012-06-01

    immunoblot and malachite green based assay, respectively. We observe that LNCaP- shPPP2CA cells have low PP2ACα expression (Figure 1A) and activity...regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001;353:417-39. (6) Jennbacken K, Gustavsson H...cancer cells - - - shPPP2CA. Expression and activity of catalytic subunit of PP2A (PP2ACα) was determined by immunoblot and melachite green - based

  1. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1.

    PubMed

    Maynes, J T; Bateman, K S; Cherney, M M; Das, A K; Luu, H A; Holmes, C F; James, M N

    2001-11-23

    Protein phosphatase-1 (PP1) plays a key role in dephosphorylation in numerous biological processes such as glycogen metabolism, cell cycle regulation, smooth muscle contraction, and protein synthesis. Microorganisms produce a variety of inhibitors of PP1, which include the microcystin class of inhibitors and okadaic acid, the latter being the major cause of diarrhetic shellfish poisoning and a powerful tumor promoter. We have determined the crystal structure of the molecular complex of okadaic acid bound to PP1 to a resolution of 1.9 A. This structure reveals that the acid binds in a hydrophobic groove adjacent to the active site of the protein and interacts with basic residues within the active site. Okadaic acid exhibits a cyclic structure, which is maintained via an intramolecular hydrogen bond. This is reminiscent of other macrocyclic protein phosphatase inhibitors. The inhibitor-bound enzyme shows very little conformational change when compared with two other PP1 structures, except in the inhibitor-sensitive beta12-beta13 loop region. The selectivity of okadaic acid for protein phosphatases-1 and -2A but not PP-2B (calcineurin) may be reassessed in light of this study.

  2. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Venkataraman, Jois Shreyas; Rajan, Koilmani Emmanuvel

    2014-05-01

    Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.

  3. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac.

    PubMed

    Yasuoka, Chie; Ihara, Yoshito; Ikeda, Satoshi; Miyahara, Yoshiyuki; Kondo, Takahito; Kohno, Shigeru

    2004-12-03

    Cell survival signaling of the Akt/protein kinase B pathway was influenced by a change in the cytoplasmic free calcium concentration ([Ca2+]i) for over 2 h via the regulation of a Ser/Thr phosphatase, protein phosphatase 2Ac (PP2Ac), in rat myocardiac H9c2 cells. Akt was down-regulated when [Ca2+]i was elevated by thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, but was up-regulated when it was suppressed by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)ester (BAPTA-AM), a cell permeable Ca2+ chelator. The inactivation of Akt was well correlated with the susceptibility to oxidant-induced apoptosis in H9c2 cells. To investigate the mechanism of the Ca(2+)-dependent regulation of Akt via the regulation of PP2A, we examined the transcriptional regulation of PP2Acalpha in H9c2 cells with Ca2+ modulators. Transcription of the PP2Acalpha gene was increased by thapsigargin but decreased by BAPTA-AM. The promoter activity was examined and the cAMP response element (CRE) was found responsible for the Ca(2+)-dependent regulation of PP2Acalpha. Furthermore, phosphorylation of CRE-binding protein increased with thapsigargin but decreased with BAPTA-AM. A long term change of [Ca2+]i regulates PP2Acalpha gene transcription via CRE, resulting in a change in the activation status of Akt leading to an altered susceptibility to apoptosis.

  4. Characterization of a novel plant PP2C-like protein Ser/Thr phosphatase as a calmodulin-binding protein.

    PubMed

    Takezawa, Daisuke

    2003-09-26

    Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.

  5. Identification of the human testis protein phosphatase 1 interactome.

    PubMed

    Fardilha, Margarida; Esteves, Sara L C; Korrodi-Gregório, Luís; Vintém, Ana Paula; Domingues, Sara C; Rebelo, Sandra; Morrice, Nick; Cohen, Patricia T W; da Cruz e Silva, Odete A B; da Cruz e Silva, Edgar F

    2011-11-15

    Protein phosphorylation is a critical regulatory mechanism in cellular signalling. To this end, PP1 is a major eukaryotic serine/threonine-specific phosphatase whose cellular functions, in turn, depend on complexes it forms with PP1 interacting proteins-PIPs. The importance of the testis/sperm-enriched variant, PP1γ2, in sperm motility and spermatogenesis has previously been shown. Given the key role of PIPs, it is imperative to identify the physiologically relevant PIPs in testis and sperm. Hence, we performed Yeast Two-Hybrid screens of a human testis cDNA library using as baits the different PP1 isoforms and also a proteomic approach aimed at identifying PP1γ2 binding proteins. To the best of our knowledge this is the largest data set of the human testis PP1 interactome. We report the identification of 77 proteins in human testis and 7 proteins in human sperm that bind PP1. The data obtained increased the known PP1 interactome by reporting 72 novel interactions. Confirmation of the interaction of PP1 with 5 different proteins was also further validated by co-immunoprecipitation or protein overlays. The data here presented provides important insights towards the function of these proteins and opens new possibilities for future research. In fact, such diversity in PP1 regulators makes them excellent targets for pharmacological intervention.

  6. Interactions of phosphatase and tensin homologue (PTEN) proteins with phosphatidylinositol phosphates: insights from molecular dynamics simulations of PTEN and voltage sensitive phosphatase.

    PubMed

    Kalli, Antreas C; Devaney, Isabel; Sansom, Mark S P

    2014-03-25

    The phosphatase and tensin homologue (PTEN) and the Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) are both phosphatidylinositol phosphate (PIP) phosphatases that contain a C2 domain. PTEN is a tumor suppressor protein that acts as a phosphatase on PIP3 in mammalian cell membranes. It contains two principal domains: a phosphatase domain (PD) and a C2 domain. Despite detailed structural and functional characterization, less is known about its mechanism of interaction with PIP-containing lipid bilayers. Ci-VSP consists of an N-terminal transmembrane voltage sensor domain and a C-terminal PTEN domain, which in turn contains a PD and a C2 domain. The nature of the interaction of the PTEN domain of Ci-VSP with membranes has not been well established. We have used multiscale molecular dynamics simulations to define the interaction mechanisms of PTEN and of the Ci-VSP PTEN domains with PIP-containing lipid bilayers. Our results suggest a novel mechanism of association of the PTEN with such bilayers, in which an initial electrostatics-driven encounter of the protein and bilayer is followed by reorientation of the protein to optimize its interactions with PIP molecules in the membrane. Although a PIP3 molecule binds close to the active site of PTEN, our simulations suggest a further conformational change of the protein may be required for catalytically productive binding to occur. Ci-VSP interacted with membranes in an orientation comparable to that of PTEN but bound directly to PIP-containing membranes without a subsequent reorientation step. Again, PIP3 bound close to the active site of the Ci-VSP PD, but not in a catalytically productive manner. Interactions of Ci-VSP with the bilayer induced clustering of PIP molecules around the protein.

  7. Identification and Biochemical Characterization of Protein Phosphatase 5 from the Cantharidin-Producing Blister Beetle, Epicauta chinensis

    PubMed Central

    Chen, Xi’en; Lü, Shumin; Zhang, Yalin

    2013-01-01

    Protein phosphatase 5 (PP5) is a unique member of serine/threonine phosphatases which has been recognized in regulation of diverse cellular processes. A cDNA fragment encoding PP5 (EcPP5) was cloned and characterized from the cantharidin-producing blister beetle, E. chinensis. EcPP5 contains an open reading frame of 1500 bp that encodes a protein of 56.89 kDa. The deduced amino acid sequence shares 88% and 68% identities to the PP5 of Tribolium castaneum and humans, respectively. Analysis of the primary sequence shows that EcPP5 has three TPR (tetratricopeptide repeat) motifs at its N-terminal region and contains a highly conserved C-terminal catalytic domain. RT-PCR reveals that EcPP5 is expressed in all developmental stages and in different tissues. The recombinant EcPP5 (rEcPP5) was produced in Escherichia coli and purified to homogeneity. The purified protein exhibited phosphatase activity towards pNPP (p-nitrophenyl phosphate) and phosphopeptides, and its activity can be enhanced by arachidonic acid. In vitro inhibition study revealed that protein phosphatase inhibitors, okadaic acid, cantharidin, norcantharidin and endothall, inhibited its activity. Further, protein phosphatase activity of total soluble protein extract from E. chinensis adults could be impeded by these inhibitors suggesting there might be some mechanism to protect this beetle from being damaged by its self-produced cantharidin. PMID:24351830

  8. Key role of succinate dehydrogenase in insulin-induced inactivation of protein tyrosine phosphatases.

    PubMed

    Pomytkin, I A; Kolesova, O E

    2002-06-01

    We studied the role of mitochondria in insulin-induced inactivation of protein tyrosine phosphatases in the liver. The mitochondrial respiratory chain is an insulin-sensitive source of H(2)O(2)that acts as a physiological inhibitor of protein tyrosine phosphatases. Succinate dehydrogenase plays a key role in insulin-stimulated generation of H(2)O(2)and inactivation of liver protein tyrosine phosphatases.

  9. Structural and functional characterization of the 2H-phosphatase domain of Sts-2 reveals an acid-dependent phosphatase activity.

    PubMed

    Chen, Yunting; Jakoncic, Jean; Carpino, Nick; Nassar, Nicolas

    2009-03-03

    The suppressors of T cell receptor (TCR) signaling 1 and 2 (Sts-1 and -2, respectively) are multidomain proteins that negatively regulate the signaling of membrane-bound receptors, including TCR and the epidermal growth factor receptor (EGFR). Sts-1 was recently shown to be a new type of protein tyrosine phosphatase (PTP), with the phosphatase activity located within its C-terminal phosphoglycerate mutase (PGM) homology domain and key for the regulation of TCR signaling in T cells. The activity of the related Sts-2 enzyme is significantly less than that of Sts-1. Here we investigate the phosphatase activity of the PGM domain of Sts-2, Sts-2(PGM). The crystal structure of Sts-2(PGM) is remarkably similar to Sts-1(PGM), including conservation of all catalytic residues. Insight into mechanistic details is provided by the structures of the apo, tungstate-bound, and phosphate-bound enzyme. The active site shows stringent specificity, with the k(cat) optimum at pH 5.0 suggesting that Sts-2 might function as an acid-dependent phosphatase. Mutation of active site residues Gln372, Ala446, Glu481, Ser552, and Ser582 to their equivalents in Sts-1 increases the phosphatase activity of Sts-2(PGM) toward model substrates. Overall, our data demonstrate that Sts-2(PGM) adopts the conformation of an active phosphatase whose activity is fundamentally different from that of Sts-1 despite the strong structural homology. They also demonstrate that nonconserved active site residues are responsible for the difference in activity between the two isoforms. These differences reflect possible distinct physiological substrates.

  10. Calmodulin-dependent protein phosphatase from Neurospora crassa. Molecular cloning and expression of recombinant catalytic subunit.

    PubMed

    Higuchi, S; Tamura, J; Giri, P R; Polli, J W; Kincaid, R L

    1991-09-25

    A cDNA for the catalytic subunit of a calmodulin (CaM)-dependent protein phosphatase was cloned from Neurospora crassa. The open reading frame of 1557 base pairs encoded a protein of Mr approximately 59,580 and was followed by a 3'-untranslated region of 363 base pairs including the poly(A) tail. Based on primer extension analysis, the mRNA transcript in vivo was 2403 base pairs. Expression of this CaM-protein phosphatase mRNA was developmentally regulated, being highest during early mycelial growth; production of the corresponding protein followed mRNA with a time lag of 8-12 h. Polymerase chain reaction amplification of genomic DNA revealed three small introns, the positions of which coincided with those in the mouse gene, indicating evolutionary conservation of these structures. The deduced sequence showed approximately 75% identity with the mammalian homologue, calcineurin, in aligned regions. A region of 40 amino acids preceding the CaM-binding domain was essentially unchanged, suggesting conservation of a crucial interaction site. Three small segments in the carboxyl half of the protein were unrelated to the mammalian gene and may constitute "variable regions" that confer substrate specificity to the enzyme. An active recombinant catalytic subunit was expressed in bacteria and purified by CaM-Sepharose chromatography. This preparation was stimulated 2- 3-fold by CaM and showed a p-nitrophenol phosphatase activity equal to that of the bovine brain holoenzyme, although its dephosphorylation of phosphoprotein substrates was markedly different. These findings demonstrate that the catalytic subunit of this phosphatase can exhibit high activity in the absence of its intrinsic Ca(2+)-binding subunit.

  11. 3' Phosphatase activity toward phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] by voltage-sensing phosphatase (VSP).

    PubMed

    Kurokawa, Tatsuki; Takasuga, Shunsuke; Sakata, Souhei; Yamaguchi, Shinji; Horie, Shigeo; Homma, Koichi J; Sasaki, Takehiko; Okamura, Yasushi

    2012-06-19

    Voltage-sensing phosphatases (VSPs) consist of a voltage-sensor domain and a cytoplasmic region with remarkable sequence similarity to phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase. VSPs dephosphorylate the 5' position of the inositol ring of both phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] upon voltage depolarization. However, it is unclear whether VSPs also have 3' phosphatase activity. To gain insights into this question, we performed in vitro assays of phosphatase activities of Ciona intestinalis VSP (Ci-VSP) and transmembrane phosphatase with tensin homology (TPTE) and PTEN homologous inositol lipid phosphatase (TPIP; one human ortholog of VSP) with radiolabeled PI(3,4,5)P(3). TLC assay showed that the 3' phosphate of PI(3,4,5)P(3) was not dephosphorylated, whereas that of phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)] was removed by VSPs. Monitoring of PI(3,4)P(2) levels with the pleckstrin homology (PH) domain from tandem PH domain-containing protein (TAPP1) fused with GFP (PH(TAPP1)-GFP) by confocal microscopy in amphibian oocytes showed an increase of fluorescence intensity during depolarization to 0 mV, consistent with 5' phosphatase activity of VSP toward PI(3,4,5)P(3). However, depolarization to 60 mV showed a transient increase of GFP fluorescence followed by a decrease, indicating that, after PI(3,4,5)P(3) is dephosphorylated at the 5' position, PI(3,4)P(2) is then dephosphorylated at the 3' position. These results suggest that substrate specificity of the VSP changes with membrane potential.

  12. Networks of protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse.

    PubMed

    Mucic, Goran; Sase, Sunetra; Stork, Oliver; Lubec, Gert; Li, Lin

    2015-03-01

    Although protein kinases and phosphatases have been reported to be involved in fear memory, information about these signalling molecules in the individual phases of contextual fear conditioning (cFC) is limited. C57BL/6J mice were tested in cFC, sacrificed and hippocampi were used for screening of approximately 800 protein kinases and phosphatases by protein microarrays with subsequent Western blot confirmation of threefold higher or lower hippocampal levels as compared to foot shock controls. Immunoblotting of the protein kinases and phosphatases screened out was carried out by Western blotting. A network of protein kinases and phosphatases was generated (STRING 9.1). Animals learned the task in the paradigm and protein kinase and phosphatase levels were determined in the individual phases acquisition, consolidation and retrieval and compared to foot shock controls. Protein kinases discoidin containing receptor 2 (DDR2), mitogen activated protein kinase kinase kinase 7 (TAK1), protein phosphatases dual specificity protein phosphatase (PTEN) and protein phosphatase 2a (PP2A) were modulated in the individual phases of cFC. Phosphatidyl-inositol-3,4,5-triphosphate 3-phosphatase and phosphatidylinositol-3 kinase (PI3K) that is interacting with PTEN were modulated as well. Freezing time was correlating with PP2A levels in the retrieval phase of cFC. The abovementioned protein kinases, phosphatases and inositol-signalling enzymes were not reported so far in cFC and the results are relevant for interpretation of previous and design of future studies in cFC or fear memory. Protein phosphatase PP2A was, however, the only signalling compound tested that was directly linked to retrieval in the cFC.

  13. A Malachite Green-Based Assay to Assess Glucan Phosphatase Activity

    PubMed Central

    Sherwood, Amanda R.; Paasch, Bradley C.; Worby, Carolyn A.; Gentry, Matthew S.

    2012-01-01

    With the recent discovery of a unique class of dual-specificity phosphatases that dephosphorylate glucans, we report an in vitro assay tailored for the detection of phosphatase activity against phosphorylated glucans. We demonstrate that in contrast to a general phosphatase assay utilizing a synthetic substrate, only phosphatases that possess glucan phosphatase activity liberate phosphate from the phosphorylated glucan amylopectin using the described assay. This assay is simple and cost-effective, providing reproducible results that clearly establish the presence or absence of glucan phosphatase activity. The assay described will be a useful tool in characterizing emerging members of the glucan phosphatase family. PMID:23201267

  14. Integrative Transcriptome Profiling of Cognitive Aging and Its Preservation through Ser/Thr Protein Phosphatase Regulation

    PubMed Central

    Park, C. Sehwan; Valomon, Amandine; Welzl, Hans

    2015-01-01

    Environmental enrichment has been reported to delay or restore age-related cognitive deficits, however, a mechanism to account for the cause and progression of normal cognitive decline and its preservation by environmental enrichment is lacking. Using genome-wide SAGE-Seq, we provide a global assessment of differentially expressed genes altered with age and environmental enrichment in the hippocampus. Qualitative and quantitative proteomics in naïve young and aged mice was used to further identify phosphorylated proteins differentially expressed with age. We found that increased expression of endogenous protein phosphatase-1 inhibitors in aged mice may be characteristic of long-term environmental enrichment and improved cognitive status. As such, hippocampus-dependent performances in spatial, recognition, and associative memories, which are sensitive to aging, were preserved by environmental enrichment and accompanied by decreased protein phosphatase activity. Age-associated phosphorylated proteins were also found to correspond to the functional categories of age-associated genes identified through transcriptome analysis. Together, this study provides a comprehensive map of the transcriptome and proteome in the aging brain, and elucidates endogenous protein phosphatase-1 inhibition as a potential means through which environmental enrichment may ameliorate age-related cognitive deficits. PMID:26102285

  15. Anion and divalent cation activation of phosphoglycolate phosphatase from leaves.

    PubMed

    Husic, H D; Tolbert, N E

    1984-02-15

    Phosphoglycolate (P-glycolate) phosphatase was purified 223-fold from spinach leaves by (NH4)2SO4 fractionation, DEAE-cellulose chromatography, and Sephadex G-200 chromatography. The partially purified enzyme had a broad pH optimum between 5.6 and 8.0 and was specific for the hydrolysis of P-glycolate with a Km (P-glycolate) of 26 microM. The enzyme was activated by divalent cations including Mg2+, Co2+, Mn2+, and Zn2+, and by anions including Cl-, Br-, NO-3, and HCOO-. Neither anions nor divalent cations activated the enzyme without the other. The P-glycolate phosphatase activities from tobacco leaves or the green algae, Chlamydomonas reinhardtii, also required Mg2+ and were activated by chloride. In addition, the enzyme was allosterically inhibited by ribose 5-phosphate. The activation of P-glycolate phosphatase by both anions and divalent cations and the inhibition by ribose 5-phosphate may be involved in the in vivo regulation of P-glycolate phosphatase activity.

  16. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function.

    PubMed

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F; Mori Sequeiros García, M Mercedes; Maloberti, Paula M; Orlando, Ulises D; Mele, Pablo G; Poderoso, Cecilia; Podesta, Ernesto J

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.

  17. Demonstration of separate phosphotyrosyl- and phosphoseryl- histone phosphatase activities in the plasma membranes of a human astrocytoma.

    PubMed

    Leis, J F; Knowles, A F; Kaplan, N O

    1985-06-01

    A plasma membrane preparation from a human astrocytoma contained p-nitrophenyl phosphate (pNPP), phosphotyrosyl histone, and phosphoseryl histone hydrolysis activities. The pNPPase and phosphotyrosyl histone phosphatase activities were inhibited by vanadate, whereas the phosphoseryl histone phosphatase activity was not; the latter activity was inhibited by pyrophosphate and nucleoside di- and triphosphates. When the membranes were solubilized by Triton X-100 and the solubilized proteins were subjected to column chromatography on DEAE-Sephadex, Sepharose 6B-C1, and wheat germ agglutinin-Sepharose 4B columns, the pNPPase activity from the phosphoseryl histone phosphatase activity. The results from column chromatography also indicated that there may be multiple phosphotyrosyl and phosphoseryl protein phosphatases in the plasma membranes.

  18. Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae.

