Science.gov

Sample records for active radiation monitor

  1. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  2. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  3. Active Radiation Monitoring on the International Space Station

    NASA Astrophysics Data System (ADS)

    Shelfer, T.; Semones, E.; Johnson, S.; Zapp, N.; Weyland, M.; Riman, F.; Flanders, J.; Golightly, M.; Smith, G.

    The space radiation environment in and around the International Space Station (ISS) is currently being monitored by a variety of active and passive radiation measurement systems. There are currently three permanent NASA active radiation monitoring systems onboard the ISS. The first instrument is the ISS Tissue Equivalent Proportional Counter (ISS TEPC) that was activated November 9, 2000. The next instrument brought online was the Intra-Vehicular Charged Particle Directional Spectrometer (IV-CPDS) that was activated April 21, 2001. The last instrument to be activated was the Extra-Vehicular Charged Particle Directional Spectrometer (EV-CPDS) that was turned on April 26, 2002. These three instruments provide the Space Radiation Analysis Group at NASA/Johnson Space Center with real-time radiation environment data, as well as detailed science data that is downloaded on a regular basis. The real-time data is used primarily for flight operations support in the Mission Control Center - Houston. The detailed science data is currently used in support of crew radiation dosemetry efforts, to validate the radiation environment model at the ISS orbit, and to validate shield distribution and interaction models for the ISS. We plan to present data collected by the ISS TEPC, IV-CPDS, and EV-CPDS for the Expedition 3 (August 10, 2001 - December 17, 2001) and Expedition 4 (December 5, 2001 - June 11, 2002)) time periods. Our preliminary measurement results will be presented in terms of environment variables such as orbital altitude and space weather, and shielding variables such as location inside the ISS and orientation of the ISS complex. In addition, the measured radiation dose will be divided into contributions from Galactic Cosmic Rays (GCR) and trapped particles.

  4. Packet personal radiation monitor

    DOEpatents

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  5. Packet personal radiation monitor

    DOEpatents

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  6. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  7. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  8. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  9. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  10. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  11. PERSONAL RADIATION MONITOR

    DOEpatents

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  12. Radiation monitoring at Belle

    NASA Astrophysics Data System (ADS)

    Žontar, D.; Belle SVD Monitoring Group

    2003-03-01

    High beam currents at the KEK B factory lead to high radiation background (order of 100 krad/y, consisting mostly of spent electrons/positrons) around the interaction point where the silicon vertex detector is located. In order to monitor the background conditions close to the interaction point a radiation monitoring system has been developed and installed. It is based on 16 monitoring modules containing RadFET chip (containing 4 sensors) for measurement of total accumulated dose and PIN diodes for measurement of instantaneous dose rate.

  13. Audible radiation monitor

    SciTech Connect

    Odell, D.M.C.

    1992-12-31

    This invention consists of a method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  14. Audible radiation monitor

    DOEpatents

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  15. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  16. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  17. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  18. Radiation monitor reporting requirements

    SciTech Connect

    Bates, W.F.

    1993-12-10

    Within High-Level Waste Management (HLWM), CAMs and VAMPs are currently considered Class B equipment, therefore, alarm conditions associated with the CAMs and VAMPs result in an Unusual Occurrence or Off-Normal notification and subsequent occurrence reporting. Recent equipment difficulties associated with Continuous Air Monitors (CAMs) and Victoreen Area Radiation Monitors (VAMPs) have resulted in a significant number of notification reports. These notification have the potential to decrease operator sensitivity to the significance of specific CAM and VAMP failures. Additionally, the reports are extremely costly and are not appropriate as a means for tracking and trending equipment performance. This report provides a technical basis for a change in Waste Management occurrence reporting categorization for specific CAM and VAMP failure modes.

  19. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  20. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  1. The LISA Pathfinder Radiation Monitor

    SciTech Connect

    Wass, P. J.; Araujo, H.; Sumner, T.; Boatella, C.; Lobo, A.; Chmeissani, M.; Puigdengoles, C.; Hajdas, W.

    2006-11-29

    We present the concept, design and testing of the radiation monitor for LISA Pathfinder. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) will cause charging of the LISA Pathfinder test masses producing unwanted disturbances which could be significant during a large solar eruption. A radiation monitor on board LISA Pathfinder, using silicon PIN diodes as particle detectors, will measure the particle flux responsible for charging. It will also be able to record spectral information to identify solar energetic particle events. The design of the monitor was supported by Monte Carlo simulations which allow detailed predictions of the radiation monitor performance. We present these predictions as well as the results of high-energy proton tests carried out at the Paul Scherrer Institute, Switzerland. The tests show good agreement with our simulations and confirm the capability of the radiation monitor to perform well in the space environment, meeting all science requirements.

  2. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  3. A systolic radiation monitoring system

    SciTech Connect

    Shpancer, I.; Kinsner, W.

    1982-12-01

    This paper describes a data acquisition system for radiation monitoring which significantly improves performance over conventional systems by providing higher throughput, elimination of data skew, easier and inexpensive isolation, improved system accuracy, and compact implementation. The novel systolic data acquisition system, including systolic converter, processor and networking was developed to alleviate drawbacks of various conventional data acquisition systems used in radiation monitoring. The system is based on a systolic conversion, processing and networking method amenable to highly integrated vector architecture. The method employs systolic rules which can be developed for a selected problem. The rules for the radiation monitoring problem have been developed so as to apply not only locally but also globally to the systolic network. A form of the network has been implemented and is operational in a nuclear reactor site. Other forms are being implemented and tested for other data skew sensitive problems.

  4. Biological monitoring of radiation exposure

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  5. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  6. [Automated system of radiation monitoring in Moscow region].

    PubMed

    Denisov, A A; Zubkov, Iu N; Prokazova, L M; Sobolev, A I

    2006-01-01

    The authors consider one trend in activities of "Radon"--Center of Radiation and Ecologic Control. The article covers foundation reasons and longstanding function results of operative radiation monitoring system for large industrial city. Features of construction and functioning of the system are shown. Devices for operative radiation monitoring are subjected to comparative analysis. Prospective trends of the system development are described.

  7. MULTI-POINT RADIATION MONITOR

    SciTech Connect

    Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

    2006-05-12

    A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

  8. The L3 radiation monitor

    NASA Astrophysics Data System (ADS)

    Ahlen, S.; Goldstein, J.; Marin, A.; Xu, J.; Zhou, B.; Capell, M.; Wu, S.

    1996-02-01

    A radiation monitoring system for the L3 experiment at the Large Electron Positron (LEP) collider is described. This system was installed in the L3 detector in April 1993. It provides information on the instantaneous and integrated radiation dose in the vicinity of the L3 silicon microvertex detector and time expansion chamber, and since April 1994 it has also provided trigger signals for the LEP beam dump in the case of large instantaneous dose rates in the L3 central tracking region.

  9. Straddle carrier radiation portal monitoring

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  10. Straddle Carrier Radiation Portal Monitoring

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  11. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  12. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  13. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  14. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  15. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  16. Personal monitoring of UV radiation

    NASA Astrophysics Data System (ADS)

    Barth, Joachim; Knuschke, Peter

    1994-06-01

    Personal monitoring of till-radiation (UVR) is important fo find out both overexposure and underexposure to UVR. At present polysulfone films seem to be most suitable for these purposes. They allow a reliable measurement of till-exposure to wavelengths between 250 and 330 nm if a number of influencing factors is respected. These are described in detail in a technical report of the Commission Internationale de L'Eclairage (CIE). Own investigations with polysulphone films have shown that these polymers can help as well to detect an overexposure to UVR at workplaces as an UVR-deficiency of people living in an old peoples home. It could be demonstrated that this till-deficiency well correlates to the deficiency of serum 25(OH)D3 levels of these people. Furthermore after optimization of a new phototherapeutic equipment in uniformity of UV-exposure round patients body by polysulphone film dosimeters it got useable in therapy.

  17. Computer-controlled radiation monitoring system

    SciTech Connect

    Homann, S.G.

    1994-09-27

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

  18. Radiation monitoring with CVD diamonds in BABAR

    NASA Astrophysics Data System (ADS)

    Edwards, A. J.; Bruinsma, M.; Burchat, P.; Kagan, H.; Kass, R.; Kirkby, D.; Petersen, B. A.; Pulliam, T.

    2005-10-01

    The BABAR experiment has been using two polycrystalline chemical-vapor-deposition (pCVD) diamonds for radiation monitoring for nearly 2 years. In July 2005, an additional 12 diamond based radiation sensors will be installed inside the BABAR detector. These diamonds will take over the function of 12 silicon PIN-diodes that are currently used in the radiation protection and monitoring system. We describe our highly successful experience with using pCVD diamond radiation sensors in a high energy physics experiment. We also detail our findings of persistent signal currents and magnetically suppressed erratic dark currents in pCVD diamond based radiation sensors.

  19. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  20. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  1. NRC TLD Direct Radiation Monitoring Network

    SciTech Connect

    Struckmeyer, R.; McNamara, N.

    1991-04-01

    This report presents the results of the NRC (Nuclear Regulatory Commission) Direct Radiation Monitoring Network for the fourth quarter of 1990. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  2. ISS space radiation environment as observed by radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Benghin, Victor; Petrov, V.; Panasyuk, Michail; Nechaev, Oleg; Lishnevskiy, Andrey; Volkov, Aleksey

    Radiation monitoring system (RMS) has worked on board of the International Space Station (ISS) Service Module practically continuously beginning from August 2001. Data of dose rate on board the ISS observed by the RMS beginning from August 2001 up to January 2008 are presented. The dose rate values measured by four detectors disposed in different places of the Service Module are compared. The measurements were carried out under a wide variety of solar and geomagnetic activity conditions during decreasing phase of the 23-th solar cycle. Solar proton events doses measured by RMS are presented. It was noted a high difference of the dose values measured in various places of the ISS Service Module. The dose values caused by the large solar particle events including October 2003 and January 2005 events are presented. In particular, the maximum solar particle event dose during the full-considered period of the ISS flight was fixed in the October 2003 events.

  3. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  4. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  5. Radiation Monitoring for the Masses.

    PubMed

    Wagner, Eric; Sorom, Rich; Wiles, Linda

    2016-01-01

    In response to the Fukushima-Daiichi incident, many commercial vendors have produced applications and equipment targeted at the average member of the public in order to enable them to make radiation measurements themselves at little to no cost. The authors have evaluated a small selection of these items in order to validate their performance when exposed to a calibrated 137Cs dose rate irradiator. The products fall into two primary categories: the first using the CMOS from the camera on ubiquitous smartphones and the second using an accessory that performs the radiation measurement. Presented here are the performance data of a selection and recommendations on how to interpret the produced values. PMID:26606063

  6. Radiation monitoring system for X-FEL

    NASA Astrophysics Data System (ADS)

    Makowski, D.; Mukherjee, B.; Simrock, S.; Jabłoński, G.; Napieralski, A.; Grecki, M.

    2007-08-01

    Radiation produced during the operation of linear accelerators poses a potential threat to electronic devices installed in the accelerator tunnel. Therefore, a distributed radiation monitoring system was installed at five various spots in the Free electron LASer in Hamburg (FLASH) tunnel. The presented system allows us to measure radiation produced during the operation of a linear accelerator driving FLASH in real time. The system is composed of two modules: radiation-sensitive sensors and a radiation-tolerant readout system constructed with the application of commercial-off-the-shelf (COTS) components. The neutron dosimeter was constructed using an innovative application of a static random access memory (SRAM), whereas a well-known radiation-sensitive RadFET was used for gamma quantification.

  7. Solar radiation monitoring for high altitude aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  8. Solar radiation monitoring for high altitude aircraft

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.

    1981-10-01

    Ground-based and satellite-based ionizing radiation monitoring systems are considered as alternative methods for ensuring safe radiation levels for high-altitude aircraft. It is found that ground-based methods are of limited accuracy due to insensitivity to solar particles of energies between the riometer upper cutoff of about 50 MeV and the neutron monitor threshold of about 450 MeV. This energy range is demonstrated to be essential for atmospheric radiation monitoring at high altitude, and must be covered by satellite measurement. On the basis of presently available data, the accuracy to which the incident solar particle flux must be measured by satellite-borne detectors is examined and recommendations are made to establish minimum requirements.

  9. Global nuclear radiation monitoring using plants

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Romero-Talamas, Carlos; Kostov, Dan; Wang, Wanpeng; Liu, Zhongchi; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.; Gu, Jerry; Choa, Fow-Sen

    2005-05-01

    Plants exhibit complex responses to changes in environmental conditions such as radiant heat flux, water quality, airborne pollutants, soil contents. We seek to utilize the natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to high-energy radiation - with the goal of monitoring natural plant responses for use as benchmarks for detection and dosimetry. For our study, we selected a plants cactus, Arabidopsis, Dwarf mango (pine), Euymus and Azela. We demonstrated that the ratio of Chlorophyll a to Chlorophyll b of the leaves has changed due to the exposure gradually come back to the normal stage after the radiation die. We used blue laser-induced blue fluorescence-emission spectra to characterize the pigment status of the trees. Upon blue laser excitation (400 nm) leaves show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm). Sample tree subjects were placed at a distance of 1m from NIST-certified 241AmBe neutron source (30 mCi), capable of producing a neutron field of about 13 mrem/h. This corresponds to an actual absorbed dose of ~ 1 mrad/h. Our results shows that all plants are sensitive to nuclear radiation and some take longer time to recover and take less. We can use their characteristics to do differential detection and extract nuclear activity information out of measurement results avoid false alarms produced environmental changes. Certainly the ultimate verification can be obtained from genetic information, which only need to be done when we have seen noticeable changes on plant optical spectra, mechanical strength and electrical characteristics.

  10. Development of a small radiation flux monitor

    SciTech Connect

    Leysen, W.

    2011-07-01

    This paper describes the development of a miniaturized radiation flux monitor by means of Cherenkov light. The idea is to use the intensity of Cherenkov light as a measurement for the radiation flux. An initial test is performed with an extrinsic dielectric object which is coupled with an optical fibre. These test show that the Cherenkov radiation in the fibre itself was too high compared with the captured extrinsic light. Further test to use intrinsic Cherenkov fibre optic sensors are planned in the near future and the envisaged measurement set up is explained. (authors)

  11. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  12. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  13. In-situ monitoring of biologically active solar UV-B radiation: a new biosensor of vitamin D synthetic capacity

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.; Gvozdovskyy, I. A.

    2001-06-01

    The new biosensor of vitamin D synthetic capacity of solar/artificial UV-B radiation is based on liquid crystal with provitamin D dopant. Nematic liquid crystals (LC-805, ZLI-1695) are converted into induced cholesteric phase using photosensitive steroid biomolecules of provitamin D3 (7- dehydrocholesterol). During UV exposure remarkable decrease in the number of the Cano-Grandjean stripes has been observed in the wedge-like cell as a result of UV initiated photoisomerization of provitamin D3 that changed helical twisting power of the dopant molecules.

  14. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  15. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    SciTech Connect

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  16. ESA Next Generation Radiation Monitor- NGRM

    NASA Astrophysics Data System (ADS)

    Desorgher, Laurent

    Precise monitoring of the highly dynamic space radiation environment around Earth is crucial for spacecraft safety, as support of radiation belt models, solar particle flux models, and space radiation effects tools. The ESA sponsored SREM is measuring the Earth's radiation belts, solar particle flux, and cosmic ray background more than one decade onboard six different spacecrafts. Recently the development of the follower of SREM, the Next Generation Radiation Monitor (NGRM), has been started within an european consortium led by RUAG space, together with Paul Scherrer Institute (PSI), ONERA, EREMS, and IDEAS. NGRM will measure protons from 2 MeV up to 200 MeV, electrons from 100 keV up to 7MeV, as well as LET spectrum of ions. Compared to SREM, NGRM will provide a much better energy resolution, will be smaller (<1L), lighter (<1kg) and consume less energy (<1W). In this paper we describe the design of the instrument, and present calibration tests and Monte Carlo analysis of the instrument.

  17. Onion skin as a radiation monitor

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the dry, outer skin of onion, red onion, garlic, and shallot were measured before and after irradiation. In all spectra only a single resonance (g = 2.00) was observed. The ESR signal intensity increased with absorbed dose, however, the radiation-induced signal decayed slowly with time. It was concluded that the outer skin of these foods are not suitable as a long-term postirradiation monitor.

  18. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  19. Autonomous Radiation Monitoring of Small Vessels

    SciTech Connect

    Fabris, Lorenzo; Hornback, Donald Eric

    2010-01-01

    Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the terrestrial approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. They require vehicles to pass at slow speeds between two closely-spaced radiation sensors, relying on the uniformity of vehicle sizes to space the detectors, and on proximity to link an individual vehicle to its radiation signature. In contrast to roadways where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. We have developed a unique solution to this problem based on our portal-less portal monitor instrument that is designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. It was recently tested in a maritime setting. In this paper we present the instrument, how it functions, and the results of the recent tests.

  20. Smart radiation monitor for airport baggage screening

    NASA Astrophysics Data System (ADS)

    Osovizky, Alon; Ginzburg, Dimitry; Marcus, Eli; Yehuda-Zada, Yaacov; Ghelman, Max; Vax, Eran; Bronfenmacher, Vladislav; Mazor, Tzachi; Cohen, Yosef

    2011-05-01

    This work presents specially designed radiation monitoring system for baggage screening at airports and border crossing points for the presence of radioactive and Special Nuclear Materials (SNM). Border monitoring equipment plays a key role in combating illicit trafficking. The conveyor monitor is designed to meet the detection level determined by the standard for Radiation Portal Monitors (RPM). The obtained sensitivity results of the system and an analytical analysis of the implemented algorithms contributing to the detection performances are presented. The system consists of highly sensitive gamma and neutron detectors, electronic data-processing unit, computer interface and unique algorithms. The system's electronic unit interfaces with the conveyor control system using two signals, an input signal for the conveyor operation status and an output signal for stopping the conveyor in case of alarm. This interface and the implemented algorithm reduce the number of false alarms and improve the detection level by considering the background variation. Further significant improvement in the detection level is achieved by implementing an advanced algorithm based on the detector reading profile versus time. The online computer software provides the user with friendly interface for retrieving the archived data and analyzing the history of alarms.

  1. Status of the ESA Standard Radiation Environment Monitor (SREM) products

    NASA Astrophysics Data System (ADS)

    Nieminen, Petteri; Anastasiadis, A.; Bühler, P.; Daglis, I.; Daly, E.; Desorgher, L.; Evans, H.; Hajdas, W.; Lyons, J.; Marinov, D.; Nieminen, P.; Sandberg, I.; Siegl, M.; Tziotziou, K.; Zadeh, A.

    The ESA Standard Radiation Environment Monitor (SREM) is thus far succesfully flying and producing radiation data on Proba-1, INTEGRAL, Rosetta, Giove-B, Herschel and Planck missions, with the environments covering LEO, MEO, highly elliptical orbit, L2, and the in-terplanetary space. This presentation will outline the main SREM results to date from these various missions, and will give an overview of the present efforts taken to process the SREM data from raw particle count rates to proton and electron fluxes. Interfaces to various envi-ronment modelling activities and other higher level products are also discussed. Lessons learnt from the SREM programme will be summarised with the aim of facilitating future radiation monitor development and data processing / utilisation efforts.

  2. Characteristics of the earth radiation budget experiment solar monitors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Cess, Robert D.

    1987-01-01

    The earth radiation budget experiment solar monitors, active cavity pyrheliometers, have been developed to measure every two weeks the total optical solar irradiance from the earth radiation budget satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 spacecraft platforms. In the unfiltered 0.2-50-micron wavelength broadband region, the monitors were used to obtain 1365 W/sq m as the mean value for the solar irradiance, with measurement precisions and accuracies approaching 0.1 and 0.2 percent, respectively. The design and characteristics of the solar monitors are presented along with the data reduction model. For the October 1984 through July 1985 period, the resulting ERBS and NOAA-9 solar irradiance values are intercompared.

  3. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  4. Quality assurance of environmental gamma radiation monitoring in Slovenia.

    PubMed

    Stuhec, M; Zorko, B; Mitić, D; Miljanić, S; Ranogajec-Komor, M

    2006-01-01

    Environmental gamma radiation monitoring established in Slovenia consists of a network of multifunctional gamma monitors (MFMs) based on pairs of Geiger-Müller counters and a network of measuring sites with high-sensitive thermoluminiscence dosemeters. The measuring points are evenly spread across Slovenia, located at the meteorological stations and more densely on additional locations around the Krsko NPP. The MFM network has a 2-fold function with one sensor used for the purpose of early warning system in near surroundings of the NPP and the other, more sensitive, for natural radiation monitoring. The paper summarises activities to establish quality assurance of the environmental gamma radiation measurements in Slovenia, with a critical view of the results in comparison with the international standards and recommendations. While the results of linearity and energy dependence tests were satisfying, on-field intercomparison showed that the inherent signal of one of the monitors (MFM) has to be taken into account in the range of environmental background radiation.

  5. Network-Oriented Radiation Monitoring System (NORMS)

    SciTech Connect

    Rahmat Aryaeinejad; David F. Spencer

    2007-10-01

    We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/bench tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.

  6. Radiation Exposure Monitoring and Information Transmittal System.

    2005-06-23

    Version 01 The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist U.S. Nuclear Regulatory Commission (NRC) licensees in meeting the reporting requirements of the Revised 10 CFR Parts 20.1001 through 20.2401 as outlined in Regulatory Guide 8.7, Rev.1, Instructions for Recording and Reporting Occupational Exposure Data. REMIT is a PC‑based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designedmore » to be user‑friendly and contains the full text of Regulatory Guide 8.7, Rev.1, on‑line as well as context‑sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5. REMIT allows the user to view the individual's exposure in relation to regulatory or administrative limits and will alert the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files. Additional information is available from the web page www.reirs.com.« less

  7. Radiation environment monitoring for manned missions to Mars

    NASA Astrophysics Data System (ADS)

    Benghin, V. V.; Petrov, V. M.

    In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given.

  8. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  9. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  10. Analysis of the TMI-2 dome radiation monitor

    SciTech Connect

    Murphy, M B; Mueller, G M; Jernigan, W C

    1985-08-01

    Questions have been raised regarding the accuracy of the in-containment radiation readings from the LOCA qualified, dome radiation monitor, HP-R-214 during the March 28, 1979 accident at the Three Mile Island Unit 2 Reactor. This report discusses the accuracy of the readings, gives the results of examining the radiation monitor itself, and estimates the radiation environment inside containment during the accident.

  11. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  12. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  13. Radiation field formation and monitoring beyond LEO

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    This brief review comprises the main features of radiation field formation due to galactic (GCR) and solar cosmic rays (SCR) beyond LEO in the inner Solar system. We also consider the similarities and differences of radiation environment models applicable to the Moon and the Mars missions, the main requirements for radiation monitoring, warning and forecasting techniques for deep space missions. Existing modulation models for GCR provide a possibility to estimate easily the GCR contribution to the radiation field in the interplanetary space, at the lunar or Martian surfaces; the situation with SCR contribution is much more complicated. For space weather purposes, time profiles of the 10-30 MeV protons, unfortunately, are often complicated by several factors, especially by interplanetary shocks driven by Coronal Mass Ejections (CME). In particular, the particle-trapping region around the shock may or may not be the region with the highest SEP intensity, depending on whether shock acceleration continues or diminishes with distance. At distances beyond 1 AU there can be interaction or merging of different transient shocks, and the corotating shocks begin to play a role, possibly by re-accelerating some of the SEPs from transient shocks. Also, the source locations, angular distribution and radial gradient of SEP intensity are very important. In a mission to Mars, for example, the radial distance will vary according to the spacecraft trajectory chosen. The flux of SEPs is expected to vary as a power law with radial distance from the Sun, and a power-law exponent of -3 would be expected from magnetic flux tube geometry. Since the radial distance to Mars is ˜ 1.5 AU, then the flux at the orbit of Mars would be expected to be about 1/3 of the flux at 1.0 AU along the same spiral path. A consideration of these expected variations suggests that the proton prediction problem for Mars is not dramatically different from the Earth. Autonomous sensors on board the spacecraft

  14. Radiation field formation and monitoring beyond LEO

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.

    This brief review comprises the main features of radiation field formation due to galactic (GCR) and solar cosmic rays (SCR) beyond low Earth orbit (LEO) in the inner Solar system. We also consider the similarities and differences of radiation environment models applicable to the Moon and Mars missions, the main requirements for radiation monitoring, warning, and forecasting techniques for deep space missions. Existing modulation models for GCR provide a possibility to estimate easily the GCR contribution to the radiation field in the interplanetary space, at the Lunar or Martian surfaces. The situation with SCR contribution is much more complicated. For space weather purposes, time profiles of the 10-30 MeV protons in the most of solar proton events (SPE), unfortunately, are often complicated by several factors, especially by interplanetary shocks driven by Coronal Mass Ejections (CME). In particular, the particle-trapping region around the shock may or may not be the region with the highest intensity of solar energetic particles (SEP), depending on whether shock acceleration continues or diminishes with distance. At distances beyond 1 AU there can be interaction or merging of different transient shocks, and the corotating shocks begin to play a role, possibly by re-accelerating some of the SEPs from transient shocks. Also, the source locations, angular distribution and radial gradient of SEP intensity are very important. In a mission to Mars, for example, the radial distance will vary according to the spacecraft trajectory chosen. The flux of SEPs is expected to vary as a power law with radial distance from the Sun, and a power-law exponent of -3 would be expected from magnetic flux tube geometry. Since the radial distance to Mars is ˜1.5 AU, then the flux at the orbit of Mars would be expected to be about 1/3 of the flux at 1.0 AU along the same spiral path in the interplanetary magnetic field (IMF). A consideration of these expected variations suggests that

  15. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  16. Color gamma camera system for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Mu, Zhiping; Deng, Jingkang; Wang, Yanfeng

    2000-11-01

    Radiation monitoring systems are desired in many places where radioactive materials are utilized. In this paper, a color gamma camera system developed in Tsinghua University (P.C. China) is reported. The system consist of a compact X - (gamma) ray detector system, a single hole collimator, the scanning mechanism and computer system. The MLEM method is implemented for image reconstruction, which enables one to generate images of high resolution with relatively big aperture. With the associated software, several scanning modes, which work with different speeds and resolutions, are provided and can be selected in the operations. In addition, the system can detect radioactive sources emitting rays of different energies and display them with color images. Experiments were made using Am-241 (59.5 KeV) and Na-22 (511 KeV) to test the performance of the system. The results are presented which show that the resolution of this system can be as high as 1.5 degrees. Furthermore, simulations using Matlab were made to examine the capability of imaging point sources with a small number of counts and imaging distributed sources. Promising results were obtained and are reported. Discussions about camera design and further improvements are given at the end.

  17. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  18. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  19. Optoelectronic monitoring of neural activity

    NASA Astrophysics Data System (ADS)

    Liu, Xiuli; Quan, Tingwei; Zhou, Wei

    2008-12-01

    Neural activity is a process of induction and propagation of neural excitability. Clarifying the mechanism of neural activity is one of the basic goals of modern brain science. The calcium ion, a second messenger in the brain, plays key roles in neuronal signaling pathways. To detect electrophysiology signals basing on membrane potential change of neurons and fluorescence signals basing on calcium dynamics and fluorescence labeling technique is critical for understanding neuronal signaling. In this research, a random access two-photon fluorescence microscope system basing on acousto-optic deflectors was used to monitor calcium fluorescence signals of neurons, combining a HEKA patch clamp to detect neuronal electrophysiology synchronously. Results showed that the optoelectronic method to monitor the firing of action potential at 50 Hz has single action potential resolution.

  20. Radiation Monitoring at FGUP Atomflot and the Polyarninski Shipyard

    SciTech Connect

    Pomerville, J.; Griffith, A. G.; Moskowitz, P. D.; BNL; Endregard, M.; Sidhu, R. S.; Sundling, C-V.; Walderhaug, T.; Egorkin, A.; Kisselev, V.; Yanovskaya, N.; Tchernaenko, L.

    2003-02-26

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between military establishments of the Russian Federation, United States and Norway to reduce potential environmental threats from military installations and activities in the Arctic and enhancing the environmental security of all three countries. The goal of this project is to enhance the ability to effectively and safely perform radiological monitoring of objects at selected facilities for dismantlement of nuclear submarines and handling and disposition of spent nuclear fuel. Radiological monitoring is needed to protect workers at the sites engaged in dismantlement of nuclear submarines, the local public and the environment. This is to be accomplished by supply of radiation monitoring equipment and the installation of centralized radiological surveillance, the PICASSO Environmental Monitoring system developed by Institute for Energy Technology, Halden, Norway. The first site selected for th e installation of PICASSO will be at the FGUP Atomflot spent nuclear fuel pad site and liquid radioactive waste treatment facility. This will be followed by an installation of PICASSO at the Mobile Processing Facility at Polyarninski Shipyard. The implementation of the PICASSO system will be integrated with the other AMEC projects at both sites. Plans are being developed to implement the use of this system at most Russian Navy sites handling spent nuclear fuel. Dosimeters have been supplied by the US and with funds from Norway. This equipment will be used at the Polyarninski Shipyard.

