Science.gov

Sample records for active radiation absorbed

  1. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  2. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  3. Multiple-layer Radiation Absorber

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Baker, Bonnie Sue

    A structure is discussed for absorbing incident radiation, either electromagnetic (EM) or sound. Such a surface structure is needed, for example, in a highly sensitive high-frequency gravitational wave or HFGW detector such as the Li-Baker. The multi-layer absorber, which is discussed, is constructed with metamaterial [MM] layer or layers on top. This MM is configured for a specific EM or sound radiation frequency band, which absorbs incident EM or sound radiation without reflection. Below these top MM layers is a substrate of conventional EM-radiation absorbing or acoustical absorbing reflective material, such as an array of pyramidal foam absorbers. Incident radiation is partially absorbed by the MM layer or layers, and then it is more absorbed by the lower absorbing and reflecting substrate. The remaining reflected radiation is even further absorbed by the MM layers on its "way out_ so that essentially all of the incident radiation is absorbed _ a nearly perfect black-body absorber. In a HFGW detector a substrate, such as foam absorbers, may outgas into a high vacuum and reduce the capability of the vacuum-producing equipment, however, the layers above this lowest substrate will seal the absorbing and reflecting substrate from any external vacuum. The layers also serve to seal the absorbing material against air or water flow past the surfaces of aircraft, watercraft or submarines. Other applications for such a multiple-level radiation absorber include stealth aircraft, missiles and submarines.

  4. Absorbed photosynthetically active radiation of steppe vegetation and sun-view geometry effects on APAR estimates

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Mesarch, M. A.; Hays, C. J.; Deering, D. W.; Eck, T. F.

    1992-01-01

    Instantaneous fractions of absorbed photosynthetically active radiation (APAR) were measured at the Streletskaya Steppe Reserve in conjunction with canopy bidirectional-reflected radiation measured at solar zenith angles ranging between 37 and 74 deg during the Kursk experiment (KUREX-91). APAR values were higher for KUREX-91 than those for the first ISLSCP field experiment (FIFE-89) and the amount of APAR of a canopy was a function of solar zenith angle, decreasing as solar zenith angle increased at the resrve. Differences in absorption are attributed to leaf area index (LAI) and leaf angle distribution and subsequently transmitted radiation interactions. LAIs were considerably higher at the reserve than those at the FIFE site. Leaf angle distributions of the reserve approach a uniform distribution while distributions at the FIFE site more closely approximate erectophile distributions. Reflected photosynthetically active radiation (PAR) components at KUREX-91 and FIFE-89 were similar in magnitude and in their response to solar zenith angle. Transmitted PAR increased with increasing solar zenith angle at KUREX-91 and decreased with increasing solar zenith angle at FIFE-89. Transmitted PAR at FIFE-89 was considerably larger than those at KUREX-91.

  5. Absorber for terahertz radiation management

    DOEpatents

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  6. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par)

    NASA Technical Reports Server (NTRS)

    Kim, Moon S.; Daughtry, C. S. T.; Chappelle, E. W.; Mcmurtrey, J. E.; Walthall, C. L.

    1994-01-01

    Most remote sensing estimations of vegetation variables such as Leaf Area Index (LAI), Absorbed Photosynthetically Active Radiation (APAR), and phytomass are made using broad band sensors with a bandwidth of approximately 100 nm. However, high resolution spectrometers are available and have not been fully exploited for the purpose of improving estimates of vegetation variables. A study directed to investigate the use of high spectral resolution spectroscopy for remote sensing estimates of APAR in vegetation canopies in the presence of nonphotosynthetic background materials such as soil and leaf litter is presented. A high spectral resolution method defined as the Chlorophyll Absorption Ratio Index (CARI) was developed for minimizing the effects of nonphotosynthetic materials in the remote estimates of APAR. CARI utilizes three bands at 550, 670, and 700 nm with bandwidth of 10 nm. Simulated canopy reflectance of a range of LAI were generated with the SAIL model using measurements of 42 different soil types as canopy background. CARI obtained from the simulated canopy reflectance was compared with the broad band vegetation indices (Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Simple Ratio (SR)). CARI reduced the effect of nonphotosynthetic background materials in the assessment of vegetation canopy APAR more effectively than broad band vegetation indices.

  7. Biophysical properties affecting vegetative canopy reflectance and absorbed photosynthetically active radiation at the FIFE site

    NASA Astrophysics Data System (ADS)

    Walter-Shea, E. A.; Blad, B. L.; Hays, C. J.; Mesarch, M. A.; Deering, D. W.; Middleton, E. M.

    1992-11-01

    Leaves of the dominant grass species of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site reflect and transmit radiation in a similar manner to other healthy green leaves. Visible reflectance factors (RFs) and transmittance factors (TFs) were lower for older leaves than younger leaves except during senescence, when RF and TF values were higher. Near-infrared (NIR) RF values increased and TF values decreased with leaf age, with the reverse occurring as the leaf underwent senescence. Leaf optical properties were not found to be dependent on leaf water potential in the range from -0.5 to -3.0 MPa. Canopy bidirectional reflectance factor (BRF) values generally increased with increasing view zenith angle (θυ). Maximum values were in the backscatter direction, whereas BRF values in the visible region were lowest at oblique off-nadir θυ in the forward scatter direction and at or near nadir in the NIR region. Solar principal plane BRF values varied most at large solar zenith angles (θs). Visible and mid-infrared canopy BRF values decreased and NIR BRF values increased with leaf area index (LAI). Soil BRF distributions in the solar principal plane varied slightly with θs and θυ and varied considerably for wet and dry surfaces. Spectral vegetation indices (SVIs) varied with θs and θυ; values were lowest in the backscatter direction and highest in the forward scatter direction. The fraction of absorbed photosynthetically active radiation (APAR) increased with increasing θs. APAR had a strong linear relationship to nadir-derived SVI values but not to oblique off-nadir-derived SVI values. The relatively small dependence of off-nadir SVI values on θs should allow daily APAR values to be estimated from measurements made at any time of the day.

  8. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  9. The Impact of Atmospheric Aerosols on the Fraction of absorbed Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Veroustraete, Frank

    2010-05-01

    Aerosol pollution attracts a growing interest from atmospheric scientists with regard to their impact on health, the global climate and vegetation stress. A hypothesis, less investigated, is whether atmospheric aerosol interactions in the solar radiation field affect the amount of radiation absorbed by vegetation canopies and hence terrestrial vegetation productivity. Typically, aerosols affect vegetation canopy radiation absorption efficiency by altering the physical characteristics of solar radiation incoming on for example a forest canopy. It has been illustrated, that increasing mixing ratio's of atmospheric particulate matter lead to a higher fraction of diffuse sunlight as opposed to direct sunlight. It can be demonstrated, based on the application of atmospheric (MODTRAN) and leaf/canopy radiative transfer (LIBERTY/SPRINT) models, that radiation absorption efficiency in the PAR band of Picea like forests increases with increasing levels of diffuse radiation. It can be documented - on a theoretical basis - as well, that increasing aerosol loads in the atmosphere, induce and increased canopy PAR absorption efficiency. In this paper it is suggested, that atmospheric aerosols have to be taken into account when estimating vegetation gross primary productivity (GPP). The results suggest that Northern hemisphere vegetation CO2 uptake magnitude may increase with increasing atmospheric aerosol loads. Many climate impact scenario's related to vegetation productivity estimates, do not take this phenomenon into account. Boldly speaking, the results suggest a larger sink function for terrestrial vegetation than generally accepted. Keywords: Aerosols, vegetation, fAPAR, CO2 uptake, diffuse radiation.

  10. [Estimation of Fraction of Absorbed Photosynthetically Active Radiation for Winter Wheat Based on Hyperspectral Characteristic Parameters].

    PubMed

    Zhang, Chao; Cai, Huan-jie; Li, Zhi-jun

    2015-09-01

    Estimating fraction of absorbed photosynthetically active radiation (FPAR) precisely has great importance for detecting vegetation water content, energy and carbon cycle balance. Based on this, ASD FieldSpec 3 and SunScan canopy analyzer were applied to measure the canopy spectral reflectance and photosynthetically active radiation over whole growth stage of winter wheat. Canopy reflectance spectral data was used to build up 24 hyperspectral characteristic parameters and the correlation between FPAR and different spectral characteristic parameters were analyzed to establish the estimation model of FPAR for winter wheat. The results indicated that there were extremely significant correlations (p<0.01) between FPAR and hyperspectral characteristic parameters except the slope of blue edge (Db). The correlation coefficient between FPAR and the ratio of red edge area to blue edge area (VI4) was the highest, reaching at 0.836. Seven spectral parameters with higher correlation coefficient were selected to establish optimal linear and nonlinear estimation models of FPAR, and the best estimating models of FPAR were obtained by accuracy analysis. For the linear model, the inversin model between green edge and FPAR was the best, with R2, RMSE and RRMSE of predicted model reaching 0.679, 0.111 and 20.82% respectively. For the nonlinear model, the inversion model between VI2 (normalized ratio of green peak to red valley of reflectivity) and FPAR was the best, with R2, RMSE and RRMSE of predicted model reaching 0.724, 0.088 and 21.84% for. In order to further improve the precision of the model, the multiple linear regression and BP neural network methods were used to establish models with multiple high spectral parameters BP neural network model (R2=0.906, RMSE=0.08, RRMSE=16.57%) could significantly improve the inversion precision compared with the single variable model. The results show that using hyperspectral characteristic parameters to estimate FPAR of winter wheat is

  11. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and

  12. Inferring total canopy APAR from PAR bidirectional reflectances and vegetation indices in tallgrass prairie. [Absorbed Photosynthetically Active Radiation

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    The fraction of photosynthetically active radiation (PAR) absorbed by a vegetated canopy (APARc) or landscape (APARs) is a critical parameter in climate processes. A grassland study examined: 1) whether APARs can be estimated from PAR bidirectional exitance fractions; and 2) whether APARs is correlated with spectral vegetation indices (SVIs). Data were acquired with a high resolution continuous spectroradiometer at 4 sun angles on grassland sites. APARs was computed from the scattered surface PAR exitance fractions. The nadir APARs value was the most variable diurnally; it provided a good estimate of the average surface APARs at 95 percent. APARc was best represented by exitance factors between 30-60* forward.

  13. Use of narrow-band spectra to estimate the fraction of absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G.; Huemmrich, Karl F.; Goward, Samuel N.

    1990-01-01

    A novel approach is proposed for using high-spectral resolution imagers to estimate the fraction of photosynthetically active radiation adsorbed, f(apar), by vegetated land surfaces. In comparison to approaches using broad-band vegetation indices, the proposed method appears to be relatively insensitive to the reflectance of nonphotosynthetically active material beneath the canopy, such as leaf litter or soil. The method is based on a relationship between the second derivative of the reflectance vs wavelength function for terrestrial vegetation and f(apar). The relationship can be defined by the second derivatives in either of two windows, one in the visible region centered at 0.69 micron, another in the near-infrared region centered at 0.74 micron.

  14. Seasonal Variation in Fraction of Absorbed Photosynthetically Active Radiation and Vegetation Properties in Burned Forests in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Iwata, H.; Harazono, Y.; Iwama, C.; Ueyama, M.

    2011-12-01

    Wildfire is a major disturbance in boreal forest ecosystems, and it significantly influences carbon exchange processes. It is important to explicitly incorporate burned areas in estimating regional carbon dioxide (CO2) exchange. A simple approach to quantify regional CO2 exchange is an application of a light-use efficiency model with satellite data. The model calculates CO2 uptake from light-use efficiency and absorbed photosynthetically active radiation (PAR). In the regional application, the fraction of absorbed PAR (FAPAR) provided from MODIS satellite data, together with incident PAR, is often used to calculate absorbed PAR. In spite of the importance of FAPAR in estimating CO2 uptake, an earlier study revealed that the MODIS FAPAR data are overestimated for a burned boreal forest. This study aims to provide ground truth data to validate MODIS FAPAR in other burned boreal forests. It also focuses on obtaining an empirical relationship to estimate seasonal and interannual variation in FAPAR from satellite data such as the normalized difference vegetation index (NDVI) in the early stage of recovery after wildfire. We observed incident, reflected, and transmitted PAR to obtain FAPAR in one- and six-year-old burned black spruce forests. Vegetation properties such as NDVI, leaf area index (LAI), and vegetation cover were also observed to explain seasonal variation of FAPAR. CO2 flux was also continuously monitored using the eddy covariance technique. The analysis showed that MODIS FAPAR was overestimated in the two burned forests, and the degree of overestimation was especially large for the younger burned forest. The relationship between FAPAR and NDVI was similar at the two burned forests, implying that this single relationship can be applied to estimate FAPAR from MODIS NDVI regardless of age after wildfire for the early stage of recovery.

  15. Biophysical properties affecting vegetative canopy reflectance and absorbed photosynthetically active radiation at the FIFE site

    NASA Technical Reports Server (NTRS)

    Walter-Shea, E. A.; Blad, B. L.; Hays, C. J.; Mesarch, M. A.; Deering, D. W.; Middleton, E. M.

    1992-01-01

    Leaves of the dominant grass species of the ISCLP FIFE site reflect and transmit radiation in a like manner to other healthy green leaves. Visible reflectance factors (RFs) and transmittance factors (TFs) were less for older leaves than younger leaves except during senescence, when RF and TF values were greater. NIR-RF values increased and TF values decreased with leaf age, with the reverse occurring as the leaf went through senescence.

  16. Estimating the radiation absorbed by a human.

    PubMed

    Kenny, Natasha A; Warland, Jon S; Brown, Robert D; Gillespie, Terry G

    2008-07-01

    The complexities of the interactions between long- and short-wave radiation fluxes and the human body make it inherently difficult to estimate precisely the total radiation absorbed (R) by a human in an outdoor environment. The purpose of this project was to assess and compare three methods to estimate the radiation absorbed by a human in an outdoor environment, and to compare the impact of applying various skin and clothing albedos (alpha ( h )) on R. Field tests were conducted under both clear and overcast skies to evaluate the performance of applying a cylindrical radiation thermometer (CRT), net radiometer, and a theoretical estimation model to predict R. Three albedos were evaluated: light (alpha ( h ) = 0.57), medium (alpha ( h ) = 0.37), and dark (alpha ( h ) = 0.21). During the sampling periods, the range of error between the methods used to estimate the radiation absorbed by a cylindrical body under clear and overcast skies ranged from 3 to 8%. Clothing and skin albedo had a substantial impact on R, with the mean change in R between the darkest and lightest albedos ranging from 115 to 157 W m( - 2) over the sampling period. Radiation is one of the most important variables to consider in outdoor thermal comfort research, as R is often the largest contributor to the human energy balance equation. The methods outlined and assessed in this study can be conveniently applied to provide reliable estimates of the radiation absorbed by a human in an outdoor environment. PMID:18273649

  17. The 3D plant canopy radiative transfer analysis in an Alaskan black spruce forest: the characteristics of fraction of absorbed photosynthetically active radiation in the heterogeneous landscape

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.

    2012-12-01

    Over the last couple of decades, the three dimensional plant canopy radiative transfer models have been developed, improved and used for the retrievals of biophysical variables of vegetative surface. Fraction of absorbed photosynthetically active radiation (FAPAR) by plant canopy, a similar variable to heating rate in the atmosphere, is one of the important biophysical variables to infer the terrestrial plant canopy photosynthesis. FAPAR can be estimated by the radiative transfer model inversion or the empirical relationships between FAPAR and vegetation indices such as normalized difference vegetation index (NDVI). To date, some global FAPAR products are publicly available. These products are estimated from the moderate resolution satellites such as MODIS and SPOT-VEGETATION. One may apply the similar FAPAR algorithms to higher spatial resolution satellites if the ecosystem structures are horizontally homogeneous, which means that the adjacent satellite pixels have a similar spectral properties. If the vegetation surface is highly heterogeneous, "domain average FAPAR", which assumes no net horizontal radiation fluxes, can be unrealistically high (more than 1). In this presentation, we analyzed the characteristics of FAPAR in a heterogeneous landscape. As a case study, we selected our study site in a sparse black spruce forest in Alaska. We conducted the field campaigns to measure forest structural and optical properties that are used in the radiative transfer simulation. We used a 3D radiative transfer, FLiES (Kobayashi, H. and H. Iwabuchi (2008), A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sensing of Environment, 112, 173-185) to create a high resolution simulated spectral reflectance and FAPAR images over the course of the growing season. From the analysis, we show (1) FAPAR with no net horizontal fluxes assumption can be higher than

  18. Transient radiative transfer through scattering absorbing media

    SciTech Connect

    Mitra, K.; Kumar, S.

    1996-12-31

    This paper outlines the formulation of the different methods for determining transient radiative transfer through scattering absorbing media. A boundary driven radiative problem is considered in a one-dimensional plane-parallel slab. The different methods of solving the transient radiative transfer equation include the P{sub 1}, P{sub 3}, and P{sub 5} approximations, two-flux method, and eight, twelve and sixteen discrete ordinates methods. In addition, the general transient radiative transfer equation is also solved by direct numerical integration without any simplifying assumptions. Different orders of approximation for the phase function are considered as is a parametric analysis of the different parameters such as the scattering albedo and optical depth is performed. The propagation speed obtained and the magnitude of the transmitted and back-scattered fluxes for different models obtained are a function of the approximation used to represent the intensity distribution.

  19. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  20. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  1. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOEpatents

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  2. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  3. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  4. Space Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  5. Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Asrar, Ghassem; Tanre, Didier; Choudhury, Bhaskar J.

    1992-01-01

    1D and 3D radiative-transfer models have been used to investigate the problem of remotely sensed determination of vegetated land surface-absorbed and reflected solar radiation. Calculations were conducted for various illumination conditions to determine surface albedo, soil- and canopy-absorbed photosynthetically active and nonactive radiation, and normalized difference vegetation index. Simple predictive models are developed on the basis of the relationships among these parameters.

  6. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  7. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  8. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  9. A Dynamic Absorber With Active Vibration Control

    NASA Astrophysics Data System (ADS)

    Huang, S.-J.; Lian, R.-J.

    1994-12-01

    The design and construction of a dynamic absorber incorporating active vibration control is described. The absorber is a two-degrees-of-freedom spring — lumped mass system sliding on a guide pillar, with two internal vibration disturbance sources. Both the main mass and the secondary absorber mass are acted on by DC servo motors, respectively, to suppress the vibration amplitude. The state variable technique is used to model this dynamic system and a decoupling PID control method is used. First, the discrete time state space model is identified by using the commercial software MATLAB. Then the decoupling controller of this multi-input/multi-output system is derived from the identified model. Finally the results of some experiments are presented. The experimental results show that the system is effective in suppressing vibration. Also, the performance of this control strategy for position tracking control is evaluated based on experimental data.

  10. Absorbed radiation doses in transcranial temporomandibular joint radiography

    SciTech Connect

    Saini, T.S.; Fischer, W.G.; Verbin, R.S.

    1986-05-01

    Lateral transcranial radiographs are commonly used to evaluate TMJ morphology and function. This study evaluated the use of four TMJ positioners in controlling the amount of radiation absorbed at predetermined sites on a phantom head. Use of positioners and collimators can reduce the amount of radiation exposure.

  11. Performance of a Multifunctional Space Evaporator- Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Bue, Grant; Quinn, Gregory

    2013-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 sq ft prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable heat rejection from the LCAR.

  12. Global warming due to increasing absorbed solar radiation

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2009-04-01

    Global climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are examined for the top-of-atmosphere radiation changes as carbon dioxide and other greenhouse gases build up from 1950 to 2100. There is an increase in net radiation absorbed, but not in ways commonly assumed. While there is a large increase in the greenhouse effect from increasing greenhouse gases and water vapor (as a feedback), this is offset to a large degree by a decreasing greenhouse effect from reducing cloud cover and increasing radiative emissions from higher temperatures. Instead the main warming from an energy budget standpoint comes from increases in absorbed solar radiation that stem directly from the decreasing cloud amounts. These findings underscore the need to ascertain the credibility of the model changes, especially insofar as changes in clouds are concerned.

  13. Thermal radiation absorbed by dairy cows in pasture

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto Gomes; Guilhermino, Magda Maria; de Morais, Débora Andréia E. Façanha

    2010-01-01

    The goal of the present paper was to assess a method for estimating the thermal radiation absorbed by dairy cows (0.875 Holstein-0.125 Guzerath) on pasture. A field test was conducted with 472 crossbred dairy cows in three locations of a tropical region. The following environmental data were collected: air temperature, partial vapour pressure, wind speed, black globe temperature, ground surface temperature and solar radiation. Average total radiation absorbed by animals was calculated as {R_{abs}} = 640.0 ± 3.1 W.{m^{ - 2}} . Absorbed short-wave radiation (solar direct, diffuse and reflected) averaged 297.9 ± 2.7 W m-2; long wave (from the sky and from terrestrial surfaces) averaged 342.1 ± 1.5 W m-2. It was suggested that a new environmental measurement, the effective radiant heat load (ERHL), could be used to assess the effective mean radiant temperature ( {T_{mr}^* } ) . Average T_{mr}^* was 101.4 ± 1.2°C, in contrast to the usual mean radiant temperature, {T_{mr}} = 65.1 ± 0.5° C . Estimates of T_{mr}^* were considered as more reliable than those of T mr in evaluating the thermal environment in the open field, because T mr is almost totally associated only with long wave radiation.

  14. Novel active vibration absorber with magnetorheological fluid

    NASA Astrophysics Data System (ADS)

    Gerlach, T.; Ehrlich, J.; Böse, H.

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  15. Solar-energy absorber: Active infrared (IR) trap

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Efficiency of solar-energy absorbers may be improved to 95% by actively cooling their intermediate glass plates. This approach may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  16. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  17. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  18. Absorbed radiation by various tissues during simulated endodontic radiography.

    PubMed

    Torabinejad, M; Danforth, R; Andrews, K; Chan, C

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures. PMID:2592879

  19. Frequency Integrated Radiation Models for Absorbing and Scattering Media

    NASA Technical Reports Server (NTRS)

    Ripoll, J. F.; Wray, A. A.

    2004-01-01

    The objective of this work is to contribute to the simplification of existing radiation models used in complex emitting, absorbing, scattering media. The application in view is the computation of flows occurring in such complex media, such as certain stellar interiors or combusting gases. In these problems, especially when scattering is present, the complexity of the radiative transfer leads to a high numerical cost, which is often avoided by simply neglecting it. The complexity lies partly in the strong dependence of the spectral coefficients on frequency. Models are then needed to capture the effects of the radiation when one cannot afford to directly solve for it. In this work, the frequency dependence will be modeled and integrated out in order retain only the average effects. A frequency-integrated radiative transfer equation (RTE) will be derived.

  20. Radiation environments and absorbed dose estimations on manned space missions

    NASA Astrophysics Data System (ADS)

    Curtis, S. B.; Atwell, W.; Beever, R.; Hardy, A.

    In order to make an assessment of radiation risk during manned missions in space, it is necessary first to have as accurate an estimation as possible of the radiation environment within the spacecraft to which the astronauts will be exposed. Then, with this knowledge and the inclusion of body self-shielding, estimations can be made of absorbed doses for various body organs (skin, eye, blood-forming organs, etc.). A review is presented of our present knowledge of the radiation environments and absorbed doses expected for several space mission scenarios selected for our development of the new radiation protection guidelines. The scenarios selected are a 90-day mission at an altitude (450 km) and orbital inclinations (28.5°, 57° and 90°) appropriate for NASA's Space Station, a 15-day sortie to geosynchronous orbit and a 90-day lunar mission. All scenarios chosen yielded dose equivalents between five and ten rem to the blood forming organs if no large solar particle event were encountered. Such particle events could add considerable exposure particularly to the skin and eye for all scenarios except the one at 28.5° orbital inclination.

  1. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  2. Optimal active vibration absorber - Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1993-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  3. Optimal active vibration absorber: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.

    1992-01-01

    An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.

  4. An absorbed dose to water calorimeter for collimated radiation fields

    NASA Astrophysics Data System (ADS)

    Brede, H. J.; Hecker, O.; Hollnagel, R.

    2000-12-01

    A transportable calorimeter of compact design has been developed as a device for the absolute determination of the absorbed dose to water. The ease of operation of the calorimeter allows the application in clinical therapy beams of various energies, specifically for neutron, proton and heavy ion beams. The calorimeter requires collimated radiation fields with diameters lesser than 40 mm. The temperature rise caused by radiation is measured with a thermistor probe which is located in the centre of the calorimeter core. The calorimeter core consists of a cylindrical water-filled gilded aluminium can suspended by three thin nylon threads in a vacuum block in order to reduce the heat transfer by conduction. In addition, it operates at a temperature of 4°C, preventing heat transfer in water by convection. Heat transfer from the core to the surrounding by radiation is minimised by the use of two concentric temperature-controlled jackets, the inner jacket being operated at core temperature. A description of the mechanical and electrical design, of the construction and operation of the water calorimeter is given. In addition, calculations with a finite-element program code performed to determine correction factors for various radiation conditions are included.

  5. The absorbed dose to blood from blood-borne activity

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Fernández, M.; Lassmann, M.

    2015-01-01

    The radiation absorbed dose to blood and organs from activity in the blood is relevant for nuclear medicine dosimetry and for research in biodosimetry. The present study provides coefficients for the average absorbed dose rates to the blood from blood-borne activity for radionuclides frequently used in targeted radiotherapy and in PET diagnostics. The results were deduced from published data for vessel radius-dependent dose rate coefficients and reasonable assumptions on the blood-volume distribution as a function of the vessel radius. Different parts of the circulatory system were analyzed separately. Vessel size information for heart chambers, aorta, vena cava, pulmonary artery, and capillaries was taken from published results of morphometric measurements. The remaining blood not contained in the mentioned vessels was assumed to reside in fractal-like vascular trees, the smallest branches of which are the arterioles or venules. The applied vessel size distribution is consistent with recommendations of the ICRP on the blood-volume distribution in the human. The resulting average absorbed dose rates to the blood per nuclear disintegration per milliliter (ml) of blood are (in 10-11 Gy·s-1·Bq-1·ml) Y-90: 5.58, I-131: 2.49, Lu-177: 1.72, Sm-153: 2.97, Tc-99m: 0.366, C-11: 4.56, F-18: 3.61, Ga-68: 5.94, I-124: 2.55. Photon radiation contributes 1.1-1.2·10-11 Gy·s-1·Bq-1·ml to the total dose rate for positron emitters but significantly less for the other nuclides. Blood self-absorption of the energy emitted by ß-particles in the whole blood ranges from 37% for Y-90 to 80% for Tc-99m. The correspondent values in vascular trees, which are important for the absorbed dose to organs, range from 30% for Y-90 to 82% for Tc-99m.

  6. Absorbed dose to water: Standards and traceability for radiation oncology

    SciTech Connect

    Almond, P.R.

    1995-12-31

    Although the need for appropriate quantities and units for ionizing radiation has existed since shortly after discovery of X-rays, the quantities and units in general use today were not completely formalized until about 15 years ago. The development of appropriate national and international standards have also been ongoing. For many years the quantity, exposure, measured in units of roentgen was the national standard and they were also the quantity and units in which radiotherapy was described. With the introduction of megavoltage X-ray and electron-beam equipment and the adoption of the quantity {open_quotes}absorbed-dose{close_quotes} measured in units of rad (or gray) different approaches to calibrating these beams were needed. This was especially the case since the national standard in terms of exposure at a maximum photon energy for {sup 60}Co gamma rays was only available. Since the late 1960s various machine calibration protocols have been published. These protocols have to accommodate changes in modality, energy, quantities and units between the national standard and the user. Because of this, a new definition of traceability is proposed to accommodate the present system. By recording all intercomparisons and parameters used, an auditable calibration chain can be maintained. Even with the introduction of calibration protocols based upon national absorbed dose standards, the proposed traceability definition will still be needed.

  7. Radiative transfer effects on reflected shock waves. II - Absorbing gas.

    NASA Technical Reports Server (NTRS)

    Su, F. Y.; Olfe, D. B.

    1972-01-01

    Radiative cooling effects behind a reflected shock wave are calculated for an absorbing-emitting gas by means of an expansion procedure in the small density ratio across the shock front. For a gray gas shock layer with an optical thickness of order unity or less the absorption integral is simplified by use of the local temperature approximation, whereas for larger optical thicknesses a Rosseland diffusion type of solution is matched with the local temperature approximation solution. The calculations show that the shock wave will attenuate at first and then accelerate to a constant velocity. Under appropriate conditions the gas enthalpy near the wall may increase at intermediate times before ultimately decreasing to zero. A two-band absorption model yields end-wall radiant-heat fluxes which agree well with available shock-tube measurements.

  8. Remote sensing of solar radiation absorbed and reflected by vegetated land surfaces

    SciTech Connect

    Tanre, D.; Myneni, R.B.; Choudhury, B.J. ); Asrar, G. )

    1992-03-01

    This paper discusses the problem of remotely sensing the amount of solar radiation absorbed and reflected by vegetated land surfaces which was investigated with the aid of one- and three-dimensional radiative transfer models. Desert-like vegetation was modeled as clumps of leaves randomly distributed on a bright dry soil with a ground cover of generally less than 100%. Surface albedo (ALB), fraction of photosynthetically active radiation absorbed by the canopy (FAPAR), fractions of solar radiation absorbed by the canopy (FASOLAR) and soil (FASOIL), and normalized difference vegetation index (NDVI) were calculated for various illumination conditions. A base case was defined with problem parameters considered typical for desert vegetation in order to understand the dynamics of NDVI and ALB with respect to ground cover, leaf area index, soil brightness, and illumination conditions. The magnitude of errors involved in the estimation of surface albedo from broad-band monodirectional measurements was assessed through model simulations of SPOT, AVHRR, and GOES sensors. The nature of the relationships between NDVI vs. FASOLAR, FAPAR, FASOIL, and ALB, and their sensitivity to all problem parameter was investigated in order to develop simple predictive models.

  9. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  10. Unphysical consequences of negative absorbed power in linear passive scattering: Implications for radiation force and torque.

    PubMed

    Marston, Philip L; Zhang, Likun

    2016-06-01

    Contrary to some claims, the absorbed power associated with linear scattering of sound by passive objects in ideal fluids must be non-negative. Such unphysical claims suggest analytical or computational error, or use of an unphysical constitutive relation for material properties. The close connection with the evaluation of acoustic radiation force on targets according to Westervelt's formulation [J. Acoust. Soc. Am. 29, 26-29 (1957)], recently generalized to certain acoustic beams, is briefly reviewed along with the theory of acoustic radiation torque on axisymmetric targets with power absorption. Applications to viscous dissipation and to issues pertaining to active targets are also examined. PMID:27369138

  11. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium

    PubMed Central

    Rink, Alexandra; Lewis, David F.; Varma, Sangya; Vitkin, I. Alex; Jaffray, David A.

    2008-01-01

    The effects of temperature on real time changes in optical density (ΔOD) of GAFCHROMIC® EBT film were investigated. The spectral peak of maximum change in absorbance (λmax) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 °C. The ΔOD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in λmax. A compensation scheme using λmax and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry. PMID:18975701

  12. Space Radiation Absorbed Dose Distribution in a Human Phantom Torso

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Yang, T.; Atwell, W.

    2000-01-01

    The flight of a human phantom torso with head that containing active dosimeters at 5 organ sites and 1400 TLDs distributed in 34 1" thick sections is described. Experimental dose rates and quality factors are compared with calculations for shielding distributions at the sites using the Computerized Anatomical Male (CAM) model. The measurements were complemented with those obtained from other instruments. These results have provided the most comprehensive data set to map the dose distribution inside a human and to assess the accuracy of radiation transport models and astronaut radiation risk.

  13. Estimation of radiation absorbed doses to the red marrow in radioimmunotherapy

    SciTech Connect

    Macey, D.J.; DeNardo, S.J.; DeNardo, G.L.; DeNardo, D.A.; Sui Shen

    1995-02-01

    Myelotoxicity is the dose-limiting factor in radioimmunotherapy. Traditional methods most commonly used to estimate the radiation adsorbed dose to the bone marrow of patients consider contribution from radionuclide in the blood and/or total body. Targeted therapies, such as radioimmunotherapy, add a third potential source for radiation to the bone marrow because the radiolabeled targeting molecules can accumulate specifically on malignant target cells infiltrating the bone marrow. A non-invasive method for estimating the radiation absorbed dose to the red marrow of patients who have received radiolabeled monoclonal antibodies (MoAb) has been developed and explored. The method depends on determining the cumulated activity in three contributing sources: (1) marrow; (2) blood; and (3) total body. The novel aspect of this method for estimating marrow radiation dose is derivation of the radiation dose for the entire red marrow from radiation dose estimates obtained by detection of cumulated activity in three lumbar vertebrae using a gamma camera. Contributions to the marrow radiation dose form marrow, blood, and total body cumulated activity were determined for patients who received an I-131 labeled MoAb, Lym-1, that reacts with malignant B-lymphocytes of chronic lymphocytic leukemia and nonHodgkin`s lymphoma. Six patients were selected for illustrative purposes because their vertebrae were readily visualized on lumbar images. 32 refs., 6 figs., 1 tab.

  14. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of the- art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments. This approach can lead to large loss of water and a significant mass penalty for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. The optimal system is based on a trade-off between the mass of water saved and extra power needed to regenerate the LiCl absorber. This paper describes analysis models and the predicted performance and optimize the size of the SEAR system, estimated size and mass of key components, and power requirements for regeneration. We also present a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  15. fs Laser surface nano-structuring of high refractory ceramics to enhance solar radiation absorbance

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    High refractory pressure-less sintered ternary composite ceramics of AlN-SiC-MoSi2 (ASMY), polished by mechanical grinding to a surface roughness R a ~40 nm, have been treated in vacuum by fs Ti:sapphire laser, operating at 800 nm wavelength, 100 fs pulse duration, and increasing fluence, to generate a "black ceramic material", able to minimize solar radiation reflectance, in such a way that they could be used as the absorber material in an innovative conversion module of solar radiation into electrical energy. Disk specimens of approximately 3 cm in diameter and 3 mm thick have been treated by normal incident laser beam, generating a scanning pattern of parallel lines, at a lateral distance of about 80 μm, using a stage in motion, in the x, y, z directions, driven by a computer. The experimental conditions of laser treatment (energy fluence, speed of transition and lateral distance of steps) have been optimized to maximize the absorption properties of the patterned surface. In some samples this value was increased by about 15 %, compared to untreated surface, up to a value of final absorbance of about 95 %, all over the range of solar radiation spectrum (from UV to NIR). The morphological and chemical effects have been evaluated by SEM-EDS analysis. At higher fluence, we obtained the characteristic ablation craters and corresponding local material decomposition, while at lower fluence (over the ablation threshold) an ordered periodic nano-structure has been obtained, exploitable for its high capacity of entrapment of visible light. The laser treated ceramic specimen, characterized by very high absorption properties and reflectivity values lower than 4 %, has been used as active absorber material in a conversion module, installed in a solar test platform.

  16. Radiation shielding of the beam absorber in the MI 8-GeV beam line

    SciTech Connect

    Rakhno, I.; /Fermilab

    2006-01-01

    Results of Monte Carlo radiation shielding calculations performed for the beam absorber of the MI 8 GeV beam line are presented and discussed. The possibility to reach the level of 10{sup 19} protons per year is investigated.

  17. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    SciTech Connect

    Nikolaeva, Anastasiia V. Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-28

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  18. Experimental Study of Acoustic Radiation Force of an Ultrasound Beam on Absorbing and Scattering Objects

    PubMed Central

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2016-01-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter. PMID:27147775

  19. Experimental study of acoustic radiation force of an ultrasound beam on absorbing and scattering objects

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Anastasiia V.; Kryzhanovsky, Maxim A.; Tsysar, Sergey A.; Kreider, Wayne; Sapozhnikov, Oleg A.

    2015-10-01

    Acoustic radiation force is a nonlinear acoustic effect caused by the transfer of wave momentum to absorbing or scattering objects. This phenomenon is exploited in modern ultrasound metrology for measurement of the acoustic power radiated by a source and is used for both therapeutic and diagnostic sources in medical applications. To calculate radiation force an acoustic hologram can be used in conjunction with analytical expressions based on the angular spectrum of the measured field. The results of an experimental investigation of radiation forces in two different cases are presented in this paper. In one case, the radiation force of an obliquely incident ultrasound beam on a large absorber (which completely absorbs the beam) is considered. The second case concerns measurement of the radiation force on a spherical target that is small compared to the beam diameter.

  20. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  1. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of {sup 166}Ho Microspheres in Liver Radioembolization

    SciTech Connect

    Seevinck, Peter R.; Maat, Gerrit H. van de; Wit, Tim C. de; Vente, Maarten A.D.; Nijsen, Johannes F.W.; Bakker, Chris J.G.

    2012-07-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional {sup 166}Ho activity distribution to estimate radiation-absorbed dose distributions in {sup 166}Ho-loaded poly (L-lactic acid) microsphere ({sup 166}Ho-PLLA-MS) liver radioembolization. Methods and Materials: MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of {sup 166}Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the {sup 166}Ho activity distribution, derived from quantitative MRI data, with a {sup 166}Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. Results: Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local {sup 166}Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of {sup 166}Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of {sup 166}Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose

  2. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  3. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  4. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  5. Solar-energy absorber: Active infrared (IR) trap without glass

    NASA Technical Reports Server (NTRS)

    Brantley, L. W., Jr.

    1974-01-01

    Absorber efficiency can be improved to 90% by removing glass plates and using infrared traps. Absorber configuration may be of interest to manufacturers of solar absorbers and to engineers and scientists developing new sources of energy.

  6. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  7. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  8. Radiative Transfer and Absorbing Structures in the Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.

    2012-05-01

    A fully satisfactory explanation for the anomalous He II 304 Å intensity in the solar transition region has yet to be offered. As an extension of previous work, we use a full radiative transfer code to build a more consistent model of the transition region that allows the He II line to form with low filling factor and low opacity. Our results are constrained by the quiet sun center-to-limb profile of He II 304 Å obtained from the MOSES sounding rocket mission and by AIA full-disk data.

  9. [Estrogenic activity of ultraviolet absorbers and the related compounds].

    PubMed

    Matsumoto, Hisashi; Adachi, Shinichi; Suzuki, Yasuhiko

    2005-08-01

    The estrogenic activities of ultraviolet absorbers and their related compounds were investigated using MCF-7 cell proliferation assay. Nine of 33 chemicals (benzophenone, 2,4-dihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 4-hydroxybenzophenone, 3-(4-methylbenzylidene) camphor, ethyl 2-cyano-3,3-diphenylacrylate (etocrylene) and 2-ethylhexyl-2-cyano-3,3-diphenylacrylate (octocrylene)) were positive compared with the vehicle control. Benzhydrol, ethyl cinnamate and 2,2'-dihydroxy-4-methoxybenzophenone were weakly active. When each xenoestrogen was added to the cells along with ICI 182780, an estrogen receptor (ER) antagonist, the cell growth was reduced according to its doses. Therefore, the cell proliferation was suggested to generate through ER. Most of these chemicals were also positive using CHOOSER assay, a new method of testing estrogenic activity of xenoestrogen. Each xenoestrogen was also confirmed to bind to ERalpha and ERbeta using a human ER competitive binding assay against 17beta-estradiol. The concentration order of the strength of its inhibitory effect using both ERalpha and ERbeta was similar to that of MCF-7 cell proliferation assay, except for benzyl 4-hydroxybenzoate (B4HB). B4HB showed a stronger activity on CHOOSER assay and the competitive binding assay using both ERalpha and ERbeta, although there was no activity observed on MCF-7 cell proliferation assay. Our findings were to detect the estrogenic activity of etocrylene and octocrylene in vitro, in addition to confirming the activities of some ultraviolet absorbers as previously reported. PMID:16079615

  10. Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting temperature radiative energy flow in a two-region semitransparent laminated layer in the limit of zero heat conduction. The composite is heated on its two sides by unequal amounts of incident radiation. The two layers of the composite have different refractive indices, and each material absorbs, emits, and isotropically scatters radiation. The interfaces are diffuse, and all interface reflections are included. To illustrate the thermal behavior that is readily calculated from the equations, typical results an given for various optical thicknesses and refractive indices of the layers. Internal reflections have a substantial effect on the temperature distribution and radiative heat flow.

  11. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars.

    PubMed

    Kircos, L T; Eakle, W S; Smith, R A

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography. PMID:3458783

  12. Reduced radiation-absorbed dose to tissues with partial panoramic radiography for evaluation of third molars

    SciTech Connect

    Kircos, L.T.; Eakle, W.S.; Smith, R.A.

    1986-05-01

    The radiation-absorbed doses from panoramic radiography, distal molar radiography, and a partial panoramic radiographic technique that exposes only the third molar region to radiation are compared. Doses of radiation to the submandibular salivary gland were comparable by all three techniques, but doses of radiation to the head and neck were reduced greatly by the partial panoramic radiographic technique. Partial panoramic radiography is a diagnostically satisfactory and a radiologically safer technique for evaluation of third molar pathosis than is panoramic or distal molar radiography.

  13. Relationship between acoustic power and acoustic radiation force on absorbing and reflecting targets for spherically focusing radiators.