    PubMed

    Shubchynskyy, Volodymyr; Boniecka, Justyna; Schweighofer, Alois; Simulis, Justinas; Kvederaviciute, Kotryna; Stumpe, Michael; Mauch, Felix; Balazadeh, Salma; Mueller-Roeber, Bernd; Boutrot, Freddy; Zipfel, Cyril; Meskiene, Irute

    2017-01-06

    Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.

  19. Pisiferdiol and pisiferic acid isolated from Chamaecyparis pisifera activate protein phosphatase 2C in vitro and induce caspase-3/7-dependent apoptosis via dephosphorylation of Bad in HL60 cells.

    PubMed

    Aburai, N; Yoshida, M; Ohnishi, M; Kimura, K

    2010-08-01

    Protein phosphatase 2C (PP2C) dephosphorylates a broad range of substrates and regulates apoptosis, stress response and growth-related pathways. In the course of screening for PP2C activators from natural sources, we isolated abietane-type diterpenes, pisiferdiol and pisiferic acid from Chamaecyparis pisifera. Pisiferdiol having a unique seven-membered ring showed more specific PP2C activation activity (1.3-fold at 100 microM) than pisiferic acid having a normal six-membered ring and oleic acid, which is known to activate PP2C. Pisiferdiol and pisiferic acid showed mixed-type activation with respect to alpha-casein, and this differed from the non-competitive activation of oleic acid in vitro. In vivo, the cytotoxicity of pisiferdiol toward human promyelocytic leukemia cell line HL60 with an IC(50) value of 18.3 microM was 2-fold and 7-fold stronger than those of pisiferic acid and oleic acid, and pisiferdiol induced apoptosis through a caspase 3/7-dependent mechanism involving the dephosphorylation of Bad(1), which is a PP2C substrate. We thus conclude that pisiferdiol and pisiferic acid are novel PP2C activators, and the more specific activator, pisiferdiol, may be a useful chemical probe to study PP2C-mediated signaling pathways, and a lead compound for pharmaceutical agents.

  20. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis.

    PubMed

    Sánchez-Lombardo, Irma; Alvarez, Santiago; McLauchlan, Craig C; Crans, Debbie C

    2015-06-01

    Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states.

  1. Chasing Phosphoarginine Proteins: Development of a Selective Enrichment Method Using a Phosphatase Trap*

    PubMed Central

    Trentini, Débora Broch; Fuhrmann, Jakob; Mechtler, Karl; Clausen, Tim

    2014-01-01

    Arginine phosphorylation is an emerging post-translational protein modification implicated in the bacterial stress response. Although early reports suggested that arginine phosphorylation also occurs in higher eukaryotes, its overall prevalence was never studied using modern mass spectrometry methods, owing to technical difficulties arising from the acid lability of phosphoarginine. As shown recently, the McsB and YwlE proteins from Bacillus subtilis function as a highly specific protein arginine kinase and phosphatase couple, shaping the phosphoarginine proteome. Using a B. subtilis ΔywlE strain as a source for arginine-phosphorylated proteins, we were able to adapt mass spectrometry (MS) protocols to the special chemical properties of the arginine modification. Despite this progress, the analysis of protein arginine phosphorylation in eukaryotes is still challenging, given the great abundance of serine/threonine phosphorylations that would compete with phosphoarginine during the phosphopeptide enrichment procedure, as well as during data-dependent MS acquisition. We thus set out to establish a method for the selective enrichment of arginine-phosphorylated proteins as an initial step in the phosphoproteomic analysis. For this purpose, we developed a substrate-trapping mutant of the YwlE phosphatase that retains binding affinity toward arginine-phosphorylated proteins but cannot hydrolyze the captured substrates. By testing a number of active site substitutions, we identified a YwlE mutant (C9A) that stably binds to arginine-phosphorylated proteins. We further improved the substrate-trapping efficiency by impeding the oligomerization of the phosphatase mutant. The engineered YwlE trap efficiently captured arginine-phosphorylated proteins from complex B. subtilis ΔywlE cell extracts, thus facilitating identification of phosphoarginine sites in the large pool of cellular protein modifications. In conclusion, we present a novel tool for the selective enrichment and

  2. Effects of organic dairy manure amendment on soil phosphatase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairy production is increasing in the U.S. due to concerns over environmental, human, and animal health. It is well known that the application of livestock manure to soil can influence enzyme activities involved in nutrient cycling and soil fertility, such as soil phosphatases; however, orga...

  3. FAM122A, a new endogenous inhibitor of protein phosphatase 2A

    PubMed Central

    Fan, Li; Liu, Man-Hua; Guo, Meng; Hu, Chuan-Xi; Yan, Zhao-Wen; Chen, Jing; Chen, Guo-Qiang; Huang, Ying

    2016-01-01

    The regulation of the ubiquitously expressed protein phosphatase 2A (PP2A) is essential for various cellular functions such as cell proliferation, transformation, and fate determination. In this study, we demonstrate that the highly conserved protein in mammals, designated FAM122A, directly interacts with PP2A-Aα and B55α rather than B56α subunits, and inhibits the phosphatase activity of PP2A-Aα/B55α/Cα complex. Further, FAM122A potentiates the degradation of catalytic subunit PP2A-Cα with the increased poly-ubiquitination. In agreement, FAM122A silencing inhibits while its overexpression enhances cell growth and colony-forming ability. Collectively, we identify FAM122A as a new endogenous PP2A inhibitor and its physiological and pathophysiological significances warrant to be further investigated. PMID:27588481

  4. Protein phosphatase 2C (PP2C) function in higher plants.

    PubMed

    Rodriguez, P L

    1998-12-01

    In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.

  5. PP2C phosphatase activity is coupled to cAMP-mediated pathway in rat parotid acinar cells.

    PubMed

    Yokoyama, N; Kobayashi, T; Tamura, S; Sugiya, H

    1995-07-01

    A 26 kDa particulate protein is phosphorylated during stimulation of amylase secretion by a beta-adrenergic agonist in the rat parotid gland. Previous study has shown that PP2C phosphatase is involved in dephosphorylation of this 26 kDa protein [Yokoyama, N. et al. (1994) Biochem. Biophys. Res. Commun. 200, 497-503]. In this study, immunotransblot analysis using anti-PP2C phosphatase antibody showed that PP2C phosphatase was found prominently in the cystolic fractions and less in secretory granule membranes. When cells were stimulated by isoproterenol, cytosolic PP2C phosphatase activity increased to 145% at 5 min and returned to basal level at 30 min. Forskolin increased PP2C phosphatase activity. H89 inhibited increase of PP2C phosphatase activity following beta-adrenergic stimulation. These results suggest that PP2C phosphatase activity is regulated by cAMP-mediated signaling following beta-adrenergic stimulation and participates in dephosphorylation of this 26 kDa protein.

  6. The protein phosphatases responsible for dephosphorylation of hormone-sensitive lipase in isolated rat adipocytes.

    PubMed Central

    Wood, S L; Emmison, N; Borthwick, A C; Yeaman, S J

    1993-01-01

    The levels of the cytosolic serine/threonine protein phosphatases (PP) in rat adipocyte extracts have been determined, by using both reference substrates and hormone-sensitive lipase (HSL) as substrates. Adipocytes contain significant levels of both PP1 and 2A (1.6 and 2.0 m-units/ml of packed cells respectively), with lower levels of PP2C and virtually no PP2B activity. PP2A and 2C exhibit similar degrees of activity against HSL phosphorylated at site 1, together accounting for 92% of the total. In contrast, site 2 is dephosphorylated predominantly by PP2A (over 50% of total activity), whereas PP1 and PP2C contribute approx. 20% and 30% respectively to the total phosphatase activity against that site. Total phosphatase activity in the adipocyte extracts was 2-3-fold higher against site 2 than against site 1. The possible significance of these findings to the regulation of HSL activity in adipose tissue in vivo is discussed. PMID:8240253

  7. Reduced expression of PNUTS leads to activation of Rb-phosphatase and caspase-mediated apoptosis.

    PubMed

    De Leon, Gabriel; Sherry, Tara C; Krucher, Nancy A

    2008-06-01

    There is abundant evidence that Retinoblastoma (Rb) activity is important in the control of cell proliferation and apoptosis. Reversible phosphorylation of the Rb protein that is carried out by cyclin dependent kinases and Protein phosphatase 1 (PP1) regulates its functions. A PP1 interacting protein, PNUTS (Phosphatase Nuclear Targeting Subunit) is proposed to be a regulator of Rb phosphorylation. In this study, PNUTS knockdown in MCF7, SKA and HCT116 cancer cells causes a reduction in viability due to increased apoptosis. However, normal cells (MCF10A breast and CCD-18Co colon) do not exhibit reduced viability when PNUTS expression is diminished. PNUTS knockdown has no effect in Rb-null Saos-2 cells. However, when Rb is stably expressed in Saos-2 cells, PNUTS knockdown reduces cell number. Knockdown of PNUTS in p53-/- HCT116 cells indicates that p53 is dispensable for the induction of apoptosis. Loss of PNUTS expression results in increased Rb-phosphatase activity and Rb dephosphorylation. E2F1 dissociates from Rb in cells depleted of PNUTS and the resulting apoptosis is dependent on caspase-8. These results indicate that Rb phosphorylation state can be manipulated by targeting Rb phosphatase activity and suggest that PNUTS may be a potential target for therapeutic pro-apoptotic strategies.

  8. Thioredoxin-related protein 32 (TRP32) specifically reduces oxidized phosphatase of regenerating liver (PRL).

    PubMed

    Ishii, Tasuku; Funato, Yosuke; Miki, Hiroaki

    2013-03-08

    PRL family constitutes a unique class of phosphatases associated with metastasis. The phosphatase activity of PRL has been reported to be important for promoting metastasis, and it is inactivated by reversible oxidation of its catalytic cysteine. Here, we show that TRP32 specifically reduces PRL. Reduction of oxidized PRL in cells is inhibited by 2,4-dinitro-1-chlorobenzene, an inhibitor of TRX reductase. In vitro assays for the reduction of PRL show that only TRP32 can potently reduce oxidized PRL, whereas other TRX-related proteins linked to TRX reductase show little or no reducing activity. Indeed, TRP32 knockdown significantly prolongs the H2O2-induced oxidation of PRL. Binding analyses reveal that the unique C-terminal domain of TRP32 is required and sufficient for its direct interaction with PRL. These results suggest that TRP32 maintains the reduced state of PRL and thus regulates the biological function of PRL.

  9. Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex

    SciTech Connect

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2008-01-01

    Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-{beta} and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93 angstrom resolution. The polypeptide chain adopts the typical a{beta}a PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.

  10. A Dual-Specificity Phosphatase Cdc25B Is an Unstable Protein and Triggers p34cdc2/Cyclin B Activation in Hamster BHK21 Cells Arrested with Hydroxyurea

    PubMed Central

    Nishijima, Hitoshi; Nishitani, Hideo; Seki, Takashi; Nishimoto, Takeharu

    1997-01-01

    By incubating at 30°C in the presence of an energy source, p34cdc2/cyclin B was activated in the extract prepared from a temperature-sensitive mutant, tsBN2, which prematurely enters mitosis at 40°C, the nonpermissive temperature (Nishimoto, T., E. Eilen, and C. Basilico. 1978. Cell. 15:475–483), and wild-type cells of the hamster BHK21 cell line arrested in S phase, without protein synthesis. Such an in vitro activation of p34cdc2/cyclin B, however, did not occur in the extract prepared from cells pretreated with protein synthesis inhibitor cycloheximide, although this extract still retained the ability to inhibit p34cdc2/cyclin B activation. When tsBN2 cells arrested in S phase were incubated at 40°C in the presence of cycloheximide, Cdc25B, but not Cdc25A and C, among a family of dual-specificity phosphatases, Cdc25, was lost coincidentally with the lack of the activation of p34cdc2/cyclin B. Consistently, the immunodepletion of Cdc25B from the extract inhibited the activation of p34cdc2/cyclin B. Cdc25B was found to be unstable (half-life < 30 min). Cdc25B, but not Cdc25C, immunoprecipitated from the extract directly activated the p34cdc2/cyclin B of cycloheximide-treated cells as well as that of nontreated cells, although Cdc25C immunoprecipitated from the extract of mitotic cells activated the p34cdc2/cyclin B within the extract of cycloheximide-treated cells. Our data suggest that Cdc25B made an initial activation of p34cdc2/cyclin B, which initiates mitosis through the activation of Cdc25C. PMID:9281587

  11. Inositol phosphatase activity of the Escherichia coli agp-encoded acid glucose-1-phosphatase.

    PubMed

    Cottrill, Michael A; Golovan, Serguei P; Phillips, John P; Forsberg, Cecil W

    2002-09-01

    When screening an Escherichia coli gene library for myo-inositol hexakisphosphate (InsP6) phosphatases (phytases), we discovered that the agp-encoded acid glucose-1-phosphatase also possesses this activity. Purified Agp hydrolyzes glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6 with pH optima, 6.5, 3.5, and 4.5, respectively, and was stable when incubated at pH values ranging from 3 to 10. Glucose-1-phosphate was hydrolyzed most efficiently at 55 degrees C. while InsP6 and p-nitrophenyl phosphate were hydrolyzed maximally at 60 degrees C. The Agp exhibited Km values of (0.39 mM, 13 mM, and 0.54 mM for the hydrolysis of glucose-1-phosphate, p-nitrophenyl phosphate, and InsP6, respectively. High-pressure liquid chromatography (HPLC) analysis of inositol phosphate hydrolysis products of Agp demonstrated that the enzyme catalyzes the hydrolysis of phosphate from each of InsP6, D-Ins(1,2,3,4,5)P5, Ins(1,3,4,5,6)P5, and Ins(1,2,3,4,6)P5, producing D/L-Ins(1,2,4,5,6)P5. D-Ins(1,2,4,5)P4, D/L-Ins(1,4,5,6)P4 and D/L-Ins(1,2,4,6)P4, respectively. These data support the contention that Agp is a 3-phosphatase.

  12. Structural Mechanism of Demethylation and Inactivation of Protein Phosphatase 2A

    SciTech Connect

    Xing,Y.; Li, Z.; Chen, Y.; Stock, J.; Jeffrey, P.; Shi, Y.

    2008-01-01

    Protein phosphatase 2A (PP2A) is an important serine/threonine phosphatase that plays a role in many biological processes. Reversible carboxyl methylation of the PP2A catalytic subunit is an essential regulatory mechanism for its function. Demethylation and negative regulation of PP2A is mediated by a PP2A-specific methylesterase PME-1, which is conserved from yeast to humans. However, the underlying mechanism of PME-1 function remains enigmatic. Here we report the crystal structures of PME-1 by itself and in complex with a PP2A heterodimeric core enzyme. The structures reveal that PME-1 directly binds to the active site of PP2A and that this interaction results in the activation of PME-1 by rearranging the catalytic triad into an active conformation. Strikingly, these interactions also lead to inactivation of PP2A by evicting the manganese ions that are required for the phosphatase activity of PP2A. These observations identify a dual role of PME-1 that regulates PP2A activation, methylation, and holoenzyme assembly in cells.

  13. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney.

    PubMed

    Li, M; Guo, H; Damuni, Z

    1995-02-14

    Two heat-stable protein inhibitors of protein phosphatase 2A (PP2A), tentatively designated I1PP2A and I2PP2A, have been purified to apparent homogeneity from extracts of bovine kidney. The purified preparations of I1PP2A exhibited an apparent M(r) approximately 30,000 and 250,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-300, respectively. In contrast, the purified preparations of I2PP2A exhibited an apparent M(r) approximately 20,000 and 80,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation chromatography on Sephacryl S-200, respectively. The purified preparations of I1PP2A and I2PP2A inhibited PP2A with 32P-labeled myelin basic protein, 32P-labeled histone H1, 32P-labeled pyruvate dehydrogenase complex, 32P-labeled phosphorylase, and protamine kinase as substrates. By contrast, I1PP2A and I2PP2A exhibited little effect, if any, on the activity of PP2A with 32P-labeled casein, and did not prevent the autodephosphorylation of PP2A in incubations with the autophosphorylation-activated protein kinase [Guo, H., & Damuni, Z. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2500-2504]. The purified preparations of I1PP2A and I2PP2A had little effect, if any, on the activities of protein phosphatase 1, protein phosphatase 2B, protein phosphatase 2C, and pyruvate dehydrogenase phosphatase. With 32P-labeled MBP as a substrate, kinetic analysis according to Henderson showed that I1PP2A and I2PP2A were noncompetitive and displayed a Ki of about 30 and 25 nM, respectively. Following cleavage with Staphylococcus aureus V8 protease, I1PP2A and I2PP2A displayed distinct peptide patterns, indicating that these inhibitor proteins are the products of distinct genes. The N-terminal amino acid sequences of the purified preparations indicate that I1PP2A and I2PP2A are novel proteins.

  14. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4

    PubMed Central

    Chan, Leon Y.; Amon, Angelika

    2009-01-01

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function. PMID:19605686

  15. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4.

    PubMed

    Chan, Leon Y; Amon, Angelika

    2009-07-15

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function.

  16. Is Protein Phosphatase Inhibition Responsible for the Toxic Effects of Okadaic Acid in Animals?

    PubMed Central

    Munday, Rex

    2013-01-01

    Okadaic acid (OA) and its derivatives, which are produced by dinoflagellates of the genera Prorocentrum and Dinophysis, are responsible for diarrhetic shellfish poisoning in humans. In laboratory animals, these toxins cause epithelial damage and fluid accumulation in the gastrointestinal tract, and at high doses, they cause death. These substances have also been shown to be tumour promoters, and when injected into the brains of rodents, OA induces neuronal damage reminiscent of that seen in Alzheimer’s disease. OA and certain of its derivatives are potent inhibitors of protein phosphatases, which play many roles in cellular metabolism. In 1990, it was suggested that inhibition of these enzymes was responsible for the diarrhetic effect of these toxins. It is now repeatedly stated in the literature that protein phosphatase inhibition is not only responsible for the intestinal effects of OA and derivatives, but also for their acute toxic effects, their tumour promoting activity and their neuronal toxicity. In the present review, the evidence for the involvement of protein phosphatase inhibition in the induction of the toxic effects of OA and its derivatives is examined, with the conclusion that the mechanism of toxicity of these substances requires re-evaluation. PMID:23381142

  17. Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants

    PubMed Central

    Durian, Guido; Rahikainen, Moona; Alegre, Sara; Brosché, Mikael; Kangasjärvi, Saijaliisa

    2016-01-01

    Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants. PMID:27375664

  18. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  19. Low serum alkaline phosphatase activity in Kikuchi-Fujimoto disease

    PubMed Central

    Inamo, Yasuji

    2017-01-01

    Abstract Various laboratory findings are helpful in making a diagnosis of Kikuchi-Fujimoto disease (KFD); however, they are not specific. We found decreased serum alkaline phosphatase (SAP) activity in children with KFD. The levels of SAP fell in the acute phase and recovered during convalescence. We conclude that low SAP activity is a characteristic of KFD and may be an auxiliary diagnostic marker for the disease. PMID:28248884

  20. A protein tyrosine phosphatase 1B activity inhibitor from the fruiting bodies of Ganoderma lucidum (Fr.) Karst and its hypoglycemic potency on streptozotocin-induced type 2 diabetic mice.

    PubMed

    Teng, Bao-Song; Wang, Chen-Dong; Yang, Hong-Jie; Wu, Jia-Sheng; Zhang, Dan; Zheng, Min; Fan, Zhao-Hua; Pan, Deng; Zhou, Ping

    2011-06-22

    Inhibition of protein tyrosine phosphatase 1B (PTP1B) activity has been considered to be a promising therapy approach to treat type 2 diabetes. In this work, a novel PTP1B activity inhibitor, named FYGL (Fudan-Yueyang-G. lucidum), was screened from the fruiting bodies of Ganoderma lucidum and showed an efficient PTP1B inhibitory potency with IC₅₀ = 5.12 ± 0.05 μg/mL. FYGL is a water-soluble macromolecular proteoglycan with a protein to polysaccharide ratio of 17:77 and a viscosity-average molecular weight (M(η)) of 2.6 × 10⁵. The type 2 diabetic mice treated orally by FYGL showed an obvious decrease in plasma glucose level compared with the diabetic controls without drug treatment, comparable with that of diabetic mice treated with metformin, a clinical drug. The toxicity of FYGL is very low. The results indicate that FYGL may serve as a drug candidate or a health-care food for diabetic therapy or protection.