  1. Sequential probability ratio controllers for safeguards radiation monitors

    SciTech Connect

    Fehlau, P.E.; Coop, K.L.; Nixon, K.V.

    1984-01-01

    Sequential hypothesis tests applied to nuclear safeguards accounting methods make the methods more sensitive to detecting diversion. The sequential tests also improve transient signal detection in safeguards radiation monitors. This paper describes three microprocessor control units with sequential probability-ratio tests for detecting transient increases in radiation intensity. The control units are designed for three specific applications: low-intensity monitoring with Poisson probability ratios, higher intensity gamma-ray monitoring where fixed counting intervals are shortened by sequential testing, and monitoring moving traffic where the sequential technique responds to variable-duration signals. The fixed-interval controller shortens a customary 50-s monitoring time to an average of 18 s, making the monitoring delay less bothersome. The controller for monitoring moving vehicles benefits from the sequential technique by maintaining more than half its sensitivity when the normal passage speed doubles.

  2. B190 computer controlled radiation monitoring and safety interlock system

    SciTech Connect

    Espinosa, D L; Fields, W F; Gittins, D E; Roberts, M L

    1998-08-01

    The Center for Accelerator Mass Spectrometry (CAMS) in the Earth and Environmental Sciences Directorate at Lawrence Livermore National Laboratory (LLNL) operates two accelerators and is in the process of installing two new additional accelerators in support of a variety of basic and applied measurement programs. To monitor the radiation environment in the facility in which these accelerators are located and to terminate accelerator operations if predetermined radiation levels are exceeded, an updated computer controlled radiation monitoring system has been installed. This new system also monitors various machine safety interlocks and again terminates accelerator operations if machine interlocks are broken. This new system replaces an older system that was originally installed in 1988. This paper describes the updated B190 computer controlled radiation monitoring and safety interlock system.

  3. 14. CLOSEUP OF RADIATION MONITORING EQUIPMENT ATTACHED TO FRAMEWORK. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CLOSE-UP OF RADIATION MONITORING EQUIPMENT ATTACHED TO FRAMEWORK. CAMERA FACING SKY. INEL PHOTO NUMBER 65-6175, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  4. Summary Report on Beam and Radiation Generation, Monitoring and Control

    SciTech Connect

    Gordon, D. F.; Power, J. G.

    2009-01-22

    The discussions of the working group on beam and radiation generation, monitoring, and control (working group 6) at the 2008 advanced accelerator concepts workshop are summarized. The discussions concerned electron injectors, phase space manipulation, beam diagnostics, pulse train generation, intense beam physics, and radiation generation.

  5. SYNCHROTRON RADIATION MONITOR FOR NSLS BOOSTER.

    SciTech Connect

    PINAYEV, I.; SHAFTAN, T.

    2005-11-04

    NSLS booster diagnostics consisted of tune measurement system, system for turn-by-turn measurement on the electron beam, and beam intensity monitor, which is not absolutely calibrated. We present design and implementation of synchrotron light monitor for the booster, which expands diagnostics capabilities. The system allows to measure an orbit, beam sizes and coupling of the electron beam along the ramp.

  6. The radiation-tolerant x-ray monitor.

    PubMed

    Gott, Yu V; Stepanenko, M M

    2008-10-01

    A vacuum photoelectric detector (monitor) (VPD) designed for plasma tomography, megnetohydrodynamics monitoring, and imaging with the help of thermal x-ray radiation on the ITER facility is described. Laboratory experiments demonstrate that VPD has high sensitivity to thermal x rays and low sensitivity to hard gamma rays and neutrons. The results of tests of a prototype of this monitor on a (60)Co source of gamma rays, on nuclear reactor and its calibration using radiation from an x-ray tube, and tests of its serviceability on the T-10 facility are presented.

  7. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  8. New generation of radiacs: small computerized multipurpose radiation monitors

    SciTech Connect

    Umbarger, C.J.; Bjarke, G.O.; Erkkila, B.H.; Trujillo, F.; Waechter, D.A.; Wolf, M.A.

    1982-01-01

    The Health Division at Los Alamos has developed a multipurpose radiation monitoring device that is computer-controlled, light weight (3 lb), includes multiple radiation detectors running simultaneously, and is simple to use. This multipurpose radiac is generic in nature and can use any of the standard radiation detectors such as NaI, /sup 3/He, LET proportional gas counters, solid state surface barrier detectors, etc. LCD displays indicate the various radiation parameters in both alphanumeric and graphics format. Internal batteries allow 100 hours of use.

  9. Environmental radiation protection: philosophy, monitoring and standards.

    PubMed

    Janssens, Augustin

    2004-01-01

    The Euratom Treaty confers important powers to the European Commission with regard to monitoring and assessment of levels of radioactivity in the environment and discharges with effluents (Articles 35-37 of the Euratom Treaty). Current developments in the area relate to harmonised reporting of environmental data and to harmonisation of effluent monitoring data. Both developments relate to the requirement under the new Basic Safety Standards (BSS) for a realistic assessment of population exposure. Guidance to this effect is being prepared by the Article 31 Group of Experts. In the context of Article 36 intercomparison exercises for radionuclides measurements in environmental samples are organised. New challenges for environmental monitoring result from the requirement under the BSS to regulate also industries processing NORM materials. Also the international move towards extending the scope of environmental radioactivity to the protection of biota opens new perspectives.

  10. Center for Radiation Research. 1990 technical activities

    SciTech Connect

    Kuyatt, C.E.

    1991-02-01

    The report summarizes research projects, measurement method development, calibration and testing and data evaluation activities that were carried out during Fiscal Year 1990 in the NIST Center for Radiation Research. These activities fall in the areas of radiometric physics, radiation sources and instrumentation, and ionizing radiation.

  11. Solar particle event analysis using the standard radiation environment monitors: applying the neutron monitor's experience

    NASA Astrophysics Data System (ADS)

    Papaioannou, A.; Mavromichalaki, H.; Gerontidou, M.; Souvatzoglou, G.; Nieminen, P.; Glover, A.

    2011-01-01

    The Standard Radiation Environment Monitor (SREM) is a particle detector developed by the European Space Agency for satellite applications with the main purpose to provide radiation hazard alarms to the host spacecraft. SREM units have been constructed within a radiation hardening concept and therefore are able to register extreme solar particle events (SPEs). Large SPEs are registered at Earth, by ground based detectors as neutron monitors, in the form of Ground Level Enhancements of solar cosmic rays. In this work, a feasibility study of a possible radiation alert, deduced by SREM measurements was implemented for the event of 20 January 2005. Taking advantage of the neutron monitor's experience, the steps of the GLE alert algorithm were put into practice on SREM measurements. The outcome was that SREM units did register the outgoing SPE on-time and that these could serve as indicators of radiation hazards, leading to successful alerts.

  12. CVD Diamonds in the BaBar Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Bruinsma, M.; Burchat, P.; Edwards, A. J.; Kagan, H.; Kass, R.; Kirkby, D.; Petersen, B. A.

    2006-01-01

    To prevent excessive radiation damage to its Silicon Vertex Tracker, the BaBar experiment at SLAC uses a radiation monitoring and protection system that triggers a beam abort whenever radiation levels are anomalously high. The existing system, which employs large area Si PIN diodes as radiation sensors, has become increasingly difficult to operate due to radiation damage. We have studied CVD diamond sensors as a potential alternative for these silicon sensors. Two diamond sensors have been routinely used since their installation in the Vertex Tracker in August 2002. The experience with these sensors and a variety of tests in the laboratory have shown CVD diamonds to be a viable solution for dosimetry in high radiation environments. However, our studies have also revealed surprising side-effects.

  13. LISA PathFinder radiation monitor proton irradiation test results

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Diaz-Aguiló, M.; Gibert, F.; Grimani, C.; Hollington, D.; Lloro, I.; Lobo, A.; Nofrarias, M.; Ramos-Castro, J.

    2012-06-01

    The design of the Radiation Monitor in the LISA Technology Package on board LISA Pathnder is based on two silicon PIN diodes, placed parallel to each other in a telescopic configuration. One of them is able to record spectral information of the particle hitting the diode. A test campaign for the flight model Radiation Monitor was done in the Paul Scherrer Institute Proton Irradiation Facility in September 2010. Its purpose was to check correct functionality of the Radiation Monitor under real high energy proton fluxes. Here we present the results of the experiments done and their assessment by means of a simulated flight model geometry using GEANT4 toolkit. No deviation from nominal RM performance was detected, which means the instrument is fully ready for flight.

  14. Monitoring of radiation fields in a waste tank model: Virtual radiation dosimetry

    SciTech Connect

    Tulenko, J.S.

    1995-12-31

    The University of Florida (UF) has developed a coupled radiation computation and three-dimensional modeling simulation code package. This package combines the Deneb Robotics` IGRIP three-dimensional solid modeling robotic simulation code with the UF developed VRF (Virtual Radiation Field) Monte Carlo based radiation computation code. The code package allows simulated radiation dose monitors to be placed anywhere on simulated robotic equipment to record the radiation doses which would be sustained when carrying out tasks in radiation environments. Comparison with measured values in the Hanford Waste Tank C-106 shows excellent results. The code shows promise of serving as a major tool in the design and operation of robotic equipment in radiation environments to ensure freedom from radiation caused failure.

  15. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  16. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.E.; Christy, C.E.; Heath, R.E.

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  17. Radiation portal monitor system and method

    DOEpatents

    Morris, Christopher; Borozdin, Konstantin N.; Green, J. Andrew; Hogan, Gary E.; Makela, Mark F.; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Sossong, Michael J.

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  18. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L.

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  19. Upgrade of the ALICE TPC FEE online radiation monitoring system

    NASA Astrophysics Data System (ADS)

    RØed, K.; Alme, J.; Askeland, E.; David, E.; Gunji, T.; Helstrup, H.; Kiss, T.; Lippmann, C.; Rehman, A.; Röhrich, D.; Ullaland, K.; Velure, A.; Zhao, C.

    2015-12-01

    This paper presents the radiation monitoring system on the Readout Control Unit (RCU) of the the ALICE TPC Front End Electronics. In Run 1, Single Event Upsets (SEUs) in the configuration memory of an SRAM based FPGA were counted, and the results from different run periods with stable beam conditions are presented. For Run 2, a new RCU, the RCU2, has been designed in order to achieve higher data readout rates and increase radiation tolerance. The RCU2 also includes a new radiation monitor solution with increased sensitivity, which is based on counting the number of SEUs in dedicated SRAM memories. The paper presents this new solution together with the results from the targeted irradiation campaigns.

  20. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  1. On-board predicting algorithm of radiation exposure for the International Space Station radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Benghin, V. V.

    2008-02-01

    Radiation monitoring system (RMS) has worked on-board the International Space Station (ISS) practically continuously beginning from August 2001. In June 2005, the RMS software was updated. New RMS software detects radiation environment worsening due to solar proton events and informs the crew about this. The algorithm of the on-board radiation environment predict is a part of the new software. This algorithm reveals dose rate increments on high-latitude parts of ISS orbit and calculates estimations of time intervals and dose rate values for ulterior crossings of high-latitude areas. A brief description of the on-board radiation exposure-predict algorithm is presented.

  2. Lightguide-coupled sensor for in-situ radiation monitoring

    SciTech Connect

    Reed, S.E.; Berthold, J.W.

    1995-06-01

    The authors are developing a multi-point radiation monitoring system for long-term, continuous monitoring of radiation levels in the vadose zone of radioactive waste sites. The system is based on gamma detection with a lightguide-coupled scintillator built into a probe buried in the ground. The lightguide transmits the visible light pulses produced by the scintillator to the surface where detection and signal multiplexing take place. The system is to be capable of monitoring large numbers of such passive probes which are to be permanently installed throughout the waste site. The authors have recently completed tests of a prototype single-probe system. In this paper, they report on the development and testing of the single-probe system.

  3. Lightguide-coupled sensor for in-situ radiation monitoring

    NASA Astrophysics Data System (ADS)

    Reed, Stuart E.; Berthold, John W., III

    1995-09-01

    Under contract to the Morgantown (WV) Energy Technology Center for the Office of Technology Development (EM-50), US Department of Energy, we are developing a multipoint radiation monitoring system for long-term, continuous monitoring of radiation levels in the vadose zone of radioactive waste sites. The system is based on gamma detection with lightguide-coupled scintillator built into a probe buried in the ground. The lightguide transmits the visible light pulses produced by the scintillator to the surface where detection and signal multiplexing take place. The system is to be capable of monitoring large numbers of such passive probes which are to be permanently installed throughout the waste site. We have recently completed tests of a prototype single-probe system. In this paper, we report on the development and testing of the single-probe system.

  4. EVOLUTION OF THE IEC AND EN STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION.

    PubMed

    Voytchev, M; Behrens, R; Ambrosi, P; Radev, R; Chiaro, P

    2016-09-01

    This article presents the evolution of the International Electrotechnical Commission (IEC) and the European standards for individual monitoring of ionising radiation issued, respectively, from the committees IEC/Sub Committee 45B and European Committee for Electro-technical Standardization/Technical Committee 45B 'Radiation protection instrumentation'. Standards for passive individual photon and beta dosimetry systems as well as those for active individual monitors are discussed. A neutron ambient dose equivalent (rate) meter standard and a technical report concerning the determination of uncertainty in measurement are also covered. PMID:26443545

  5. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  6. Monitoring of environmental UV radiation by biological dosimeters.

    PubMed

    Ronto, G; Berces, A; Grof, P; Fekete, A; Kerekgyarto, T; Gaspar, S; Stick, C

    2000-01-01

    As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.

  7. High power beam profile monitor with optical transition radiation

    SciTech Connect

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-06-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 {mu}m, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/{gamma} is originated from a region of transverse dimension roughly {lambda}{gamma}; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 {mu}m beam sizes that are much smaller than the 3.2 mm {lambda}{gamma} limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 {mu}A of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy.

  8. Radiation monitoring policy at the advanced light source

    SciTech Connect

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-02-04

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program.

  9. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.; Christy, C.E.; Heath, R.E.

    1995-12-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used to measure soil and water with known uranium contamination levels, both in drums and in situ at depths up to 3 meters. For comparison purposes, measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics. This paper presents a description and the results of the field tests. The results were used to characterize the lower detection limits, precision and bias of the system, which allowed the DOE to judge the monitoring system`s ability to meet its long-term post-closure radiation monitoring needs. Based on the test results, the monitoring system has been redesigned for fabrication and testing in a potential Phase III of this program. If the DOE feels that this system can meet its needs and chooses to continue into Phase III of this program, this redesigned full scale prototype system will be built and tested for a period of approximately a year. Such a system can be used at a variety of radioactively contaminated sites.

  10. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    SciTech Connect

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance

  11. The CMS Beam Conditions and Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Castro, E.; Bacchetta, N.; Bell, A. J.; Dabrowski, A.; Guthoff, M.; Hall-Wilton, R.; Hempel, M.; Henschel, H.; Lange, W.; Lohmann, W.; Müller, S.; Novgorodova, O.; Pfeiffer, D.; Ryjov, V.; Stickland, D.; Schimdt, R.; Walsh, R.

    The Compact Muon Solenoid (CMS) is one of the two large, general purpose experiments situated at the LHC at CERN. As with all high energy physics experiments, knowledge of the beam conditions and luminosity is of vital importance. The Beam Conditions and Radiation Monitoring System (BRM) is installed in CMS to protect the detector and to provide feedback to LHC on beam conditions. It is composed of several sub-systems that measure the radiation level close to or inside all sub-detectors, monitor the beam halo conditions with different time resolution, support beam tuning and protect CMS in case of adverse beam conditions by firing a beam abort signal. This paper presents three of the BRM subsystems: the Fast Beam Conditions Monitor (BCM1F), which is designed for fast flux monitoring, measuring with nanosecond time resolution, both the beam halo and collision products; the Beam Scintillator Counters (BSC), that provide hit rates and time information of beam halo and collision products; and the Beam Conditions Monitors (BCM) used as a protection system that can trigger a beam dump when beam losses occur in order to prevent damage to the pixel and tracker detectors. A description of the systems and a characterization on the basis of data collected during LHC operation is presented.

  12. Radiation detectors as surveillance monitors for IAEA safeguards

    SciTech Connect

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  13. General Operational Procedure for Pedestrian Radiation Portal Monitors

    SciTech Connect

    Belooussov, Andrei V.

    2012-08-08

    This document outlines the basic conduct of operation (CONOPS) for a pedestrian radiation portal monitor (RPM), provided that the CONOPS is not facility or RPM specific and that it is based on a general understanding of a pedestrian RPM operation. The described CONOPS for a pedestrian RPM is defined by: (1) RPM design and operational characteristics, (2) type of pedestrian traffic, and (3) goal for RPM installation. Pedestrian RPMs normally are deployed for the continuous monitoring of individuals passing through point of control to detect the unauthorized traffic of radioactive/nuclear materials. RPMs generally are designed to detect gamma- and neutron-emitting materials.

  14. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Monitoring Criteria and Methods To Calculate Occupational Radiation Doses AGENCY: Nuclear... monitoring and calculating occupational radiation doses. On December 4, 2007 (72 FR 68043), the NRC...

  15. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  16. Radiation monitoring around United States nuclear test areas, calendar year 1989

    SciTech Connect

    Not Available

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

  17. JAXA's activities for environmental health monitoring

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2014-11-01

    In the first ten years after establishment of the Japan Aerospace eXploration Agency (JAXA) in 2003, our focuses were mainly on technical development (hardware and software) and accumulation of application research. In the next decade, we focus more on solution on social issues using innovative space science technology. Currently, JAXA is operating and developing several earth observation satellites and sensors: Greenhouse gases Observing SATellite (GOSAT) "IBUKI", Global Change Observation Mission - Water "SHIZUKU" (GCOM-W), Global Precipitation Measurement/Dual- frequency Precipitation Radar (GPM/DPR), Advanced Land Observing Satellite-2 "DAICHI-2" (ALOS-2), Global Change Observation Mission - Climate (GCOM-C), Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), and GOSAT-2. They will provide essential environmental parameters, such as aerosols, clouds, land vegetation, ocean color, GHGs, and so on. In addition to the above missions, we are studying new instruments (altimeter, LIDAR, detectors, optical components) to obtain new parameters. Our activities will advance to provide essential inputs for diagnosis, prediction, and management of climate change, environmental assessment, and disaster monitoring.

  18. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    SciTech Connect

    Kondrashov, Vladislav S.; Steranka, Steve A.

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  19. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  20. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  1. Smart measurement system for an environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Wanno; Kim, Hee-Reyoung; Chung, Kun-Ho; Kim, Eun-Han; Cho, Young Hyun; Choi, Geun Sik; Lee, Chang Woo

    2007-08-01

    A smart measurement system for an on-line gamma monitoring has been developed to overcome the problems of a conventional system which cannot automatically restore the previous-lost data of several posts by a radio telemetry. It is similar to the conventional system except for a new electronic circuit board and an integrated operation program. The new electronic circuit board is able to store the radiation data with a time tag of 6 or more months if the recording interval time is 10 s. The operation program automatically sends the time correction command to the six monitoring posts for a daily synchronization between the monitoring posts and the central control computer as a Korean mean time. The previous-lost radiation data for 6 or more months could be restored by using two components with the functions of a time tag and a daily synchronization without any additional equipment. It was tested for more than 1 year, from which the test results, the data collection rate was dramatically improved without any tedious manual work, which was almost about 100% for 1 year. The smart measurement system has been applied for an effective gamma monitoring around the nuclear facilities at KAERI since it was developed and tested in 2003.

  2. Ground-based monitoring of solar radiation in Moldova

    NASA Astrophysics Data System (ADS)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Integrated measurements of solar radiation in Kishinev, Moldova have been started by Atmospheric Research Group (ARG) at the Institute of Applied Physics from 2003. Direct, diffuse and total components of solar and atmospheric long-wave radiation are measured by using of the radiometric complex at the ground-based solar radiation monitoring station. Measurements are fulfilled at the stationary and moving platforms equipped with the set of 9 broadband solar radiation sensors overlapping wavelength range from UV-B to IR. Detailed description of the station can be found at the site http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E). Summary of observation data acquired at the station in the course of short-term period from 2004 to 2009 are presented below. Solar radiation measurements were fulfilled by using CM11(280-3000 nm) and CH1 sensors (Kipp&Zonen). In the course of a year maximum and minimum of monthly sums of total radiation was ~706.4 MJm-2 in June and ~82.1MJm-2 in December, respectively. Monthly sums of direct solar radiation (on horizontal plane) show the maximum and minimum values of the order ~456.9 MJm-2 in July and ~25.5MJm-2 in December, respectively. In an average, within a year should be marked the predominance of direct radiation over the scattered radiation, 51% and 49%, respectively. In the course of a year, the percentage contribution of the direct radiation into the total radiation is ~55-65% from May to September. In the remaining months, the percentage contribution decreases and takes the minimum value of ~ 28% in December. In an average, annual sum of total solar radiation is ~4679.9 MJm-2. For the period from April to September accounts for ~76% of the annual amount of total radiation. Annual sum of sunshine duration accounts for ~2149 hours, which is of ~ 48% from the possible sunshine duration. In an average, within a year maximum and minimum of sunshine duration is ~ 304 hours in

  3. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  4. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  5. The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Goldsten, J. O.; Maurer, R. H.; Peplowski, P. N.; Holmes-Siedle, A. G.; Herrmann, C. C.; Mauk, B. H.

    2013-11-01

    An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA's Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ˜0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (˜10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (˜3000 fA/cm2) and provide sufficient sensitivity (˜0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

  6. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  7. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  8. Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.

    2007-01-01

    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis

  9. Operational control of radiation conditions in Space Monitoring Data Center of Moscow State University

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Shugay, Yulia; Bobrovnikov, Sergey; Kuznetsov, Nikolay; Barinova, Vera; Myagkova, Irina; Panasyuk, Mikhail

    2016-07-01

    Space Monitoring Data Center (SMDC) of Moscow State University provides mission support for Russian satellites and give operational analysis of radiation conditions in space. SMDC Web-sites (http://smdc.sinp.msu.ru/ and http://swx.sinp.msu.ru/) give access to current data on the level of solar activity, geomagnetic and radiation state of Earth's magnetosphere and heliosphere in near-real time. For data analysis the models of space environment factors working online have been implemented. Interactive services allow one to retrieve and analyze data at a given time moment. Forecasting applications including solar wind parameters, geomagnetic and radiation condition forecasts have been developed. Radiation dose and SEE rate control are of particular importance in practical satellite operation. Satellites are always under the influence of high-energy particle fluxes during their orbital flight. The three main sources of particle fluxes: the Earth's radiation belts, the galactic cosmic rays, and the solar energetic particles (SEP), are taken into account by SMDC operational services to estimate the radiation dose caused by high-energy particles to a satellite at LEO orbits. ISO 15039 and AP8/AE8 physical models are used to estimate effects of galactic cosmic rays and radiation belt particle fluxes. Data of geosynchronous satellites (GOES or Electro-L1) allow to reconstruct the SEP fluxes spectra at a given low Earth orbit taking into account the geomagnetic cut-off depending on geomagnetic activity level.

  10. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed.

  11. Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors

    SciTech Connect

    Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler; Livesay, Jake

    2012-07-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

  12. New monitoring by thermogravimetry for radiation degradation of EVA

    NASA Astrophysics Data System (ADS)

    Boguski, J.; Przybytniak, G.; Łyczko, K.

    2014-07-01

    The radiation ageing of ethylene vinyl-acetate copolymer (EVA) as the jacket of cable applied in nuclear power plant was carried out by gamma rays irradiation, and the degradation was monitored by a thermo-gravimetric analysis (TGA). The EVA decomposition rate in air by the isothermal at 400 °C decreased with increase of dose and also with decrease of the dose rate. The behavior of EVA jacket of cable indicated that the decomposition rate at 400 °C was reduced with increase of oxidation. The elongation at break by tensile test for the radiation aged EVA was closely related to the decomposition rate at 400 °C; therefore, the TGA might be applied for a diagnostic technique of the cable degradation.

  13. Summary report of working group 5: Beam and radiation generation, monitoring, and control

    SciTech Connect

    Church, Mike; Kim, Ki-Yong; /Maryland U.

    2010-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  14. Citizen radiation monitoring program for the TMI area

    SciTech Connect

    Baratta, A.J.; Gricar, B.G.; Jester, W.A.

    1981-07-01

    The purpose of the program was to develop a system for citizens to independently measure radiation levels in and around their communities. This report describes the process by which the Program was developed and operated. It also presents the methods used to select and train the citizens in making and interpreting the measurements. The test procedures used to select the equipment for the program are described as are the results of the testing. Finally, the actual monitoring results are discussed along with the citizens' reactions to the program.

  15. Radiation-Triggered Surveillance for UF6 Monitoring

    SciTech Connect

    Curtis, Michael M.

    2015-12-01

    This paper recommends the use of radiation detectors, singly or in sets, to trigger surveillance cameras. Ideally, the cameras will monitor cylinders transiting the process area as well as the process area itself. The general process area will be surveyed to record how many cylinders have been attached and detached to the process between inspections. Rad-triggered cameras can dramatically reduce the quantity of recorded images, because the movement of personnel and equipment not involving UF6 cylinders will not generate a surveillance review file.

  16. Functional activity monitoring from wearable sensor data.

    PubMed

    Nawab, S Hamid; Roy, Serge H; De Luca, Carlo J

    2004-01-01

    A novel approach is presented for the interpretation and use of EMG and accelerometer data to monitor, identify, and categorize functional motor activities in individuals whose movements are unscripted, unrestrained, and take place in the "real world". Our proposed solution provides a novel and practical way of conceptualizing physical activities that facilitates the deployment of modern signal processing and interpretation techniques to carry out activity monitoring. A hierarchical approach is adopted that is based upon: 1) blackboard and rule-based technology from artificial intelligence to support a process in which coarse-grained activity partitioning forms the context for finer-grained activity partitioning; 2) neural network technology to support initial activity classification; and 3) integrated processing and understanding of signals (IPUS) technology for revising the initial classifications to account for the high degrees of anticipated signal variability and overlap during freeform activity. PMID:17271844

  17. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  18. Radiated Emission of Breath Monitoring System Based on UWB Pulses in Spacecraft Modules

    NASA Astrophysics Data System (ADS)

    Russo, P.; Mariani Primiani, V.; De Leo, A.; Cerri, G.

    2012-05-01

    The paper describes some EMC aspects related to a UWB radar for monitoring astronauts breathing activity. Compliance to EMC space standards forces some design aspects, in particular the peak voltage and the pulse waveform. Moreover some simulations were carried out to consider realistic operating condition. In the first case the interference towards a victim wifi circuit was analyzed, in the second case the effect of the environment on the radiated pulse was studied.

  19. Environmental radiation monitoring of low-level wastes by the State of Washington

    SciTech Connect

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1989-11-01

    The Washington State Department of Health, as the state`s regulatory agency for radiation, monitors several forms of low-level radioactive wastes. The monitoring is done to assess the potential impact on the environment and on public health. The emphasis of the monitoring program is placed on the solid and liquid wastes from defense activities on the Hanford Reservation, commercial wastes at the site located on leased land at Hanford and uranium mill tailings in Northeastern Washington. Although not classified as low-level waste, monitoring is also periodically conducted at selected landfills and sewage treatment facilities and other licensees, where radioactive wastes are known or suspected to be present. Environmental pathways associated with waste disposal are monitored independently, and/or in conjunction with the waste site operators to verify their results and evaluate their programs. The Department also participates in many site investigations conducted by site operators and other agencies, and conducts it`s own special investigations when deemed necessary. Past investigations and special projects have included allegations of adverse environmental impact of I-129, uranium in ground water, impacts of wastes on the agricultural industry, radioactivity in seeps into the Columbia River from waste sites, identifying lost waste sites at Hanford, differentiating groundwater contamination from defense versus commercial sources, and radioactivity in municipal landfills and sewers. The state`s environmental radiation monitoring program has identified and verified a number of environmental problems associated with radioactive waste disposal, but has, to date, identified no adverse offsite impacts to public health.