    PubMed

    Gélat, Pierre; Shaw, Adam

    2015-03-01

    Total acoustic output power is an important parameter required by standards for most ultrasonic medical equipment including high-intensity focused ultrasound (HIFU) systems. Radiation force balances are routinely used; however, radiation force is not strictly dependent on the ultrasound power but, rather, on the wave momentum resolved in one direction. Consequently, measurements based on radiation force become progressively less accurate as the ultrasound wave deviates further from a true plane wave. HIFU transducers can be very strongly focused with F-numbers less than one: under these conditions, the uncertainty associated with use of the radiation force method becomes very significant. International Standards IEC 61161 and IEC 62555 suggest plane-wave correction factors for unfocused transducers radiating onto an ideal absorbing target and focusing corrections for focused transducers radiating onto ideal absorbing targets and onto conical reflecting targets (IEC 61161). Previous models have relied on calculations based on the Rayleigh integral, which is not strictly correct for curved sources. In the work described here, an approach combining finite element methods with a discretization of the Helmholtz equation was developed, making it possible to model the boundary condition at the structure/fluid interface more correctly. This has been used to calculate the relationship between radiation force and total power for both absorbing and conical reflecting targets for transducers ranging from planar to an F-number of 0.5 (hemispherical) and to compare with the recommendations of IEC 61161 and IEC 62555. PMID:25683223

  14. MEASUREMENT OF MICROWAVE RADIATION ABSORBED BY BIOLOGICAL SYSTEMS, 2, ANALYSIS BY DEWAR-FLASK CALORIMETRY

    EPA Science Inventory

    Free-field power density has long been used as an index of energy dosing in studies of biological effects of microwave radiation. However, this method of quantifying dose can lead to considerable error if it is used as an index of the rate of energy actually being absorbed by a s...

  15. A new thermal radiation detector using optical heterodyne detection of absorbed energy

    NASA Technical Reports Server (NTRS)

    Davis, C. C.; Petuchowski, S. J.

    1983-01-01

    The operating principles of a new kind of room-temperature thermal radiation detector are described. In this device modulated light heats a gas, either directly or by conduction from a thin absorbing membrane, and the resultant change in density of the gas is detected by optical heterodyning. The performance of a membrane device of this kind agrees well with the predictions of theory.

  16. Geometric radiation exchange factors for axial radiative transfer in an LWR core filled with absorbing-emitting gases

    SciTech Connect

    Chan, S.H.; Cho, D.H.

    1984-01-01

    A reactor core filled with an emitting-absorbing mixture (like steam, hydrogen gas and fission gases) is considered. Analysis is provided to evaluate axial radiative heat exchange of a rod bundle with a nonuniform axial temperature distribution. The necessary radiation exchange shape factors (geometric mean absorptance, emittance and transmittance) between segments of the complex rod bundle arrangement are presented. They are applicable to arbitrary sizes of segments, well suited for numerical computations.

  17. Photosynthesis, Growth, and Ultraviolet Irradiance Absorbance of Cucurbita pepo L. Leaves Exposed to Ultraviolet-B Radiation (280-315 nm) 1

    PubMed Central

    Sisson, William B.

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (UV) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of UV-B irradiation and a UV-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other UV-B radiation-absorbing compounds from the first leaves increased with time and level of UV-B radiation impinging on leaf surfaces. Although absorbance of UV-B radiation by extracted pigments increased substantially, UV-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective UV-B radiation but not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both UV-B radiation treatments. Repression of photosynthesis by UV-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity. PMID:16661610

  18. Effect of aerosol concentration and absorbing aerosol on the radiation fog life cycle

    NASA Astrophysics Data System (ADS)

    Maalick, Z.; Kühn, T.; Korhonen, H.; Kokkola, H.; Laaksonen, A.; Romakkaniemi, S.

    2016-05-01

    Analogous to cloud formation, the formation and life cycle of fogs is largely influenced by aerosol particles. The objective of this work is to analyze how changes in aerosol properties affect the fog life cycle, with special emphasis on how droplet concentrations change with cloud condensation nuclei (CCN) concentrations and on the effect that absorbing black carbon (BC) particles have on fog dissipation. For our simulation case study, we chose a typical fall time radiation fog at mid-latitudes (45° north) in fairly highly polluted conditions. Our results show that CCN concentrations have a strong influence on the fog lifetime. This is because the immediate effect of CCN on cloud droplet number concentrations (CDNC) is enhanced through two positive feedback loops: (1) Higher CDNC leads to more radiative cooling at the fog top, which leads to even stronger activation and (2) if CDNC is higher, the average droplet size is smaller, which slows down droplet removal through sedimentation. The effect that radiation fogs have on solar surface irradiation is large - the daily mean can change by 50% if CCN concentrations are doubled or halved (considering a reference CCN mixing ratio of 800 #/mg). With the same changes in CCN, the total fog lifetime increases 160 min or decreases 65 min, respectively. Although BC has a noticeable effect on fog height and dissipation time, its relative effect compared to CCN is small, even if BC concentrations are high. The fog formation is very sensitive to initial meteorological conditions which may be altered considerably if fog was present the previous day. This effect was neglected here, and future simulations, which span several days, may thus be a valuable extension of this study.

  19. THERMAL FINITE ELEMENT ANALYSIS X9 AND X29 X-RAY RING CROTCH RADIATION ABSORBERS.

    SciTech Connect

    MERCADO-CORUJO,H.

    1999-08-11

    This report details the efforts by engineers at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) to evaluate the reliability of water-cooled radiation absorbers used in the NSLS X-ray ring. The absorbers on this report are part of the X-9 and X-29 dipole vacuum chambers. The absorbers are located at the intersection (crotch) of the beamline exit ports with the electron beam chamber, and are generally referred to as ''crotches''. The purpose of this analysis was to demonstrate the thermal reliability of the crotches under operating conditions that will be present over the expected life of the ring. The efforts described include general engineering layouts, engineering calculations, finite element analysis (FEA), results and conclusions of the analysis, and future design recommendations.

  20. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  1. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    SciTech Connect

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  2. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    PubMed

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53). PMID:23152147

  3. Radiation absorbed dose estimates for oxygen-15 radiopharmaceuticals (H2( V)O, C VO, O VO) in newborn infants

    SciTech Connect

    Powers, W.J.; Stabin, M.; Howse, D.; Eichling, J.O.; Herscovitch, P.

    1988-12-01

    In preparation for measurement of regional cerebral oxygen metabolism by positron emission tomography, radiation absorbed dose estimates for 19 internal organs, blood, and total body were calculated for newborn infants following bolus intravenous administration of H2( V)O and brief inhalation of C VO and O VO. Cumulated activity for each radiopharmaceutical was calculated from a compartmental model based on the known biologic behavior of the compound. Values for mean absorbed dose/unit cumulated activity (S) for internal organs and total body were based on a newborn phantom. S was separately calculated for blood. Total radiopharmaceutical absorbed dose estimates necessary to measure cerebral oxygen metabolism in a 3.51-kg infant based on 0.7 mCi/kg H2( V)O and 1 mCi/kg C VO and O VO were determined to be 1.6 rad to the lung (maximum organ dose), 0.28 rad to the marrow, 0.46 rad to the gonads, and 0.22 rad to total body. These values are similar to those for current clinical nuclear medicine procedures employing /sup 99m/Tc in newborn infants.

  4. Radiation absorbed dose to bladder walls from positron emitters in the bladder content

    SciTech Connect

    Powell, G.F.; Chen, C.T.

    1987-11-01

    A method to calculate absorbed doses at depths in the walls of a static spherical bladder from a positron emitter in the bladder content has been developed. The beta ray dose component is calculated for a spherical model by employing the solutions to the integration of Loevinger and Bochkarev point source functions over line segments and a line segment source array technique. The gamma ray dose is determined using the specific gamma ray constant. As an example, absorbed radiation doses to the bladder walls from F-18 in the bladder content are presented for static spherical bladder models having radii of 2.0 and 3.5 cm, respectively. Experiments with ultra-thin thermoluminescent dosimeters (TLD's) were performed to verify the results of the calculations. Good agreement between TLD measurements and calculations was obtained.

  5. Reliability test: X-ray ring exit chambers crotch radiation absorbers. Final report

    SciTech Connect

    Lynch, D.R.; Morgan, J.

    1999-04-09

    This report details the efforts by engineers at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) to evaluate the reliability of water-cooled radiation absorbers used in the NSLS X-ray ring. These absorbers are part of the 16 dipole vacuum chambers which comprise the arc sections of the ring. They are located at the intersections (crotch) of the beamline exit ports with the electron beam chamber, and are commonly referred to as crotches. The purpose of these efforts was to demonstrate the reliability of the crotches under operating conditions that the crotches will be subjected to over the entire expected life of the ring. The efforts described include engineering calculations, finite element analysis, conceptual design for a reliability test, test implementation and descriptions, results and conclusions related to these analyses and tests.

  6. Review of reconstruction of radiation incident air kerma by measurement of absorbed dose in tooth enamel with EPR.

    PubMed

    Wieser, A

    2012-03-01

    Electron paramagnetic resonance dosimetry with tooth enamel has been proved to be a reliable method to determine retrospectively exposures from photon fields with minimal detectable doses of 100 mGy or lower, which is lower than achievable with cytogenetic dose reconstruction methods. For risk assessment or validating dosimetry systems for specific radiation incidents, the relevant dose from the incident has to be calculated from the total absorbed dose in enamel by subtracting additional dose contributions from the radionuclide content in teeth, natural external background radiation and medical exposures. For calculating organ doses or evaluating dosimetry systems the absorbed dose in enamel from a radiation incident has to be converted to air kerma using dose conversion factors depending on the photon energy spectrum and geometry of the exposure scenario. This paper outlines the approach to assess individual dose contributions to absorbed dose in enamel and calculate individual air kerma of a radiation incident from the absorbed dose in tooth enamel. PMID:22128353

  7. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates

  8. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose.

    PubMed

    Nakamura, K; Ishiguchi, T; Maekoshi, H; Ando, Y; Tsuzaka, M; Tamiya, T; Suganuma, N; Ishigaki, T

    1996-01-01

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78%) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87%). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. PMID:8798025

  9. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    SciTech Connect

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P.J.

    2014-10-15

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  10. Signatures of semi-direct radiative forcing by absorbing aerosols in satellite observations and models

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Hosseinpour, F.; Colarco, P. R.

    2014-12-01

    Semi-direct radiative forcing of climate occurs when interactions between aerosols and radiative fluxes in the atmosphere yield a dynamical response in clouds. Semi-direct forcing is typically thought to be a positive radiative forcing whereby soot and biomass burning aerosols absorb sunlight and burn-off clouds. However, a negative semi-direct forcing is suspected in at least two regimes, the summertime Southeast Atlantic Ocean and the wintertime North Indian Ocean, where the heating profile by aerosol absorption by solar radiation is elevated above the elevation of the low clouds. Here we use a combination of satellite data and a model simulation to further characterize the signature of semi-direct radiative forcing in these two locations and elsewhere on the globe. We apply CERES albedos, Calipso profiles of aerosol extinction and cloud-top altitude, and a simulation with the Goddard Earth Observing System Model version 5 (GEOS-5) Earth system model with meteorology constrained by MERRA and an assimilation of MODIS AOT (MERRAero). to quantify the vertical heating profile by aerosols under clear and cloudy skies. We seek to determine: (1) where aerosol heating by soot and biomass burning aerosol is occurring; (2) where vertically in the column the heating is occurring relative to the observed level of low cloud development; and (3) whether the variations of albedo with aerosol forcing suggest a positive, negative, or inconclusive semi-direct radiative forcing.

  11. A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Roger, M.; Caliot, C.; Crouseilles, N.; Coelho, P. J.

    2014-10-01

    A new multi-scale hybrid transport-diffusion model for radiative transfer is proposed in order to improve the efficiency of the calculations close to the diffusive regime, in absorbing and strongly scattering media. In this model, the radiative intensity is decomposed into a macroscopic component calculated by the diffusion equation, and a mesoscopic component. The transport equation for the mesoscopic component allows to correct the estimation of the diffusion equation, and then to obtain the solution of the linear radiative transfer equation. In this work, results are presented for stationary and transient radiative transfer cases, in examples which concern solar concentrated and optical tomography applications. The Monte Carlo and the discrete-ordinate methods are used to solve the mesoscopic equation. It is shown that the multi-scale model allows to improve the efficiency of the calculations when the medium is close to the diffusive regime. The proposed model is a good alternative for radiative transfer at the intermediate regime where the macroscopic diffusion equation is not accurate enough and the radiative transfer equation requires too much computational effort.

  12. Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow

    NASA Astrophysics Data System (ADS)

    Painter, Thomas H.; Seidel, Felix C.; Bryant, Ann C.; McKenzie Skiles, S.; Rittger, Karl

    2013-09-01

    Recent studies show that deposition of dust and black carbon to snow and ice accelerates snowmelt and perturbs regional climate and hydrologic cycles. Radiative forcing by aerosols is often neglected in climate and hydrological models in part due to scarcity of observations. Here we describe and validate an algorithm suite (Imaging Spectrometer-Snow Albedo and Radiative Forcing (IS-SnARF)) that provides quantitative retrievals of snow grain size, snow albedo, and radiative forcing by light-absorbing impurities in snow and ice (LAISI) from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data collected on 15 June 2011 in the Senator Beck Basin Study Area (SBBSA), SW Colorado, USA. Radiative forcing by LAISI is retrieved by the integral of the convolution of spectral irradiance with spectral differences between the spectral albedo (scaled from the observed hemispherical-directional reflectance factor (HDRF)) and modeled clean snow spectral albedo. The modeled surface irradiance at time of acquisition at test sites was 1052 W m-2 compared to 1048 W m-2 measured with the field spectroradiometer measurements, a relative difference of 0.4%. HDRF retrievals at snow and bare soil sites had mean errors relative to in situ measurements of -0.4 ± 0.1% reflectance averaged across the spectrum and root-mean-square errors of 1.5 ± 0.1%. Comparisons of snow albedo and radiative forcing retrievals from AVIRIS with in situ measurements in SBBSA showed errors of 0.001-0.004 and 2.1 ± 5.1 W m-2, respectively. A counterintuitive result was that, in the presence of light absorbing impurities, near-surface snow grain size increased with elevation, whereas we generally expect that at lower elevation the grain size would be larger.

  13. Annual and interannual variations of absorbed solar radiation based on a 10-year data set

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Charlock, Thomas P.; Bess, T. Dale; Rutan, David

    1990-01-01

    Annual and interannual variations of absorbed solar radiation (ASR) are studied using the 10-year earth radiation budget data set from the Nimbus-6 and Nimbus-7 earth radiation budget instruments in the form of monthly averaged maps of ASR. Empirical orthogonal functions (EOFs) are computed for the global distribution of ASR. Six EOFs are found which have physical significance and which account for 97.8 percent of the spatial variance of the data set. The first EOF describes the annual cycle and is primarily a latitudinal variation which is driven by the incident solar radiation. The second and fourth EOFs are semiannual cycles. EOFs 3 through 6 are strongly longitudinally dependent. EOF 3 describes the spring/fall part of the annual cycle, and EOF 4 describes the part of the semiannual cycle which is out of phase with EOF 2. EOF 5 is the response of the ASR to El Nino. The annual cycle and its harmonics account for 97.6 percent of the variance with time. When the data set is deseasonalized, the first two EOFs of the resulting set are found to correspond closely to EOFs 5 and 6 of the data set with season included. As with outgoing longwave radiation, most of the interannual variation is found over the tropical oceans.

  14. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 Earth radiation budget data set, November 1978 to October 1985

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1990-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. This atlas contains 7 years of continuous data from November 1978 through October 1985. The data were retrieved from measurements made by the second Earth Radiation Budget (ERB) wide field-of-view instrument, which flew on the Nimbus 7 spacecraft in 1978. The deconvolution method used to produce these data is briefly discussed here so that the user may understand their generation and limitations. These geographical distributions of albedo and absorbed solar radiation are provided as a resource for researchers studying the radiation budget of the Earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith, also based on the Nimbus 6 and 7 ERB data.

  15. Atlas of albedo and absorbed solar radiation derived from Nimbus 6 earth radiation budget data set, July 1975 to May 1978

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Bess, T. Dale; Rutan, David

    1989-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented. The atlas is based on 35 months of continuous measurements from July 1975 through May 1978. The data were retrieved from measurements made by the shortwave wide field-of-view radiometer of the first Earth Radiation Budget (ERB) instrument, which flew on the Nimbus 6 spacecraft in 1975. Profiles of zonal mean albedos and absorbed solar radiation are tabulated. These geographical distributions are provided as a resource for studying the radiation budget of the earth. This atlas of albedo and absorbed solar radiation complements the atlases of outgoing longwave radiation by Bess and Smith in NASA-RP-1185 and RP-1186, also based on the Nimbus 6 and 7 ERB data.

  16. Study of flue gas desulfurization absorbent prepared from coal fly ash: Effects of the composition of the absorbent on the activity

    SciTech Connect

    Tsuchiai, Hiroaki |; Ishizuka, Tomohiro; Nakamura, Hideki; Ueno, Tsutomu; Hattori, Hideshi

    1996-07-01

    The absorbents for SO{sub 2} and NO from flue gas were prepared from calcium hydroxide, calcium sulfate, silicic acid, and aluminum hydroxide. The effects of the composition of the absorbent are studied on the activity for the absorption of SO{sub 2} and NO on the structure of the absorbent. The activity for the absorption of SO{sub 2} and NO markedly increased with the content of silica in the absorbent up to 40%. The formation of calcium silicate is suggested to be predominant in a high concentration of silica, while the formation of ettringite was observed by the XRD only for the absorbent containing silica below 30%. The distribution of the sulfur and nitrogen compounds in the absorbent revealed by XPS suggests that adsorbed nitrogen compounds are gradually replaced by sulfur compounds as the reaction proceeds.

  17. Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization 90Y PET

    PubMed Central

    Srinivas, Shyam M.; Natarajan, Navin; Kuroiwa, Joshua; Gallagher, Sean; Nasr, Elie; Shah, Shetal N.; DiFilippo, Frank P.; Obuchowski, Nancy; Bazerbashi, Bana; Yu, Naichang; McLennan, Gordon

    2014-01-01

    Background: Radioembolization with Yttrium-90 (90 Y) microspheres is becoming a more widely used transcatheter treatment for unresectable hepatocellular carcinoma (HCC). Using post-treatment 90 Y positron emission tomography/computerized tomography (PET/CT) scans, the distribution of microspheres within the liver can be determined and quantitatively assessed. We studied the radiation dose of 90 Y delivered to liver and treated tumors. Methods: This retrospective study of 56 patients with HCC, including analysis of 98 liver tumors, measured and correlated the dose of radiation delivered to liver tumors and normal liver tissue using glass microspheres (TheraSpheres®) to the frequency of complications with modified response evaluation criteria in solid tumors (mRECIST). 90 Y PET/CT and triphasic liver CT scans were used to contour treated tumor and normal liver regions and determine their respective activity concentrations. An absorbed dose factor was used to convert the measured activity concentration (Bq/mL) to an absorbed dose (Gy). Results: The 98 studied tumors received a mean dose of 169 Gy (mode 90–120 Gy; range 0–570 Gy). Tumor response by mRECIST criteria was performed for 48 tumors that had follow-up scans. There were 21 responders (mean dose 215 Gy) and 27 non-responders (mean dose 167 Gy). The association between mean tumor absorbed dose and response suggests a trend but did not reach statistical significance (p = 0.099). Normal liver tissue received a mean dose of 67 Gy (mode 60–70 Gy; range 10–120 Gy). There was a statistically significant association between absorbed dose to normal liver and the presence of two or more severe complications (p = 0.036). Conclusion: Our cohort of patients showed a possible dose–response trend for the tumors. Collateral dose to normal liver is non-trivial and can have clinical implications. These methods help us understand whether patient adverse events, treatment success, or

  18. Spatial and spectral distributions of thermal radiation emitted by a semi-infinite body and absorbed by a flat film

    SciTech Connect

    Blandre, Etienne Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-05-15

    We analyze the radiative power emitted by a semi-infinite medium and absorbed by a flat film located in its vicinity. In the near-field regime, if the film is thin enough, the surface waves at the rear interface of the film can contribute to the heat transfer. As a result, the absorbed power can be enhanced farther from the front surface. In the near-to-far field transition regime, temporal coherence of thermal radiation and the associated interferences can be used to shape the spectrum of the transferred radiative heat flux by selecting approriate geometrical parameters. These results highlight possibilities to control both the location where the radiative power is absorbed in the film and the spectral distribution, which are of paramount importance for applications such as near-field thermophotovoltaics.

  19. Evaluation of UV-permeability and photo-oxidisability of organic ultraviolet radiation-absorbing coatings

    NASA Astrophysics Data System (ADS)

    Li, Neng; Chen, Yuhe; Bao, Yongjie; Zhang, Zeqian; Wu, Zaixing; Chen, Zhangmin

    2015-03-01

    Enhancing the durability of the coatings used on bamboo products is essential for increasing their use in outdoor environments. In this study, we investigated organic UV radiation-absorbing coatings for use on bamboo surfaces. The degree of resistance of the coatings, which contained 2-(2-hydroxy-3-tert-butyl-5-methyl-phenyl)-5-chlorinated benzotriazole (BTZ-1), to UV radiation degradation was determined through spectroscopic analysis. The critical BTZ-1 loading amount was determined by analysing the spectroscopic data. Fourier transform infrared spectroscopy was used to elucidate the relationship between the degree of photooxidation of the coatings and their BTZ-1 concentration. The experimental results showed that the coatings provided a high degree of shielding from UV radiation. The critical loading amount was determined to be 1.82 ± 0.05 g BTZ-1/m2. The coatings formed using the formulations that contained 3 and 5 wt% BTZ-1 exhibited the lowest degree of photooxidation after exposure to UV radiation.

  20. Acoustic radiation force and torque on an absorbing compressible particle in an inviscid fluid.

    PubMed

    Silva, Glauber T

    2014-11-01

    Exact formulas of the acoustic radiation force and torque exerted by an arbitrary time-harmonic wave on an absorbing compressible particle that is suspended in an inviscid fluid are presented. It is considered that the particle diameter is much smaller than the incident wavelength, i.e., the so-called Rayleigh scattering limit. Moreover, the particle absorption assumed here is due to the attenuation of compressional waves only. Shear waves inside and outside the particle are neglected, since the inner and outer viscous boundary layer of the particle are supposed to be much smaller than the particle radius. The obtained radiation force formulas are used to establish the trapping conditions of a particle by a single-beam acoustical tweezer based on a spherically focused ultrasound transducer. In this case, it is shown that the particle absorption has a pivotal role in single-beam trapping at the transducer focal region. Furthermore, it is found that only the first-order Bessel vortex beam can generate the radiation torque on a small particle. In addition, numerical evaluation of the radiation force and torque exerted on a benzene and an olive oil droplet suspended in water are presented and discussed. PMID:25373943

  1. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  2. Verification of absorbed dose using diodes in cobalt-60 radiation therapy.

    PubMed

    Gadhi, Muhammad Asghar; Fatmi, Shahab; Chughtai, Gul M; Arshad, Muhammad; Shakil, Muhammad; Rahmani, Uzma Mahmood; Imran, Malik Younas; Buzdar, Saeed Ahmad

    2016-03-01

    The objective of this work was to enhance the quality and safety of dose delivery in the practice of radiation oncology. To achieve this goal, the absorbed dose verification program was initiated by using the diode in vivo dosimetry (IVD) system (for entrance and exit). This practice was implemented at BINO, Bahawalpur, Pakistan. Diodes were calibrated for making absorbed dose measurements. Various correction factors (SSD, dose non-linearity, field size, angle of incidence, and wedge) were determined for diode IVD system. The measurements were performed in phantom in order to validate the IVD procedure. One hundred and nineteen patients were monitored and 995 measurements were performed. For phantom, the percentage difference between measured and calculated dose for entrance setting remained within ±2% and for exit setting ±3%. For patient measurements, the percentage difference between measured and calculated dose remained within ±5% for entrance/open fields and ±7% for exit/wedge/oblique fields. One hundred and nineteen patients and 995 fields have been monitored during the period of 6 months. The analysis of all available measurements gave a mean percent deviation of ±1.19% and standard deviation of ±2.87%. Larger variations have been noticed in oblique, wedge and exit measurements. This investigation revealed that clinical dosimetry using diodes is simple, provides immediate results and is a useful quality assurance tool for dose delivery. It has enhanced the quality of radiation dose delivery and increased/improved the reliability of the radiation therapy practice in BINO. PMID:26753835

  3. Photocatalytic Active Radiation Measurements and Use

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  4. Resonant passive-active vibration absorber with integrated force feedback control

    NASA Astrophysics Data System (ADS)

    Høgsberg, Jan; Brodersen, Mark L.; Krenk, Steen

    2016-04-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction.

  5. Transient radiative cooling of an absorbing and scattering cylinder - A separable solution

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1988-01-01

    A cylindrical region filled with absorbing-emitting material is cooled by radiation to surroundings at a much lower temperature. A solution is found showing that, for each set of parameters, the transient radial temperature distribution reaches a fixed shape, although the temperatures are decreasing with time. This 'fully developed' transient region is characterized by having a constant emittance based on instantaneous values of the cylinder heat loss and mean temperature. This emittance depends only on the optical radius of the cylinder and the scattering albedo. The emittance is lower than that for a cylinder at uniform temperature. This arises from the larger local cooling and, hence, reduced temperatures of the outer layers of the cylinder. An examination of this transient emittance provides the ranges of parameters within which the simplification can be made that the cylinder has uniform radial temperature distribution throughout the cooling process.

  6. The influence of absorbed solar radiation by Saharan dust on hurricane genesis

    NASA Astrophysics Data System (ADS)

    Bretl, Sebastian; Reutter, Philipp; Raible, Christoph C.; Ferrachat, Sylvaine; Poberaj, Christina Schnadt; Revell, Laura E.; Lohmann, Ulrike

    2015-03-01

    To date, the radiative impact of dust and the Saharan air layer (SAL) on North Atlantic hurricane activity is not yet known. According to previous studies, dust stabilizes the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive for hurricane genesis. Here we analyze differences in hurricane genesis and frequency from ensemble sensitivity simulations with radiatively active and inactive dust in the aerosol-climate model ECHAM6-HAM. We investigate dust burden and other hurricane-related variables and determine their influence on disturbances which develop into hurricanes (developing disturbances, DDs) and those which do not (nondeveloping disturbances, NDDs). Dust and the SAL are found to potentially have both inhibiting and supporting influences on background conditions for hurricane genesis. A slight southward shift of DDs is determined when dust is active as well as a significant warming of the SAL, which leads to a strengthening of the vertical circulation associated with the SAL. The dust burden of DDs is smaller in active dust simulations compared to DDs in simulations with inactive dust, while NDDs contain more dust in active dust simulations. However, no significant influence of radiatively active dust on other variables in DDs and NDDs is found. Furthermore, no substantial change in the DD and NDD frequency due to the radiative effects of dust can be detected.

  7. Temperature field inside an absorbing-emitting semi-transparent slab at radiative equilibrium with variable spatial refractive index.

    NASA Astrophysics Data System (ADS)

    Abdallah, P. B.; Le Dez, V.

    2000-05-01

    The temperature field inside an absorbing-emitting slab of semi-transparent grey medium at radiative equilibrium has been determined with the help of a curved ray-tracing technique when the spatial variation of the refractive index in the medium is assumed to be linear. The integration of the radiative transfer equation has been carried out on the trajectories on which radiation propagates inside the medium, leading to the absorbed radiative energy at an internal point. For a linear refractive index, existence of totally reflected internal trajectories producing mirage effects have to be taken into account in the resolution of the radiative problem. Results obtained for different optical depths with low and strong gradients of refractive index display significant differences from the case of a constant refractive index.

  8. Application of a passive/active autoparametric cantilever beam absorber with PZT actuator for Duffing systems

    NASA Astrophysics Data System (ADS)

    Silva-Navarro, G.; Abundis-Fong, H. F.; Vazquez-Gonzalez, B.

    2013-04-01

    An experimental investigation is carried out on a cantilever-type passive/active autoparametric vibration absorber, with a PZT patch actuator, to be used in a primary damped Duffing system. The primary system consists of a mass, viscous damping and a cubic stiffness provided by a soft helical spring, over which is mounted a cantilever beam with a PZT patch actuator actively controlled to attenuate harmonic and resonant excitation forces. With the PZT actuator on the cantilever beam absorber, cemented to the base of the beam, the auto-parametric vibration absorber is made active, thus enabling the possibility to control the effective stiffness and damping associated to the passive absorber and, as a consequence, the implementation of an active vibration control scheme able to preserve, as possible, the autoparametric interaction as well as to compensate varying excitation frequencies and parametric uncertainty. This active vibration absorber employs feedback information from a high resolution optical encoder on the primary Duffing system and an accelerometer on the tip beam absorber, a strain gage on the base of the beam, feedforward information from the excitation force and on-line computations from the nonlinear approximate frequency response, parameterized in terms of a proportional gain provided by a voltage input to the PZT actuator, thus modifying the closed-loop dynamic stiffness and providing a mechanism to asymptotically track an optimal, robust and stable attenuation solution on the primary Duffing system. Experimental results are included to describe the dynamic and robust performance of the overall closed-loop system.

  9. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  10. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation.

    PubMed

    Akhlaghi, Mohsen K; Schelew, Ellen; Young, Jeff F

    2015-01-01

    At the core of an ideal single-photon detector is an active material that absorbs and converts every incident photon to a discriminable signal. A large active material favours efficient absorption, but often at the expense of conversion efficiency, noise, speed and timing accuracy. In this work, short (8.5 μm long) and narrow (8 × 35 nm(2)) U-shaped NbTiN nanowires atop silicon-on-insulator waveguides are embedded in asymmetric nanobeam cavities that render them as near-perfect absorbers despite their small volume. At 2.05 K, when biased at 0.9 of the critical current, the resulting superconducting single-photon detectors achieve a near-unity on-chip quantum efficiency for ∼1,545 nm photons, an intrinsic dark count rate <0.1 Hz, a reset time of ∼7 ns, and a timing jitter of ∼55 ps full-width at half-maximum. Such ultracompact, high-performance detectors are essential for progress in integrated quantum optics. PMID:26359204

  11. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Mohsen K.; Schelew, Ellen; Young, Jeff F.

    2015-09-01

    At the core of an ideal single-photon detector is an active material that absorbs and converts every incident photon to a discriminable signal. A large active material favours efficient absorption, but often at the expense of conversion efficiency, noise, speed and timing accuracy. In this work, short (8.5 μm long) and narrow (8 × 35 nm2) U-shaped NbTiN nanowires atop silicon-on-insulator waveguides are embedded in asymmetric nanobeam cavities that render them as near-perfect absorbers despite their small volume. At 2.05 K, when biased at 0.9 of the critical current, the resulting superconducting single-photon detectors achieve a near-unity on-chip quantum efficiency for ~1,545 nm photons, an intrinsic dark count rate <0.1 Hz, a reset time of ~7 ns, and a timing jitter of ~55 ps full-width at half-maximum. Such ultracompact, high-performance detectors are essential for progress in integrated quantum optics.

  12. Effect of UV-C radiation and vapor released from a water hyacinth root absorbent containing bergamot oil to control mold on storage of brown rice.

    PubMed

    Songsamoe, Sumethee; Matan, Narumol; Matan, Nirundorn

    2016-03-01

    The aims of this study were to develop absorbent material from a water hyacinth root containing bergamot oil and to improve its antifungal activity by using ultraviolet C (UV-C) against the growth of A. flavus on the brown rice. Process optimization was studied by the immersion of a water hyacinth root into a water and bergamot oil (300, 500 and 700 μl ml(-1)). The root (absorbent material) was dried at 50, 70, and 90 °C for 10 min. Then, ultraviolet C (UV-C) was used for enhancing the antifungal activity of bergamot oil for 10, 15, and 20 min. The shelf-life of the brown rice with the absorbent after incubation at 25 ° C with 100 % RH for 12 weeks was also investigated. A microscope and a Fourier transform infrared spectroscopy (FTIR) were used to find out possible mode of action. Results indicated that the absorbent material produced from the water hyacinth root containing bergamot oil at 500 μl ml(-1) in the water solution, dried at 70 ° C and UV for 15 min showed the highest antifungal activity in a vapor phase against A. flavus on the brown rice. A microscopy investigation confirmed that the water hyacinth root could absorb bergamot oil from an outside water solution into root cells. Limonene in vapor phase was shown to be a stronger inhibitor than essential oil after UV-C radiation and should be the key factor in boosting bergamot oil antifungal activity. A vapor phase of bergamot oil could be released and inhibit natural mold on the surface of the brown rice for up to 12 weeks; without the absorbent, mold covered the brown rice in only 4 weeks. PMID:27570269

  13. Integrated passive/active vibration absorber for multi-story buildings

    NASA Technical Reports Server (NTRS)

    Lee-Glauser, Gina J.; Ahmadi, Goodarz; Horta, Lucas G.

    1995-01-01

    Passive isolator, active vibration absorber, and an integrated passive/active (hybrid) control are studied for their effectiveness in reducing structural vibration under seismic excitations. For the passive isolator, a laminated rubber bearing base isolator which has been studied and used extensively by researchers and seismic designers is considered. An active vibration absorber concept, which can provide guaranteed closed-loop stability with minimum knowledge of the controlled system, is used to reduce the passive isolator displacement and to suppress the top floor vibration. A three-story building model is used for the numerical simulation. The performance of an active vibration absorber and a hybrid vibration controller in reducing peak structural responses is compared with the passively isolated structural response and with absence of vibration control systems under the N00W component of El Centro 1940 and N90W component of the Mexico City earthquake excitation records. The results show that the integrated passive/active vibration control system is most effective in suppressing the peak structural acceleration for the El Centro 1940 earthquake when compared with the passive or active vibration absorber alone. The active vibration absorber, however, is the only system that suppresses the peak acceleration of the structure for the Mexico City 1985 earthquake.

  14. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  15. Radioimmunotherapy treatment planning based on radiation absorbed dose or patient size

    SciTech Connect

    Eary, J.F.; Krohn, K.A.; Press, O.W. |

    1996-05-01

    Several approaches have been used to plan treatment doses for patients undergoing radioimmunotherapy. Investigators often use fixed doses, or doses based on patient size (mCi/kg or mCi/m{sup 2}). Our treatment protocols for lymphoma and leukemia involved calculation of tissue radiation absorbed dose based on images from a trace labeled infusion of antibody prior to treatment. In a recent analysis of patients treated in the Phase I and II dose escalation trial for treatment of non-Hodgkin`s lymphoma with I-131 anti-CD20 antibody (B1), we investigated the relationship between our dosimetry based treatment and dose based on patient size. Tissue radiation dose for several normal organs and for tumors were plotted versus the mCi administered per kg or m{sup 2} of the patient to evaluate the relationship between the two treatment approaches. These graphs showed correlation coefficients ranging from 0.021 to 0.684, demonstrating the variability in antibody catabolism between patients. This means that fixed doses or administrations based on patient size do not deliver consistent radiation doses to normal organs or tumors. This finding was extrapolated to show that toxicity from doses based on patient size di not correlate with treatment dose; those based on calculated rad/organ did. Phase I clinical trials using treatment doses based on patient size where there are likely to be variations in patient antibody catabolism will result in confounding toxicities at apparently similar mCi dose levels. Use of pre-treatment scans for treatment dose planning are worth the additional effort by normalizing the normal tissue toxicity.

  16. Radiative Forcing of the Lower Stratosphere over the Arctic by Light Absorbing Particles

    NASA Technical Reports Server (NTRS)

    Baumgardner, D.; Raga, G.; Kok, G.

    2003-01-01

    Light absorbing particles (LAP), such as soot and dust, change the thermodynamic structure of the atmosphere and contribute to regional and global climate change. The lower stratosphere (LS) is particularly sensitive to the presence of LAP since the lifetime of particles in the LS may extend from months to years, in contrast to tropospheric lifetimes of at most a few days. The source of particles in the LS may be aircraft, meteorites or emissions from tropospheric sources. There has been a lack, however, of accurate, quantitative measurements made with sufficiently sensitive instruments. This limits our understanding of the origin and lifetime of aerosols in this region of the atmosphere. Here we present recent measurements in the Arctic UT/LS with a new, highly sensitive instrument that has detected black carbon (BC) mass concentrations of 20-1000 ng m(exp -3) that are 10-1000 times larger than those reported in previous studies and are at least 30 times larger than predicted masses based on fuel consumption by commercial aircraft that fly in these regions. Scattering and absorption of solar and terrestrial radiation by the particles in a layer from 8- 12 Km leads to a negative net forcing of -0.5 W sq m at the top of the atmosphere and 9C of heating in this layer during the average aerosol lifetime at these altitudes. The new measurements suggest that the influence of aircraft emissions have been underestimated or that aircraft may not be the only significant source of light absorbing particles in the UT/LS. The presence of these aerosols can cause local changes in the thermal structure of the lower stratosphere and a subsequent modification of stratosphere/tropopause exchange of gases and particles.

  17. Biocidal activity of a light-absorbing fluorescent conjugated polyelectrolyte.

    PubMed

    Lu, Liangde; Rininsland, Frauke H; Wittenburg, Shannon K; Achyuthan, Komandoor E; McBranch, Duncan W; Whitten, David G

    2005-10-25

    Herein we describe studies that indicate a cationic conjugated polyelectrolyte shows biocidal activity against gram-negative bacteria (Escherichia coli, E. coli, BL21, with plasmids for Azurin and ampicillin resistance) and gram-positive bacterial spores (Bacillus anthracis, Sterne, B. anthracis, Sterne). These studies were carried out with aqueous suspensions of the conjugated polyelectrolyte, with the polyelectrolyte in supported formats and with samples in which the conjugated polyelectrolyte was coated on the bacteria. The results are interesting in that the biocidal activity is light-induced and appears effective due to the ability of the conjugated polyelectrolyte to form a surface coating on both types of bacteria. The effects observed here should be general and suggest that a range of conjugated polyelectrolytes in different formulations may provide a useful new class of biocides for both dark and light-activated applications. PMID:16229539

  18. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    PubMed Central

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-01-01

    X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O2. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-­ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O2 reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account. PMID:22525754

  19. Active control of payload fairing noise using distributed active vibration absorbers

    NASA Astrophysics Data System (ADS)

    Charpentier, Arnaud; Johnson, Marty E.; Fuller, Chris R.

    2003-04-01

    High sound pressure inside a launch vehicle fairing during lift-off can damage the payload. Interior levels of up to 140 dB between 60 and 250 Hz are mostly due to exhaust plume noise combined with the limited transmission loss of lightweight composite fairings and little acoustic damping in the fairing volume. Past work using passive and hybrid passive/reactive noise control devices has shown that their limitations are mostly due to packaging volume and weight penalty. The objective of this work is to design a lightweight, compact, and low electrical power active noise control system to reduce the fairing interior sound level. Hybrid active/passive actuators such as Smart Foam (Couche and Fuller, Proceedings of Active 1999, Ft. Lauderdale, FL, pp. 609-620) and Distributed Active Vibration Absorbers (Marcotte, Fuller, and Johnson, Proceedings of Active 2002, ISVR, Southampton, England, pp. 535-546) are optimized for fairing noise control. The latter have been used to increase the transmission loss of the fairing. Active noise control test results on a sub-scale, sandwich composite fairing are presented. The global interior acoustic response due to airborne exterior excitation is minimized using an adaptive multiple-input, multiple-output feedforward controller. [Work supported by the Air Force Research Laboratory, Space Vehicles Directorate (AFRL).

  20. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    SciTech Connect

    Desrosiers, M.F.; Le, F.G. ); Harewood, P.M.; Josephson, E.S. ); Montesalvo, M. )

    1993-09-01

    Fresh whole eggs treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of EPR signals were measured, the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to [approximately]6 kGy), which decayed [approximately]20% within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reirradiated; with this procedure estimates were better for shell processed at the lower doses.

  1. [Estimation of absorbed dose of beta radiation into the critical tissues by a single injection of tritiated water].

    PubMed

    Tsuchiya, T; Norimura, T; Yamamoto, H; Hatakeyama, S; Dohi, S; Kunugita, N

    1988-12-01

    The biological effects of tritium in humans need to be clarified, because the chances of humans becoming exposed to tritium beta radiation may increase with the development of the nuclear fusion reactor. To evaluate the biological effects of tritium, it is necessary to estimate exactly the absorbed dose from the tritium beta rays in the tissue. In many reports, the absorbed dose of HTO in the tissues is estimated from the tritium content in body fluid and dose calculations are customarily based upon the water content of soft tissues, which is taken to be 0.7 to 0.8. However, these methods may not show the exact absorbed dose in the organs. In the present study, the radioactivity of the critical tissues was measured directly using a sample oxidizer and the absorbed dose was calculated from the radioactivity of tritium in the tissues. Details on the method for calculation of the absorbed dose in tissues of the mouse is shown in this report. The results suggest that the absorbed dose should be obtained from the radioactivity in the tissues. PMID:3212298

  2. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications

    NASA Astrophysics Data System (ADS)

    Xu, Wenhua; He, Yun; Kong, Peng; Li, Jialin; Xu, Haibing; Miao, Ling; Bie, Shaowei; Jiang, Jianjun

    2015-11-01

    At frequencies below 2 GHz, conventional microwave absorbers are limited in application by their thickness or narrow absorption bandwidth. In this paper, we propose and fabricate an ultra-thin broadband active frequency selective surface (AFSS) absorber with a stretching transformation (ST) pattern for use in the ultrahigh-frequency (UHF) band. This absorber is loaded with resistors and varactors to produce its tunability. To expand the tunable bandwidth, we applied the ST with various coefficients x and y to the unit cell pattern. With ST coefficients of x = y = 1, the tunability and strong absorption are concisely demonstrated, based on a discussion of impedance matching. On analyzing the patterns with various ST coefficients, we found that a small x/y effectively expands the tunable bandwidth. After this analysis, we fabricated an AFSS absorber with ST coefficients of x = 0.7 and y = 1. Its measured reflectivity covered a broad band of 0.7-1.9 GHz below -10 dB at bias voltages of 10-48 V. The total thickness of this absorber, 7.8 mm, was only ˜λ/54 of the lower limit frequency, ˜λ/29 of the center frequency, and ˜λ/20 of the higher limit frequency. Our measurements and simulated results indicate that this AFSS absorber can be thin and achieve a broad bandwidth simultaneously.