  1. Weak oligomerization of low-molecular-weight protein tyrosine phosphatase is conserved from mammals to bacteria.

    PubMed

    Blobel, Jascha; Bernadó, Pau; Xu, Huimin; Jin, Changwen; Pons, Miquel

    2009-08-01

    The well-characterized self-association of a mammalian low-molecular-weight protein tyrosine phosphatase (lmwPTP) produces inactive oligomers that are in equilibrium with active monomers. A role of the inactive oligomers as supramolecular proenzymes has been suggested. The oligomerization equilibrium of YwlE, a lmwPTP from Bacillus subtilis, was studied by NMR. Chemical shift data and NMR relaxation confirm that dimerization takes place through the enzyme's active site, and is fully equivalent to the dimerization previously characterized in a eukaryotic low-molecular-weight phosphatase, with similarly large dissociation constants. The similarity between the oligomerization of prokaryotic and eukaryotic phosphatases extends beyond the dimer and involves higher order oligomers detected by NMR relaxation analysis at high protein concentrations. The conservation across different kingdoms of life suggests a physiological role for lmwPTP oligomerization in spite of the weak association observed in vitro. Structural data suggest that substrate modulation of the oligomerization equilibrium could be a regulatory mechanism leading to the generation of signaling pulses. The presence of a phenylalanine residue in the dimerization site of YwlE, replacing a tyrosine residue conserved in all eukaryotic lmwPTPs, demonstrates that lmwPTP regulation by oligomerization can be independent from tyrosine phosphorylation.

  2. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair

    PubMed Central

    Vuono, Elizabeth A.; Mukherjee, Ananda; Vierra, David A.; Adroved, Morganne M.; Hodson, Charlotte; Deans, Andrew J.; Howlett, Niall G.

    2016-01-01

    Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and increased cancer risk. The FA proteins function primarily in DNA interstrand crosslink (ICL) repair. Here, we have examined the role of the PTEN phosphatase in this process. We have established that PTEN-deficient cells, like FA cells, exhibit increased cytotoxicity, chromosome structural aberrations, and error-prone mutagenic DNA repair following exposure to ICL-inducing agents. The increased ICL sensitivity of PTEN-deficient cells is caused, in part, by elevated PLK1 kinase-mediated phosphorylation of FANCM, constitutive FANCM polyubiquitination and degradation, and the consequent inefficient assembly of the FA core complex, FANCD2, and FANCI into DNA repair foci. We also establish that PTEN function in ICL repair is dependent on its protein phosphatase activity and ability to be SUMOylated, yet is independent of its lipid phosphatase activity. Finally, via epistasis analysis, we demonstrate that PTEN and FANCD2 function cooperatively in ICL repair. PMID:27819275

  3. The serine/threonine phosphatase PPM1B (PP2Cβ) selectively modulates PPARγ activity.

    PubMed

    Tasdelen, Ismayil; van Beekum, Olivier; Gorbenko, Olena; Fleskens, Veerle; van den Broek, Niels J F; Koppen, Arjen; Hamers, Nicole; Berger, Ruud; Coffer, Paul J; Brenkman, Arjan B; Kalkhoven, Eric

    2013-04-01

    Reversible phosphorylation is a widespread molecular mechanism to regulate the function of cellular proteins, including transcription factors. Phosphorylation of the nuclear receptor PPARγ (peroxisome-proliferator-activated receptor γ) at two conserved serine residue (Ser(112) and Ser(273)) results in an altered transcriptional activity of this transcription factor. So far, only a very limited number of cellular enzymatic activities has been described which can dephosphorylate nuclear receptors. In the present study we used immunoprecipitation assays coupled to tandem MS analysis to identify novel PPARγ-regulating proteins. We identified the serine/threonine phosphatase PPM1B [PP (protein phosphatase), Mg(2+)/Mn(2+) dependent, 1B; also known as PP2Cβ] as a novel PPARγ-interacting protein. Endogenous PPM1B protein is localized in the nucleus of mature 3T3-L1 adipocytes where it can bind to PPARγ. Furthermore we show that PPM1B can directly dephosphorylate PPARγ, both in intact cells and in vitro. In addition PPM1B increases PPARγ-mediated transcription via dephosphorylation of Ser(112). Finally, we show that knockdown of PPM1B in 3T3-L1 adipocytes blunts the expression of some PPARγ target genes while leaving others unaltered. These findings qualify the phosphatase PPM1B as a novel selective modulator of PPARγ activity.

  4. Zipper-interacting protein kinase interacts with human cell division cycle 14A phosphatase.

    PubMed

    Wu, Wei; Hu, Haiying; Ye, Zi; Leong, Mancheong; He, Min; Li, Qin; Hu, Renming; Zhang, Shuo

    2015-04-01

    Zipper‑interacting protein kinase (ZIPK) is a novel serine/threonine protein kinase and a member of a large family of protein kinases, known as the death‑associated protein kinases. However, the function of ZIPK has yet to be fully elucidated, as few physiological substrates have currently been identified. In the present study, a yeast two‑hybrid screen was used and the human cell division cycle 14A (HsCdc14A) phosphatase was identified as a novel ZIPK binding protein. To the best of our knowledge, this is the first study to report the interaction between these proteins. The interaction between ZIPK and HsCdc14A was confirmed by in vitro experiments. In addition, ZIPK‑mediated phosphorylation was shown to activate the phosphatase activity of HsCdc14A. These findings indicated that ZIPK may also be involved in the regulation of the cell cycle in human cells, by interacting with HsCdc14A.

  5. The effect of hibernation on protein phosphatases from ground squirrel organs.

    PubMed

    MacDonald, Justin A; Storey, Kenneth B

    2007-12-15

    Protein phosphorylation has been identified as a reversible mechanism for the regulated suppression of metabolism and thermogenesis during mammalian hibernation. The effects of hibernation on the activity of serine/threonine and tyrosine protein phosphatases (PP1, PP2A, PP2C and PTPs) were assessed in five organs of Richardson's ground squirrel. Each phosphatase subfamily responded differently during torpor, and each showed organ-specific patterns of activity changes. The distribution of PP1 catalytic subunit (PP1c) isoforms (alpha, delta, gamma1) was assessed in five organs, and changes in the subcellular distribution of PP1 were observed during hibernation in liver and muscle. For example, in muscle, cytosolic PP1 content increased and myofibril-associated PP1 decreased during torpor. PP1c from ground squirrel liver was purified to homogeneity and characterized; temperature effects on PP1c maximal activity suggested that temperature had little or no effect on relative dephosphorylation potential at low temperatures. However, nucleotide inhibition of PP1c by ATP, ADP and AMP was much weaker at 5 degrees C compared with 37 degrees C assay temperatures. PP2A activity decreased in three organs (brown adipose, kidney, brain) during hibernation whereas PP2C activity was increased in liver and brain. PTPs were assessed using both a general substrate (ENDpYINASL) and a substrate (DADEpYLIPQQG) specific for PTPs containing the SH2-binding site; both revealed hibernation-associated changes in PTP activities. Changes in protein phosphatase activities suggest the relative importance of these modules in controlling metabolic function and cellular processes during mammalian hibernation.

  6. TIMAP-protein phosphatase 1-complex controls endothelin-1 production via ECE-1 dephosphorylation.

    PubMed

    Boratkó, Anita; Veréb, Zoltán; Petrovski, Goran; Csortos, Csilla

    2016-04-01

    Endothelin induced signaling pathways can affect blood pressure and vascular tone, but the influence of endothelins on tumor cells is also significant. We have detected elevated endothelin-1 secretion from TIMAP (TGF-β inhibited membrane associated protein) depleted vascular endothelial cells. The autocrine signaling activated by the elevated endothelin-1 level through the ETB receptors evoked an angiogenic-like phenotype, the cells assumed an elongated morphology, and enhanced tube formation and wound healing abilities. The depleted protein, TIMAP, is a highly specific and abundant protein in the endothelial cells, and it is a regulatory/targeting subunit for the catalytic subunit of protein phosphatase 1 (PP1c). Protein-protein interaction between the TIMAP-PP1c complex and the endothelin converting enzyme-1 (ECE-1) was detected, the latter of which is a transmembrane protein that produces the biologically active 21-amino acid form of endothelin-1 from proendothelin. The results indicate that silencing of TIMAP induces a reduction in TIMAP-PP1c activity connected to ECE-1. This leads to an increase in the amount of ECE-1 protein in the plasma membrane and a consequent increase in endothelin-1 secretion. Similarly, activation of PKC, the kinase responsible for ECE-1 phosphorylation increased ECE-1 protein level in the membrane fraction of the endothelial cells. The elevated ECE-1 level was mitigated in time in normal cells, but was clearly preserved in TIMAP-depleted cells. Overall, our results indicate that PKC-phosphorylated ECE-1 is a TIMAP-PP1c substrate and this phosphatase complex has an important role in endothelin-1 production of EC through the regulation of ECE-1 activity.

  7. Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase

    PubMed Central

    Sohn, Young-Sik; Lee, Seong-Gyu; Lee, Kwang-Hoon; Ku, Bonsu; Shin, Ho-Chul; Cha, Sun-Shin; Kim, Yeon-Gil; Lee, Hyun Sook; Kang, Sung-Gyun; Oh, Byung-Ha

    2016-01-01

    A hypothetical protein TON_0340 of a Thermococcus species is a protein conserved in a variety of organisms including human. Herein, we present four different crystal structures of TON_0340, leading to the identification of an active-site cavity harboring a metal-binding site composed of six invariant aspartate and glutamate residues that coordinate one to three metal ions. Biochemical and mutational analyses involving many phosphorous compounds show that TON_0340 is a Mn2+-dependent phosphatase. Mg2+ binds to TON_0340 less tightly and activates the phosphatase activity less efficiently than Mn2+. Whereas Ca2+ and Zn2+ are able to bind to the protein, they are unable to activate its enzymatic activity. Since the active-site cavity is small and largely composed of nearly invariant stretches of 11 or 13 amino acids, the physiological substrates of TON_0340 and its homologues are likely to be a small and the same molecule. The Mn2+-bound TON_0340 structure provides a canonical model for the ubiquitously present TON_0340 homologues and lays a strong foundation for the elucidation of their substrate and biological function. PMID:27907125

  8. Endogenous protein phosphatase 1 runs down gap junctional communication of rat ventricular myocytes.

    PubMed

    Duthe, F; Plaisance, I; Sarrouilhe, D; Hervé, J C

    2001-11-01

    Gap junctional channels are essential for normal cardiac impulse propagation. In ventricular myocytes of newborn rats, channel opening requires the presence of ATP to allow protein kinase activities; otherwise, channels are rapidly deactivated by the action of endogenous protein phosphatases (PPs). The lack of influence of Mg(2+) and of selective PP2B inhibition is not in favor of the involvements of Mg(2+)-dependent PP2C and PP2B, respectively, in the loss of channel activity. Okadaic acid (1 microM) and calyculin A (100 nM), both inhibitors of PP1 and PP2A activities, significantly retarded the loss of channel activity. However, a better preservation was obtained in the presence of selective PP1 inhibitors heparin (100 microg/ml) or protein phosphatase inhibitor 2 (I2; 100 nM). Conversely, the stimulation of endogenous PP1 activity by p-nitrophenyl phosphate, in the presence of ATP, led to a progressive fading of junctional currents unless I2 was simultaneously added. Together, these results suggest that a basal phosphorylation-dephosphorylation turnover regulates gap junctional communication which is rapidly deactivated by PP1 activity when the phosphorylation pathway is hindered.

  9. PP2C gamma: a human protein phosphatase with a unique acidic domain.

    PubMed

    Travis, S M; Welsh, M J

    1997-08-04

    We have cloned a novel cDNA from human skeletal muscle which encodes a protein phosphatase with a unique acidic domain. It is 34% identical to mammalian PP2C alpha and PP2C beta and we call it PP2C gamma. It more closely resembles PP2Cs from Paramecium tetraurelia and Schizosaccharomyces pombe than mammalian PP2Cs. Northern blot analysis shows that PP2C gamma is widely expressed, and is most abundant in testis, skeletal muscle, and heart. Like known PP2Cs, recombinant PP2C gamma requires Mg2+ or Mn2+ for activity. Unlike any other known phosphatase, PP2C gamma has a highly acidic domain: 75% of the 54 residues are glutamate or aspartate.

  10. EGF receptor-ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases.

    PubMed

    DeYulia, Garrett J; Cárcamo, Juan M

    2005-08-19

    Hydrogen peroxide (H(2)O(2)) has been shown to be an important modulator of intracellular phosphatase activity involved in cell signaling pathways, including signaling by members of the receptor tyrosine kinase family of receptors such as the epidermal growth factor receptor (EGFR). Intracellular H(2)O(2) can be generated by mitochondria-dependent pathways, whereas we recently showed that H(2)O(2) could be generated extracellularly by receptor-ligand interaction. Here, we show that H(2)O(2) produced by EGF-EGFR interaction can modulate the activity of intracellular protein tyrosine phosphatases (PTPs). Using purified proteins, we found that EGFR-ligand interaction generates H(2)O(2) that is capable of inhibiting the activity of PTP1B in vitro. Furthermore, the addition of catalase rescued phosphatase inhibition consequent to EGF-EGFR interaction. Using cells that overexpress EGFR, we found that the addition of extracellular catalase prevented EGF-induced inhibition of EGFR-associated phosphatase activity. Our findings suggest that extracellular H(2)O(2) generated by EGFR-ligand interaction permeates the plasma membrane and inhibits EGFR-associated tyrosine phosphatase activity, thereby modulating downstream signal transduction pathways.

  11. Lipid phosphatase SHIP2 functions as oncogene in colorectal cancer by regulating PKB activation

    PubMed Central

    Hoekstra, Elmer; Das, Asha M.; Willemsen, Marcella; Swets, Marloes; Kuppen, Peter J.K.; van der Woude, Christien J.; Bruno, Marco J.; Shah, Jigisha P.; Hagen, Timo L.M. ten; Chisholm, John D.; Kerr, William G.; Peppelenbosch, Maikel P.; Fuhler, Gwenny M.

    2016-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related death, encouraging the search for novel therapeutic targets affecting tumor cell proliferation and migration. These cellular processes are under tight control of two opposing groups of enzymes; kinases and phosphatases. Aberrant activity of kinases is observed in many forms of cancer and as phosphatases counteract such “oncogenic” kinases, it is generally assumed that phosphatases function as tumor suppressors. However, emerging evidence suggests that the lipid phosphatase SH2-domain-containing 5 inositol phosphatase (SHIP2), encoded by the INPPL1 gene, may act as an oncogene. Just like the well-known tumor suppressor gene Phosphatase and Tensin Homolog (PTEN) it hydrolyses phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3). However, unlike PTEN, the reaction product is PI(3,4)P2, which is required for full activation of the downstream protein kinase B (PKB/Akt), suggesting that SHIP2, in contrast to PTEN, could have a tumor initiating role through PKB activation. In this work, we investigated the role of SHIP2 in colorectal cancer. We found that SHIP2 and INPPL1 expression is increased in colorectal cancer tissue in comparison to adjacent normal tissue, and this is correlated with decreased patient survival. Moreover, SHIP2 is more active in colorectal cancer tissue, suggesting that SHIP2 can induce oncogenesis in colonic epithelial cells. Furthermore, in vitro experiments performed on colorectal cancer cell lines shows an oncogenic role for SHIP2, by enhancing chemoresistance, cell migration, and cell invasion. Together, these data indicate that SHIP2 expression contributes to the malignant potential of colorectal cancer, providing a possible target in the fight against this devastating disease. PMID:27716613

  12. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity.

    PubMed

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-09-17

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B'η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes.

  13. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity

    PubMed Central

    Segonzac, Cécile; Macho, Alberto P; Sanmartín, Maite; Ntoukakis, Vardis; Sánchez-Serrano, José Juan; Zipfel, Cyril

    2014-01-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B’η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes. PMID:25085430

  14. c-Jun N-Terminal Kinase Inactivation by Mitogen-Activated Protein Kinase Phosphatase 1 Determines Resistance to Taxanes and Anthracyclines in Breast Cancer.

    PubMed

    Rincón, Raúl; Zazo, Sandra; Chamizo, Cristina; Manso, Rebeca; González-Alonso, Paula; Martín-Aparicio, Ester; Cristóbal, Ion; Cañadas, Carmen; Perona, Rosario; Lluch, Ana; Eroles, Pilar; García-Foncillas, Jesús; Albanell, Joan; Rovira, Ana; Madoz-Gúrpide, Juan; Rojo, Federico

    2016-11-01

    MAPK phosphatase-1 (MKP-1) is overexpressed during malignant transformation of the breast in many patients, and it is usually associated with chemoresistance through interference with JNK-driven apoptotic pathways. Although the molecular settings of the mechanism have been documented, details about the contribution of MKP-1 to the failure of chemotherapeutic interventions are unclear. Transient overexpression of MKP-1 and treatment with JNK-modulating agents in breast carcinoma cells confirmed the mediation of MKP-1 in the resistance to taxanes and anthracyclines in breast cancer, through the inactivation of JNK1/2. We next assessed MKP-1 expression and JNK1/2 phosphorylation status in a large cohort of samples from 350 early breast cancer patients treated with adjuvant anthracycline-based chemotherapy. We detected that MKP-1 overexpression is a recurrent event predominantly linked to dephosphorylation of JNK1/2 with an adverse impact on relapse of the tumor and overall and disease-free survival. Moreover, MKP-1 and p-JNK1/2 determinations in 64 locally advanced breast cancer patients treated with neoadjuvant taxane-based chemotherapy showed an inverse correlation between MKP-1 overexpression (together with JNK1/2 inhibition) and the pathologic response of the tumors. Our results emphasize the importance of MKP-1 as a potential predictive biomarker for a subset of breast cancer patients with worse outcome and less susceptibility to treatment. Mol Cancer Ther; 15(11); 2780-90. ©2016 AACR.

  15. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.

    PubMed

    Sinha, Avni; Eniyan, Kandasamy; Sinha, Swati; Lynn, Andrew Michael; Bajpai, Urmi

    2015-07-01

    Mycobacterium tuberculosis (Mtb) is the causal agent of tuberculosis, the second largest infectious disease. With the rise of multi-drug resistant strains of M. tuberculosis, serious challenge lies ahead of us in treating the disease. The availability of complete genome sequence of Mtb has improved the scope for identifying new proteins that would not only further our understanding of biology of the organism but could also serve to discover new drug targets. In this study, Rv2345, a hypothetical membrane protein of M. tuberculosis H37Rv, which is reported to be a putative ortholog of ZipA cell division protein has been assigned function through functional annotation using bioinformatics tools followed by experimental validation. Sequence analysis showed Rv2345 to have a TPM domain at its N-terminal region and predicted it to have phosphatase activity. The TPM domain containing region of Rv2345 was cloned and expressed using pET28a vector in Escherichia coli and purified by Nickel affinity chromatography. The purified TPM domain was tested in vitro and our results confirmed it to have phosphatase activity. The enzyme activity was first checked and optimized with pNPP as substrate, followed by using ATP, which was also found to be used as substrate by the purified protein. Hence sequence analysis followed by in vitro studies characterizes TPM domain of Rv2345 to contain phosphatase activity.

  16. Modulation of PDT-induced apoptosis by protein kinases and phosphatases

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Chang, Chi K.; Kessel, David

    1996-04-01

    Photodynamic therapy of neoplastic cell lines can lead to the rapid initiation of apoptosis, a mode of cell death that results in a characteristic pattern of cellular and DNA fragmentation. In this study, we examine the effects of protein tyrosine- and serine/threonine phosphatases and kinases on the fragmentation of DNA to 50 kb and photodynamic effects of lysosomal and mitochondrial photosensitizers on murine leukemia P388 cells. The data are consistent with the proposal that maintenance of phosphorylated tyrosine residues is essential for the PDT- induced processing of 50 kb DNA to nucleosomes, while maintenance of serine phosphorylation inhibits such processing. Factors involved in chromatin fragmentation to 50 kb particles have yet to be elucidated. Several agents which mediate membrane photodamage mimic the effect of protein serine/threonine phosphatase inhibitors, i.e., they inhibit further processing of the 50 kb DNA formed as a consequence of lysosomal or mitochondrial photodamage. These results indicate that even the rapid initiation of apoptosis by PDT is modulated by phosphatase and kinase activities.