  20. Network-based real-time radiation monitoring system in Synchrotron Radiation Research Center.

    PubMed

    Sheu, R J; Wang, J P; Chen, C R; Liu, J; Chang, F D; Jiang, S H

    2003-10-01

    The real-time radiation monitoring system (RMS) in the Synchrotron Radiation Research Center (SRRC) has been upgraded significantly during the past years. The new framework of the RMS is built on the popular network technology, including Ethernet hardware connections and Web-based software interfaces. It features virtually no distance limitations, flexible and scalable equipment connections, faster response time, remote diagnosis, easy maintenance, as well as many graphic user interface software tools. This paper briefly describes the radiation environment in SRRC and presents the system configuration, basic functions, and some operational results of this real-time RMS. Besides the control of radiation exposures, it has been demonstrated that a variety of valuable information or correlations could be extracted from the measured radiation levels delivered by the RMS, including the changes of operating conditions, beam loss pattern, radiation skyshine, and so on. The real-time RMS can be conveniently accessed either using the dedicated client program or World Wide Web interface. The address of the Web site is http:// www-rms.srrc.gov.tw.

  1. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life. PMID:26611075

  2. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life.

  3. Continuous Monitoring and On-line Analysis of Operational Dose Rates: Tools to Further Mitigate Radiation Risks

    SciTech Connect

    Pavel Degtiarenko

    2009-07-01

    Along with passive and active engineering and administrative controls usually implemented in radiation protection programs at different facilities, continuous monitoring and on-line analysis of data measured by the radiation detectors at the workplace and in the environment can be considered as an additional tool used to further mitigate radiation risks. Many monitoring systems on the market today allow connecting radiation area monitors into a network, and reading and accumulating data continuously in a database. The point of this presentation is to bring attention to the fact that such accumulated information can be analyzed and used in many respects to improve reliability and functionality of the monitoring and control systems. A simple time history of background readings from a radiation detector can be used to evaluate the stability of the detector performance. Data recorded during normal facility operations may serve to establish a pattern of acceptable dose rates in such detector and allow to better detect off-normal and unstable modes of the facility operation before they reach hardware trip levels. Facility operators and users may utilize such monitoring systems to optimize operations and minimize their radiological impact. Implementation and examples of use of the RADMON radiation monitoring and data analysis system at Jefferson Lab is presented.

  4. Active Sites Environmental Monitoring Program: Action levels

    SciTech Connect

    Ashwood, J.S.; Ashwood, T.L.

    1991-10-01

    The Active Sites Environmental Monitoring Program (ASEMP) was established at Oak Ridge National Laboratory to provide for early leak detection and to monitor performance of the active low-level waste disposal facilities in Solid Waste Storage Area (SWSA) 6 and the transuranic waste storage areas in SWSA 5 North. Early leak detection is accomplished by sampling runoff, groundwater, and perched water in burial trenches. Sample results are compared to action levels that represent background contamination by naturally occurring and fallout-derived radionuclides. 15 refs., 3 figs., 12 tabs.

  5. Performance evaluation of salivary amylase activity monitor.

    PubMed

    Yamaguchi, Masaki; Kanemori, Takahiro; Kanemaru, Masashi; Takai, Noriyasu; Mizuno, Yasufumi; Yoshida, Hiroshi

    2004-10-15

    In order to quantify psychological stress and to distinguish eustress and distress, we have been investigating the establishment of a method that can quantify salivary amylase activity (SMA). Salivary glands not only act as amplifiers of a low level of norepinephrine, but also respond more quickly and sensitively to psychological stress than cortisol levels. Moreover, the time-course changes of the salivary amylase activity have a possibility to distinguish eustress and distress. Thus, salivary amylase activity can be utilized as an excellent index for psychological stress. However, in dry chemistry system, a method for quantification of the enzymatic activity still needs to be established that can provide with sufficient substrate in a testing tape as well as can control enzymatic reaction time. Moreover, it is necessary to develop a method that has the advantages of using saliva, such as ease of collection, rapidity of response, and able to use at any time. In order to establish an easy method to monitor the salivary amylase activity, a salivary transcription device was fabricated to control the enzymatic reaction time. A fabricated salivary amylase activity monitor consisted of three devices, the salivary transcription device, a testing-strip and an optical analyzer. By adding maltose as a competitive inhibitor to a substrate Ga1-G2-CNP, a broad-range activity testing-strip was fabricated that could measure the salivary amylase activity with a range of 0-200 kU/l within 150 s. The calibration curve of the monitor for the salivary amylase activity showed R2=0.941, indicating that it was possible to use this monitor for the analysis of the salivary amylase activity without the need to determine the salivary volume quantitatively. In order to evaluate the assay variability of the monitor, salivary amylase activity was measured using Kraepelin psychodiagnostic test as a psychological stressor. A significant difference of salivary amylase activity was recognized

  6. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  7. Comparative Measurements of Cosmic Radiation Monitors for Aircrew Exposure Assessment

    NASA Astrophysics Data System (ADS)

    Getley, I. L.; Bennett, L. G. I.; Boudreau, M. L.; Lewis, B. J.; Green, A. R.; Butler, A.; Takada, M.; Nakamura, T.

    Various commercially available electronic personal dosimeters (EPDs) have recently been flown on numerous scheduled airline flights in order to determine their viability as small, convenient monitors to measure cosmic radiation at altitude. Often, frequent flyers or airline crew will acquire such dosimeters and report the readings from their flights, without due regard for the mixed radiation field at altitude, which is different from the intended fields on land. A sampling of EPDs has been compared to two types of spectrometers, which measure the total radiation spectrum. The "HAWK" tissue equivalent proportional counter is considered a reference instrument and measures the total dose equivalent H*(10). The Liulin-4N and 4SN linear energy transfer spectrometers each have a silicon semiconductor-based PIN diode detector which provides an absorbed dose, D, but have been further developed to provide H*(10). A Thermo Electron FH41B and B-10, and EPD-N2, and several personal dosimeters (Fuji NRY-21 and NRF-20, and RADOS DIS-100) were also flown.

  8. Radiation monitoring of the GEM muon detectors at CMS

    NASA Astrophysics Data System (ADS)

    Dimitrov, L.; Iaydjiev, P.; Mitev, G.; Vankov, I.

    2016-09-01

    The higher energy and luminosity of future High Luminosity (HL) LHC, determines a significant increasing of the radiation background around the CMS subdetectors, and especially in the higher pseudorapidity region. Under such heavy conditions, the RPC (used in muon trigger) most probably could not operate effectively. GEM (Gas Electron Multiplier) detectors have been identified as a suitable technology to operate in the high radiation environment in that region and test at CMS will start in 2016. A monitoring system to control the absorbed radiation dose by the GEM under test is developed. Two types of sensors are used in it: RadFETs for total absorbed dose and p-i-n diodes for particle (proton and neutron) detection. The basic detector unit, called RADMON, contains two sensors of each type and can be installed at each GEM detector. The system has a modular structure, permitting to increase easily the number of controlled RADMONs: one module controls up to 12 RADMONs, organized in three group of four and communicates outside by RS 485 and CANBUS interfaces.

  9. Monitoring precipitation and lightning via changes in atmospheric gamma radiation

    SciTech Connect

    Greenfield, M.B.; Domondon, A.; Tsuchiya, S.; Tomiyama, G.

    2003-08-26

    Atmospheric {gamma}-radiation has been measured since 1999 and recently at three elevations 220m from the first site to ascertain position dependency and optimal elevation for observing {gamma}-rays from radon and radon-progeny found in precipitation. Radiation from time-independent and diurnal components was minimized in order to ascertain the reliability, accuracy and practicality of determining precipitation rates from correlated {gamma}-rates. Data taken with 4-12.9cm3 NaI detectors at elevations above ground of 9.91, 14.2, 15.7, and 21.4 m were fit with a model assuming a surface and/or volume deposition of radon progeny on/in water droplets during precipitation which predicts {gamma} -ray rates proportional to the 2/5 and/or 3/5 power of rain rates, respectively. With mostly surface deposition and age corrections for radon progeny, the correlation coefficients improved with elevation and reached a maximum at 0.95 around 20m. Atmospheric {gamma} radiation enables monitoring precipitation rates to 0.3 mm/h with time resolution limited only by counting statistics. High {gamma}-ray rates, decreasing with 40-minute half-life following lightning may be indirectly due to ions accelerated in electric field.

  10. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  11. NRC TLD Direct Radiation Monitoring Network: Volume 15, No. 1. Progress report, January--March 1995

    SciTech Connect

    Struckmeyer, R.

    1995-05-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the first quarter of 1995.

  12. NRC TLD direct radiation monitoring network: Progress report, April--June 1997. Volume 17, Number 2

    SciTech Connect

    Struckmeyer, R.

    1997-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the second quarter of 1997.

  13. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  14. Standardisation of radiation portal monitor controls and readouts

    SciTech Connect

    Tinker, Michael R.

    2010-10-01

    There is an urgent need to standardise the numbering configuration of radiation portal monitor sensing panels. Currently, manufacturers use conflicting numbering schemes that may confuse operators of these varied systems. There is a similar problem encountered with the varied choices of colored indicator lights and colored print lines designated for gamma and neutron alarms. In addition, second-party software that changes the alarm color scheme may also have been installed. Furthermore, no provision exists for the color blind or to provide work stations with only black ink on alarm printouts. These inconsistencies and confusing setups could inadvertently cause a misinterpretation of the alarm, resulting in the potential release of a radiological hazard into a sovereign country. These issues are discussed, and a proposed solution is offered.

  15. Intelligent mirror monitor and controller for synchrotron radiation beam lines

    SciTech Connect

    Xu, X.L.; Yang, J.

    1983-01-01

    A microprocessor-based, stand-alone mirror monitor and control system has been developed for synchrotron radiation beam lines. The operational requirements for mirror position and tilt angle, including the parameters for controlling the number of steps, direction, speed and acceleration of the driving motors, may be programmed into EPROMS. The instruction sequence to carry out critical motions will be stored in a program buffer. A manual control knob is also provided to fine tune the mirror position if desired. A synchronization scheme for the height and tilt motions maintains a fixed mirror angle during insertion. Absolute height and tilt angle are displayed. Electronic (or programmable) tilt angle limits are provided to protect against damage from misalignment of high power beams such as focussed wiggler beams. A description of mirror drives with a schematic diagram is presented. Although the controller is made for mirror movers, it can be used in other applications where multiple stepping motors perform complex synchronized motions.

  16. Standardisation of radiation portal monitor controls and readouts.

    PubMed

    Tinker, M

    2010-10-01

    There is an urgent need to standardise the numbering configuration of radiation portal monitor sensing panels. Currently, manufacturers use conflicting numbering schemes that may confuse operators of these varied systems. There is a similar problem encountered with the varied choices of coloured indicator lights and coloured print lines designated for gamma and neutron alarms. In addition, second-party software that changes the alarm colour scheme may also have been installed. Furthermore, no provision exists for the colour blind or to provide work stations with only black ink on alarm printouts. These inconsistencies and confusing set-ups could inadvertently cause a misinterpretation of the alarm, resulting in the potential release of a radiological hazard into a sovereign country. These issues are discussed, and a proposed solution is offered.

  17. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  18. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  19. Monitoring the consequences of decreased ozone protection: The NSF ultraviolet radiation monitoring network

    SciTech Connect

    Not Available

    1993-03-01

    The effects of decreased protection from ultraviolet radiation are as troubling as the continuing depletion of stratospheric ozone. Evidence exists to clearly link ozone depletion to changes in the antarctic marine environment. Results of two 1992 papers are summarized here. Enhanced exposure to mid-range UV radiation was found to be affecting marine ecosystems with a recorded 6-12 percent reduction in primary productivity directly related to the ozone layer depletion. In another experiment, a model was developed indicating that the ozone hole could reduce near-surface photosynthesis by as much as 12-15 percent. The NSF UV monitoring system in place for these and other experiments uses a spectroradiometer, making hourly, high-resolution measurements of the distribution of UV surface irradiance.

  20. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  1. Method for monitoring irradiated fuel using Cerenkov radiation

    DOEpatents

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  2. Method for monitoring irradiated nuclear fuel using cerenkov radiation

    SciTech Connect

    Caldwell, J.T.; Dowdy, E.J.; Nicholson, N.

    1983-06-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the cerenkov light intensity measurement is taken at selected bright spots corresponding to the water-filled interstices of the assembly in the water storage, the waterfilled interstices acting as cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  3. Monitoring the radiation dose to a multiprogrammable pacemaker during radical radiation therapy: A case report

    SciTech Connect

    Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P. )

    1990-11-01

    Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 months after completion of treatment. The relevant electrocardiograms (ECGs) are presented.

  4. An inverse source location algorithm for radiation portal monitor applications

    SciTech Connect

    Miller, Karen A; Charlton, William S

    2010-01-01

    Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than the convergence criterion, then the source position has been identified. This paper presents the derivation of the underlying equations in the algorithm as well as several computational test cases used to characterize its accuracy.

  5. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated

  6. Moscow State University near-Earth radiation monitoring satellite system: current status and development

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail

    2016-07-01

    Radiation measurements using instruments have been designed and manufacturing in the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University and installed onboard different satellites,i.e. LEO -"Meteor", ISS, GPS - GLONASS, GEO - "Electro" are presented as a basis of radiation monitoring system for control of radiation condition with a goal for to decrease radiation risk of spacecraft's damage on different orbits. Development of this system including radiation measurements onboard "Lomonosov"(LEO) satellite will be presented as well together with future project of multispacecraft LEO system for radiation monitoring.

  7. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  8. NRC TLD direct radiation monitoring network: Progress report, July--September 1997. Volume 17, Number 3

    SciTech Connect

    Struckmeyer, R.

    1998-01-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1996. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach).

  9. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  10. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  11. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  12. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  13. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  14. NRC TLD Direct Radiation Monitoring Network. Progress report, October-December 1985. Volume 5, No. 4

    SciTech Connect

    Jang, J.; Rabatin, K.; Cohen, L.

    1986-05-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1985. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  15. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  16. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  17. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  18. A phase-space beam position monitor for synchrotron radiation.

    PubMed

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-07-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.

  19. Radiation Detection for Active Interrogation of HEU

    SciTech Connect

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  20. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  1. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  2. NRC TLD direct radiation monitoring network: Progress report, April--June 1996. Volume 16, Number 2

    SciTech Connect

    Struckmeyer, R.

    1996-08-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the second quarter of 1996. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters. All radiation measurements are made using small, passive detectors called thermoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility.

  3. Community Radiation Monitoring Program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect

    Cooper, E.N.

    1993-05-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  4. Photocatalytic Active Radiation Measurements and Use

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  5. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  6. Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

    2008-05-15

    Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

  7. OTP for 244-U radiation monitoring system. Revision 1

    SciTech Connect

    Erhart, M.F.

    1995-03-13

    This Operability Test Procedure (OTP) will be used to ensure the operability of the beta/gamma alarms for the Continuous Air Monitoring System installed in 244-U DCRT (Double Containment Receiver Tank). The complete system consists of two subsystems: one for Exhaust Stack Monitoring and one for Annulus Monitoring. Completion of this OTP will provide the necessary verification for the operability of the Exhaust Stack and Annulus Monitoring Systems, and for determining the operability of the Receiver Vessel 244-U. This OTP may be performed in conjunction with or following the vendor`s Site Acceptance Test Procedure of Continuous Air Monitoring System for 244-U DCRT.

  8. Comparison of environmental radiation monitoring programs in China and the United States.

    PubMed

    Wolbarst, Anthony B; Griggs, John; Lee, H N; Ren, Tianshan; Hudson, Tonya; White, Jacolyn D; Zhu, Changshou

    2008-06-01

    The monitoring of environmental radiation has been carried out across the United States by the U.S. Environmental Protection Agency's RadNet (formerly the Environmental Radiation Ambient Monitoring System, ERAMS) and the Global Network Program (GNP) of the Environmental Measurements Laboratory (EML), and in the People's Republic of China (PRC) by their National Radioactivity Contamination Monitoring System (NRCMS). It is expected that an awareness of the similarities and differences in the structure and operation of these programs will prove helpful to both countries and perhaps others as they continue to develop their monitoring capabilities.

  9. [Role of children physical development in radiation hygienic monitoring system].

    PubMed

    Kirillov, V F; Mikhaĭlov, A I; Kozlova, E Iu

    2014-01-01

    The article deals with longstanding work on studies of physical development parameters among preschoolers aged 4-7 and dwelling on territories near to objects with potential radiation danger, also on radiation-connected anxiety in parents of the examined children. The stated objects when exploited in normal mode were proved to cause no influence on the children's development. Social and economical factors appeared to play leading role in developmental parameters formation. Increased level of radiation-connected anxiety in parents of the children examined appeared to be out of proportion to real favorable radiation background of the territories examined. PMID:25069276

  10. Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Cooper, E.N.

    1994-08-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.

  11. Community Radiation Monitoring Program; Annual report, October 1, 1990--September 30, 1991

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1992-06-01

    The Community Radiation Monitoring Program is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (U of U). This eleventh year of the program began in the summer of 1991 and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which the DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of those efforts. One of the primary methods used to improve the communication link with the potentially impacted area has been the hiring and training of local citizens as Managers and program representatives in 19 communities adjacent to and downwind from the NTS. These Managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  12. Environmental radiation monitoring in the Chernobyl exclusion zone--history and results 25 years after.

    PubMed

    Bondarkov, Mikhail D; Oskolkov, Boris Ya; Gaschak, Sergey P; Kireev, Sergey I; Maksimenko, Andrey M; Proskura, Nikolai I; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    This paper describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status. The history of development of the radiation monitoring research in the ChEZ is described also. This paper addresses the characteristics of radiation monitoring in the ChEZ, its major goals and objectives, and changes in these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  13. 105KE Basin Area Radiation Monitor System (ARMS) Acceptance Test Procedure

    SciTech Connect

    KINKEL, C.C.

    1999-12-14

    This procedure is intended for the Area Radiation Monitoring System, ARMS, that is replacing the existing Programmable Input-Output Processing System, PIOPS, radiation monitoring system in the 105KE basin. The new system will be referred to as the 105KE ARMS, 105KE Area Radiation Monitoring System. This ATP will ensure calibration integrity of the 105KE radiation detector loops. Also, this ATP will test and document the display, printing, alarm output, alarm acknowledgement, upscale check, and security functions. This ATP test is to be performed after completion of the 105KE ARMS installation. The alarm outputs of the 105KE ARMS will be connected to the basin detector alarms, basin annunciator system, and security Alarm Monitoring System, AMS, located in the 200 area Central Alarm Station (CAS).

  14. ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER

    SciTech Connect

    Farfan, E.; Jannik, T.

    2011-10-01

    This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  15. Broadband radiation modes: Estimation and active control

    NASA Astrophysics Data System (ADS)

    Berkhoff, Arthur P.

    2002-03-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Because these particular radiation modes are optimum in a broadband sense, they are termed broadband radiation modes. Methods are given to obtain these modes from measured data. The broadband radiation modes are used for the design of an actuator array in a feedback control system to reduce the sound power radiated from a plate. Three methods for the design of the actuator are compared, taking into account the reduction of radiated sound power in the controlled frequency range, but also the possible increase of radiated sound power in the uncontrolled frequency range.

  16. In-orbit radiation effects monitoring on the UoSAT satellites

    NASA Astrophysics Data System (ADS)

    Underwood, Craig I.

    This paper presents the radiation effects, particularly the single event upset (SEU) phenomena, monitored in the three mass semiconductor memory systems onboard the UoSAT-2 satellite, which is in a 700 km, near-polar low earth orbit. The data of in-orbit SEUs have given statistics permitting direct comparison of dynamic and static RAMs ranging in capacity from 4-64 kilobits per chip. Orbital analysis of the SEUs shows a large concentration of events in the South Atlantic Anomaly for all device types, with a notable enhancement of auroral-region activity during solar-flare activity. This indicates that the SEU mechanism of particular concern for the UoSAT-2 orbit is that due to proton induced nuclear reactions within the device.

  17. Method and apparatus to monitor a beam of ionizing radiation

    DOEpatents

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  18. A historical fluence analysis of the radiation environment of the Chandra X-ray Observatory and implications for continued radiation monitoring

    NASA Astrophysics Data System (ADS)

    DePasquale, J. M.; Plucinsky, P. P.; Schwartz, D. A.

    2006-06-01

    Now in operation for over 6 years, the Chandra X-ray Observatory (CXO) has sampled a variety of space environments. Its highly elliptical orbit, with a 63.5 hr period, regularly takes the spacecraft through the Earth's radiation belts, the magnetosphere, the magnetosheath and into the solar wind. Additionally, the CXO has weathered several severe solar storms during its time in orbit. Given the vulnerability of Chandra's Charge Coupled Devices (CCDs) to radiation damage from low energy protons, proper radiation management has been a prime concern of the Chandra team. A comprehensive approach utilizing scheduled radiation safing, in addition to both on-board autonomous radiation monitoring and manual intervention, has proved successful at managing further radiation damage. However, the future of autonomous radiation monitoring on-board the CXO faces a new challenge as the multi-layer insulation (MLI) on its radiation monitor, the Electron, Proton, Helium Instrument (EPHIN), continues to degrade, leading to elevated temperatures. Operating at higher temperatures, the data from some EPHIN channels can become noisy and unreliable for radiation monitoring. This paper explores the full implication of the loss of EPHIN to CXO radiation monitoring by evaluating the fluences the CXO experienced during 40 autonomous radiation safing events from 2000 through 2005 in various hypothetical scenarios which include the use of EPHIN in limited to no capacity as a radiation monitor. We also consider the possibility of replacing EPHIN with Chandra's High Resolution Camera (HRC) for radiation monitoring.

  19. Summary report on beam and radiation generation, monitoring and control (working group 6).

    SciTech Connect

    Power, J. G.; Gordon, D. F.; High Energy Physics; Naval Research Lab.

    2009-01-01

    The discussions of the working group on beam and radiation generation, monitoring, and control (working group 6) at the 2008 advanced accelerator concepts workshop are summarized. The discussions concerned electron injectors, phase space manipulation, beam diagnostics, pulse train generation, intense beam physics, and radiation generation.

  20. Structure and performance of radiation monitoring system of ISS ``ZVEZDA'' module

    NASA Astrophysics Data System (ADS)

    Benghin, Victor; Nechaev, Oleg; Panasyuk, Mikhail; Lyagushin, Vladimir; Volkov, Alexey; Mitrikas, Victor; Teltsov, Mikhail; Bratoliubova-Tselukidze, Ledeja.; Miasnikov, Alexander; Alexandrin, Alexandr

    It is presented the radiation monitoring system (RMS) structure, detector unit’s construction, dose measuring method, algorithms of signals processing. The interface for data transmission to ISS onboard systems is considered. Information about radiation detectors placement and shielding environment is presented. The devices calibration methods and results are presented.

  1. NRC TLD Direct Radiation Monitoring Network: Progress report January--March 1997. Volume 17, Number 1

    SciTech Connect

    Struckmeyer, R.

    1997-05-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the first quarter of 1997. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the US. In addition, it describes the recent intercomparison of environmental dosimeters and provides an analysis of the data.

  2. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  3. Grand Junction Projects Office Remedial Action Project: Feasibility test of real-time radiation monitoring during removal of surface contamination from concrete floors

    SciTech Connect

    Leino, R.; Corle, S.

    1995-10-01

    This feasibility test was conducted to determine if real-time radiation-monitoring instruments could be mounted on decontamination machines during remediation activities to provide useful and immediate feedback to equipment operators. The U.S. Department of Energy (DOE) sponsored this field test under the Grand Junction Projects Office Remedial Action Project (GJPORAP) to identify a more efficient method to remove radiological contamination from concrete floor surfaces. This test demonstrated that project durations and costs may be reduced by combining radiation-monitoring equipment with decontamination machines. The test also demonstrated that a microprocessor-based instrument such as a radiation monitor can withstand the type of vibration that is characteristic of floor scabblers with no apparent damage. Combining radiation-monitoring equipment with a decontamination machine reduces the time and costs required to decontaminate concrete surfaces. These time and cost savings result from the reduction in the number of interim radiological surveys that must be conducted to complete remediation. Real-time radiation monitoring allows equipment operators to accurately monitor contamination during the decontamination process without support from radiological technicians, which also reduces the project duration and costs. The DOE Grand Junction Projects Office recommends more extensive and rigorous testing of this real-time radiation monitoring to include a variety of surfaces and decontamination machines. As opportunities arise, additional testing will be conducted under GJPORAP.

  4. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    SciTech Connect

    Middleton, E.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on a study to quantify the reflectance anisotropy of the photosynthetically active radiation (PAR) for grasslands. PAR falls in the wavelength range 0.4 to 0.7[mu]m. The study looks at the variation of PAR with illumination and vegetative canopy conditions. It uses bidirectional reflectance distribution function data, and measures of anisotropy derived from reflectance factor and reflectance fraction data to aid in the analysis. The data used for this analysis came from an intense effort mounted to measure diurnal changes in the anisotropy of surface reflectance from prairie grassland as a function of the vegetative canopy.

  5. LISA-PF radiation monitor performance during the evolution of SEP events for the monitoring of test-mass charging

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Ao, X.; Fabi, M.; Laurenza, M.; Li, G.; Lobo, A.; Mateos, I.; Storini, M.; Verkhoglyadova, O.; Zank, G. P.

    2014-02-01

    Cosmic rays of solar and galactic origin at energies >100 MeV/n charge and induce spurious forces on free-floating test masses on board interferometers devoted to gravitational wave detection in space. LISA Pathfinder (LISA-PF), the technology testing mission for eLISA/NGO, will carry radiation monitors for on board test-mass charging monitoring. We present here the results of a simulation of radiation monitor performance during the evolution of solar energetic particle (SEP) events of different intensity. This simulation was carried out with the Fluka Monte Carlo package by taking into account for the first time both energy and spatial distributions of solar protons for the SEP events of 23 February 1956, 15 November 1960 and 7 May 1978. Input data for the Monte Carlo simulations was inferred from neutron monitor measurements. Conversely, for the SEP event of 13 December 2006 observed by the PAMELA experiment in space, we used the proton pitch angle distribution (PAD) computed from the Particle Acceleration and Transport in the Heliosphere (PATH) code. We plan to adopt this approach at the time of LISA-PF data analysis in order to optimize the correlation between radiation monitor observations and test-mass charging. The results of this work can be extended to the future space interferometers and other space missions carrying instruments for SEP detection.

  6. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    SciTech Connect

    Parodi, Katia

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  7. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    NASA Astrophysics Data System (ADS)

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A. J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B. A.

    2007-12-01

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  8. Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar

    SciTech Connect

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

    2008-02-13

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  9. European activities in radiation protection in medicine.

    PubMed

    Simeonov, Georgi

    2015-07-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (non-medical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is launching several actions

  10. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  11. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  12. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  13. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a computer... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity...

  14. Laser remote monitoring of plant photosynthetic activity

    NASA Astrophysics Data System (ADS)

    Barbini, Roberto; Colao, Francesco; Fantoni, Roberta; Palucci, Antonio; Ribezzo, Sergio

    1995-11-01

    Laboratory measurements of laser induced chlorophyll fluorescence kinetics (Kautsky effect) on dark-adapted vegetation targets (maize, pine-tree) have been performed with a lidar fluorosensor by superimposing probe pulses upon an actinic light. The collected induction curves (fast rise and slow decline) have been used to reveal the occurrence of stresses and the damage produced by a pine-tree parasite. A new two-pulse LIF (laser induced fluorescence) methodology has been investigated both theoretically and experimentally, in view of remotely monitoring the plant photosynthetic activity. This technique may yield information upon the in-vivo photosynthetic processes of plants, revealing a possible stress status (nutrients depletion, presence of herbicides, photoinhibition, etc.). The lidar apparatus used contains two laser sources in order to differentially measure the chlorophyll fluorescence by means of a laser pump-and-probe technique. In fact LIF signals in the red chlorophyll band 690 nm may provide in-vivo information upon photosynthesis process in high order plants and algae. Laser pump-and-probe experimental tests, with excitation 355 nm or 532 nm, already detect the presence of herbicides, and the effects of plant exposure to thermal stresses and to low levels of gaseous pollutants. Laser measured fluorescence yields (Y) have been found to be consistent with those obtained by an in-situ fluorimeter (PAM). With proper choices of experimental parameters (pump and probe laser intensities), Y approaches the theoretical value expected for a healthy dark-adapted plant.