  3. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  4. A model study on the absorbed dose of radiation following respiratory intake of 238U3O8 aerosols.

    PubMed

    Canepa, Carlo

    2014-12-01

    Aerosols of depleted uranium oxides, formed upon high-energy impact of shells on hard targets during military operations, are able to disperse, reach the alveolar region of the lungs and be absorbed and distributed throughout various parts of the body. The absorbed particles are subjected to clearance in the upper respiratory tract, distribution to other body districts, dissolution and excretion. While the soluble forms of uranium are known to deliver a small dose of radiation to the body due to their homogeneous distribution and the low specific activity of (238)U, ceramic particles exhibit a low dissolution rate and irradiate a limited volume of tissue for a long time with alpha particles with an energy of 4.267 MeV. The extent of the irradiated tissues depends on the radius of the particles and the total intake of uranium oxides. For the measured intake of U3O8 of a war veteran (15.51 μg) the number of particles ranges from 5.56×10(4) to 6.95×10(6) for sizes of 0.4-2.0 μm. Modelling the distribution of the particles between two compartments of the body, the averaged dose absorbed in 20 y by tissues surrounding the particles and within the range of the alpha particles varies from 6.8 mGy to 0.85 Gy for lungs and 8.1 mGy to 1.0 Gy for the lymph nodes, respectively. Correspondingly, due to the clearance and redistribution, the mass irradiated by 2.0-μm particles falls in 20 y from 6.06 mg to 0.94 μg in the lungs and grows from 0 to 1.0 mg in the lymph nodes. The estimated rate of formation of hydroxyl radicals upon radiolysis of water in the lungs and lymph nodes is 5.17×10(4) d(-1) per cell after 1 y. PMID:24578528

  5. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  6. Optical switching in bistable active cavity containing nonlinear absorber on bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Bazhenov, Vladimir Y.; Taranenko, Victor B.; Vasnetsov, Mikhail V.

    1993-04-01

    The transverse nonlinear dynamics of switchings in an active system (laser with nonlinear saturable absorber on bacteriorhodopsin in a self-imaging cavity) is studied both experimentally and theoretically. The soliton-like light field structure formation and continuously cycled self-switching process are investigated.

  7. Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase

    SciTech Connect

    De la Mora, Eugenio; Lovett, Janet E.; Blanford, Christopher F.; Garman, Elspeth F.; Valderrama, Brenda; Rudino-Pinera, Enrique

    2012-05-01

    Radiation-induced reduction, radiolysis of copper sites and the effect of pH value together with the concomitant geometrical distortions of the active centres were analysed in several fungal (C. gallica) laccase structures collected at cryotemperature. This study emphasizes the importance of careful interpretation when the crystallographic structure of a metalloprotein is described. X-ray radiation induces two main effects at metal centres contained in protein crystals: radiation-induced reduction and radiolysis and a resulting decrease in metal occupancy. In blue multicopper oxidases (BMCOs), the geometry of the active centres and the metal-to-ligand distances change depending on the oxidation states of the Cu atoms, suggesting that these alterations are catalytically relevant to the binding, activation and reduction of O{sub 2}. In this work, the X-ray-determined three-dimensional structure of laccase from the basidiomycete Coriolopsis gallica (Cg L), a high catalytic potential BMCO, is described. By combining spectroscopic techniques (UV–Vis, EPR and XAS) and X-ray crystallography, structural changes at and around the active copper centres were related to pH and absorbed X-ray dose (energy deposited per unit mass). Depletion of two of the four active Cu atoms as well as low occupancies of the remaining Cu atoms, together with different conformations of the metal centres, were observed at both acidic pH and high absorbed dose, correlating with more reduced states of the active coppers. These observations provide additional evidence to support the role of flexibility of copper sites during O{sub 2} reduction. This study supports previous observations indicating that interpretations regarding redox state and metal coordination need to take radiation effects explicitly into account.

  8. Radiation absorbed from dental implant radiography: a comparison of linear tomography, CT scan, and panoramic and intra-oral techniques

    SciTech Connect

    Clark, D.E.; Danforth, R.A.; Barnes, R.W.; Burtch, M.L. )

    1990-01-01

    Absorbed radiation dose in bone marrow, thyroid, salivary gland, eye, and skin entrance was determined by placement of lithium fluoride thermoluminescent dosimeters (TLD's) at selected anatomical sites within and on a human-like x-ray phantom. The phantom was exposed to radiation from linear tomographic and computer-assisted tomographic (CT) simulated dental implant radiographic examinations. The mean dose was determined for each anatomical site. Resulting dose measurements from linear tomography and computer-assisted tomography are compared with reported panoramic and intra-oral doses. CT examination delivered the greatest dose, while linear tomography was generally lowest. Panoramic and intra-oral doses were similar to those of linear tomography.

  9. Measurements of a prototype synchrotron radiation pumped absorber for future light sources

    NASA Astrophysics Data System (ADS)

    Chou, T. S.; Foerster, C. L.; Halama, H.; Lanni, C.

    1988-09-01

    In the new generation of advanced synchrotron light sources, the conventional concept of distributed pumping is no longer suitable for removing the gas load caused by photon stimulated desorption (PSD). A new concept using a combination of photon absorber and pumping station has been designed, constructed, and installed in the U10B beam line at the VUV ring of the National Synchrotron Light Source. The system consists of an electrically insulated water cooled copper block, a titanium sublimation pump, calibrated BA gauges, a calibrated RGA, and a known conductance. A photon beam 10 milliradian wide and 3.26 milliradian high, having critical energy of 500 eV, is directed on the absorber. PSD yield is studied as a function of total beam dose and absorber surface preparation. The results from this experiment, pump characteristics, design of an absorber pump for future light sources, and the pressure improvement factors will be presented.

  10. Measurements of a prototype synchrotron radiation pumped absorber for future light sources

    SciTech Connect

    Chou, T.S.; Foerster, C.L.; Halama, H.; Lanni, C.

    1988-01-01

    In the new generation of advanced synchrotron light sources, the conventional concept of distributed pumping is no longer suitable for removing the gas load caused by photon stimulated desorption (PSD). A new concept using a combination of photon absorber and pumping station has been designed, constructed, and installed in the U1OB beam line at the VUV ring of the National Synchrotron Light Source. The system consists of an electrically insulated water cooled copper block, a titanium sublimation pump, calibrated BA gauges, a calibrated RGA, and a known conductance. A photon beam 10 milliradian wide and 3.26 milliradian high, having critical energy of 500 eV, is directed on the absorber. PSD yield is studied as a function of total beam dose and absorber surface preparation. The results from this experiment, pump characteristics, design of an absorber pump for future light sources, and the pressure improvement factors will be presented. 5 refs., 7 figs., 1 tab.

  11. Experimental studies on active control of a dynamic system via a time-delayed absorber

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Sun, Yixia

    2015-04-01

    The traditional passive absorber is fully effective within a narrow and certain frequency band. To solve this problem, a time-delayed acceleration feedback is introduced to convert a passive absorber into an active one. Both the inherent and the intentional time delays are included. The former mainly comes from signal acquiring and processing, computing, and applying the actuation force, and its value is fixed. The latter is introduced in the controller, and its value is actively adjustable. Firstly, the mechanical model is established and the frequency response equations are obtained. The regions of stability are delineated in the plane of control parameters. Secondly, the design scheme of control para- meters is performed to help select the values of the feedback gain and time delay. Thirdly, the experimental studies are conducted. Effects of both negative and positive feedback control are investigated. Experimental results show that the proper choices of control parameters may broaden the effective frequency band of vibration absorption. Moreover, the time-delayed absorber greatly suppresses the resonant response of the primary system when the passive absorber totally fails. The experimental results are in good agreement with the theoretical predictions and numerical simulations.

  12. Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean (Phaseolus vulgaris L.) grown under different nitrogen conditions.

    PubMed

    Pinto, M E; Casati, P; Hsu, T P; Ku, M S; Edwards, G E

    1999-02-01

    The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds. PMID:10343405

  13. Optimum combinations of visible and near-infrared reflectances for estimating the fraction of photosynthetically available radiation absorbed by plants

    NASA Technical Reports Server (NTRS)

    Podaire, Alain; Deschamps, Pierre-Yves; Frouin, R.; Asrar, Ghassem

    1991-01-01

    A useful parameter to estimate terrestrial primary productivity, that can be sensed from space, is the daily averaged fraction of Photosynthetically Available Radiation (PAR) absorbed by plants. To evaluate this parameter, investigators have relied on the fact that the relative amount of radiation reflected by a vegetated surface in the visible and near infrared depends on the fraction of the surface covered by the vegetation and therefore, correlates with absorbed PAR. They have used vegetation indices, namely normalized difference and simple ratio, to derive absorbed PAR. The problem with normalized difference and simple ratio is first, they are non linear functions of radiance or reflectance and therefore, cannot be readily applied to heterogeneous targets, second, they are used in generally nonlinear relationships, which make time integrals of the indices not proportional to primary productivity, and third, the relationships depend strongly on the type of canopy and background. To remove these limitations, linear combinations of visible and near infrared reflectances at optimum (one or two) viewing zenith angles are proposed.

  14. Improved estimates of the radiation absorbed dose to the urinary bladder wall

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Minarik, David; Johansson, Lennart; Mattsson, Sören; Leide-Svegborn, Sigrid

    2014-05-01

    Specific absorbed fractions (SAFs) have been calculated as a function of the content in the urinary bladder in order to allow more realistic calculations of the absorbed dose to the bladder wall. The SAFs were calculated using the urinary bladder anatomy from the ICRP male and female adult reference computational phantoms. The urinary bladder and its content were approximated by a sphere with a wall of constant mass, where the thickness of the wall depended on the amount of urine in the bladder. SAFs were calculated for males and females with 17 different urinary bladder volumes from 10 to 800 mL, using the Monte Carlo computer program MCNP5, at 25 energies of mono-energetic photons and electrons ranging from 10 KeV to 10 MeV. The decay was assumed to be homogeneously distributed in the urinary bladder content and the urinary bladder wall, and the mean absorbed dose to the urinary bladder wall was calculated. The Monte Carlo simulations were validated against measurements made with thermoluminescent dosimeters. The SAFs obtained for a urine volume of 200 mL were compared to the values calculated for the urinary bladder wall using the adult reference computational phantoms. The mean absorbed dose to the urinary wall from 18F-FDG was found to be 77 µGy/MBq formales and 86 µGy/MBq for females, while for 99mTc-DTPA the mean absorbed doses were 80 µGy/MBq for males and 86 µGy/MBq for females. Compared to calculations using a constant value of the SAF from the adult reference computational phantoms, the mean absorbed doses to the bladder wall were 60% higher for 18F-FDG and 30% higher for 99mTc-DTPA using the new SAFs.

  15. Improving solar radiation absorbance of high refractory sintered ceramics by fs Ti:sapphire laser surface treatment

    NASA Astrophysics Data System (ADS)

    Cappelli, E.; Orlando, S.; Sciti, D.; Bellucci, A.; Lettino, A.; Trucchi, D. M.

    2014-05-01

    Samples of high refractory pressure-less sintered carbide ceramics (HfC based), polished by mechanical grinding to a surface roughness Ra ∼ 40 nm, have been surface treated, in vacuum, by fs Ti:sapphire laser, operating at 800 nm wavelength, 1000 Hz repetition rate and 100 fs pulse duration, at fluence varying in the range (∼6-25 J/cm2), to optimize their solar radiation absorbance, in such a way that they could operate as absorber material in an innovative conversion module of solar radiation into electrical energy. To this aim, an area of approximately 9.6 cm2 was treated by the fs laser beam. The beam strikes perpendicular to the sample, placed on a stage set in motion in the x, y, z-directions, thus generating a scanning pattern of parallel lines. The experimental conditions of laser treatment (energy fluence, speed of transition, overlapping and lateral step distance) were varied in order to optimize the radiation absorption properties of the patterned surface. In laser treated samples the absorption value is increased by about 15%, compared to the original untreated surface, up to a value of final absorbance of about 95%, all over the range of solar radiation spectrum (from UV to IR). The morphological and chemical effects of the treatment have been evaluated by SEM-EDS analysis. At very high fluence, we obtained the characteristic ablation craters and local material decomposition, while at lower fluence (in any case above the threshold) typical periodic nano-structures have been obtained, exploitable for their modified optical properties.

  16. Average fetal depth in utero: data for estimation of fetal absorbed radiation dose

    SciTech Connect

    Ragozzino, M.W.; Breckle, R.; Hill, L.M.; Gray, J.E.

    1986-02-01

    To estimate fetal absorbed dose from radiographic examinations, the depth from the anterior maternal surface to the midline of the fetal skull and abdomen was measured by ultrasound in 97 pregnant women. The relationships between fetal depth, fetal presentation, and maternal parameters of height, weight, anteroposterior (AP) thickness, gestational age, placental location, and bladder volume were analyzed. Maternal AP thickness (MAP) can be estimated from gestational age, maternal height, and maternal weight. Fetal midskull and abdominal depths were nearly equal. Fetal depth normalized to MAP was independent or nearly independent of maternal parameters and fetal presentation. These data enable a reasonable estimation of absorbed dose to fetal brain, abdomen, and whole body.

  17. Active-to-absorbing-state phase transition in an evolving population with mutation

    NASA Astrophysics Data System (ADS)

    Sarkar, Niladri

    2015-10-01

    We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the AAPT that shows the significance of mutation and highlights the connection of this model with the well-known directed percolation universality class. Our model should be a useful starting point to study how mutation may affect extinction or survival of a species.

  18. Active-to-absorbing-state phase transition in an evolving population with mutation.

    PubMed

    Sarkar, Niladri

    2015-10-01

    We study the active to absorbing phase transition (AAPT) in a simple two-component model system for a species and its mutant. We uncover the nontrivial critical scaling behavior and weak dynamic scaling near the AAPT that shows the significance of mutation and highlights the connection of this model with the well-known directed percolation universality class. Our model should be a useful starting point to study how mutation may affect extinction or survival of a species. PMID:26565171

  19. Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1993-01-01

    Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.

  20. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    PubMed

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies <60 and >80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. PMID:25213263

  1. Comparison of the Absorbed Dose for 99mTc-Diethylenetriaminepentaacetic Acid and 99mTc-Ethylenedicysteine Radiopharmaceuticals using Medical Internal Radiation Dosimetry

    PubMed Central

    Pirdamooie, Shokufeh; Shanei, Ahmad; Moslehi, Masoud

    2015-01-01

    The aim of this study was the investigation of absorbed dose to the kidneys, spleen, and liver during technetium-99 m ethylene dicysteine and technetium-99 m diethylenetriaminepentaacetic acid (99mTc-EC and 99mTc-DTPA) kidney scan. Patients who had been prepared for the kidney scan, were divided into two groups (Groups 1 and 2). The first group (Group 1) and the second group (Group 2) received intravenous injection of 99mTc-EC and 99mTc-DTP, respectively. A certain amount of radiopharmaceuticals was injected into each patient and was immediately imaged with dual-head gamma camera to calculate the activity through the conjugated view method. Then, the doses of kidney, liver, and spleen were measured using medical internal radiation dosimetry method. Finally, absorbed dose of these organs was compared. Based on these different results (P < 0.05), organs absorbed dose was significantly less with radiopharmaceutical 99mTc-EC as compared with 99mTc-DTPA. PMID:26284173

  2. Finite volume method for radiative heat transfer in an unstructured flow solver for emitting, absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Gazdallah, Moncef; Feldheim, Véronique; Claramunt, Kilian; Hirsch, Charles

    2012-06-01

    This paper presents the implementation of the finite volume method to solve the radiative transfer equation in a commercial code. The particularity of this work is that the method applied on unstructured hexahedral meshes does not need a pre-processing step establishing a particular marching order to visit all the control volumes. The solver simply visits the faces of the control volumes as numbered in the hexahedral unstructured mesh. A cell centred mesh and a spatial differencing step scheme to relate facial radiative intensities to nodal intensities is used. The developed computer code based on FVM has been integrated in the CFD solver FINE™/Open from NUMECA Int. Radiative heat transfer can be evaluated within systems containing uniform, grey, emitting, absorbing and/or isotropically or linear anisotropically scattering medium bounded by diffuse grey walls. This code has been validated for three test cases. The first one is a three dimensional rectangular enclosure filled with emitting, absorbing and anisotropically scattering media. The second is the differentially heated cubic cavity. The third one is the L-shaped enclosure. For these three test cases a good agreement has been observed when temperature and heat fluxes predictions are compared with references taken, from literature.

  3. Surface-active and Light-absorbing Secondary Organic Aerosol (SOA) Material

    NASA Astrophysics Data System (ADS)

    McNeill, V. F.; Sareen, N.; Schwier, A. N.; Shapiro, E. L.

    2009-12-01

    We have observed the formation of light-absorbing, high-molecular-weight, and surface-active organics from methylgyloxal interacting with ammonium salts in aqueous aerosol mimics. Mixtures of methylglyoxal and glyoxal also form light-absorbing products and exhibit surface tension depression with a Langmuir-like dependence on initial methylglyoxal concentration. We used chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS) to characterize the product species. The results are consistent with aldol condensation products, carbon-nitrogen species, sulfur-containing compounds, and oligomeric species up to 759 amu. These observations have potentially significant implications for our understanding of the effects of SOA on climate, since a) SOA are typically treated as non-absorbing in climate models, and b) surface tension depression in aqueous aerosols by SOA material may result in increased cloud condensation nucleus (CCN) activity. Furthermore, surface film formation could affect aerosol heterogeneous chemistry. We will also discuss aerosol flow tube O3 oxidation experiments designed to determine the atmospheric lifetimes of the observed product compounds.

  4. Semi-active vibration absorber based on real-time controlled MR damper

    NASA Astrophysics Data System (ADS)

    Weber, F.

    2014-06-01

    A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.

  5. Conversion of recoilless γ radiation into a periodic sequence of short intense pulses in a set of several sequentially placed resonant absorbers

    NASA Astrophysics Data System (ADS)

    Radeonychev, Y. V.; Antonov, V. A.; Vagizov, F. G.; Shakhmuratov, R. N.; Kocharovskaya, Olga

    2015-10-01

    An efficient technique for producing a periodic sequence of short nearly bandwidth-limited pulses of recoilless γ radiation via its transmission through an optically thick vibrating resonant absorber was demonstrated recently [Nature (London) 508, 80 (2014), 10.1038/nature13018]. In this paper we extend the theoretical analysis to a case of multiple absorbers. We analyze a simple physical model describing control of spectral content of a frequency modulated γ radiation by adjusting the amplitudes and initial phases of spectral components, using the resonant absorption and dispersion in a set of several sequentially placed resonant absorbers. On the basis of analytical solutions, we determine the ultimate possibilities of the proposed technique.

  6. Measurement of absorbed dose rate of gamma radiation for lead compounds

    NASA Astrophysics Data System (ADS)

    Rudraswamy, B.; Dhananjaya, N.; Manjunatha, H. C.

    2010-07-01

    An attempt has been made to estimate the absorbed dose rate using both theoretical and measured mass energy attenuation coefficient of gamma for the lead compounds such as PbNO 3, PbCl 2, PbO 2 and PbO using various gamma sources such as 22Na (511, 1274), 137Cs (661.6), 54Mn (835) and 60Co (1173, 1332 keV).

  7. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping

    2010-04-01

    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  8. Light Absorbing Impurities in Snow in the Western US: Partitioning Radiative Impacts from Mineral Dust and Black Carbon

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.

    2013-12-01

    Melt of annual mountain snow cover dominates water resources in the western United States. Recent studies in the Upper Colorado River Basin have shown that radiative forcing by light absorbing impurities (LAIs) in mountain snow cover has accelerated snowmelt, impacted runoff timing and magnitude, and reduced annual flow. However, these studies have assumed that LAIs are primarily mineral dust, and have not quantified the radiative contribution by carbonaceous particles from bio and fossil fuel (industrial and urban) sources. Here we quantify both dust and black carbon (BC) content and assess the unique BC radiative forcing contribution in this dust dominated impurity regime using a suite of advanced field, lab, and modeling techniques. Daily measurements of surface spectral albedo and optical grain radius were collected with a field spectrometer over the 2013 spring melt season in Senator Beck Basin Study Area in the San Juan Mountains, CO, Southwestern US. Coincident snow samples were collected daily and processed for; (1) dust and BC content (2) impurity particle size, and (3) impurity optical properties. Measured snow and impurity properties were then used to drive the Snow, Ice, and Aerosol Radiation (SNICAR) model. Partitioning the unique radiative contribution from each constituents is achieved through unique model runs for clean snow, dust only, and BC only.

  9. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy.

    PubMed

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a (60)Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a (60)Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for (60)Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined uncertainty. This method

  10. The measuring of the absorbed dose in human tissue that underwent irradiation with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Bercea, S.; Nikolic, A.; Cenusa, C.; Celarel, A.

    2010-07-01

    Ionizing radiations are radiations of atomic origin (X) or nuclear origin (α, β, γ). They are composed of either subatomic particles (α, β) or electromagnetic waves (X, γ) which possess enough energy to remove electrons from the atoms and molecules of the medium with which particles interact. They thus generate ionizing processes. The effects that are produced by the interaction of the ionizing radiations with a particular medium (which could be human tissue) have different intensities depending on the nature of the incident radiations, on the rate in which these radiations release energy to the medium and on the total amount of energy released to the medium. For this reason, the energy released by a particular type of ionizing radiations to a particular type of medium has become of great interest both for researchers and for specialists who deal with using ionizing radiations in different fields, such as the biomedical one. The aim of the present paper is to briefly present some of the aspects connected to the way certain quantities are defined, quantities which are specific to the interaction of ionizing particles with the medium they pass through and which are also connected to the energy released in the medium. The paper also describes methods of measuring these quantities.

  11. Whole-body biodistribution, radiation absorbed dose and brain SPECT imaging with iodine-123-{beta}-CIT in healthy human subjects

    SciTech Connect

    Seibyl, J.P.; Wallace, E.; Smith, E.O.; Stabin, M.; Baldwin, R.M.; Zoghbi, S.; Zea-Ponce, Y.; Gao, Y.; Zhang, W.Y.; Neumeyer, J.L. ||

    1994-05-01

    SPECT imaging with {sup 123}I-labeled methyl 3{beta}-(4-iodophenyl)tropane-2{beta}-carboxylate ([{sup 123}I]{beta}-CIT) in nonhuman primates has shown brain striatal activity, which primarily reflects binding to the dopamine transporter. The biodistribution and calculated radiation-absorbed doses of [{sup 123}]{beta}-CIT administered to eight healthy subjects were measured with attention to the accurate determination of organ time-activity data. Whole-body transmission images were obtained with a scanning line source for attenuation correction of the emission images. Following administration of 92.5 {+-} 22.2 MBq (2.5 {+-} 0.6 mCi) of [{sup 123}I]{beta}-CIT, subjects were imaged with a whole-body imager every 30 min for 3 hr, every 60 min for the next 3 hr and at 12, 24 and 38 hr postinjection. Regional body conjugate counts were converted to microcuries of activity, with a calibration factor determined in a separate experiment using a distributed source of {sup 123}I. The peak brain uptake represented 14% of the injected dose, with 2% of the activity approximately overlying the striatal region. Highest radiation-absorbed doses were to the lung (0.1 mGy/MBq, 0.38 rads/mCi), liver (0.087 mGy/MBq, 0.32 rads/mCi) and lower large intestine (0.053 mGy/MBq, 0.20 rads/mCi). Iodine-123-{beta}-CIT is a promising SPECT agent for imaging of the dopamine transporter in humans with favorable dosimetry and high brain uptake. 18 refs., 4 figs., 5 tabs.

  12. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  13. MEASUREMENT OF MICROWAVE RADIATION ABSORBED BY BIOLOGICAL SYSTEMS. 1. ANALYSIS OF HEATING AND COOLING DATA

    EPA Science Inventory

    In order for meaningful comparisons to be made between experiments from different laboratories, reliable dosimetry is needed for biological systems exposed to microwave radiation. An improved analytical method is presented for determining energy absorption which uses heating and ...

  14. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease

    NASA Astrophysics Data System (ADS)

    Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

    2011-02-01

    Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

  15. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    SciTech Connect

    Rajendran, Joseph G.; Fisher, Darrell R.; Gopal, A K.; Durack, L. D.; Press, O. W.; Eary, Janet F.

    2004-06-01

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  16. Experimental scattering investigations and radiative transfer calculations of large arbitrarily shaped absorbing particles

    NASA Astrophysics Data System (ADS)

    Sasse, Christian

    1993-12-01

    Measured optical properties of large absorbing arbitrarily shaped particulates are compared to calculated optical properties of smooth homogeneous spheres. The particulates examined are spherical carbon particles with rough surface structure and oil shale. The results of measurements of phase functions of single particles at (lambda) equals 514.5 nm and hemispherical reflectance from 450 to 1959 nm are used in an inverse two-flux model to calculate the average albedo of a single particle. For carbon particles, ideal spheres show a higher forward scatter contribution than measured properties of rough spheres. Two types of oil shale particles with different optical properties but similar size and surface structure are investigated. Particle albedo and phase functions are compared, and the error of measuring the phase function at one wavelength is investigated. Results are also compared to isotropic scattering particles.

  17. Validity criterion of the radiative Fourier law for an absorbing and scattering medium.

    PubMed

    Gomart, Hector; Taine, Jean

    2011-02-01

    For radiative heat transfer applications, in particular in homogenized phases of porous media, an exhaustive and accurate validity criterion of the radiative Fourier law, depending only on the logarithmic derivative of the temperature field and an effective absorption coefficient, accounting for possible multiple scattering phenomena, has been established for a semitransparent medium. This effective absorption coefficient is expressed as a function of the absorption coefficient, the albedo, and the scattering asymmetry parameter. The criterion can be applied to semitransparent media that do not follow Beer's laws related to extinction, absorption, and scattering. PMID:21405835

  18. Relations for local radiative heat transfer between rectangular boundaries of an absorbing-emitting medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1993-01-01

    An analytical solution was obtained by Siegel (1991, 1992) for local boundary heat fluxes by a radiating medium at uniform temperature in a 2D rectangular region. It is shown here that, after local fluxes from the medium to the walls have been evaluated, it is very easy to compute local fluxes arriving from the adjacent and opposite walls. This extends the previous analysis and provides convenient relations to include radiation from a black boundary, each side of the rectangle being at a different uniform temperature. The final expressions are helpful in performing spectral calculations that must be made for many spectral bands.

  19. Electroacoustic absorbers: bridging the gap between shunt loudspeakers and active sound absorption.

    PubMed

    Lissek, Hervé; Boulandet, Romain; Fleury, Romain

    2011-05-01

    The acoustic impedance at the diaphragm of an electroacoustic transducer can be varied using a range of basic electrical control strategies, amongst which are electrical shunt circuits. These passive shunt techniques are compared to active acoustic feedback techniques for controlling the acoustic impedance of an electroacoustic transducer. The formulation of feedback-based acoustic impedance control reveals formal analogies with shunt strategies, and highlights an original method for synthesizing electric networks ("shunts") with positive or negative components, bridging the gap between passive and active acoustic impedance control. This paper describes the theory unifying all these passive and active acoustic impedance control strategies, introducing the concept of electroacoustic absorbers. The equivalence between shunts and active control is first formalized through the introduction of a one-degree-of-freedom acoustic resonator accounting for both electric shunts and acoustic feedbacks. Conversely, electric networks mimicking the performances of active feedback techniques are introduced, identifying shunts with active impedance control. Simulated acoustic performances are presented, with an emphasis on formal analogies between the different control techniques. Examples of electric shunts are proposed for active sound absorption. Experimental assessments are then presented, and the paper concludes with a general discussion on the concept and potential improvements. PMID:21568400

  20. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose.

    PubMed

    Brzóska, Kamil; Kruszewski, Marcin

    2015-08-01

    The most frequently used and the best established method of biological dosimetry at present is the dicentric chromosome assay, which is poorly suitable for a mass casualties scenario. This gives rise to the need for the development of new, high-throughput assays for rapid identification of the subjects exposed to ionizing radiation. In the present study, we tested the usefulness of gene expression analysis in blood cells for biological dosimetry. Human peripheral blood from three healthy donors was X-irradiated with doses of 0 (control), 0.6, and 2 Gy. The mRNA level of 16 genes (ATF3, BAX, BBC3, BCL2, CDKN1A, DDB2, FDXR, GADD45A, GDF15, MDM2, PLK3, SERPINE1, SESN2, TNFRSF10B, TNFSF4, and VWCE) was assessed by reverse transcription quantitative PCR 6, 12, 24, and 48 h after exposure with ITFG1 and DPM1 used as a reference genes. The panel of radiation-responsive genes was selected comprising GADD45A, CDKN1A, BAX, BBC3, DDB2, TNFSF4, GDF15, and FDXR. Cluster analysis showed that ΔC t values of the selected genes contained sufficient information to allow discrimination between irradiated and non-irradiated blood samples. The samples were clearly grouped according to the absorbed doses of radiation and not to the time interval after irradiation or to the blood donor. PMID:25972268

  1. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after

  2. Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field

    NASA Astrophysics Data System (ADS)

    Farsund, Ø.; Felderhof, B. U.

    1996-02-01

    The force and torque exerted on a body of arbitrary shape and constitution by a stationary radiation field are in principle given by integrals of Minkowski's stress tensor over a surface surrounding the body. Similarly the absorbed energy is given by an integral of the Poynting vector. These integrals are notoriously difficult to evaluate, and so far only spherical bodies have been considered. It is shown here that the integrals may be cast into a simpler form by use of Debye potentials. General expressions for the integrals are derived as sums of bilinear expressions in the coefficients of the expansion of the incident and scattered waves in terms of vector spherical waves. The expressions are simplified for small particles, such as atoms, for which the electric dipole approximation may be used. It is shown that the calculation is also relevant for bodies with nonlinear electromagnetic response.

  3. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow

    SciTech Connect

    Ichimaru, M.; Ishimaru, T.; Mikami, M.; Matsunaga, M.

    1982-08-01

    The relationship between atomic bomb exposure and the incidence of multiple myeloma has been examined in a fixed cohort of atomic bomb survivors and controls in the life-span study sample for Hiroshima and Nagasaki. From October 1950 to December 1976, 29 cases of multiple myeloma were confirmed in this sample. Our analysis shows that the standardized relative risk (RR) adjusted for city, sex, and age at the time of bombings (ATB) increased with marrow-absorbed radiation dose. The increased RR does not appear to differ between cities or sexes and is demonstrable only for those survivors whose age ATB was between 20 and 59 years. The estimated risk in these individuals is approximately 0.48 cases/million person-years/rad for bone marrow total dose. This excess risk did not become apparent in individuals receiving 50 rad or more in marrow total dose until 20 years or more after exposure.

  4. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow

    SciTech Connect

    Ichimaru, M.; Ishimaru, T.; Mikami, M.; Matsunaga, M.

    1982-08-01

    The relationship between atomic bomb exposure and the incidence of multiple myeloma has been examined in a fixed cohort of atomic bomb survivors and controls in the life-span study sample for Hiroshima and Nagasaki. From October 1950 to December 1976, 29 cases of multiple myeloma were confirmed in this sample. Our analysis shows that the standardized relative risk (RR) adjusted for city, sex, and age at the time of bombings (ATB) increased with marrow-absorbed radiation dose. The increased RR does not appear to differ between cities or sexes and is demonstrable only for those survivors whose age ATB was between 20 and 59 years. The estimaged risk in these individuals is approximately 0.48 cases/million person-years/rad for bone marrow total dose. This excess risk did not become apparent in individuals receiving 50 rad or more in marrow total dose until 20 years or more after exposure.

  5. Interaction of laser radiation with a low-density structured absorber

    NASA Astrophysics Data System (ADS)

    Rozanov, V. B.; Barishpol'tsev, D. V.; Vergunova, G. A.; Demchenko, N. N.; Ivanov, E. M.; Aristova, E. N.; Zmitrenko, N. V.; Limpouch, I.; Ulschmidt, I.

    2016-02-01

    A theoretical model is proposed for computing simulations of laser radiation interaction with inhomogeneous foam materials doped with heavy elements and undoped materials. The model satisfactorily describes many experiments on the interaction of the first and third harmonics of a 200 J pulsed PALS iodine laser with low-density porous cellulose triacetate targets. The model can be used to analyze experimental data and estimate the reality of experimental results.

  6. Relative Efficiency of TLD-100 to Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  7. Relative Efficiency of TLD-100 to High Linear Energy Transfer Radiation: Correction to Astronaut Absorbed Dose

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.

    1999-01-01

    Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.

  8. The Effects of an Absorbing Smoke Layer on MODIS Marine Boundary Layer Cloud Optical Property Retrievals and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven

    2012-01-01

    Clouds, aerosols, and their interactions are widely considered to be key uncertainty components in our current understanding of the Earth's atmosphere and radiation budget. The work presented here is focused on the quasi-permanent marine boundary layer . (MBL) clouds off the southern Atlantic coast of Africa and the effects on MODIS cloud optical property retrievals (MOD06) of an overlying absorbing smoke layer. During much of August and September, a persistent smoke layer resides over this region, produced from extensive biomass burning throughout the southern African savanna. The resulting absorption, which increases with decreasing wavelength, potentially introduces biases into the MODIS cloud optical property retrievals of the underlying MBL clouds. This effect is more pronounced in the cloud optical thickness retrievals, which over ocean are derived from the wavelength channel centered near 0.86 micron (effective particle size retrievals are derived from the longer-wavelength near-IR channels at 1.6, 2.1, and 3.7 microns). Here, the spatial distributions of the scalar statistics of both the cloud and aerosol layers are first determined from the CALIOP 5 km layer products. Next, the MOD06 look-up tables (LUTs) are adjusted by inserting an absorbing smoke layer of varying optical thickness over the cloud. Retrievals are subsequently performed for a subset of MODIS pixels collocated with the CALIOP ground track, using smoke optical thickness from the CALIOP 5km aerosol layer product to select the appropriate LUT. The resulting differences in cloud optical property retrievals due to the inclusion of the smoke layer in the LUTs will be examined. In addition, the direct radiative forcing of this smoke layer will be investigated from the perspective of the cloud optical property retrieval differences.

  9. Effects of simultaneously fiber transmitted erbium and holmium radiation on the interaction with highly absorbing media

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Pratisto, Hans S.; Ith, Michael; Koenz, Flurin; Weber, Heinz P.

    1995-05-01

    Erbium and Holmium lasers have both been shown to be suitable for orthopedic surgery performed under water. Erbium lasers emitting in the 3 micrometers wavelength region corresponding to the maximum water absorption peak effectively ablated biological tissues with high precision and minimal thermal damage. Holmium laser radiation at 2 micrometers , due to a lower absorption coefficient, is characterized by a greater extent of thermal damage leading to hemostasis. To combine the special advantages of each system we simultaneously coupled their radiation into a zirconium fluoride fiber (ZrF4) which was protected with a quartz fiber tip. Pressure measurements performed in the liquid using a piezo electrical transducer, transmission measurements and video flash lamp schlieren imaging of the laser induced vapor bubble were used in order to determine optimum laser parameters. The cutting efficiency of the Erbium laser is drastically improved when a low energy Holmium laser pulse is additionally used which is just able to open a vapor channel through which the Erbium laser pulse can be transmitted. The dynamics of the channel formation, geometry and life time are measured as a function of the delay time between the two different laser pulses and the pulse energy applied. The combination of 2 micrometers and 3 micrometers radiation seems to be an ideal instrument for tissue treatment.

  10. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2014-07-01

    Climate change may alter the spatial distribution, composition, structure and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate the solar radiation absorbed by individual plants in order to understand and predict their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming that crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the results of random distribution of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and can be included in vegetation models to simulate long-term transient responses of plant communities to climate change. The code and a user's manual are provided as Supplement of the paper.

  11. IPR 1.0: an efficient method for calculating solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, W.; Li, J.

    2013-12-01

    Climate change may alter the spatial distribution, composition, structure, and functions of plant communities. Transitional zones between biomes, or ecotones, are particularly sensitive to climate change. Ecotones are usually heterogeneous with sparse trees. The dynamics of ecotones are mainly determined by the growth and competition of individual plants in the communities. Therefore it is necessary to calculate solar radiation absorbed by individual plants for understanding and predicting their responses to climate change. In this study, we developed an individual plant radiation model, IPR (version 1.0), to calculate solar radiation absorbed by individual plants in sparse heterogeneous woody plant communities. The model is developed based on geometrical optical relationships assuming crowns of woody plants are rectangular boxes with uniform leaf area density. The model calculates the fractions of sunlit and shaded leaf classes and the solar radiation absorbed by each class, including direct radiation from the sun, diffuse radiation from the sky, and scattered radiation from the plant community. The solar radiation received on the ground is also calculated. We tested the model by comparing with the analytical solutions of random distributions of plants. The tests show that the model results are very close to the averages of the random distributions. This model is efficient in computation, and is suitable for ecological models to simulate long-term transient responses of plant communities to climate change.

  12. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  13. Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki

    2014-12-01

    In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined

  14. Tumoral fibrosis effect on the radiation absorbed dose of (177)Lu-Tyr(3)-octreotate and (177)Lu-Tyr(3)-octreotate conjugated to gold nanoparticles.

    PubMed

    Azorín-Vega, E P; Zambrano-Ramírez, O D; Rojas-Calderón, E L; Ocampo-García, B E; Ferro-Flores, G

    2015-06-01

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals (177)Lu-Tyr(3)-octreotate (monomeric) and (177)Lu-Tyr(3)-octreotate-gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112Gy-multimeric vs. 43Gy-monomeric). PMID:25305748

  15. RADIOFREQUENCY RADIATION: ACTIVITIES AND ISSUES

    EPA Science Inventory

    The question of human safety relative to exposure to RF radiation obviously predates the first ANSI guideline established in 1966, but no enforceable Federal standards or guidelines exist for RF radiation exposure; the ANSI guideline which was revised in 1982 is voluntary or advi...

  16. Estimating scattered and absorbed radiation in plant canopies by remote sensing

    NASA Technical Reports Server (NTRS)

    Daughtry, G. S. T.; Ranson, K. J.

    1987-01-01

    Several research avenues are summarized. The relationships of canopy characteristics to multispectral reflectance factors of vegetation are reviewed. Several alternative approaches for incorporating spectrally derived information into plant models are discussed, using corn as the main example. A method is described and evaluated whereby a leaf area index is estimated from measurements of radiation transmitted through plant canopies, using soybeans as an example. Albedo of a big bluestem grass canopy is estimated from 60 directional reflectance factor measurements. Effects of estimating albedo with substantially smaller subsets of data are evaluated.

  17. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  18. Hydrogen Absorbing Materials for Use as Radiation Shielding During Extended Space Flight Missions

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Minimizing radiation exposure from the galactic cosmic ray (GCR) environment during extended space missions is particularly crucial to crew health and safety. Here, an ideal candidate for shielding would be pure solid or liquid hydrogen, a material that effectively fragments heavy ions into ones of lower mass and energy that are more easily attenuated. Unfortunately, utilizing pure hydrogen is not presently feasible. It is, however, known that the hydrogen content of other materials (for example, metal hydrides, palladium alloys, and organic compounds) can exceed that of pure solid hydrogen and thus merit consideration as shielding candidates. This presentation will discuss an ongoing effort to develop novel shielding from such materials in concert with a coordinated testing/evaluation and modeling effort.

  19. Absorbed Radiation Dose in Radiosensitive Organs Using 64- and 320-Row Multidetector Computed Tomography: A Comparative Study

    PubMed Central

    Khan, Atif N.; Nikolic, Boris; Khan, Mohammad K.; Kang, Jian; Khosa, Faisal

    2014-01-01

    Aim. To determine absorbed radiation dose (ARD) in radiosensitive organs during prospective and full phase dose modulation using ECG-gated MDCTA scanner under 64- and 320-row detector modes. Methods. Female phantom was used to measure organ radiation dose. Five DP-3 radiation detectors were used to measure ARD to lungs, breast, and thyroid using the Aquilion ONE scanner in 64- and 320-row modes using both prospective and dose modulation in full phase acquisition. Five measurements were made using three tube voltages: 100, 120, and 135 kVp at 400 mA at heart rate (HR) of 60 and 75 bpm for each protocol. Mean acquisition was recorded in milligrays (mGy). Results. Mean ARD was less for 320-row versus 64-row mode for each imaging protocol. Prospective EKG-gated imaging protocol resulted in a statistically lower ARD using 320-row versus 64-row modes for midbreast (6.728 versus 19.687 mGy, P < 0.001), lung (6.102 versus 21.841 mGy, P < 0.001), and thyroid gland (0.208 versus 0.913 mGy; P < 0.001). Retrospective imaging using 320- versus 64-row modes showed lower ARD for midbreast (10.839 versus 43.169 mGy, P < 0.001), lung (8.848 versus 47.877 mGy, P < 0.001), and thyroid gland (0.057 versus 2.091 mGy; P < 0.001). ARD reduction was observed at lower kVp and heart rate. Conclusions. Dose reduction to radiosensitive organs is achieved using 320-row compared to 64-row modes for both prospective and retrospective gating, whereas 64-row mode is equivalent to the same model 64-row MDCT scanner. PMID:25170427

  20. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-01-01

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The pediatric'' models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing individual'' pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  1. The development of early pediatric models and their application to radiation absorbed dose calculations

    SciTech Connect

    Poston, J.W.