  17. Structure of thermotoga maritima stationary phase survival protein SurE : a novel acid phosphatase.

    SciTech Connect

    Zhang, R.-G; Skarina, T.; Katz, J. E.; Khachatryan, A; Vyas, S.; Arrowsmith, C. H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Biosciences Division; Univ. of Toronto; Univ. of California; Clinical Genomics Centre /Proteomics, Univ. Health Network

    2001-11-01

    Background: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase {sigma} subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results: The structure of SurE from Thermotoga maritima was determined at 2.0 Angstroms. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. Conclusions: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.

  18. A screen for over-secretion of proteins by yeast based on a dual component cellular phosphatase and immuno-chromogenic stain for exported bacterial alkaline phosphatase reporter

    PubMed Central

    2013-01-01

    Background To isolate over-secretors, we subjected to saturation mutagenesis, a strain of P.pastoris exporting E. coli alkaline phosphatase (EAP) fused to the secretory domain of the yeast α factor pheromone through cellular PHO1/KEX2 secretory processing signals as the α-sec-EAP reporter protein. Direct chromogenic staining for α-sec-EAP activity is non-specific as its NBT/BCIP substrate cross-reacts with cellular phosphatases which can be inhibited with Levulinic acid. However, the parental E(P) strain only exports detectable levels of α-sec-EAP at 69 hours and not within the 36 hour period post-seeding required for effective screening with the consequent absence of a reference for secretion. We substituted the endogenous cellular phosphatase activity as a comparative reference for secretion rate and levels as well as for colony alignment while elevating specificity and sensitivity of detection of the exported protein with other innovative modifications of the immuno-chromogenic staining application for screening protein export mutants. Results Raising the specificity and utility of staining for α-sec-EAP activity required 5 modifications including some to published methods. These included, exploitation of endogenous phosphatase activity, reduction of the cell/protein burden, establishment of the direct relation between concentrations of transcriptional inducer and exported membrane immobilized protein and concentrations of protein exported into growth media, amplification of immuno-specificity and sensitivity of detection of α-sec-EAP reporter enzyme signal and restriction of staining to optimal concentrations of antisera and time periods. The resultant immuno-chromogenic screen allows for the detection of early secretion and as little as 1.3 fold over-secretion of α-sec-EAP reporter protein by E(M) mutants in the presence of 10 fold -216 fold higher concentrations of HSA. Conclusions The modified immuno-chromogenic screen is sensitive, specific and has

  19. The CLK family kinases, CLK1 and CLK2, phosphorylate and activate the tyrosine phosphatase, PTP-1B.

    PubMed

    Moeslein, F M; Myers, M P; Landreth, G E

    1999-09-17

    The protein-tyrosine phosphatase PTP-1B is an important regulator of intracellular protein tyrosine phosphorylation, and is itself regulated by phosphorylation. We report that PTP-1B and its yeast analog, YPTP, are phosphorylated and activated by members of the CLK family of dual specificity kinases. CLK1 and CLK2 phosphorylation of PTP-1B in vitro activated the phosphatase activity approximately 3-5-fold using either p-nitrophenol phosphate, or tyrosine-phosphorylated myelin basic protein as substrates. Co-expression of CLK1 or CLK2 with PTP-1B in HEK 293 cells led to a 2-fold stimulation of phosphatase activity in vivo. Phosphorylation of PTP-1B at Ser(50) by CLK1 or CLK2 is responsible for its enzymatic activation. These findings suggest that phosphorylation at Ser(50) by serine threonine kinases may regulate the activation of PTP-1B in vivo. We also show that CLK1 and CLK2 phosphorylate and activate the S. cerevisiae PTP-1B family member, YPTP1. CLK1 phosphorylation of YPTP1 led to a 3-fold stimulation of phosphatase activity in vitro. We demonstrate that CLK phosphorylation of Ser(83) on YPTP1 is responsible for the activation of this enzyme. These findings demonstrate that the CLK kinases activate PTP-1B family members, and this phosphatase may be an important cellular target for CLK action.

  20. Isolation and characterization of a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase from Klebsiella pneumoniae.

    PubMed

    Preneta, R; Jarraud, S; Vincent, C; Doublet, P; Duclos, B; Etienne, J; Cozzone, A J

    2002-01-01

    Two proteins of Klebsiella pneumoniae, termed Yor5 and Yco6, were analyzed for their capacity to participate in the reversible phosphorylation of proteins on tyrosine. First, protein Yco6 was overproduced from its specific gene and purified to homogeneity by affinity chromatography. Upon incubation in the presence of radioactive adenosine triphosphate, it was found to effectively autophosphorylate. Two-dimensional analysis of its phosphoamino acid content revealed that it was modified exclusively at tyrosine. Second, protein Yor5 was also overproduced from the corresponding gene and purified to homogeneity by affinity chromatography. It was shown to contain a phosphatase activity capable of cleaving the synthetic substrate p-nitrophenyl phosphate into p-nitrophenol and free phosphate. In addition, it was assayed on individual phosphorylated amino acids and appeared to dephosphorylate specifically phosphotyrosine, with no effect on phosphoserine or phosphothreonine. Such specificity for phosphotyrosine was confirmed by the observation that Yor5 was able to dephosphorylate protein Yco6 previously autophosphorylated. Together, these data demonstrate that similarly to other bacterial species including Acinetobacter johnsonii and Escherichia coli, the cells of K. pneumoniae contain both a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase. They also provide evidence that this phosphatase can utilize the kinase as an endogenous substrate, which suggests the occurrence of a regulatory mechanism connected with reversible protein phosphorylation on tyrosine. Since Yco6 and Yor5 are both involved in the synthesis of capsular polysaccharide and since capsules are essential to the virulence of K. pneumoniae, we suggest that reversible protein phosphorylation on tyrosine may be part of the cascade of reactions that determine the pathogenicity of bacteria.

  1. Structural and Mechanistic Characterization of L-Histidinol Phosphate Phosphatase from the PHP Family of Proteins

    PubMed Central

    Ghodge, Swapnil V.; Fedorov, Alexander A.; Fedorov, Elena V.; Hillerich, Brandan; Seidel, Ronald; Almo, Steven C.; Raushel, Frank M.

    2013-01-01

    l-Histidinol phosphate phosphatase (HPP) catalyzes the hydrolysis of L-histidinol phosphate to L-histidinol and inorganic phosphate, the penultimate step in the biosynthesis of L-histidine. HPP from the polymerase and histidinol phosphatase (PHP) family of proteins possesses a trinuclear active site and a distorted (β/α)7-barrel protein fold. This group of enzymes is closely related to the amidohydrolase superfamily of enzymes. The mechanism of phosphomonoester bond hydrolysis by the PHP family of HPP enzymes was addressed. Recombinant HPP from Lactococcus lactis subsp. lactis that was expressed in Escherichia coli contained a mixture of iron and zinc in the active site and had a catalytic efficiency of ~103 M−1 s−1. Expression of the protein under iron-free conditions resulted in the production of enzyme with a two orders of magnitude improvement in catalytic efficiency and a mixture of zinc and manganese in the active site. Solvent isotope and viscosity effects demonstrated that proton transfer steps and product dissociation steps are not rate-limiting. X-ray structures of HPP were determined with sulfate, L-histidinol/phosphate, and a complex of L-histidinol and arsenate bound in the active site. These crystal structures and the catalytic properties of variants were used to identify the structural elements required for catalysis and substrate recognition by the HPP family of enzymes within the amidohydrolase superfamily. PMID:23327428

  2. Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein-tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity: PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION.

    PubMed

    Kuboyama, Kazuya; Fujikawa, Akihiro; Suzuki, Ryoko; Tanga, Naomi; Noda, Masaharu

    2016-08-26

    Protein-tyrosine phosphatase receptor type Z (PTPRZ) is predominantly expressed in the developing brain as a CS proteoglycan. PTPRZ has long (PTPRZ-A) and short type (PTPRZ-B) receptor forms by alternative splicing. The extracellular CS moiety of PTPRZ is required for high-affinity binding to inhibitory ligands, such as pleiotrophin (PTN), midkine, and interleukin-34; however, its functional significance in regulating PTPRZ activity remains obscure. We herein found that protein expression of CS-modified PTPRZ-A began earlier, peaking at approximately postnatal days 5-10 (P5-P10), and then that of PTN peaked at P10 at the developmental stage corresponding to myelination onset in the mouse brain. Ptn-deficient mice consistently showed a later onset of the expression of myelin basic protein, a major component of the myelin sheath, than wild-type mice. Upon ligand application, PTPRZ-A/B in cultured oligodendrocyte precursor cells exhibited punctate localization on the cell surface instead of diffuse distribution, causing the inactivation of PTPRZ and oligodendrocyte differentiation. The same effect was observed with the removal of CS chains with chondroitinase ABC but not polyclonal antibodies against the extracellular domain of PTPRZ. These results indicate that the negatively charged CS moiety prevents PTPRZ from spontaneously clustering and that the positively charged ligand PTN induces PTPRZ clustering, potentially by neutralizing electrostatic repulsion between CS chains. Taken altogether, these data indicate that PTN-PTPRZ-A signaling controls the timing of oligodendrocyte precursor cell differentiation in vivo, in which the CS moiety of PTPRZ receptors maintains them in a monomeric active state until its ligand binding.

  3. Colorimetric Immuno-Protein Phosphatase Inhibition Assay for Specific Detection of Microcystins and Nodularins of Cyanobacteria

    PubMed Central

    Metcalf, James S.; Bell, Steven G.; Codd, Geoffrey A.

    2001-01-01

    A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins. PMID:11157261

  4. Protein-tyrosine Phosphatase and Kinase Specificity in Regulation of SRC and Breast Tumor Kinase* ♦

    PubMed Central

    Fan, Gaofeng; Aleem, Saadat; Yang, Ming; Miller, W. Todd; Tonks, Nicholas K.

    2015-01-01

    Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity. PMID:25897081

  5. Peripartal changes in serum alkaline phosphatase activity and lactate dehydrogenase activity in dairy cows.

    PubMed Central

    Peter, A T; Bosu, W T; MacWilliams, P; Gallagher, S

    1987-01-01

    Peripartal serum alkaline phosphatase activity and lactate dehydrogenase activity were measured in 30 dairy cows in order to examine the association between retained fetal membranes and enzyme activity. Daily blood samples were obtained from pregnant cows, starting 15 days before the expected day of calving until eight days after parturition. Sera from 15 cows which retained fetal membranes longer than 24 hours and 15 cows which shed fetal membranes within six hours after parturition were analyzed for alkaline phosphatase and lactate dehydrogenase enzyme activities. Mean alkaline phosphatase enzyme activities ranged from 15.93 to 32.6 U/L in retained and nonretained placenta cows. There was a trend towards higher serum alkaline phosphatase activities in retained placenta cows but the differences were not significant among the groups (P greater than 0.05). Mean lactate dehydrogenase activities ranged from 307.2 to 438.86 U/L in nonretained and retained placenta cows. Lactate dehydrogenase enzyme activities in nonretained and retained placenta cows were similar (P greater than 0.05). The alkaline phosphatase and lactate dehydrogenase enzyme activities peaked at the time of parturition in both groups. However, the differences in alkaline phosphatase and lactate dehydrogenase activities on different days within non-retained and retained placenta cows were significant (P less than 0.05). Results indicate that prepartal changes in alkaline phosphatase and lactate dehydrogenase enzyme activities are not predictive of placental retention postpartum. PMID:3453274

  6. Structural elucidation of the NADP(H) phosphatase activity of staphylococcal dual-specific IMPase/NADP(H) phosphatase.

    PubMed

    Bhattacharyya, Sudipta; Dutta, Anirudha; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2016-02-01

    NADP(H)/NAD(H) homeostasis has long been identified to play a pivotal role in the mitigation of reactive oxygen stress (ROS) in the intracellular milieu and is therefore critical for the progression and pathogenesis of many diseases. NAD(H) kinases and NADP(H) phosphatases are two key players in this pathway. Despite structural evidence demonstrating the existence and mode of action of NAD(H) kinases, the specific annotation and the mode of action of NADP(H) phosphatases remains obscure. Here, structural evidence supporting the alternative role of inositol monophosphatase (IMPase) as an NADP(H) phosphatase is reported. Crystal structures of staphylococcal dual-specific IMPase/NADP(H) phosphatase (SaIMPase-I) in complex with the substrates D-myo-inositol-1-phosphate and NADP(+) have been solved. The structure of the SaIMPase-I-Ca(2+)-NADP(+) ternary complex reveals the catalytic mode of action of NADP(H) phosphatase. Moreover, structures of SaIMPase-I-Ca(2+)-substrate complexes have reinforced the earlier proposal that the length of the active-site-distant helix α4 and its preceding loop are the predisposing factors for the promiscuous substrate specificity of SaIMPase-I. Altogether, the evidence presented suggests that IMPase-family enzymes with a shorter α4 helix could be potential candidates for previously unreported NADP(H) phosphatase activity.

  7. Phosphoinositide 5- and 3-phosphatase activities of a voltage-sensing phosphatase in living cells show identical voltage dependence

    PubMed Central

    Keum, Dongil; Kim, Dong-Il; Suh, Byung-Chang

    2016-01-01

    Voltage-sensing phosphatases (VSPs) are homologs of phosphatase and tensin homolog (PTEN), a phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] 3-phosphatase. However, VSPs have a wider range of substrates, cleaving 3-phosphate from PI(3,4)P2 and probably PI(3,4,5)P3 as well as 5-phosphate from phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 in response to membrane depolarization. Recent proposals say these reactions have differing voltage dependence. Using Förster resonance energy transfer probes specific for different PIs in living cells with zebrafish VSP, we quantitate both voltage-dependent 5- and 3-phosphatase subreactions against endogenous substrates. These activities become apparent with different voltage thresholds, voltage sensitivities, and catalytic rates. As an analytical tool, we refine a kinetic model that includes the endogenous pools of phosphoinositides, endogenous phosphatase and kinase reactions connecting them, and four exogenous voltage-dependent 5- and 3-phosphatase subreactions of VSP. We show that apparent voltage threshold differences for seeing effects of the 5- and 3-phosphatase activities in cells are not due to different intrinsic voltage dependence of these reactions. Rather, the reactions have a common voltage dependence, and apparent differences arise only because each VSP subreaction has a different absolute catalytic rate that begins to surpass the respective endogenous enzyme activities at different voltages. For zebrafish VSP, our modeling revealed that 3-phosphatase activity against PI(3,4,5)P3 is 55-fold slower than 5-phosphatase activity against PI(4,5)P2; thus, PI(4,5)P2 generated more slowly from dephosphorylating PI(3,4,5)P3 might never accumulate. When 5-phosphatase activity was counteracted by coexpression of a phosphatidylinositol 4-phosphate 5-kinase, there was accumulation of PI(4,5)P2 in parallel to PI(3,4,5)P3 dephosphorylation

  8. PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase

    PubMed Central

    Tabba, Shadi; Mangat, Simmanjeet; McCartney, Rhonda; Schmidt, Martin C.

    2010-01-01

    In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1. PMID:20170726

  9. Mutations in a new Arabidopsis cyclophilin disrupt its interaction with protein phosphatase 2A

    NASA Technical Reports Server (NTRS)

    Jackson, K.; Soll, D.; Evans, M. L. (Principal Investigator)

    1999-01-01

    The heterotrimeric protein phosphatase 2A (PP2A) is a component of multiple signaling pathways in eukaryotes. Disruption of PP2A activity in Arabidopsis is known to alter auxin transport and growth response pathways. We demonstrated that the regulatory subunit A of an Arabidopsis PP2A interacts with a novel cyclophilin, ROC7. The gene for this cyclophilin encodes a protein that contains a unique 30-amino acid extension at the N-terminus, which distinguishes the gene product from all previously identified Arabidopsis cyclophilins. Altered forms of ROC7 cyclophilin with mutations in the conserved DENFKL domain did not bind to PP2A. Unlike protein phosphatase 2B, PP2A activity in Arabidopsis extracts was not affected by the presence of the cyclophilin-binding molecule cyclosporin. The ROC7 transcript was expressed to high levels in all tissues tested. Expression of an ROC7 antisense transcript gave rise to increased root growth. These results indicate that cyclophilin may have a role in regulating PP2A activity, by a mechanism that differs from that employed for cyclophilin regulation of PP2B.

  10. Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins.

    PubMed

    Maynes, Jason T; Luu, Hue A; Cherney, Maia M; Andersen, Raymond J; Williams, David; Holmes, Charles F B; James, Michael N G

    2006-02-10

    The microcystins and nodularins are tumour promoting hepatotoxins that are responsible for global adverse human health effects and wildlife fatalities in countries where drinking water supplies contain cyanobacteria. The toxins function by inhibiting broad specificity Ser/Thr protein phosphatases in the host cells, thereby disrupting signal transduction pathways. A previous crystal structure of a microcystin bound to the catalytic subunit of protein phosphatase-1 (PP-1c) showed distinct changes in the active site region when compared with protein phosphatase-1 structures bound to other toxins. We have elucidated the crystal structures of the cyanotoxins, motuporin (nodularin-V) and dihydromicrocystin-LA bound to human protein phosphatase-1c (gamma isoform). The atomic structures of these complexes reveal the structural basis for inhibition of protein phosphatases by these toxins. Comparisons of the structures of the cyanobacterial toxin:phosphatase complexes explain the biochemical mechanism by which microcystins but not nodularins permanently modify their protein phosphatase targets by covalent addition to an active site cysteine residue.

  11. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb.

    PubMed

    Vincent, C; Doublet, P; Grangeasse, C; Vaganay, E; Cozzone, A J; Duclos, B

    1999-06-01

    Two proteins of Escherichia coli, termed Wzc and Wzb, were analyzed for their capacity to participate in the reversible phosphorylation of proteins on tyrosine. First, Wzc was overproduced from its specific gene and purified to homogeneity by affinity chromatography. Upon incubation in the presence of radioactive ATP, it was found to effectively autophosphorylate. Two-dimensional analysis of its phosphoamino acid content revealed that it was modified exclusively at tyrosine. Second, Wzb was also overproduced from the corresponding gene and purified to homogeneity by affinity chromatography. It was shown to contain a phosphatase activity capable of cleaving the synthetic substrate p-nitrophenyl phosphate into p-nitrophenol and free phosphate. In addition, it was assayed on individual phosphorylated amino acids and appeared to dephosphorylate specifically phosphotyrosine, with no effect on phosphoserine or phosphothreonine. Such specificity for phosphotyrosine was confirmed by the observation that Wzb was able to dephosphorylate previously autophosphorylated Wzc. Together, these data demonstrate, for the first time, that E. coli cells contain both a protein-tyrosine kinase and a phosphotyrosine-protein phosphatase. They also provide evidence that this phosphatase can utilize the kinase as an endogenous substrate, which suggests the occurrence of a regulatory mechanism connected with reversible protein phosphorylation on tyrosine. From comparative analysis of amino acid sequences, Wzc was found to be similar to a number of proteins present in other bacterial species which are all involved in the synthesis or export of exopolysaccharides. Since these polymers are considered important virulence factors, we suggest that reversible protein phosphorylation on tyrosine may be part of the cascade of reactions that determine the pathogenicity of bacteria.

  12. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes.

    PubMed

    Solberg, L B; Stang, E; Brorson, S-H; Andersson, G; Reinholt, F P

    2015-02-01

    Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson's correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.

  13. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase.

    PubMed

    Irani, Seema; Yogesha, S D; Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L; Nie, Grace; Prescott, Nicholas A; Zhang, Yan Jessie

    2016-03-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families.