  15. The relevance of particle flux monitors in accelerator-based activation analysis

    SciTech Connect

    Segebade, Chr.; Maimaitimin, M.; Sun Zaijing

    2013-04-19

    One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

  16. Ahead with Cairo. Monitoring country activities.

    PubMed

    Danguilan, M; Wainer, J; Widyantoro, N; Capoor, I; Huq, N; Ashino, Y; Sadasivam, B; Le Thi Nham Tuyet

    1995-04-01

    In the aftermath of the 1994 UN Conference on Population and Development (ICPD) in Cairo, countries are proceeding with their implementation of the plan of action adopted at the conference. A brief description is given of some actions taken by specific countries toward plan implementation. In the Philippines meetings were held immediately after the conference in October on the implications for the Management, Family Planning, and Nongovernmental Organizations programs. The issues of concern were identified as the need for regular consultative meetings among relevant agencies, consultations with women's groups, and a responsive adolescents program. In Australia the program thrust was to focus on the implications for immigration. Monitoring of the plans of action will be undertaken by nongovernmental organizations (NGOs). In Malaysia committees are preparing a program of action suitable for implementation in Malaysia. A regional women's NGO organized a forum on the implications of ICPD for women's reproductive health, women's rights, and empowerment in Malaysia. In Vietnam, press conferences are used to communicate conference results. An NGO translated relevant ICPD materials into Vietnamese. In Indonesia, several ministries convened meetings among donors, NGOs, women's groups, and experts. In India, the government held a national conference. One view was that population issues should be discussed in the context of gender equality and empowerment of women. Another issue was the importance of placing reproductive health in the larger context of health and primary health services. Health personnel at all levels were considered in need of sensitization on gender issues. Problems such as anemia have not been successfully addressed in existing programs. The government agreed to remove in phases target driven programs and the sterilization emphasis. In Bangladesh, a national committee was formed, and NGOs are actively distributing information. In Japan, the Family Planning

  17. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    SciTech Connect

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  18. Reply to comment by Rainer Facius et al. on "U.S. Government shutdown degrades aviation radiation monitoring during solar radiation storm"

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin

    2014-05-01

    The premise of this comment perpetuates an unfortunate trend among some radiation researchers to minimize potential risks to human tissue from low-radiation sources. In fact, this discussion on the risk uncertainties of low-dose radiation further illustrates the need for more measurements and a program of active monitoring, especially when solar eruptive events can substantially elevate the radiation environment. This debate also highlights the context of a bigger problem; i.e., how do we as professionals act with due diligence to take the immense body of knowledge of space weather radiation effects on human tissue and distil it into ideas that regulatory agencies can use to maximize the safety of a population at risk. The focus of our article on radiation risks due to solar energetic particle events starts with our best assessment of risks and is based on the body of scientific knowledge while, at the same time, erring on the side of public safety. The uncertainty inherent in our assessment is accepted and described with this same philosophy in mind.

  19. A Canadian View of Monitoring Activities

    ERIC Educational Resources Information Center

    Inhaber, Herbert

    1975-01-01

    A Canadian scientist discusses his country's environmental monitoring programs (by parameter and medium), points out their strengths and weaknesses, and indicates some possible directions for future efforts in the field of environmental monitoring at both the national and international level. (BT)

  20. NRC TLD direct radiation monitoring network: Volume 15, No. 3. Progress report, July--September 1995

    SciTech Connect

    Struckmeyer, R.

    1995-12-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1995. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach). All radiation measurements are made using small, passive detectors called therinoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility. A complete description of the program can be found in NUREG-0837, Volume 2, Number 4. A similar description can also be found in the fourth quarter report of each subsequent year. The National Institute of Standards and Technology (formerly the National Bureau of Standards) has performed an independent study of the following characteristics of the NRC dosimetry system; energy response, angular dependence, temperature and humidity sensitivity, fading, light dependence, self-irradiation, and reproducibility.

  1. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  2. Solid state microdosimeter for radiation monitoring in spacecraft and avionics

    SciTech Connect

    Roth, D.R.; McNulty, P.J.; Beauvais, W.J.; Reed, R.A. . Dept. of Physics and Astronomy); Stassinopoulos, E.G. )

    1994-12-01

    An instrument is described which is designed to characterize the complex radiation environments inside spacecraft and airplanes in terms of the risk of SEEs in the present and planned microelectronic systems and in terms of the risk to flight crews and passengers.

  3. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  4. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  5. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  6. Sample size allocation for food item radiation monitoring and safety inspection.

    PubMed

    Seto, Mayumi; Uriu, Koichiro

    2015-03-01

    The objective of this study is to identify a procedure for determining sample size allocation for food radiation inspections of more than one food item to minimize the potential risk to consumers of internal radiation exposure. We consider a simplified case of food radiation monitoring and safety inspection in which a risk manager is required to monitor two food items, milk and spinach, in a contaminated area. Three protocols for food radiation monitoring with different sample size allocations were assessed by simulating random sampling and inspections of milk and spinach in a conceptual monitoring site. Distributions of (131)I and radiocesium concentrations were determined in reference to (131)I and radiocesium concentrations detected in Fukushima prefecture, Japan, for March and April 2011. The results of the simulations suggested that a protocol that allocates sample size to milk and spinach based on the estimation of (131)I and radiocesium concentrations using the apparent decay rate constants sequentially calculated from past monitoring data can most effectively minimize the potential risks of internal radiation exposure.

  7. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-01

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  8. The NOAA Integrated Surface Irradiance Study (ISIS) - A new surface radiation monitoring program

    SciTech Connect

    Hicks, B.B.; DeLuisi, J.J.

    1996-12-01

    This paper describes a new radiation monitoring program, the Integrated Surface Irradiance Study (ISIS), that builds upon and takes over from earlier NOAA networks monitoring components of solar radiation [both the visible component (SOLRAD) and the shortwave component that causes sunburn, UV-B] across the continental United States. ISIS is implemented in two levels. Level 1 addresses incoming radiation only, and level 2 addresses the surface radiation balance. Level 2 also constitutes the SURFRAD (Surface Radiation) program of the NOAA Office of Global Programs, specifically intended to provide radiation data to support large-scale hydrologic studies that will be conducted under the Global Energy and Water Cycle Experiment. Eventually, it is planned for level 2 sites to monitor all components of the surface energy balance. Both levels of ISIS will eventually measure both visible and UV radiation components. At present, there are nine sites that are considered to be at ISIS level 1 standard and an additional four level 2 SURFRAD sites. A 10th level 1 site will be in operation soon. Plans call for an increase in the number of sites of both kinds, up to about 15 ISIS sites, of which 6 will be at the SURFRAD level. 20 refs., 2 figs., 1 tab.

  9. Results from the first five years of radiation exposure monitoring aboard the ISS

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.

    NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween

  10. Photoacoustic monitoring of tumor and normal tissue response to radiation

    PubMed Central

    Rich, Laurie J.; Seshadri, Mukund

    2016-01-01

    Hypoxia is a recognized characteristic of tumors that influences efficacy of radiotherapy (RT). Photoacoustic imaging (PAI) is a relatively new imaging technique that exploits the optical characteristics of hemoglobin to provide information on tissue oxygenation. In the present study, PAI based measures of tumor oxygen saturation (%sO2) were compared to oxygen-enhanced magnetic resonance imaging (MRI) measurements of longitudinal relaxation rate (R1 = 1/T1) and ex-vivo histology in patient derived xenograft (PDX) models of head and neck cancer. PAI was utilized to assess early changes (24 h) in %sO2 following RT and chemoRT (CRT) and to assess changes in salivary gland hemodynamics following radiation. A significant increase in tumor %sO2 and R1 was observed following oxygen inhalation. Good spatial correlation was observed between PAI, MRI and histology. An early increase in %sO2 after RT and CRT detected by PAI was associated with significant tumor growth inhibition. Twenty four hours after RT, PAI also detected loss of hemodynamic response to gustatory stimulation in murine salivary gland tissue suggestive of radiation-induced vascular damage. Our observations illustrate the utility of PAI in detecting tumor and normal tissue hemodynamic response to radiation in head and neck cancers. PMID:26883660

  11. AAC Language Activity Monitoring: Entering the New Millennium.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This report describes how augmentative and alternative communication (AAC) automated language activity monitoring can provide clinicians with the tools they need to collect and analyze language samples from the natural environment of children with disabilities for clinical intervention and outcomes measurements. The Language Activity Monitor (LAM)…

  12. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study

    PubMed Central

    Leuraud, Klervi; Richardson, David B; Cardis, Elisabeth; Daniels, Robert D; Gillies, Michael; O'Hagan, Jacqueline A; Hamra, Ghassan B; Haylock, Richard; Laurier, Dominique; Moissonnier, Monika; Schubauer-Berigan, Mary K; Thierry-Chef, Isabelle; Kesminiene, Ausrele

    2015-01-01

    Summary Background There is much uncertainty about the risks of leukaemia and lymphoma after repeated or protracted low-dose radiation exposure typical of occupational, environmental, and diagnostic medical settings. We quantified associations between protracted low-dose radiation exposures and leukaemia, lymphoma, and multiple myeloma mortality among radiation-monitored adults employed in France, the UK, and the USA. Methods We assembled a cohort of 308 297 radiation-monitored workers employed for at least 1 year by the Atomic Energy Commission, AREVA Nuclear Cycle, or the National Electricity Company in France, the Departments of Energy and Defence in the USA, and nuclear industry employers included in the National Registry for Radiation Workers in the UK. The cohort was followed up for a total of 8·22 million person-years. We ascertained deaths caused by leukaemia, lymphoma, and multiple myeloma. We used Poisson regression to quantify associations between estimated red bone marrow absorbed dose and leukaemia and lymphoma mortality. Findings Doses were accrued at very low rates (mean 1·1 mGy per year, SD 2·6). The excess relative risk of leukaemia mortality (excluding chronic lymphocytic leukaemia) was 2·96 per Gy (90% CI 1·17–5·21; lagged 2 years), most notably because of an association between radiation dose and mortality from chronic myeloid leukaemia (excess relative risk per Gy 10·45, 90% CI 4·48–19·65). Interpretation This study provides strong evidence of positive associations between protracted low-dose radiation exposure and leukaemia. Funding Centers for Disease Control and Prevention, Ministry of Health, Labour and Welfare of Japan, Institut de Radioprotection et de Sûreté Nucléaire, AREVA, Electricité de France, National Institute for Occupational Safety and Health, US Department of Energy, US Department of Health and Human Services, University of North Carolina, Public Health England. PMID:26436129

  13. Update on nutrition monitoring activities in the United States.

    PubMed

    Kuczmarski, M F; Moshfegh, A; Briefel, R

    1994-07-01

    This article provides an overview of planned and proposed nutrition monitoring activities of the National Nutrition Monitoring and Related Research (NNMRR) Program. Key provisions of the NNMRR Act of 1990 are described, including the roles and responsibilities of the Interagency Board of Nutrition Monitoring and Related Research (IBNMRR) and the National Nutrition Monitoring Advisory Council and the development of the Ten-Year Comprehensive Plan. The Plan, which was developed under the guidance of the IBNMRR and reviewed by the National Nutrition Monitoring Advisory Council, is the basis for planning and coordinating the monitoring activities of 22 federal agencies. Also discussed are the resources generated from nutrition monitoring activities, from publications to conferences, that are available to dietitians and nutritionists. Professionals view the scientific reports that describe the nutritional status of the US population and the directories of federal and state monitoring activities as valuable resources. Suggestions from users of nutrition monitoring data related to their information and research needs have been extremely helpful to federal agencies in the development of future monitoring publications and the Ten-Year Comprehensive Plan. Continued communication between dietitians and the federal agencies responsible for the NNMRR Program is important. PMID:8021417

  14. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  15. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  16. TH-C-17A-09: Direct Visualization and Monitoring of Medical Radiation Beams in Air

    SciTech Connect

    Fahimian, B; Ceballos, A; Turkcan, S; Kapp, D; Pratx, G

    2014-06-15

    Purpose: Radiation therapy errors are rare but potentially catastrophic. Recent fatal incidents could have been avoided by utilizing real-time methods of monitoring delivery of radiation during treatment. However, few existing methods are practical enough to be used routinely. The study presents the first experimental demonstration of a novel non-perturbing method of monitoring radiation therapy through the phenomena of air scintillation. Methods: Monitoring of radiation delivery was devised by leveraging the phenomena of nitrogen excitation in air by ionizing radiation. The excitation induced weak luminescence in the 300–400 nm range, a process called air scintillation. An electron-multiplication charge-coupled device camera (f/0.95 lens; 440 nm shortpass) was set-up in a clinical treatment vault and was used to capture air scintillation images of kilovoltage and megavoltage beams. Monte Carlo simulations were performed to determine the correlation of radiation dose to air scintillation. Results: Megavoltage beams from a Varian Clinac 21EX and kilovoltage beams from an orthovoltage unit (50 kVp, 30 mA) were visualized with a relatively short exposure time (10 s). Cherenkov luminescence produced in a plastic transparent phantom did not interfere with detection of air scintillation. The image intensity displayed an inverse intensity falloff (r{sup 2} = 0.89) along the central axis and was proportional to dose rate (r{sup 2} = 0.9998). As beam energy increased, the divergence of the imaged beam decreased. Last, air scintillation was visualized during a simulated total skin irradiation electron treatment. Conclusion: Air scintillation can be clinically detected to monitor a radiation beam in an inexpensive and non-perturbing manner. This new method is advantageous in monitoring for gross delivery and uniquely capable of wide area in a single acquisition, such as the case for online verification of total body / skin / lymphoid irradiation treatments.

  17. Modern Methods of Real-Time Gamma Radiation Monitoring for General Personal Protection

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Arshak, A.; Vaseashta, Ashok

    Real-time radiation detectors become an essential part of emergency personnel who may have to respond to unknown accidents, incidents or terrorist attacks, which could involve radioactive material. More and more ordinary citizens are interested in personal radiation protection as well. Reasons include lost sources, nuclear industrial accidents, nuclear or radiological terrorism and the possibility of nuclear weapons being used in a war. People want to have the ability to measure it for themselves and they want to be notified when the radiation levels are increased. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the sensor performance through both the material properties and manufacturing technologies. Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper presents overview of modern methods of real-time gamma radiation monitoring for personal protection of radiation workers and general public and suggests further developments in this area.

  18. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  19. Frequency and quality of radiation monitoring of construction workers at two gaseous diffusion plants.

    PubMed

    Bingham, Eula; Ringen, Knut; Dement, John; Cameron, Wilfrid; McGowan, William; Welch, Laura; Quinn, Patricia

    2006-09-01

    Construction workers were and are considered temporary workers at many construction sites. Since World War II, large numbers of construction workers were employed at U.S. Department of Energy nuclear weapons sites for periods ranging from a few days to over 30 years. These workers performed tasks during new construction and maintenance, repair, renovation, and demolition of existing facilities. Such tasks may involve emergency situations, and may entail opportunities for significant radiation exposures. This paper provides data from interviews with more than 750 construction workers at two gaseous diffusion plants (GDPs) at Paducah, Kentucky, and Portsmouth, Ohio regarding radiation monitoring practices. The aim was to determine the extent to which workers believed they were monitored during tasks involving potential radiation exposures. The adequacy of monitoring practices is important for two reasons: (a) Protecting workers from exposures: Construction workers were employed by sub-contractors, and may frequently been excluded from safety and health programs provided to permanent employees; and (b) Supporting claims for compensation: The Energy Employees Occupational Illness Compensation Program Act (EEOICPA) requires dose reconstruction of radiation exposures for most workers who file a claim regarding cancer. The use of monitoring data for radiation to qualify a worker means that there should be valid and complete monitoring during the work time at the various nuclear plants or workers may be unfairly denied compensation. The worker interviews from Paducah and Portsmouth were considered especially useful because these sites were designated as Special Exposure Cohorts (SECs) and the workers did not have to have a dose reconstruction to qualify for compensation for most cancers. Therefore, their responses were less likely to be affected by compensation concerns. Interview questions included asking for information regarding whether monitoring was performed, how

  20. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  1. Proton irradiation test on the flight model radiation monitor for LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Mateos, I.; Lobo, A.; Ramos-Castro, J.; Sanjuán, J.; Diaz-Aguiló, M.; Wass, P. J.; Grimani, C.

    2010-05-01

    The design of the Radiation Monitor in the LISA Technology Package on board LISA Pathfinder is based on two silicon PIN diodes, placed parallel to each other in a telescopic configuration. One of them will be able to record spectral information of the particle hitting the diode. A test campaign for the Flight Model Radiation Monitor is proposed to verify its performance. This paper shows the results obtained with a simulated flight model geometry using GEANT4, to be compared with the real data that will be obtained in a proton irradiation facility.

  2. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fiorito, R.; Shkvarunets, A.; Castronovo, D.; Cornacchia, M.; Di Mitri, S.; Kishek, R.; Tschalaer, C.; Veronese, M.

    2014-12-01

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, divergences, emittances, Twiss parameters and energy spread of a relativistic electron beam. The beam is externally focused to a waist at the first bend and the OSR generated there can be used to measure the rms beam size. Subsequent pairs of bends produce far field OSR interferences (OSRI) whose visibility depends on the beam energy spread and the angular divergence. Under proper conditions, one of these two effects will dominate the OSRI visibility from a particular pair of bends and can be used to diagnose the dominant effect. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters to: (1) provide a sufficient number of OSR interferences to allow a measurement of the fringe visibility; (2) minimize the effect of coherent synchrotron radiation and space charge forces on the particles motion; and (3) minimize the effect of compression on the bunch length as the beam passes through the chicane. A design for the chicane has been produced for application to the FERMI free electron laser facility and by extension to similar high brightness linear accelerators. Such a diagnostic promises to greatly improve control of the electron beam optics with a noninvasive measurement of beam parameters and allow on-line optics matching and feedback.

  3. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  4. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  5. Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring

    NASA Astrophysics Data System (ADS)

    Watson, Mara Mae

    An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test

  6. Concurrent validation of activity monitors in patients with rheumatoid arthritis☆

    PubMed Central

    Backhouse, Michael R.; Hensor, Elizabeth M.A.; White, Derrick; Keenan, Anne-Maree; Helliwell, Philip S.; Redmond, Anthony C.

    2013-01-01

    Background Physical activity is frequently reported in rheumatology but it is difficult to measure objectively outside the gait laboratory. A new generation of activity monitors offers this potential but it has not yet been evaluated in patients with rheumatoid arthritis. This study aimed to evaluate three types of activity monitors in patients with rheumatoid arthritis. Methods The Step-N-Tune, Activ4Life Pro V3.8, and the Intelligent Device for Energy Expenditure and Activity activity monitors were tested concurrently in 12 patients with rheumatoid arthritis as well as in a healthy control group of 12 volunteers. Participants walked at a self selected speed for two minutes and were filmed for later review. Temporal and spatial gait parameters were also validated against the GAITRite walkway and the total number of steps recorded by each activity monitor was compared to a gold standard derived from half speed video replays. Findings Activity monitor performance varied between devices but all showed poorer performance when used in the group with rheumatoid arthritis. Bland–Altman plots demonstrated wider 95% limits of agreement in the group with rheumatoid arthritis and a systematic decrease in agreement between activity monitors and the gold standard with decreasing functional ability. Interpretation Despite some variation between devices, all the activity monitors tested performed reasonably well in healthy young volunteers. All except the Activ4Life showed a marked decrease in performance in patients with rheumatoid arthritis, suggesting Activ4Life could be the most suitable for use in this patient group. The marked between group difference in functional ability, and systematic decrease in device performance with deteriorating gait, indicate that activity monitors require specific validation in target clinical populations. PMID:23522723

  7. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    NASA Astrophysics Data System (ADS)

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-01

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  8. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  9. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    NASA Astrophysics Data System (ADS)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  10. Monitoring integrin activation by fluorescence resonance energy transfer.

    PubMed

    Lefort, Craig T; Hyun, Young-Min; Kim, Minsoo

    2012-01-01

    Aberrant integrin activation is associated with several immune pathologies. In leukocyte adhesion deficiency (LAD), the absence or inability of β(2) integrins to undergo affinity upregulation contributes to recurrent infectious episodes and impaired wound healing, while excessive integrin activity leads to an exaggerated inflammatory response with associated tissue damage. Therefore, integrin activation is an attractive target for immunotherapies, and monitoring the effect of agents on integrin activation is necessary during preclinical drug development. The activation of integrins involves the structural rearrangement of both the extracellular and cytoplasmic domains. Here, we describe methods for monitoring integrin conformational activation using fluorescence resonance energy transfer (FRET).

  11. The Highly Miniaturised Radiation Monitor: Concept, Design and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Bogdanova, Yulia; Irshad, Ranah; Griffin, Doug; Araujo, Henrique; Mitchell, Edward; Turchetta, Renato; Woodward, Simon; Velagapudi, Bindu; Menicucci, Alessandra; Daly, Eamonn

    2015-04-01

    The high energy plasma population, i.e. inside the radiation belts and within solar energetic particle events, is extremely damaging to satellite electronics and human health. Therefore monitoring, understanding of the physics behind and prediction of space radiation strength is a crucial aspect of space weather research and applications. In addition, the availability of good quality housekeeping data on the ionizing radiation environment in and around spacecraft systems is recognised as highly desirable for the efficient design and operation of spacecraft. Yet the engineering and economic costs of integrating such sensors into flight systems are a serious barrier to their widespread adoption. In light of this, the Highly Miniaturised Radiation Monitor (HMRM) has been developed by the Science and Technology Facilities Council and Imperial College London within the framework of an ESA technology development contract. The device is significantly smaller and lighter than current space technology with modest power requirements (1W) meaning that it has negligible impact on the spacecraft's overall resources. Furthermore, its simple electrical and data interfaces result in minimal integration costs. The HMRM is designed as a real-time radiation monitor with provides additional scientific data sets, such as reconstructed particle spectra of high-energy plasma population. The instrument energy coverage of 35 keV - 6 MeV for electrons and 600 keV - 500 MeV for protons makes the HMRM an ideal instrument to monitor and study the radiation environment of near-Earth space and to be widely used for space weather monitoring and research.

  12. Development of an alpha/beta/gamma detector for radiation monitoring

    SciTech Connect

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-15

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd{sub 2}SiO{sub 5} (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

  13. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-01

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  14. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-01

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  15. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  16. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    SciTech Connect

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.; Seregin, Vladimir A.; Akhromeev, Sergey V.; Lucyanec, Anatoly I.; Glinsky, Mark L.; Glagolev, Andrey V.

    2012-07-01

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areas of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at the

  17. Accuracy of soil water content estimates from gamma radiation monitoring data

    NASA Astrophysics Data System (ADS)

    Mao, Jie; Huisman, Johan Alexander; Reemt Bogena, Heye; Vereecken, Harry

    2016-04-01

    Terrestrial gamma radiation is known to be sensitive to soil water content, and could be promising for soil water content determination because of the availability of continental-scale gamma radiation monitoring networks. However, the accuracy of soil water content estimates that can be obtained from this type of data is currently unknown. Therefore, the aim of this study is to assess the accuracy of soil water content estimates from measured time series of gamma radiation. For this, four gamma radiation monitoring stations were each equipped with four soil water content sensors at 5 and 15 cm depth to provide reference soil water content measurements. The contributions of terrestrial radiation and secondary cosmic radiation were separated from the total amount of measured gamma radiation by assuming that the long-term contribution of secondary cosmic radiation was constant, and that variations were related to changes in air pressure and incoming neutrons. In addition, precipitation effects related to atmospheric washout of radon progenies to the ground that cause an increase of gamma radiation were considered by excluding time periods with precipitation and time periods less than three hours after precipitation. The estimated terrestrial gamma radiation was related to soil water content using an exponential function with two fit parameters. For daily soil water content estimates, the goodness of fit ranged from R2= 0.21 to 0.48 and the RMSE ranged from 0.048 to 0.117 m3m-3. The accuracy of the soil water content estimates improved considerably when a weekly resolution was used (RMSE ranged from 0.029 to 0.084 m3m-3). Overall, these results indicate that gamma radiation monitoring data can be used to obtain useful soil water content information. The remaining differences between measured and estimated soil water content can at least partly be explained by the fact that the terrestrial gamma radiation is strongly determined by the upper few centimeters of the soil

  18. Monitoring exposure to atomic bomb radiation by somatic mutation

    SciTech Connect

    Akiyama, Mitoshi; Kyoizumi, Seishi; Kusunoki, Yoichiro

    1996-05-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. 27 refs., 2 figs.

  19. Results from the ESA SREM Monitors and Comparison with Existing Radiation Belt Models

    NASA Astrophysics Data System (ADS)

    Evans, H. D. R.; Bühler, P.; Hajdas, W.; Daly, E.; Nieminen, P.; Mohammadzadeh, A.

    The Standard Radiation Monitor SREM is a simple particle detector developed for wide application on ESA satellites It measures high-energy protons and electrons of the space environment with a - 20o angular resolution and limited spectral information Of the ten SREMs that have been manufactured four have so far flown The first model on STRV-1c functioned well until an early spacecraft failure The other three are on board the ESA spacecraft INTEGRAL ROSETTA and PROBA-1 Another model will fly on GIOVE-B expected to be launched later this year The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L space providing a direct comparison of the radiation levels in the belts at different locations and the effects of geomagnetic shielding Data from the PROBA SREM and INTEGRAL SREM are compared with existing radiation belt models

  20. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar J.; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald E.; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modeling and the development of solar energy techniques. Measurements cover the downward solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an altitude range between about 200 m a.s.l (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, utilizing manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations, using the methodology specified by the Guide to the Expression of Uncertainty in Measurement indicates that relative accuracies range from 1.5 to 2.9 % for large signals (global, direct: 1000 W m-2, diffuse: 500 W m-2) and from 1.7 to 23 % (or 0.9 to 11.5 W m-2) for small signals (50 W m-2) (expanded uncertainties corresponding to the 95 % confidence level). If the directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) are corrected, this expanded uncertainty reduces to 1.4 to 2.8 % for large signals and to 1.7 to 5.2 % (or 0.9-2.6 W m-2) for small signals. Thus, for large signals of global and diffuse radiation, BSRN target accuracies are met or nearly met (missed by less than 0.2 percentage points, pps) for 70 % of the ARAD measurements after this correction. For small signals of direct radiation, BSRN targets are achieved at two sites and nearly met (also missed by less than 0.2 pps) at the other sites. For small signals of global and diffuse radiation, targets are achieved

  1. Dose Measurement Results Obtained by Radiation Monitoring System of Russian Segment of International Space Station

    NASA Astrophysics Data System (ADS)

    Petrov, V. M.; Benghin, V. V.; Volkov, A. N.; Aleksandrin, A. P.; Lyagushin, V. I.; Panasyuk, M. I.; Tel'Tsov, M. V.; Kutuzov, Yu. V.

    Radiation monitoring system RMS being deployed on the International Space Station is a part of radiation safety system of the station The purpose of the RMS is to provide information for assessment of radiation doses absorbed by the crews during space flights Radiation monitoring system RMS has worked on board of the International Space Station ISS practically continuously beginning from August 2001 RMS consist of 7 units begin itemize item The R-16 dosimeter Two ionization chambers are the sensitive elements of the R-16 dosimeter item Four DB-8 dosimeters with semiconductor radiation detectors item Data collection unit and Utility unit destined for processing and analysis of measurement results end itemize RMS with other ISS systems integration permits to downlink telemetry information and to display radiation parameters to crew In June 2005 the software of data collection unit was updated It permits the RMS telemetry information upgrading to alert the crew when exposure rates exceed set threshold to supply an opportunity of interactive communication the crew and RMS The report contains information on performance of equipment and dose rate measured since August 2001 till December 2005 both in quiet time and during solar proton events Comparison with MIR station R-16 data registered since 1991 year is carried out

  2. Development of a DNA-dosimeter system for monitoring the effects of solar-ultraviolet radiation.

    PubMed

    Schuch, André Passaglia; da Silva Galhardo, Rodrigo; de Lima-Bessa, Keronninn Moreno; Schuch, Nelson Jorge; Menck, Carlos Frederico Martins

    2009-01-01

    Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quantification of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.

  3. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  5. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) General. Each of the administrative and technical activities identified in § 800.215 and the elevator and... barges into an export elevator at an export port location without Class X weighing; (3) violating any...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  6. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) General. Each of the administrative and technical activities identified in § 800.215 and the elevator and... barges into an export elevator at an export port location without Class X weighing; (3) violating any...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  7. Activity Monitors Help Users Get Optimum Sun Exposure

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  8. Passive and active structural monitoring experience: Civil engineering applications

    NASA Astrophysics Data System (ADS)

    Thompson, L. D.; Westermo, B. D.; Crum, D. B.; Law, W. R.; Trombi, R. G.