    1989-12-31

    This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The ``pediatric`` models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing ``individual`` pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.

  2. Geometrical gradients in the distribution of temperature and absorbed ultraviolet radiation in ocular tissues.

    PubMed

    Sliney, David H

    2002-01-01

    The geographical variations in the incidence of age-related ocular changes such as presbyopia and cataracts and diseases such as pterygium and droplet keratopathies have led to theories pointing to sunlight, ultraviolet radiation (UVR) exposure and ambient temperature as potential etiological factors. Some epidemiological evidence also points to an association of age-related macular degeneration to sunlight exposure. The actual distribution of sunlight exposure and the determination of temperature variations of different tissues within the anterior segment of the eye are difficult to assess. Of greatest importance are the geometrical factors that influence selective UVR exposures to different segments of the lens, cornea and retina. Studies show that the temperature of the lens and cornea varies by several degrees depending upon climate, and that the incidence of nuclear cataract incidence is greater in areas of higher ambient temperature (i.e., in the tropics). Likewise, sunlight exposure to local areas of the cornea, lens and retina varies greatly in different environments. However, epidemiological studies of the influence of environmental UVR in the development of cataract, pterygium, droplet keratopathies and age-related macular degeneration have produced surprisingly inconsistent findings. The lack of consistent results is seen to be due largely to either incomplete or erroneous estimates of outdoor UV exposure dose. Geometrical factors dominate the determination of UVR exposure of the eye. The degree of lid opening limits ocular exposure to rays entering at angles near the horizon. Clouds redistribute overhead UVR to the horizon sky. Mountains, trees and building shield the eye from direct sky exposure. Most ground surfaces reflect little UVR. The result is that highest UVR exposure occurs during light overcast where the horizon is visible and ground surface reflection is high. By contrast, exposure in a high mountain valley (lower ambient temperature) with

  3. Impact of ultraviolet radiation on cell structure, UV-absorbing compounds, photosynthesis, DNA damage, and germination in zoospores of Arctic Saccorhiza dermatodea.

    PubMed

    Roleda, Michael Y; Wiencke, Christian; Lüder, Ulrike H

    2006-01-01

    Stratospheric ozone depletion leads to enhanced UV-B radiation. Therefore, the capacity of reproductive cells to cope with different spectral irradiance was investigated in the laboratory. Zoospores of the upper sublittoral kelp Saccorhiza dermatodea were exposed to varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400-700 nm; =P), PAR+UV-A radiation (UV-A, 320-400 nm; =PA), and PAR+UV-A+UV-B radiation (UV-B, 280-320 nm; =PAB). Structural changes, localization of phlorotannin-containing physodes, accumulation of UV-absorbing phlorotannins, and physiological responses of zoospores were measured after exposure treatments as well as after 2-6 d recovery in dim white light (8 mumol photon m(-2) s(-1)). Physodes increased in size under PAB treatment. Extrusion of phlorotannins into the medium and accumulation of physodes was induced not only under UVR treatment but also under PAR. UV-B radiation caused photodestruction indicated by a loss of pigmentation. Photosynthetic efficiency of spores was photoinhibited after 8 h exposure to 22 and 30 mumol photon m(-2) s(-1) of PAR, while supplement of UVR had a significant additional effect on photoinhibition. A relatively low recovery of photosystem II function was observed after 2 d recovery in spores exposed to 1.7 x 10(4) J m(-2) of UV-B, with a germination rate of only 49% of P treatment after 6 d recovery. The amount of UV-B-induced DNA damage measured as cyclobutane-pyrimidine dimers (CPDs) increased with the biologically effective UV-B dose (BED(DNA)). Significant removal of CPDs indicating repair of DNA damage was observed after 2 d in low white light. The protective function of phlorotannins has restricted efficiency for a single cell. Within a plume of zoospores, however, each cell can buffer each other and protect the lower layer of spores from excessive radiation. Exudation of phlorotannins into the water can also reduce the impact of UV-B radiation on UV-sensitive spores

  4. Role of cardiac ultrafast cameras with CZT solid-state detectors and software developments on radiation absorbed dose reduction to the patients.

    PubMed

    Gunalp, Bengul

    2015-07-01

    Myocardial perfusion imaging (MPI) is one the most contributing nuclear medicine technique to the annual population dose. The purpose of this study is to compare radiation-absorbed doses to the patients examined by conventional cardiac SPECT (CSPECT) camera and ultrafast cardiac (UFC) camera with cadmium-zinc-telluride (CZT) solid-state detectors. Total injected activity was reduced by 50 % when both stress and rest images were acquired and by 75 % when only stress images were taken with UFC camera. As a result of this, the mean total effective dose was found significantly lower with UFC camera (2.2 ± 1.2 mSv) than CSPECT (7.7 ± 3.8 mSv) (p < 0.001). Further dose reduction was obtained by reducing equivocal test results and unnecessary additional examinations with UFC camera. Using UFC camera, MPI can be conveniently used for the detection of coronary artery disease (CAD) much less increasing annual population radiation dose as it had been before. PMID:25848109

  5. Active galaxies and radiative heating.

    PubMed

    Ostriker, Jeremiah P; Ciotti, Luca

    2005-03-15

    There is abundant evidence that heating processes in the central regions of elliptical galaxies have both prevented large-scale cooling flows and assisted in the expulsion of metal rich gas. We now know that each such spheroidal system harbours in its core a massive black hole weighing ca. 0.13% of the mass in stars and also know that energy was emitted by each of these black holes with an efficiency exceeding 10% of its rest mass. Since, if only 0.5% of that radiant energy were intercepted by the ambient gas, its thermal state would be drastically altered, it is worth examining in detail the interaction between the out-flowing radiation and the equilibrium or inflowing gas. On the basis of detailed hydrodynamic computations we find that relaxation oscillations are to be expected with the radiative feedback quite capable of regulating both the growth of the central black hole and also the density and thermal state of the gas in the galaxy. Mechanical input of energy by jets may assist or dominate over these radiative effects. We propose specific observational tests to identify systems which have experienced strong bursts of radiative heating from their central black holes. PMID:15681285

  6. [Evaluation of absorbed dose from kilovoltage cone-beam computed tomography by radiotherapy planning system: influence on the radiation therapy for prostate cancer].

    PubMed

    Kawamura, Tetsuro; Murakami, Naoki; Okamura, Yoshiaki; Nishimura, Hideki; Miyawaki, Daisuke; Kimura, Kunihiko; Hase, Mamoru; Sasaki, Ryohei

    2013-05-01

    Image-guided radiation therapy (IGRT) is increasingly being used in modern radiation therapy, and it is now possible to verify a patient's position using kilo-voltage cone-beam computed tomography (kV-CBCT). However, if kV-CBCT is used frequently, the dose absorbed by the body cannot be disregarded. A number of studies have been made on the absorbed dose of kV-CBCT, in which absorbed dose measurements were made using a computed tomography dose index (CTDI) or a thermoluminescent dosimeter (TLD). Other methods include comparison of the absorbed dose between a kV-CBCT and other modalities. These techniques are now in common use. However, dose distribution within the patient varies with the patient's size, posture and the part of the body to which radiation therapy is applied. The chief purpose of this study was to evaluate the dose distribution of kV-CBCT by employing a radiotherapy planning system (RTPS); a secondary aim was to examine the influence of a dose of kV-CBCT radiation when used to treat prostate cancer. The beam data of an on-board imager (OBI) was registered in the RTPS, after which modeling was performed. The radiation dosimetry was arranged by the dosimeter in an elliptical phantom. Rotational radiation treatment was used to obtain the dose distribution of the kV-CBCT within the patient, and the patient dose was evaluated based on the simulation of the dose distribution. In radiation therapy for prostate cancer, if kV-CBCT was applied daily, the dose increment within the planning target volume (PTV) and the organ in question was about 1 Gy. PMID:23964528

  7. Characterization of porous glass-ceramic material as absorber of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kazmina, O.; Suslyaev, V.; Dushkina, M.; Semukhin, B.

    2015-04-01

    Investigations of a foam glass-ceramic material synthesized from raw siliceous earth material by the two-stage method at temperatures below 950°C have demonstrated the improvement of its physic mechanical properties in comparison with foam glass synthesized from glass cullet. This material actively interacts with microwaves and can be used for the development of protective screens reducing the adverse effect of microwaves on biological objects, anechoic chambers, and rooms with low level of electromagnetic background noise. Spectra of the transmission and absorption coefficients and of the complex dielectric permittivity for frequencies in the range 26-260 GHz are presented. The observed effects demonstrate the existence of regions with partial and total reflection arising on the glass-pore boundary and of the microwave interaction with ultradisperse carbon particles that remain after foaming with incomplete frothier transition from the soot to the gas phase.

  8. Reverse-directional explosive crystallization of microstructures in transparent film on absorbing substrate by a multipulse femtosecond radiation

    NASA Astrophysics Data System (ADS)

    Elshin, A. S.; Pronin, I. P.; Zhigaliny, O. M.; Presniakov, M. Yu.; Khmelenin, D. N.; Mishina, E. D.; Emel'yanov, V. I.

    2015-12-01

    The crystallization in a transparent precursor of a perovskite ferroelectric film deposited on an absorbing platinized silicon substrate initiated by multipulse femtosecond sharply focused laser beam of near-infrared spectral range is studied by transmission electron microscopy. Time dependences of the shapes of crystallized areas point to initiation of explosive crystallization with a seed on the opposite side of a heat source localized in a platinum interface layer. The radius of the crystalized semispheres varies from 150 to 900 nm, with maximal crystallization velocity up to 1.2 cm/s. Reverse direction of the spherical wave front propagation regarding to a heat source is explained in terms of the developed model based on thermal stress-induced modification of the activation energy.

  9. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    NASA Astrophysics Data System (ADS)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  10. Fe-, Co-, and Ni-Loaded Porous Activated Carbon Balls as Lightweight Microwave Absorbents.

    PubMed

    Li, Guomin; Wang, Liancheng; Li, Wanxi; Xu, Yao

    2015-11-16

    Porous activated carbon ball (PACB) composites impregnated with iron, cobalt, nickel and/or their oxides were synthesized through a wet chemistry method involving PACBs as the carrier to load Fe(3+), Co(2+), and Ni(2+) ions and a subsequent carbothermal reduction at different annealing temperatures. The results show that the pyrolysis products of nitrates and/or the products from the carbothermal reduction are embedded in the pores of the PACBs, with different distributions, resulting in different crystalline phases. The as-prepared PACB composites possessed high specific surface areas of 791.2-901.5 m(2)  g(-1) and low densities of 1.1-1.3 g cm(-3). Minimum reflection loss (RL) values of -50.1, -20.6, and -20.4 dB were achieved for Fe-PACB (annealed at 500 °C), Co-PACB (annealed at 800 °C), and Ni-PACB (annealed at 800 °C) composites, respectively. Moreover, the influence of the amount of the magnetic components in the PACB composites on the microwave-absorbing performances was investigated, further confirming that the dielectric loss was the primary contributor to microwave absorption. PMID:26373310

  11. Fractional absorption of active absorbable algal calcium (AAACa) and calcium carbonate measured by a dual stable-isotope method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa), obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI), with that of calcium carbonate. In ...

  12. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  13. Predicting trace organic compound breakthrough in granular activated carbon using fluorescence and UV absorbance as surrogates.

    PubMed

    Anumol, Tarun; Sgroi, Massimiliano; Park, Minkyu; Roccaro, Paolo; Snyder, Shane A

    2015-06-01

    This study investigated the applicability of bulk organic parameters like dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254), and total fluorescence (TF) to act as surrogates in predicting trace organic compound (TOrC) removal by granular activated carbon in water reuse applications. Using rapid small-scale column testing, empirical linear correlations for thirteen TOrCs were determined with DOC, UV254, and TF in four wastewater effluents. Linear correlations (R(2) > 0.7) were obtained for eight TOrCs in each water quality in the UV254 model, while ten TOrCs had R(2) > 0.7 in the TF model. Conversely, DOC was shown to be a poor surrogate for TOrC breakthrough prediction. When the data from all four water qualities was combined, good linear correlations were still obtained with TF having higher R(2) than UV254 especially for TOrCs with log Dow>1. Excellent linear relationship (R(2) > 0.9) between log Dow and the removal of TOrC at 0% surrogate removal (y-intercept) were obtained for the five neutral TOrCs tested in this study. Positively charged TOrCs had enhanced removals due to electrostatic interactions with negatively charged GAC that caused them to deviate from removals that would be expected with their log Dow. Application of the empirical linear correlation models to full-scale samples provided good results for six of seven TOrCs (except meprobamate) tested when comparing predicted TOrC removal by UV254 and TF with actual removals for GAC in all the five samples tested. Surrogate predictions using UV254 and TF provide valuable tools for rapid or on-line monitoring of GAC performance and can result in cost savings by extended GAC run times as compared to using DOC breakthrough to trigger regeneration or replacement. PMID:25792436

  14. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  15. Absorbed Radiation Dose in Radiosensitive Organs During Coronary CT Angiography Using 320-MDCT: Effect of Maximum Tube Voltage and Heart Rate Variations

    PubMed Central

    Nikolic, Boris; Khosa, Faisal; Lin, Pei-Jan Paul; Khan, Atif N.; Sarwar, Sheryar; Yam, Chun-Shan; Court, Laurence E.; Raptopoulos, Vassilios; Clouse, Melvin E.

    2012-01-01

    OBJECTIVE The purpose of this article is to estimate the absorbed radiation dose in radiosensitive organs during coronary MDCT angiography using 320-MDCT and to determine the effects of tube voltage variation and heart rate (HR) control on absorbed radiation dose. MATERIALS AND METHODS Semiconductor field effect transistor detectors were used to measure absorbed radiation doses for the thyroid, midbreast, breast, and midlung in an anthropomorphic phantom at 100, 120, and 135 kVp at two different HRs of 60 and 75 beats per minute (bpm) with a scan field of view of 320 mm, 400 mA, 320 × 0.5 mm detectors, and 160 mm collimator width (160 mm range). The paired Student’s t test was used for data evaluation. RESULTS At 60 bpm, absorbed radiation doses for 100, 120, and 135 kVp were 13.41 ± 3.59, 21.7 ± 4.12, and 29.28 ± 5.17 mGy, respectively, for midbreast; 11.76 ± 0.58, 18.86 ± 1.06, and 24.82 ± 1.45 mGy, respectively, for breast; 12.19 ± 2.59, 19.09 ± 3.12, and 26.48 ± 5.0 mGy, respectively, for lung; and 0.37 ± 0.14, 0.69 ± 0.14, and 0.92 ± 0.2 mGy, respectively, for thyroid. Corresponding absorbed radiation doses for 75 bpm were 38.34 ± 2.02, 59.72 ± 3.13, and 77.8 ± 3.67 mGy for midbreast; 26.2 ± 1.74, 44 ± 1.11, and 52.84 ± 4.07 mGy for breast; 38.02 ± 1.58, 58.89 ± 1.68, and 78 ± 2.93 mGy for lung; and 0.79 ± 0.233, 1.04 ± 0.18, and 2.24 ± 0.52 mGy for thyroid. Absorbed radiation dose changes were significant for all organs for both tube voltage reductions as well as for HR control from 75 to 60 bpm at all tube voltage settings (p < 0.05). The absorbed radiation doses for the calcium score protocol were 11.2 ± 1.4 mGy for midbreast, 9.12 ± 0.48 mGy for breast, 10.36 ± 1.3 mGy for lung, and 0.4 ± 0.05 mGy for thyroid. CONCLUSION CT angiography with 320-MDCT scanners results in absorbed radiation doses in radiosensitive organs that compare favorably to those previously reported. Significant dose reductions can be achieved by tube

  16. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance

    NASA Astrophysics Data System (ADS)

    Liao, G. J.; Gong, X. L.; Kang, C. J.; Xuan, S. H.

    2011-07-01

    This paper presents an active-adaptive tuned vibration absorber (AATVA) which is based on magnetorheological elastomer (MRE). A voice coil motor is attached to a conventional MRE adaptive tuned vibration absorber (ATVA) to improve its performance. In this study, two feedback types of the activation force were analyzed and the stability condition was obtained. In order to eliminate the time delay effect during the signal processing, a phase-lead compensator was incorporated. Based on the analysis, an MRE AATVA prototype was designed and its dynamic properties were experimentally investigated. The experimental results demonstrated that its resonant frequency could vary from 11 to 18 Hz and its damping ratio decreased to roughly 0.05 from 0.19 by adding the activation force. Besides, its vibration reduction abilities at the first two resonant frequencies of the experimental platform could reach 5.9 dB and 7.9 dB respectively.

  17. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    PubMed

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-01

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison. PMID:16861773

  18. Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher oasis region, East Antarctica.

    PubMed

    Singh, J; Gautam, S; Bhushan Pant, A

    2012-01-01

    The survival of Antarctic flora under ozone depletion depends on their ability to acclimate against increasing UV—B radiation by employing photo protective mechanisms either by avoiding or repairing UV—B damage. A fifteen days experiment was designed to study moss (Bryum argenteum) and lichen (Umbilicaria aprina) under natural UV—B exposure and under UV filter frames at the Maitri region of Schirmacher oasis, East Antarctica. Changes in UV absorbing compounds, phenolics, carotenoids and chlorophyll content were studied for continuous fifteen days and significant changes were observed in the UV exposed plants of B. argenteum and U. aprina. The change in the UV absorbing compounds was more significant in B. argenteum (P<0.0001) than U. aprina (P<0.0002). The change in phenolic contents and total carotenoid content was significant (P<0.0001) in both B. argenteum and lichen U. aprina indicating that the increase in UV absorbing compounds, phenolic contents and total carotenoid content act as a protective mechanism against the deleterious effect of UV—B radiations. PMID:23273195

  19. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    SciTech Connect

    Bankvall, G.; Hakansson, H.A.

    1982-05-01

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted.

  20. Abatement of SO2-NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism.

    PubMed

    Han, Yinghui; Li, Xiaolei; Fan, Maohong; Russell, Armistead G; Zhao, Yi; Cao, Chunmei; Zhang, Ning; Jiang, Genshan

    2015-04-01

    A novel ferruginous active absorbent, prepared by fly ash, industrial lime and the additive Fe(VI), was introduced for synchronous abatement of binary mixtures of SO2-NOx from simulated coal-fired flue gas. The synergistic action of various factors on the absorption of SO2 and NOx was investigated. The results show that a strong synergistic effect exists between Fe(VI) dose and reaction temperature for the desulfurization. It was observed that in the denitration process, the synergy of Fe(VI) dose and Ca/(S+N) had the most significant impact on the removal of NO, followed by the synergy of Fe(VI) and reaction temperature, and then the synergy of reaction temperature and flue gas humidity. A scanning electron microscope (SEM) and an accessory X-ray energy spectrometer (EDS) were used to observe the surface characteristics of the raw and spent absorbent as well as fly ash. A reaction mechanism was proposed based on chemical analysis of sulfur and nitrogen species concentrations in the spent absorbent. The Gibbs free energy, equilibrium constants and partial pressures of the SO2-NOx binary system were determined by thermodynamics. PMID:25872709

  1. Estimating the Direct Radiative Effect of Absorbing Aerosols Overlying Marine Boundary Layer Clouds in the Southeast Atlantic Using MODIS and CALIOP

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin

    2013-01-01

    Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.

  2. Radiation Detection for Active Interrogation of HEU

    SciTech Connect

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  3. Successful treatment of active haemorrhage from a duodenal diverticulum using surgicel (absorbable haemostat): a case report.

    PubMed

    Muguti, Gi; Gandhi, H; Ridgeway, D

    2007-01-01

    Haemorrhage is one of the rare but serious complications of duodenal diverticula. Current methods of treatment include: endoscopy with injection therapy or hemoclip application and diverticulectomy. In this paper we present the case of a 61 year old man with life threatening haemorrhage who was managed successfully with gentle packing of a bleeding duodenal diverticulum using SURGICEL (Absorbable Haemostat). This appears to be a simple and effective way of dealing with the problem especially in situations where other methods are ineffective or inapplicable. Early surgical intervention before the development of any coagulopathy increases the chances of a successful outcome. It has not been possible to find a similar report from a thorough literature search. PMID:20353131

  4. Analysis of Photosynthetic Characteristics and UV-B Absorbing Compounds in Mung Bean Using UV-B and Red LED Radiation

    PubMed Central

    Li, Fang-Min; Lu, Zhi-Guo; Yue, Ming

    2014-01-01

    Mung bean has been reported to have antioxidant, antidiabetic, anti-inflammatory, and antitumor activities. Various factors have important effects on the types and contents of plant chemical components. In order to study quality of mung bean from different light sources, mung bean seedlings were exposed to red light-emitting diodes (LEDs) and ultraviolet-B (UV-B). Changes in the growth parameters, photosynthetic characteristics, the concentrations of chlorophyll a and chlorophyll b and the content of UV-B absorbing compounds were measured. The results showed that photosynthetic characteristics and chlorophyll a and chlorophyll b concentrations were enhanced by red LEDs. The concentrations of UV-B absorbing compounds were enhanced by UV-B on the 20th day, while photosynthetic characteristics, plant length, and the concentrations of chlorophyll a and chlorophyll b were reduced by UV-B on the 40th day; at the same time the values of the stem diameter, plant fresh weight, dry weight, and the concentrations of UV-B absorbing compounds were enhanced. It is suggested that red LEDs promote the elongation of plant root growth and photosynthetic characteristics, while UV-B promotes horizontal growth of stems and the synthesis of UV-B absorbing compounds. PMID:24678424

  5. Internal absorber solar collector

    DOEpatents

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  6. Active-to-absorbing-state phase transition in the presence of fluctuating environments: weak and strong dynamic scaling.

    PubMed

    Sarkar, Niladri; Basu, Abhik

    2012-08-01

    We investigate the scaling properties of phase transitions between survival and extinction (active-to-absorbing-state phase transition, AAPT) in a model that by itself belongs to the directed percolation (DP) universality class, interacting with a spatiotemporally fluctuating environment having its own nontrivial dynamics. We model the environment by (i) a randomly stirred fluid, governed by the Navier-Stokes (NS) equation, and (ii) a fluctuating surface, described either by the Kardar-Parisi-Zhang (KPZ) or the Edward-Wilkinson (EW) equations. We show, by using a one-loop perturbative field theoretic setup that, depending upon the spatial scaling of the variance of the external forces that drive the environment (i.e., the NS, KPZ, or EW equations), the system may show weak or strong dynamic scaling at the critical point of active-to-absorbing-state phase transitions. In the former case AAPT displays scaling belonging to the DP universality class, whereas in the latter case the universal behavior is different. PMID:23005737

  7. Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation.

    PubMed

    Siipola, Sari M; Kotilainen, Titta; Sipari, Nina; Morales, Luis O; Lindfors, Anders V; Robson, T Matthew; Aphalo, Pedro J

    2015-05-01

    Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors. PMID:25040832

  8. Review of active radiation shielding developments

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    The radiation risk due to ionizing particles is a critical issue for long duration manned space missions. The ionization losses in the materials of the spacecraft provide passive shielding effectively stopping low energy particles. However, the estimates of the material required to obtain an acceptable level of radiation result in a prohibitive mass. Active electromagnetic shields, which deflect the charged particles, have been considered as an alternative solution. During the last 10 years the interest in this area has grown. A study of active magnetic shielding based on high-temperature superconductors (HTS) was initiated in an ESA study in 2010, continued in the context of the NASA Innovative Advanced Concepts (NIAC) programs (2011-2014) as well as within a dedicated FP7 EU program, SR2S (2013-2015). The aim of these effort was to provide a realistic evaluation of the possibilities based on current technology levels as well extrapolating to reasonable technology advances expected during the next decade. The different configurations considered were assessed in terms of their technical feasibility and shielding efficiency. We present here a status report of the ongoing work and some preliminary results.

  9. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  10. Structural dynamics of phenylisothiocyanate in the light-absorbing excited states: Resonance Raman and complete active space self-consistent field calculation study

    SciTech Connect

    Ouyang, Bing Xue, Jia-Dan Zheng, Xuming E-mail: zxm@zstu.edu.cn; Fang, Wei-Hai E-mail: fangwh@dnu.edu.cn

    2014-05-21

    The excited state structural dynamics of phenyl isothiocyanate (PITC) after excitation to the light absorbing S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were studied by using the resonance Raman spectroscopy and complete active space self-consistent field method calculations. The UV absorption bands of PITC were assigned. The vibrational assignments were done on the basis of the Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-, B-, and C-bands resonance Raman spectra in cyclohexane, acetonitrile, and methanol solvents were, respectively, obtained at 299.1, 282.4, 266.0, 252.7, 228.7, 217.8, and 208.8 nm excitation wavelengths to probe the corresponding structural dynamics of PITC. The results indicated that the structural dynamics in the S{sub 2}(A′), S{sub 6}(A′), and S{sub 7}(A′) excited states were very different. The conical intersection point CI(S{sub 2}/S{sub 1}) were predicted to play important role in the low-lying excited state decay dynamics. Two major decay channels were predicted for PITC upon excitation to the S{sub 2}(A′) state: the radiative S{sub 2,min} → S{sub 0} transition and the nonradiative S{sub 2} → S{sub 1} internal conversion via CI(S{sub 2}/S{sub 1}). The differences in the decay dynamics between methyl isothiocyanate and PITC in the first light absorbing excited state were discussed. The role of the intersystem crossing point ISC(S{sub 1}/T{sub 1}) in the excited state decay dynamics of PITC is evaluated.

  11. Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements.

    PubMed

    Dombrovsky, Leonid; Randrianalisoa, Jaona; Baillis, Dominique

    2006-01-01

    A modified two-flux approximation is suggested for calculating the hemispherical transmittance and reflectance of a refracting, absorbing, and scattering medium in the case of collimated irradiation of the sample along the normal to the interface. The Fresnel reflection is taken into account in this approach. It is shown that the new approximation is rather accurate for the model transport scattering function. For an arbitrary scattering medium, the error of the modified two-flux approximation is estimated by comparison with the exact numerical calculations for the Henyey-Greenstein scattering function in a wide range of albedos and optical thicknesses. Possible applications of the derived analytical solution to identification problems are discussed. PMID:16478064

  12. Investigation on the effect of MR elastomer based adaptive vibration absorbers on the radiated sound from circular elastic plates

    NASA Astrophysics Data System (ADS)

    Hemmatian, M.; Sedaghati, R.

    2016-04-01

    This study aims to investigate the effect of using magnetorheological elastomer (MRE)-based adaptive tuned vibration absorbers (ATVA) on the sound transmission in an elastic plate. Sound transmission loss (STL) of an elastic circular thin plate is analytically studied. The plate is excited by a plane acoustic wave as an incident sound and the displacement of the plate is calculated using corresponding mode shapes of the system for clamped boundary condition. Rayleigh integral approach is used to express the transmitted sound pressure in terms of the plate's displacement modal amplitude. In order to increase sound transmission loss of the plate, the MRE-based ATVA is considered. The basic idea is to be able to change the stiffness of the ATVA by varying magnetic field in order to reduce the transmitted acoustic energy of the host structure in a wide frequency range. Here, a MRE-based ATVA under the shear mode consisting of an oscillator mass, magnetic conductor, coils and MRE is investigated. In order to predict the viscoelastic characteristics of the field-dependent MRE based on the applied magnetic field, the double pole model is used. Finally, MRE-based ATVAs are integrated with the plate to absorb the plate energy with the aim of decreasing the transmitted sound power. Results show that plate with integrated MRE-based ATVAs suppresses the axisymmetric vibration of the plate and thus considerably improves the STL. Parametric studies on the influence of the position of MRE-based ATVAs and the effects of applied current on their performance are also presented.

  13. Major temporal variations in shortening rate absorbed along a large active fold of the southeastern Tianshan piedmont (China)

    NASA Astrophysics Data System (ADS)

    Saint-Carlier, Dimitri; Charreau, Julien; Lavé, Jérôme; Blard, Pierre-Henri; Dominguez, Stéphane; Avouac, Jean-Philippe; Wang, Shengli

    2016-01-01

    The investigation of deformation rates on a mountain piedmont can provide key information for improving our understanding of the overall dynamics of a mountain range. Here, we estimate the shortening rate absorbed by a Quaternary emergent detachment fold on the southeastern piedmont of the Tianshan (China). Our work is primarily based on new 10Be cosmogenic exposure dating of deformed alluvial surfaces. The method we have developed combines depth profiling with sampling of surface cobbles, thereby allowing exposure time, erosion rate and inheritance to be simultaneously constrained. The exposure ages of the uppermost uplifted alluvial surfaces are around 140 ± 17 ka, 130 ± 9 ka and 47 ± 9 ka, from west to east. A terrace lying below the 140 ka surface is dated at 65 ± 5 ka. The ages of the uplifted and folded alluvial surfaces were then combined with estimates of shortening obtained using two distinct methods: (1) the excess area method, where sedimentation rates, extracted from magnetostratigraphic studies, are used to determine the amount of sedimentation after the abandonment of the river; and (2) a folding model derived from sandbox experiments. The late Pleistocene shortening rates are shown to be between 0.4 ± 0.1 mm /yr and 0.8 ± 0.5 mm /yr on the western part of the fold and 2.1 ± 0.4 mm /yr along its central part. The central part of the frontal Yakeng anticline therefore accommodates up to 25% of the total shortening currently absorbed across the whole Eastern Tianshan range (8 mm/yr). However, this situation seems to have prevailed for only the last 150 ka, as the shortening rate absorbed by this nascent fold was previously ten times slower. While the initiation of folding of the Yakeng anticline can be traced back to 5.5 Ma ago, the basinward migration of the active deformation front onto the Yakeng fold is a relatively recent phenomenon and appears to be diachronous from west to east, probably in relation to the tectonic activity of the folds in

  14. Key comparison BIPM.RI(I)-K4 of the absorbed dose to water standards of the PTB, Germany and the BIPM in 60Co gamma radiation

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Kapsch, R.-P.; Krauss, A.

    2016-01-01

    An indirect comparison has been made of the standards for absorbed dose to water in 60Co radiation of the Physikalisch-Technische Bundesanstalt, (PTB), Germany and of the Bureau International des Poids et Mesures (BIPM). The measurements at the BIPM were carried out in October 2015. The comparison result, based on the calibration coefficients for two transfer standards and evaluated as a ratio of the PTB and the BIPM standards for absorbed dose to water, is 0.9977 with a combined standard uncertainty of 3.8 × 10-3. The results are analysed and presented in terms of degrees of equivalence for entry in the BIPM key comparison database. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. An Absorbed-Dose/Dose-Rate Dependence for the Alanine-EPR Dosimetry System and Its Implications in High-Dose Ionizing Radiation Metrology

    PubMed Central

    Desrosiers, M. F.; Puhl, J. M.; Cooper, S. L.

    2008-01-01

    NIST developed the alanine dosimetry system in the early 1990s to replace radiochromic dye film dosimeters. Later in the decade the alanine system was firmly established as a transfer service for high-dose radiation dosimetry and an integral part of the internal calibration scheme supporting these services. Over the course of the last decade, routine monitoring of the system revealed a small but significant observation that, after examination, led to the characterization of a previously unknown absorbed-dose-dependent, dose-rate effect for the alanine system. Though the potential impact of this effect is anticipated to be extremely limited for NIST’s customer-based transfer dosimetry service, much greater implications may be realized for international measurement comparisons between National Measurement Institutes. PMID:27096113

  16. Techniques for measuring intercepted and absorbed PAR in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.

    1984-01-01

    The quantity of radiation potentially available for photosynthesis that is captured by the crop is best described as absorbed photosynthetically active radiation (PAR). Absorbed PAR (APAR) is the difference between descending and ascending fluxes. The four components of APAR were measured above and within two planting densities of corn (Zea mays L.) and several methods of measuring and estimating APAR were examined. A line quantum sensor that spatially averages the photosynthetic photon flux density provided a rapid and portable method of measuring APAR. PAR reflectance from the soil (Typic Argiaquoll) surface decreased from 10% to less than 1% of the incoming PAR as the canopy cover increased. PAR reflectance from the canopy decreased to less than 3% at maximum vegetative cover. Intercepted PAR (1 - transmitted PAR) generally overestimated absorbed PAR by less than 4% throughout most of the growing season. Thus intercepted PAR appears to be a reasonable estimate of absorbed PAR.

  17. Study the penetration of IR laser radiation in human teeth: determination of the absorbed and scattered parts

    NASA Astrophysics Data System (ADS)

    Uzunova, Pepa; Rabadgiiska, Stanislava; Uzunov, Tzonko; Kisov, Hristo; Kaimakanova, Nadejda; Deneva, Margarita; Dinkov, Emil; Nenchev, Marin

    2013-03-01

    By using the developed by us approaches and instrumentation, we have obtained and presented series of systematized data, which are important for the use of the laser light in infrared (IR) spectral region. The obtained data include: 1) reflectivity of the human tooth dentin; 2) the spatial intensity distribution in the cross-section of the light beam penetrating the tooth's dentin; 3) the absorbed and the diffused parts of the laser light that have been determined separately through combination of optical and calorimetric techniques. The last result is the most important because it permits to calculate the dentin absorption and scattering coefficients. The study is performed for the laser light at two easily generated wavelengths - 1.06 μm and 1.36 μm, emitted by the Nd:YAG laser that is well known, commercially available, economical and widely used in many laboratories and medical institutions. The study is made on the basis of fresh in-vitro teeth samples from the persons of Bulgaria, Sofia region.

  18. Absorbing and scattering aerosols over the source region of biomass burning emissions: Implications in the assessment of optical and radiative properties

    NASA Astrophysics Data System (ADS)

    Singh, Atinderpal; Srivastava, Rohit; Rastogi, Neeraj; Singh, Darshan

    2016-02-01

    The current study focuses on the assessment of model simulated optical and radiative properties of aerosols incorporating the measured chemical composition of aerosol samples collected at Patiala during October, 2011-February, 2012. Monthly average mass concentration of PM2.5, elemental carbon (EC), primary organic carbon (POC), water-soluble (WS) and insoluble (INS) aerosols ranged from 120 to 192, 6.2 to 7.2, 20 to 39, 59 to 111 and 35 to 90 μg m-3, respectively. Mass concentration of different components of aerosols was further used for the assessment of optical properties derived from Optical Properties of Aerosols and Clouds (OPAC) model simulations. Microtops based measured aerosol optical depth (AOD500) ranged from 0.47 to 0.62 showing maximum value during November and December, and minimum during February. Ångström exponent (α380-870) remained high (>0.90) throughout the study period except in February (0.74), suggesting predominance of fine mode particles over the study region. The observed ratio of scattering to absorbing aerosols was incorporated in OPAC model simulations and single scattering albedo (SSA at 500 nm) so obtained ranged between 0.80 and 0.92 with relatively low values during the period of extensive biomass burning. In the present study, SBDART based estimated values of aerosol radiative forcing (ARF) at the surface (SRF) and top of the atmosphere (TOA) ranged from -31 to -66 Wm-2 and -2 to -18 W m-2 respectively. The atmospheric ARF, ranged between + 18 and + 58 Wm-2 resulting in the atmospheric heating rate between 0.5 and 1.6 K day-1. These results signify the role of scattering and absorbing aerosols in affecting the magnitude of aerosol forcing.

  19. European activities in radiation protection in medicine.

    PubMed

    Simeonov, Georgi

    2015-07-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (non-medical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is launching several actions

  20. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  1. A novel parameter, cell-cycle progression index, for radiation dose absorbed estimation in the premature chromosome condensation assay.

    PubMed

    Miura, Tomisato; Nakata, Akifumi; Kasai, Kosuke; Nakano, Manabu; Abe, Yu; Tsushima, Eiki; Ossetrova, Natalia I; Yoshida, Mitsuaki A; Blakely, William F

    2014-06-01

    The calyculin A-induced premature chromosome condensation (PCC) assay is a simple and useful method for assessing the cell-cycle distribution in cells, since calyculin A induces chromosome condensation in various phases of the cell cycle. In this study, a novel parameter, the cell-cycle progression index (CPI), in the PCC assay was validated as a novel biomarker for biodosimetry. Peripheral blood was drawn from healthy donors after informed consent was obtained. CPI was investigated using a human peripheral blood lymphocyte (PBL) ex vivo irradiation ((60)Co-gamma rays: ∼0.6 Gy min(-1), or X ray: 1.0 Gy min(-1); 0-10 Gy) model. The calyculin A-induced PCC assay was performed for chromosome preparation. PCC cells were divided into the following five categories according to cell-cycle stage: non-PCC, G1-PCC, S-PCC, G2/M-PCC and M/A-PCC cells. CPI was calculated as the ratio of G2/M-PCC cells to G1-PCC cells. The PCC-stage distribution varied markedly with irradiation doses. The G1-PCC cell fraction was significantly reduced, and the G2/M-PCC cell fraction increased, in 10-Gy-irradiated PBL after 48 h of culture. CPI levels were fitted to an exponential dose-response curve with gamma-ray irradiation [y = 0.6729 + 0.3934 exp(0.5685D), r = 1.0000, p < 0.0001] and X-ray irradiation [y = -0.3743 + 0.9744 exp(0.3321D), r = 0.9999, p < 0.0001]. There were no significant individual (p = 0.853) or gender effects (p = 0.951) on the CPI in the human peripheral blood ex vivo irradiation model. Furthermore, CPI measurements are rapid (< 15 min per case). These results suggest that the CPI is a useful screening tool for the assessment of radiation doses received ranging from 0 to 10 Gy in radiation exposure early after a radiation event, especially after a mass-casualty radiological incident. PMID:24743756

  2. MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud

    2010-05-20

    We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) {proportional_to} 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter {xi} (or equivalently r) and the angle {theta}. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic {xi} interval, dN{sub H}/dlog {xi}, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) {proportional_to} 1/r, the AMD is found to be independent of {xi}, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v {approx} 100-300 km s{sup -1} (at log {xi} {approx} 2-3) for Fe XVII and v {approx} 1000-4000 km s{sup -1} (at log {xi} {approx} 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle {theta}. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle {theta}. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite

  3. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media

    NASA Astrophysics Data System (ADS)

    Godoy, William F.; DesJardin, Paul E.

    2010-05-01

    The application of flux limiters to the discrete ordinates method (DOM), SN, for radiative transfer calculations is discussed and analyzed for 3D enclosures for cases in which the intensities are strongly coupled to each other such as: radiative equilibrium and scattering media. A Newton-Krylov iterative method (GMRES) solves the final systems of linear equations along with a domain decomposition strategy for parallel computation using message passing libraries in a distributed memory system. Ray effects due to angular discretization and errors due to domain decomposition are minimized until small variations are introduced by these effects in order to focus on the influence of flux limiters on errors due to spatial discretization, known as numerical diffusion, smearing or false scattering. Results are presented for the DOM-integrated quantities such as heat flux, irradiation and emission. A variety of flux limiters are compared to "exact" solutions available in the literature, such as the integral solution of the RTE for pure absorbing-emitting media and isotropic scattering cases and a Monte Carlo solution for a forward scattering case. Additionally, a non-homogeneous 3D enclosure is included to extend the use of flux limiters to more practical cases. The overall balance of convergence, accuracy, speed and stability using flux limiters is shown to be superior compared to step schemes for any test case.

  4. Initial plasma formation by laser radiation acting on absorbing materials for a planar geometry of expansion of the plasma formed

    SciTech Connect

    Min'ko, L.Y.; Chivel', Y.A.; Chumakov, A.N.

    1985-01-01

    This work is concerned with the experimental studies of nonstationary processes of initial plasma formation as well as with the elucidation of the role of the erosion and air plasmas in the formation of the screening plasma flame. To this end, the authors performed complex experiments using high-speed shadow, photo and spectrographic methods, as well as the methods of photoelectric recording of the incident and reflected laser radiation together with time-referencing of the apparatus complex to within 20 nsec using a specially developed generator of synchronous electrical and light pulses. Specific measurements were performed primarily for determining the dependence of the time of the initial plasma formation and development of screening on the power density of the LR and the chemical composition of the plasma-forming material.

  5. In vitro-assessment of putative antiprogestin activities of phytochemicals and synthetic UV absorbers in human endometrial Ishikawa cells.