  14. Structure of Saccharomyces cerevisiae Rtr1 reveals an active site for an atypical phosphatase

    PubMed Central

    Mayfield, Joshua; Zhang, Mengmeng; Zhang, Yong; Matthews, Wendy L.; Nie, Grace; Prescott, Nicholas A.; Zhang, Yan Jessie

    2016-01-01

    Changes in the phosphorylation status of the carboxyl-terminal domain (CTD) of RNA polymerase II (RNAPII) correlate with the process of eukaryotic transcription. The yeast protein regulator of transcription 1 (Rtr1) and the human homolog RNAPII-associated protein 2 (RPAP2) may function as CTD phosphatases; however, crystal structures of Kluyveromyces lactis Rtr1 lack a consensus active site. We identified a phosphoryl transfer domain in Saccharomyces cerevisiae Rtr1 by obtaining and characterizing a 2.6 Å resolution crystal structure. We identified a putative substrate-binding pocket in a deep groove between the zinc finger domain and a pair of helices that contained a trapped sulfate ion. Because sulfate mimics the chemistry of a phosphate group, this structural data suggested that this groove represents the phosphoryl transfer active site. Mutagenesis of the residues lining this groove disrupted catalytic activity of the enzyme assayed in vitro with a fluorescent chemical substrate, and expression of the mutated Rtr1 failed to rescue growth of yeast lacking Rtr1. Characterization of the phosphatase activity of RPAP2 and a mutant of the conserved putative catalytic site in the same chemical assay indicated a conserved reaction mechanism. Our data indicated that the structure of the phosphoryl transfer domain and reaction mechanism for the phosphoryl transfer activity of Rtr1 is distinct from those of other phosphatase families. PMID:26933063

  15. Development and validation of an intact cell assay for protein tyrosine phosphatases using recombinant baculoviruses.

    PubMed

    Cromlish, W A; Payette, P; Kennedy, B P

    1999-11-15

    We have developed an intact cell assay to be used in the direct quantitation of protein tyrosine phosphatase (PTP) activity. Utilizing the baculovirus expression system, the assay readily allows for a direct activity readout for PTPs such as PTP1B or CD45. Infected Sf9 cells expressing either full-length PTP1B, full-length CD45, CD45 catalytic domain, or hCOX-1 (mock-infected) are harvested 29 hr post-infection, at which time cells are viable and the expressed proteins are processed, as well as localized to their predicted subcellular compartments. Assays are carried out in a 96-well format, with cells expressing the PTP of interest. Cells are preincubated with or without inhibitor and challenged with substrate, and the phosphatase activity is determined spectrophotometrically by monitoring the conversion of p-nitrophenyl phosphate to p-nitrophenol at OD405. Documented PTP inhibitors have been used to validate this assay system. This study demonstrates that a direct readout of PTP activity in intact cells can be achieved, thus providing a useful cell-based screen for determining selective inhibitors of PTPs.

  16. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B

    PubMed Central

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-01-01

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity. PMID:26865097

  17. Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase.

    PubMed

    Singhal, Anshika; Arora, Gunjan; Virmani, Richa; Kundu, Parijat; Khanna, Tanya; Sajid, Andaleeb; Misra, Richa; Joshi, Jayadev; Yadav, Vikas; Samanta, Sintu; Saini, Neeru; Pandey, Amit K; Visweswariah, Sandhya S; Hentschker, Christian; Becher, Dörte; Gerth, Ulf; Singh, Yogendra

    2015-10-23

    Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.

  18. Physical association of GPR54 C-terminal with protein phosphatase 2A

    SciTech Connect

    Evans, Barry J.; Wang Zixuan; Mobley, La'Tonya; Khosravi, Davood; Fujii, Nobutaka; Navenot, Jean-Marc; Peiper, Stephen C.

    2008-12-26

    KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.

  19. Protein phosphatase modulation of somatostatin receptor signaling in the mouse hippocampus

    PubMed Central

    Lucas, Sarah J.; Armstrong, David L.

    2015-01-01

    Many inhibitory interneurones in the hippocampus release the neuropeptide somatostatin (SST) which inhibits neuronal excitability through Gi/Go-coupled receptors. To investigate the signaling pathways underlying the SST inhibition of neuronal excitability in the hippocampus, we performed perforated patch-clamp recordings from CA1 pyramidal neurones in acute brain slices from P14-P18 mice. Bath application of 1 μM SST reversibly reduces the frequency of action potential firing in response to depolarising current steps, and is associated with neuronal hyperpolarisation and a reduction in membrane resistance. This effect is mediated by potassium channels with KCNK-like pharmacology. In addition, in slices that have been cultured in vitro for seven days or more, SST also produces a hyperpolarisation independent reduction in action potential firing, which can be also observed in acute slices when the Ser/Thr protein phosphatases PP2A and PP4 are inhibited selectively with fostriecin. This hyperpolarisation independent effect of SST appears to be mediated by G-protein activated inwardly rectifying K+ (GIRK) channels. Knockdown of protein phosphatase 5, by Cre recombinase mediated deletion of the floxed Ppp5c gene, blocks the hyperpolarisation independent effect of SST, and reduces the hyperpolarisation dependent effect in a manner consistent with increased SST receptor desensitisation. Thus, reversible protein phosphorylation provides a mechanism to enhance or diminish the inhibitory effect of SST, which could allow system level regulation of circuit excitability in the hippocampus. PMID:26196943

  20. Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors.

    PubMed

    Fuchs, Stefan; Tischer, Stefanie V; Wunschel, Christian; Christmann, Alexander; Grill, Erwin

    2014-04-15

    The plant hormone abscisic acid (ABA) acts both as a developmental signal and as an integrator of environmental cues such as drought and cold. ABA perception recruits an ABA-binding regulatory component [regulatory component of ABA receptor (RCAR)/PYR1/PYL] and an associated protein phosphatase 2C (PP2C). Phytohormone binding inactivates the phosphatase activity of the coreceptor, permitting phosphorelay of the ABA signal via downstream protein kinases. RCARs and PP2C coreceptors are represented by small protein families comprising 14 and 9 members in Arabidopsis, respectively. The specificity of the RCAR-PP2C interaction and the constraints contributing to specific combinations are poorly understood. In this contribution, we analyzed RCAR7/PYL13, which is characterized by three variant amino acid residues in the conserved ABA-binding pocket. RCAR7 regulated the phosphatase activity of the PP2Cs ABI1, ABI2, and PP2CA in vitro at nanomolar ABA levels; however, it was unable to regulate the structurally related hypersensitive to ABA 1 (HAB1). Site-directed mutagenesis of HAB1 established ABA-dependent regulation by RCAR7. Conversion of the noncanonical amino acid residues of RCAR7 into the consensus ABA-binding pocket did not perceptibly change receptor function. Ectopic expression of RCAR7 in Arabidopsis resulted in ABA hypersensitivity affecting gene regulation, seed germination, and stomatal closure. The RCAR7 loss-of-function mutant revealed no changes in ABA responses, similar to the RCAR9 knockout line, whereas the combined deficiency of RCAR7 and RCAR9 resulted in ABA-insensitive seed germination. The study shows a role of RCAR7 in early plant development, proves its ABA receptor function, and identifies structural constraints of RCAR7-PP2C interaction.

  1. Isolation of protein-tyrosine phosphatase-like member-a variant from cementum.

    PubMed

    Valdés De Hoyos, A; Hoz-Rodríguez, L; Arzate, H; Narayanan, A S

    2012-02-01

    Cementum has been shown to contain unique polypeptides that participate in cell recruitment and differentiation during cementum formation. We report the isolation of a cDNA variant for protein-tyrosine phosphatase-like (proline instead of catalytic arginine) member-a (PTPLA) from cementum. A cementifying fibroma-derived λ-ZAP expression library was screened by panning with a monoclonal antibody to cementum attachment protein (CAP), and 1435 bp cDNA (gb AC093525.3) was isolated. This cDNA encodes a 140-amino-acid polypeptide, and its N-terminal 125 amino acids are identical to those of PTPLA. This isoform, designated as PTPLA-CAP, results from a read-through of the PTPLA exon 2 splice donor site, truncating after the second putative transmembrane domain. It contains 15 amino acids encoded within the intron between PTPLA exons 2 and 3, which replace the active site for PTPLA phosphatase activity. The recombinant protein, rhPTPLA-CAP, has Mr 19 kDa and cross-reacts with anti-CAP antibody. Anti-rhPTPLA-CAP antibody immunostained cementum cells, cementum, heart, and liver. Quantitative RT-PCR showed that PTPLA was expressed in all periodontal cells; however, PTPLA-CAP expression was limited to cementum cells. The rhPTPLA-CAP promoted gingival fibroblast attachment. We conclude that PTPLA-CAP is a splice variant of PTPLA, and that, in the periodontium, cementum and cementum cells express this variant.

  2. Isolation of Protein-Tyrosine Phosphatase-like Member-a Variant from Cementum

    PubMed Central

    Valdés De Hoyos, A.; Hoz-Rodríguez, L.; Arzate, H.; Narayanan, A.S.

    2012-01-01

    Cementum has been shown to contain unique polypeptides that participate in cell recruitment and differentiation during cementum formation. We report the isolation of a cDNA variant for protein-tyrosine phosphatase-like (proline instead of catalytic arginine) member-a (PTPLA) from cementum. A cementifying fibroma-derived λ-ZAP expression library was screened by panning with a monoclonal antibody to cementum attachment protein (CAP), and 1435 bp cDNA (gb AC093525.3) was isolated. This cDNA encodes a 140-amino-acid polypeptide, and its N-terminal 125 amino acids are identical to those of PTPLA. This isoform, designated as PTPLA-CAP, results from a read-through of the PTPLA exon 2 splice donor site, truncating after the second putative transmembrane domain. It contains 15 amino acids encoded within the intron between PTPLA exons 2 and 3, which replace the active site for PTPLA phosphatase activity. The recombinant protein, rhPTPLA-CAP, has Mr 19 kDa and cross-reacts with anti-CAP antibody. Anti-rhPTPLA-CAP antibody immunostained cementum cells, cementum, heart, and liver. Quantitative RT-PCR showed that PTPLA was expressed in all periodontal cells; however, PTPLA-CAP expression was limited to cementum cells. The rhPTPLA-CAP promoted gingival fibroblast attachment. We conclude that PTPLA-CAP is a splice variant of PTPLA, and that, in the periodontium, cementum and cementum cells express this variant. PMID:22067203

  3. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein.

    PubMed

    Arden, S D; Zahn, T; Steegers, S; Webb, S; Bergman, B; O'Brien, R M; Hutton, J C

    1999-03-01

    A pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP) was cloned using a subtractive cDNA expression cloning procedure from mouse insulinoma tissue. Two alternatively spliced variants that differed by the presence or absence of a 118-bp exon (exon IV) were detected in normal balb/c mice, diabetic ob/ob mice, and insulinoma tissue. The longer, 1901-bp full-length cDNA encoded a 355-amino acid protein (molecular weight 40,684) structurally related (50% overall identity) to the liver glucose-6-phosphatase and exhibited similar predicted transmembrane topology, conservation of catalytically important residues, and the presence of an endoplasmic reticulum retention signal. The shorter transcript encoded two possible open reading frames (ORFs), neither of which possessed His174, a residue thought to be the phosphoryl acceptor (Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY: Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144-6148, 1998). Northern blot and reverse transcription-polymerase chain reaction analysis showed that the mRNA was highly expressed in pancreatic islets and expressed more in beta-cell lines than in an alpha-cell line. It was notably absent in tissues and cell lines of non-islet neuroendocrine origin, and no other major tissue source of the mRNA was found. During development, it was expressed in parallel with insulin mRNA. The mRNA was efficiently translated and glycosylated in an in vitro translation/membrane translocation system and readily transcribed into COS 1, HIT, and CHO cells using cytomegalovirus or Rous sarcoma virus promoters. Whereas the liver glucose-6-phosphatase showed activity in these transfection systems, the IGRP failed to show glucose phosphotransferase or phosphatase activity with p-nitrophenol phosphate, inorganic pyrophosphate, or a range of sugar phosphates hydrolyzed by the liver enzyme. While the metabolic function of the enzyme is not resolved, its remarkable tissue-specific expression

  4. Valosin containing protein (VCP/p97) is a novel substrate for the protein tyrosine phosphatase PTPL1

    PubMed Central

    Abaan, Ogan D.; Hendriks, Wiljan; Üren, Aykut; Toretsky, Jeffrey A.; Erkizan, Hayriye V.

    2013-01-01

    Identification of Protein Tyrosine Phosphatase (PTP) substrates is critical in understanding cellular role in normal cells as well as cancer cells. We have previously shown that reduction of PTPL1 protein levels in Ewings sarcoma (ES) inhibit cell growth and tumorigenesis. Therefore, we sought to identify novel PTPL1 substrates that may be important for tumorigenesis. In this current work, we demonstrated that mouse embryonic fibroblasts without PTPL1 catalytic activity fail to form foci when transfected with oncogenes. We proved that catalytic activity of PTPL1 is important for ES cell growth. Using a substrate-trapping mutant of PTPL1 we identified putative PTPL1 substrates by mass-spectrometry. One of these putative substrates was characterized as Valosin Containing Protein (VCP/p97). Using multiple biochemical assays we validated VCP as a novel substrate of PTPL1. We also provide evidence that tyrosine phosphorylation of VCP might be important for its midbody localization during cytokinesis. In conclusion, our work identifies VCP as a new substrate for PTPL1, which may be important in cellular transformation. Our investigation link an oncogenic transcription factor EWS-FLI1, with a key transcriptional target protein tyrosine phosphatase PTPL1, and its substrate VCP. Given our observation that PTPL1 catalytic activity is important for cell transformation, our results may also suggest that VCP regulation by PTPL1 might be important for tumorigenesis. PMID:23018179

  5. Role of Protein Phosphorylation and Tyrosine Phosphatases in the Adrenal Regulation of Steroid Synthesis and Mitochondrial Function

    PubMed Central

    Paz, Cristina; Cornejo Maciel, Fabiana; Gorostizaga, Alejandra; Castillo, Ana F.; Mori Sequeiros García, M. Mercedes; Maloberti, Paula M.; Orlando, Ulises D.; Mele, Pablo G.; Poderoso, Cecilia; Podesta, Ernesto J.

    2016-01-01

    In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the “classical” protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed. PMID:27375556

  6. The Role of Bacterial Protein Tyrosine Phosphatases in the Regulation of the Biosynthesis of Secreted Polysaccharides

    PubMed Central

    Morona, Renato

    2014-01-01

    Abstract Significance: Tyrosine phosphorylation and associated protein tyrosine phosphatases are gaining prominence as critical mechanisms in the regulation of fundamental processes in a wide variety of bacteria. In particular, these phosphatases have been associated with the control of the biosynthesis of capsular polysaccharides and extracellular polysaccharides, critically important virulence factors for bacteria. Recent Advances: Deletion and overexpression of the phosphatases result in altered polysaccharide biosynthesis in a range of bacteria. The recent structures of associated auto-phosphorylating tyrosine kinases have suggested that the phosphatases may be critical for the cycling of the kinases between monomers and higher order oligomers. Critical Issues: Additional substrates of the phosphatases apart from cognate kinases are currently being identified. These are likely to be critical to our understanding of the mechanism by which polysaccharide biosynthesis is regulated. Future Directions: Ultimately, these protein tyrosine phosphatases are an attractive target for the development of novel antimicrobials. This is particularly the case for the polymerase and histidinol phosphatase family, which is predominantly found in bacteria. Furthermore, the determination of bacterial tyrosine phosphoproteomes will likely help to uncover the fundamental roles, mechanism, and critical importance of these phosphatases in a wide range of bacteria. Antioxid. Redox Signal. 20, 2274–2289. PMID:24295407

  7. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect

    Robert J. Martinez; Melanie J. Beazley; Samuel M. Webb; Martial Taillefert; and Patricia A. Sobecky

    2007-04-19

    The overall objective of this project is to examine the activity of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO4 3- as a means to detoxify radionuclides and heavy metals. An experimental approach was designed to determine the extent of phosphatase activity in bacteria previously isolated from contaminated subsurface soils collected at the ERSP Field Research Center (FRC) in Oak Ridge, TN. Screening of 135 metal resistant isolates for phosphatase activity indicated the majority (75 of 135) exhibited a phosphatase-positive phenotype. During this phase of the project, a PCR based approach has also been designed to assay FRC isolates for the presence of one or more classes of the characterized non-specific acid phophastase (NSAP) genes likely to be involved in promoting U(VI) precipitation. Testing of a subset of Pb resistant (Pbr) Arthrobacter, Bacillus and Rahnella strains indicated 4 of the 9 Pbr isolates exhibited phosphatase phenotypes suggestive of the ability to bioprecipitate U(VI). Two FRC strains, a Rahnella sp. strain Y9602 and a Bacillus sp. strain Y9-2, were further characterized. The Rahnella sp. exhibited enhanced phosphatase activity relative to the Bacillus sp. Whole-cell enzyme assays identified a pH optimum of 5.5, and inorganic phosphate accumulated in pH 5.5 synthetic groundwater (designed to mimic FRC conditions) incubations of both strains in the presence of a model organophosphorus substrate provided as the sole C and P source. Kinetic experiments showed that these two organisms can grow in the presence of 200 μM dissolved uranium and that Rahnella is much more efficient in precipitating U(VI) than Bacillus sp. The

  8. Inhibitory effect of NAP-22 on the phosphatase activity of synaptojanin-1.

    PubMed

    Takaichi, Rika; Odagaki, Sin-Ichi; Kumanogoh, Haruko; Nakamura, Shun; Morita, Mitsuhiro; Maekawa, Shohei

    2012-01-01

    Endocytosis of the synaptic vesicle is a complicated process, in which many proteins and lipids participate. Phosphatidylinositol 4,5-bisphosphate (PIP(2) ) plays important roles in the process, and the dynamic regulation of this lipid is one of the key events. Synaptojanin is a PIP(2) phosphatase, and dephosphorylation of PIP(2) of the clathrin coated-vesicle results in the uncoating of the vesicle. NAP-22 is one of the major proteins of the neuronal detergent-resistant membrane microdomain and localizes in both the presynaptic plasma membrane and the synaptic vesicle. To elucidate the role of NAP-22 in synaptic function, a screening of the NAP-22 binding proteins through pull-down assay was performed. In addition to CapZ protein, synaptojanin-1 was detected by LC-MS/MS, and Western blotting using antisynaptojanin-1 confirmed this result. The interaction seems to be important in the course of synaptic vesicle endocytosis, because NAP-22 inhibited the phosphatase activity of synaptojanin in a dose-dependent manner. The inhibitory region for 5-phosphatase and the binding region for PIP(2) overlapped in the amino acid sequence of NAP-22, so elucidation of the regulatory mechanism of the PIP(2) binding ability of NAP-22 could be important in understanding the membrane dynamics at the presynaptic region.

  9. Differential regulation of S6 phosphorylation by insulin and epidermal growth factor in Swiss mouse 3T3 cells: insulin activation of type 1 phosphatase.

    PubMed Central

    Olivier, A R; Ballou, L M; Thomas, G

    1988-01-01

    Insulin and epidermal growth factor (EGF) induce distinct kinetics of S6 kinase activation and S6 phosphorylation in Swiss 3T3 cells. Both events are differentially regulated by specific phosphatases. The major S6 phosphatase in cell extracts was identified as a type 1 enzyme by its chromatographic properties, its sensitivity to inhibitor 2, and its substrate specificity. This enzyme is different from the major S6 kinase phosphatase, which is a type 2A enzyme. Insulin at physiological concentrations causes up to a 2-fold activation of a type 1 S6 phosphatase, whereas at higher concentrations this effect is significantly diminished. EGF alone has little effect on this enzyme, and with both agents together the total phosphatase activity remains basal. The results are consistent with the phosphorylation state of S6 observed in vivo and suggest a role of phosphatase type 1 in the regulation of protein synthesis. Images PMID:2838844

  10. Adhesion-Linked Protein Tyrosine Phosphatases, Morphogenesis and Breast Cancer Progression

    DTIC Science & Technology

    2004-07-01

    Award Number: DAMD17-03-1-0496 TITLE: Adhesion-linked Protein Tyrosine Phosphatases, Morphogenesis and Breast Cancer Progression PRINCIPAL...Adhesion-linked Protein Tyrosine Phosphatases, DAMD17-03-1-0496 Morphogenesis and Breast Cancer Progression 6. AUTHOR(S) Valerie M. Weaver, Ph.D. 7...we identified the Band 4.1 PTPs MEG1 and D1 as two candidate PTP metastasis suppressors. Our studies show that during MEC differentiation PTP MEG1

  11. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  12. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities.

    PubMed

    Zambonelli, Carlo; Casali, Monica; Roberts, Mary F

    2003-12-26

    Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.

  13. Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL.