    2000-05-01

    State Departments of Transportation and regional city government officials are beginning to view the long-term monitoring of infrastructure as being beneficial for structural damage accumulation assessment, condition based maintenance, life extension, and post-earthquake or -hurricane (-tornado, -typhoon, etc.) damage assessment. Active and passive structural monitoring systems were installed over the last few years to monitor concerns in a wide range of civil infrastructure applications. This paper describes the monitoring technologies and systems employed for such applications. Bridge system applications were directed at monitoring corrosion damage accumulation, composite reinforcements for life extension, general service cracking damage related to fatigue and overloads, and post-earthquake damage. Residential system applications were directed primarily at identifying damage accumulation and post-earthquake damage assessment. A professional sports stadium was monitored for isolated ground instability problems and for post-earthquake damage assessment. Internet-based, remote, data acquisition system experience is discussed with examples of long-term passive and active system data collected from many of the individual sites to illustrate the potential for both passive and active structural health monitoring. A summary of system-based operating characteristics and key engineering recommendations are provided to achieve specific structural monitoring objectives for a wide range of civil infrastructure applications.

  9. Construction monitoring activities in the ESF starter tunnel

    SciTech Connect

    Pott, J.; Carlisle, S.

    1994-05-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

  10. Radiation-induced insulator discharge pulses in the CRRES Internal Discharge Monitor satellite experiment. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.; Robinson, P. A., Jr.; Holman, E. G.

    1991-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The IDM is flying on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples include G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. The IDM results indicate the rate at which insulator pulses occur. Pulsing began on the seventh orbit. The maximum pulse rate occurred near orbit 600 when over 50 pulses occurred. The average pulse rate is approximately two per orbit, but nearly half of the first 600 orbits experienced no pulses. The pulse rate per unit flux of high energy electrons has not changed dramatically over the first ten months in space. These pulse rates are in agreement with laboratory experience on shorter time scales. Several of the samples have never pulsed. IDM pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on CRRES.

  11. Optical Spectroscopy and Multivariate Analysis for Biodosimetry and Monitoring of Radiation Injury to the Skin

    SciTech Connect

    Levitskaia, Tatiana G.; Bryan, Samuel A.; Creim, Jeffrey A.; Curry, Terry L.; Luders, Teresa; Thrall, Karla D.; Peterson, James M.

    2012-08-01

    In the event of an intentional or accidental release of ionizing radiation in a densely populated area, timely assessment and triage of the general population for the radiation exposure is critical. In particular, a significant number of the victims may sustain cutaneous radiation injury, which increases the mortality and worsens the overall prognosis of the victims suffered from combined thermal/mechanical and radiation trauma. Diagnosis of the cutaneous radiation injury is challenging, and established methods largely rely on visual manifestations, presence of the skin contamination, and a high degree of recall by the victim. Availability of a high throughput non-invasive in vivo biodosimetry tool for assessment of the radiation exposure of the skin is of particular importance for the timely diagnosis of the cutaneous injury. In the reported investigation, we have tested the potential of an optical reflectance spectroscopy for the evaluation of the radiation injury to the skin. This is technically attractive because optical spectroscopy relies on well-established and routinely used for various applications instrumentation, one example being pulse oximetry which uses selected wavelengths for the quantification of the blood oxygenation. Our method relies on a broad spectral region ranging from the locally absorbed, shallow-penetrating ultraviolet and visible (250 to 800 nm) to more deeply penetrating near-Infrared (800 – 1600 nm) light for the monitoring of multiple physiological changes in the skin upon irradiation. Chemometrics is a multivariate methodology that allows the information from entire spectral region to be used to generate predictive regression models. In this report we demonstrate that simple spectroscopic method, such as the optical reflectance spectroscopy, in combination with multivariate data analysis, offers the promise of rapid and non-invasive in vivo diagnosis and monitoring of the cutaneous radiation exposure, and is able accurately predict

  12. Monitoring volcano activity through Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.

    2013-12-01

    During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.

  13. Monitoring helicase activity with molecular beacons.

    PubMed

    Belon, Craig A; Frick, David N

    2008-10-01

    A high-throughput, fluorescence-based helicase assay using molecular beacons is described. The assay is tested using the NS3 helicase encoded by the hepatitis C virus (HCV) and is shown to accurately monitor helicase action on both DNA and RNA. In the assay, a ssDNA oligonucleotide molecular beacon, featuring a fluorescent moiety attached to one end and a quencher attached to the other, is annealed to a second longer DNA or RNA oligonucleotide. Upon strand separation by a helicase and ATP, the beacon strand forms an intramolecular hairpin that brings the tethered fluorescent and quencher molecules into juxtaposition, quenching fluorescence. Unlike currently available real-time helicase assays, the molecular beacon-based helicase assay is irreversible. As such, it does not require the addition of extra DNA strands to prevent products from re-annealing. Several variants of the new assay are described and experimentally verified using both Cy3 and Cy5 beacons, including one based on a sequence from the HCV genome. The HCV genome-based molecular beacon helicase assay is used to demonstrate how such an assay can be used in high-throughput screens and to analyze HCV helicase inhibitors.

  14. Gamma radiation monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Miranda, Pedro; Azevedo, Eduardo B.; Nitschke, Kim

    2016-04-01

    Continuous monitoring of gamma radiation is often performed in nuclear facilities and industrial environments as a way to control the ambient radioactivity and give warning of potential accidents. However, gamma radiation is also ubiquitous in the natural environment. The main sources are i) cosmic radiation from space, including secondary radiation from the interaction with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232) and their decay products (e.g. Radium, Ra-226) , and iii) airborne Radon gas (Rn-222), which is the dominant source of natural environmental radioactivity. The temporal variability of this natural radiation background needs to be well understood and quantified in order to discriminate non-natural sources of radiation in the environment and artificial radionuclides contamination. To this end, continuous gamma radiation monitoring is being performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The site is unique for the study of the natural radioactivity background on one hand due to the remote oceanic geographical location, in the middle of the North Atlantic Ocean and clear of direct continental influence, and on the other hand because of the comprehensive dataset of atmospheric parameters that is available for enhancing the interpretation of the radiation measurements, as a result of the vast array of very detailed and high-quality atmospheric measurements performed at the ARM-ENA facility. Gamma radiation in the range 475 KeV to 3000 KeV is measured continuously with a 3" x 3" NaI(Tl) scintillator. The campaign started started in May 2015, with gamma

  15. Management plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.; Pratt, D.R.

    1991-08-01

    The DOE/RL 89-19, United States Department of Energy-Richland Operations Office Environmental Protection Implementation Plan (1989), requires the Hanford Site to prepare an Environmental Monitoring Plan (EMP) by November 9, 1991. The DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (1991), provides additional guidance and requires implementation of the EMP within 36 months of the effective data of the rule. DOE Order 5400.1, General Environmental Protection Program, requires each US Department of Energy (DOE) site, facility, or activity that uses, generates, releases, or manages significant quantities of hazardous materials to prepare an EMP. This EMP is to identify and discuss two major activities: (1) effluent monitoring and (2) environmental surveillance. At the Hanford Site, the site-wide EMP will consist of the following elements: (1) A conceptual plan addressing effluent monitoring and environmental surveillance; (2) Pacific Northwest Laboratory (PNL) site-wide environmental surveillance program; (3) Westinghouse Hanford Company (Westinghouse Hanford) effluent monitoring program consisting of the near-field operations environmental monitoring activities and abstracts of each Facility Effluent Monitoring Plan (FEMP). This management plan addresses the third of these three elements of the EMP, the FEMPs.

  16. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  17. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  18. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  19. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    PubMed

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures. PMID:20824303

  20. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, M.; Baumgartner, D. J.; Obleitner, F.; Bichler, C.; Foelsche, U.; Pietsch, H.; Rieder, H. E.; Weihs, P.; Geyer, F.; Haiden, T.; Schöner, W.

    2015-10-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  1. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The contribution outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  2. Fluorine gettering by activated charcoal in a radiation environment

    SciTech Connect

    Felker, L.K.; Toth, L.M.

    1988-10-01

    Activated charcoal has been shown to be an effective gettering agent for the fluorine gas that is liberated in a radiation environment. Even though activated charcoal is a commonly used getter, little is known about the radiation stability of the fluorine-charcoal product. This work has shown that not only is the product stable in high gamma radiation fields, but also that radiation enhances the capacity of the charcoal for the fluorine. The most useful application of this work is with the Molten Salt Reactor Experiment (MSRE) fuel salt because the radioactive components (fission products and actinides) cause radiolytic damage to the solid LiF-BeF/sub 2/-ZrF/sub 4/-UF/sub 4/ (64.5, 30.3, 5.0, 0.13 mol %, respectively) resulting in the liberation of fluorine gas. This work has also demonstrated that the maximum damage to the fuel salt by approx.3 /times/ 10/sup 7/ R/h gamma radiation is approximately 2%, at which point the rate of recombination of fluorine with active metal sites within the salt lattice equals the rate of fluorine generation. The enhanced reactivity of the activated charcoal and radiation stability of the product ensures that the gettered fluorine will stay sequestered in the charcoal.

  3. A portable meteorological station plus nuclear radiation monitoring system using a BASIC-8052 micro-controller

    NASA Astrophysics Data System (ADS)

    Al-Mohamad, Ali; Aghabi, Samer; Weiss, Chafic

    2002-03-01

    A portable meteorology station capable of measuring various atmospheric parameters (mainly ambient temperature, relative humidity, atmospheric pressure, wind speed and direction) was designed and built. The physical quantities were converted to electrical signals using suitable sensors. These signals were then processed and transferred to digital values to be stored in suitable memories. A nuclear radiation alarm system was also built, on the main board, to monitor the nuclear radiation releases levels. The system consists of three main parts: control board, data acquisition board and signals conditioning board. The overall system is controlled by a BASIC-8052 micro-controller.

  4. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  5. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  6. Monte Carlo simulation of the sequential probability ratio test for radiation monitoring

    SciTech Connect

    Coop, K.L.

    1985-02-01

    A computer program simulates the Sequential Probability Ratio Test (SPRT) using Monte Carlo techniques. The program, SEQTEST, performs random-number sampling of either a Poisson or normal distribution to simulate radiation monitoring data. The results are in terms of the detection probabilities and the average time required for a trial. The computed SPRT results can be compared with tabulated single interval test (SIT) values to determine the better statistical test for particular monitoring applications. Use of the SPRT in a hand-and-foot alpha monitor shows that the SPRT provides better detection probabilities while generally requiring less counting time. Calculations are also performed for a monitor where the SPRT is not permitted to the take longer than the single interval test. Although the performance of the SPRT is degraded by this restriction, the detection probabilities are still similar to the SIT values, and average counting times are always less than 75% of the SIT time. Some optimal conditions for use of the SPRT are described. The SPRT should be the test of choice in many radiation monitoring situations.

  7. Monte Carlo simulation of the sequential probability ratio test for radiation monitoring

    SciTech Connect

    Coop, K.L.

    1984-01-01

    A computer program simulates the Sequential Probability Ratio Test (SPRT) using Monte Carlo techniques. The program, SEQTEST, performs random-number sampling of either a Poisson or normal distribution to simulate radiation monitoring data. The results are in terms of the detection probabilities and the average time required for a trial. The computed SPRT results can be compared with tabulated single interval test (SIT) values to determine the better statistical test for particular monitoring applications. Use of the SPRT in a hand-and-foot alpha monitor shows that the SPRT provides better detection probabilities while generally requiring less counting time. Calculations are also performed for a monitor where the SPRT is not permitted to the take longer than the single interval test. Although the performance of the SPRT is degraded by this restriction, the detection probabilities are still similar to the SIT values, and average counting times are always less than 75% of the SIT time. Some optimal conditions for use of the SPRT are described. The SPRT should be the test of choice in many radiation monitoring situations. 6 references, 8 figures, 1 table.

  8. Instrumented Shoes for Real-Time Activity Monitoring Applications.

    PubMed

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Major, Kristof; Paraschiv-Ionescu, Anisoara; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity monitoring in daily life is gaining momentum as a health assessment tool, especially in older adults and at-risk populations. Several research-based and commercial systems have been proposed with varying performances in classification accuracy. Configurations with many sensors are generally accurate but cumbersome, whereas single sensors tend to have lower accuracies. To this end, we propose an instrumented shoes system capable of accurate activity classification and gait analysis that contains sensors located entirely at the level of the shoes. One challenge in daily activity monitoring is providing punctual and subject-tailored feedback to improve mobility. Therefore, the instrumented shoe system was equipped with a Bluetooth® module to transmit data to a smartphone and perform detailed activity profiling of the monitored subjects. The potential applications of such a system are numerous in mobility and fall risk-assessment as well as in fall prevention. PMID:27332298

  9. Beyond the Pedometer: New Tools for Monitoring Activity.

    ERIC Educational Resources Information Center

    Groves, David

    1988-01-01

    As devices for measuring physical activity become more accurate and economical, researchers use them to study topics ranging from the aerobic capacity of children to the job performance of military aircrews. This article discusses various activity monitoring devices and their application. (Author/JL)

  10. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. PMID:25070873

  11. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  12. Overview of nonintercepting beam-size monitoring with optical diffraction radiation

    SciTech Connect

    Lumpkin, Alex H.; /Fermilab

    2010-08-01

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  13. Monitoring of reinforced composites processed by microwave radiation using fiber-Bragg gratings

    NASA Astrophysics Data System (ADS)

    Barrera, David; Roig, Inma; Sales, Salvador; Emmerich, Rudolf

    2014-05-01

    The use of microwave radiation for curing carbon-fiber reinforced polymer materials (CFRP) can solve the nonhomogeneous heating problems when using conventional techniques based on the use of catalysts and can reduce the processing times. Optical fiber sensors have well-known advantages for Fiber Reinforced Composites (FRC) monitoring. In this paper fiber Bragg gratings (FBGs) are used for online monitoring of the residual stress and distortions produced during the microwave curing process. The CFRP samples are composed by layers of unidirectional carbon fibers and epoxy resin. The results show a very different behavior between the direction of carbon fibers and the perpendicular direction. Results are compared with the conventional processing technique.

  14. Electrical impedance spectroscopy as electrical biopsy for monitoring radiation sequelae of intestine in rats.

    PubMed

    Chao, Pei-Ju; Huang, Eng-Yen; Cheng, Kuo-Sheng; Huang, Yu-Jie

    2013-01-01

    Electrical impedance is one of the most frequently used parameters for characterizing material properties. The resistive and capacitive characteristics of tissue may be revealed by electrical impedance spectroscopy (EIS) as electrical biopsy. This technique could be used to monitor the sequelae after irradiation. In this study, rat intestinal tissues after irradiation were assessed by EIS system based on commercially available integrated circuits. The EIS results were fitted to a resistor-capacitor circuit model to determine the electrical properties of the tissue. The variations in the electrical characteristics of the tissue were compared to radiation injury score (RIS) by morphological and histological findings. The electrical properties, based on receiver operation curve (ROC) analysis, strongly reflected the histological changes with excellent diagnosis performance. The results of this study suggest that electrical biopsy reflects histological changes after irradiation. This approach may significantly augment the evaluation of tissue after irradiation. It could provide rapid results for decision making in monitoring radiation sequelae prospectively.

  15. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    SciTech Connect

    Jenkins, E.W.

    1983-11-01

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 ..mu..m in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 10/sup 10/ beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10/sup -3/ photons per incident electron 5 x 10/sup +7/ optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor.

  16. REM-RED Cosmic Radiation Monitoring Experiment On-Board the REXUS-17 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Zabori, B.; Gerecs, A.; Hurtonyne Gyovai, A.; Benyei, D.; Naczi, F.; Hurtony, T.

    2015-09-01

    The cosmic radiation field is not well known up to the altitude of the lower orbiting spacecrafts. There are several ways to measure the cosmic radiation in this altitude; however it is not easy to apply them to a sounding rocket. The easiest way is to use Geiger-Muller (GM) counters to quantify the radiation level. The REMRED rocket experiment performed measurements with active radiation instruments (GM counters) in order to quantify the cosmic radiation field from the Earth's surface up to the maximum altitude of the REXUS rocket (about 90 km). The flight of the REM-RED experiment was carried out on the 1 7th of March 201 5 from the ESRANGE Space Center on-board the REXUS-17 student mission sounding rocket.

  17. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev

  18. The prototype of a detector for monitoring the cosmic radiation neutron flux on ground

    SciTech Connect

    Lelis Goncalez, Odair; Federico, Claudio Antonio; Mendes Prado, Adriane Cristina; Galhardo Vaz, Rafael; Tizziani Pazzianotto, Mauricio

    2013-05-06

    This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional {sup 241}Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

  19. The prototype of a detector for monitoring the cosmic radiation neutron flux on ground

    NASA Astrophysics Data System (ADS)

    Gonçalez, Odair Lelis; Federico, Claudio Antonio; Prado, Adriane Cristina Mendes; Vaz, Rafael Galhardo; Pazzianotto, Mauricio Tizziani; Semmler, Renato

    2013-05-01

    This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional 241Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

  20. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  1. Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground

    SciTech Connect

    Ebinger, M.H.; Hansen, W.R.

    1994-05-11

    This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

  2. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    PubMed

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority. PMID:23186692

  3. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    PubMed

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority.

  4. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  5. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  6. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  7. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ˜ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ˜ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  8. The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology.

    PubMed

    Cournane, S; Sheehy, N; Cooke, J

    2014-06-01

    Benford's law is an empirical observation which predicts the expected frequency of digits in naturally occurring datasets spanning multiple orders of magnitude, with the law having been most successfully applied as an audit tool in accountancy. This study investigated the sensitivity of the technique in identifying system output changes using simulated changes in interventional radiology Dose-Area-Product (DAP) data, with any deviations from Benford's distribution identified using z-statistics. The radiation output for interventional radiology X-ray equipment is monitored annually during quality control testing; however, for a considerable portion of the year an increased output of the system, potentially caused by engineering adjustments or spontaneous system faults may go unnoticed, leading to a potential increase in the radiation dose to patients. In normal operation recorded examination radiation outputs vary over multiple orders of magnitude rendering the application of normal statistics ineffective for detecting systematic changes in the output. In this work, the annual DAP datasets complied with Benford's first order law for first, second and combinations of the first and second digits. Further, a continuous 'rolling' second order technique was devised for trending simulated changes over shorter timescales. This distribution analysis, the first employment of the method for radiation output trending, detected significant changes simulated on the original data, proving the technique useful in this case. The potential is demonstrated for implementation of this novel analysis for monitoring and identifying change in suitable datasets for the purpose of system process control.

  9. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  10. Monitoring and validating active site redox states in protein crystals.

    PubMed

    Antonyuk, Svetlana V; Hough, Michael A

    2011-06-01

    High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  11. High-current CW beam profile monitors using transition radiation at CEBAF

    NASA Astrophysics Data System (ADS)

    Piot, P.; Denard, J.-C.; Adderley, P.; Capek, K.; Feldl, E.

    1997-01-01

    One way of measuring the profile of CEBAF's low-emittance, high-power beam is to use the optical transition radiation (OTR) emitted from a thin foil surface when the electron beam passes through it. We present the design of a monitor using the forward OTR emitted from a 0.25-μm carbon foil. We believe that the monitor will resolve three main issues: i) whether the maximum temperature of the foil stays below the melting point, ii) whether the beam loss remains below 0.5%, in order not to trigger the machine protection system, and iii) whether the monitor resolution (unlike that of synchrotron radiation monitors) is better than the product λγ. It seems that the most serious limitation for CEBAF is the beam loss due to beam scattering. We present results from Keil's theory and simulations from the computer code GEANT as well as measurements with aluminum foils with a 45-MeV electron beam. We also present a measurement of a 3.2-GeV beam profile that is much smaller than λγ, supporting Rule and Fiorito's calculations of the OTR resolution limit due to diffraction.

  12. IN SITU PRECISE ANGLE MONITORING ON SYNCHROTRON RADIATION MONOCHROMATOR BY USE OF PENCIL BEAM INTERFEROMETER.

    SciTech Connect

    QIAN,S.TAKACS,P.DONG,Q.HULBERT,S.

    2003-08-25

    Monochromator is a very important and precise instrument used in beam lines at synchrotron radiation facilities. We need to know if there is actual thermal distortion on gratings resulting in the degradation of the monochromator resolution. We need to know the characteristics of the grating rotation. It is possible to make a simple but precise in-situ distortion monitoring and rotation angle test of the grating by use of a precise pencil beam angle monitor. We have made preliminary measurements on a monochrometer grating of an undulator beam line X1B at Brookhaven National Laboratory. We monitored a small amount of angle variation on the grating. We detected 1.7 {micro}rad backlash (P-V) of the grating controlling system.

  13. Continuous electromagnetic radiation monitoring in the environment: analysis of the results in Greece.

    PubMed

    Manassas, Athanasios; Boursianis, Achilles; Samaras, Theodoros; Sahalos, John N

    2012-09-01

    Non-ionising radiation-monitoring networks were initiated as a result of the public concerns about the potential health effects from telecommunication emissions. In the present study, the data acquired from such networks in Greece are used to assess the changes in the outdoor electromagnetic environment with respect to location and time. The study shows that there is a statistically significant difference between the urban (median electric field: 1.1 V m(-1)) and the rural (median electric field: 0.3 V m(-1)) installations of monitoring units and also shows that there is a median diurnal variation (daily maximum to minimum) of 20.2 and 33.8 % for the broadcasting and mobile telecommunication emissions, respectively. Moreover, there is a difference in the electric field between daytime and night, but not between morning and afternoon. The results are in line with previously published data from spot measurements, monitoring networks and personal exposimeter studies performed in several European countries.

  14. Coherent sychrotron radiation detector for a non-invasive subpicosecond bunch length monitor

    SciTech Connect

    Krafft, G.A.; Wang, D.; Price, E.; Feldl, E.; Porterfield, D.; Wood, P.; Crowe, T.

    1995-12-31

    This CSR detector was developed to monitor nondestructively the length of a subpicosecond bunch with high sensitivity. The monitor uses a state of the art GaAs Schottky whisker diode which is operated at room temperature at a wavelength of a few hundred microns. The detector is capable of detecting radiation power as low as 10 nW, depending on wavelength. This paper describes design specifications, parameter ranges, and monitor features and also reports its performance and comparison between measurement and calculation. The measurement results are cross-compared with an independent bunch length measurement using phase modulation. It was found that the output power varies with bunch length and that detectors at shorter wavelengths are preferred.

  15. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  16. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  17. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  18. Envitonmental monitoring and radiation protection in Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjeviè, V.; Jovanovič, P.

    2012-04-01

    Škocjan Caves were listed as UNESCO World Heritage Sites in 1986, due to their exceptional significance for cultural and natural heritage. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data. Relation of background radiation to carrying capacity will be explained. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. A system of education of the staff working in the caves in the field of radiation protection will be presented as well.

  19. Radiation inactivation study of aminopeptidase: probing the active site

    NASA Astrophysics Data System (ADS)

    Jamadar, V. K.; Jamdar, S. N.; Mohan, Hari; Dandekar, S. P.; Harikumar, P.

    2004-04-01

    Ionizing radiation inactivated purified chicken intestinal aminopeptidase in media saturated with gases in the order N 2O>N 2>air. The D 37 values in the above conditions were 281, 210 and 198 Gy, respectively. OH radical scavengers such as t-butanol and isopropanol effectively nullified the radiation-induced damage in N 2O. The radicals (SCN) 2•-, Br 2•- and I 2•- inactivated the enzyme, pointing to the involvement of aromatic amino acids and cysteine in its catalytic activity. The enzyme exhibited fluorescence emission at 340 nm which is characteristic of tryptophan. The radiation-induced loss of activity was accompanied by a decrease in the fluorescence of the enzyme suggesting a predominant influence on tryptophan residues. The enzyme inhibition was associated with a marked increase in the Km and a decrease in the Vmax and kcat values, suggesting an irreversible alteration in the catalytic site. The above observations were confirmed by pulse radiolysis studies.

  20. Citizen Monitoring during Hazards: The Case of Fukushima Radiation after the 2011 Japanese Earthquake

    NASA Astrophysics Data System (ADS)

    Hultquist, C.; Cervone, G.

    2015-12-01

    Citizen-led movements producing scientific environmental information are increasingly common during hazards. After the Japanese earthquake-triggered tsunami in 2011, the government produced airborne remote sensing data of the radiation levels after the Fukushima nuclear reactor failures. Advances in technology enabled citizens to monitor radiation by innovative mobile devices built from components bought on the Internet. The citizen-led Safecast project measured on-ground levels of radiation in the Fukushima prefecture which total 14 million entries to date in Japan. This non-authoritative citizen science collection recorded radiation levels at specific coordinates and times is available online, yet the reliability and validity of the data had not been assessed. The nuclear incident provided a case for assessment with comparable dimensions of citizen science and authoritative data. To perform a comparison of the datasets, standardization was required. The sensors were calibrated scientifically but collected using different units of measure. Radiation decays over time so temporal interpolation was necessary for comparison of measurements as being the same time frame. Finally, the GPS located points were selected within the overlapping spatial extent of 500 meters. This study spatially analyzes and statistically compares citizen-volunteered and government-generated radiation data. Quantitative measures are used to assess the similarity and difference in the datasets. Radiation measurements from the same geographic extents show similar spatial variations which suggests that citizen science data can be comparable with government-generated measurements. Validation of Safecast demonstrates that we can infer scientific data from unstructured and not vested data. Citizen science can provide real-time data for situational awareness which is crucial for decision making during disasters. This project provides a methodology for comparing datasets of radiological measurements

  1. Computation of Radiation Dose at Aircraft Altitudes from Analysis of Cosmic Ray Neutron Monitor Data

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    Relativistic solar proton events GLEs those events with protons having sufficient kinetic energy to initiate a nuclear cascade in the atmosphere can make a contribution to radiation dose at aircraft altitudes We show that it is possible to obtain proper estimates of the expected radiation dose at aircraft altitudes from the analysis of ground-level neutron monitor data Assuming a nominal GLE spectrum the radiation dose at 40 000 feet during a 100 increase at polar latitudes will be in the range of 5 to 10 micro Sieverts per hour depending on the spectral slope An analysis of the large GLE s that have occurred during the past two solar cycles shows that there have been no events where the hourly averaged radiation dose at 40 000 feet would have exceeded 20 micro Sieverts per hour In the past improper GLE analysis was used to estimate the radiation dose at aircraft altitudes The old values derived for the early GLE s resulted in the prediction of high dose rates that persist today as urban legends and contribute to the public concept that the radiation dose at aircraft altitudes is dangerous We demonstrate that modern analytical techniques result in computed radiation doses during high-energy solar cosmic ray events that are orders of magnitude lower than those obtained by the old techniques We show that the use of the old technique of using straight line power law spectra to extrapolate the flux derived at 1 GeV results in order of magnitude errors when these flux values are extrapolated to lower energies and used to

  2. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological...

  3. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  4. A new handbook on triage, monitoring and treatment of people following malevolent use of radiation.

    PubMed

    del Rosario Pérez, Maria; Carr, Zhanat; Rojas-Palma, Carlos; van der Meer, Klaus; Smith, Karen; Rahola, Tua; Muikku, Maarit; Liland, Astrid; Jaworska, Alicja; Jerstad, Anne

    2010-06-01

    Through the Euratom 6 Framework Programme, the European Commission is co-sponsoring the specific targeted research project "Triage, Monitoring and Treatment-Handbook for management of the public in the event of malevolent use of radiation" (TMT Handbook). The main aim of the project is to produce a handbook for the effective and timely triage, monitoring, and treatment of people exposed to radiation following a malevolent act. The World Health Organization contributed to this project with development of guidelines on medical and public health response. A training course based on the TMT Handbook was developed. It will help to enhance national capacity for planning and response to acts involving the malevolent use of radiation. The course will also provide a platform to identify common challenges and discuss opportunities for harmonizing response strategies throughout the European Union. Focusing on its medical and public health response aspects, this paper introduces the TMT Handbook and its potential applicability not only as practical guidance for end-users but also as a useful tool for education and training.

  5. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.

  6. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose. PMID:19430218

  7. Results from the ESA SREM monitors and comparison with existing radiation belt models

    NASA Astrophysics Data System (ADS)

    Evans, H. D. R.; Bühler, P.; Hajdas, W.; Daly, E. J.; Nieminen, P.; Mohammadzadeh, A.