    PubMed

    Yin, Qinan; Fischer, Lara; Noethling, Claudia; Schaefer, Wolfgang R

    2015-07-01

    Critical steps of embryo implantation are controlled by progesterone. These processes can be interrupted by progesterone receptor (PR) antagonists, e.g. drugs used for abortion. Antiprogestin effects induced by natural compounds and environmental chemicals have been rarely addressed. In our in vitro study, we investigated putative antiprogestin activities of the plant compounds apigenin (API) and trans-ferulic acid (t-FA) as well as the UV absorbers octyl methoxycinnamate (OMC) and 4-methylbenzylidene camphor (4-MBC). They were compared with the selective progesterone receptor modulators (SPRMs) mifepristone (RU486) and ulipristal acetate (UPA) as well as the full PR-antagonist ZK137316. Effects of test compounds in combination with progesterone on the progesterone-sensitive target gene estrogen sulfotransferase (SULT1E1) were characterized by sigmoidal concentration-response curves obtained by RT-qPCR. The agonistic effect of progesterone on SULT1E1 mRNA levels was concentration-dependently antagonized by RU486, UPA and ZK137316 as well as, with lower potency, apigenin. t-FA, OMC and 4-MBC had no effect on SULT1E1 mRNA levels. We demonstrated that apigenin, although at higher concentrations, exerts a similar effect as the well-characterized SPRMs RU486 and UPA or the progesterone antagonist ZK137316 in this model. Our endometrium-specific Ishikawa cell assay is a useful complement to artificial transactivation assays for the identification of environmental substances with antiprogestin activities. PMID:26036805

  6. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  7. UV-B absorbing compounds in present-day and fossil pollen, spores, cuticles, seed coats and wood: evaluation of a proxy for solar UV radiation.

    PubMed

    Rozema, J; Blokker, P; Mayoral Fuertes, M A; Broekman, R

    2009-09-01

    UV-B absorbing compounds (UACs) in present-day and fossil pollen, spores, cuticles, seed coats and wood have been evaluated as a proxy for past UV. This proxy may not only provide information on variation of stratospheric ozone and solar UV in the period preceding and during the Antarctic ozone hole (1974-present day), but also on the development and variation of the stratospheric ozone layer and solar surface UV during the evolution of life on Earth. Sporopollenin and cutin are highly resistant biopolymers, preserving well in the geological record and contain the phenolic acids p-coumaric (pCA) and ferulic acid (FA). pCA and FA represent a good perspective for a plant-based proxy for past surface UV radiation since they are induced by solar UV-B via the phenylpropanoid pathway (PPP). UV-B absorption by these monomers in the wall of pollen and spores and in cuticles may prevent damage to the cellular metabolism. Increased pCA and FA in pollen of Vicia faba exposed to enhanced UV-B was found in greenhouse experiments. Further correlative evidence comes from UV-absorbing compounds in spores from 1960-2000 comparing exposure of land plants (Lycopodium species) to solar UV before and during ozone depletion and comparing plants from Antarctica (severe ozone depletion), Arctic, and other latitudes with less or negligible ozone depletion. Wood-derived compounds guaiacyl (G), syringyl (S), and p-hydroxyphenyl (P) are produced via the PPP. The proportions of P, G, and S in the lignin differ between various plant groups (e.g. dicotyledons/monocotyledons, gymnosperms/angiosperms). It is hypothesized that this lignin composition and derived physiological and physical properties of lignin (such as tree-ring wood density) has potential as a proxy for palaeo-UV climate. However validation by exposure of trees to enhanced UV is lacking. pCA and FA also form part of cutin polymers and are found in extant and fossil Ginkgo leaf cuticles as shown by thermally-assisted hydrolysis and

  8. Active radiation hardening technology for fiber-optic source

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Suo, Xinxin; Yang, Mingwei

    2013-09-01

    We demonstrated an active radiation hardening technology for fiber optic source developed for high performance fiber optic gyroscope. The radiation characteristic of erbium-doped fiber was studied experimentally. The radiation induced attenuation (RIA) at 980nm pump light was identified to be the main reason for the degradation and there was photo-bleaching effect in EDF too. A variable parameters control technology was proposed and taken to keep the 980nm and 1550nm light energy stable and high stability and radiation-resistance fiber source with gauss profile spectrum was realized .The source can stand against more than 50 krad (Si) total radiation dose.

  9. Calculation of absorbed dose around a facility for disposing of low activity natural radioactive waste (C3-dump).

    PubMed

    Jansen, J T M; Zoetelief, J

    2005-01-01

    A C3-dump is a facility for disposing of low activity natural radioactive waste containing the uranium series 238U, the thorium series 232Th and 40K. Only the external radiation owing to gamma rays, X-rays and annihilation photons is considered in this study. For two situations--the semi-infinite slab and the tourist geometry--the conversion coefficients from specific activity to air kerma rate at 1 m above the relevant level are calculated. In the first situation the waste material is in contact with the air but in the tourist geometry it is covered with a 1.35 m thick layer. For the calculations, the Monte Carlo radiation transport code MCNP is used. The yield and photon energy for each radionuclide are according to the database of Oak Ridge National Laboratory. For the tourist situation, the depth-dose distribution through the covering layer is calculated and extrapolated to determine the exit dose. PMID:16604673

  10. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  11. DHCAL with minimal absorber: measurements with positrons

    NASA Astrophysics Data System (ADS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-05-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  12. Radiation safety at accelerator facilities NCRP activities

    NASA Astrophysics Data System (ADS)

    Kase, Kenneth R.

    1997-02-01

    The National Council on Radiation Protection and Measurements (NCRP) has issued 13 reports, dating back to 1949, giving guidance and recommendations for radiation protection at accelerator facilities. There are six current reports on the topics of neutron radiation; facility and shielding design; alarms and access control systems; and equipment design, performance, and use. Scientific Committee 46 (SC 46) is currently overseeing the development of two reports that will provide up-to-date guidance for the design of medical accelerator facilities and shielding. SC 46 has also proposed that a report be written to provide guidance for the design and shielding of industrial accelerator and large irradiator facilities. This paper describes the status and contents of these reports.

  13. Electrochemically regenerable carbon dioxide absorber

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.; Heppner, D. B.

    1979-01-01

    Preliminary designs were generated for two electrochemically regenerable carbon dioxide absorber concepts. Initially, an electrochemically regenerable absorption bed concept was designed. This concept incorporated the required electrochemical regeneration components in the absorber design, permitting the absorbent to be regenerated within the absorption bed. This hardware was identified as the electrochemical absorber hardware. The second hardware concept separated the functional components of the regeneration and absorption process. This design approach minimized the extravehicular activity component volume by eliminating regeneration hardware components within the absorber. The electrochemical absorber hardware was extensively characterized for major operating parameters such as inlet carbon dioxide partial pressure, process air flow rate, operational pressure, inlet relative humidity, regeneration current density and absorption/regeneration cycle endurance testing.

  14. Nonventing, Regenerable, Lightweight Heat Absorber

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    A lightweight, regenerable heat absorber (RHA), developed for rejecting metabolic heat from a space suit, may also be useful on Earth for short-term cooling of heavy protective garments. Unlike prior space-suit-cooling systems, a system that includes this RHA does not vent water. The closed system contains water reservoirs, tubes through which water is circulated to absorb heat, an evaporator, and an absorber/radiator. The radiator includes a solution of LiCl contained in a porous material in titanium tubes. The evaporator cools water that circulates through a liquid-cooled garment. Water vapor produced in the evaporator enters the radiator tubes where it is absorbed into the LiCl solution, releasing heat. Much of the heat of absorption is rejected to the environment via the radiator. After use, the RHA is regenerated by heating it to a temperature of 100 C for about 2 hours to drive the absorbed water back to the evaporator. A system including a prototype of the RHA was found to be capable of maintaining a temperature of 20 C while removing heat at a rate of 200 W for 6 hours.

  15. Warm Absorber Diagnostics of AGN Dynamics

    NASA Astrophysics Data System (ADS)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  16. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  17. Hornet flight activity and its correlation with UVB radiation, temperature and relative humidity.

    PubMed

    Volynchik, Stanislav; Plotkin, Marian; Bergman, David J; Ishay, Jacob S

    2008-01-01

    During the active season, extending from June to October, hornets emerge from their nest in the field in all the daytime hours. In the beginning of the season, when the number of workers is relatively small, the number of exits from the nest is fairly uniform numerically throughout the day. However, with the increase in hornet population from July onwards, the number of workers emerging from the nest entrance around noon (1100-1300 h) is by 1-2 orders of magnitude greater than the number of those emerging in the morning or evening hours. This disparity persists till September or October, at which time the workers revert to behave as in the beginning of the season. It appears, therefore, that in this period hornet activities outside the nest are coordinated with the meteorological conditions, and in this regard, the highest correlation is with the ultra violet B (UVB) radiation level and to a lesser extent with the temperature. Presumably, also, the greater noon-hour activity in the nests of hornets in the field stems from the digging hornets benefiting from the greater availability of solar energy at noon, mainly that of UVB radiation. We assume that the hornets are able to utilize the UVB radiation, but what part of their body is "absorbing" the UVB energy is still a matter of further investigation. PMID:18173706

  18. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  19. Personal Active Dosimeter for Space: the Light Observer for Radiation Environment (LORE) project

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    Long permanence in space outside the protections of the Earth magnetic shield and atmosphere (during long journeys, and on the Moon or/and Mars) requires a careful monitoring of absorbed doses by each astronaut. This is of paramount importance for transient and cumulative effects mostly due to Solar Particle Events. Alarming features and the possibility of monitoring absorbed dose also discriminating the kind of incoming radiation will be needed. Stemming from our large experience in detector building, in modelling, in designing of the supporting electronic, from our payloads flown on satellites, MIR Station and ISS (Nina, Mita, SilEye, SilEye2, Alteino, Pamela, ALTEA) we are developping a personal active dosimeter with alarming and wireless features. The goal is a small object able to measure charged and neutral ionizing radiation (the possibility to insert a miniaturized gamma detector will be investigated) The device will feature portability (cigarette-box dimensions, rechargeable batteries), sensitivity to ions (H to above Fe), to hard X-rays, and possibly to gamma with the ability to detect and count neutrons. Flash memories should contain pre loaded tables and the real Time code to perform the real time operations and risk thresholds so to activate an alarm if/when needed. Whenever in range, the device will connect wirelessly to the main computer and send there the raw and pre-analyzed data for a complete monitoring and possible more sophisticated analyses. The two major novelties and challenges in this project are the miniaturization of the device, including the firmware, and the definition of the transfer function and of its uncertainties, linking measured data with real flux data. This will require the proper balancing among size, radiation discrimination ability and uncertainty minimization.

  20. The biodistribution and dosimetry of {sup 117m}Sn DTPA with special emphasis on active marrow absorbed doses

    SciTech Connect

    Stubbs, J.; Atkins, H.

    1999-01-01

    {sup 117m}Sn(4+) DTPA is a new radiopharmaceutical for the palliation of pain associated with metastatic bone cancer. Recently, the Phase 2 clinical trials involving 47 patients were completed. These patients received administered activities in the range 6.7--10.6 MBq/kg of body mass. Frequent collections of urine were acquired over the first several hours postadministration and daily cumulative collections were obtained for the next 4--10 days. Anterior/posterior gamma camera images were obtained frequently over the initial 10 days. Radiation dose estimates were calculated for 8 of these patients. Each patient`s biodistribution data were mathematically simulated using a multicompartmental model. The model consisted of the following compartments: central, bone, kidney, other tissues, and cumulative urine. The measured cumulative urine data were used as references for the cumulative urine excretion compartment. The total-body compartment (sum of the bone surfaces, central, kidney, and other tissues compartments) was reference to all activity not excreted in the urine.

  1. Efficacy of a Radiation Absorbing Shield in Reducing Dose to the Interventionalist During Peripheral Endovascular Procedures: A Single Centre Pilot Study

    SciTech Connect

    Power, S.; Mirza, M.; Thakorlal, A.; Ganai, B.; Gavagan, L. D.; Given, M. F.; Lee, M. J.

    2015-06-15

    PurposeThis prospective pilot study was undertaken to evaluate the feasibility and effectiveness of using a radiation absorbing shield to reduce operator dose from scatter during lower limb endovascular procedures.Materials and MethodsA commercially available bismuth shield system (RADPAD) was used. Sixty consecutive patients undergoing lower limb angioplasty were included. Thirty procedures were performed without the RADPAD (control group) and thirty with the RADPAD (study group). Two separate methods were used to measure dose to a single operator. Thermoluminescent dosimeter (TLD) badges were used to measure hand, eye, and unshielded body dose. A direct dosimeter with digital readout was also used to measure eye and unshielded body dose. To allow for variation between control and study groups, dose per unit time was calculated.ResultsTLD results demonstrated a significant reduction in median body dose per unit time for the study group compared with controls (p = 0.001), corresponding to a mean dose reduction rate of 65 %. Median eye and hand dose per unit time were also reduced in the study group compared with control group, however, this was not statistically significant (p = 0.081 for eye, p = 0.628 for hand). Direct dosimeter readings also showed statistically significant reduction in median unshielded body dose rate for the study group compared with controls (p = 0.037). Eye dose rate was reduced for the study group but this was not statistically significant (p = 0.142).ConclusionInitial results are encouraging. Use of the shield resulted in a statistically significant reduction in unshielded dose to the operator’s body. Measured dose to the eye and hand of operator were also reduced but did not reach statistical significance in this pilot study.

  2. Space activities and radiation protection of crew members

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel

    Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.

  3. CONTROL OF LASER RADIATION PARAMETERS. GENERATION OF ULTRASHORT PULSES: Passive mode locking in a cw dye laser with a rapidly relaxing absorber

    NASA Astrophysics Data System (ADS)

    Krindach, D. P.; Kur'yanov, A. A.; Novoderezhkin, V. I.

    1990-12-01

    Theoretical and experimental investigations were made of the characteristics of passive mode locking in a cw dye laser with a rapidly relaxing absorber. It was found that such a "fast" absorber was prone to fluctuations. This altered the limits and widened the mode-locking range in the direction of higher energy densities of the pulses, compared with a "slow" absorber of the DODCI type. This made it possible to generate pulses shorter than 100 fs with an average power of 30-50 mW.

  4. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    PubMed Central

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within±25% (or within±75 cGy) for 80% of tumors. Conclusions The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  5. Fluorine gettering by activated charcoal in a radiation environment

    SciTech Connect

    Felker, L.K.; Toth, L.M.

    1988-10-01

    Activated charcoal has been shown to be an effective gettering agent for the fluorine gas that is liberated in a radiation environment. Even though activated charcoal is a commonly used getter, little is known about the radiation stability of the fluorine-charcoal product. This work has shown that not only is the product stable in high gamma radiation fields, but also that radiation enhances the capacity of the charcoal for the fluorine. The most useful application of this work is with the Molten Salt Reactor Experiment (MSRE) fuel salt because the radioactive components (fission products and actinides) cause radiolytic damage to the solid LiF-BeF/sub 2/-ZrF/sub 4/-UF/sub 4/ (64.5, 30.3, 5.0, 0.13 mol %, respectively) resulting in the liberation of fluorine gas. This work has also demonstrated that the maximum damage to the fuel salt by approx.3 /times/ 10/sup 7/ R/h gamma radiation is approximately 2%, at which point the rate of recombination of fluorine with active metal sites within the salt lattice equals the rate of fluorine generation. The enhanced reactivity of the activated charcoal and radiation stability of the product ensures that the gettered fluorine will stay sequestered in the charcoal.

  6. The role of UV-B radiation in aquatic and terrestrial ecosystems--an experimental and functional analysis of the evolution of UV-absorbing compounds.

    PubMed

    Rozema, J; Björn, L O; Bornman, J F; Gaberscik, A; Häder, D-P; Trost, T; Germ, M; Klisch, M; Gröniger, A; Sinha, R P; Lebert, M; He, Y-Y; Buffoni-Hall, R; de Bakker, N V J; van de Staaij, J; Meijkamp, B B

    2002-02-01

    Gyrodinium dorsum, the green algal species Prasiola stipitata and in the cyanobacterium Anabaena sp. While visible (400-700 nm) and long wavelength UV-A (315-400 nm) showed only a slight effect, MAAs were effectively induced by UV-B (280-315 nm). The growth of the lower land organisms studied, i.e. the lichens Cladina portentosa, Cladina foliacaea and Cladonia arbuscula, and the club moss Lycopodiumannotinum, was not significantly reduced when grown under elevated UV-B radiation (simulating 15% ozone depletion). The growth in length of the moss Tortula ruralis was reduced under elevated UV-B. Of the aquatic plants investigated the charophytes Chara aspera showed decreased longitudinal growth under elevated UV-B. In the 'aquatic higher plants' studied, Ceratophyllum demersum, Batrachium trichophyllum and Potamogeton alpinus, there was no such depressed growth with enhanced UV-B. In Chara aspera, neither MAAs nor flavonoids could be detected. Of the terrestrial higher plants studied, Fagopyrum esculentum, Deschampsia antarctica, Vicia faba, Calamagrostis epigejos and Carex arenaria, the growth of the first species was depressed with enhanced UV-B, in the second species length growth was decreased, but the shoot number was increased, and in the latter two species of a dune grassland there was no reduced growth with enhanced UV-B. In the dune grassland species studied outdoors, at least five different flavonoids appeared in shoot tissue. Some of the flavonoids in the monocot species, which were identified and quantified with HPLC, included orientin, luteolin, tricin and apigenin. A greenhouse study with Vicia faba showed that two flavonoids (aglycones) respond particularly to enhanced UV-B. Of these, quercetin is UV-B inducible and mainly located in epidermal cells, while kaempferol occurs constitutively. In addition to its UV-screening function, quercetin may also act as an antioxidant. Polychromatic action spectra were determined for induction of the UV-absorbing pigments in

  7. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  8. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  9. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  10. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  11. Radiation-pressure-supported obscuring tori around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Radiation pressure acting on dust grains can support the vertical thickness of the obscuring tori believed to exist in active galactic nuclei. Using the results of 2D radiation transfer calculations, we evaluate the radiation force acting on these tori. We find that on the inner edge of the torus the radiation force is about 350 l(E) times the gravitational force of the nucleus, where l(E) is the Eddington ratio. Beyond a few torus heights from the inner edge, the radiation force is negligible with respect to gravity. However, between these two extremes lies a region of considerable size where the ratio of radiation force to gravity is nearly constant and can be of order unity for l(E) about 0.1. If the distribution of material within the torus is sufficiently lumpy, there is a significant time-varying component to the radiation force. This drives the random motions of the constituent clouds, thickening the torus at lower values of l(E).

  12. Packed Alumina Absorbs Hypergolic Vapors

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.; Mauro, D. M.

    1984-01-01

    Beds of activated alumina effective as filters to remove hypergolic vapors from gas streams. Beds absorb such substances as nitrogen oxides and hydrazines and may also absorb acetylene, ethylene, hydrogen sulfide, benzene, butadiene, butene, styrene, toluene, and xoylene. Bed has no moving parts such as pumps, blowers and mixers. Reliable and energy-conservative. Bed readily adapted to any size from small portable units for use where little vapor release is expected to large stationary units for extensive transfer operations.

  13. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ˜ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ˜ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  14. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ∼ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ∼ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  15. Multilayer Radar Absorbing Non-Woven Material

    NASA Astrophysics Data System (ADS)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  16. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen

    NASA Astrophysics Data System (ADS)

    Lesser, M. P.; Stochaj, W. R.; Tapley, D. W.; Shick, J. M.

    1990-04-01

    Recent widespread bleaching of coral reef anthozoans has been observed on the Great Barrier Reef, the Pacific coast of Panama, and in the Caribbean Sea. Bleaching events have been correlated with anomalously high sea surface temperatures which are presumed to cause the expulsion of zooxanthellae from their hosts. Our experimental results show that increases in temperature significantly reduce the total number of zooxanthellae per polyp. At the same time temperature, irradiance (photosynthetically active radiation=PAR), and ultraviolet radiation (UV) independently increase the activities of the enzymes superoxide dismutase, catalase, and ascorbate peroxidase within the zooxanthellae of the zoanthid Palythoa caribaeorum. Enzyme activities within the host are only suggestive of similar changes. These enzymes are responsible for detoxifying active forms of oxygen, and their elevated activities indirectly indicate an increase in the production of active oxygen species by increases in these environmental factors. Historically, bleaching has been attributed to changes in temperature, salinity, and UV. Increases in temperature or highly energetic UV radiation can increase the flux of active forms of oxygen, particularly at the elevated oxygen concentrations that prevail in the tissues during photosynthesis, with oxygen toxicity potentially mediating the bleaching event. Additionally, the concentration of UV absorbing compounds within the symbiosis is inversely related to temperature, potentially increasing exposure of the host and zooxanthellae to the direct effects of UV.

  17. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  18. Data on biodistribution and radiation absorbed dose profile of a novel (64)Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature.

    PubMed

    Merrill, Joseph R; Krajewski, Krzysztof; Yuan, Hong; Frank, Jonathan E; Lalush, David S; Patterson, Cam; Veleva, Anka N

    2016-06-01

    New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article "Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature" (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses. PMID:27014735

  19. Data on biodistribution and radiation absorbed dose profile of a novel 64Cu-labeled high affinity cell-specific peptide for positron emission tomography imaging of tumor vasculature

    PubMed Central

    Merrill, Joseph R.; Krajewski, Krzysztof; Yuan, Hong; Frank, Jonathan E.; Lalush, David S.; Patterson, Cam; Veleva, Anka N.

    2016-01-01

    New peptide-based diagnostic and therapeutic approaches hold promise for highly selective targeting of cancer leading to more precise and effective diagnostic and therapeutic modalities. An important feature of these approaches is to reach the tumor tissue while limiting or minimizing the dose to normal organs. In this context, efforts to design and engineer materials with optimal in vivo targeting and clearance properties are important. This Data In Brief article reports on biodistribution and radiation absorbed dose profile of a novel high affinity radiopeptide specific for bone marrow-derived tumor vasculature. Background information on the design, preparation, and in vivo characterization of this peptide-based targeted radiodiagnostic is described in the article “Synthesis and comparative evaluation of novel 64Cu-labeled high affinity cell-specific peptides for positron emission tomography of tumor vasculature” (Merrill et al., 2016) [1]. Here we report biodistribution measurements in mice and calculate the radiation absorbed doses to normal organs using a modified Medical Internal Radiation Dosimetry (MIRD) methodology that accounts for physical and geometric factors and cross-organ beta doses. PMID:27014735

  20. Absorber coatings' degradation

    SciTech Connect

    Moore, S.W.

    1984-01-01

    This report is intended to document some of the Los Alamos efforts that have been carried out under the Department of Energy (DOE) Active Heating and Cooling Materials Reliability, Maintainability, and Exposure Testing program. Funding for these activities is obtained directly from DOE although they represent a variety of projects and coordination with other agencies. Major limitations to the use of solar energy are the uncertain reliability and lifetimes of solar systems. This program is aimed at determining material operating limitations, durabilities, and failure modes such that materials improvements can be made and lifetimes can be extended. Although many active and passive materials and systems are being studied at Los Alamos, this paper will concentrate on absorber coatings and degradation of these coatings.

  1. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  2. Radiation processing in india-current R & D activities

    NASA Astrophysics Data System (ADS)

    Majali, A. B.; Sabharwal, S.

    1995-09-01

    Radiation processing is an area of vigorous activity in today's India. With the indigenous expertise in Co source and irradiator technology, potentially promising applications such as sustained drug delivery systems, vulcanization of natural rubber latex (RVNRL), and degradation of polytetrafluoroethylene (PTFE) are presently investigated. Over the last four years, technologies for RVNRL and PTFE degradation have been scaled upto pilot scale operations, while radiation polymerized polymer systems have been developed for controlled release of certain drugs. With the commissioning of the 2 MeV EB machine in late 1988, a few EB based processes have also been commercially exploited. The paper briefly reviews these and presents the significant results obtained.

  3. Mushroom plasmonic metamaterial infrared absorbers

    NASA Astrophysics Data System (ADS)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-01

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF2 etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  4. Mushroom plasmonic metamaterial infrared absorbers

    SciTech Connect

    Ogawa, Shinpei Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Misaki, Koji; Kimata, Masafumi

    2015-01-26

    There has been a considerable amount of interest in the development of various types of electromagnetic wave absorbers for use in different wavelength ranges. In particular, infrared (IR) absorbers with wavelength selectivity can be applied to advanced uncooled IR sensors, which would be capable of identifying objects through their radiation spectrum. In the present study, mushroom plasmonic metamaterial absorbers (MPMAs) for the IR wavelength region were designed and fabricated. The MPMAs consist of a periodic array of thin metal micropatches connected to a thin metal plate with narrow silicon (Si) posts. A Si post height of 200 nm was achieved by isotropic XeF{sub 2} etching of a thin Si layer sandwiched between metal plates. This fabrication procedure is relatively simple and is consistent with complementary metal oxide semiconductor technology. The absorption spectra of the fabricated MPMAs were experimentally measured. In addition, theoretical calculations of their absorption properties were conducted using rigorous coupled wave analysis. Both the calculated and measured absorbance results demonstrated that these MPMAs can realize strong selective absorption at wavelengths beyond the period of the array by varying the micropatch width. Absorbance values greater than 90% were achieved. Dual- or single-mode absorption can also be selected by varying the width of the Si posts. Pixel structures using such MPMAs could be used as high responsivity, high resolution and fast uncooled IR sensors.

  5. Active thermal extraction of near-field thermal radiation

    NASA Astrophysics Data System (ADS)

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-02-01

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at subwavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far field. Our study demonstrates an approach to manipulate thermal radiation that could find applications in thermal management.

  6. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  7. ON THE ANISOTROPY OF NUCLEI MID-INFRARED RADIATION IN NEARBY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Yang, Huan; Wang, JunXian; Liu, Teng E-mail: jxw@ustc.edu.cn

    2015-01-20

    In the center of active galactic nuclei (AGNs), the dusty torus absorbs the radiation from the central engine and reemits in mid-infrared (MIR). Observations have detected moderate anisotropy in the dust MIR emission, in the way that type 1 AGNs (type1s) are mildly brighter in MIR comparing with type 2 sources (type2s). However, type1s and type2s were found to follow statistically the same tight MIR-hard X-ray correlation, suggesting that the MIR emission is highly isotropic assuming that the hard X-ray radiation is inclination independent. We argue that this discrepancy could be solved considering that the hard X-ray emission in AGNs is also mildly anisotropic, as we recently discovered. To verify this diagram, we compare the subarcsecond 12 μm flux densities of type1s and type2s using the [O IV] λ25.89 μm emission line as an isotropic luminosity indicator. We find that on average type1s are brighter in nuclei 12 μm radiation by a factor of 2.6 ± 0.6 than type2s at given [O IV] λ25.89 μm luminosities, confirming the mild anisotropy of the nuclei 12 μm emission. We show that the anisotropy of the 12 μm emission we detected is in good agreement with radiative transfer models of clumpy tori. The fact that type1s and type2s follow the same tight MIR-hard X-ray correlation instead supports that both the MIR emission and hard X-ray emission in AGNs are mildly anisotropic.

  8. Persistence of endometrial activity after radiation therapy for cervical carcinoma

    SciTech Connect

    Barnhill, D.; Heller, P.; Dames, J.; Hoskins, W.; Gallup, D.; Park, R.

    1985-12-01

    Radiation therapy is a proved treatment for cervical carcinoma; however, it destroys ovarian function and has been thought to ablate the endometrium. Estrogen replacement therapy is often prescribed for patients with cervical carcinoma after radiation therapy. A review of records of six teaching hospitals revealed 16 patients who had endometrial sampling for uterine bleeding after standard radiation therapy for cervical carcinoma. Fifteen patients underwent dilatation and curettage, and one patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy when a dilatation and curettage was unsuccessful. Six patients had fibrosis and inflammation of the endometrial cavity, seven had proliferative endometrium, one had cystic hyperplasia, one had atypical adenomatous hyperplasia, and one had adenocarcinoma. Although the number of patients who have an active endometrium after radiation therapy for cervical carcinoma is not known, this report demonstrates that proliferative endometrium may persist, and these patients may develop endometrial hyperplasia or adenocarcinoma. Studies have indicated that patients with normal endometrial glands have an increased risk of developing endometrial adenocarcinoma if they are treated with unopposed estrogen. Patients who have had radiation therapy for cervical carcinoma should be treated with estrogen and a progestational agent to avoid endometrial stimulation from unopposed estrogen therapy.

  9. EVIDENCE OF A WARM ABSORBER THAT VARIES WITH QUASI-PERIODIC OSCILLATION PHASE IN THE ACTIVE GALACTIC NUCLEUS RE J1034+396

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M. E-mail: jonmm@umich.ed

    2010-07-20

    A recent observation of the nearby (z = 0.042) narrow-line Seyfert 1 galaxy RE J1034+396 on 2007 May 31 showed strong quasi-periodic oscillations (QPOs) in the 0.3-10 keV X-ray flux. We present phase-resolved spectroscopy of this observation, using data obtained by the EPIC PN detector on board XMM-Newton. The 'low' phase spectrum, associated with the troughs in the light curve, shows (at >4{sigma} confidence level) an absorption edge at 0.86 {+-} 0.05 keV with an absorption depth of 0.3 {+-} 0.1. Ionized oxygen edges are hallmarks of X-ray warm absorbers in Seyfert active galactic nuclei; the observed edge is consistent with H-like O VIII and implies a column density of N{sub OVIII} {approx} 3 x 10{sup 18} cm{sup -2}. The edge is not seen in the 'high' phase spectrum associated with the crests in the light curve, suggesting the presence of a warm absorber in the immediate vicinity of the supermassive black hole that periodically obscures the continuum emission. If the QPO arises due to Keplerian orbital motion around the central black hole, the periodic appearance of the O VIII edge would imply a radius of {approx}9.4(M/[4x10{sup 6}M{sub sun}]){sup -2/3}(P/[1 hr]){sup 2/3} r{sub g} for the size of the warm absorber.

  10. An update on radiation absorbed dose to patients from diagnostic nuclear medicine procedures in Tehran: A study on four academic centers

    PubMed Central

    Motazedian, Motahareh; Tabeie, F; Vatankhah, P; Shafiei, B; Amoui, M; Atefi, M; Ansari, M; Asli, I Neshandar

    2016-01-01

    Purpose: Use of radiopharmaceuticals for diagnostic nuclear medicine procedures is one of the main sources of radiation exposure. We performed this study with respect to the rapid growth in nuclear medicine in Iran and lack of updated statistics. Materials and Methods: The data were obtained for all active Nuclear Medicine Centers affiliated to Shahid Beheshti University of Medical Sciences during 2009 and 2010. Results: The most frequently performed procedures were bone (30.16%), cardiac (28.96%), renal (17.97%), and thyroid (7.93%) scans. There was a significant decrease in the number of thyroid scintigraphies with 131I and 99mTc-sulfur colloid liver/spleen scans and tremendous increase in the frequencies of cardiac and bone scintigraphies compared to one decade ago. Conclusion: Compared to previous studies, there were striking changes in trends of diagnostic nuclear medicine procedures in Tehran. This field is still evolving in the country, and this trend will further change with the introduction of positron emission tomography scanners in future. PMID:27095860

  11. Active magnetic radiation shielding system analysis and key technologies

    NASA Astrophysics Data System (ADS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  12. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. PMID:26177618

  13. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials.

    PubMed

    Price, Robert A

    2005-01-01

    The behaviour of packaged and unpackaged ESAPMOS4 RadFET radiation detectors (NMRC Cork, Ireland) was investigated when used in the mixed photon and neutron environment of a medical linear accelerator operating above the nucleon separation energy and in a 14 MeV neutron field provided by a D-T generator. Within the uncertainty of the experimental set-up (4% at 95% confidence level) the unpackaged device was found to have essentially zero activation dose-burden whereas the packaged device exhibits a considerable degree of post irradiation absorbed dose due to deactivation radiation. PMID:16381751

  14. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  15. Asymmetric thoracic metaiodobenzylguanidine (MIBG) activity due to prior radiation therapy.

    PubMed

    Bai, Xia; Yang, Hua; Zhuang, Hongming

    2015-06-01

    A 5-year-old patient suffered Horner syndrome, which was caused by a neuroblastoma in the left apex of the lung shown on the initial I-MIBG scan. After the surgical resection and external radiation to the left lung field, a follow-up I-MIBG scan revealed significantly less MIBG activity in the left upper chest compared to the contralateral right upper chest. PMID:25742240

  16. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  17. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  18. The MIRD method of estimating absorbed dose

    SciTech Connect

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  19. Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff

    NASA Astrophysics Data System (ADS)

    Angın, Dilek; Köse, T. Ennil; Selengil, Uğur

    2013-09-01

    The use of activated carbon obtained from biochar for the removal of reactive dyestuff from aqueous solutions at various contact times, pHs and temperatures was investigated. The biochar was chemically modified with potassium hydroxide. The surface area and micropore volume of activated carbon was 1277 m2/g and 0.4952 cm3/g, respectively. The surface characterization of both biochar and activated carbon was undertaken using by Fourier transform infrared spectroscopy and scanning electron microscopy. The experimental data indicated that the adsorption isotherms are well described by the Dubinin-Radushkevich (DR) isotherm equation. The adsorption kinetics of reactive dyestuff obeys the pseudo second-order kinetic model. The thermodynamic parameters such as ΔG̊, ΔH̊ and ΔS̊ were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 1.12 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal reactive dyestuff from wastewater.

  20. Photon activation therapy of RG2 glioma carrying Fischer rats using stable thallium and monochromatic synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ceberg, Crister; Jönsson, Bo-Anders; Prezado, Yolanda; Pommer, Tobias; Nittby, Henrietta; Englund, Elisabet; Grafström, Gustav; Edvardsson, Anneli; Stenvall, Anna; Strömblad, Susanne; Wingårdh, Karin; Persson, Bertil; Elleaume, Hélène; Baldetorp, Bo; Salford, Leif G.; Strand, Sven-Erik

    2012-12-01

    75 RG2 glioma-carrying Fischer rats were treated by photon activation therapy (PAT) with monochromatic synchrotron radiation and stable thallium. Three groups were treated with thallium in combination with radiation at different energy; immediately below and above the thallium K-edge, and at 50 keV. Three control groups were given irradiation only, thallium only, or no treatment at all. For animals receiving thallium in combination with radiation to 15 Gy at 50 keV, the median survival time was 30 days, which was 67% longer than for the untreated controls (p = 0.0020) and 36% longer than for the group treated with radiation alone (not significant). Treatment with thallium and radiation at the higher energy levels were not effective at the given absorbed dose and thallium concentration. In the groups treated at 50 keV and above the K-edge, several animals exhibited extensive and sometimes contra-lateral edema, neuronal death and frank tissue necrosis. No such marked changes were seen in the other groups. The results were discussed with reference to Monte Carlo calculated electron energy spectra and dose enhancement factors.

  1. TPX/TFTR Neutral Beam energy absorbers

    SciTech Connect

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-11-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET.

  2. An active control strategy for achieving weak radiator structures

    SciTech Connect

    Naghshineh, K. . Acoustics and Radar Technology Lab.); Koopmann, G.H. . Center for Acoustics and Vibration)

    1994-01-01

    A general control strategy is presented for active suppression of total radiated sound power from harmonically excited structures based on the measurement of their response. Using the measured response of the structure together with knowledge of its structural mobility, and equivalent primary excitation force is found at discrete points along the structure. Using this equivalent primary force and performing a quadratic optimization of the power radiated form the structure, a set of control forces is found at selected points on the structure that results in minimum radiated sound power. A numerical example of this strategy is presented for a simply supported beam in a rigid baffle excited by a harmonic plane wave incident at an oblique angle. A comparison of the response of the beam with and without control forces shows a large reduction in the controlled response displacement magnitude. In addition, as the result of the action of the control forces, the magnitude of the wave number spectrum of the beam's response in the supersonic region is decreased substantially. The effect of the number and location of the actuators on reductions in sound power level is also studied. The actuators located at the anti-nodes of structural modes within the supersonic region together with those located near boundaries are found to be the most effective in controlling the radiation of sound from a structure.

  3. Active Extraction of Near-field Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Kim, Taeyong; Minnich, Austin

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active radiative cooling (ARC) scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. We also provide further insights into our ARC scheme by applying the theoretical framework used for laser cooling of solids (LCS) to ARC. We show that LCS and ARC can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ARC. Using this framework, we examine the predictions of the formalism for LCS and ARC using realistic parameters and find that ARC can achieve higher efficiency and extracted power over a wide range of conditions. Our study demonstrates a new approach to manipulate near-field thermal radiation for thermal management.

  4. SGK1 activity in Na+ absorbing airway epithelial cells monitored by assaying NDRG1-Thr346/356/366 phosphorylation.

    PubMed

    Inglis, S K; Gallacher, M; Brown, S G; McTavish, N; Getty, J; Husband, E M; Murray, J T; Wilson, S M

    2009-04-01

    Studies of HeLa cells and serum- and glucocorticoid-regulated kinase 1 (SGK1) knockout mice identified threonine residues in the n-myc downstream-regulated gene 1 protein (NDRG1-Thr(346/356/366)) that are phosphorylated by SGK1 but not by related kinases (Murray et al., Biochem J 385:1-12, 2005). We have, therefore, monitored the phosphorylation of NDRG1-Thr(346/356/366) in order to explore the changes in SGK1 activity associated with the induction and regulation of the glucocorticoid-dependent Na(+) conductance (G (Na)) in human airway epithelial cells. Transient expression of active (SGK1-S422D) and inactive (SGK1-K127A) SGK1 mutants confirmed that activating SGK1 stimulates NDRG1-Thr(346/356/366) phosphorylation. Although G (Na) is negligible in hormone-deprived cells, these cells displayed basal SGK1 activity that was sensitive to LY294002, an inhibitor of 3-phosphatidylinositol phosphate kinase (PI3K). Dexamethasone (0.2 muM) acutely activated SGK1 and the peak of this response (2-3 h) coincided with the induction of G (Na), and both responses were PI3K-dependent. While these data suggest that SGK1 might mediate the rise in G (Na), transient expression of the inactive SGK1-K127A mutant did not affect the hormonal induction of G (Na) but did suppress the activation of SGK1. Dexamethasone-treated cells grown on permeable supports formed confluent epithelial sheets that generated short circuit current due to electrogenic Na(+) absorption. Forskolin and insulin both stimulated this current and the response to insulin, but not forskolin, was LY294002-sensitive and associated with the activation of SGK1. While these data suggest that SGK1 is involved in the control of G (Na), its role may be minor, which could explain why sgk1 knockout has different effects upon different tissues. PMID:18787837

  5. Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer

    PubMed Central

    Hobbs, Robert F.; Stahl, Alexander; Knust, Jochen; Sgouros, George; Bockisch, Andreas

    2010-01-01

    Purpose Salivary gland impairment following high activity radioiodine therapy of differentiated thyroid cancer (DTC) is a severe side effect. Dosimetric calculations using planar gamma camera scintigraphy (GCS) with 131I and ultrasonography (US) provided evidence that the average organ dose per administered 131I activity (ODpA) is too low to account for observed radiation damages to the salivary glands. The objective of this work was to re-estimate the ODpA using 124I PET(/CT) as a more reliable approach than 131I GCS/US. Methods Ten DTC patients underwent a series of six (or seven) PET scans and one PET/CT scan after administration of ~23 MBq 124I-iodide. Volumes of interest (VOIs) drawn on the CT and serial PET images were used to determine the glandular volumes and the imaged 124I activities. To enable identical VOIs to be drawn on serial PET images, each PET was co-registered with the CT image. To correct for partial volume effect and for the artificial bias in the activity concentration due to cascading gamma coincidences occurring in 124I decay, the imaged activity was effectively corrected using isovolume recovery coefficients (RCs) based on recovery phantom measurements. A head-neck phantom, which contained 124I-filled spheres, was manufactured to validate the isovolume recovery correction method with a realistic patient-based phantom geometry and for a range of activity concentration regimes. The mean±standard deviation (range) ODpA projected for 131I was calculated using the absorbed dose fraction method. Results The ODpAs (in Gy/GBq) for the submandibular and parotid glands were 0.32±0.13 (0.18–0.55) and 0.31±0.10 (0.13–0.46), respectively. No significant differences (p>0.2) in the mean ODpA between 124I PET(/CT) and 131I GCS/US dosimetry was found. The validation experiment showed that the percentage deviations between RC-corrected and true activity concentrations were <10%. Conclusion 124I PET(/CT) dosimetry also corroborates the low ODpAs to

  6. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  7. A method for a short-term forecast of the absorbed dose accumulation dynamics on the international space station based on radiation monitoring system data

    NASA Astrophysics Data System (ADS)

    Lishnevskii, A. E.; Benghin, V. V.

    2014-12-01

    Many papers are devoted to the prediction of radiation conditions on board of a spacecraft (Pichkhadze et al., 2004; Khamidullina et al., 2008; 2012), and a number of software systems for corresponding calculations have been developed: the US information system CREME96 (https://creme.isde.vander-bilt.edu/); European SPENVIS (http://www.spenvis.oma.be/intro.php); Russian SEREIS (Kuznetsov et al., 2001; Model' kosmosa, 2007) and COSRAD (http://cosrad.sinp.msu.ru/manual.html; Kuznetsov et al., 2011) based on the models of the radiation environment in near-Earth space (Bashkirov et al., 1998; Nymmik, 2004; Model' kosmosa, 2007; Kuznetsov et al., 2011). In this paper we propose a simple calculation algorithm of short-term (for a few days) forecasting of dynamics of the radiation dose on the International Space Station (ISS) in radiation environment undisturbed by solar proton events. This algorithm does not use radiation environment models and detailed ballistic calculations, while it uses data of the onboard radiation monitoring system (RMS) and empirical relations, obtained for ISS orbital motion.

  8. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization.

    PubMed

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. PMID:25770423

  9. Controlled trial comparing prednisolone with an elemental diet plus non-absorbable antibiotics in active Crohn's disease.