    PubMed

    Pirruccello, Michelle; De Camilli, Pietro

    2012-04-01

    The precise regulation of phosphoinositide lipids in cellular membranes is crucial for cellular survival and function. Inositol 5-phosphatases have been implicated in a variety of disorders, including various cancers, obesity, type 2 diabetes, neurodegenerative diseases and rare genetic conditions. Despite the obvious impact on human health, relatively little structural and biochemical information is available for this family. Here, we review recent structural and mechanistic work on the 5-phosphatases with a focus on OCRL, whose loss of function results in oculocerebrorenal syndrome of Lowe and Dent 2 disease. Studies of OCRL emphasize how the actions of 5-phosphatases rely on both intrinsic and extrinsic membrane recognition properties for full catalytic function. Additionally, structural analysis of missense mutations in the catalytic domain of OCRL provides insight into the phenotypic heterogeneity observed in Lowe syndrome and Dent disease.

  14. N-(cyclohexanecarboxyl)-O-phospho-l-serine, a minimal substrate for the dual-specificity protein phosphatase IphP.

    PubMed

    Savle, P S; Shelton, T E; Meadows, C A; Potts, M; Gandour, R D; Kennelly, P J

    2000-04-15

    Three dual-specific phosphatases [DSPs], IphP, VHR, and Cdc14, and three protein-tyrosine phosphatases [PTPs], PTP-1B, PTP-H1, and Tc-PTPa, were challenged with a set of low molecular weight phosphoesters to probe the factors underlying the distinct substrate specificities displayed by these two mechanistically homologous families of protein phosphatases. It was observed that beta-naphthyl phosphate represented an excellent general substrate for both PTPs and DSPs. While DSPs tended to hydrolyze alpha-naphthyl phosphate at rates comparable to that of the beta-isomer, the PTPs PTP-1B and Tc-PTPa did not. PTP-H1, however, displayed high alpha-naphthyl phosphatase activity. Intriguingly, PTP-H1 also displayed much higher protein-serine phosphatase activity in vitro, 0.2-0.3% that toward equivalent tyrosine phosphorylated proteins, than did PTP-1B or Tc-PTPa. The latter two PTPs discriminated between the serine- and tyrosine-phosphorylated forms of two test proteins by factors of >/=10(4)-10(6). While free phosphoserine represented an extremely poor substrate for all of the DSPs examined, the addition of a hydrophobic "handle" to form N-(cyclohexanecarboxyl)-O-phospho-l-serine produced a compound that was hydrolyzed by IphP with high efficiency, i.e., at a rate comparable to that of free phosphotyrosine or p-nitrophenyl phosphate. VHR also hydrolyzed N-(cyclohexanecarboxyl)-O-phospho-l-serine (1 mM) at a rate approximately one-tenth that of beta-naphthyl phosphate. None of the PTPs tested exhibited significant activity against this compound. However, N-(cyclohexanecarboxyl)-O-phospho-l-serine did not prove to be a universal substrate for DSPs as Cdc14 displayed little propensity to hydrolyze it.

  15. Characterization of a tyrosine phosphatase activity in the oogenesis of Periplaneta americana.

    PubMed

    Oliveira, D M P; Machado, E A

    2006-09-01

    In this work, phosphatase activity was characterized in the ovary and the haemolymph of Periplaneta americana. The optimum pH for these activities was 4.0, and a temperature of 44 degrees C was ideal for the maximal enzyme activity. The phosphatase activities were inhibited by NaF, sodium tartrate, Pi, sodium orthovanadate, and ammonium molybdate. The ovarian phosphatase activity at pH 4.0 was almost exclusive against phosphotyrosine, with little or no effect on the residues of phosphoserine or phosphothreonine. These results indicate that this phosphatase activity is due to the presence of an acid tyrosine phosphatase. The phosphatase activities of acid extracts from P. americana ovaries (OEX) and an acid extract from P. americana haemolymph (HEX) were analyzed in non-denaturant gel electrophoresis using an analog substrate beta-naphtyl phosphate. The gel revealed two bands with phosphatase activity in the ovary and one band in the haemolymph; these bands were excised and submitted to a 10% SDS-PAGE showing a single 70-kDa polypeptide in both samples. Histochemistry of the ovary with alpha-naphtyl phosphate for localization of acid phosphatase activity showed mainly labeling associated to the oocyte peripheral vesicles, basal lamina, and between follicle cells. Electron microscopy analysis showed that acid phosphatase was localized in small peripheral vesicles in the oocyte, but not inside yolk granules. The possible role of this phosphatase during oogenesis and embryogenesis is also discussed in this article.

  16. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase.

    PubMed

    Lorenz, B; Schröder, H C

    2001-06-11

    Recent results revealed that inorganic polyphosphates (polyP), being energy-rich linear polymers of orthophosphate residues known from bacteria and yeast, also exist in higher eukaryotes. However, the enzymatic basis of their metabolism especially in mammalian cells is still uncertain. Here we demonstrate for the first time that alkaline phosphatase from calf intestine (CIAP) is able to cleave polyP molecules up to a chain length of about 800. The enzyme acts as an exopolyphosphatase degrading polyP in a processive manner. The pH optimum is in the alkaline range. Divalent cations are not required for catalytic activity but inhibit the degradation of polyP. The rate of hydrolysis of short-chain polyP by CIAP is comparable to that of the standard alkaline phosphatase (AP) substrate p-nitrophenyl phosphate. The specific activity of the enzyme decreases with increasing chain length of the polymer both in the alkaline and in the neutral pH range. The K(m) of the enzyme also decreases with increasing chain length. The mammalian tissue non-specific isoform of AP was not able to hydrolyze polyP under the conditions applied while the placental-type AP and the bacterial (Escherichia coli) AP displayed polyP-degrading activity.

  17. Human apurinic/apyrimidinic endonuclease 1 (APE1) has 3' RNA phosphatase and 3' exoribonuclease activities.

    PubMed

    Chohan, Manbir; Mackedenski, Sebastian; Li, Wai-Ming; Lee, Chow H

    2015-01-30

    Apurinic/apyrimidinic endonuclease 1 (APE1) is the predominant mammalian enzyme in DNA base excision repair pathway that cleaves the DNA backbone immediately 5' to abasic sites. In addition to its abasic endonuclease activity, APE1 has 3' phosphatase and 3'-5' exonuclease activities against DNA. We recently identified APE1 as an endoribonuclease that preferentially cleaves at UA, UG, and CA sites in single-stranded regions of RNAs and can regulate c-myc mRNA level and half-life in cells. APE1 can also endonucleolytically cleave abasic single-stranded RNA. Here, we show for the first time that the human APE1 has 3' RNA phosphatase and 3' exoribonuclease activities. Using three distinct RNA substrates, we show that APE1, but not RNase A, can remove the phosphoryl group from the 3' end of RNA decay products. Studies using various site-directed APE1 mutant proteins (H309N, H309S, D283N, N68A, D210N, Y171F, D308A, F266A, and D70A) suggest that the 3' RNA phosphatase activity shares the same active center as its other known nuclease activities. A number of APE1 variants previously identified in the human population, including the most common D148E variant, have greater than 80% reduction in the 3' RNA phosphatase activity. APE1 can remove a ribonucleotide from the 3' overhang of RNA decay product, but its 3'-5' exoribonuclease activity against unstructured poly(A), poly(C), and poly(U) RNAs is relatively weak. This study further underscores the significance of understanding the role of APE1 in RNA metabolism in vivo.

  18. On the influence of reaction conditions in activity determination of alkaline phosphatase on the molar absorptivity of 4-nitrophenol.

    PubMed

    Jung, K; Köhler, A

    1980-02-14

    In activity determination of alkaline phosphatase (AP), measuring temperature, type and concentration of buffer, and protein concentration in the test influence the molar absorptivity of 4-nitrophenol. Thus systematic errors of up to 3% may occur in activity determinations of AP if these influences are not taken into account.

  19. Kinetics and Mechanism of Protein Tyrosine Phosphatase 1B (PTP1B) Inactivation by Acrolein

    PubMed Central

    Seiner, Derrick R.; LaButti, Jason N.; Gates, Kent S.

    2010-01-01

    Human cells are exposed to the electrophilic α,β-unsaturated aldehyde acrolein from a variety of sources. Reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine intermediate. PTPs work in tandem with protein tyrosine kinases to regulate a number of critically important mammalian signal transduction pathways. We find that acrolein is a potent time-dependent inactivator of the enzyme PTP1B (kinact = 0.02 ± 0.005 s−1, KI = 2.3 ± 0.6 × 10−4 M). Enzyme activity does not return upon gel filtration of the inactivated enzyme and addition of the competitive phosphatase inhibitor vanadate slows inactivation of PTP1B by acrolein. Together these observations suggest that acrolein covalently modifies the active site of PTP1B. Mass spectrometric analysis reveals that acrolein modifies the catalytic cysteine residue at the active site of the enzyme. Aliphatic aldehydes such as glyoxal, acetaldehyde, and propanal are relatively weak inactivators of PTP1B under the conditions employed here. Similarly, unsaturated aldehydes such as crotonaldehyde and 3-methyl-2-butenal bearing substitution at the alkene terminus are poor inactivators of the enzyme. Overall, the data suggest that enzyme inactivation occurs via conjugate addition of the catalytic cysteine residue to the carbon-carbon double bond of acrolein. The results indicate that inactivation of PTPs should be considered as a possible contributor to the diverse biological activities of acrolein and structurally-related α,β-unsaturated aldehydes. PMID:17655273

  20. Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein.

    PubMed

    Seiner, Derrick R; LaButti, Jason N; Gates, Kent S

    2007-09-01

    Human cells are exposed to the electrophilic alpha,beta-unsaturated aldehyde acrolein from a variety of sources. The reaction of acrolein with functionally critical protein thiol residues can yield important biological consequences. Protein tyrosine phosphatases (PTPs) are an important class of cysteine-dependent enzymes whose reactivity with acrolein previously has not been well-characterized. These enzymes catalyze the dephosphorylation of phosphotyrosine residues on proteins via a phosphocysteine intermediate. PTPs work in tandem with protein tyrosine kinases to regulate a number of critically important mammalian signal transduction pathways. We find that acrolein is a potent time-dependent inactivator of the enzyme PTP1B ( k inact = 0.02 +/- 0.005 s (-1) and K I = 2.3 +/- 0.6 x 10 (-4) M). The enzyme activity does not return upon gel filtration of the inactivated enzyme, and addition of the competitive phosphatase inhibitor vanadate slows inactivation of PTP1B by acrolein. Together, these observations suggest that acrolein covalently modifies the active site of PTP1B. Mass spectrometric analysis reveals that acrolein modifies the catalytic cysteine residue at the active site of the enzyme. Aliphatic aldehydes such as glyoxal, acetaldehyde, and propanal are relatively weak inactivators of PTP1B under the conditions employed here. Similarly, unsaturated aldehydes such as crotonaldehyde and 3-methyl-2-butenal bearing substitution at the alkene terminus are poor inactivators of the enzyme. Overall, the data suggest that enzyme inactivation occurs via conjugate addition of the catalytic cysteine residue to the carbon-carbon double bond of acrolein. The results indicate that inactivation of PTPs should be considered as a possible contributor to the diverse biological activities of acrolein and structurally related alpha,beta-unsaturated aldehydes.

  1. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.

    PubMed

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.

  2. Dopamine D2 receptor relies upon PPM/PP2C protein phosphatases to dephosphorylate huntingtin protein.

    PubMed

    Marion, Sébastien; Urs, Nikhil M; Peterson, Sean M; Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Gainetdinov, Raul R; Caron, Marc G

    2014-04-25

    Striatal dopamine D2 receptor (D2R) relies upon G protein- and β-arrestin-dependent signaling pathways to convey its action on motor control and behavior. Considering that D2R activation inhibits Akt in the striatum and that huntingtin physiological functions are affected by Akt phosphorylation, we sought to investigate whether D2R-mediated signaling could regulate huntingtin phosphorylation. We demonstrate that D2R activation decreases huntingtin phosphorylation on its Akt site. This dephosphorylation event depends upon the Gαi-dependent engagement of specific members of the protein phosphatase metallo-dependent (PPM/PP2C) family and is independent of β-arrestin 2. These observations identify the PPM/PP2C family as a mediator of G protein-coupled receptor signaling and thereby suggest a novel mechanism of dopaminergic signaling.

  3. Phosphorylation of the Drosophila transient receptor potential ion channel is regulated by the phototransduction cascade and involves several protein kinases and phosphatases.

    PubMed

    Voolstra, Olaf; Bartels, Jonas-Peter; Oberegelsbacher, Claudia; Pfannstiel, Jens; Huber, Armin

    2013-01-01

    Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation.

  4. Activity of alkaline phosphatase adsorbed and grafted on "polydopamine" films.

    PubMed

    Ball, Vincent

    2014-09-01

    The oxidation of dopamine in slightly basic solutions and in the presence of oxygen as an oxidant allows for the deposition of dopamine-eumelanin ("polydopamine") films on almost all kinds of materials allowing for an easy secondary functionalization. Molecules carrying nucleophilic groups like thiols and amines can be easily grafted on those films. Herein we show that alkaline phosphatase (ALP), as a model enzyme, adsorbs to "polydopamine" films and part of the adsorbed enzyme is rapidly desorbed in contact with Tris buffer. However a significant part of the enzyme remains irreversibly adsorbed and keeps some enzymatic activity for at least 2 weeks whereas ALP adsorbed on quartz slides is rapidly and quantitatively deactivated. In addition we estimated the Michaelis constant Km of the enzyme irreversibly bound to the "polydopamine" film. The Michaelis constant, and hence the affinity constant between paranitrophenol phosphate and ALP are almost identical between the enzyme bound on the film and the free enzyme in solution. Complementarily, it was found that "polydopamine" films display some phosphatase like catalytic activity.

  5. Involvement of histone phosphorylation in thymocyte apoptosis by protein phosphatase inhibitors.

    PubMed

    Lee, E; Nakatsuma, A; Hiraoka, R; Ishikawa, E; Enomoto, R; Yamauchi, A

    1999-07-01

    Incubation of rat thymocytes with the inhibitors of protein phosphatase such as calyculin A and okadaic acid resulted in an increase in DNA fragmentation. These effects were dependent on the concentration of the inhibitors and the incubation time. Analyses of the fragmented DNA revealed the production of approximately 50 kbp of DNA and a 180 bp DNA ladder. In addition, a laser scanning-microscopic analysis showed that these compounds caused nuclear condensation. Thus, these results demonstrated that protein phosphatase inhibitors induced thymocyte apoptosis. The inhibitors of protein phosphatase increased the phosphorylation of proteins of approximately 15 kDa. The phosphorylation of proteins preceded the DNA fragmentation induced by these inhibitors. Judging from acetic acid-urea-Triton X-100 gel electrophoresis, the phosphorylated proteins were histone H1 and H2A/H3. Therefore, these results suggest that phosphorylation of histones triggers the DNA fragmentation of thymocytes undergoing apoptosis.

  6. Detection of bacterial phosphatase activity by means of an original and simple test.

    PubMed Central

    Satta, G; Grazi, G; Varaldo, P E; Fontana, R

    1979-01-01

    A new test for the detection of bacterial phosphatase activity has been devised. The test is performed using agar media containing both methyl green (MG) and phenolphthalein diphosphate (PDP); in these media phosphatase-producing strains grow deep-green-stained colonies whereas non-producing strains do not. A total of 739 different strains were tested, including 593 staphylococci, 95 micrococci, 11 streptococci, 10 corynebacteria, 14 enterobacteria, and 16 candidae. All strains found phosphatase-positive according to the conventional phosphatase test displayed deep-green-stained colonies on MG-PDP media, whereas all phosphatase-negative strains showed unstained colonies on the same media. The main advantages of the present phosphatase test as compared with other conventional ones are that it is more simple to perform, it can reveal the phosphatase activity of colonies grown in deep agar, and can be incorporated into commercial multitest kits. PMID:87403

  7. cdc25+ encodes a protein phosphatase that dephosphorylates p34cdc2.

    PubMed Central

    Lee, M S; Ogg, S; Xu, M; Parker, L L; Donoghue, D J; Maller, J L; Piwnica-Worms, H

    1992-01-01

    To determine how the human cdc25 gene product acts to regulate p34cdc2 at the G2 to M transition, we have overproduced the full-length protein (cdc25Hs) as well as several deletion mutants in bacteria as glutathione-S-transferase fusion proteins. The wild-type cdc25Hs gene product was synthesized as an 80-kDa fusion protein (p80GST-cdc25) and was judged to be functional by several criteria: recombinant p80GST-cdc25 induced meiotic maturation of Xenopus oocytes in the presence of cycloheximide; p80GST-cdc25 activated histone H1 kinase activity upon addition to extracts prepared from Xenopus oocytes; p80GST-cdc25 activated p34cdc2/cyclin B complexes (prematuration promoting factor) in immune complex kinase assays performed in vitro; p80GST-cdc25 stimulated the tyrosine dephosphorylation of p34cdc2/cyclin complexes isolated from Xenopus oocyte extracts as well as from overproducing insect cells; and p80GST-cdc25 hydrolyzed p-nitrophenylphosphate. In addition, deletion analysis defined a functional domain residing within the carboxy-terminus of the cdc25Hs protein. Taken together, these results suggest that the cdc25Hs protein is itself a phosphatase and that it may function directly in the tyrosine dephosphorylation and activation of p34cdc2 at the G2 to M transition. Images PMID:1312880

  8. On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis.

    PubMed

    Hunt, Tim

    2013-05-01

    The process of mitosis involves a comprehensive reorganization of the cell: chromosomes condense, the nuclear envelope breaks down, the mitotic spindle is assembled, cells round up and release their ties to the substrate and so on and so forth. This reorganization is triggered by the activation of the protein kinase, Cyclin-Dependent Kinase 1 (CDK1). The end of mitosis is marked by the proteolysis of the cyclin subunit of CDK1, which terminates kinase activity. At this point, the phosphate moieties that altered the properties of hundreds of proteins to bring about the cellular reorganization are removed by protein phosphatases. At least one protein phosphatase, PP2A-B55, is completely shut off in mitosis. Depletion of this particular form of PP2A accelerates entry into mitosis, and blocks exit from mitosis. Control of this phosphatase is achieved by an inhibitor protein (α-endosulfine or ARPP-19) that becomes inhibitory when phosphorylated by a protein kinase called Greatwall, which is itself a substrate of CDK1. Failure to inhibit PP2A-B55 causes arrest of the cell cycle in G2 phase. I will discuss the role of this control mechanism in the control of mitosis.

  9. The PP1 phosphatase flapwing regulates the activity of Merlin and Moesin in Drosophila.

    PubMed

    Yang, Yang; Primrose, David A; Leung, Albert C; Fitzsimmons, Ross B; McDermand, Matt C; Missellbrook, Alison; Haskins, Julie; Smylie, AnneLiese S; Hughes, Sarah C

    2012-01-15

    The signalling activities of Merlin and Moesin, two closely related members of the protein 4.1 Ezrin/Radixin/Moesin family, are regulated by conformational changes. These changes are regulated in turn by phosphorylation. The same sterile 20 kinase-Slik co-regulates Merlin or Moesin activity whereby phosphorylation inactivates Merlin, but activates Moesin. Thus, the corresponding coordinate activation of Merlin and inactivation of Moesin would require coordinated phosphatase activity. We find that Drosophila melanogaster protein phosphatase type 1 β (flapwing) fulfils this role, co-regulating dephosphorylation and altered activity of both Merlin and Moesin. Merlin or Moesin are detected in a complex with Flapwing both in-vitro and in-vivo. Directed changes in flapwing expression result in altered phosphorylation of both Merlin and Moesin. These changes in the levels of Merlin and Moesin phosphorylation following reduction of flapwing expression are associated with concomitant defects in epithelial integrity and increase in apoptosis in developing tissues such as wing imaginal discs. Functionally, the defects can be partially recapitulated by over expression of proteins that mimic constitutively phosphorylated or unphosphorylated Merlin or Moesin. Our results suggest that changes in the phosphorylation levels of Merlin and Moesin lead to changes in epithelial organization.