    2008-11-01

    The Standard Radiation Environment Monitor (SREM) is a simple particle detector developed for wide application on ESA satellites. It measures high-energy protons and electrons of the space environment with a 20° angular resolution and limited spectral information. Of the ten SREMs that have been manufactured, four have so far flown. The first model on STRV-1c functioned well until an early spacecraft failure. The other three are on-board, the ESA spacecraft INTEGRAL, ROSETTA and PROBA-1. Another model is flying on GIOVE-B, launched in April 2008 with three L-2 science missions to follow: both Herschel and Planck in 2008, and GAIA in 2011). The diverse orbits of these spacecraft and the common calibration of the monitors provides a unique dataset covering a wide range of B-L∗ space, providing a direct comparison of the radiation levels in the belts at different locations, and the effects of geomagnetic shielding. Data from the PROBA/SREM and INTEGRAL/IREM are compared with existing radiation belt models.

  8. Design of an irradiation facility with a real-time radiation effects monitoring capability

    NASA Astrophysics Data System (ADS)

    Braisted, J.; Schneider, E.; O'Kelly, S.; van der Hoeven, C.

    2011-12-01

    An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the 1.1 MW TRIGA Mark II research reactor at The University of Texas at Austin. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This article presents the layout and characterization of the large in-core irradiation facility and the real-time electronics performance monitoring capability it is designed to support. To demonstrate this capability, an experimental campaign was conducted where the real-time current transfer ratio for 4N25 general-purpose optocouplers was obtained from in-situ voltage measurements. The resultant radiation effects data - current transfer ratio as a function of neutron and gamma dose - was seen to be repeatable and exceptionally finely resolved. Therefore, the real-time capability at UT TRIGA appears competitive with other effects characterization facilities in terms of number and size of testable samples while additionally offering a novel real-time, in-core monitoring capability.

  9. CMS dashboard for monitoring of the user analysis activities

    NASA Astrophysics Data System (ADS)

    Karavakis, Edward; Andreeva, Julia; Maier, Gerhild; Khan, Akram

    2012-12-01

    The CMS Virtual Organisation (VO) uses various fully distributed job submission methods and execution backends. The CMS jobs are processed on several middleware platforms such as the gLite, the ARC and the OSG. Up to 200,000 CMS jobs are submitted daily to the Worldwide LHC Computing Grid (WLCG) infrastructure and this number is steadily growing. These mentioned factors increase the complexity of the monitoring of the user analysis activities within the CMS VO. Reliable monitoring is an aspect of particular importance; it is a vital factor for the overall improvement of the quality of the CMS VO infrastructure.

  10. The AMSAT-OSCAR-40 High Elliptical Orbit Radiation Environment Monitoring Payload - First Flight Results

    NASA Astrophysics Data System (ADS)

    Sweeting, Martin, , Sir

    Over the last decade, Surrey's micro-satellites have provided continuous monitoring of the proton and heavy-ion environment encountered in low-Earth orbit (LEO), through the use of a series of silicon PIN-diode-based particle detectors, starting with the UK Defence Evaluation Research Agency's (DERA's) Cosmic-Radiation Environment and Dosimetry (CREDO) payload, flown on-board UoSAT-3 in 1990, followed in 1992 by the Cosmic-Ray Experiment (CRE), developed at the Surrey Space Centre under a micro-satellite Technology Transfer (TT) programme operated between Surrey Satellite Technology Ltd. (SSTL) and the Korea Advanced Institute of Science and Technology (KAIST), and flown on the resulting KITSAT-1 micro-satellite. The CRE was flown again in 1993 on-board the PoSAT- 1 micro-satellite, developed under a similar TT programme operated between SSTL and Portugal. The results from all of these instruments have given a great deal of information on the nature of the low-Earth orbit (LEO) ionising radiation environment, and in the case of the PoSAT-1 CRE, continue to do so. However, to obtain a more complete "picture" of the magnetosphere, it is necessary to orbit instruments much further out in space An opportunity to do this arose in 1994 when amateur radio satellite groups (AMSAT) proposed launching a small (600 kg) communications satellite into highly elliptical orbit. This satellite, called AMSAT-OSCAR-40 (AO-40), was launched by Ariane 5 rocket on 16th November 2000, initially into a geostationary transfer orbit (GTO). The satellite has subsequently been manoeuvred into a highly elliptical, 1070 km x 58,700 km, 6.8o inclination orbit, and thus it affords the opportunity to observe the proton and heavy-ion environment through a large cross-section of Earth's magnetosphere. AO-40 carries a version of the CRE, which has been slightly modified in terms of interfaces and packaging to fit that particular satellite bus. However the particle detecting element is essentially

  11. Induction of gene expression as a monitor of exposure to ionizing radiation.

    PubMed

    Amundson, S A; Bittner, M; Meltzer, P; Trent, J; Fornace, A J

    2001-11-01

    The complex molecular responses to genotoxic stress are mediated by a variety of regulatory pathways. The transcription factor TP53 plays a central role in the cellular response to DNA-damaging agents such as ionizing radiation, but other pathways also play important roles. In addition, differences in radiation quality, such as the exposure to high-LET radiation that occurs during space travel, may influence the pattern of responses. The premise is developed that stress gene responses can be employed as molecular markers for radiation exposure using a combination of informatics and functional genomics approaches. Published studies from our laboratory have already demonstrated such transcriptional responses with doses of gamma rays as low as 2 cGy, and in peripheral blood lymphocytes (PBLs) irradiated ex vivo with doses as low as 20 cGy. We have also found several genes elevated in vivo 24 h after whole-body irradiation of mice with 20 cGy. Such studies should provide insight into the molecular responses to physiologically relevant doses, which cannot necessarily be extrapolated from high-dose studies. In addition, ongoing experiments are identifying large numbers of potential biomarkers using microarray hybridization and various irradiation protocols including expression at different times after exposure to low- and high-LET radiation. Computation-intensive informatics analysis methods are also being developed for management of the complex gene expression profiles resulting from these experiments. With further development of these approaches, it may be feasible to monitor changes in gene expression after low-dose radiation exposure and other physiological stresses that may be encountered during manned space flight, such as the planned mission to Mars.

  12. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  13. Improved technique for monitoring electrocardiograms during exposure to radio-frequency radiation

    SciTech Connect

    Watkinson, W.P.; Gordon, C.J.

    1986-01-01

    Studies were conducted which examined the effects of radio frequency (RF) radiation on heart rate (HR), deep body temperature (TEMP), and electrocardiographic (ECG) waveform parameters in anesthetized rats. One group of animals was exposed to two power levels of continuous wave RF radiation averaging 1.0 and 7.4 W/kg at a frequency of 600 MHz. A second group of animals, treated identically but not exposed to RF radiation, served as a control. The electrodes used to monitor the ECG during RF exposure were fabricated using carbon-loaded Teflon wire, a semiconductor material that does not perturb the RF field. Analyses of the ECG were conducted using a recently developed computer-assisted procedure which quantitates HR and waveform intervals over 25-40 individual ECG complexes. There were no artifacts or arrhythmias in the ECGs of the animals exposed to RF radiation. There was a significant linear correlation between HR and TEMP in the RF-exposed group which was not present in the control group.

  14. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  15. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  16. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  17. A New Quantum Sensor for Measuring Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Thomas, T.; Heinicke, D.; Peterson, R.; Morgan, P.; McDermitt, D. K.; Burba, G. G.

    2015-12-01

    A quantum sensor measures photosynthetically active radiation (PAR, in μmol of photons m-2 s-1) in the 400 nm to 700 nm waveband. Plants utilize this radiation to drive photosynthesis, though individual plant responses to incident radiation may vary within this range. The new quantum sensor (model LI-190R, LI-COR Biosciences, Lincoln, NE), with an optical filter and silicon photodiode detector housed in a cosine-corrected head, is designed to provide a better response to incident radiation across the 400-700 nm range. The new design is expected to significantly improve spectral response due to uniformity across the PAR waveband, but particularly in the wavebands from 520 nm to 600 nm and 665 nm to 680 nm, and sharp cutoffs in the regions below and above the PAR waveband. Special care was taken to make sure that PAR sensor would not substantially respond to incident radiation above the 700 nm threshold because this can lead to errors when performing measurements in environments with a large proportion of near-infrared radiation, such as canopy understory. The physical housing of the sensor is designed to be weather-resistant, to effectively shed precipitation, provide protection at high temperature and high humidity conditions, and has a cosine-corrected response to 82° zenith angle. The latter is particularly important when measuring incident radiation at low elevation angles, diffuse light, or low light conditions. This presentation describes the principles of the new design, and shows the performance results from field experiments and laboratory tests.

  18. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  19. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  20. Recent Developments in Active and Passive Distributed Temperature Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Dong, J.; Hoes, O.; Van De Giesen, N.; Sayde, C.; Ochsner, T. E.; Selker, J. S.

    2015-12-01

    In this presentation we will review recent developments in both active and passive Distributed Temperature Sensing (DTS) for soil moisture monitoring. DTS involves using fiber-optic cables to measure temperature at sub-meter resolution along cables up to several kilometers in length. Soil thermal properties depend on soil moisture. Hence, temperature variations either in response to externally-applied heating (active) or the response to net radiation (passive) can be monitored and used to infer soil moisture. DTS occupies a unique measurement niche, potentially providing soil moisture information at sub-meter resolution over extents on the order of km at sub-daily time steps. It complements observations from point sensors to other innovative measurement techniques like cosmic ray neutron detection methods and GPS reflectometry. DTS is being developed as a tool for the validation of soil moisture observations from remote sensing and for hydrological field investigations. Here, we will discuss both technological and theoretical advances in active and passive DTS for soil moisture monitoring. We will present data from new installations in the Netherlands and the USA to illustrate recent developments. In particular, we will focus on the value of combining temperature observations from DTS with physical models using data assimilation. In addition to yielding improved soil moisture and temperature profile estimates, recent research has shown the potential to also derive information on the soil thermal and hydraulic properties. We will conclude by outlining the current challenges, with particular emphasis on combining active and passive DTS.

  1. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    NASA Astrophysics Data System (ADS)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  2. Monitoring local synaptic activity with astrocytic patch pipettes

    PubMed Central

    Henneberger, Christian; Rusakov, Dmitri A

    2013-01-01

    Rapid signal exchange between astroglia and neurons has emerged as a key player in neural communication in the brain. To understand the mechanisms involved, it is often important to have access to individual astrocytes while monitoring the activity of nearby synapses. Achieving this with standard electrophysiological tools is not always feasible. The protocol presented here enables the monitoring of synaptic activity using whole-cell current-clamp recordings from a local astrocyte. This approach takes advantage of the fact that the low input resistance of electrically passive astroglia allows extracellular currents to pass through the astrocytic membrane with relatively little attenuation. Once the slice preparation is ready, it takes ~30 min to several hours to implement this protocol, depending on the experimental design, which is similar to other patch-clamp techniques. The technique presented here can be used to directly access the intracellular medium of individual astrocytes while examining synapses functioning in their immediate proximity. PMID:23196973

  3. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  4. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  5. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  6. Radiation dosimetry measurements with real time radiation monitoring device (RRMD)-II in Space Shuttle STS-79.

    PubMed

    Sakaguchi, T; Doke, T; Hayashi, T; Kikuchi, J; Hasebe, N; Kashiwagi, T; Takashima, T; Takahashi, K; Nakano, T; Nagaoka, S; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.

  7. Radiation Monitoring System in Service Module of International Space Station. Eight Years of Functioning

    NASA Astrophysics Data System (ADS)

    Benghin, Victor; Petrov, Vladislav; Panasyuk, Mikhail; Volkov, Aleksey; Nikolaev, Igor; Nechaev, Oleg; Lishnevskii, Andrey; Tel, Mikhail

    Radiation monitoring system (RMS) installed on board the Russian module (RM) of the In-ternational Space Station (ISS) is an important part of radiation safety system of a spacecraft. RMS function practically continuously beginning from 1 August 2001 year. Integration the RMS with other systems of RM permits to transmit measured values to the Earth by the telemetry and to reflect the radiation environment data directly to crew by the personal com-puter. There is a possibility to correct the RMS software directly on board the ISS. It permits improve greatly a confidence, reliability and validity of an information obtaining. The report presents the data about the equipment functioning and results of dose rate measurements during the period from the August of 2001 up to the August of 2009 both for normal radiation environ-ment and during solar particle events (SPE). Comparison of an absorbed dose rate measured by the detectors located in various points of the RM showed that difference of doses measured in low and high shielded areas of the RM at undisturbed radiation conditions is notably stable and not exceeds a factor of 2. At the same time during the disturbances caused by SPE it can reach of 30. This fact confirms the efficiency of a crew passage in the high-shielded area for decreasing SCR dose. Comparison data obtained with the RMS silicon detectors with the R-16 ionizing chamber data showed that for equal shielding conditions the measured values coincide with accuracy rather then 20On the whole the dose rate dynamics for various solar cycle periods and during the SPE demonstrates reasonably high regularity of crewmembers dose. But it is clear that onboard and personal dosimetric control is necessary for implementation of ALARA principle and minimization of the crewmembers personal doses.

  8. Radiation environment on board Russian segment of International space station measured by raditon monitoring system

    NASA Astrophysics Data System (ADS)

    Benghin, V.; Petrov, V.; Shurshakov, V.; Lyagushin, V.; Volkov, A.

    The operative radiation monitoring system (RMS) was installed on board the Russian segment of the International Space Station (RS ISS) and has been functioning since August 1, 2001.The RMS permits to measure the absorbed dose rate in 4 points of the RS ISS. In every point of measurement two semiconductor detectors one of which has no shielding and the other one has a lead spherical screen with thickness of 3 gc m-2, have been installed. The measurement results are beingprocessed and analyzed on board and simultaneously are being transmitted to the ground for estimating the radiat ion environment and hazard for the crew members and for the hardware verifying as well. For one year of RMS functioning the continuous massive of data on dose rate distribution inside RS ISS was formed. It permits to investigate the radiation environment characteristics under quiet conditions and during solar proton events (SPE). Regularities of behavior of the cosmic ray depth-dose curve for various radiation conditions in the near-earth space and during SPE were established on the basis of these data analysis. These curves permit to calculate the dose of cosmonaut's exposure with taking into account its dynamics if the shielding function of the ISS areas in which the crew members were during the exposure are known. During the future functioning of the RSM the results that will expand the massive of data for the period of solar minimum will be obtained. This will permit to investigate in detail the radiation environment inside the RS ISS depending on various helio -geophysical characteristics during its flight in various regions of the near-earth space.

  9. Noninvasive diffuse optical monitoring of head and neck tumor blood flow and oxygenation during radiation delivery

    PubMed Central

    Dong, Lixin; Kudrimoti, Mahesh; Cheng, Ran; Shang, Yu; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2012-01-01

    This study explored using a novel diffuse correlation spectroscopy (DCS) flow-oximeter to noninvasively monitor blood flow and oxygenation changes in head and neck tumors during radiation delivery. A fiber-optic probe connected to the DCS flow-oximeter was placed on the surface of the radiologically/clinically involved cervical lymph node. The DCS flow-oximeter in the treatment room was remotely operated by a computer in the control room. From the early measurements, abnormal signals were observed when the optical device was placed in close proximity to the radiation beams. Through phantom tests, the artifacts were shown to be caused by scattered x rays and consequentially avoided by moving the optical device away from the x-ray beams. Eleven patients with head and neck tumors were continually measured once a week over a treatment period of seven weeks, although there were some missing data due to the patient related events. Large inter-patient variations in tumor hemodynamic responses were observed during radiation delivery. A significant increase in tumor blood flow was observed at the first week of treatment, which may be a physiologic response to hypoxia created by radiation oxygen consumption. Only small and insignificant changes were found in tumor blood oxygenation, suggesting that oxygen utilizations in tumors during the short period of fractional radiation deliveries were either minimal or balanced by other effects such as blood flow regulation. Further investigations in a large patient population are needed to correlate the individual hemodynamic responses with the clinical outcomes for determining the prognostic value of optical measurements. PMID:22312579

  10. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  11. Electron acceleration and radiation in evolving complex active regions

    NASA Astrophysics Data System (ADS)

    Anastasiadis, A.; Gontikakis, C.; Vilmer, N.; Vlahos, L.

    2004-07-01

    We present a model for the acceleration and radiation of solar energetic particles (electrons) in evolving complex active regions. The spatio - temporal evolution of active regions is calculated using a cellular automaton model, based on self-organized criticality. The acceleration of electrons is due to the presence of randomly placed, localized electric fields produced by the energy release process, simulated by the cellular automaton model. We calculate the resulting kinetic energy distributions of the particles and their emitted X-ray radiation spectra using the thick target approximation, and we perform a parametric study with respect to number of electric fields present and thermal temperature of the injected distribution. Finally, comparing our results with the existing observations, we find that they are in a good agreement with the observed X-ray spectra in the energy range 100-1000 keV.

  12. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. PMID:26177618

  13. Active Sites Environmental Monitoring Program: FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Hicks, D.S.; Morrissey, C.M.

    1992-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from April 1991 through September 1991. The ASEMP was established in 1989 by Solid Waste Operations (SWO) and the Environmental Sciences Division, both of Oak Ridge National Laboratory, to provide early detection and performance monitoring at active low-level (radioactive) waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. A new set of action levels was developed on the basis of a statistical analysis of background contamination. These new action levels have been used to evaluate results in this report. Results of ASEMP monitoring continue to demonstrate that no LLW (except [sup 3]H) is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II, which began in early FY 1991, was >90% complete at the end of September 1991. Results of sampling of groundwater and surface waters is presented.

  14. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  15. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  16. Doppler shift radar monitoring of activity of rats in a behavioural test situation.

    PubMed

    Rose, F D; Dell, P A; Love, S

    1985-07-01

    The present study investigates the use of an activity monitoring system based upon Doppler shift radar for monitoring general activity of rats in a standard open field test situation. Significant positive correlations were found between the radar activity counts and the conventional lines crossed measure of activity. On the basis of these correlations it is suggested that this method of activity monitoring might be used in conjunction with other behavioural test situations. Further potential benefits of this activity monitoring system are discussed.

  17. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  18. Radiation Exposure Monitoring and Information Transmittal (REMIT) system. User`s manual

    SciTech Connect

    Cale, R.; Clark, T.; Dixson, R.; Hagemeyer, D.

    1993-06-01

    The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist US Nuclear Regulatory Commission (NRC)licensees in meeting the reporting requirements of the revised 10 CFR 20 and in agreement with the guidance contained in R.G. 8.7, Rev. 1, ``Instructions for Recording and Reporting Occupational Exposure Data.`` REMIT is a personal computer (PC) based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of R. G. 8.7, Rev. 1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5, REMIT allows the user to view the individual`s exposure in relation to regulatory or administrative limits and alerts the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files.

  19. System for monitoring UV radiation level in phototherapy cabins in Poland

    PubMed Central

    Narbutt, Joanna; Pawlaczyk, Mariola; Sysa-Jędrzejowska, Anna; Sobolewski, Piotr; Rajewska-Więch, Bonawentura; Lesiak, Aleksandra

    2014-01-01

    Introduction Ultraviolet phototherapy (UVP) is widely used in dermatological practice for the treatment of various skin diseases. Numerous studies support its beneficial curing effectiveness; however, overexposure to ultraviolet radiation can cause adverse health effects, such as sunburn reaction, erythema response, cataract, skin aging, etc. For these reasons, it is of special importance to monitor performance of UVP cabins using a calibration system to evaluate the UV doses incident upon the patient. Material and methods A mechanized cabin control system (CCS) is proposed. It consists of radiometers with a wide and narrow field of view to estimate the body irradiation and to identify malfunctioning cabin tubes. Quality control and quality assurance procedures are developed to keep high accuracy of the calibration procedure. The CCS has been used in the examination of two different types of UVP cabins routinely working in Poland. Results It allows precise calculation of UV doses and spatial variability of UV radiance inside the cabin, thus providing uncertainties of the doses assigned by medical staff. The CCS could potentially serve as a primary standard for monitoring various UVP cabins working in Poland. Conclusions The methodology developed to quantify UV doses in UVP cabins may be easily extended to any UV radiation source. PMID:25624865

  20. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  1. Individual Radiation Protection Monitoring in the Marshall Islands: Utrok Atoll (2003-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Tibon, S; Chee, L

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet

  2. In-vessel activation monitors in JET: Progress in modeling

    SciTech Connect

    Bonheure, Georges; Lengar, I.; Syme, B.; Popovichev, S.; Arnold, Dirk; Laubenstein, Matthias

    2008-10-15

    Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

  3. Monitoring Satellite-derived Surface Solar Radiation with Near Real Time Reference Data

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Laszlo, I.; Liu, H.

    2015-12-01

    Geostationary satellite observations of the Earth are increasingly made more frequent. For example, Himawari-8 of Japanese Meteorological Agency takes images of the planet every 10 minutes in multiple bands. Similarly, the GOES-R satellite of the US National Oceanic and Atmospheric Administration (NOAA) will make observations every 5 to 15 minutes. Products, like shortwave (solar) radiation budget at the surface, derived from these observations have or will have similar rapid refresh rates. Routine, near-real time assessment of the quality of these products ideally requires the availability of near-real time reference data. Such near-real time data has recently become available from the NOAA Surface Radiation Budget Network (SURFRAD). These data are disseminated every 15 minutes. However, in contrast to non-real-time data with fully quality control, which have a latency of 24 hours or more, the near-real time data have less quality control applied to them in order to achieve low latency. To assess applicability of this near-real time SURFRAD data for the evaluation satellite products we are using them experimentally to evaluate the quality of Downward Shortwave Radiation at the surface (DSR) retrieved operationally every hour from GOES and made available in the Geostationary Surface and Insolation Product (GSIP) . Metrics (accuracy and precision) are computed to characterize the level of agreement between satellite retrievals and the near-real time reference data. These metrics are then compared with metrics from the evaluation with the non-real time, fully quality controlled reference. The comparison shows that monitoring of DSR with near-real time data is not very different from monitoring it with non-real time data and so DSR retrievals can be evaluated hourly or shorter times depending on reference data availability.

  4. Development of optical monitor of alpha radiations based on CR-39.

    PubMed

    Joshirao, Pranav M; Shin, Jae Won; Vyas, Chirag K; Kulkarni, Atul D; Kim, Hojoong; Kim, Taesung; Hong, Seung-Woo; Manchanda, Vijay K

    2013-11-01

    Fukushima accident has highlighted the need to intensify efforts to develop sensitive detectors to monitor the release of alpha emitting radionuclides in the environment caused by the meltdown of the discharged spent fuel. Conventionally, proportional counting, scintillation counting and alpha spectrometry are employed to assay the alpha emitting radionuclides but these techniques are difficult to be configured for online operations. Solid State Nuclear Track Detectors (SSNTDs) offer an alternative off line sensitive technique to measure alpha emitters as well as fissile radionuclides at ultra-trace level in the environment. Recently, our group has reported the first ever attempt to use reflectance based fiber optic sensor (FOS) to quantify the alpha radiations emitted from (232)Th. In the present work, an effort has been made to develop an online FOS to monitor alpha radiations emitted from (241)Am source employing CR-39 as detector. Here, we report the optical response of CR-39 (on exposure to alpha radiations) employing techniques such as Atomic Force Microscopy (AFM) and Reflectance Spectroscopy. In the present work GEANT4 simulation of transport of alpha particles in the detector has also been carried out. Simulation includes validation test wherein the projected ranges of alpha particles in the air, polystyrene and CR-39 were calculated and were found to agree with the literature values. An attempt has been further made to compute the fluence as a function of the incidence angle and incidence energy of alphas. There was an excellent correlation in experimentally observed track density with the simulated fluence. The present work offers a novel approach to design an online CR-39 based fiber optic sensor (CRFOS) to measure the release of nanogram quantity of (241)Am in the environment.

  5. An active control strategy for achieving weak radiator structures

    SciTech Connect

    Naghshineh, K. . Acoustics and Radar Technology Lab.); Koopmann, G.H. . Center for Acoustics and Vibration)

    1994-01-01

    A general control strategy is presented for active suppression of total radiated sound power from harmonically excited structures based on the measurement of their response. Using the measured response of the structure together with knowledge of its structural mobility, and equivalent primary excitation force is found at discrete points along the structure. Using this equivalent primary force and performing a quadratic optimization of the power radiated form the structure, a set of control forces is found at selected points on the structure that results in minimum radiated sound power. A numerical example of this strategy is presented for a simply supported beam in a rigid baffle excited by a harmonic plane wave incident at an oblique angle. A comparison of the response of the beam with and without control forces shows a large reduction in the controlled response displacement magnitude. In addition, as the result of the action of the control forces, the magnitude of the wave number spectrum of the beam's response in the supersonic region is decreased substantially. The effect of the number and location of the actuators on reductions in sound power level is also studied. The actuators located at the anti-nodes of structural modes within the supersonic region together with those located near boundaries are found to be the most effective in controlling the radiation of sound from a structure.

  6. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.

  7. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  8. Automated system for magnetic monitoring of active volcanoes

    NASA Astrophysics Data System (ADS)

    Del Negro, Ciro; Napoli, Rosalba; Sicali, Antonino

    2002-01-01

    In order to provide a basis for short-term decision-making in the forecasting and monitoring of volcanic activity, we developed an entirely automated system of data acquisition and reduction for magnetic data. The system (Mag-Net) is designed to provide monitoring and analysis of magnetic data on Etna volcano at large distances from the central observatory. The Mag-Net system uses data from an array of continuously recording remote stations spread over the volcanic area and linked by mobile phone to the control center at the local observatory. At this location a computer receives the data and performs data sorting and reduction as well as limited evaluation to detect abnormal behavior or breakdown of remote sensors. Communication software, called MagTalk, is also designed to provide data to distant users. With a view to using continuous magnetic observations in advanced analysis techniques for volcano monitoring, the Mag-Net system also delivers two graphical user interface based applications to provide an interpretation capability. The former, called MADAP, speeds up all the data reduction processes in order to evaluate the reliability of magnetic signals. The latter, called VMM, is a procedure for modeling magnetic fields associated with tectonic and volcanic activity to facilitate the identification and interpretation of the sources of a wide spectrum of magnetic signals.

  9. Optical sensor based system to monitor caries activity

    NASA Astrophysics Data System (ADS)

    Shrestha, A.; Tahir, R.; Kishen, A.

    2007-07-01

    The aim of the study is to evaluate the ability of a visible light based spectroscopic sensor system to monitor caries activity in saliva. In this study an optical sensor is utilized to monitor the bacterial-mediated acidogenic profile of stimulated saliva using a photosensitive pH indicator. Microbiological assessment of the saliva samples were carried out using the conventional culture methods. In addition, the shifts in the pH of saliva-sucrose samples were recorded using a pH meter. The absorption spectra obtained from the optical sensor showed peak maxima at 595nm, which decreased as a function of time. The microbiological assessment showed increase in the bacterial count as a function of time. A strong positive correlation was also observed between the rates of decrease in the absorption intensity measured using the optical sensor and the decrease in pH measured using the pH meter. This study highlights the potential advantages of using the optical sensor as a sensitive and rapid chairside system for monitoring caries activity by quantification of the acidogenic profile of saliva.

  10. Landslide Activity Monitoring with the Help of Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Peterman, V.

    2015-08-01

    This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year - in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  11. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental

  12. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Arelong, E; Langinbelik, S

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Rongelap Atoll (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance

  13. Radiation monitoring systems as a tool for assessment of accidental releases at the Chernobyl and Fukushima NPPs

    NASA Astrophysics Data System (ADS)

    Shershakov, Vjacheslav; Bulgakov, Vladimir

    2013-04-01

    The experience gained during mitigation of the consequences of the accidents at the Chernobyl and Fukushima NPPs has shown that what makes different the decision-making in case of nuclear accidents is that the greatest benefit from decision-making can be achieved in the early phase of an accident. Support to such process can be provided only by a real-time decision-making support system. In case of a nuclear accident the analysis of the situation and decision-making is not feasible without an operational radiation monitoring system, international data exchange and automated data processing, and the use of computerized decision-making support systems. With this in mind, in the framework of different international programs on the Chernobyl-related issues numerous projects were undertaken to study and develop a set of methods, algorithms and programs providing effective support to emergency response decision-making, starting from accident occurrence to decision-making regarding countermeasures to mitigate effects of radioactive contamination of the environment. The presentation focuses results of the analysis of radiation monitoring data and, on this basis, refining or, for many short-lived radionuclides, reconstructing the source term, modeling dispersion of radioactivity in the environment and assessing its impacts. The obtained results allowed adding and refining the existing estimates and in some cases reconstructing doses for the public on the territories contaminated as a result of the Chernobyl accident. The activities were implemented in two stages. In the first stage, several scenarios for dispersion of Chernobyl-related radioactivity were developed. For each scenario cesium-137 dispersion was estimated and these estimates were compared with measurement data. In the second stage, the scenario which showed the best agreement of calculations and measurements was used for modeling the dispersion of iodine-131and other short-lived radionuclides. The described

  14. Monte Carlo based calibration of an air monitoring system for gamma and beta+ radiation.

    PubMed

    Sarnelli, A; Negrini, M; D'Errico, V; Bianchini, D; Strigari, L; Mezzenga, E; Menghi, E; Marcocci, F; Benassi, M

    2015-11-01

    Marinelli beaker systems are used to monitor the activity of radioactive samples. These systems are usually calibrated with water solutions and the determination of the activity in gases requires correction coefficients accounting for the different mass-thickness of the sample. For beta+ radionuclides the different distribution of the positrons annihilation points should be also considered. In this work a Monte Carlo simulation based on Geant4 is used to compute correction coefficients for the measurement of the activity of air samples. PMID:26356044

  15. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  16. Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe--a review based on the EURADOS questionnaire.