    PubMed

    Saverymuttu, S; Hodgson, H J; Chadwick, V S

    1985-10-01

    In a randomised clinical trial, patients with moderately active Crohn's disease received either prednisolone 0.5 mg/kg/day plus a normal diet, or an elemental diet plus oral framycetin, colistin and nystatin. Patients were assessed using the Crohn's disease activity index (CDAI), ESR, and faecal granulocyte excretion quantified by 111In-autologous leucocytes. Five patients were intolerant of the elemental diet plus antibiotics and were withdrawn from the trial within 72 hours. Sixteen patients completed 10 days treatment on each regime. Fifteen of 16 patients on elemental diet plus antibiotics and all 16 patients on prednisolone improved with marked, but statistically indistinguishable falls in CDAI, ESR, and faecal granulocyte excretion between the two groups. Thus a regime decreasing the intraluminal concentration of bacteria and complex food molecules, was associated with rapid improvement in activity of Crohn's disease. This suggests that these intraluminal factors play a role in maintaining inflammation and that their removal or alteration offers an approach to management. PMID:3902590

  10. Effects of enhanced UV-B radiation on the nutritional and active ingredient contents during the floral development of medicinal chrysanthemum.

    PubMed

    Ma, Chun Hui; Chu, Jian Zhou; Shi, Xiao Fei; Liu, Cun Qi; Yao, Xiao Qin

    2016-05-01

    The paper mainly studied the effects of enhanced UV-B radiation on the nutritional and active ingredient contents during the floral development of medicinal chrysanthemum. The experiment included two levels of UV-B radiation (0 and 400μWcm(-2)). The contents of hydrogen peroxide (H2O2), anthocyanin, UV-B absorbing compounds, total chlorophyll and carotenoids, and the activities of phenylalanine ammonia lyase enzyme (PAL) and cinnamic acid-4-hydroxylase enzyme (C4H) in flowers significantly decreased with the floral development. However, the contents of soluble sugar, amino acid and total vitamin C in flowers significantly increased with the floral development. The contents of flavonoid and chlorogenic acid were significantly different in the four stages of floral development, and their highest contents were found in the bud stage (stage 2). In the four stages of floral development, enhanced UV-B radiation significantly increased the contents of H2O2, UV-B absorbing compounds, chlorophyll, carotenoids, soluble sugar, amino acid, vitamin C, flavonoid and chlorogenic acid, and the activities of PLA and C4H in flowers. The results indicated that the highest contents of active and nutrient ingredients in flowers were found not to be in the same developmental stages of flowers. Comprehensive analysis revealed that the best harvest stage of chrysanthemum flowers was between the bud stage and the young flower stage (stage 2 and stage 3), which could simultaneously gain the higher contents of active and nutritional ingredients in flowers. PMID:26985737

  11. Modelling Absorbent Phenomena of Absorbent Structure

    NASA Astrophysics Data System (ADS)

    Sayeb, S.; Ladhari, N.; Ben Hassen, M.; Sakli, F.

    Absorption, retention and strike through time, as evaluating criteria of absorbent structures quality were studied. Determination of influent parameters on these criteria were realized by using the design method of experimental sets. In this study, the studied parameters are: Super absorbent polymer (SAP)/fluff ratio, compression and the porosity of the non woven used as a cover stock. Absorption capacity and retention are mostly influenced by SAP/fluff ratio. However, strike through time is affected by compression. Thus, a modelling of these characteristics in function of the important parameter was established.

  12. Methods for absorbing neutrons

    DOEpatents

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  13. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  14. Self-imaging of transparent objects and structures in focusing of spatially phase-modulated laser radiation into a weakly absorbing medium

    SciTech Connect

    Bubis, E L

    2011-06-30

    Self-imaging of transparent objects and structures in focusing of a spatially phase-modulated laser beam into an extended weakly absorbing medium is described. The laser power level that is necessary for effective imaging corresponds to the illuminating beam power when thermal self-defocusing starts evolving in the medium. The effect can be described in terms of the ideology of Zernike's classical phase-contrast method. Edge enhancement in visualised images of transparent objects is experimentally demonstrated. Self-imaging of a microscopic object in the form of transparent letters and long-lived refractive-index fluctuations in liquid glycerol is shown. Due to the adaptivity of the process under consideration, unlike the classical case, self-imaging occurs also in the situations where a beam is displaced (undergoes random walk) as a whole in the Fourier plane, for example, in the presence of thermal flows. (image processing)

  15. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity

    PubMed Central

    Suh, Sung-Suk; Hwang, Jinik; Park, Mirye; Seo, Hyo Hyun; Kim, Hyoung-Shik; Lee, Jeong Hun; Moh, Sang Hyun; Lee, Taek-Kyun

    2014-01-01

    Certain photosynthetic marine organisms have evolved mechanisms to counteract UV-radiation by synthesizing UV-absorbing compounds, such as mycosporine-like amino acids (MAAs). In this study, MAAs were separated from the extracts of marine green alga Chlamydomonas hedleyi using HPLC and were identified as porphyra-334, shinorine, and mycosporine-glycine (mycosporine-Gly), based on their retention times and maximum absorption wavelengths. Furthermore, their structures were confirmed by triple quadrupole MS/MS. Their roles as UV-absorbing compounds were investigated in the human fibroblast cell line HaCaT by analyzing the expression levels of genes associated with antioxidant activity, inflammation, and skin aging in response to UV irradiation. The mycosporine-Gly extract, but not the other MAAs, had strong antioxidant activity in the 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Furthermore, treatment with mycosporine-Gly resulted in a significant decrease in COX-2 mRNA levels, which are typically increased in response to inflammation in the skin, in a concentration-dependent manner. Additionally, in the presence of MAAs, the UV-suppressed genes, procollagen C proteinase enhancer (PCOLCE) and elastin, which are related to skin aging, had increased expression levels equal to those in UV-mock treated cells. Interestingly, the increased expression of involucrin after UV exposure was suppressed by treatment with the MAAs mycosporine-Gly and shinorine, but not porphyra-334. This is the first report investigating the biological activities of microalgae-derived MAAs in human cells. PMID:25317535

  16. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  17. Investigation of conformal and intensity-modulated radiation therapy techniques to determine the absorbed fetal dose in pregnant patients with breast cancer.

    PubMed

    Öğretici, Akın; Akbaş, Uğur; Köksal, Canan; Bilge, Hatice

    2016-01-01

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom׳s virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealed that the mean cumulative fetal dose for 3-D CRT is 1.39cGy and for IMRT it is 8.48cGy, for a pregnant breast cancer woman who received radiation treatment of 50Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5cm. The mean fetal dose from 3-D CRT is 1.39cGy and IMRT is 8.48cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven. PMID:26831923

  18. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  19. The budget of biologically active ultraviolet radiation in the earth-atmosphere system

    NASA Technical Reports Server (NTRS)

    Frederick, John E.; Lubin, Dan

    1988-01-01

    This study applies the concept of a budget to describe the interaction of solar ultraviolet (UV) radiation with the earth-atmosphere system. The wavelength ranges of interest are the biologically relevant UV-B between 280 and 320 nm and the UV-A from 32000 to 400 nm. The Nimbus 7 solar backscattered ultraviolet (SBUV) instrument provides measurements of total column ozone and information concerning cloud cover which, in combination with a simple model of radiation transfer, define the fractions of incident solar irradiance absorbed in the atmosphere, reflected to space, and absorbed at the ground. Results for the month of July quantify the contribution of fractional cloud cover and cloud optical thickness to the radiation budget's three components. Scattering within a thick cloud layer makes the downward radiation field at the cloud base more isotropic than is the case for clear skies. For small solar zenith angles, typical of summer midday conditions, the effective pathlength of this diffuse irradiance through tropospheric ozone is greater than that under clear-sky conditions. The result is an enhanced absorption of UV-B radiation in the troposphere during cloud-covered conditions. Major changes in global cloud cover or cloud optical thicknesses could alter the ultraviolet radiation received by the biosphere by an amount comparable to that predicted for long-term trends in ozone.

  20. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  1. Advanced neutron absorber materials

    DOEpatents

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  2. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon.

    PubMed

    Altmann, Johannes; Massa, Lukas; Sperlich, Alexander; Gnirss, Regina; Jekel, Martin

    2016-05-01

    This study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal. Furthermore, active PAC dosing control according to differential UVA254 measurements was implemented and tested. While precise removal predictions based on real-time measurements were not accurate for all OMPs, UVA254-controlled dynamic PAC dosing was capable of achieving stable OMP removals. UVA254 can serve as an effective surrogate parameter for OMP removal in technical PAC applications. Even though the applicability as control parameter to adjust PAC dosing to water quality changes might be limited to applications with fast response between PAC adjustment and adsorptive removal (e.g. direct filtration), UVA254 measurements can also be used to monitor the adsorption efficiency in more complex PAC applications. PMID:26963606

  3. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging. PMID:24690713

  4. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  5. The thermal instability of the warm absorber in NGC 3783

    NASA Astrophysics Data System (ADS)

    Goosmann, R. W.; Holczer, T.; Mouchet, M.; Dumont, A.-M.; Behar, E.; Godet, O.; Gonçalves, A. C.; Kaspi, S.

    2016-05-01

    Context. The X-ray absorption spectra of active galactic nuclei frequently show evidence of winds with velocities in the order of 103 km s-1 extending up to 104 km s-1 in the case of ultra-fast outflows. At moderate velocities, these winds are often spectroscopically explained by assuming a number of absorbing clouds along the line of sight. In some cases it was shown that the absorbing clouds are in pressure equilibrium with each other. Aims: We assume a photo-ionized medium with a uniform total (gas+radiation) pressure. The irradiation causes the wind to be radiation pressure compressed (RPC). We attempt to reproduce the observed spectral continuum shape, ionic column densities, and X-ray absorption measure distribution (AMD) of the extensively observed warm absorber in the Seyfert galaxy NGC 3783. Methods: We compare the observational characteristics derived from the 900 ks Chandra observation to radiative transfer computations in pressure equilibrium using the radiative transfer code titan. We explore different values of the ionization parameter ξ of the incident flux and adjust the hydrogen-equivalent column density, NH0, of the warm absorber to match the observed soft X-ray continuum. From the resulting models we derive the column densities for a broad range of ionic species of iron and neon and a theoretical AMD that we compare to the observations. Results: We find an extension of the degeneracy between ξ and NH0 for the constant pressure models previously discussed for NGC 3783. Including the ionic column densities of iron and neon in the comparison between observations and data we conclude that a range of ionization parameters between 4000 and 8000 erg cm s-1 is preferred. For the first time, we present theoretical AMDs for a constant pressure wind in NGC 3783 that correctly reproduces the observed level and is in approximate agreement with the observational appearance of an instability region. Conclusions: Using a variety of observational indicators, we

  6. Metal shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P. (Inventor)

    1973-01-01

    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base.

  7. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  8. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  9. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  10. Photosynthetically active radiation and its relationship with global solar radiation in Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Ma, Yingying; Hu, Bo; Zhang, Miao

    2014-08-01

    Photosynthetically active radiation (PAR) and other solar components were observed for a period of 3 years at Wuhan, China to determine for the first time the temporal variability of PAR fraction [PAR/G (G here stands for global solar radiation)] and its dependence on different sky conditions in Central China. PAR, G and PAR/G showed similar seasonal features that peaked in summer and reached their lowest values in winter. The seasonal PAR/G ranged from 1.70 E MJ(-1) (winter) to 2.01 E MJ(-1) (summer) with an annual mean value of 1.89 E MJ(-1). Hourly values of PAR/G increased from 1.78 to 2.11 E MJ(-1) on average as sky conditions changed from clear to cloudy. Monthly mean hourly PAR/G revealed a diurnal variation, with highest values observed around sunrise and sunset, slightly higher PAR fractions were also found around noon for most months. The effect of daylength on PAR/G was also studied and no significant impact was found. Three models were developed to estimate PAR from G. These models consisted of atmospheric parameters that were found to cause substantial changes of PAR/G, such as sky clearness, brightness, path length and the sky clearness index. The estimations obtained from different models were very close to the measured values with maximum relative errors below 8 % (hourly values) in Wuhan. The models were not only tested at seven radiation stations in Central China, but also verified in six stations with different climates in China. The models were found to estimate PAR accurately from commonly available G data in Central China; however, the results also implied that the models need to be modified to account for local climatic conditions when applied to the whole country. PMID:23780493

  11. Synthesis of eucalyptus/tea tree oil absorbed biphasic calcium phosphate-PVDF polymer nanocomposite films: a surface active antimicrobial system for biomedical application.

    PubMed

    Bagchi, Biswajoy; Banerjee, Somtirtha; Kool, Arpan; Thakur, Pradip; Bhandary, Suman; Hoque, Nur Amin; Das, Sukhen

    2016-06-22

    A biocompatible poly(vinylidene) difluoride (PVDF) based film has been prepared by in situ precipitation of calcium phosphate precursors. Such films were surface absorbed with two essential oils namely eucalyptus and tea tree oil. Physico-chemical characterization of the composite film revealed excellent stability of the film with 10% loading of oils in the PVDF matrix. XRD, FTIR and FESEM measurements confirmed the presence of hydroxyapatite and octacalcium phosphate in the PVDF matrix which showed predominantly β phase. Strong bactericidal activity was observed with very low minimum bactericidal concentration (MBC) values on both E. coli and S. aureus. The composite films also resisted biofilm formation as observed by FESEM. The release of essential oils from the film showed an initial burst followed by a very slow release over a period of 24 hours. Antibacterial action of the film was found to be primarily due to the action of essential oils which resulted in leakage of vital fluids from the microorganisms. Both necrotic and apoptotic morphologies were observed in bacterial cells. Biocompatibility studies with the composite films showed negligible cytotoxicity to mouse mesenchymal and myoblast cells at MBC concentration. PMID:27271864

  12. Fall of blood ionized calcium on watching a provocative TV program and its prevention by active absorbable algal calcium (AAA Ca).

    PubMed

    Fujita, T; Ohgitani, S; Nomura, M

    1999-01-01

    In December 1997, more than 680 children developed convulsive seizures while watching a notorious audiovisually provocative TV program, "Pocket Monster." Emotional stimulation via hyperventilation may cause respiratory alkalosis, fall of blood ionized calcium (Ca), and sensitization of the nervous system to excessive emotional stress. A study was therefore undertaken to follow the changes of blood ionized Ca in eight healthy volunteers after watching the "Pocket Monster" and also a quiet program, "Classical Music," as a control for 20min from 4 P.M. Although neither marked hyperventilation nor convulsions developed in any of these adult volunteers, blood ionized Ca showed a significantly more pronounced fall during and after watching "Pocket Monster," and their plasma intact parathyroid hormone (iPTH) was significantly higher 120min after the beginning of "Pocket Monster" than the "Classical Music" program. Plasma total Ca, pH, and albumin were free of detectable changes. Ingestion of 600mg Ca as active absorbable algal Ca (AAA Ca) with high bioavailability completely prevented the fall of ionized Ca and suppressed iPTH. Plama osteocalcin was also significantly suppressed after ingestion of AAA Ca. It may be worthwhile to ingest AAA Ca before anticipated emotional stress such as watching a provocative TV program to prevent possible neuromuscular instability. PMID:10340641

  13. Comparison of ground and satellite based measurements of the fraction of photosynthetically active radiation intercepted by tall-grass prairie

    NASA Technical Reports Server (NTRS)

    Demetriades-Shah, T. H.; Kanemasu, E. T.; Flitcroft, I.; Su, H.

    1990-01-01

    The fraction, of photosynthetically active radiation absorbed by vegetation, F sub ipar, is an important requirement for estimating vegetation biomass productivity and related quantities. This was an integral part of a large international effort; the First ISLSCP Field Experiment (FIFE). The main objective of FIFE was to study the effects of vegetation on the land atmosphere interactions and to determine if these interactions can be assessed from satellite spectral measurements. The specific purpose of this experiment was to find out how well measurements of F sub ipar relate to ground, helicopter, and satellite based spectral reflectance measurements. Concurrent measurements of F sub ipar and ground, helicopter, and satellite based measurements were taken at 13 tall grass prairie sites in Kansas. The sites were subjected to various combinations of burning and grazing managements.

  14. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    SciTech Connect

    Middleton, E.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on a study to quantify the reflectance anisotropy of the photosynthetically active radiation (PAR) for grasslands. PAR falls in the wavelength range 0.4 to 0.7[mu]m. The study looks at the variation of PAR with illumination and vegetative canopy conditions. It uses bidirectional reflectance distribution function data, and measures of anisotropy derived from reflectance factor and reflectance fraction data to aid in the analysis. The data used for this analysis came from an intense effort mounted to measure diurnal changes in the anisotropy of surface reflectance from prairie grassland as a function of the vegetative canopy.

  15. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  16. Intercepted photosynthetically active radiation estimated by spectral reflectance

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1984-01-01

    Interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS (7-5)/(7+5) for five planting dates of wheat for 1978-79 and 1979-80 at Phoenix, Arizona. Intercepted PAR was calculated from leaf area index and stage of growth. Linear relatinships were found with greeness and normalized difference with separate relatinships describing growth and senescence of the crop. Normalized difference was significantly better than greenness for all planting dates. For the leaf area growth portion of the season the relation between PAR interception and normalized difference was the same over years and planting dates. For the leaf senescence phase the relationships showed more variability due to the lack of data on light interception in sparse and senescing canopies. Normalized difference could be used to estimate PAR interception throughout a growing season.

  17. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  18. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  19. Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    SciTech Connect

    Sebesta, F.; John, J.; Motl, A.; Stamberg, K.

    1995-11-01

    The chemical and radiation stability of polyacrylonitrile (PAN) in the form of beads (B-PAN), similar to the beads of composite absorbers, and one selected composite absorber (ammonium molybdophosphate, the active component in PAN binder [AMP-PAN], a prospective candidate for the treatment of acidic wastes) were studied. Aqueous 1M HNO{sub 3} + 1M NaNO{sub 3}, 1M NaOH + 1M NaNO{sub 3}, and 1M NaOH were chosen as simulants of DOE acidic and alkaline wastes. In addition,radiation stability was determined indistilled water. The chemical stability of B-PAN and AMP-PAN beads was tested for a period up to one month of contact with the solution at ambient temperature. The radiation stability of the beads was checked in a radiation dose range 10{sup 3}--10{sup 6} Gy (10{sup 5}--10{sup 8} rads). In acidic solutions the stability of PAN binder was proved not to be limited by either chemical or radiation decomposition. PAN binder may thus be used for preparing composite absorbers for treatment of acid wastes from DOE facilities. The same conclusion is valid for alkaline solutions with pH up to 13. In highly alkaline solutions (concentration of NAOH higher than I M) and in the presence of NaNO{sub 3}, the stability of the tested polyacrylonitrile polymer was sufficient for applications not extending over 10 days. Cross-linking of the polymer caused by ionizing radiation was found to have a positive influence on chemical stability. This effect enables a longer period of applicability of PAN-based composite absorbers. Because of the high sorption rate achievable with PAN-based absorbers, the stability achieved is sufficient for most applications in the DOE complex. The chemical stability of binding polymer may also be further improved by testing another, more suitable type of polymer from the broad family of polyacrylonitrile polymers.

  20. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  1. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS₂ pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe₂SiS₄ and Fe₂GeS₄, which also exhibit higher band gaps than FeS₂. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  2. On the definition of absorbed dose

    NASA Astrophysics Data System (ADS)

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  3. Spatial variability of ultraviolet-absorbing compounds in an aquatic liverwort and their usefulness as biomarkers of current and past UV radiation: a case study in the Atlantic-Mediterranean transition.

    PubMed

    Monforte, Laura; Tomás-Las-Heras, Rafael; Del-Castillo-Alonso, María-Ángeles; Martínez-Abaigar, Javier; Núñez-Olivera, Encarnación

    2015-06-15

    The spatial variability of ultraviolet-absorbing compounds (UVACs) in the freshwater liverwort Jungermannia exsertifolia subsp. cordifolia was studied in mid-latitudes (the Atlantic-Mediterranean transition) across a wide lati-altitudinal gradient, with the aim of testing the usefulness of UVACs as biomarkers of current ambient levels of UV radiation. We analysed 17 samples from streams located in the main mountain ranges of the Iberian Peninsula, differentiating methanol-soluble (SUVACs, mainly located in the vacuoles) and methanol-insoluble (IUVACs, bound to cell walls) compounds, since they represent different manners to cope with UV radiation. In both fractions, the bulk level of UVACs and the concentrations of several individual compounds were measured. In addition, we measured Fv/Fm, DNA damage and sclerophylly index (SI) as possible additional UV biomarkers. UVACs showed a high variability, probably due not only to the gradients of macroenvironmental factors (UV radiation, PAR, and water temperature), but also to microenvironmental factors inherent to the dynamic nature of mountain streams. Two soluble coumarins were positively correlated with UV levels and could be used for ambient UV biomonitoring in the spatial scale. In contrast to the variability in UVACs, the relatively homogeneous values of Fv/Fm and the lack of any DNA damage made these variables useless for ambient UV biomonitoring, but suggested a strong acclimation capacity of this liverwort to changing environmental conditions (in particular, to UV levels). Finally, UVACs of fresh samples of the liverwort were compared to those of herbarium samples collected in the same lati-altitudinal gradient. SUVACs were significantly higher in fresh samples, whereas IUVACs generally showed the contrary. Thus, IUVACs were more stable than SUVACs and hence more adequate for retrospective UV biomonitoring. In conclusion, UVAC compartmentation should be taken into account for bryophyte-based UV biomonitoring in

  4. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    SciTech Connect

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  5. [Study of new blended chemical absorbents to absorb CO2].

    PubMed

    Wang, Jin-Lian; Fang, Meng-Xiang; Yan, Shui-Ping; Luo, Zhong-Yang; Cen, Ke-Fa

    2007-11-01

    Three kinds of blended absorbents were investigated on bench-scale experimental bench according to absorption rate and regeneration grade to select a reasonable additive concentration. The results show that, among methyldiethanolamine (MDEA) and piperazine (PZ) mixtures, comparing MDEA : PZ = 1 : 0.4 (m : m) with MDEA : PZ = 1 : 0.2 (m : m), the absorption rate is increased by about 70% at 0.2 mol x mol(-1). When regeneration lasting for 40 min, regeneration grade of blended absorbents with PZ concentration of 0.2, 0.4, and 0.8 is decreased to 83.06%, 77.77% and 76.67% respectively while 91.04% for PZ concentration of 0. MDEA : PZ = 1 : 0.4(m : m) is a suitable ratio for MDEA/PZ mixtures as absorption and regeneration properties of the blended absorbents are all improved. The aqueous blends with 10% primary amines and 2% tertiary amines could keep high CO2 absorption rate, and lower regeneration energy consumption. Adding 2% 2-Amino-2-methyl-1-propanol (AMP) to 10% diethanolamine (DEA), the blended amine solvents have an advantage in absorption and regeneration properties over other DEA/AMP mixtures. Blended solvents, which consist of a mixture of primary amines with a small amount of tertiary amines, have the highest absorption rate among the three. And mixed absorbents of secondary amines and a small amount of sterically hindered amines have the best regeneration property. To combine absorption and regeneration properties, blends with medium activator addition to tertiary amines are competitive. PMID:18290495

  6. Unidirectional perfect absorber.

    PubMed

    Jin, L; Wang, P; Song, Z

    2016-01-01

    This study proposes a unidirectional perfect absorber (UPA), which we realized with a two-arm Aharonov-Bohm interferometer, that consists of a dissipative resonator side-coupled to a uniform resonator array. The UPA has reflection-less full absorption on one direction, and reflectionless full transmission on the other, with an appropriate magnetic flux and coupling, detuning, and loss of the side-coupled resonator. The magnetic flux controls the transmission, the left transmission is larger for magnetic flux less than one-half flux quantum; and the right transmission is larger for magnetic flux between one-half and one flux quantum. Besides, a perfect absorber (PA) can be realized based on the UPA, in which light waves from both sides, with arbitrary superposition of the ampli- tude and phase, are perfectly absorbed. The UPA is expected to be useful in the design of novel optical devices. PMID:27615125

  7. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  8. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  9. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  10. Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells.

    PubMed

    Sakata, Kimimasa; Kondo, Takashi; Mizuno, Natsumi; Shoji, Miki; Yasui, Hironobu; Yamamori, Tohru; Inanami, Osamu; Yokoo, Hiroki; Yoshimura, Naoki; Hattori, Yuichi

    2015-07-01

    Vascular endothelial cells can absorb higher radiation doses than any other tissue in the body, and post-radiation impaired endothelial nitric oxide synthase (eNOS) function may be developed as a potential contributor to the pathogenesis of vascular injury. In this study, we investigated early alterations of eNOS signaling in human umbilical venous endothelial cells (HUVECs) exposed to X-ray radiation. We found that ionizing radiation increased eNOS phosphorylation at Ser-1177 and dephosphorylation at Thr-495 in HUVECs in a dose-dependent (≤ 20 Gy) and time-dependent (6-72 h) manner. The total expression levels of eNOS were unchanged by radiation. Although a transient but significant increase in extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation and a biphasic decline in Akt phosphorylation were observed after irradiation, these inhibitors were without effect on the radiation-induced changes in eNOS phosphorylation. There was an increase in protein kinase C-βII (PKC-βII) expression and the ablation of PKC-βII by small interfering RNA (siRNA) negated the radiation effect on the two eNOS phosphorylation events. Furthermore, when the radiation-induced increase in reactive oxygen species (ROS) generation was prevented by the anti-oxidant N-acetyl-L-cysteine, eNOS Ser-1177 phosphorylation and Thr-495 dephosphorylation in irradiated HUVECs were significantly reduced. However, transfection of PKC-β siRNA did not alter ROS production after irradiation, and NAC failed to block the radiation-induced increase in PKC-βII expression. Taken together, our results suggest that ionizing radiation-induced eNOS activation in human vascular endothelial cells is attributed to both the up-regulation of PKC-βII and the increase in ROS generation which were independent of each other. PMID:25869503

  11. Estimation of Evapotranspiration as a function of Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Wesley, E.; Migliaccio, K.; Judge, J.

    2012-12-01

    The purpose of this research project is to more accurately measure the water balance and energy movements to properly allocate water resources at the Snapper Creek Site in Miami-Dade County, FL, by quantifying and estimating evapotranspiration (ET). ET is generally estimated using weather based equations, this project focused on estimating ET as a function of Photosynthetic Active Radiation (PAR). The project objectives were first to compose a function of PAR and calculated coefficients that can accurately estimate daily ET values with the least amount of variables used in its estimation equation, and second, to compare the newly identified ET estimation PAR function to TURC estimations, in comparison to our actual Eddy Covariance (EC) ET data and determine the differences in ET values. PAR, volumetric water content (VWC), and temperature (T) data were quality checked and used in developing singular and multiple variable regression models fit with SigmaPlot software. Fifteen different ET estimation equations were evaluated against EC ET and TURC estimated ET using R2 and slope factors. The selected equation that best estimated EC ET was cross validated using a 5 month data set; its daily and monthly ET values and sums were compared against the commonly used TURC equation. Using a multiple variable regression model, an equation with three variables (i.e., VWC, T, and PAR) was identified that best fit EC ET daily data. However, a regression was also found that used only PAR and provided ET predictions of similar accuracy. The PAR based regression model predicted daily EC ET more accurately than the traditional TURC method. Using only PAR to estimate ET reduces the input variables as compared to using the TURC model which requires T and solar radiation. Thus, not only is the PAR approach more accurate but also more cost effective. The PAR-based ET estimation equation derived in this study may be over fit considering only 5 months of data were used to produce the PAR

  12. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Postolache, Cristian; Tudose, Mihai

    2016-03-01

    The effect of radiation, temperature, and vacuum (RTV) on piezoelectric wafer active sensors (PWASs) is discussed. This study is relevant for extending structural health monitoring (SHM) methods to space vehicle applications that are likely to be subjected to harsh environmental conditions such as extreme temperatures (hot and cold), cosmic radiation, and interplanetary vacuums. This study contains both theoretical and experimental investigations with the use of electromechanical impedance spectroscopy (EMIS). In the theoretical part, analytical models of circular PWAS resonators were used to derive analytical expressions for the temperature sensitivities of EMIS resonance and antiresonance behavior. Closed-form expressions for frequency and peak values at resonance and antiresonance were derived as functions of the coefficients of thermal expansion, {α }1, {α }2, {α }3; the Poisson ratio, ν and its sensitivity, \\partial ν /\\partial T; the relative compliance gradient (\\partial {s}11E/\\partial T)/{s}11E; and the Bessel function root, z and its sensitivity, \\partial z/\\partial T. In the experimental part, tests were conducted to subject the PWAS transducers to RTV conditions. In one set of experiments, several RTV exposure, cycles were applied with EMIS signatures recorded at the beginning and after each of the repeated cycles. In another set of experiments, PWAS transducers were subjected to various temperatures and the EMIS signatures were recorded at each temperature after stabilization. The processing of measured EMIS data from the first set of experiments revealed that the resonance and antiresonance frequencies changed by less than 1% due to RTV exposure, whereas the resonance and antiresonance amplitudes changed by around 15%. After processing an individual set of EMIS data from the second set of experiments, it was determined that the relative temperature sensitivity of the antiresonance frequency ({f}{{AR}}/{f}{{AR}}) is approximately 63.1× {10

  13. Recent radiation effects activities at JPL: Coping with COTS

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.; Lee, C.; Swift, G.; Rax, B.

    1997-01-01

    Radiation effects and testing programs on commercial off-the-shelf (COTS) devices and circuits, which are important for NASA programs, are discussed. Demands for increased performance levels in spacecraft systems is stimulating the use of electronic and photonic devices. Some advances in electronics to reach high performance will result in the miniaturization of devices, which will lead to increased radiation vulnerability.

  14. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.

    1997-01-01

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

  15. Unglazed transpired solar collector having a low thermal-conductance absorber

    DOEpatents

    Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

    1997-12-02

    An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

  16. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; VanSuetendael, N. J.; Snyder, S. J.; Clements, J. S.

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  17. Science on a Roll. Part One: Absorbing Inquiry.

    ERIC Educational Resources Information Center

    Brendzel, Sharon

    2002-01-01

    Presents an activity that tests the absorbency of different brands of paper towels. Suggests making this activity into an open-ended inquiry type of activity. Includes sample questions to guide students, topics for class discussion, and sample methods of using the absorbency activity. (KHR)

  18. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  19. Mapping high-resolution incident photosynthetically active radiation over land surfaces from MODIS and GOES satellite data

    NASA Astrophysics Data System (ADS)

    Liang, S.; Wang, K.; Wang, D.; Townshend, J.; Running, S.; Tsay, S.

    2008-05-01

    Incident photosynthetically active radiation (PAR) is a key variable required by almost all terrestrial ecosystem models. Many radiation efficiency models are linearly related canopy productivity to the absorbed PAR. Unfortunately, the current incident PAR products estimated from remotely sensed data or calculated by radiation models at spatial and temporal resolutions are not sufficient for carbon cycle modeling and various applications. In this study, we aim to develop incident PAR products at one kilometer scale from multiple satellite sensors, such as Moderate Resolution Imaging Spectrometer (MODIS) and Geostationary Operational Environmental Satellite (GOES) sensor. We first developed a look-up table approach to estimate instantanerous incident PAR product from MODIS (Liang et al., 2006). The temporal observations of each pixel are used to estimate land surface reflectance and look-up tables of both aerosol and cloud are searched, based on the top-of-atmosphere reflectance and surface reflectance for determining incident PAR. The incident PAR product includes both the direct and diffuse components. The calculation of a daily integrated PAR using two different methods has also been developed (Wang, et al., 2008a). The similar algorithm has been further extended to GOES data (Wang, et al., 2008b, Zheng, et al., 2008). Extensive validation activities are conducted to evaluate the algorithms and products using the ground measurements from FLUXNET and other networks. They are also compared with other satellite products. The results indicate that our approaches can produce reasonable PAR product at 1km resolution. We have generated 1km incident PAR products over North America for several years, which are freely available to the science community. Liang, S., T. Zheng, R. Liu, H. Fang, S. C. Tsay, S. Running, (2006), Estimation of incident Photosynthetically Active Radiation from MODIS Data, Journal of Geophysical Research ¡§CAtmosphere. 111, D15208,doi:10

  20. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  1. High Energy Radiation Induced Activation of COX-2 and MMP-9 is Mediated by NF-kappaB

    NASA Astrophysics Data System (ADS)

    Rolle, G.; Munyu, S.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.

    2010-04-01

    Space radiation is a known carcinogen, and astronauts are exposed to high-energy radiation. In this study, we demonstrate that high-energy radiation activates cylooxygenase-2 and matrix metalloproteinase-9 through the NF-kB pathway.

  2. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  3. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  4. Phase 2 report on the evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    SciTech Connect

    Sebesta, F.; John, J.; Motl, A.

    1996-05-01

    The performance of PAN-based composite absorbers was evaluated in dynamic experiments at flow rates ranging from 25--100 bed volumes (BV) per hour. Composite absorbers with active components of ammonium molybdophosphate (AMP) PAN and K-Co ferrocyanide (KCoFC) PAN were used for separating Cs from a 1 M HNO{sub 3} + 1 M NaNO{sub 3} + 2 {times} 10{sup {minus}5} M CsCl acidic simulant solution. KCoFC-PAN and two other FC-based composite absorbers were tested for separating Cs from alkaline simulant solutions containing 0.01 M to 1 M NaOH and 1 M NaNO{sub 3} + x {times} 10{sup {minus}4} M CsCl. The efficiency of the Cs sorption on the AMP-PAN absorber from acidic simulant solutions was negatively influenced by the dissolution of the AMP active component. At flow rates of 50 BV/hr, the decontamination factor of about 10{sup 3} could be maintained for treatment of 380 BV of the feed. With the KCoFC-PAN absorber, the decontamination factor of about 10{sup 3} could be maintained for a feed volume as great as 1,800 BV. In alkaline simulant solutions, significant decomposition of the active components was observed, and the best performance was exhibited by the KCoFC-PAN absorber. Introductory experiments confirmed that Cs may be washed out of the composite absorbers. Regeneration of both absorbers for repetitive use was also found to be possible. The main result of the study is that PAN was proven to be a versatile polymer capable of forming porous composite absorbers with a large number of primary absorbers. The composite absorbers proved to be capable of withstanding the harsh acidic and alkaline conditions and significant radiation doses that may be expected in the treatment of US DOE wastes. A field demonstration is proposed as a follow-on activity.

  5. The role of EUV/X-ray solar activity and electron precipitations from radiation belts in the climate changes

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergey; Voronin, Nikolai; Baranova, Lubov

    The authors associate the recently observed climate warming and carbon dioxide concentration growth in lower atmospheric layers with variations of the solar-geomagnetic activity contribution to global cloud formation and with significant decrease of carbon dioxide accumulation in forests in the process of photosynthesis. The contribution of the greenhouse effect of carbon-bearing gases to global warming turns out to be insignificant. We consider the impact of microwave emissions of the ionosphere disturbed by solar flares and magnetic storms on the troposphere and suggest the radio-optical trigger mechanism of the solar influence on weather and climate of the Earth, which consists of the following three stages: - the ionosphere absorbs the ionizing solar radiation and corpuscles from the radiation belts and transforms these into microwaves through the excitation of Rydberg states by electron impact (ionospheric photoelectron, secondary and Auger electrons); - the rates of formation and destruction of water cluster ions in the troposphere are regulated by the microwave radiation; - the clusters contribute to formation of clouds, which affects the energy flux of solar radiation through the troposphere and the flux of outgoing heat from the underlying surface. All stages of the proposed mechanism were strictly confirmed: amplification of ionospheric microwave radiation during solar flares and magnetic storms was detected; the regulation of humidity at altitude above 2 km by solar microwave emission during solar flares was registered; an influence of solar flares and magnetic storms on the cloudiness is distinctly registered at least in some geographic areas; a direct influence of solar-geomagnetic activity on the global total cloud cover in latest maximum of secular variability (in 1985 - in electromagnetic solar activity, and in 2003 - in geomagnetic activity) was discovered. Basing on analysis of satellite data on global cloud cover and radiation balance the

  6. The radiative deceleration of ultrarelativistic jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Konigl, Arieh

    1989-05-01

    A detailed study of the dynamical interaction between a highly relativistic jet and the thermal radiation field from an AGN accretion disk is reported, and the Comptonized spectrum arising from this interaction is self-consistently determined. A simple model that captures the essential radiative and geometrical features of realistic disk configurations is presented, and the disk radiation field is calculated. The results confirm Phinney's (1987) suggestion that the thermal radiation field produced by accretion in an AGN could be very effective in decelerating ultrarelativistic jets that are accreted by electromagnetic or hydromagnetic forces closer to the central black hole. Terminal Lorentz factors are consistent with the values inferred in superluminal radio sources are readily produced in this model for plausible disk and jet parameters without additional acceleration in the interaction zone. A new interpretation of the hard X-ray component detected in BL Lac spectra is proposed.

  7. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  8. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed. PMID:19164

  9. Metasurface Broadband Solar Absorber

    DOE PAGESBeta

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    Here, we demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Moreover, our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributionsmore » to elucidate how the absorption occurs within the metasurface structure.« less

  10. Metasurface Broadband Solar Absorber

    PubMed Central

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  11. Metasurface Broadband Solar Absorber

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Kort-Kamp, Wilton J. M.; Sykora, Milan; Weisse-Bernstein, Nina R.; Luk, Ting S.; Taylor, Antoinette J.; Dalvit, Diego A. R.; Chen, Hou-Tong

    2016-02-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.

  12. Metasurface Broadband Solar Absorber.

    PubMed

    Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong

    2016-01-01

    We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. PMID:26828999

  13. Theory of patch-antenna metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Bowen, Patrick T.; Baron, Alexandre; Smith, David R.

    2016-06-01

    A metasurface that absorbs waves from all directions of incidence can be achieved if the surface impedance is made to vary as a function of incidence angle in a specific manner. Here we show that a periodic array of planar nanoparticles coupled to a metal film can act as an absorbing metasurface with an angle-dependent impedance. Through a semi-analytical calculation based on coupled-mode theory, we find the perfect absorbing condition is equivalent to balancing the Ohmic and radiative losses of the nanoparticles at normal incidence. Absorption over a wide range of incidence angles can then be obtained by tailoring the scattered far-field pattern of the individual planar nanoparticles such that their radiative losses remain constant. The theory provides a means of understanding the behavior of perfect absorbing structures that have been observed experimentally or numerically, reconciling previously published theories and enabling the optimization of absorbing surfaces.

  14. Ionized Absorbers in AGN

    NASA Astrophysics Data System (ADS)

    Mathur, S.

    1999-08-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  15. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  16. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  17. Solar absorber material reflectivity measurements at temperature

    SciTech Connect

    Bonometti, J.A.; Hawk, C.W.

    1999-07-01

    Assessment of absorber shell material properties at high operating temperatures is essential to the full understanding of the solar energy absorption process in a solar thermal rocket. A review of these properties, their application and a new experimental methodology to measure them at high temperatures is presented. The direct application for the research is absorber cavity development for a Solar Thermal Upper Stage (STUS). High temperature measurements, greater than 1,000 Kelvin, are difficult to obtain for incident radiation upon a solid surface that forms an absorber cavity in a solar thermal engine. The basic material properties determine the amount of solar energy that is absorbed, transmitted or reflected and are dependent upon the material's temperature. This investigation developed a new approach to evaluate the material properties (i.e., reflectivity, absorptive) of the absorber wall and experimentally determined them for rhenium and niobium sample coupons. The secular reflectivity was measured both at room temperature and at temperatures near 1,000 Kelvin over a range of angles from 0 to 90 degrees. The same experimental measurements were used to calculate the total reflectivity of the sample by integrating the recorded intensities over a hemisphere. The test methodology used the incident solar energy as the heating source while directly measuring the reflected light (an integrated value over all visible wavelengths). Temperature dependence on total reflectivity was found to follow an inverse power function of the material's temperature.