  10. Zinc binds to and directly inhibits protein phosphatase 2A in vitro.

    PubMed

    Xiong, Yan; Luo, Dan-Ju; Wang, Xiu-Lian; Qiu, Mei; Yang, Yang; Yan, Xiong; Wang, Jian-Zhi; Ye, Qi-Fa; Liu, Rong

    2015-06-01

    Zinc induces protein phosphatase 2A (PP2A) inactivation and tau hyperphosphorylation through PP2A (tyrosine 307) phosphorylation in cells and the brain, but whether Zn(2+) has a direct inhibitory effect on PP2A is not clear. Here we explored the effect of Zn(2+) on PP2A and their direct interaction in vitro. The results showed that Zn(2+) mimicked the inhibitory effect of okadaic acid on protein phosphatase and prevented tau dephosphorylation in N2a cell lysates. PP2A activity assays indicated that a low concentration (10 μmol/L) of Zn(2+) inhibited PP2A directly. Further Zn(2+)-IDA-agarose affinity binding assays showed that Zn(2+) bound to and inhibited PP2Ac(51-270) but not PP2Ac(1-50) or PP2Ac(271-309). Taken together, Zn(2+) inhibits PP2A directly through binding to PP2Ac(51-270) in vitro.

  11. Differential effects of protein phosphatases in the recycling of metabotropic glutamate receptor 5.

    PubMed

    Mahato, P K; Pandey, S; Bhattacharyya, S

    2015-10-15

    The major excitatory neurotransmitter Glutamate acts on both ionotropic and metabotropic glutamate receptors (mGluRs) in the central nervous system. mGluR5, a member of the group I mGluR family is widely expressed throughout the brain and plays important roles in a variety of neuronal processes including various forms of synaptic plasticity. This receptor is also involved in various neuropsychiatric disorders, viz., Fragile X syndrome, autism etc. It has been reported that mGluR5 undergoes desensitization and subsequently internalization on ligand exposure in various cell types. However, the downstream events after the internalization and the molecular players involved in the post-endocytic events of this receptor have not been studied. In the present study, we find that subsequent to internalization mGluR5 enters the recycling compartment. After that the receptor recycles back to the cell surface. We also show here that the recycling of mGluR5 is dependent on protein phosphatases. Our data suggest that mGluR5 recycling is completely dependent on the activity of PP2A whereas, PP2B has partial effect on this process. Thus our study suggests that mGluR5 recycles back to the cell surface after ligand-dependent internalization and protein phosphatases that have been implicated in various forms of synaptic plasticity have differential effects on the recycling of mGluR5.

  12. Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase.

    PubMed Central

    Tommassen, J; Lugtenberg, B

    1980-01-01

    Outer membrane protein e is induced in wild-type cells, just like alkaline phosphatase and some other periplasmic proteins, by growth under phosphatase limitation. nmpA and nmpB mutants, which synthesize protein e constitutively, are shown also to produce the periplasmic enzyme alkaline phosphatase constitutively. Alternatively, individual phoS, phoT, and phoR mutants as well as pit pst double mutants, all of which are known to produce alkaline phosphatase constitutively, were found to be constitutive for protein e. Also, the periplasmic space of most nmpA mutants and of all nmpB mutants grown in excess phosphate was found to contain, in addition to alkaline phosphatase, at least two new proteins, a phenomenon known for individual phoT and phoR mutants as well as for pit pst double mutants. The other nmpA mutants as well as phoS mutants lacked one of these extra periplasmic proteins, namely the phosphate-binding protein. From these data and from the known positions of the mentioned genes on the chromosomal map, it is concluded that nmpB mutants are identical to phoR mutants. Moreover, some nmpA mutants were shown to be identical to phoS mutants, whereas other nmpA mutants are likely to contain mutations in one of the genes phoS, phoT, or pst. Images PMID:6995425

  13. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry.

    PubMed Central

    Kennelly, Peter J

    2003-01-01

    Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'. PMID:12444920

  14. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  15. Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase (STEP)

    PubMed Central

    Li, Hui; Li, Kang-shuai; Su, Jing; Chen, Lai-Zhong; Xu, Yun-Fei; Wang, Hong-Mei; Gong, Zheng; Cui, Guo-Ying; Yu, Xiao; Wang, Kai; Yao, Wei; Xin, Tao; Li, Min-Yong; Xiao, Kun-Hong; An, Xiao-fei; Huo, Yuqing; Xu, Zhi-gang; Sun, Jin-Peng; Pang, Qi

    2013-01-01

    Striatal-enriched tyrosine phosphatase (STEP) is an important regulator of neuronal synaptic plasticity, and its abnormal level or activity contributes to cognitive disorders. One crucial downstream effector and direct substrate of STEP is extracellular signal-regulated protein kinase (ERK), which has important functions in spine stabilisation and action potential transmission. The inhibition of STEP activity toward phospho-ERK has the potential to treat neuronal diseases, but the detailed mechanism underlying the dephosphorylation of phospho-ERK by STEP is not known. Therefore, we examined STEP activity toward pNPP, phospho-tyrosine-containing peptides, and the full-length phospho-ERK protein using STEP mutants with different structural features. STEP was found to be a highly efficient ERK tyrosine phosphatase that required both its N-terminal regulatory region and key residues in its active site. Specifically, both KIM and KIS of STEP were required for ERK interaction. In addition to the N-terminal KIS region, S245, hydrophobic residues L249/L251, and basic residues R242/R243 located in the KIM region were important in controlling STEP activity toward phospho-ERK. Further kinetic experiments revealed subtle structural differences between STEP and HePTP that affected the interactions of their KIMs with ERK. Moreover, STEP recognised specific positions of a phospho-ERK peptide sequence through its active site, and the contact of STEP F311 with phospho-ERK V205 and T207 were crucial interactions. Taken together, our results not only provide the information for interactions between ERK and STEP, but will also help in the development of specific strategies to target STEP-ERK recognition, which could serve as a potential therapy for neurological disorders. PMID:24117863

  16. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition

    PubMed Central

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A.; Lombroso, Paul J.; Azkue, Jon J.; Pérez-Navarro, Esther

    2016-01-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP61 protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund’s adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP61 protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP61 inactivation and increased pGluN2BTyr1472 and pERK1/2Thr202/Tyr204 levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception. PMID:26270590

  17. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    PubMed

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.

  18. A Phosphatase Activity of Sts-1 Contributes to the Suppression of TCR Signaling

    SciTech Connect

    Mikhailik,A.; Ford, B.; Keller, J.; Chen, Y.; Nassar, N.; Carpino, N.

    2007-01-01

    Precise signaling by the T cell receptor (TCR) is crucial for a proper immune response. To ensure that T cells respond appropriately to antigenic stimuli, TCR signaling pathways are subject to multiple levels of regulation. Sts-1 negatively regulates signaling pathways downstream of the TCR by an unknown mechanism(s). Here, we demonstrate that Sts-1 is a phosphatase that can target the tyrosine kinase Zap-70 among other proteins. The X-ray structure of the Sts-1 C terminus reveals that it has homology to members of the phosphoglycerate mutase/acid phosphatase (PGM/AcP) family of enzymes, with residues known to be important for PGM/AcP catalytic activity conserved in nature and position in Sts-1. Point mutations that impair Sts-1 phosphatase activity in vitro also impair the ability of Sts-1 to regulate TCR signaling in T cells. These observations reveal a PGM/AcP-like enzyme activity involved in the control of antigen receptor signaling.

  19. A phosphatase activity of Sts-1 contributes to the suppression TCR signaling

    PubMed Central

    Mikhailik, Anatoly; Ford, Bradley; Keller, James; Chen, Yunting; Nassar, Nicolas; Carpino, Nick

    2009-01-01

    Summary Precise signaling by the T cell receptor (TCR) is crucial for a proper immune response. To ensure that T cells respond appropriately to antigenic stimuli, TCR signaling pathways are subject to multiple levels of regulation. Sts-1 negatively regulates signaling pathways downstream of the TCR by an unknown mechanism(s). Here, we demonstrate that Sts-1 is a phosphatase that can target the tyrosine kinase Zap-70 among other proteins. The x-ray structure of the Sts-1 C-terminus reveals that it has homology to members of the phosphoglycerate mutase/acid phosphatase (PGM/AcP) family of enzymes, with residues known to be important for PGM/AcP catalytic activity conserved in nature and position in Sts-1. Point mutations that impair Sts-1 phosphatase activity in vitro also impair the ability of Sts-1 to regulate TCR signaling in T cells. These observations reveal a PGM/AcP-like enzyme activity involved in the control of antigen receptor signaling. PMID:17679096

  20. Trypanosoma rangeli: differential expression of ecto-phosphatase activities in response to inorganic phosphate starvation.

    PubMed

    Dick, Claudia Fernanda; Dos-Santos, André Luiz Araújo; Fonseca-de-Souza, André L; Rocha-Ferreira, Juliana; Meyer-Fernandes, José Roberto

    2010-04-01

    In this work, we showed that living cells of Trypanosoma rangeli express different ecto-phosphatase activities in response to different inorganic phosphate (Pi) concentrations in the culture medium. The ecto-phosphatase activity from T. rangeli grown at low-Pi concentration was inhibited by the increase of the pH, while the ecto-phosphatase of the cells grown at high Pi concentration was not modulated by the change of the pH of the medium. Okadaic acid inhibited only the ecto-phosphatase activity from cells grown at low-Pi concentration but not the ecto-phosphatase activity from cells grown at high-Pi concentration. Accordingly, phosphatase activity from T. rangeli grown at low Pi concentration was able to hydrolyze P-serine and P-threonine at high rate but not P-tyrosine. The phosphatase activity from T. rangeli grown at high-Pi concentration was able to hydrolyze P-serine, P-threonine and P-tyrosine with the same rate. The addition of anterior midgut homogenate of Rhodnius prolixus on the epimastigotes suspension inhibited the enzyme activity of T. rangeli grown at low-Pi concentration. On the other hand, anterior midgut homogenate had no effect in the ecto-phosphatase of T. rangeli maintained at high-Pi concentration. Altogether, the results described here indicate that ecto-phosphatase activities hydrolyzing phosphorylated compounds present in the extracellular medium of T. rangeli are regulated by the external Pi concentration.

  1. Overexpression of the protein tyrosine phosphatase PRL-2 correlates with breast tumor formation and progression.

    PubMed

    Hardy, Serge; Wong, Nau Nau; Muller, William J; Park, Morag; Tremblay, Michel L

    2010-11-01

    The PRL-1, PRL-2, and PRL-3 phosphatases are prenylated protein tyrosine phosphatases with oncogenic activity that are proposed to drive tumor metastasis. We found that PRL-2 mRNA is elevated in primary breast tumors relative to matched normal tissue, and also dramatically elevated in metastatic lymph nodes compared with primary tumors. PRL-2 knockdown in metastatic MDA-MB-231 breast cancer cells decreased anchorage-independent growth and cell migration, suggesting that the malignant phenotype of these cells is mediated at least in part through PRL-2 signaling. In different mouse mammary tumor-derived cell lines overexpressing PRL-2, we confirmed its role in anchorage-independent growth and cell migration. Furthermore, injection of PRL-2-overexpressing cells into the mouse mammary fat pad promoted extracellular signal-regulated kinase 1/2 activation and tumor formation. MMTV-PRL-2 transgenic mice engineered to overexpress the enzyme in mammary tissue did not exhibit spontaneous tumorigenesis, but they exhibited an accelerated development of mammary tumors initiated by introduction of an MMTV-ErbB2 transgene. Together, our results argue that PRL-2 plays a role in breast cancer progression.

  2. Using mass spectrometry to study the photo-affinity labeling of protein tyrosine phosphatase 1B

    NASA Astrophysics Data System (ADS)

    Leriche, Tammy; Skorey, Kathryn; Roy, Patrick; McKay, Dan; Bateman, Kevin P.

    2004-11-01

    Protein tyrosine phosphatase 1B (PTP1B) is a potential target for the treatment of Type II diabetes and several companies are developing small molecule inhibitors of this enzyme. Part of the characterization of these compounds as PTP1B inhibitors is the understanding of how they bind in the enzyme active site. The use of photo-activated inhibitors that target the active site can provide such insight. This paper describes the characterization of a photoprobe directed at the active site of PTP1B. Mass spectrometry revealed the specific binding of the probe to the intact protein. Digestion of the labeled protein followed by LC-MS and LC-MS/MS was used to show that the photoprobe binds to a specific active site amino acid. This was confirmed by comparison with the X-ray structure of PTP1B with a PTP1B inhibitor. The probe labels a conserved acidic residue (Asp) that is required for catalytic activity. This photoprobe may prove to be a useful tool for the development of a PTP1B inhibitor or for the study of PTPs in general.

  3. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A.

    PubMed Central

    Fruman, D A; Klee, C B; Bierer, B E; Burakoff, S J

    1992-01-01

    The immunosuppressive agents cyclosporin A (CsA) and FK 506 bind to distinct families of intracellular proteins (immunophilins) termed cyclophilins and FK 506-binding proteins (FKBPs). Recently, it has been shown that, in vitro, the complexes of CsA-cyclophilin and FK 506-FKBP-12 bind to and inhibit the activity of calcineurin, a calcium-dependent serine/threonine phosphatase. We have investigated the effects of drug treatment on phosphatase activity in T lymphocytes. Calcineurin is expressed in T cells, and its activity can be measured in cell lysates. Both CsA and FK 506 specifically inhibit cellular calcineurin at drug concentrations that inhibit interleukin 2 production in activated T cells. Rapamycin, which binds to FKBPs but exhibits different biological activities than FK 506, has no effect on calcineurin activity. Furthermore, excess concentrations of rapamycin prevent the effects of FK 506, apparently by displacing FK 506 from FKBPs. These results show that calcineurin is a target of drug-immunophilin complexes in vivo and establish a physiological role for calcineurin in T-cell activation. Images PMID:1373887

  4. Microcystin-LR stabilizes c-myc protein by inhibiting protein phosphatase 2A in HEK293 cells.

    PubMed

    Fan, Huihui; Cai, Yan; Xie, Ping; Xiao, Wuhan; Chen, Jun; Ji, Wei; Zhao, Sujuan

    2014-05-07

    Microcystin-LR is the most toxic and the most frequently encountered toxin produced by the cyanobacteria in the contaminated aquatic environment. Previous studies have demonstrated that Microcystin-LR is a potential carcinogen for animals and humans, and the International Agency for Research on Cancer has classified Microcystin-LR as a possible human carcinogen. However, the precise molecular mechanisms of Microcystin-LR-induced carcinogenesis remain a mystery. C-myc is a proto-oncogene, abnormal expression of which contributes to the tumor development. Although several studies have demonstrated that Microcystin-LR could induce c-myc expression at the transcriptional level, the exact connection between Microcystin-LR toxicity and c-myc response remains unclear. In this study, we showed that the c-myc protein increased in HEK293 cells after exposure to Microcystin-LR. Coexpression of protein phosphatase 2A and two stable c-myc protein point mutants (either c-myc(T58A) or c-myc(S62A)) showed that Microcystin-LR increased c-myc protein level mainly through inhibiting protein phosphatase 2A activity which altered the phosphorylation status of serine 62 on c-myc. In addition, we also showed that Microcystin-LR could increase c-myc promoter activity as revealed by luciferase reporter assay. And the TATA box for P1 promoter of c-myc might be involved. Our results suggested that Microcystin-LR can stimulate c-myc transcription and stabilize c-myc protein, which might contribute to hepatic tumorigenesis in animals and humans.

  5. An arsenate reductase homologue possessing phosphatase activity from sweet potato (Ipomoea batatas [L.] Lam): kinetic studies and characterization.

    PubMed

    Chan, Ya-Hui; Lin, Chao-Yi; Pai, Shou-Hsiung; Huang, Jenq-Kuen; Lin, Chi-Tsai

    2011-04-13

    A cDNA encoding a putative arsenate reductase homologue (IbArsR) was cloned from sweet potato (Ib). The deduced protein showed a high level of sequence homology (16-66%) with ArsRs from other organisms. A 3-D homology structure was created based on AtArsR (PDB code 1T3K ) from Arabidopsis thaliana. The putative active site of protein tyrosine phosphatase (HC(X)(5)R) is conserved in all reported ArsRs. IbArsR was overexpressed and purified. The monomeric nature of the enzyme was confirmed by 15% SDS-PAGE and molecular mass determination of the native enzyme via ESI Q-TOF. The IbArsR lacks arsenate reductase activity but possesses phosphatase activity. The Michaelis constant (K(M)) value for p-nitrophenyl phosphate (pNPP) was 11.11 mM. The phosphatase activity was inhibited by 0.5 mM sodium arsenate [As(V)]. The protein's half-life of deactivation at 25 °C was 6.1 min, and its inactivation rate constant K(d) was 1.1 × 10(-1) min(-1). The enzyme was active in a broad pH range from 4.0 to 11.0 with optimum activity at pH 10.0. Phosphatase would remove phosphate group from nucleic acid or dephosphorylation of other enzymes as regulation signaling.

  6. [Role of protein phosphatase 2A in renal interstitial fibrosis].

    PubMed

    Xi, Yiyun; Li, Hua; Li, Jun; Li, Ying; Liu, Yuping; You, Yanhua; Duan, Shaobin; Liu, Hong; Sun, Lin; Peng, Youming; Liu, Fuyou

    2015-06-01

    目的:探讨蛋白磷酸酶2A(protein phosphatase 2A,PP2A)在大鼠单侧输尿管梗阻(unilateral ureteral obstruction,UUO)及TGF-β1刺激的人近端肾小管上皮细胞-2(human kidney proximal tubular epithelial-2,HK-2)的肾纤维化模型中的作用。方法:1)15只雄性SD大鼠随机分成假手术组( sham组)、模型组(UUO组)和UUO+冈田酸(okadaic acid,OA)干预组(OA组),每组各5只。术后OA组每日给予1.8%酒精稀释的OA 30 μg/kg,胃管饲喂72 h,对照组和模型组给予相等体积的1.8%酒精胃管饲喂,72 h后处死大鼠,收集血和肾组织,检测肾功能并采用免疫组织化学、Western印迹和RT-PCR法检测肾组织PP2A的c亚基(PP2Ac)、纤维连接蛋白(fibronectin,FN)、胶原-I(collagen-I,Col-I)、E-钙黏蛋白(E-cadherin,E-cad)和α平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的蛋白及mRNA的表达。2)采用台盼蓝排斥实验及MTT法找出适宜的OA浓度。常规培养HK-2细胞,随机分为对照组、TGF-β1组(TGF-β1 5 ng/mL干预24 h)、TGF-β1+OA组(TGF-β1 5 ng/mL+OA 40 nmol/L,同时干预24 h),Western印迹检测肾小管上皮细胞PP2Ac,FN,Col-I,E-cad和α-SMA 蛋白的表达。结果:1)肾功能表明UUO组尿素氮和肌酐较sham组升高,OA组尿素氮、肌酐均比UUO组下降(均P<0.05)。免疫组织化学、Western印迹和RT-PCR均显示:与sham组比较,UUO组PP2Ac,FN,Col-I和α-SMA表达升高,而E-cad表达下降(均P<0.05);与UUO组比较,OA组PP2Ac,FN,Col-I和α-SMA表达下降,E-cad表达升高(均P<0.05);2) OA 40 nmol/L为最适宜的实验质量浓度;Western印迹显示:与对照组比较,TGF-β1组PP2Ac,FN,Col-I和α-SMA表达升高,E-cad表达下降(均P<0.05);与TGF-β1组比较,TGF-β1+OA组PP2Ac,FN,Col-I和α-SMA表达下降,E-cad表达升高(均P<0.05)。结论:PP2A能促进肾间质纤维化。.

  7. A PP2C-type phosphatase dephosphorylates the PII signaling protein in the cyanobacterium Synechocystis PCC 6803.

    PubMed

    Irmler, A; Forchhammer, K

    2001-11-06

    The family of the PII signal transduction proteins contains the most highly conserved signaling proteins in nature. The cyanobacterial PII-homologue transmits signals of the cellular nitrogen status and carbon status through phosphorylation of a seryl-residue. To identify the enzyme responsible for dephosphorylation of the phosphorylated PII protein in Synechocystis PCC 6803, prospective phosphatase encoding genes were inactivated by targeted insertion of kanamycin resistance cassettes. Disruption of ORF sll1771 generates a mutant unable to dephosphorylate PII under various experimental conditions. On the basis of conserved signature motifs, the sll1771 product (termed PphA) is a member of the protein phosphatase 2C (PP2C) superfamily, which is characterized by Mg(2+)/Mn(2+)-dependent catalytic activity. Biochemical analysis of overexpressed and purified PphA confirms its PP2C-type enzymatic properties and demonstrated its reactivity toward the phosphorylated PII protein. Thus, PphA is the first protein phosphatase in Synechocystis PCC 6803 for which the physiological substrate and function is known.