    PubMed

    Olko, P; Currivan, L; van Dijk, J W E; Lopez, M A; Wernli, C

    2006-01-01

    Among the activities of EURADOS Working Group 2 formed by experts from several European countries is the harmonisation of individual monitoring as part of radiation protection of occupationally exposed persons. Here, we provide information about thermoluminescent detectors (TLDs) applied by the European dosimetric services and the dosimetric characteristics of dosemeters in which these detectors are applied. Among 91 services from 29 countries which responded to the EURADOS questionnaire, 61 apply dosemeters with TLDs for the determination of personal dose equivalent H(p)(10) for photons and beta radiation, and 16 services use TLDs for neutron albedo dosemeters. Those most frequently used are standard lithium fluoride TLDs (mainly TLD-100, TLD-700, Polish MTS-N and MTS-7, Russian DTG-4), high-sensitive lithium fluoride (GR-200, MCP-N) and lithium borate TLDs. Some services use calcium sulphate and calcium fluoride detectors. For neutron dosimetry, most services apply pairs of LiF:Mg,Ti TLDs with (6)Li and (7)Li. The characteristics (energy response) of individual dosemeters are mainly related to the energy response of the detectors and filters applied. The construction of filters in dosemeters applied for measurements of H(p)(10) and their energy response are also reviewed. PMID:16581929

  17. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    SciTech Connect

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  18. CARER: Efficient Dynamic Sensing for Continuous Activity Monitoring

    PubMed Central

    Au, Lawrence K.; Bui, Alex A.T.; Batalin, Maxim A.; Xu, Xiaoyu; Kaiser, William J.

    2016-01-01

    Advancement in wireless health sensor systems has triggered rapidly expanding research in continuous activity monitoring for chronic disease management or promotion and assessment of physical rehabilitation. Wireless motion sensing is increasingly important in treatments where remote collection of sensor measurements can provide an in-field objective evaluation of physical activity patterns. The well-known challenge of limited operating lifetime of energy-constrained wireless health sensor systems continues to present a primary limitation for these applications. This paper introduces CARER, a software system that supports a novel algorithm that exploits knowledge of context and dynamically schedules sensor measurement episodes within an energy consumption budget while ensuring classification accuracy. The sensor selection algorithm in the CARER system is based on Partially Observable Markov Decision Process (POMDP). The parameters for the POMDP algorithm can be obtained through standard maximum likelihood estimation. Sensor data are also collected from multiple locations of the subjects body, providing estimation of an individual's daily activity patterns. PMID:22254783

  19. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization.

    PubMed

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation.

  20. Application of ISO standard 27048: dose assessment for the monitoring of workers for internal radiation exposure.

    PubMed

    Henrichs, K

    2011-03-01

    Besides ongoing developments in the dosimetry of incorporated radionuclides, there are various efforts to improve the monitoring of workers for potential or real intakes of radionuclides. The disillusioning experience with numerous intercomparison projects identified substantial differences between national regulations, concepts, applied programmes and methods, and dose assessment procedures. Measured activities were not directly comparable because of significant differences between measuring frequencies and methods, but also results of case studies for dose assessments revealed differences of orders of magnitude. Besides the general common interest in reliable monitoring results, at least the cross-border activities of workers (e.g. nuclear power plant services) require consistent approaches and comparable results. The International Standardization Organization therefore initiated projects to standardise programmes for the monitoring of workers, the requirements for measuring laboratories and the processes for the quantitative evaluation of monitoring results in terms of internal assessed doses. The strength of the concepts applied by the international working group consists in a unified approach defining the requirements, databases and processes. This paper is intended to give a short introduction into the standardization project followed by a more detailed description of the dose assessment standard, which will be published in the very near future. PMID:21212077

  1. Wireless design of a multisensor system for physical activity monitoring.

    PubMed

    Mo, Lingfei; Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John W; Freedson, Patty S

    2012-11-01

    Real-time monitoring of human physical activity (PA) is important for assessing the intensity of activity and exposure to environmental pollutions. A wireless wearable multisenor integrated measurement system (WIMS) has been designed for real-time measurement of the energy expenditure and breathing volume of human subjects under free-living conditions. To address challenges posted by the limited battery life and data synchronization requirement among multiple sensors in the system, the ZigBee communication platform has been explored for energy-efficient design. Two algorithms have been developed (multiData packaging and slot-data-synchronization) and coded into a microcontroller (MCU)-based sensor circuitry for real-time control of wireless data communication. Experiments have shown that the design enables continued operation of the wearable system for up to 68 h, with the maximum error for data synchronization among the various sensor nodes (SNs) being less than 24 ms. Experiment under free-living conditions have shown that the WIMS is able to correctly recognize the activity intensity level 86% of the time. The results demonstrate the effectiveness of the energy-efficient wireless design for human PA monitoring.

  2. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  3. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling.

    PubMed

    Teichmann, Daniel; Foussier, Jérôme; Jia, Jing; Leonhardt, Steffen; Walter, Marian

    2013-08-01

    In this paper, the method of noncontact monitoring of cardiorespiratory activity by electromagnetic coupling with human tissue is investigated. Two measurement modalities were joined: an inductive coupling sensor based on magnetic eddy current induction and a capacitive coupling sensor based on displacement current induction. The system's sensitivity to electric tissue properties and its dependence on motion are analyzed theoretically as well as experimentally for the inductive and capacitive coupling path. The potential of both coupling methods to assess respiration and pulse without contact and a minimum of thoracic wall motion was verified by laboratory experiments. The demonstrator was embedded in a chair to enable recording from the back part of the thorax.

  4. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  5. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  6. The implementation of cosmic radiation monitoring in routine flight operation of IBERIA airline of Spain: 1 y of experience of in-flight permanent monitoring.

    PubMed

    Vergara, J C Sáez; Román, R Dominguez-Mompell

    2009-10-01

    Since 2000 IBERIA and CIEMAT have been collaborating in experimental measurements of onboard radiation doses received by the crew of IBERIA commercial flights. As part of the IBERIA radiation protection program for aircrew members, a monitoring system for routine aircrew dosimetry has been implemented based on the conclusions from the experimental work and the code EPCARD 3.2. The system feeds the computer code with the predicted flight plans and registers the route dose in the corresponding file for each aircrew member. The radiation protection program also includes a validation of the computed doses with experimental tissue equivalent proportional counter measurements, which in 2008 had been extended with the permanent installation and continuous operation of MDU-Liulin Si spectrometers in eight A-340-300 aircraft. It is expected that these instruments would provide experimental data on the radiation received for 4500 flights per year, which is of special value to detect unpredictable solar particle events.

  7. Environmental Radiation Monitoring at NBS/NIST From 1960 Through 2000

    PubMed Central

    Hobbs, Thomas G.

    2001-01-01

    The program for monitoring the environment in and about the site of the National Bureau of Standards, now the National Institute of Standards and Technology, at its Gaithersburg, Maryland location began in 1960. The program includes measurements of radiation fields at the fence line of the site and of radionuclides in samples of soil, water, and biota taken within and around the site. A variety of instruments and equipment, processes and procedures, and measurement devices has been employed. To date, no measurement from the routine program has exhibited any result that could be attributed to any effluent or other effect of the radiological work conducted at the site; that includes the NIST Research Reactor, the now defunct Linear Electron Accelerator (LINAC) and other accelerators, radiochemistry, and sealed source operations. PMID:27500047

  8. New method of proportional counter feedback biasing for wide-range radiation dose-rate monitors

    SciTech Connect

    Kopp, M.K.; Gueerant, G.C.; Manning, F.W.; Valentine, K.H.

    1985-02-01

    A prototypic wide-range radiation dose-rate monitor for civil defense applications has been developed and tested. The specified dose-rate range (0 to 500 R/h) was displayed on a single readout scale by using feedback-controlled biasing of a proportional counter. This new method is based on controlling the avalanche multiplication factor (gas gain) of the counter by varying its bias voltage in response to its measured output current (i.e., detected dose rate). The counter output current varies between 0 and 1.5 nA in a quasilogarithmic response to dose rates between 0 and 500 R/h. The corresponding values of gas gain and bias voltage range from 1 to 300 and 200 to 1900 V respectively.

  9. New method of proportional counter feedback biasing for wide-range radiation dose-rate monitors

    SciTech Connect

    Kopp, M.K.; Valentine, K.H.; Guerrant, G.C.; Manning, F.W.

    1984-01-01

    A prototypic wide-range radiation dose-rate monitor for civil defense applications has been developed and tested. The specified dose-rate range (0 to 500 R/h) was displayed on a single readout scale by using feedback-controlled biasing of a proportional counter. This new method is based on controlling the avalanche multiplication factor (gas gain) of the counter by varying its bias voltage in response to its measured output current (i.e., detected dose rate). The counter output current varies between 0 and 1.5 nA in a quasi-logarithmic response to dose rates between 0 and 500 R/h. The corresponding values of gas gain and bias voltage range from 1 to 300 and 200 to 1900 V respectively.

  10. Quantification of the Deterrent Effect of Radiation Portal Monitors Using a Decision Theory Model

    SciTech Connect

    Heasler, Patrick G.; Wood, Thomas W.

    2005-04-28

    Operation of radiation portal monitors (RPMs) can be modeled as a two-person game, with the RPM operator attempting to detect any nuclear weapon passing through the portal, while the opponent tries to pass it through undetected. A key element in the defender's decision strategy is the detection algorithm he employs, while a key element of the opponent's strategy is the threat density he employs. This article constructs a game-theoretic formulation for RPM operation and calculates the ''best'' strategy for each player, called the Minimax strategy. This solution allows one to quantify the deterrent effect that the inspection system has on the opponent--that is, the reduction in threat density due to use of the system.

  11. Solar Origin of Solar Particle Events Detected by the Standard Radiation Environment Monitor of ESA

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Sandberg, I.; Anastasiadis, A.; Daglis, I. A.; Panagopoulos, I.; Mavromichalaki, H.; Papaioannou, A.; Gerontidou, M.; Nieminen, P.; Glover, A.

    2010-07-01

    Solar Particle Events (SPEs) of the 23rd Solar Cycle detected by the ESA Standard Radiation Environment Monitor (SREM) onboard the INTEGRAL satellite have been studied in order to find their connection to solar sources. X-ray, optical and radio data of solar flares that were observed by several space-based instruments during the aforementioned solar cycle have been selected. The data were reduced and thoroughly analyzed in order to establish the corresponding solar origin of the selected SPEs. The extensive scientific analysis has produced clear correlations with X class solar flares for the events of the October-November 2003, January 2005 and December 2006 periods while for the events that occurred during September 2005, correlations with X class flares are possible but not straightforward due to the complexity of the registered solar particle fluxes.

  12. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Astrophysics Data System (ADS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-03-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  13. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Technical Reports Server (NTRS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  14. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  15. Step activity monitoring in lumbar stenosis patients undergoing decompressive surgery

    PubMed Central

    Schubert, Tim; Winter, Corinna; Brandes, Mirko; Hackenberg, Lars; Wassmann, Hansdetlef; Liem, Dennis; Rosenbaum, Dieter; Bullmann, Viola

    2010-01-01

    Symptomatic degenerative central lumbar spinal stenosis (LSS) is a frequent indication for decompressive spinal surgery, to reduce spinal claudication. No data are as yet available on the effect of surgery on the level of activity measured with objective long-term monitoring. The aim of this prospective, controlled study was to objectively quantify the level of activity in central LSS patients before and after surgery, using a continuous measurement device. The objective data were correlated with subjective clinical results and the radiographic degree of stenosis. Forty-seven patients with central LSS and typical spinal claudication scheduled for surgery were included. The level of activity (number of gait cycles) was quantified for 7 consecutive days using the StepWatch Activity Monitor (SAM). Visual analogue scales (VAS) for back and leg pain, Oswestry disability index and Roland–Morris score were used to assess the patients’ clinical status. The patients were investigated before surgery and 3 and 12 months after surgery. In addition, the radiographic extent of central LSS was measured digitally on preoperative magnetic resonance imaging or computed tomography. The following results were found preoperatively: 3,578 gait cycles/day, VAS for back pain 5.7 and for leg pain 6.5. Three months after surgery, the patients showed improvement: 4,145 gait cycles/day, VAS for back pain 4.0 and for leg pain 3.0. Twelve months after surgery, the improvement continued: 4,335 gait cycles/day, VAS for back pain 4.1 and for leg pain 3.3. The clinical results and SAM results showed significant improvement when preoperative data were compared with data 3 and 12 months after surgery. The results 12 months after surgery did not differ significantly from those 3 months after surgery. The level of activity correlated significantly with the degree of leg pain. The mean cross-sectional area of the spinal canal at the central LSS was 94 mm2. The radiographic results did not

  16. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  17. [Active radiation telethermometry in the complex diagnosis of ovarian tumors].

    PubMed

    Hozhenko, A I; Peresun'ko, O P; Orenchuk, V S; Vysochyna, K V

    1999-07-01

    An active remote radiation thermometry was used in the diagnosis and differential diagnosis of ovarian tumours by determining the heat flow from the area of projection of the ovaries and control background. Overall fourty three patients with ovarian tumours were examined by this method. Significance of the results secured was verified during the histological technique-aided operation. The authors have come to the conclusion that remote thermometry involving loading tests is a simple supplementary method of investigation that is helpful in diagnosing of both benign and malignant ovarian tumours.

  18. NRC TLD direct radiation-monitoring network. Progress report, October-December 1981

    SciTech Connect

    Costello, F.; Thompson, T.; Cohen, L.

    1982-06-01

    This report is part of a continuous series providing data from the NRC's Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. This report presents data for the fourth quarter of 1981. The report presents the radiation exposure levels measured in the vicinities of NRC-licensed facilities throughout the country and includes facilities under construction, as well as those which are in operation. The TLD data are reported in terms of milliroentgens and include exposures received while the dosimeters were in transit, as well as exposures received in the field. A control TLD, labeled CTL TLD in the reports, accompanied the TLD shipment during transit and was stored in a low background area while the other TLDs were in the field. The control TLD exposure is given for the purpose of comparison and as an indication of transit exposure to the field TLDs. Station numbers which are not included represent stations which have been deleted, stations for which the TLD was lost during the quarter, or stations for which the TLD is damaged. Occasionally, a control TLD is not included because it was also lost or damaged. Two sets of data are presented for each site. The first set includes the TLD station number, its direction and distance from the site, the integrated quarterly exposure for the period, and the daily exposure rate. The second set of data summarizes in tabular form the average quarterly exposure measured at three ranges of distances from the facility.

  19. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  20. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-01-01

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm³ Ce-doped Gd-Al-Ga-garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for (133)Ba at 0.356 MeV, (22)Na at 0.511 MeV, (137)Cs at 0.662 MeV, and (60)Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm². PMID:27338392

  1. A screening model for depleted uranium testing using environmental radiation monitoring data

    SciTech Connect

    Dunfrund, F.L.; Ebinger, M.H.; Hansen, W.R.

    1996-06-01

    Information from an ecological risk assessment of depleted uranium test areas at Yuma Proving Ground (YPG) was used to update the required environmental radiation monitoring (ERM) plan. Data to be collected for the ERM can also be used to evaluate the potential for adverse radiological and toxicological effects to terrestrial reptiles and mammals in the affected areas. We developed a spreadsheet-based screening model that incorporates the ERM data and associated uncertainties. The purpose of the model is to provide a conservative estimate of radiological exposure of terrestrial, biota to DU using the ERM data. The uncertainty in the estimate is also predicted so that the variation in the radiological exposure can be used in assessing potential adverse effects from DU testing. Toxicological effects are evaluated as well as radiological effects in the same program using the same data. Our presentation shows an example data set, model calculations, and the report of expected radiation dose rates and probable kidney burdens of select mammals and reptiles. The model can also be used in an inverse mode to calculate the soil concentration required to give either a radiological dose that would produce a potential adverse effect such as fatal cancer or a toxicological dose that would result in nephrotoxic effects in mammals.

  2. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-06-21

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm³ Ce-doped Gd-Al-Ga-garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for (133)Ba at 0.356 MeV, (22)Na at 0.511 MeV, (137)Cs at 0.662 MeV, and (60)Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm².

  3. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Povoli, M.; Alagoz, E.; Bravin, A.; Cornelius, I.; Bräuer-Krisch, E.; Fournier, P.; Hansen, T. E.; Kok, A.; Lerch, M.; Monakhov, E.; Morse, J.; Petasecca, M.; Requardt, H.; Rosenfeld, A. B.; Röhrich, D.; Sandaker, H.; Salomé, M.; Stugu, B.

    2015-11-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper.

  4. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications

    PubMed Central

    Park, Hye Min; Joo, Koan Sik

    2016-01-01

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm3 Ce-doped Gd–Al–Ga–garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for 133Ba at 0.356 MeV, 22Na at 0.511 MeV, 137Cs at 0.662 MeV, and 60Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm2. PMID:27338392

  5. Community Radiation Monitoring Program annual report, October 1, 1989--September 30, 1990

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1991-07-01

    The events of FY 1990 indicate that another successful year in the evolution of the Community Radiation Monitoring Program is in the books. The agencies and organizations involved in the program have developed a sound and viable working relationship, and it appears that the major objectives, primarily dispelling some of the concerns over weapons testing and radiation on the part of the public, are being effectively addressed. The program is certainly a dynamic operation, growing and changing to meet perceived needs and goals as more experience is gained through our work. The change in focus on our public outreach efforts will lead us to contacts with more students and schools, service clubs and special interest groups in the future, and will refine, and hopefully improve, our communication with the public. If that can be accomplished, plus perhaps influencing a few more students to stay in school and even grow up to be scientists, engineers and better citizens, we will be closer to having achieved our goals. It is important to note that the success of the program has occurred only because the people involved, from the Department of Energy, the Environmental Protection Agency, the Desert Research Institute, the University of Utah and the Station Managers and Alternates work well and hard together. Our extended family'' is doing a good job. 9 refs., 1 fig., 3 tabs.

  6. Response of radiation monitoring instruments to normalized risk quantities of radionuclides

    SciTech Connect

    Eckerman, K.F. ); Carriker, A.W. . Research and Special Programs Administration)

    1992-03-01

    Radiation survey instruments can be useful to emergency personnel responding to transportation and other accidents only if the personnel have some knowledge of the instrument's ability to detect the radionuclides potentially present. A methodology for evaluating the response of survey instruments was developed and applied to the civil defense CDV-700 and CDV-715 instruments. The response of these instruments, to about 350 radionuclides, was evaluated relative to a fixed hazard represented by exposure pathways associated with transportation accidents. In addition to the response of the instruments to each radionuclide, the tabulation includes: the half-life, types of radiations emitted, and the maximum activity potentially present within a Type A transportation package. Although this work was directed towards civil defense instruments, the methodology could be extended to evaluate other survey instruments.

  7. Response of radiation monitoring instruments to normalized risk quantities of radionuclides

    SciTech Connect

    Eckerman, K.F.; Carriker, A.W.

    1992-03-01

    Radiation survey instruments can be useful to emergency personnel responding to transportation and other accidents only if the personnel have some knowledge of the instrument`s ability to detect the radionuclides potentially present. A methodology for evaluating the response of survey instruments was developed and applied to the civil defense CDV-700 and CDV-715 instruments. The response of these instruments, to about 350 radionuclides, was evaluated relative to a fixed hazard represented by exposure pathways associated with transportation accidents. In addition to the response of the instruments to each radionuclide, the tabulation includes: the half-life, types of radiations emitted, and the maximum activity potentially present within a Type A transportation package. Although this work was directed towards civil defense instruments, the methodology could be extended to evaluate other survey instruments.

  8. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  9. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R., Jr.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaIglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.

  10. Monitoring of atmospheric gamma radiation and radon observations of rainfall events in southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Martin, I. M.; Alves, M. A.; Gomes, M. P.

    2013-05-01

    It is well known that we live in an environment that is under the influence of radioactivity. Radioactive elements in Earth's crust, cosmic rays, and anthropogenic sources contribute to the radiation of different types (alpha, beta, gamma and X-rays) that can be measured. An interesting phenomenon associated with environmental radioactivity is radon washout wherein the radon gas that is produced by the decay of natural radioactive elements and released into the atmosphere is concentrated near ground by falling rain. Rain drops trap radon in their interior and transport this radioactive gas to the surface. In this study, we describe the monitoring of the localized and temporary increase in the natural radioactivity caused by radon washout using a 3"x 3" NaI(Tl) scintillator. Variations in the radioactivity were correlated with changes in meteorological conditions. We observed that even though rainfall is a main factor in the increase of natural radioactivity near ground, other factors such as the presence of fog and winds play an important role in the concentration and dispersion of radon. Because of the low cost of our experimental set up, we believe that this is an experiment that could easily be conducted in most universities and could also be used to monitor environmental radioactivity levels.

  11. Space Weather Monitoring and Forecasting Activity in NICT

    NASA Astrophysics Data System (ADS)

    Nagatsuma, Tsutomu; Watari, Shinichi; T. Murata, Ken

    Disturbances of Space environment around the Earth (geospace) is controlled by the activity of the Sun and the solar wind. Disturbances in geospace sometimes cause serious problems to satellites, astronauts, and telecommunications. To minimize the effect of the problems, space weather forecasting is necessary. In Japan, NICT (National Institute of Information and Communications Technology) is in charge of space weather forecasting services as a regional warning center of International Space Environment Service. With help of geospace environment data exchanging among the international cooperation, NICT operates daily space weather forecast service every day to provide information on nowcasts and forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. For prompt reporting of space weather information, we also conduct our original observation networks from the Sun to the upper atmosphere: Hiraiso solar observatory, domestic ionosonde networks, magnetometer & HF radar observations in far-east Siberia and Alaska, and south-east Asia low-latitude ionospheric network (SEALION). ACE (Advanced Composition Explorer) and STEREO (Solar TErrestrial RElations Observatory) real-time beacon data are received using our antenna facilities to monitor the solar and solar wind conditions in near real-time. Our current activities and future perspective of space weather monitoring and forecasting will be introduced in this report.

  12. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  13. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  14. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  15. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  16. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques.

  17. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  18. Modeling of ultrasonic and terahertz radiations in defective tiles for condition monitoring of thermal protection systems

    NASA Astrophysics Data System (ADS)

    Kabiri Rahani, Ehsan

    Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was

  19. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  20. Photosynthetically active radiation and its relationship with global solar radiation in Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Ma, Yingying; Hu, Bo; Zhang, Miao

    2014-08-01

    Photosynthetically active radiation (PAR) and other solar components were observed for a period of 3 years at Wuhan, China to determine for the first time the temporal variability of PAR fraction [PAR/G (G here stands for global solar radiation)] and its dependence on different sky conditions in Central China. PAR, G and PAR/G showed similar seasonal features that peaked in summer and reached their lowest values in winter. The seasonal PAR/G ranged from 1.70 E MJ(-1) (winter) to 2.01 E MJ(-1) (summer) with an annual mean value of 1.89 E MJ(-1). Hourly values of PAR/G increased from 1.78 to 2.11 E MJ(-1) on average as sky conditions changed from clear to cloudy. Monthly mean hourly PAR/G revealed a diurnal variation, with highest values observed around sunrise and sunset, slightly higher PAR fractions were also found around noon for most months. The effect of daylength on PAR/G was also studied and no significant impact was found. Three models were developed to estimate PAR from G. These models consisted of atmospheric parameters that were found to cause substantial changes of PAR/G, such as sky clearness, brightness, path length and the sky clearness index. The estimations obtained from different models were very close to the measured values with maximum relative errors below 8 % (hourly values) in Wuhan. The models were not only tested at seven radiation stations in Central China, but also verified in six stations with different climates in China. The models were found to estimate PAR accurately from commonly available G data in Central China; however, the results also implied that the models need to be modified to account for local climatic conditions when applied to the whole country.

  1. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  2. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  3. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  4. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  5. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  6. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  7. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  8. Fast calcium sensor proteins for monitoring neural activity

    PubMed Central

    Badura, Aleksandra; Sun, Xiaonan Richard; Giovannucci, Andrea; Lynch, Laura A.; Wang, Samuel S.-H.

    2014-01-01

    Abstract. A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca2+ and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum in vivo. Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection. PMID:25558464

  9. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... review and monitor? The Secretary reviews and monitors the performance of construction activities under 25 CFR 900 subpart J and 25 CFR 1000 subpart K. ... 25 Indians 1 2011-04-01 2011-04-01 false What activities may the Secretary review and monitor?...

  10. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... review and monitor? The Secretary reviews and monitors the performance of construction activities under 25 CFR 900 subpart J and 25 CFR 1000 subpart K. ... 25 Indians 1 2010-04-01 2010-04-01 false What activities may the Secretary review and monitor?...

  11. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    SciTech Connect

    Livesay, Jake; Guzzardo, Tyler; Lousteau, Angela L

    2012-02-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  12. Intercepted photosynthetically active radiation estimated by spectral reflectance

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1984-01-01

    Interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS (7-5)/(7+5) for five planting dates of wheat for 1978-79 and 1979-80 at Phoenix, Arizona. Intercepted PAR was calculated from leaf area index and stage of growth. Linear relatinships were found with greeness and normalized difference with separate relatinships describing growth and senescence of the crop. Normalized difference was significantly better than greenness for all planting dates. For the leaf area growth portion of the season the relation between PAR interception and normalized difference was the same over years and planting dates. For the leaf senescence phase the relationships showed more variability due to the lack of data on light interception in sparse and senescing canopies. Normalized difference could be used to estimate PAR interception throughout a growing season.

  13. Panel Endorses Active Monitoring for Low-Risk Prostate Cancer

    Cancer.gov

    An independent panel convened this week by NIH has concluded that many men with localized, low-risk prostate cancer should be closely monitored, permitting treatment to be delayed until warranted by disease progression. However, monitoring strategies—such

  14. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  15. Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project

    SciTech Connect

    Lepel, Elwood A.; Hensley, Walter K.

    2009-12-01

    Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

  16. [Evaluation of an Experimental Production Wireless Dose Monitoring System for Radiation Exposure Management of Medical Staff].

    PubMed

    Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung

    2015-08-01

    Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics.

  17. A Cs2LiYCl6:Ce-based advanced radiation monitoring device

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Dallmann, N.; Baginski, M. J.; Best, D. J.; Smith, M. B.; Graham, S. A.; Dathy, C.; Frank, J. M.; McClish, M.

    2015-06-01

    Cs2LiYCl6:Ce3+ (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups.

  18. Monitoring sources of nuclear radiation in space. Part 1: Early 1984 observations, revision

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Kurfess, J. D.; Messina, D. C.

    1989-05-01

    Nuclear radiation from the reactor powered satellite COSMOS 1579 was monitored by the gamma ray spectrometer (GRS) on NASA's Solar Maximum Mission satellite (SMM). Gamma rays from the RORSAT (Radar Ocean Reconnaissance Satellites) were detected about every 4 days as it passed within about 500 km of SMM. In addition, events attributed to positrons emitted from the outer shell of COSMOS 1579 were detected on the average of once every about 1.5 days. These positrons were detected at large distances (less than or = 5000 km) from COSMOS after being stored in the earth's magnetic field for seconds or minutes. The rate of the positron detections is about a factor of two higher than observed for most of the earlier RORSAT's detected by SMM. At present, this increase is unexplained. The qualitative features of the measured gamma-ray spectrum from COSMOS 1579 are similar to those of preceding satellites; however, the spectral features are clearer. A model is presented for the origin of these features which suggests the presence of significant amounts of beryllium, sodium, potassium, molybdenum and lithium and/or hydrogen lying with tens of gm/sq cm of material. There is also spectral evidence for the presence of either iron or aluminum. Based on this model, a conservative lower limit was obtained to the thermal power of the reactor on COSMOS 1579. This lower limit is 30 kW.

  19. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  20. Standardizing accelerometer-based activity monitor calibration and output reporting.

    PubMed

    Coolbaugh, Crystal L; Hawkins, David A

    2014-08-01

    Wearable accelerometer-based activity monitors (AMs) are used to estimate energy expenditure and ground reaction forces in free-living environments, but a lack of standardized calibration and data reporting methods limits their utility. The objectives of this study were to (1) design an inexpensive and easily reproducible AM testing system, (2) develop a standardized calibration method for accelerometer-based AMs, and (3) evaluate the utility of the system and accuracy of the calibration method. A centrifuge-type device was constructed to apply known accelerations (0-8g) to each sensitive axis of 30 custom and two commercial AMs. Accelerometer data were recorded and matrix algebra and a least squares solution were then used to determine a calibration matrix for the custom AMs to convert raw accelerometer output to units of g's. Accuracy was tested by comparing applied and calculated accelerations for custom and commercial AMs. AMs were accurate to within 4% of applied accelerations. The relatively inexpensive AM testing system (< $100) and calibration method has the potential to improve the sharing of AM data, the ability to compare data from different studies, and the accuracy of AM-based models to estimate various physiological and biomechanical quantities of interest in field-based assessments of physical activity.

  1. Smart helmet: Monitoring brain, cardiac and respiratory activity.

    PubMed

    von Rosenberg, Wilhelm; Chanwimalueang, Theerasak; Goverdovsky, Valentin; Mandic, Danilo P

    2015-01-01

    The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort. PMID:26736636

  2. Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Sanada, Yukihisa; Kondo, Atsuya; Sugita, Takeshi; Nishizawa, Yukiyasu; Yuuki, Youichi; Ikeda, Kazutaka; Shoji, Yasunori; Torii, Tatsuo

    2014-11-01

    The Great East Japan Earthquake that occurred on 11 March 2011 generated a series of large tsunami waves that caused serious damage to the Fukushima Daiichi nuclear power plant, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. In recent years, technologies for unmanned helicopters have been developed and applied in various fields. In expectation of the application of unmanned helicopters in airborne radiation monitoring, in this study we developed a radiation monitoring system for aerial use. We then measured the radiation level by using unmanned helicopters in areas where the soil had been contaminated by radioactive caesium emitted from the nuclear power plant to evaluate the ambient dose rate distribution around the site. We found that in dry riverbeds near the nuclear power plant, the dose rate was higher than that in the surrounding areas. The results of our measurements show that radiation monitoring using this system was useful in measuring radioactivity in contaminated areas.

  3. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  4. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  5. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  6. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  7. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.

    2009-12-01

    We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis

  8. [Solar activity, dynamics of the ozone layer and possible role of ultraviolet radiation in heliobiology].

    PubMed

    Vladimirskiĭ, B M

    1982-01-01

    Solar activity influences the ozonosphere thickness, thus changing the intensity of the near-Earth ultraviolet radiation in the B band. In certain regions the radiation may change by 10--15%, with solar activity varying from its maximum to minimum. The variations in the ultraviolet intensity are very likely to be environmentally important. Thus, solar ultraviolet radiation at lambda = 290 -- 340 nm acts as one more physical agent transferring the effect of solar activity into the biosphere.

  9. The First Results of Monitoring Galactic Magnetar Activities with MAXI/GSC

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yujin; Mihara, Tatehiro; Sugizaki, Mutsumi; Kohama, Mitsuhiro; Yamamoto, Takayuki; Suzuki, Motoko; Matsuoka, Masaru; Kawai, Nobuyuki; Morii, Mikio; Sugimori, Kohsuke; Yoshida, Atsumasa; Yamaoka, Kazu-Taka; Nakahira, Satoshi; Negoro, Hitoshi; Nakajima, Motoki; Isobe, Naoki; Maxi Team

    Magnetars are strongly magnetized neutron stars with surface magnetic fields up to 1015 G. In the galactic plane, 5 soft gamma repeaters (SGRs) and 8 anomalous X-ray pulsars (AXPs) are known as X-ray counterpart of the magnetars based on observational and theoretical studies. They exhibit thermal soft X-ray emission below ˜10 keV with a few mCrab fluxes. Interest-ingly, a hard power law component was found above ˜10 keV with a very hard index of -1 using INTEGRAL and Suzaku data. Some of the SGRs and AXPs presented a flux increasing by a factor of a few. During the high flux phases, some SGRs and AXPs exhibited high burst activities (e.g., Enoto et al. 2009) and/or enhanced quiescent emission with unusual spectral properties (e.g., Kaneko et al. 2010). In order to investigate radiation mechanisms, observa-tions of the high flux phases are important as well as those of the low flux phases. Therefore continuous monitoring of the SGRs and the AXPs are crucial to know their activities. Thanks to a wide field of view and a good sensitivity of the MAXI/GSC, it is suitable for the continuous monitoring of the SGRs and the AXPs. The MAXI/GSC has a better sensi-tivity than RXTE by a factor of a few in an energy range of 2-30 keV, and therefore detects ˜4 mCrab sources using accumulated data for ˜4 weeks. Among the 5 SGRs and 8 AXPs, AXP 4U 0142+614 and AXP 1E 1048.1-5937 are detected at least. In this paper, we will re-port the first results of monitoring the galactic SGRs and AXPs such as long-term light curves with the MAXI/GSC.

  10. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    SciTech Connect

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  11. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  12. Design and operation of a whole-body monitoring system for the Goiania radiation accident

    SciTech Connect

    Oliveira, C.A.; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. )

    1991-01-01

    With as many individuals involved in the Goiania 137Cs accident who had high levels of internal contamination, it was necessary to improvise a whole-body counter installation in loco. The in-vivo counting system was located in a 4.0 X 3.5 X 3.5-m room, where seven layers of 2-mm lead sheets with dimensions of 2.0 m X 1.0 m were overlaid on the floor at loci that were equidistant from the walls. A 20-cm diameter NaI (Tl) detector was installed at a height of 2.05 m above the floor at the center of the room. The detector was shielded and collimated with 5 cm of lead. The enormous amounts of activity in the subjects required the detector to be positioned at a height of 2.05 m. Subjects were required to wear disposable clothing and lie on a reclining, fiberglass chair. Counting time for the subjects was 2 min (live-time). The minimum detectable 137Cs activity for this counting time was 7.3 kBq* (0.05 significance level). Besides the accident victims, all individuals who had direct or indirect contact with contaminated people or areas were also monitored. More than 300 people of both sexes, with ages varying from a few months to 72 y, were measured for whole-body radioactivity. The observed activities ranged from less than the minimum detectable activity (MDA) to 59 MBq.

  13. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  14. Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring

    PubMed Central

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A.; Basu, Ananda; Kudva, Yogish C.

    2013-01-01

    Abstract Background In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. Subjects and Methods In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Results Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40–45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35–40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Conclusions Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose–insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts. PMID

  15. Up-stream events in the nuclear factor κB activation cascade in response to sparsely ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Langen, Britta; Klimow, Galina; Ruscher, Roland; Schmitz, Claudia; Baumstark-Khan, Christa; Reitz, Günther

    2009-10-01

    Radiation is a potentially limiting factor for manned long-term space missions. Prolonged exposure to galactic cosmic rays may shorten the healthy life-span after return to Earth due to cancer induction. During the mission, a solar flare can be life threatening. For better risk estimation and development of appropriate countermeasures, the study of the cellular radiation response is necessary. Since apoptosis may be a mechanism the body uses to eliminate damaged cells, the induction by cosmic radiation of the nuclear anti-apoptotic transcription factor nuclear factor κB (NF-κB) could influence the cancer risk of astronauts exposed to cosmic radiation by improving the survival of radiation-damaged cells. In previous studies using a screening assay for the detection of NF-κB-dependent gene induction (HEK-pNF-κB-d2EGFP/Neo cells), the activation of this transcription factor by heavy ions was shown [Baumstark-Khan, C., Hellweg, C.E., Arenz, A., Meier, M.M. Cellular monitoring of the nuclear factor kappa B pathway for assessment of space environmental radiation. Radiat. Res. 164, 527-530, 2005]. Studies with NF-κB inhibitors can map functional details of the NF-κB pathway and the influence of radiation-induced NF-κB activation on various cellular outcomes such as survival or cell cycle arrest. In this work, the efficacy and cytotoxicity of four different NF-κB inhibitors, caffeic acid phenethyl ester (CAPE), capsaicin, the proteasome inhibitor MG-132, and the cell permeable peptide NF-κB SN50 were analyzed using HEK-pNF-κB-d2EGFP/Neo cells. In the recommended concentration range, only CAPE displayed considerable cytotoxicity. CAPE and capsaicin partially inhibited NF-κB activation by the cytokine tumor necrosis factor α. MG-132 completely abolished the activation and was therefore used for experiments with X-rays. NF-κB SN-50 could not reduce NF-κB dependent expression of the reporter destabilized Enhanced Green Fluorescent Protein (d2EGFP). MG-132

  16. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  17. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  18. Geophysical monitoring of microbial activity during stimulated subsurface bioremediation

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Kemna, A.; Wilkins, M.; Druhan, J.; Arntzen, E.; N'guessan, L.; Long, P.; Hubbard, S.; Banfield, J.

    2007-12-01

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor microbe-mediated iron and sulfate reduction during acetate amendment of a uranium-contaminated aquifer near Rifle, CO. During induced polarization (IP) measurements, spatiotemporal variations in the phase response between applied and measured voltages correlated with changes in groundwater geochemistry indicative of microbial iron and sulfate reduction and sulfide mineral precipitation. The enhanced sensitivity of the high and low frequency phase responses to accumulated aqueous iron and sulfide, respectively, provide the ability to discriminate the dominant subsurface biogeochemical process. The spectral effect was verified and calibrated using a biostimulated column experiment containing Rifle sediments and groundwater. Sediments and fluids recovered from regions of the field site exhibiting an anomalous phase response were enriched in sorbed Fe(II) and cell-associated 2-4 nm diameter FeS nanoparticles. These mineral precipitates and accumulated electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the IP response. The results reveal the usefulness of multi-frequency IP measurements for discriminating mineralogical and geochemical changes during stimulated subsurface bioremediation.

  19. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  20. Monitoring the biological activity of abdominal aortic aneurysms Beyond Ultrasound

    PubMed Central

    Forsythe, Rachael O; Newby, David E; Robson, Jennifer M J

    2016-01-01

    Abdominal aortic aneurysms (AAAs) are an important cause of morbidity and, when ruptured, are associated with >80% mortality. Current management decisions are based on assessment of aneurysm diameter by abdominal ultrasound. However, AAA growth is non-linear and rupture can occur at small diameters or may never occur in those with large AAAs. There is a need to develop better imaging biomarkers that can identify the potential risk of rupture independent of the aneurysm diameter. Key pathobiological processes of AAA progression and rupture include neovascularisation, necrotic inflammation, microcalcification and proteolytic degradation of the extracellular matrix. These processes represent key targets for emerging imaging techniques and may confer an increased risk of expansion or rupture over and above the known patient-related risk factors. Magnetic resonance imaging, using ultrasmall superparamagnetic particles of iron oxide, can identify and track hotspots of macrophage activity. Positron emission tomography, using a variety of targeted tracers, can detect areas of inflammation, angiogenesis, hypoxia and microcalcification. By going beyond the simple monitoring of diameter expansion using ultrasound, these cellular and molecular imaging techniques may have the potential to allow improved prediction of expansion or rupture and to better guide elective surgical intervention. PMID:26879242

  1. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  2. Development of Diagnostic Reference Levels Using a Real-Time Radiation Dose Monitoring System at a Cardiovascular Center in Korea.

    PubMed

    Kim, Jungsu; Seo, Deoknam; Choi, Inseok; Nam, Sora; Yoon, Yongsu; Kim, Hyunji; Her, Jae; Han, Seonggyu; Kwon, Soonmu; Park, Hunsik; Yang, Dongheon; Kim, Jungmin

    2015-12-01

    Digital cardiovascular angiography accounts for a major portion of the radiation dose among the examinations performed at cardiovascular centres. However, dose-related information is neither monitored nor recorded systemically. This report concerns the construction of a radiation dose monitoring system based on digital imaging and communications in medicine (DICOM) data and its use at the cardiovascular centre of the University Hospitals in Korea. The dose information was analysed according to DICOM standards for a series of procedures, and the formulation of diagnostic reference levels (DRLs) at our cardiovascular centre represents the first of its kind in Korea. We determined a dose area product (DAP) DRL for coronary angiography of 75.6 Gy cm(2) and a fluoroscopic time DRL of 318.0 s. The DAP DRL for percutaneous transluminal coronary intervention was 213.3 Gy cm(2), and the DRL for fluoroscopic time was 1207.5 s.

  3. Development of Diagnostic Reference Levels Using a Real-Time Radiation Dose Monitoring System at a Cardiovascular Center in Korea.

    PubMed

    Kim, Jungsu; Seo, Deoknam; Choi, Inseok; Nam, Sora; Yoon, Yongsu; Kim, Hyunji; Her, Jae; Han, Seonggyu; Kwon, Soonmu; Park, Hunsik; Yang, Dongheon; Kim, Jungmin

    2015-12-01

    Digital cardiovascular angiography accounts for a major portion of the radiation dose among the examinations performed at cardiovascular centres. However, dose-related information is neither monitored nor recorded systemically. This report concerns the construction of a radiation dose monitoring system based on digital imaging and communications in medicine (DICOM) data and its use at the cardiovascular centre of the University Hospitals in Korea. The dose information was analysed according to DICOM standards for a series of procedures, and the formulation of diagnostic reference levels (DRLs) at our cardiovascular centre represents the first of its kind in Korea. We determined a dose area product (DAP) DRL for coronary angiography of 75.6 Gy cm(2) and a fluoroscopic time DRL of 318.0 s. The DAP DRL for percutaneous transluminal coronary intervention was 213.3 Gy cm(2), and the DRL for fluoroscopic time was 1207.5 s. PMID:25700616

  4. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  5. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  6. ACTIGRAPH AND ACTICAL PHYSICAL ACTIVITY MONITORS: A PEEK UNDER THE HOOD

    PubMed Central

    John, Dinesh; Freedson, Patty

    2011-01-01

    Since the 1980s, accelerometer-based activity monitors have been used by researchers to quantify physical activity. The technology of these monitors has continuously evolved. For example, changes have been made to monitor hardware (type of sensor [e.g., piezoelectric, piezoresistive, capacitive]) and output format (counts vs. raw signal). Commonly used activity monitors belong to the ActiGraph and the Actical families This article presents information on several electro-mechanical aspects of these commonly used activity monitors. The majority of the article focuses on the evolution of the ActiGraph activity monitor by describing the differences among the 7164, the GT1M, and the GT3X models. This is followed by brief descriptions of the influences of device firmware and monitor calibration status. We also describe the Actical, but the discussion is short because this device has not undergone any major changes since it was first introduced. This paper may help researchers gain a better understanding of the functioning of activity monitors. For example, a common misconception among physical activity researchers is that the ActiGraph GT1M and GT3X are piezoelectric sensor-based monitors. Thus, this information may also help researchers to describe these monitors more accurately in scientific publications. PMID:22157779

  7. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    SciTech Connect

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans; Kidder, Michelle; Polyzos, Georgios; Leonard, Keith J

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  8. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    SciTech Connect

    Carozzo, Simone; Schardt, Dieter; Narici, Livio; Combs, Stephanie E.; Debus, Jürgen; Sannita, Walter G.

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  9. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  10. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    SciTech Connect

    Stewart, B; Kanal, K; Dickinson, R; Zamora, D

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structured Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides

  11. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  12. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  13. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  14. A New Active Space Radiation Instruments for the International Space Station, A-DREAMS

    NASA Astrophysics Data System (ADS)

    Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo

    For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.

  15. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  16. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984. [Contains glossary

    SciTech Connect

    Soldat, J.K.; Price, K.R.; McCormack, W.D.

    1986-02-01

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations.

  17. Non Invasive Water Level Monitoring on Boiling Water Reactors Using Internal Gamma Radiation: Application of Soft Computing Methods

    SciTech Connect

    Fleischer, Sebastian; Hampel, Rainer

    2006-07-01

    To provide best knowledge about safety-related water level values in boiling water reactors (BWR) is essentially for operational regime. For the water level determination hydrostatic level measurement systems are almost exclusively applied, because they stand the test over many decades in conventional and nuclear power plants (NPP). Due to the steam generation especially in BWR a specific phenomenon occurs which leads to a water-steam mixture level in the reactor annular space and reactor plenum. The mixture level is a high transient non-measurable value concerning the hydrostatic water level measuring system and it significantly differs from the measured collapsed water level. In particular, during operational and accidental transient processes like fast negative pressure transients, the monitoring of these water levels is very important. In addition to the hydrostatic water level measurement system a diverse water level measurement system for BWR should be used. A real physical diversity is given by gamma radiation distribution inside and outside the reactor pressure vessel correlating with the water level. The vertical gamma radiation distribution depends on the water level, but it is also a function of the neutron flux and the coolant recirculation pump speed. For the water level monitoring, special algorithms are required. An analytical determination of the gamma radiation distribution outside the reactor pressure vessel is impossible due to the multitude of radiation of physical processes, complicated non-stationary radiation source distribution and complex geometry of fixtures. For creating suited algorithms Soft Computing methods (Fuzzy Sets Theory, Artificial Neural Networks, etc.) will be used. Therefore, a database containing input values (gamma radiation distribution) and output values (water levels) had to be built. Here, the database was established by experiments (data from BWR and from a test setup) and simulation with the authorised thermo

  18. Recent radiation effects activities at JPL: Coping with COTS

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Johnston, A.; Lee, C.; Swift, G.; Rax, B.

    1997-01-01

    Radiation effects and testing programs on commercial off-the-shelf (COTS) devices and circuits, which are important for NASA programs, are discussed. Demands for increased performance levels in spacecraft systems is stimulating the use of electronic and photonic devices. Some advances in electronics to reach high performance will result in the miniaturization of devices, which will lead to increased radiation vulnerability.

  19. Simple photoelectron x-ray beam position monitor for synchrotron radiation

    SciTech Connect

    Heald, S.M.

    1985-01-01

    A UHV compatible x-ray beam position monitor is described. The monitor operates by detecting the photoelectrons emitted by two parallel tungsten wires. A key feature of the monitor is the simplicity of its design and construction which allows it to fit on a 2 3/4 in. conflat flange. When combined with a simple log-ratio current amplifier the monitor gives an output linear in the beam position with a sensitivity better than 0.02 mm.

  20. Radiation protection, radioactive waste management and site monitoring at the nuclear scientific experimental and educational centre IRT-Sofia at INRNE-BAS.

    PubMed

    Mladenov, Al; Stankov, D; Nonova, Tz; Krezhov, K

    2014-11-01

    This article identifies important components and describes the safe practices in implementing radiation protection and radioactive waste management programmes, and in their optimisation at the Nuclear Scientific Experimental and Educational Centre with research reactor IRT at INRNE-BAS. It covers the instrumentation and personal protective equipment and organisational issues related to the continuous site monitoring. The reactor is under major reconstruction and the measures applied to radiation monitoring of environment and working area focused on restricting the radiation exposure of the staff as well as compliance with international good practices related to the environmental and public radiation safety requirements are also addressed.

  1. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  2. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; VanSuetendael, N. J.; Snyder, S. J.; Clements, J. S.

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  3. Estimation of Evapotranspiration as a function of Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Wesley, E.; Migliaccio, K.; Judge, J.

    2012-12-01

    The purpose of this research project is to more accurately measure the water balance and energy movements to properly allocate water resources at the Snapper Creek Site in Miami-Dade County, FL, by quantifying and estimating evapotranspiration (ET). ET is generally estimated using weather based equations, this project focused on estimating ET as a function of Photosynthetic Active Radiation (PAR). The project objectives were first to compose a function of PAR and calculated coefficients that can accurately estimate daily ET values with the least amount of variables used in its estimation equation, and second, to compare the newly identified ET estimation PAR function to TURC estimations, in comparison to our actual Eddy Covariance (EC) ET data and determine the differences in ET values. PAR, volumetric water content (VWC), and temperature (T) data were quality checked and used in developing singular and multiple variable regression models fit with SigmaPlot software. Fifteen different ET estimation equations were evaluated against EC ET and TURC estimated ET using R2 and slope factors. The selected equation that best estimated EC ET was cross validated using a 5 month data set; its daily and monthly ET values and sums were compared against the commonly used TURC equation. Using a multiple variable regression model, an equation with three variables (i.e., VWC, T, and PAR) was identified that best fit EC ET daily data. However, a regression was also found that used only PAR and provided ET predictions of similar accuracy. The PAR based regression model predicted daily EC ET more accurately than the traditional TURC method. Using only PAR to estimate ET reduces the input variables as compared to using the TURC model which requires T and solar radiation. Thus, not only is the PAR approach more accurate but also more cost effective. The PAR-based ET estimation equation derived in this study may be over fit considering only 5 months of data were used to produce the PAR

  4. High Energy Radiation Induced Activation of COX-2 and MMP-9 is Mediated by NF-kappaB

    NASA Astrophysics Data System (ADS)

    Rolle, G.; Munyu, S.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.

    2010-04-01

    Space radiation is a known carcinogen, and astronauts are exposed to high-energy radiation. In this study, we demonstrate that high-energy radiation activates cylooxygenase-2 and matrix metalloproteinase-9 through the NF-kB pathway.

  5. A defense in depth approach to radiation protection for 125I production activities.

    PubMed

    Culp, T; Potter, C A

    2001-08-01

    Not all operational radiation protection situations lend themselves to simple solutions. Often a Radiation Protection Program must be developed and implemented for difficult situations. A defense in depth approach to radiation protection was developed for 125I production activities. Defense in depth relies on key radiation protection elements that tend to be mutually supportive and in combination provide reasonable assurance that the overall desired level of protection has been provided. For difficult situations, defense in depth can provide both a reasonable and appropriate approach to radiation protection.

  6. State monitoring activities related to Pfiesteria-like organisms.

    PubMed Central

    Magnien, R E

    2001-01-01

    In response to potential threats to human health and fish populations, six states along the east coast of the United States initiated monitoring programs related to Pfiesteria-like organisms in 1998. These actions were taken in the wake of toxic outbreaks of Pfiesteria piscicida Steidinger & Burkholder in Maryland during 1997 and previous outbreaks in North Carolina. The monitoring programs have two major purposes. The first, rapid response, is to ensure public safety by responding immediately to conditions that may indicate the presence of Pfiesteria or related organisms in a toxic state. The second, comprehensive assessment, is to provide a more complete understanding of where Pfiesteria-like organisms may become a threat, to understand what factors may stimulate their growth and toxicity, and to evaluate the impacts of these organisms upon fish and other aquatic life. In states where human health studies are being conducted, the data from both types of monitoring are used to provide information on environmental exposure. The three elements included in each monitoring program are identification of Pfiesteria-like organisms, water quality measurements, and assessments of fish health. Identification of Pfiesteria-like organisms is a particularly difficult element of the monitoring programs, as these small species cannot be definitively identified using light microscopy; newly applied molecular techniques, however, are starting to provide alternatives to traditional methods. State monitoring programs also offer many opportunities for collaborations with research initiatives targeting both environmental and human health issues related to Pfiesteria-like organisms. PMID:11677180

  7. Estimation of SW radiation budget using geostationary satellites and quasi-real-time monitoring of PV power generation

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Inoue, T.; Takamura, T.; Pinker, R. T.; Teruyuki, N.

    2012-12-01

    Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. In this study, we developed the high speed and accurate algorithm for shortwave (SW) radiation budget and it's applied to five geostationary satellites for global analysis. There are validated by SKYNET and BSRN ground observation data. The analysis results showed a distinctive trend of direct and diffuse component of surface SW fluxes in North Pacific and North Atlantic ocean. Similarly, developed algorithm is applied to quasi-real time analysis synchronous to geostationary satellite observation. It enabled highly accurate monitoring of solar radiation and photo voltaic (PV) power generation. It indicates the possibility of the fusion analysis of climate study and renewable energy.

  8. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    PubMed

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P < 0.05). UV radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P < 0.05) in reconstituted infant formula. Significant effects of UV radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis.

  9. Development of a long-term post-closure radiation monitor: Phase 2, Topical report, March 1994--July 1995

    SciTech Connect

    Reed, S.E.

    1995-07-01

    The long-term monitoring of a hazardous waste site for migration of radionuclides requires installation of radiation sensors at a large number of subsurface locations. The concept under development employs a passive in-ground measurement probe which contains a scintillator coupled to an optical lightguide. The overall goal of the Long-Term Post-Closure Radiation Monitor System (LPRMS) development program is to configure a long-term radiation monitor using commercially available, demonstrated components to the largest extent possible. The development program is planned as a three phase program spanning a total time of 53 months. The problems to be solved during Phase 1 were primarily those associated with selection of the most appropriate components (scintillator, coupling optics, optical fiber, and opto-electronics) to maximize the signal reaching the detectors and thereby minimizing the integration time required to obtain a reliable measure of radiation. Phase 2 (the current Phase) encompassed the fabrication and testing of the prototype LPRMS probe at a contaminated DOE site, the Fernald Environmental Management Project, in southwestern Ohio. Uranium isotopes are the primary contaminants of concern at this site. The single probe and opto-electronic device were used to made measurements in-situ at relatively shallow subsurface depths. The end objective of Phase 2 was the design of a full-scale prototype system which incorporates all the features expected to be necessary on a commercial system, including 50 meter depth of measurement, multiplexing of multiple probes, and remote transmission of data. This full-scale prototype will be fabricated and field tested for 12 months during Phase 3, and a commercial design will be developed based upon the data gathered and experience gained during the entire program.

  10. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  11. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  12. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  13. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of...

  14. The VANILLA sensor as a beam monitoring device for X-ray radiation therapy.

    PubMed

    Velthuis, J J; Hugtenburg, R P; Cussans, D; Perry, M; Hall, C; Stevens, P; Lawrence, H; McKenzie, A

    2014-01-01

    Cancer treatments such as intensity-modulated radiotherapy (IMRT) require increasingly complex methods to verify the accuracy and precision of the treatment delivery. In vivo dosimetry based on measurements made in an electronic portal imaging device (EPID) has been demonstrated. The distorting effect of the patient anatomy on the beam intensity means it is difficult to separate changes in patient anatomy from changes in the beam intensity profile. Alternatively, upstream detectors scatter and attenuate the beam, changing the energy spectrum of the beam, and generate contaminant radiation such as electrons. We used the VANILLA device, a Monolithic Active Pixel Sensor (MAPS), to measure the 2D beam profile of a 6 MV X-ray beam at Bristol Hospital in real-time in an upstream position to the patient without clinically significant disturbance of the beam (0.1% attenuation). MAPSs can be made very thin (~20 μm) with still a very good signal-to-noise performance. The VANILLA can reconstruct the collimated beam edge with approximately 64 μm precision.

  15. Radiation protection guidance for activities in low-Earth orbit.

    PubMed

    Townsend, L W; Fry, R J M

    2002-01-01

    Scientific Committee 75 (SC 75) of the National Council on Radiation Protection and Measurements (NCRP) was assembled for the purpose of providing guidance to NASA concerning radiation protection in low-Earth orbit. The report of SC 75 was published in December 2000 as NCRP Report No. 132. In this presentation an overview of the findings and recommendations of the committee report will be presented. PMID:12539765

  16. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  17. Porphyrin Metabolisms in Human Skin Commensal Propionibacterium acnes Bacteria: Potential Application to Monitor Human Radiation Risk

    PubMed Central

    Shu, M.; Kuo, S.; Wang, Y.; Jiang, Y.; Liu, Y.-T.; Gallo, R.L.; Huang, C.-M.

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood’s lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk. PMID:23231351

  18. TOMS as a monitor of the ultraviolet radiation environment: Applications to photobiology

    NASA Technical Reports Server (NTRS)

    Frederick, John E.

    1987-01-01

    The flux of biologically relevant ultraviolet radiation that reaches the surface of the Earth varies with the ozone amount, surface reflectivity, and cloudcover. The Total Ozone Mapping Spectrometer (TOMS) provides information relevant to all three items. A recent application of satellite-based ozone measurements has been to develop climatologies of the biologically significant UV-B radiation reaching the Earth's surface. A growing body of research suggests that UV-B radiation tends to suppress the immune system of laboratory mice. At tropical latitudes, it is likely that parasitical diseases develop most readily in people who have experienced immune system suppression from UV-B exposure. The computed distribution of surface radiation combined with information on disease incidence may clarify the role of UV-B as a suppressor of the human immune system. TOMS used in conjunction with radiative transfer calculations can provide information of relevance in photobiology.

  19. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result

  20. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928