  18. Persistent Activation of the Innate Immune Response in Adult Drosophila Following Radiation Exposure During Larval Development

    PubMed Central

    Sudmeier, Lisa J.; Samudrala, Sai-Suma; Howard, Steven P.; Ganetzky, Barry

    2015-01-01

    Cranial radiation therapy (CRT) is an effective treatment for pediatric central nervous system malignancies, but survivors often suffer from neurological and neurocognitive side effects that occur many years after radiation exposure. Although the biological mechanisms underlying these deleterious side effects are incompletely understood, radiation exposure triggers an acute inflammatory response that may evolve into chronic inflammation, offering one avenue of investigation. Recently, we developed a Drosophila model of the neurotoxic side effects of radiation exposure. Here we use this model to investigate the role of the innate immune system in response to radiation exposure. We show that the innate immune response and NF-ĸB target gene expression is activated in the adult Drosophila brain following radiation exposure during larval development, and that this response is sustained in adult flies weeks after radiation exposure. We also present preliminary data suggesting that innate immunity is radioprotective during Drosophila development. Together our data suggest that activation of the innate immune response may be beneficial initially for survival following radiation exposure but result in long-term deleterious consequences, with chronic inflammation leading to impaired neuronal function and viability at later stages. This work lays the foundation for future studies of how the innate immune response is triggered by radiation exposure and its role in mediating the biological responses to radiation. These studies may facilitate the development of strategies to reduce the deleterious side effects of CRT. PMID:26333838

  19. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    Madronich, S; McKenzie, R L; Björn, L O; Caldwell, M M

    1998-10-01

    Stratospheric ozone levels are near their lowest point since measurements began, so current ultraviolet-B (UV-B) radiation levels are thought to be close to their maximum. Total stratospheric content of ozone-depleting substances is expected to reach a maximum before the year 2000. All other things being equal, the current ozone losses and related UV-B increases should be close to their maximum. Increases in surface erythemal (sunburning) UV radiation relative to the values in the 1970s are estimated to be: about 7% at Northern Hemisphere mid-latitudes in winter/spring; about 4% at Northern Hemisphere mid-latitudes in summer/fall; about 6% at Southern Hemisphere mid-latitudes on a year-round basis; about 130% in the Antarctic in spring; and about 22% in the Arctic in spring. Reductions in atmospheric ozone are expected to result in higher amounts of UV-B radiation reaching the Earth's surface. The expected correlation between increases in surface UV-B radiation and decreases in overhead ozone has been further demonstrated and quantified by ground-based instruments under a wide range of conditions. Improved measurements of UV-B radiation are now providing better geographical and temporal coverage. Surface UV-B radiation levels are highly variable because of cloud cover, and also because of local effects including pollutants and surface reflections. These factors usually decrease atmospheric transmission and therefore the surface irradiances at UV-B as well as other wavelengths. Occasional cloud-induced increases have also been reported. With a few exceptions, the direct detection of UV-B trends at low- and mid-latitudes remains problematic due to this high natural variability, the relatively small ozone changes, and the practical difficulties of maintaining long-term stability in networks of UV-measuring instruments. Few reliable UV-B radiation measurements are available from pre-ozone-depletion days. Satellite-based observations of atmospheric ozone and clouds are

  20. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    SciTech Connect

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  1. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  2. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    McKenzie, Richard L; Björn, Lars Olof; Bais, Alkiviadis; Ilyasad, Mohammad

    2003-01-01

    Since publication of the 1998 UNEP Assessment, there has been continued rapid expansion of the literature on UV-B radiation. Many measurements have demonstrated the inverse relationship between column ozone amount and UV radiation, and in a few cases long-term increases due to ozone decreases have been identified. The quantity, quality and availability of ground-based UV measurements relevant to assessing the environmental impacts of ozone changes continue to improve. Recent studies have contributed to delineating regional and temporal differences due to aerosols, clouds, and ozone. Improvements in radiative transfer modelling capability now enable more accurate characterization of clouds, snow-cover, and topographical effects. A standardized scale for reporting UV to the public has gained wide acceptance. There has been increased use of satellite data to estimate geographic variability and trends in UV. Progress has been made in assessing the utility of satellite retrievals of UV radiation by comparison with measurements at the Earth's surface. Global climatologies of UV radiation are now available on the Internet. Anthropogenic aerosols play a more important role in attenuating UV irradiances than has been assumed previously, and this will have implications for the accuracy of UV retrievals from satellite data. Progress has been made inferring historical levels of UV radiation using measurements of ozone (from satellites or from ground-based networks) in conjunction with measurements of total solar radiation obtained from extensive meteorological networks. We cannot yet be sure whether global ozone has reached a minimum. Atmospheric chlorine concentrations are beginning to decrease. However, bromine concentrations are still increasing. While these halogen concentrations remain high, the ozone layer remains vulnerable to further depletion from events such as volcanic eruptions that inject material into the stratosphere. Interactions between global warming and

  3. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  5. Heaving buoys, point absorbers and arrays.

    PubMed

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required. PMID:22184661

  6. Absorbed Dose Determination Using Experimental and Analytical Predictions of X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Edwards, D. L.; Carruth, Ralph (Technical Monitor)

    2001-01-01

    Electron beam welding in a vacuum is a technology that NASA is investigating as a joining technique for manufacture of space structures. This investigation characterizes the x-ray environment due to operation of an in-vacuum electron beam welding tool and provides recommendations for adequate shielding for astronauts performing the in-vacuum electron beam welding. NASA, in a joint venture with the Russian Space Agency, was scheduled to perform a series of welding in space experiments on board the U.S. Space Shuttle. This series of experiments was named the international space welding experiment (ISWE). The hardware associated with the ISWE was leased to NASA by the Paton Welding Institute (PWI) in Ukraine for ground-based welding experiments in preparation for flight. Two ground tests were scheduled, using the ISWE electron beam welding tool, to characterize the radiation exposure to an astronaut during the operation of the ISWE. These radiation exposure tests used thermoluminescence dosimeters (TLD's) shielded with material currently used by astronauts during extravehicular activities to measure the radiation dose. The TLD's were exposed to x-ray radiation generated by operation of the ISWE in-vacuum electron beam welding tool. This investigation was the first known application of TLD's to measure absorbed dose from x rays of energy less than 10 keV. The ISWE hardware was returned to Ukraine before the issue of adequate shielding for the astronauts was completely verified. Therefore, alternate experimental and analytical methods were developed to measure and predict the x-ray spectral and intensity distribution generated by ISWE electron beam impact with metal. These x-ray spectra were normalized to an equivalent ISWE exposure, then used to calculate the absorbed radiation dose to astronauts. These absorbed dose values were compared to TLD measurements obtained during actual operation of the ISWE in-vacuum electron beam welding tool. The calculated absorbed dose

  7. Modeling the Absorbing Aerosol Index

    NASA Technical Reports Server (NTRS)

    Penner, Joyce; Zhang, Sophia

    2003-01-01

    We propose a scheme to model the absorbing aerosol index and improve the biomass carbon inventories by optimizing the difference between TOMS aerosol index (AI) and modeled AI with an inverse model. Two absorbing aerosol types are considered, including biomass carbon and mineral dust. A priori biomass carbon source was generated by Liousse et al [1996]. Mineral dust emission is parameterized according to surface wind and soil moisture using the method developed by Ginoux [2000]. In this initial study, the coupled CCM1 and GRANTOUR model was used to determine the aerosol spatial and temporal distribution. With modeled aerosol concentrations and optical properties, we calculate the radiance at the top of the atmosphere at 340 nm and 380 nm with a radiative transfer model. The contrast of radiance at these two wavelengths will be used to calculate AI. Then we compare the modeled AI with TOMS AI. This paper reports our initial modeling for AI and its comparison with TOMS Nimbus 7 AI. For our follow-on project we will model the global AI with aerosol spatial and temporal distribution recomputed from the IMPACT model and DAO GEOS-1 meteorology fields. Then we will build an inverse model, which applies a Bayesian inverse technique to optimize the agreement of between model and observational data. The inverse model will tune the biomass burning source strength to reduce the difference between modelled AI and TOMS AI. Further simulations with a posteriori biomass carbon sources from the inverse model will be carried out. Results will be compared to available observations such as surface concentration and aerosol optical depth.

  8. Absorber for solar power.

    PubMed

    Powell, W R

    1974-10-01

    A simple, economical absorber utilizing a new principle of operation to achieve very low reradiation losses while generating temperatures limited by material properties of quartz is described. Its performance is analyzed and indicates approximately 90% thermal efficiency and 73% conversion efficiency for an earth based unit with moderately concentrated (~tenfold) sunlight incident. It is consequently compatible with the most economic of concentrator mirrors (stamped) or mirrors deployable in space. Space applications are particularly attractive, as temperatures significantly below 300 K are possible and permit even higher conversion efficiency. PMID:20134700

  9. Passive and active protection from ionizing radiation in space: new activities and perspectives.

    NASA Astrophysics Data System (ADS)

    Spillantini, Piero

    Very intense Solar Cosmic Ray (SCR) events are rare, but not predictable, and can be lethal to a not protected crew in deep space. A ‘life saving’ system must therefore be provided also in short duration manned missions. Passive and active ‘life saving’ system will be revised and discussed. Galactic Cosmic Rays (GCR) instead flow continuously, have a moderate intensity but the accumulation of their effects can have consequences to human health in long duration (≥one year) mission in deep space, and a ‘health saving’ system should be provided. Passive systems are not applicable and recourse has to be made to active systems based on powerful magnetic fields for deviating particles from the habitat where crew members live and work. The activities of last decade are revised and two scenarios are evaluated and discussed: (1) magnetic toroidal systems for mitigating the radiation dose in the relatively large (≅100m3) habitat of interplanetary spaceships; (2) very large magnetic systems for protecting a large habitat (≈500m3) of an inhabited station that should operate for many decades in deep space. Effectiveness, complexity, involved engineering problems and perspectives are outlined and discussed for both the scenarios. They are nowadays studied and evaluated by a cooperative project supported by the European Union that will be illustrated in a dedicated talk.

  10. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  11. The Nature of the UV/X-ray Absorber In PG 2302+029

    NASA Technical Reports Server (NTRS)

    Sabra, Bassem M.; Hamann, Fred; Jannuzi, Buell T.; George, Ian M.; Shields, Joseph C.

    2003-01-01

    We present Chandra X-ray observations of the radio-quiet QSO PG 2302+029. This quasar has a rare system of ultra-high velocity (-56,000 km s(exp -1) UV absorption lines that form in an outflow from the active nucleus. The Chandra data indicate that soft X-ray absorption is also present. We perform a joint UV and X-ray analysis, using photoionization calculations, to determine the nature of the absorbing gas. The UV and X-ray datasets were not obtained simultaneously. Nonetheless, our analysis suggests that the X-ray absorption occurs at high velocities in the same general region as the UV absorber. There are not enough constraints to rule out multi-zone models. In fact, the distinct broad and narrow UV line profiles clearly indicate that multiple zones are present. Our preferred estimates of the ionization and total column density in the X-ray absorber (logU = 1.6, N(sub eta) = 10(exp 22.4) cm (exp -2) over predict the O VI lambda lambda1032,1038 absorption unless the X-ray absorber is also outflowing at approximately 56,000 km s(exp-l), but they over predict the Ne VIII lambda lambda 770,780 absorption at all velocities. If we assume that the X-ray absorbing gas is outflowing at the same velocity of the UV-absorbing wind and that the wind is radiatively accelerated, then the outflow must be launched at a radius of less than or equal to 10(exp 15) cm from the central continuum source. The smallness of this radius casts doubts on the assumption of radiative acceleration.

  12. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  13. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, R.P.; Olbright, G.R.; Brennan, T.M.; Tsao, J.Y.

    1995-02-14

    A photodetector is disclosed that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer. 11 figs.

  14. Photodetector with absorbing region having resonant periodic absorption between reflectors

    DOEpatents

    Bryan, Robert P.; Olbright, Gregory R.; Brennan, Thomas M.; Tsao, Jeffrey Y.

    1995-02-14

    A photodetector that is responsive to a wavelength or wavelengths of interest which have heretofore been unrealized. The photodetector includes a resonant cavity structure bounded by first and second reflectors, the resonant cavity structure being resonant at the wavelength or wavelengths of interest for containing a plurality of standing waves therein. The photodetector further includes a radiation absorbing region disposed within the resonant cavity structure, the radiation absorbing region including a plurality of radiation absorbing layers spaced apart from one another by a distance substantially equal to a distance between antinodes of adjacent ones of the standing waves. Each of radiation absorbing layers is spatially positioned at a location of one of the antinodes of one of the standing waves such that radiation absorption is enhanced. The radiation absorbing layers may be either bulk layers or quantum wells includes a plurality of layers, each of which is comprised of a strained layer of InGaAs. Individual ones of the InGaAs layers are spaced apart from one another by a GaAs barrier layer.

  15. Insolubilisation of biologically active materials with novel radiation graft copolymers

    NASA Astrophysics Data System (ADS)

    Garnett, J. L.; Jankiewicz, S. V.; Levot, R.; Sangster, D. F.

    The use of radiation grafting to immobilise a typical enzyme, trypsin, is reported. The technique involves radiation grafting to a backbone polymer a monomer containing an appropriate functional group to which the enzyme is bonded. In the present work, p-nitrostyrene has been grafted to representative trunk polymers, polypropylene and PVC, the nitro group in the resulting copolymer converted to the isothiocyanato derivative to which trypsin is attached. Of importance to this insolubilisation process, especially for radiation sensitive backbone polymers, is the inclusion of additives which enhance grafting. A new class of additives which increase the grafting yields is reported using as representative backbone polymers, naturally occurring cellulose and synthetic low density polyethylene. The new additives are specific metal salts such as LiClO 4. The reactivity of these salts in grafting enhancement has been compared with that of mineral acid which has previously been used as an additive to increase grafting yields in both preirradiation and simultaneous techniques. A new model for grafting enhancement in the presence of the metal salts as well as acids is proposed whereby increased grafting yields are attributed to increased partitioning of monomer into the graft region in the presence of ionic solutes. The value of these additives in preparing copolymers suitable for general reagent insolubilisation reactions is discussed.

  16. Configuration studies for active electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.

    2013-07-01

    Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. Space crews traveling aboard interplanetary spacecraft will be exposed to a constant flux of galactic cosmic rays (GCR), as well as intense fluxes of charged particles during solar particle events (SPEs). A recent report (Tripathi et al., Adv. Space Res. 42 (2008) 1043-1049), had explored the feasibility of using electrostatic shielding in concert with the state-of-the-art materials shielding technologies. Here we continue to extend the electrostatic shielding strategy and quantitatively examine a different configuration based on multiple toroidal rings. Our results show that SPE radiation can almost be eliminated by these electrostatic configurations. Also, penetration probabilities for novel structures such as toroidal rings are shown to be substantially reduced as compared to the simpler all-sphere geometries. More interestingly, the dimensions and aspect ratio of the toroidal rings could be altered and optimized to achieve an even higher degree of radiation protection.

  17. Liquid Cryogen Absorber for MICE

    SciTech Connect

    Baynham, D.E.; Bish, P.; Bradshaw, T.W.; Cummings, M.A.; Green,M.A.; Ishimoto, S.; Ivaniouchenkov, I.; Lau, W.; Yang, S.Q.; Zisman, M.S.

    2005-08-20

    The Muon Ionization Cooling Experiment (MICE) will test ionization cooling of muons. In order to have effective ionization cooling, one must use an absorber that is made from a low-z material. The most effective low z materials for ionization cooling are hydrogen, helium, lithium hydride, lithium and beryllium, in that order. In order to measure the effect of material on cooling, several absorber materials must be used. This report describes a liquid-hydrogen absorber that is within a pair of superconducting focusing solenoids. The absorber must also be suitable for use with liquid helium. The following absorber components are discussed in this report; the absorber body, its heat exchanger, the hydrogen system, and the hydrogen safety. Absorber cooling and the thin windows are not discussed here.

  18. Degradation of Methyl Orange and Congo Red dyes by using TiO2 nanoparticles activated by the solar and the solar-like radiation.

    PubMed

    Ljubas, Davor; Smoljanić, Goran; Juretić, Hrvoje

    2015-09-15

    In this study we used TiO2 nanoparticles as semiconductor photocatalysts for the degradation of Methyl Orange (MO) and Congo Red (CR) dyes in an aqueous solution. Since TiO2 particles become photocatalytically active by UV radiation, two sources of UV-A radiation were used - natural solar radiation which contains 3-5% UV-A and artificial, solar-like radiation, created by using a lamp. The optimal doses of TiO2 of 500 mg/L for the CR and 1500 mg/L for the MO degradation were determined in experiments with the lamp and were also used in degradation experiments with natural solar light. The efficiency of each process was determined by measuring the absorbance at two visible wavelengths, 466 nm for MO and 498 nm for CR, and the total organic carbon (TOC), i.e. decolorization and mineralization, respectively. In both cases, considerable potential for the degradation of CR and MO was observed - total decolorization of the solution was achieved within 30-60 min, while the TOC removal was in the range 60-90%. CR and MO solutions irradiated without TiO2 nanoparticles showed no observable changes in either decolorization or mineralization. Three different commercially available TiO2 nanoparticles were used: pure-phase anatase, pure-phase rutile, and mixed-phase preparation named Degussa P25. In terms of degradation kinetics, P25 TiO2 exhibited a photocatalytic activity superior to that of pure-phase anatase or rutile. The electric energy consumption per gram of removed TOC was determined. For nearly the same degradation effect, the consumption in the natural solar radiation experiment was more than 60 times lower than in the artificial solar-like radiation experiment. PMID:26160663

  19. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    NASA Technical Reports Server (NTRS)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  20. Altered UV absorbance and cytotoxicity of chlorinated sunscreen agents.

    PubMed

    Sherwood, Vaughn F; Kennedy, Steven; Zhang, Hualin; Purser, Gordon H; Sheaff, Robert J

    2012-12-01

    Sunscreens are widely utilized due to the adverse effects of ultraviolet (UV) radiation on human health. The safety of their active ingredients as well as that of any modified versions generated during use is thus of concern. Chlorine is used as a chemical disinfectant in swimming pools. Its reactivity suggests sunscreen components might be chlorinated, altering their absorptive and/or cytotoxic properties. To test this hypothesis, the UV-filters oxybenzone, dioxybenzone, and sulisobenzone were reacted with chlorinating agents and their UV spectra analyzed. In all cases, a decrease in UV absorbance was observed. Given that chlorinated compounds can be cytotoxic, the effect of modified UV-filters on cell viability was examined. Chlorinated oxybenzone and dioxybenzone caused significantly more cell death than unchlorinated controls. In contrast, chlorination of sulisobenzone actually reduced cytotoxicity of the parent compound. Exposing a commercially available sunscreen product to chlorine also resulted in decreased UV absorbance, loss of UV protection, and enhanced cytotoxicity. These observations show chlorination of sunscreen active ingredients can dramatically decrease UV absorption and generate derivatives with altered biological properties. PMID:22257218

  1. Design of a reusable kinetic energy absorber for an astronaut safety tether to be used during extravehicular activities on the Space Station

    NASA Technical Reports Server (NTRS)

    Borthwick, Dawn E.; Cronch, Daniel F.; Nixon, Glen R.

    1991-01-01

    The goal of this project is to design a reusable safety device for a waist tether which will absorb the kinetic energy of an astronaut drifting away from the Space Station. The safety device must limit the tension of the tether line in order to prevent damage to the astronaut's space suit or to the structure of the spacecraft. The tether currently used on shuttle missions must be replaced after the safety feature has been developed. A reusable tether for the Space Station would eliminate the need for replacement tethers, conserving space and mass. This report presents background information, scope and limitations, methods of research and development, alternative designs, a final design solution and its evaluation, and recommendations for further work.

  2. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. PMID:22627995

  3. Application of magnetorheological fluid in industrial shock absorbers

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Hauke, Mikołaj

    2012-04-01

    The paper presents investigation results of a semi-active industrial shock absorber with magnetorheological (MR) fluid, which is capable of controlling the stopping process of moving objects, e.g. on transportation lines. The proposed solution makes it possible to adjust the braking force (by electronic controller) to the kinetic energy of the moving object. The paper presents an overview of passive shock absorbers. Next, the design concept of a semi-active shock absorber with the MR fluid is proposed. The theoretical model and the simulation model of the MR absorber and the stopping process are presented. The paper reports investigations of a prototype MR shock absorber used to stop a mass moving on an inclined plane. The braking force of the absorber was changed by an electronic control system according to the current position of the moving mass. Finally, the simulation and investigation results are discussed and compared.

  4. Microbial Metabolic Activity and Bioavailability of Dissolved Organic Matter Under the Impact of Intense UV Radiation in Pony Lake, Antarctica

    NASA Astrophysics Data System (ADS)

    Dieser, M.; Foreman, C. M.; McKnight, D. M.; Miller, P. L.; Chin, Y.

    2006-12-01

    Pony Lake is a saline and hypereutrophic coastal pond located on Cape Royds in the McMurdo Sound area of Antarctica. This shallow lake is ice-covered except in midsummer, when strong winds typically cause thorough mixing of the water column. The source of water appears to be accumulated snow; water is lost by ablation of the ice cover and evaporation of lake water in midsummer. In the west the pond is bordered by an Adelie penguin rookery. Previous studies have shown that Pony Lake can have very high dissolved organic carbon (DOC) concentrations (~ 100 mg C liter -1). Furthermore, Pony Lake is unique because it lacks terrestrial carbon inputs in the watershed, which makes this an excellent example of a system containing autochthonous microbially (algae, cyanobacteria, bacteria and viruses) derived organic matter. From an ecological perspective dissolved organic matter (DOM) acts as a carbon source for microorganisms, absorbs harmful ultraviolet radiation, and can participate in biogeochemical redox reactions, whereas different fractions and chemical characteristics influence the bioavailability and chemical reactivity of DOM in aquatic ecosystems. While the DOM concentration in Pony Lake is high, the percentage of DOC accounted for by fulvics acid is low, as is observed in other lakes with algal derived DOC sources. Algal derived fulvic acids are yellowish in color, and absorb light to a lesser extend compared to terrestrially derived fulvic acids. Fulvic acids from Pony Lake are enriched with nitrogen. Over two field seasons we have investigated the influence of photolytic processes on the microbial utilization of DOM from Pony Lake, Antarctica. We have determined that the intense ultraviolet radiation in Antarctica rapidly photo-bleaches DOM, resulting in the loss of UV absorbing compounds, and rendering fractions of the DOM pool less biologically available to microbes. We monitored microbial community structure, abundance and primary and secondary production

  5. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    PubMed

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  6. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  7. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  8. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    SciTech Connect

    Guddala, Sriram Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-16

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.

  9. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    SciTech Connect

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

  10. Stanford Synchrotron Radiation Laboratory activity report for 1986

    SciTech Connect

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  11. Oxygen absorbers in food preservation: a review.

    PubMed

    Cichello, Simon Angelo

    2015-04-01

    The preservation of packaged food against oxidative degradation is essential to establish and improve food shelf life, customer acceptability, and increase food security. Oxygen absorbers have an important role in the removal of dissolved oxygen, preserving the colour, texture and aroma of different food products, and importantly inhibition of food spoilage microbes. Active packaging technology in food preservation has improved over decades mostly due to the sealing of foods in oxygen impermeable package material and the quality of oxygen absorber. Ferrous iron oxides are the most reliable and commonly used oxygen absorbers within the food industry. Oxygen absorbers have been transformed from sachets of dried iron-powder to simple self-adhesive patches to accommodate any custom size, capacity and application. Oxygen concentration can be effectively lowered to 100 ppm, with applications spanning a wide range of food products and beverages across the world (i.e. bread, meat, fish, fruit, and cheese). Newer molecules that preserve packaged food materials from all forms of degradation are being developed, however oxygen absorbers remain a staple product for the preservation of food and pharmaceutical products to reduce food wastage in developed nations and increased food security in the developing & third world. PMID:25829570

  12. Liquid Hydrogen Absorber for MICE

    SciTech Connect

    Ishimoto, S.; Suzuki, S.; Yoshida, M.; Green, Michael A.; Kuno, Y.; Lau, Wing

    2010-05-30

    Liquid hydrogen absorbers for the Muon Ionization Cooling Experiment (MICE) have been developed, and the first absorber has been tested at KEK. In the preliminary test at KEK we have successfully filled the absorber with {approx}2 liters of liquid hydrogen. The measured hydrogen condensation speed was 2.5 liters/day at 1.0 bar. No hydrogen leakage to vacuum was found between 300 K and 20 K. The MICE experiment includes three AFC (absorber focusing coil) modules, each containing a 21 liter liquid hydrogen absorber made of aluminum. The AFC module has safety windows to separate its vacuum from that of neighboring modules. Liquid hydrogen is supplied from a cryocooler with cooling power 1.5 W at 4.2 K. The first absorber will be assembled in the AFC module and installed in MICE at RAL.

  13. Broadband patterned magnetic microwave absorber

    SciTech Connect

    Li, Wei; Wu, Tianlong; Wang, Wei; Guan, Jianguo; Zhai, Pengcheng

    2014-07-28

    It is a tough task to greatly improve the working bandwidth for the traditional flat microwave absorbers because of the restriction of available material parameters. In this work, a simple patterning method is proposed to drastically broaden the absorption bandwidth of a conventional magnetic absorber. As a demonstration, an ultra-broadband microwave absorber with more than 90% absorption in the frequency range of 4–40 GHz is designed and experimentally realized, which has a thin thickness of 3.7 mm and a light weight equivalent to a 2-mm-thick flat absorber. In such a patterned absorber, the broadband strong absorption is mainly originated from the simultaneous incorporation of multiple λ/4 resonances and edge diffraction effects. This work provides a facile route to greatly extend the microwave absorption bandwidth for the currently available absorbing materials.

  14. Diagnostic beam absorber in Mu2e beam line

    SciTech Connect

    Rakhno, Igor; /Fermilab

    2011-03-01

    Star density, hadron flux, and residual dose distributions are calculated around the {mu}2e diagnostic beam absorber. Corresponding surface and ground water activation, and air activation are presented as well.

  15. Absorbed doses from temporomandibular joint radiography

    SciTech Connect

    Brooks, S.L.; Lanzetta, M.L.

    1985-06-01

    Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland.

  16. Estimation of Organ Absorbed Doses in Patients from 99mTc-diphosphonate Using the Data of MIRDose Software

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Cheki, Mohsen; Moslehi, Masoud

    2012-01-01

    The purpose of this study was to compare estimation of radiation absorbed doses to patients following bone scans with technetium-99m-labeled methylene diphosphonate (MDP) with the estimates given in MIRDose software. In this study, each patient was injected 25 mCi of 99mTc-MDP. Whole-body images from thirty patients were acquired by gamma camera at 10, 60, 90, 180 minutes after 99mTc-MDP injection. To determine the amount of activity in each organ, conjugate view method was applied on images. MIRD equation was then used to estimate absorbed doses in different organs of patients. At the end, absorbed dose values obtained in this study were compared with the data of MIRDose software. The absorbed doses per unit of injected activity (mGy/MBq × 10–4) for liver, kidneys, bladder wall and spleen were 3.86 ± 1.1, 38.73 ± 4.7, 4.16 ± 1.8 and 3.91 ± 1.3, respectively. The results of this study may be useful to estimate the amount of activity that can be administered to the patient and also showed that methods used in the study for absorbed dose calculation is in good agreement with the data of MIRDose software and it is possible to use by a clinician. PMID:23724374

  17. Infrared bolometers with silicon nitride micromesh absorbers

    NASA Technical Reports Server (NTRS)

    Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.

    1996-01-01

    Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.

  18. Solar absorber material stability under high solar flux

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  19. Inhibition of Protease-activated Receptor 1 Ameliorates Intestinal Radiation Mucositis in a Preclinical Rat Model

    SciTech Connect

    Wang, Junru; Kulkarni, Ashwini; Chintala, Madhu; Fink, Louis M.; Hauer-Jensen, Martin

    2013-01-01

    Purpose: To determine, using a specific small-molecule inhibitor of protease-activated receptor 1 (PAR1) signaling, whether the beneficial effect of thrombin inhibition on radiation enteropathy development is due to inhibition of blood clotting or to cellular (PAR1-mediated) thrombin effects. Methods and Materials: Rats underwent fractionated X-irradiation (5 Gy Multiplication-Sign 9) of a 4-cm small-bowel segment. Early radiation toxicity was evaluated in rats receiving PAR1 inhibitor (SCH602539, 0, 10, or 15 mg/kg/d) from 1 day before to 2 weeks after the end of irradiation. The effect of PAR1 inhibition on development of chronic intestinal radiation fibrosis was evaluated in animals receiving SCH602539 (0, 15, or 30 mg/kg/d) until 2 weeks after irradiation, or continuously until termination of the experiment 26 weeks after irradiation. Results: Blockade of PAR1 ameliorated early intestinal toxicity, with reduced overall intestinal radiation injury (P=.002), number of myeloperoxidase-positive (P=.03) and proliferating cell nuclear antigen-positive (P=.04) cells, and collagen III accumulation (P=.005). In contrast, there was no difference in delayed radiation enteropathy in either the 2- or 26-week administration groups. Conclusion: Pharmacological blockade of PAR1 seems to reduce early radiation mucositis but does not affect the level of delayed intestinal radiation fibrosis. Early radiation enteropathy is related to activation of cellular thrombin receptors, whereas platelet activation or fibrin formation may play a greater role in the development of delayed toxicity. Because of the favorable side-effect profile, PAR1 blockade should be further explored as a method to ameliorate acute intestinal radiation toxicity in patients undergoing radiotherapy for cancer and to protect first responders and rescue personnel in radiologic/nuclear emergencies.

  20. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  1. Very high energy gamma rays from active galactic nuclei: Cascading on the cosmic background radiation fields and the formation of pair halos

    NASA Technical Reports Server (NTRS)

    Aharonian, F. A.; Coppi, P. S.; Voelk, H. J.

    1994-01-01

    Recent high-energy gamma-ray observations (E(sub gamma) greater than 100 MeV) of blazar Active Galactic Nuclei (AGNs) show emission spectra with no clear upper energy cutoff. AGNs, considered to be possible sources for the observed flux of cosmic rays beyond 10(exp 19) eV, may well have emission extending into the very high energy (VHE), (E(sub gamma) greater than 100 GeV) domain. Because VHE gamma-rays are absorbed by pair production on the intergalactic background radiation fields, much of this emission may not be directly visible. The electromagnetic cascades initiated by absorbed VHE gamma-rays, however, may be observable. Since, most probably, the velocities of (e(+), e(-)) pairs produced in a cascade are quickly isotropized by an ambient random magnetic field, extended 'halos' (R greater than 1 Mpc) of pairs will be formed around AGNs with VHE emission. The cascade radiation from these pair halos is emitted isotropically and should be observable at energies below a few TeV. The halo radiation can be distinguished by its characteristic variation in spectrum and intensity with angular distance from the central source. This variation depends weakly on the details of the central source model, e.g., the orientation and beaming/opening angle of an emitting jet. Limiting or determining the intensity of the pair halo can thus serve as a model-independent bound on or measure of the VHE power of AGNs. Next-generation Cherenkov telescopes may be able to image a pair halo.

  2. Analytical-HZETRN model for rapid assessment of active magnetic radiation shielding

    NASA Astrophysics Data System (ADS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ˜15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  3. Analytical-HZETRN Model for Rapid Assessment of Active Magnetic Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2014-01-01

    The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA's radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than 15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.

  4. Report on policy and activities concerning public awareness of health effects of low-level radiation

    SciTech Connect

    1986-11-01

    In the summer of 1986, the Executive Committee authorized a study limited to determining policy and practices relevant to dissemination of information to the public on radiation health effects in three federal agencies. This report summarizes findings on two broad questions related to the communication issue: What, if any, are the policies under which federal agencies operate in disseminating information on health effects of radiation and what are the current programs and activities designed to provide the public information on health effects of radiation.

  5. Using Photosynthetically Active Radiation (PAR) Observations to Estimate Potential Evaporation with Combination Equations

    NASA Astrophysics Data System (ADS)

    Kim, J.; Freyberg, D. L.

    2011-12-01

    Estimating potential evaporation with combination equations typically depends on observations of solar radiation. In situations where only photosynthetically active radiation (PAR) observations are available, a conversion model is required. We use coincident observations of solar radiation and PAR to build a conversion model for the Santa Cruz Mountains region of California, USA. The model takes advantage of the strong seasonality in cloud cover and albedo, using two seasonal sub-models to improve performance. We examine the uncertainty induced by model error in predictions of potential evaporation and reference crop evaporation using locally calibrated combination equations, and compare with direct observations of pan evaporation and inferred estimates of lake evaporation.

  6. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  7. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  8. Electromagnetic power absorber

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.

    1977-01-01

    Device has reflection coefficient of order of few tenths of percent and is designed to maintain isothermal temperature distribution in high-power microwave and laser applications. Rigid tile functions over broad temperature range and serves as blackbody radiometric standard. Tile modules allow assembly of compact and economical custom-design configurations. Epoxy surface of tiles is insulated with styrofoam against environmental changes and is not subject to convective heat loss. Technique also prevents moisture accumulation and serves as infrared radiation shield.

  9. Plants absorb heavy metals

    SciTech Connect

    Parry, J.

    1995-02-01

    Decontamination of heavy metals-polluted soils remains one of the most intractable problems of cleanup technology. Currently available techniques include extraction of the metals by physical and chemical means, such as acid leaching and electroosmosis, or immobilization by vitrification. There are presently no techniques for cleanup which are low cost and retain soil fertility after metals removal. But a solution to the problem could be on the horizon. A small but growing number of plants native to metalliferous soils are known to be capable of accumulating extremely high concentrations of metals in their aboveground portions. These hyperaccumulators, as they are called, contain up to 1,000 times larger metal concentrations in their aboveground parts than normal species. Their distribution is global, including many different families of flowering plants of varying growth forms, from herbaceous plants to trees. Hyperaccumulators absorb metals they do not need for their own nutrition. The metals are accumulated in the leaf and stem vacuoles, and to a lesser extent in the roots.

  10. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    SciTech Connect

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  11. Effects of UVB radiation on Photosynthesis Activity of Wolffia arrhiza as Probed by Chlorophyll Fluorescence Transient

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Chen, Kun; Liu, Yongding

    UV radiation is one major environmental stress for growth of Wolffia arrhiza which is regarded as a good candidate producer for establishing CELSS during extraterrestrial colonization and spaceflight. In this study, we found that UVB radiation inhibited photosynthetic CO2 assimilation activity significantly, and the content of chlorophyll a, chlorophyll b and carotenoids decreased obviously when plants were exposed to UVB radiation for 6 h. High UVB radiation also declined the quantum yield of primary photochemistry (φPo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (ψo) in the cells of Wolffia arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction center per absorption (RC/ABS) had the same changes under UV-B radiation stress. These results indicated that the effects of UV- B radiation on photosynthesis of Wolffia arrhiza maybe functioned by inhibition the electron transport and inactivation of reaction centers, but the inhibition maybe happen in more than one site in photosynthetic apparatus which is different to that in salt adaptation.

  12. Composition for radiation shielding

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  13. Source apportionment of absorbing aerosols in the central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2016-05-01

    Atmospheric aerosols in the Indo-Gangetic Plain (IGP) depicts high spatial and temporal heterogeneity in their radiative properties. Despite the fact that significant advancement in terms of characterizing aerosols radiative and physiochemical properties in the IGP have been made, information regarding the organic content towards total absorbing aerosol budget is lacking. In the present study we have analyzed two years of aerosol spectral light absorption measurements from the central-IGP, Gorakhpur (26.75°N, 83.38°E, 85m amsl), in order to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Remote sensing data in the form of 'Cloud corrected Fire Count' from MODIS Terra and 'Absorption Aerosol Index' from OMI satellites platform have been used to identify absorbing aerosol source regions. Spectral absorption analysis reveals a four-fold enhancement in absorption in the winter (W) and the post-monsoon (PoM) seasons at UV wavelengths as compared to 880 nm on account of increased biomass aerosol contribution to total absorbing aerosol load. Despite having higher fire events and absorption aerosol index, both indicating high biomass burning activities, in the pre-monsoon (PM) season, aerosols from the biomass sources contribute ~ 27% during the W and the PoM seasons as against ~17% in the PM season to the total absorbing aerosol content. This is due to near stagnant wind conditions and shallow height of air masses travelling to the central IGP in the W and the PoM seasons.

  14. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  15. Overview of active methods for shielding spacecraft from energetic space radiation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W. (Principal Investigator)

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made.

  16. Overview of active methods for shielding spacecraft from energetic space radiation.

    PubMed

    Townsend, L W

    2001-01-01

    During the 1960's and into the early 1970's, investigations were conducted related to the feasibility of using active radiation shielding methods, such as afforded by electromagnetic fields, as alternatives to passive, bulk material shielding to attenuate space radiations. These active concepts fall into four categories: (1) electrostatic fields; (2) plasma shields; (3) confined magnetic fields; and (4) unconfined magnetic fields. In nearly all of these investigations, consideration was given only to shielding against protons or electrons, or both. During the 1980's and 1990's there were additional studies related to proton shielding and some new studies regarding the efficacy of using active methods to shield from the high energy heavy ion (HZE particle) component of the galactic cosmic ray spectrum. In this overview, each concept category is reviewed and its applicability and limitations for the various types of space radiations are described. Recommendations for future research on this topic are made. PMID:11770543

  17. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  18. Energy absorber for the CETA

    NASA Astrophysics Data System (ADS)

    Wesselski, Clarence J.

    1994-05-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  19. Energy absorber for the CETA

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J.

    1994-01-01

    The energy absorber that was developed for the CETA (Crew Equipment and Translation Aid) on Space Station Freedom is a metal on metal frictional type and has a load regulating feature that prevents excessive stroking loads from occurring while in operation. This paper highlights some of the design and operating aspects and the testing of this energy absorber.

  20. Metal-shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P.

    1971-01-01

    Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.

  1. Leaf absorbance and photosynthesis

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  2. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress.

    PubMed

    Klem, Karel; Holub, Petr; Štroch, Michal; Nezval, Jakub; Špunda, Vladimír; Tříska, Jan; Jansen, Marcel A K; Robson, T Matthew; Urban, Otmar

    2015-08-01

    The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley. PMID:25583309

  3. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  4. Uncertainties of organ-absorbed doses to patients from 18f-choline

    NASA Astrophysics Data System (ADS)

    Li, W. B.; Janzen, T.; Zankl, M.; Giussani, A.; Hoeschen, C.

    2011-03-01

    Radiation doses of radiopharmaceuticals to patients in nuclear medicine are, as the standard method, estimated by the administered activity, medical imaging (e.g. PET imaging), compartmental modeling and Monte Carlo simulation of radiation with reference digital human phantoms. However, in each of the contributing terms, individual uncertainty due to measurement techniques, patient variability and computation methods may propagate to the uncertainties of the calculated organ doses to the individual patient. To evaluate the overall uncertainties and the quality assurance of internal absorbed doses, a method was developed within the framework of the MADEIRA Project (Minimizing Activity and Dose with Enhanced Image quality by Radiopharmaceutical Administrations) to quantitatively analyze the uncertainties in each component of the organ absorbed doses after administration of 18F-choline to prostate cancer patients undergoing nuclear medicine diagnostics. First, on the basis of the organ PET and CT images of the patients as well as blood and urine samples, a model structure of 18F-choline was developed and the uncertainties of the model parameters were determined. Second, the model parameter values were sampled and biokinetic modeling using these sampled parameter values were performed. Third, the uncertainties of the new specific absorbed fraction (SAF) values derived with different phantoms representing individual patients were presented. Finally, the uncertainties of absorbed doses to the patients were calculated by applying the ICRP/ICRU adult male reference computational phantom. In addition to the uncertainty analysis, the sensitivity of the model parameters on the organ PET images and absorbed doses was indicated by coupling the model input and output using regression and partial correlation analysis. The results showed that the uncertainty factors of absorbed dose to patients are in most cases less than a factor of 2 without taking into account the uncertainties

  5. Thermal radiation heat transfer.

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Howell, J. R.

    1972-01-01

    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  6. Small acousto-optic modulation for active mode locking in the iodine photodissociation laser and the effect of supplementary saturable absorber

    SciTech Connect

    Kim, Y.S.; Lee, S.S.

    1985-02-01

    Active, passive, and active--passive mode locking of the iodine photodissociation laser are investigated. The peak-to-background ratio (PBR) of the acousto-optically mode-locked pulse is 85% for rf power of 5 W. Passive mode locking using BDN dye gives PBR of 75% and has inferior reproducibility. The active--passive mode locking using the two methods simultaneously is useful for the pressure broadened iodine laser line and gives a PBR of 91%. In this case the rf power required for complete mode locking is calculated to be 7 W which is much less than the required power of 11 W in using active mode locking alone.

  7. Visible light broadband perfect absorbers

    NASA Astrophysics Data System (ADS)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O.

    2016-03-01

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  8. Absorbed Power Minimization in Cellular Users with Circular Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Christofilakis, Vasilis; Votis, Constantinos; Tatsis, Giorgos; Raptis, Vasilis; Kostarakis, Panos

    2010-01-01

    Nowadays electromagnetic pollution of non ionizing radiation generated by cellular phones concerns millions of people. In this paper the use of circular antenna array as a means of minimizing the absorbed power by cellular phone users is introduced. In particular, the different characteristics of radiation patterns produced by a helical conventional antenna used in mobile phones operating at 900 MHz and those produced by a circular antenna array, hypothetically used in the same mobile phones, are in detail examined. Furthermore, the percentage of decrement of the power absorbed in the head as a function of direction of arrival is estimated for the circular antenna array.

  9. Comparison of the space radiation environment at Foton M3 satellite altitudes and on aircraft altitudes for minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Ploc, Ondrej; Dachev, Tsvetan; Spurny, Frantisek; Tomov, Borislav; Dimitrov, Plamen; Matviichuk, Yury; Bankov, Nikolay

    The space radiation environments at Foton M3 and aircraft altitudes were measured by using of practically equal silicon detector based on a deposited energy spectrometers in the fall of 2007. The aircraft measurements were performed on commercial flights of CSA airlines, while the Foton M3 measurements were inside of the ESA Biopan 6 experiment. Foton M3 orbit was close to circular between 260 and 289 km altitude and about 63° inclination. The relatively high inclination and small shielding of the detector (0.81 g/cm2 ) allow us to observe doses by electrons in the outer radiation belt as high as 2.3 mGy/hour. The comparison of the total GCR deposited doses for the Foton M3 time interval, which coincides with the absolute cycle 23 minimum of the solar activity is about 15% higher than the measured during the Foton M2 satellite doses in 2005. Comparisons of the latitudinal profiles for ISS in 2001, Foton 2 and 3 satellites and aircrafts show that the ratio of doses is as 1:2:3. Aircraft measurements are characterised through average values of exposure during frequent, statistically well based measurements on the routes Prague - New York. Dose absorbed in Si-detector per flight on these routes was about 8% higher in 2007 than in 2005. Different comparisons with the existing models for the radiation environment on aircraft and spacecraft altitudes are presented in the paper also and discussed.

  10. [Absorbed doses in dental radiology].

    PubMed

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk. PMID:8966249

  11. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  12. On the railway track dynamics with rail vibration absorber for noise reduction

    NASA Astrophysics Data System (ADS)

    Wu, T. X.

    2008-01-01

    A promising means to increase the decay rate of vibration along the rail is using a rail absorber for noise reduction. Compound track models with the tuned rail absorber are developed for investigation of the performance of the absorber on vibration reduction. Through analysis of the track dynamics with the rail absorber some guidelines are given on selection of the types and parameters for the rail absorber. It is found that a large active mass used in the absorber is beneficial to increase the decay rate of rail vibration. The effectiveness of the piecewise continuous absorber is moderate compared with the discrete absorber installed in the middle of sleeper span or at a sleeper. The most effective installation position for the discrete absorber is in the middle of sleeper span. Over high or over low loss factor of the damping material used in the absorber may degrade the performance on vibration reduction.

  13. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  14. Metal-rich absorbers at high redshifts: abundance patterns

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Agafonova, I. I.; Molaro, P.; Reimers, D.; Hou, J. L.

    2009-11-01

    Aims: To study chemical composition of metal-rich absorbers at high redshifts in order to understand their nature and to determine sources of their metal enrichment. Methods: From six spectra of high-z QSOs, we select eleven metal-rich, Z ⪆ Z_⊙, and optically-thin to the ionizing radiation, N(H i) < 1017 cm-2, absorption systems ranging between z = 1.5 and z = 2.9 and revealing lines of different ions in subsequent ionization stages. Computations are performed using the Monte Carlo inversion (MCI) procedure complemented with the adjustment of the spectral shape of the ionizing radiation. This procedure along with selection criteria for the absorption systems guarantee the accuracy of the ionization corrections and of the derived element abundances (C, N, O, Mg, Al, Si, Fe). Results: The majority of the systems (10 from 11) show abundance patterns which relate them to outflows from low and intermediate mass stars. One absorber is enriched prevalently by SNe II, however, a low percentage of such systems in our sample is conditioned by the selection criteria. All systems have sub-kpc linear sizes along the line-of-sight with many less than 20 pc. In several systems, silicon is deficient, presumably due to the depletion onto dust grains in the envelopes of dust-forming stars and the subsequent gas-dust separation. At any value of [C/H], nitrogen can be either deficient, [N/C] < 0, or enhanced, [N/C] > 0, which supposes that the nitrogen enrichment occurs irregularly. In some cases, the lines of Mg ii λλ2796, 2803 appear to be shifted, probably as a result of an enhanced content of heavy isotopes 25Mg and 26Mg in the absorbing gas relative to the solar isotopic composition. Seven absorbers are characterized by low mean ionization parameter U, logU < - 2.3, among them only one system has a redshift z > 2 (z_abs = 2.5745) whereas all others are found at z 1.8. This statistics is not affected by any selection criteria and reflects the real rise in number of such

  15. Specific absorbed fractions of energy from internal photon sources in brain tumor and cerebrospinal fluid

    SciTech Connect

    Evans, J.F. )); Stubbs, J.B. )

    1995-03-01

    Transferrin, radiolabeled with In-111, can be coinjected into glioblastoma multiforme lesions, and subsequent scintigraphic imaging can demonstrate the biokinetics of the cytotoxic transferrin. The administration of [sup 111]In transferrin into a brain tumor results in distribution of radioactivity in the brain, brain tumor, and the cerebrospinal fluid (CSF). Information about absorbed radiation doses to these regions, as well as other nearby tissues and organs, is important for evaluating radiation-related risks from this procedure. The radiation dose is usually estimated for a mathematical representation of the human body. We have included source/target regions for the eye, lens of the eye, spinal column, spinal CSF, cranial CSF, and a 100-g tumor within the brain of an adult male phantom developed by Cristy and Eckerman. The spinal column, spinal CSF, and the eyes have not been routinely included in photon transport simulations. Specific absorbed fractions (SAFs) as a function of photon energy were calculated using the ALGAMP computer code, which utilizes Monte Carlo techniques for simulating photon transport. The ALGAMP code was run three times, with the source activity distributed uniformly within the tumor, cranial CSF, and the spinal CSF volumes. These SAFs, which were generated for 12 discrete photon energies ranging from 0.01 to 4.0 MeV, were used with decay scheme data to calculate [ital S]-values needed for estimating absorbed doses. [ital S]-values for [sup 111]In are given for three source regions (brain tumor, cranial CSF, and spinal CSF) and all standard target regions/organs, the eye and lens, as well as to tissues within these source regions. [ital S]-values for the skeletal regions containing active marrow are estimated. These results are useful in evaluating the radiation doses from intracranial administration of [sup 111]In transferrin.

  16. Considerations concerning the use of counting active personal dosimeters in pulsed fields of ionising radiation.

    PubMed

    Ambrosi, Peter; Borowski, Markus; Iwatschenko, Michael

    2010-06-01

    Active personal electronic dosimeters (APDs) exhibit limitations in pulsed radiation fields, which cannot be overcome without the use of new detection technology. As an interim solution, this paper proposes a method by which some conventional dosimeters can be operated in a way such that, based on the basic knowledge about the pulsed radiation field, any dosimetric failure of the dosimeter is signalised by the instrument itself. This method is not applicable to all combinations of APD and pulsed radiation field. The necessary requirements for the APD and for the parameters of the pulsed radiation field are given in the paper. Up to now, all such requirements for APDs have not been tested or verified in a type test. The suitability of the method is verified for the use of one APD used in two clinical pulsed fields. PMID:20083488

  17. Active control of sound transmission/radiation from elastic plates by vibration inputs. I - Analysis

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1990-01-01

    Active control of sound radiation from vibrating plates by oscillating forces applied directly to the structure is analytically studied. The model consists of a plane acoustic wave incident on a clamped elastic circular thin plate. Control is achieved by point forces, and quadratic optimization is used to calculate the optimal control gains necessary to minimize a cost function proportional to the radiated acoustic power (the transmitted field). The results show that global attenuation of broadband radiated sound levels for low to mid-range frequencies can be achieved with one or two control forces, irrespective of whether the system is on or off resonance. The efficiency of the control strategy is demonstrated to be related to the nature of the coupling between the plate modes of response and the radiated field.

  18. thin films as absorber

    NASA Astrophysics Data System (ADS)

    González, J. O.; Shaji, S.; Avellaneda, D.; Castillo, G. A.; Das Roy, T. K.; Krishnan, B.

    2014-09-01

    Photovoltaic structures were prepared using AgSb(S x Se1- x )2 as absorber and CdS as window layer at various conditions via a hybrid technique of chemical bath deposition and thermal evaporation followed by heat treatments. Silver antimony sulfo selenide thin films [AgSb(S x Se1- x )2] were prepared by heating multilayers of sequentially deposited Sb2S3/Ag dipped in Na2SeSO3 solution, glass/Sb2S3/Ag/Se. For this, Sb2S3 thin films were deposited from a chemical bath containing SbCl3 and Na2S2O3. Then, Ag thin films were thermally evaporated on glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of dipping was varied as 3, 4 and 5 h. Two different heat treatments, one at 350 °C for 20 min in vacuum followed by a post-heat treatment at 325 °C for 2 h in Ar, and the other at 350 °C for 1 h in Ar, were applied to the multilayers of different configurations. X-ray diffraction results showed the formation of AgSb(S x Se1- x )2 thin films as the primary phase and AgSb(S,Se)2 and Sb2S3 as secondary phases. Morphology and elemental detection were done by scanning electron microscopy and energy dispersive X-ray analysis. X-ray photoelectron spectroscopic studies showed the depthwise composition of the films. Optical properties were determined by UV-vis-IR transmittance and reflection spectral analysis. AgSb(S x Se1- x )2 formed at different conditions was incorporated in PV structures glass/FTO/CdS/AgSb(S x Se1- x )2/C/Ag. Chemically deposited post-annealed CdS thin films of various thicknesses were used as window layer. J- V characteristics of the cells were measured under dark and AM1.5 illumination. Analysis of the J- V characteristics resulted in the best solar cell parameters of V oc = 520 mV, J sc = 9.70 mA cm-2, FF = 0.50 and η = 2.7 %.

  19. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.

  20. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss.

    PubMed

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2015-11-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts. PMID:26553637

  1. Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss

    PubMed Central

    Zhang, Xiangming; Wang, Ping; Wang, Ya

    2016-01-01

    Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts. PMID:26553637

  2. Microscopic modeling of nitride intersubband absorbance

    NASA Astrophysics Data System (ADS)

    Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.

    III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.

  3. Continuum radiation from active galactic nuclei: A statistical study

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.

  4. Absorbent product to absorb fluids. [for collection of human wastes

    NASA Technical Reports Server (NTRS)

    Dawn, F. S.; Correale, J. V. (Inventor)

    1982-01-01

    A multi-layer absorbent product for use in contact with the skin to absorb fluids is discussed. The product utilizes a water pervious facing layer for contacting the skin, overlayed by a first fibrous wicking layer, the wicking layer preferably being of the one-way variety in which fluid or liquid is moved away from the facing layer. The product further includes a first container section defined by inner and outer layer of a water pervious wicking material between which is disposed a first absorbent mass. A second container section defined by inner and outer layers between which is disposed a second absorbent mass and a liquid impermeable/gas permeable layer. Spacesuit applications are discussed.

  5. ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY

    SciTech Connect

    Yeamans, D. R.; Wrights, R. S.

    2002-02-25

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  6. Absorbing WIPP brines : a TRU waste disposal strategy.

    SciTech Connect

    Yeamans, D. R.; Wright, R.

    2002-01-01

    Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

  7. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  8. Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations

    NASA Astrophysics Data System (ADS)

    Ra'di, Y.; Simovski, C. R.; Tretyakov, S. A.

    2015-03-01

    With recent advances in nanophotonics and nanofabrication, considerable progress has been achieved in realizations of thin composite layers designed for full absorption of incident electromagnetic radiation, from microwaves to the visible. If the layer is structured at a subwavelength scale, thin perfect absorbers are usually called "metamaterial absorbers," because these composite structures are designed to emulate some material responses not reachable with any natural material. On the other hand, many thin absorbing composite layers were designed and used already in the time of the introduction of radar technology, predominantly as a means to reduce radar visibility of targets. In view of a wide variety of classical and new topologies of optically thin metamaterial absorbers and plurality of applications, there is a need for a general, conceptual overview of the fundamental mechanisms of full absorption of light or microwave radiation in thin layers. Here, we present such an overview in the form of a general theory of thin perfectly absorbing layers. Possible topologies of perfect metamaterial absorbers are classified based on their fundamental operational principles. For each of the identified classes, we provide design equations and give examples of particular realizations. The concluding section provides a summary and gives an outlook on future developments in this field.

  9. Testing Asymmetry in Plasma-Ball Growth Seeded by a Nanoscale Absorbing Defect Embedded in a SiO2 Thin-Film Matrix Subjected to UV Pulsed-Laser Radiation

    SciTech Connect

    Papernov, S.; Schmid, A.W.

    2008-09-16

    Previous studies of ultraviolet, nanosecond-pulsed-laser damage in thin films revealed nanoscale absorbing defects as a major source of damage initiation. It was also demonstrated that damage (crater formation) is facilitated by plasma-ball formation around absorbing defects. In this work an attempt is made to verify the symmetry of the plasma ball by irradiating SiO2 thin film with embedded gold nanoparticles from the side of either the air/film or substrate/film interfaces. Crater-formation thresholds derived in each case support preferential plasma-ball growth in the direction of the laser-beam source. The strong impact of internal E-field distribution is identified.

  10. Testing asymmetry in plasma-ball growth seeded by a nanoscale absorbing defect embedded in a SiO{sub 2} thin-film matrix subjected to UV pulsed-laser radiation

    SciTech Connect

    Papernov, S.; Schmid, A. W.

    2008-09-15

    Previous studies of ultraviolet, nanosecond-pulsed-laser damage in thin films revealed nanoscale absorbing defects as a major source of damage initiation. It was also demonstrated that damage (crater formation) is facilitated by plasma-ball formation around absorbing defects. In this work an attempt is made to verify the symmetry of the plasma ball by irradiating SiO{sub 2} thin film with embedded gold nanoparticles from the side of either the air/film or substrate/film interfaces. Crater-formation thresholds derived in each case support preferential plasma-ball growth in the direction of the laser-beam source. The strong impact of internal E-field distribution is identified.

  11. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  12. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  13. Influences of photosynthetically active radiation on cladode orientation, stem tilting, and height of cacti

    SciTech Connect

    Nobel, P.S.

    1981-08-01

    Stem orientation and morphology were investigated for 14 species of cacti in Chile, Ecuador, Mexico, and the United States. The interception of photosynthetically active radiation (PAR) was specifically considered for cladodes (flattened stems) of platyopuntias, for tilted cylindrical stems, and in the presence of surrounding vegetation.

  14. Measuring the activity of a 51Cr neutrino source based on the gamma-radiation spectrum

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2015-12-01

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of 51Cr is presented.

  15. Persistent intense MIBG activity in the liver caused by prior radiation.

    PubMed

    Yang, Jigang; Codreanu, Ion; Servaes, Sabah; Zhuang, Hongming

    2014-10-01

    The positive predictive value of MIBG scintigraphy in the evaluation of neuroblastoma is very high, and false-positive findings are rare. We present here persistently elevated MIBG activity in the liver caused by external beam radiation, which could be misinterpreted as malignant involvement if history and prior studies were not carefully correlated. PMID:24999695

  16. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90.

    PubMed

    Hartl, Brad A; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R

    2016-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 µm. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 µCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  17. Loss of vascular fibrinolytic activity following irradiation of the liver - an aspect of late radiation damage

    SciTech Connect

    Henderson, B.W.; Bicher, H.I.; Johnson, R.J.

    1983-09-01

    The vascular fibrinolytic activity, known to originate from the endothelium, was studied histochemically by fibrinolysis autography in liver samples from beagles exposed to radiation treatment. Eighteen to thirty months prior to sacrifice, six dogs received x irradiation (4600 rad in 5 weeks) and three dogs received x irradiation plus aspirin (1 g/kg). Two dogs served as untreated controls. Control livers showed extensive fibrinolytic activity related to large and small vascular structures. The vascular fibrinolytic activity had been lost from all vessels except the major portal branches in five irradiated livers and was severaly diminished in three. One irradiated liver appeared to possess normal fibrinolytic activity.

  18. Simulation, Fabrication and Characterization of THz Metamaterial Absorbers

    PubMed Central

    Grant, James P.; McCrindle, Iain J.H.; Cumming, David R.S.

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical1 and experimental demonstration2 of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical3, near IR4, mid IR5 , THz6 , mm-wave7 , microwave8 and radio9 bands. Applications include perfect lenses10, sensors11, telecommunications12, invisibility cloaks13 and filters14,15. We have recently developed single band16, dual band17 and broadband18 THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers19. In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  19. Energy deposition studies for the LBNE beam absorber

    SciTech Connect

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-29

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  20. Effects of ionizing radiation on the blood brain barrier permeability to pharmacologically active substances

    SciTech Connect

    Trnovec, T.; Kallay, Z.; Bezek, S. )

    1990-12-01

    Ionizing radiation can impair the integrity of the blood brain barrier (BBB). Data on early and late damage after brain irradiation are usually reported separately, yet a gradual transition between these two types has become evident. Signs appearing within 3 weeks after irradiation are considered to be early manifestations. The mechanism of radiation-effected integrity impairment of the BBB is discussed in relation to changes in morphological structures forming the BBB, the endothelium of intracerebral vessels, and in the surrounding astrocytes. Alterations in the function of the BBB are manifested in the endothelium by changes in the ultrastructural location of the activity of phosphatases and by the activation of pinocytotic vesicular transport, and in astrocyte cytoplasm by glycogen deposition. The changes in ultrastructure were critically surveyed with regard to increasing doses of radiation to the brain in the range of 5 Gy to 960 Gy. The qualitative as well as the semiquantitative and quantitative observations on the passage of substances across the damaged BBB were treated separately. Qualitative changes are based mainly on findings of extravasation of vital stains and of labelled proteins. The quantitative studies established differences in radiation-induced changes in the permeability of the BBB depending on the structure and physico-chemical properties of the barrier penetrating tracers. Indirect evaluation of radiation-induced BBB changes is based on studies of pharmacological effects of substances acting on the CNS. In conclusion, radiation impairs significantly the integrity of the BBB following single irradiation of the brain with a dose exceeding 10-15 Gy. The response of the BBB to ionizing radiation is dependent both on the dose to which the brain is exposed and on specific properties of the tracer. 68 references.

  1. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, William H.

    1984-01-01

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.

  2. Hyperuniformity of critical absorbing states.

    PubMed

    Hexner, Daniel; Levine, Dov

    2015-03-20

    The properties of the absorbing states of nonequilibrium models belonging to the conserved directed percolation universality class are studied. We find that, at the critical point, the absorbing states are hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials. PMID:25839254

  3. Hyperuniformity of Critical Absorbing States

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Levine, Dov

    2015-03-01

    The properties of the absorbing states of nonequilibrium models belonging to the conserved directed percolation universality class are studied. We find that, at the critical point, the absorbing states are hyperuniform, exhibiting anomalously small density fluctuations. The exponent characterizing the fluctuations is measured numerically, a scaling relation to other known exponents is suggested, and a new correlation length relating to this ordering is proposed. These results may have relevance to photonic band-gap materials.

  4. Countercurrent flow absorber and desorber

    DOEpatents

    Wilkinson, W.H.

    1984-10-16

    Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.

  5. Differential activation of mitogen-activated protein kinases following high and low LET radiation in murine macrophage cell line.

    PubMed

    Narang, Himanshi; Bhat, Nagesh; Gupta, S K; Santra, S; Choudhary, R K; Kailash, S; Krishna, Malini

    2009-04-01

    Mitogen-activated protein kinases have been shown to respond to various stimuli including cytokines, mitogens and gamma irradiation, leading to cell proliferation, differentiation, or death. The duration of their activation determines the specificity of response to each stimulus in various cells. In this study, the crucial intracellular kinases, ERK, JNK, and p38 kinase involved in cell survival, death, or damage and repair were examined for their activity in RAW 264.7 cells at various time points after irradiation with 2 Gy doses of proton ions or X-rays. This is the first report that shows that the MAPK signaling induced after heavy ion or X-ray exposure is not the same. Unlike gamma irradiation, there was prolonged but marginal activation of prosurvival ERK pathway and significant activation of proapoptotic p38 pathway in response to high LET radiation. PMID:19112558

  6. Analysis of UV-absorbing photoprotectant mycosporine-like amino acid (MAA) in the cyanobacterium Arthrospira sp. CU2556.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2014-07-01

    Mycosporine-like amino acids (MAAs) are ecologically important biomolecules with great photoprotective potential. The present study aimed to investigate the biosynthesis of MAAs in the cyanobacterium Arthrospira sp. CU2556. High-performance liquid chromatography (HPLC) with photodiode-array detection studies revealed the presence of a UV-absorbing compound with an absorption maximum at 310 nm. Based on its UV absorption spectrum and ion trap liquid chromatography/mass spectrometry (LC/MS) analysis, the compound was identified as a primary MAA mycosporine-glycine (m/z: 246). To the best of our knowledge this is the first report on the occurrence of MAA mycosporine-glycine (M-Gly) in Arthrospira strains studied so far. In contrast to photosynthetic activity under UV-A radiation, the induction of the biosynthesis of M-Gly was significantly more prominent under UV-B radiation. The content of M-Gly was found to increase with the increase in exposure time under UV-B radiation. The MAA M-Gly was highly stable under UV radiation, heat, strongly acidic and alkaline conditions. It also exhibited good antioxidant activity and photoprotective ability by detoxifying the in vivo reactive oxygen species (ROS) generated by UV radiation. Our results indicate that the studied cyanobacterium may protect itself by synthesizing the UV-absorbing/screening compounds as important defense mechanisms, in their natural brightly-lit habitat with high solar UV-B fluxes. PMID:24769912

  7. Shuttle active thermal control system development testing. Volume 5: Integrated radiator/expendable cooling system tests

    NASA Technical Reports Server (NTRS)

    Scheps, P. B.

    1974-01-01

    Tests were conducted to gather data on a space shuttle active control system (ATCS) incorporating both radiators and an expendable cooling device to provide vehicle heat removal. Two systems were tested and design information was provided for both nominal and limit conditions. The tests verified the concept that an integrated radiator/expendable cooling system can adequately maintain desired water quantities while responding to variations in heat loads and environments. In addition, the need for duct heating was demonstrated, while exhaust nozzle heating was also shown to be unnecessary.

  8. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  9. Activities in connection with quality assurance in radiation therapy performed in Argentina: physical aspects.

    PubMed

    González, R O

    1984-06-01

    Quality assurance in radiotherapy is performed in different ways in Argentina than in other countries. A part of this program is carried out by the Secondary Standard Dosimetry Laboratory (SSDL-WHO/IAEA), which is a part of the Atomic Energy Commission. This laboratory organizes TLD postal intercomparison; calibrates and checks radiotherapy units and dosimeters; gives education in the physics of radiotherapy; has collaborated in the production of rules for the operation of radiation therapy units and maintains the application of these rules. Other activities in connection with quality assurance, such as personnel, dosimetry, radiation surveys or those related to treatment planning are performed by other groups of the Atomic Energy Commission, by other institutions or by people working in radiotherapy centers. A description of the activities of the SSDL and a brief explanation about the other activities, the present situation and future plans are discussed. PMID:6735801

  10. Neutron radiation can activate K-ras via a point mutation in codon 146 and induces a different spectrum of ras mutations than does gamma radiation.

    PubMed Central

    Sloan, S R; Newcomb, E W; Pellicer, A

    1990-01-01

    Neutron radiation is known to produce tumors in animals and cause cell transformation. We have developed a protocol to efficiently induce thymic lymphomas in RF/J mice by a single acute dose of neutron irradiation. Activated ras genes were detected in 17% (4 of 24) of the tumors analyzed. One of the tumors contained a K-ras gene activated by a point mutation in codon 146. Activating ras mutations at position 146 have not been previously detected in any known human or animal tumors. The spectrum of ras mutations detected in neutron radiation-induced thymic lymphomas was different from that seen in thymic lymphomas induced by gamma radiation in the same strain of mice. These results may have important implications for the mechanisms by which different types of radiation damage DNA. Images PMID:2403644

  11. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  12. High NOTCH activity induces radiation resistance in non small cell lung cancer

    PubMed Central

    Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2016-01-01

    Background and purpose Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy. PMID:23891097

  13. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  14. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH

    NASA Astrophysics Data System (ADS)

    Blacker, Thomas S.; Marsh, Richard J.; Duchen, Michael R.; Bain, Angus J.

    2013-08-01

    In live tissue, alterations in metabolism induce changes in the fluorescence decay of the biological coenzyme NAD(P)H, the mechanism of which is not well understood. In this work, the fluorescence and anisotropy decay dynamics of NADH and NADPH were investigated as a function of viscosity in a range of water-glycerol solutions. The viscosity dependence of the non-radiative decay is well described by Kramers and Kramers-Hubbard models of activated barrier crossing over a wide viscosity range. Our combined lifetime and anisotropy analysis indicates common mechanisms of non-radiative relaxation in the two emitting states (conformations) of both molecules. The low frequencies associated with barrier crossing suggest that non-radiative decay is mediated by small scale motion (e.g. puckering) of the nicotinamide ring. Variations in the fluorescence lifetimes of NADH and NADPH when bound to different enzymes may therefore be attributed to differing levels of conformational restriction upon binding.

  15. Radiative transfer theory for active remote sensing of a layer of nonspherical particles

    NASA Technical Reports Server (NTRS)

    Tsang, L.; Kong, J. A.; Shin, R. T.

    1984-01-01

    The radiative transfer theory is applied to calculate the scattering by a layer of randomly positioned and oriented nonspherical particles. The scattering amplitude functions of each individual particle are calculated with Waterman's T matrix method, which utilizes vector spherical wave functions for expansion of incident, scattered, and surface fields. The orientation of the particles is described by a probability density function of the Eulerian angles of rotation. A rotation matrix is used to relate the T matrix of the principal frame to that of the natural frame of the particle. The extinction matrix and phase matrix of the radiative transfer equations are expressed in terms of the T matrix elements. The extinction matrix for nonspherical particles is generally nondiagonal. There are only two attenuation rates in a specified direction of propagation. The radiative transfer equations are solved by an iterative method to first order in albedo. Numerical results are illustrated as functions of incidence angle and frequency with applications to active remote sensing.

  16. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  17. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes.

    PubMed

    Wölfle, Ute; Heinemann, Anja; Esser, Philipp R; Haarhaus, Birgit; Martin, Stefan F; Schempp, Christoph M

    2012-10-01

    Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  18. Luteolin Prevents Solar Radiation-Induced Matrix Metalloproteinase-1 Activation in Human Fibroblasts: A Role for p38 Mitogen-Activated Protein Kinase and Interleukin-20 Released from Keratinocytes

    PubMed Central

    Heinemann, Anja; Esser, Philipp R.; Haarhaus, Birgit; Martin, Stefan F.; Schempp, Christoph M.

    2012-01-01

    Abstract Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  19. Introduction to Radiation Issues for International Space Station Extravehicular Activities. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shavers, M. R.; Saganti, P. B.; Miller, J.; Cucinotta, F. A.

    2003-01-01

    The International Space Station (ISS) provides significant challenges for radiation protection of the crew due to a combination of circumstances including: the extended duration of missions for many crewmembers, the exceptionally dynamic nature of the radiation environment in ISS orbit, and the necessity for numerous planned extravehicular activities (EVA) for station construction and maintenance. Radiation protection requires accurate radiation dose measurements and precise risk modeling of the transmission of high fluxes of energetic electrons and protons through the relatively thin shielding provided by the space suits worn during EVA. Experiments and analyses have been performed due to the necessity to assure complete radiation safety for the EVA crew and thereby ensure mission success. The detailed characterization described of the material and topological properties of the ISS space suits can be used as a basis for design of space suits used in future exploration missions. In radiation protection practices, risk from exposure to ionizing radiation is determined analytically by the level of exposure, the detrimental quality of the radiation field, the inherent radiosensitivity of the tissues or organs irradiated, and the age and gender of the person at the time of exposure. During low Earth orbit (LEO) EVA, the relatively high fluxes of low-energy electrons and protons lead to large variations in exposure of the skin, lens of the eye, and tissues in other shallow anatomical locations. The technical papers in this publication describe a number of ground-based experiments that precisely measure the thickness of the NASA extravehicular mobility unit (EMU) and Russian Zvezda Orlan-M suits using medical computerized tomography (CT) X-ray analysis, and particle accelerator experiments that measure the minimum kinetic energy required by electrons and photons to penetrate major components of the suits. These studies provide information necessary for improving the

  20. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  1. Blueberry anthocyanins ameliorate radiation-induced lung injury through the protein kinase RNA-activated pathway.

    PubMed

    Liu, Yunen; Tan, Dehong; Tong, Changci; Zhang, Yubiao; Xu, Ying; Liu, Xinwei; Gao, Yan; Hou, Mingxiao

    2015-12-01

    The purpose of this study was to explore the effect of blueberry anthocyanins (BA) on radiation-induced lung injury and investigate the mechanism of action. Seven days after BA(20 and 80 mg/kg/d)administration, 6 weeks old male Sprague-Dawley rats rats were irradiated by LEKTA precise linear accelerator at a single dose of 20 Gy only once. and the rats were continuously treated with BA for 4 weeks. Moreover, human pulmonary alveolar epithelial cells (HPAEpiC) were transfected with either control-siRNA or siRNA targeting protein kinase R (PKR). Cells were then irradiated and treated with 75 μg/mL BA for 72 h. The results showed that BA significantly ameliorated radiation-induced lung inflammation, lung collagen deposition, apoptosis and PKR expression and activation. In vitro, BA significantly protected cells from radiation-induced cell death through modulating expression of Bcl-2, Bax and Caspase-3. Suppression of PKR by siRNA resulted in ablation of BA protection on radiation-induced cell death and modulation of anti-apoptotic and pro-apoptotic proteins, as well as Caspase-3 expression. These findings suggest that BA is effective in ameliorating radiation-induced lung injury, likely through the PKR signaling pathway. PMID:26551926

  2. Fault Detection for Automotive Shock Absorber

    NASA Astrophysics Data System (ADS)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  3. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  4. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans

    PubMed Central

    Knatko, Elena V.; Ibbotson, Sally H.; Zhang, Ying; Higgins, Maureen; Fahey, Jed W.; Talalay, Paul; Dawe, Robert S.; Ferguson, James; Huang, Jeffrey T.-J.; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L.; Honda, Tadashi; Proby, Charlotte M.; Dinkova-Kostova, Albena T.

    2015-01-01

    The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated, are lower than those that arise in their wild-type counterparts. Pharmacological Nrf2 activation by topical bi-weekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacological Nrf2 activation lowers the expression of the pro-inflammatory factors interleukin (IL)-6 and IL-1β, and cyclooxygenase (COX)-2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane, reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate end-point for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen, and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. PMID:25804610

  5. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  6. Active Control of Turbulent Boundary Layer Induced Sound Radiation from Multiple Aircraft Panels

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2002-01-01

    The objective of this work is to experimentally investigate active structural acoustic control of turbulent boundary layer (TBL) induced sound radiation from multiple panels on an aircraft sidewall. One possible approach for controlling sound radiation from multiple panels is a multi-input/multi-output scheme which considers dynamic coupling between the panels. Unfortunately, this is difficult for more than a few panels, and is impractical for a typical aircraft which contains several hundred such panels. An alternative is to implement a large number of independent control systems. Results from the current work demonstrate the feasibility of reducing broadband radiation from multiple panels utilizing a single-input/single-output (SISO) controller per bay, and is the first known demonstration of active control of TBL induced sound radiation on more than two bays simultaneously. The paper compares sound reduction for fully coupled control of six panels versus independent control on each panel. An online adaptive control scheme for independent control is also demonstrated. This scheme will adjust for slow time varying dynamic systems such as fuselage response changes due to aircraft pressurization, etc.

  7. Effect of Solar Particle Event Radiation on Gastrointestinal Tract Bacterial Translocation and Immune Activation

    PubMed Central

    Ni, Houping; Balint, Klara; Zhou, Yu; Gridley, Daila S.; Maks, Casey; Kennedy, Ann R.; Weissman, Drew

    2013-01-01

    Space flight conditions within the protection of Earth’s gravitational field have been shown to alter immune responses, which could lead to potentially detrimental pathology. An additional risk of extended space travel outside the Earth’s gravitational field is the effect of solar particle event (SPE) radiation exposure on the immune system. Organisms that could lead to infection include endogenous, latent viruses, colonizing pathogenics, and commensals, as well as exogenous microbes present in the spacecraft or other astronauts. In this report, the effect of SPE-like radiation on containment of commensal bacteria and the innate immune response induced by its breakdown was investigated at the radiation energies, doses and dose rates expected during an extravehicular excursion outside the Earth’s gravitational field. A transient increase in serum lipopolysaccharide was observed 1 day after irradiation and was accompanied by an increase in acute-phase reactants and circulating proinflammatory cytokines, indicating immune activation. Baseline levels were reestablished by 5 days postirradiation. These findings suggest that astronauts exposed to SPE radiation could have impaired containment of colonizing bacteria and associated immune activation. PMID:21294608

  8. Proton Radiation Belt Dynamics in Low Earth Orbits Interrelated with Solar Activity

    NASA Astrophysics Data System (ADS)

    Malakhov, Vitaly; Aleksandrin, Sergey; Mikhailov, Vladimir; Bakaldin, Alexey; Mayorov, Andrey; Mayorova, Marina; Koldashov, Sergey; Sharonova, Nadezhda; Galper, Arkady; Zharaspaev, Temir; Batischev, Alexey

    Existing empirical radiation belt models do not able to calculate trapped particle fluxes with taking into account changing solar activity. Widely using AP-8 model allows to evaluate proton fluxes just in two cases: for minimum or maximum of a solar cycle. New AP-9 model is under developing. Also new additional possibilities for experimental study of radiation belt dynamics is opened up. Since 2006 year PAMELA and ARINA experiments onboard satelite RESURS-DK1 are carried out. PAMELA is in the first place spectrometer to study antiparticles in cosmic rays. The ARINA instrument is intended studying high-energy charged particle bursts in the magnetosphere. Along with such fundamental goals these instruments give opportunity to carry out measurements of trapped particles in the inner radiation belt. Complex of two mentioned instruments covers proton energy range from 30 MeV up to energy limit for trapping (~2 GeV). Continuous measurements with PAMELA and ARINA include falling and rising phases of 23/24 solar cycles. In this report we present temporal profile of proton fluxes in the inner zone of the radiation belt (1.11activity (sunspot number) was revealed. At that it was shown that proton fluxes of energies >30MeV at the solar minimum several times greater than at the solar maximum.

  9. Carbon Absorber Retrofit Equipment (CARE)

    SciTech Connect

    Klein, Eric

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  10. Additive manufacturing of RF absorbers

    NASA Astrophysics Data System (ADS)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  11. Students absorb it better.

    PubMed

    Poppe, P; Aller Atucha, L M

    1992-12-01

    Despite 15 years of public sector efforts to provide sex education and information to Mexico's youths, information is virtually nonexistent. This fact is most alarming when one considers that those aged 15-19 years comprise almost 1/3 of the population of Mexico. 16.5 years is the average age of 1st sexual intercourse, 1/3 of the youths use contraception during 1st sexual encounter, and 1/6 of sexually active youths use contraceptives. 24% of births in 1989 were to women under age 20. There is great demand among youths and teachers for sex education. 22 animated sex education films which address this demand are described. "The Blue Pigeon" is generally targeted to those aged 11-16. It helps teachers describe the key elements of human sexuality and the physiological changes of puberty and adolescence. Though criticized by parents, health authorities, and a group of teachers and professors, The Blue Pigeon is well-received by students and teachers and educators who use it. The film serves as a useful, easily understood educational support tool. "Music for Two" is targeted to youths over age 15 in urban and suburban areas and may be suitable for young adults and couples. This film discusses factors involved in choosing a mate. It informs while promoting attitudinal change about sexuality and communication within couples. Field experiences with the 2 films are briefly presented. PMID:12317832

  12. Tumor vascular disruption using various radiation types

    PubMed Central

    2014-01-01

    The feasibility of disrupting a tumor’s vascular structure with various radiation types and radionuclides is investigated. Calculated absorbed dose profiles for photons and 4He ions suggest that low-energy beta-gamma and alpha emitting radionuclides can deposit sufficient absorbed dose to disrupt a tumor’s vascular structure while minimizing the dose outside the blood vessel. Candidate radionuclides uniformly distributed in microspheres are theoretically investigated with respect to their vascular disruption potential and to offer an alternative to 90Y microsphere therapy. Requisite activities of candidate low-energy beta-gamma and alpha emitting radionuclides to facilitate vascular disruption are calculated. PMID:24749005

  13. Measurement of surface physical properties and radiation balance for KUREX-91 study

    NASA Technical Reports Server (NTRS)

    Walter-Shea, Elizabeth A.; Blad, Blaine L.; Mesarch, Mark A.; Hays, Cynthia J.

    1992-01-01

    Biophysical properties and radiation balance components were measured at the Streletskaya Steppe Reserve of the Russian Republic in July 1991. Steppe vegetation parameters characterized include leaf area index (LAI), leaf angle distribution, mean tilt angle, canopy height, leaf spectral properties, leaf water potential, fraction of absorbed photosynthetically active radiation (APAR), and incoming and outgoing shortwave and longwave radiation. Research results, biophysical parameters, radiation balance estimates, and sun-view geometry effects on estimating APAR are discussed. Incoming and outgoing radiation streams are estimated using bidirectional spectral reflectances and bidirectional thermal emittances. Good agreement between measured and modeled estimates of the radiation balance were obtained.

  14. Optimally tuned vibration absorbers to control sound transmission

    NASA Astrophysics Data System (ADS)

    Grissom, Michael; Belegundu, Ashok; Koopmann, Gary

    2002-05-01

    A design optimization method is proposed for controlling broadband vibration of a structure and it concomitant acoustic radiation using multiple-tuned absorbers. A computationally efficient model of a structure is developed and coupled with a nonlinear optimization search algorithm. The eigenvectors of the original structure are used as repeated basis functions in the analysis of the structural dynamic re-analysis problem. The re-analysis time for acoustic power computations is reduced by calculating and storing modal radiation resistance matrices at discrete frequencies. The matrices are then interpolated within the optimization loop for eigenvalues that fall between stored frequencies. The method is demonstrated by applying multiple-tuned vibration absorbers to an acoustically-excited composite panel. The absorber parameters are optimized with an objective of maximizing the panel's sound power transmission loss. It is shown that in some cases the optimal solution includes vibration absorbers that are tuned very closely in frequency, thus acting effectively as a broadband vibration absorber (BBVA). The numerical model and design optimization method are validated experimentally, and the BBVA is found to be an effective noise abatement tool.

  15. Radiation-induced hypomethylation triggers urokinase plasminogen activator transcription in meningioma cells.

    PubMed

    Velpula, Kiran Kumar; Gogineni, Venkateswara Rao; Nalla, Arun Kumar; Dinh, Dzung H; Rao, Jasti S

    2013-02-01

    Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA) expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5)-methyltransferase 1 (DNMT1) and methyl-CpG binding domain protein (MBD) expression. However, oxidative damage by H(2)O(2) or pretreatment of irradiated cells with N-acetyl cysteine (NAC) did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA)-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in radiation-treated cells, while U0126 (MEK/ERK inhibitor) blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation triggers u

  16. Radiation-Induced Hypomethylation Triggers Urokinase Plasminogen Activator Transcription in Meningioma Cells1

    PubMed Central

    Velpula, Kiran Kumar; Gogineni, Venkateswara Rao; Nalla, Arun Kumar; Dinh, Dzung H; Rao, Jasti S

    2013-01-01

    Our previous studies have shown the role of radiation-induced urokinase plasminogen activator (uPA) expression in the progression of meningioma. In the present study, we investigated whether modulation of DNA methylation profiles could regulate uPA expression. Initially, radiation treatment was found to induce hypomethylation in meningioma cells with a decrease in DNA (cytosine-5)-methyltransferase 1 (DNMT1) and methyl-CpG binding domain protein (MBD) expression. However, oxidative damage by H2O2 or pretreatment of irradiated cells with N-acetyl cysteine (NAC) did not show any influence on these proteins, thereby indicating a radiation-specific change in the methylation patterns among meningioma cells. Further, we identified that hypomethylation is coupled to an increase in uPA expression in these cells. Azacytidine treatment induced a dose-dependent surge of uPA expression, whereas pre-treatment with sodium butyrate inhibited radiation-induced uPA expression, which complemented our prior results. Methylation-specific polymerase chain reaction on bisulfite-treated genomic DNA revealed a diminished methylation of uPA promoter in irradiated cells. Transfection with small hairpin RNA (shRNA)-expressing plasmids targeting CpG islands of the uPA promoter showed a marked decline in uPA expression with subsequent decrease in invasion and proliferation of meningioma cells. Further, radiation treatment was found to recruit SP1 transcription factor, which was abrogated by shRNA treatment. Analysis on signaling events demonstrated the activation of MAP kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) in radiation-treated cells, while U0126 (MEK/ERK inhibitor) blocked hypomethylation, recruitment of SP1, and uPA expression. In agreement with our in vitro data, low DNMT1 levels and high uPA were found in intracranial tumors treated with radiation compared to untreated tumors. In conclusion, our data suggest that radiation-mediated hypomethylation triggers u

  17. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    PubMed Central

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-01-01

    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling. PMID:27595609

  18. Cloud and radiation mission with active and passive sensing from the space station

    SciTech Connect

    Spinhirne, James D.

    1999-01-22

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude, available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  19. Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation.

    PubMed

    Ding, D; Kim, T; Minnich, A J

    2016-01-01

    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling. PMID:27595609

  20. Proton-synchrotron radiation of large-scale jets in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.

    2002-05-01

    The X-radiation of large-scale extragalactic jets poses a serious challenge for the conventional electron-synchrotron or inverse Compton models suggested to explain the overall non-thermal emission of the resolved knots and hotspots. In this paper I propose an alternative mechanism for X-ray emission - synchrotron radiation by extremely high-energy protons - and discuss implications of this model for the extended jet features resolved by Chandra in several prominent radio galaxies and active galactic nuclei (AGN) - Pictor A, 3C 120, PKS 0637-752 and 3C 273. I show that if protons are indeed accelerated to energies E p >=1018 eV, it is possible to construct a realistic model that allows an effective cooling of protons via synchrotron radiation on quite `comfortable' time-scales of about 107 -108 yr, i.e. on time-scales that provide effective propagation of protons over the jet structures on kpc scales. This explains quite naturally the diffuse character of the observed X-ray emission, as well as the broad range of spectral X-ray indices observed from different objects. Yet, as long as the proton synchrotron cooling time is comparable with both the particle escape time and the age of the jet, the proton-synchrotron model offers an adequate radiation efficiency. The model requires relatively large magnetic field of about 1mG, and proton acceleration rates ranging from L p ~1043 to 1046 ergs-1 . These numbers could be reduced significantly if the jet structures are moving relativistically towards the observer. I discuss also possible contributions of synchrotron radiation by secondary electrons produced at interactions of relatively low energy (E p <=1013 eV) protons with the compressed gas in the jet structures. This is an interesting possibility which however requires a very large product of the ambient gas density and total amount of accelerated protons. Therefore it could be treated as a viable working hypothesis only if one can reduce the intrinsic X