  8. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis.

    PubMed

    Hardy, S; Uetani, N; Wong, N; Kostantin, E; Labbé, D P; Bégin, L R; Mes-Masson, A; Miranda-Saavedra, D; Tremblay, M L

    2015-02-19

    The three PRL (phosphatases of regenerating liver) protein tyrosine phosphatases (PRL-1, -2 and -3) have been identified as key contributors to metastasis in several human cancers, yet the molecular basis of their pro-oncogenic property is unclear. Among the subfamily of PRL phosphatases, overexpression of PRL-2 in breast cancer cells has been shown to promote tumor growth by a mechanism that remains to be uncovered. Here we show that PRL-2 regulates intracellular magnesium levels by forming a functional heterodimer with the magnesium transporter CNNM3. We further reveal that CNNM3 is not a phosphorylated substrate of PRL-2, and that the interaction occurs through a loop unique to the CBS pair domains of CNNM3 that exists only in organisms having PRL orthologs. Supporting the role of PRL-2 in cellular magnesium transport is the observation that PRL-2 knockdown results in a substantial decrease of cellular magnesium influx. Furthermore, in PRL-2 knockout mice, serum magnesium levels were significantly elevated as compared with control animals, indicating a pivotal role for PRL-2 in regulating cellular magnesium homeostasis. Although the expression levels of CNNM3 remained unchanged after magnesium depletion of various cancer cell lines, the interaction between endogenous PRL-2 and CNNM3 was markedly increased. Importantly, xenograft tumor assays with CNNM3 and a mutant form that does not associate with PRL-2 confirm that CNNM3 is itself pro-oncogenic, and that the PRL-2/CNNM3 association is important for conferring transforming activities. This finding is further confirmed from data in human breast cancer tissues showing that CNNM3 levels correlate positively with both PRL-2 expression and the tumor proliferative index. In summary, we demonstrate that oncogenic PRL-2 controls tumor growth by modulating intracellular magnesium levels through binding with the CNNM3 magnesium transporter.

  9. The Potent Inhibitors of Protein Tyrosine Phosphatase 1B from the Fruits of Melaleuca leucadendron

    PubMed Central

    Saifudin, Azis; Lallo, Subehan Ab; Tezuka, Yasuhiro

    2016-01-01

    Background: Melaleuca leucadendron (Myrtaceae) is a kind of fruit used as Indonesian medicinal component and recorded in Jamu (tonic made of medical herbs) prescription records for the diabetes treatment. Its methanol extract exhibited a strong inhibitory activity with the half maximal inhibitory concentration (IC50) value of 2.05 μg/mL, while it is the same value with positive control RK-682. Objective: To isolate the chemical constituents of M. leucadendron and to evaluate their activity against protein tyrosine phosphatase 1B (PTP1B). Further, determine their toxicity potential against T-cell protein tyrosine phosphatase (TCPTP). Materials and Methods: Methanol extract was fractionated using silica column chromatography, and the obtained fraction was purified using Sephadex 20-LH. The structure of isolated compounds was identified based on 1H and 13Nuclear Magnetic Resonance Spectrometry. Furthermore, the compounds were examined against PTP1B and TCPTP. Results: Methanol extract of M. leucadendron (Myrtaceae) afforded two triterpenes: Betulinic acid and ursolic acid in high quantities. Both compounds exhibited a strong inhibitory activity against PTP1B inhibition with IC50 value of 1.5 and 2.3 μg/mL, respectively (positive control RK-682, IC50 = 2.05 μg/mL). Their activity toward TCPTP, on the other hand, were at 2.4 and 3.1 μg/mL, respectively. Based on this purification work, betulinic acid and ursolic acid presented 7.6% and 2.4%, respectively, as markedly M. leucadendron most potential for betulinic acid source among Indonesian plants. The result should have demonstrated that the antidiabetes of M. dendron could be through the inhibition of PTP1B. SUMMARY Melaleuca leucadendron is a good source for ursolic acid.Confirming traditional use for type II diabetes via PTP1B inhibition. PMID:27114690

  10. Tritrichomonas foetus: characterisation of ecto-phosphatase activities in the endoflagelar form and their possible participation on the parasite's transformation and cytotoxicity.

    PubMed

    Pereira-Neves, Antonio; Rosales-Encina, José Luis; Meyer-Fernandes, José Roberto; Benchimol, Marlene

    2014-07-01

    The protist parasite Tritrichomonas foetus displays a pear-shaped (PS) and a pseudocystic or endoflagellar form (EFF). Here, we characterised the ecto-phosphatase activity on the surface of EFF and compare its biochemical properties to that of the PS regarding rate of substrate hydrolysis, pH activation profile and sensitivity to well-known phosphatases inhibitors. Two strains exhibiting low- and high-cytotoxicity were used. The enzyme activities of PS and EFF exhibited similar characteristics of protein tyrosine phosphatases (PTP). However, the ecto-phosphatase activities for both forms presented distinct kinetic parameters and different inhibition patterns by PTP inhibitors, suggesting the presence of distinct ecto-enzyme activities between PS and EFF, as well, between both strains. Ultrastructural cytochemistry confirmed the differential distribution of the ecto-phosphatase activity during the EFF transformation. An increase in the percentage of the EFF resulted in a proportional increase in the ecto-phosphatase activity. During EFF reversion, ecto-phosphatase activity decreased and was restored to the level found in the parasites before EFF induction. PS and EFF from the high-cytotoxic strain exhibited higher ecto-phosphatase activities than PS and EFF from the low-cytotoxic strain, respectively. In both strains, the EFF was more cytotoxic and exhibited higher ecto-phosphatase activity when compared to the PS. A large part of the ecto-phosphatase activities of EFF from both strains and PS from the high-cytotoxic strain was irreversibly inhibited when the parasites were pre-treated with a specific antibody against amoebic PTP (anti-EhPRL). Immunoreaction assays revealed that the anti-EhPRL antibody cross-reacted with a 24-kDa protein differentially expressed on the cell surface of PS and EFF T. foetus. A positive correlation was observed between the surface expression of 24-kDa protein and ecto-phosphatase activity. Irreversible inhibition of a part of the ecto-phosphatase

  11. Effects of various salts on the steady-state enzymatic activity of E. coli alkaline phosphatase.

    PubMed

    Poe, R W; Sangadala, V S; Brewer, J M

    1993-05-15

    Seventeen salts were tested at various concentrations for their effects on E. coli alkaline phosphatase steady-state activity. Three effects were distinguished: a general ionic strength effect, and weaker cation and anion effects. 1. All salts tested, including those with "noninteracting" cations and anions, stimulate alkaline phosphatase activity usually ca. 100% at moderate (0.05-0.3 M) concentrations. 2. Cations such as Na+ and Li+ produce further increases in activity at concentrations up to 1 M. The noninteracting cations tetramethylammonium and tetrapropylammonium produce lower activities at these concentrations. These do not provide the secondary stimulatory effect of cations such as Na+ or Li+. 3. Anions associated with greater "salting in" effectiveness such as thiocyanate also reduce activity at ca. 1 M concentrations. These latter effects are not dependent on protein concentration so they probably do not involve subunit dissociation. There is little effect on the fluorescence or fluorescence-polarization spectrum of the enzyme so there is no general effect of 1 M salts on the conformation of the protein. The Michaelis constant for the substrate, p-nitrophenylphosphate, and inhibition constant for inorganic phosphate are increased to some extent by salts, but the increase in activity is due to an increase in Vmax. Our working hypothesis is that increased ionic strength weakens electrostatic interactions, enabling noncovalently bound phosphate to dissociate more rapidly.

  12. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    PubMed

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1.

  13. Structural basis for the glucan phosphatase activity of Starch Excess4

    SciTech Connect

    Vander Kooi, Craig W.; Taylor, Adam O.; Pace, Rachel M.; Meekins, David A.; Guo, Hou-Fu; Kim, Youngjun; Gentry, Matthew S.

    2010-11-12

    Living organisms utilize carbohydrates as essential energy storage molecules. Starch is the predominant carbohydrate storage molecule in plants while glycogen is utilized in animals. Starch is a water-insoluble polymer that requires the concerted activity of kinases and phosphatases to solubilize the outer surface of the glucan and mediate starch catabolism. All known plant genomes encode the glucan phosphatase Starch Excess4 (SEX4). SEX4 can dephosphorylate both the starch granule surface and soluble phosphoglucans and is necessary for processive starch metabolism. The physical basis for the function of SEX4 as a glucan phosphatase is currently unclear. Herein, we report the crystal structure of SEX4, containing phosphatase, carbohydrate-binding, and C-terminal domains. The three domains of SEX4 fold into a compact structure with extensive interdomain interactions. The C-terminal domain of SEX4 integrally folds into the core of the phosphatase domain and is essential for its stability. The phosphatase and carbohydrate-binding domains directly interact and position the phosphatase active site toward the carbohydrate-binding site in a single continuous pocket. Mutagenesis of the phosphatase domain residue F167, which forms the base of this pocket and bridges the two domains, selectively affects the ability of SEX4 to function as a glucan phosphatase. Together, these results reveal the unique tertiary architecture of SEX4 that provides the physical basis for its function as a glucan phosphatase.

  14. Quantitative proteomics reveals protein kinases and phosphatases in the individual phases of contextual fear conditioning in the C57BL/6J mouse.

    PubMed

    Šmidák, Roman; Mayer, Rupert Laurenz; Bileck, Andrea; Gerner, Christopher; Mechtcheriakova, Diana; Stork, Oliver; Lubec, Gert; Li, Lin

    2016-04-15

    A series of protein kinases and phosphatases (PKPs) have been linked to contextual fear conditioning (cFC) but information is mainly derived from immunochemical studies. It was therefore decided to use an explorative label-free quantitative proteomics approach to concomitantly determine PKPs in hippocampi of mice in the individual phases of cFC. C57BL/6J mice were divided into four groups: three training groups representing the acquisition, consolidation and retrieval phases of cFC and a foot shock control group. Using this approach we identified 32 protein kinases or phosphatases/phosphatase subunits with significantly changed protein levels in one or more training groups as compared to foot shock control. These include members of PKP signalling modules of mitogen-activated protein kinase (MAP3K10, RAF1, KSR2), Ca2+/calmodulin-dependent protein kinase (CaMKIIα, DAPK1), protein kinase C (PRKCD) and protein phosphatases 1, 2A, 2B(3) previously implicated in various learning paradigms. In addition, our analysis showed protein kinases WNK1, LYN, VRK1, ABL1, CDK4, CDKL3, SgK223 and ADCK1, and protein phosphatases PTPRF, ACP1, DNAJC6, SSH2 and UBASH3B that have not been directly linked to fear memory processes so far. Determination of PKPs in the individual cFC phases represents a valuable resource for interpretation of previous and design of future studies on PKPs in memory mechanisms.

  15. Molecular Insights into the Fungus-Specific Serine/Threonine Protein Phosphatase Z1 in Candida albicans

    PubMed Central

    Chen, Emily; Choy, Meng S.; Petrényi, Katalin; Kónya, Zoltán; Erdődi, Ferenc; Dombrádi, Viktor; Peti, Wolfgang

    2016-01-01

    ABSTRACT The opportunistic pathogen Candida is one of the most common causes of nosocomial bloodstream infections. Because candidemia is associated with high mortality rates and because the incidences of multidrug-resistant Candida are increasing, efforts to identify novel targets for the development of potent antifungals are warranted. Here, we describe the structure and function of the first member of a family of protein phosphatases that is specific to fungi, protein phosphatase Z1 (PPZ1) from Candida albicans. We show that PPZ1 not only is active but also is as susceptible to inhibition by the cyclic peptide inhibitor microcystin-LR as its most similar human homolog, protein phosphatase 1α (PP1α [GLC7 in the yeast Saccharomyces cerevisiae]). Unexpectedly, we also discovered that, despite its 66% sequence identity to PP1α, the catalytic domain of PPZ1 contains novel structural elements that are not present in PP1α. We then used activity and pulldown assays to show that these structural differences block a large subset of PP1/GLC7 regulatory proteins from effectively binding PPZ1, demonstrating that PPZ1 does not compete with GLC7 for its regulatory proteins. Equally important, these unique structural elements provide new pockets suitable for the development of PPZ1-specific inhibitors. Together, these studies not only reveal why PPZ1 does not negatively impact GLC7 activity in vivo but also demonstrate that the family of fungus-specific phosphatases—especially PPZ1 from C. albicans—are highly suitable targets for the development of novel drugs that specifically target C. albicans without cross-reacting with human phosphatases. PMID:27578752

  16. Stimulation of phosphatidylglycerolphosphate phosphatase activity by unsaturated fatty acids in rat heart.

    PubMed

    Cao, S G; Hatch, G M

    1994-07-01

    Phosphatidylglycerolphosphate (PGP) synthase and PGP phosphatase catalyze the sequential synthesis of phosphatidylglycerol from cytidine-5'-diphosphate 1,2-diacyl-sn-glycerol (CDP-DG) and glycerol-3-phosphate. PGP synthase and PGP phosphatase activities were characterized in rat heart mitochondrial fractions, and the effect of fatty acids on the activity of these enzymes was determined. PGP synthase was observed to be a heat labile enzyme that exhibited apparent Km values for CDP-PG and glycerol-3-phosphate of 46 and 20 microM, respectively. The addition of exogenous oleic acid to the assay mixture did not affect PGP synthase activity. PGP phosphatase was observed to be a heat labile enzyme, and addition of oleic acid to the assay mixture caused a concentration-dependent stimulation of PGP phosphatase activity. Maximum stimulation (1.9-fold) of enzyme activity was observed in the presence of 0.5 mM oleic acid, but the stimulation was slightly attenuated by the presence of albumin in the assay. The presence of oleic acid in the assay mixture caused the inactivation of PGP phosphatase activity to be retarded at 55 degrees C. Stimulation of PGP phosphatase activity was also observed with arachidonic acid, whereas taurocholic, stearic and palmitic acids did not significantly affect PGP phosphatase activity. The activity of mitochondrial phosphatidic acid phosphohydrolase was not affected by inclusion of oleic acid in the incubation mixture. We postulate that unsaturated fatty acids stimulate PGP phosphatase activity in rat heart.

  17. Protein Phosphatase 2A Signaling in Human Prostate Cancer

    DTIC Science & Technology

    2011-06-01

    been shown to be involved in androgen-independent growth of human prostate cancer cells (Carson et al., 1999; Grethe and Porn -Ares, 2006; Murillo et... Porn -Ares MI. (2006). p38 MAPK regulates phosphorylation of Bad via PP2A- dependent suppression of the MEK1/2-ERK1/2 survival pathway in TNF-alpha...threonine phosphatases implicated in cell growth and sig- nalling. Biochem J 2001;353:417–39. 15. Grethe S, Porn -Ares MI. p38 MAPK regulates

  18. Protein Phosphatase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-binding Protein-2 (SREBP-2) DNA Binding*

    PubMed Central

    Rice, Lyndi M.; Donigan, Melissa; Yang, Muhua; Liu, Weidong; Pandya, Devanshi; Joseph, Biny K.; Sodi, Valerie; Gearhart, Tricia L.; Yip, Jenny; Bouchard, Michael; Nickels, Joseph T.

    2014-01-01

    LDL-cholesterol (LDL-C) uptake by Ldlr is regulated at the transcriptional level by the cleavage-dependent activation of membrane-associated sterol response element-binding protein (SREBP-2). Activated SREBP-2 translocates to the nucleus, where it binds to an LDLR promoter sterol response element (SRE), increasing LDLR gene expression and LDL-C uptake. SREBP-2 cleavage and translocation steps are well established. Several SREBP-2 phosphorylation sites have been mapped and functionally characterized. The phosphatases dephosphorylating these sites remain elusive. The phosphatase(s) regulating SREBP-2 represents a novel pharmacological target for treating hypercholesterolemia. Here we show that protein phosphatase 2A (PP2A) promotes SREBP-2 LDLR promoter binding in response to cholesterol depletion. No binding to an LDLR SRE was observed in the presence of the HMG-CoA reductase inhibitor, lovastatin, when PP2A activity was inhibited by okadaic acid or depleted by siRNA methods. SREBP-2 cleavage and nuclear translocation were not affected by loss of PP2A. PP2A activity was required for SREBP-2 DNA binding. In response to cholesterol depletion, PP2A directly interacted with SREBP-2 and altered its phosphorylation state, causing an increase in SREBP-2 binding to an LDLR SRE site. Increased binding resulted in induced LDLR gene expression and increased LDL uptake. We conclude that PP2A activity regulates cholesterol homeostasis and LDL-C uptake. PMID:24770487

  19. Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity

    PubMed Central

    Jiang, Zong-Zhe; Dong, Ming-Zhe; Schatten, Heide; Xu, Xingzhi; Wang, Zhen-Bo; Sun, Qing-Yuan

    2016-01-01

    Mammalian oocytes are arrested at prophase of the first meiotic division in the primordial follicle pool for months, even years, after birth depending on species, and only a limited number of oocytes resume meiosis, complete maturation, and ovulate with each reproductive cycle. We recently reported that protein phosphatase 6 (PP6), a member of the PP2A-like subfamily, which accounts for cellular serine/threonine phosphatase activity, functions in completing the second meiosis. Here, we generated mutant mice with a specific deletion of Ppp6c in oocytes from the primordial follicle stage by crossing Ppp6cF/F mice with Gdf9-Cre mice and found that Ppp6cF/F; GCre+ mice are infertile. Depletion of PP6c caused folliculogenesis defects and germ cell loss independent of the traditional AKT/mTOR pathway, but due to persistent phosphorylation of H2AX (a marker of double strand breaks), increased susceptibility to DNA damage and defective DNA repair, which led to massive oocyte elimination and eventually premature ovarian failure (POF). Our findings uncover an important role for PP6 as an indispensable guardian of genomic integrity of the lengthy prophase I oocyte arrest, maintenance of primordial follicle pool, and thus female fertility. PMID:27930667

  20. Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells.

    PubMed

    Arimura, Yutaka; Shimizu, Kazuhiko; Koyanagi, Madoka; Yagi, Junji

    2014-12-01

    T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.

  1. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed

    Weinberg, R A; Zusman, D R

    1990-05-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  2. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  3. Enhancing Potato System Sustainability: Crop Rotation Impacts on Soil Phosphatase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is a species with a low efficiency of acquiring soil P. Rotation crops may potentially influence P uptake by potato by increasing soil organic acids, phosphatase activity, and microbial biomass. However, this kind of information is very limited. We measured the activities of acid phosphatase,...

  4. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  5. Imaging of Alkaline Phosphatase Activity in Bone Tissue

    PubMed Central

    Gade, Terence P.; Motley, Matthew W.; Beattie, Bradley J.; Bhakta, Roshni; Boskey, Adele L.; Koutcher, Jason A.; Mayer-Kuckuk, Philipp

    2011-01-01

    The purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with 19Flourine magnetic resonance spectroscopic imaging (19FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule. The molecular structure of DiFMUP includes two Fluorine atoms adjacent to a phosphate group allowing it and its hydrolysis product to be distinguished using 19Fluorine magnetic resonance spectroscopy (19FMRS) and 19FMRSI. ALP-mediated hydrolysis of DiFMUP was tested on osteoblastic cells and bone tissue, using serial measurements of fluorescence activity. Extracellular activation of DiFMUP on ALP-positive mouse bone precursor cells was observed. Concurringly, DiFMUP was also activated on bone derived from rat tibia. Marked inhibition of the cell and tissue activation of DiFMUP was detected after the addition of the ALP inhibitor levamisole. 19FMRS and 19FMRSI were applied for the non-invasive measurement of DiFMUP hydrolysis. 19FMRS revealed a two-peak spectrum representing DiFMUP with an associated chemical shift for the hydrolysis product. Activation of DiFMUP by ALP yielded a characteristic pharmacokinetic profile, which was quantifiable using non-localized 19FMRS and enabled the development of a pharmacokinetic model of ALP activity. Application of 19FMRSI facilitated anatomically accurate, non-invasive imaging of ALP concentration and activity in rat bone. Thus, 19FMRSI represents a promising approach for the quantitative imaging of bone cell activity during bone formation with potential for both preclinical and clinical applications. PMID:21799916

  6. Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans.