Science.gov

Sample records for active radiation monitor

  1. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  2. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  3. Packet personal radiation monitor

    DOEpatents

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  4. Packet personal radiation monitor

    DOEpatents

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  5. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  6. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  7. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  8. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  9. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  10. Radiation monitoring equipment dosimeter experiment

    NASA Astrophysics Data System (ADS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  11. Radiation Monitoring Equipment Dosimeter Experiment

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    1992-01-01

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  12. PERSONAL RADIATION MONITOR

    DOEpatents

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  13. The Highly Miniaturised Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Mitchell, E. F.; Araújo, H. M.; Daly, E.; Guerrini, N.; Gunes-Lasnet, S.; Griffin, D.; Marshall, A.; Menicucci, A.; Morse, T.; Poyntz-Wright, O.; Turchetta, R.; Woodward, S.

    2014-07-01

    We present the design and preliminary calibration results of a novel highly miniaturised particle radiation monitor (HMRM) for spacecraft use. The HMRM device comprises a telescopic configuration of active pixel sensors enclosed in a titanium shield, with an estimated total mass of 52 g and volume of 15 cm3. The monitor is intended to provide real-time dosimetry and identification of energetic charged particles in fluxes of up to 108 cm-2 s-1 (omnidirectional). Achieving this capability with such a small instrument could open new prospects for radiation detection in space.

  14. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  15. Audible radiation monitor

    SciTech Connect

    Odell, D.M.C.

    1992-12-31

    This invention consists of a method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  16. Audible radiation monitor

    DOEpatents

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  17. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  18. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  19. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  20. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  1. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  2. A systolic radiation monitoring system

    SciTech Connect

    Shpancer, I.; Kinsner, W.

    1982-12-01

    This paper describes a data acquisition system for radiation monitoring which significantly improves performance over conventional systems by providing higher throughput, elimination of data skew, easier and inexpensive isolation, improved system accuracy, and compact implementation. The novel systolic data acquisition system, including systolic converter, processor and networking was developed to alleviate drawbacks of various conventional data acquisition systems used in radiation monitoring. The system is based on a systolic conversion, processing and networking method amenable to highly integrated vector architecture. The method employs systolic rules which can be developed for a selected problem. The rules for the radiation monitoring problem have been developed so as to apply not only locally but also globally to the systolic network. A form of the network has been implemented and is operational in a nuclear reactor site. Other forms are being implemented and tested for other data skew sensitive problems.

  3. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product conveyor systems must have a radiation monitor...

  4. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  5. MULTI-POINT RADIATION MONITOR

    SciTech Connect

    Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

    2006-05-12

    A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

  6. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  7. Straddle carrier radiation portal monitoring

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  8. Straddle Carrier Radiation Portal Monitoring

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  9. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  10. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  11. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  12. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  13. Personal monitoring of UV radiation

    NASA Astrophysics Data System (ADS)

    Barth, Joachim; Knuschke, Peter

    1994-06-01

    Personal monitoring of till-radiation (UVR) is important fo find out both overexposure and underexposure to UVR. At present polysulfone films seem to be most suitable for these purposes. They allow a reliable measurement of till-exposure to wavelengths between 250 and 330 nm if a number of influencing factors is respected. These are described in detail in a technical report of the Commission Internationale de L'Eclairage (CIE). Own investigations with polysulphone films have shown that these polymers can help as well to detect an overexposure to UVR at workplaces as an UVR-deficiency of people living in an old peoples home. It could be demonstrated that this till-deficiency well correlates to the deficiency of serum 25(OH)D3 levels of these people. Furthermore after optimization of a new phototherapeutic equipment in uniformity of UV-exposure round patients body by polysulphone film dosimeters it got useable in therapy.

  14. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1983

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  15. Computer-controlled radiation monitoring system

    SciTech Connect

    Homann, S.G.

    1994-09-27

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

  16. Hydrologic Activity of Deciduous Agroforestry Tree : Observed through Monitoring of Stable Isotopes in Stem Water, Solar Radiation Attenuation, and Sapflow

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Parlange, M. B.

    2012-12-01

    The net benefit of agroforestry trees for small scale farmers in dryland agricultural systems is debatable because while they provide significant direct and indirect services, they also consume considerable amounts of scare water resources. In this study we monitor the stable isotopes of water to improve a water budget of a Sclerocarya birrea tree in a millet field in South Eastern Burkina Faso. Data obtained from air temperature and humidity, surface temperature, solar radiation, and soil moisture sensors attached to a wireless sensor network uniquely configured around the agroforestry tree provided the initial calculation of the local water balance. Isotopic ratios were determined from water extracted from stems and sub canopy soil, and from nearby ground water, precipitation, and surface water that was sampled weekly. A linear mixing model is used to predict when the tree switched between water sources. The results from the linear mixing model coupled with a tree water balance demonstrate the extreme seasonality of the annual cycle of water use by this deciduous species.

  17. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  18. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  19. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  20. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  1. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  2. Radiation Monitoring for the Masses.

    PubMed

    Wagner, Eric; Sorom, Rich; Wiles, Linda

    2016-01-01

    In response to the Fukushima-Daiichi incident, many commercial vendors have produced applications and equipment targeted at the average member of the public in order to enable them to make radiation measurements themselves at little to no cost. The authors have evaluated a small selection of these items in order to validate their performance when exposed to a calibrated 137Cs dose rate irradiator. The products fall into two primary categories: the first using the CMOS from the camera on ubiquitous smartphones and the second using an accessory that performs the radiation measurement. Presented here are the performance data of a selection and recommendations on how to interpret the produced values. PMID:26606063

  3. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  4. Global nuclear radiation monitoring using plants

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Romero-Talamas, Carlos; Kostov, Dan; Wang, Wanpeng; Liu, Zhongchi; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.; Gu, Jerry; Choa, Fow-Sen

    2005-05-01

    Plants exhibit complex responses to changes in environmental conditions such as radiant heat flux, water quality, airborne pollutants, soil contents. We seek to utilize the natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to high-energy radiation - with the goal of monitoring natural plant responses for use as benchmarks for detection and dosimetry. For our study, we selected a plants cactus, Arabidopsis, Dwarf mango (pine), Euymus and Azela. We demonstrated that the ratio of Chlorophyll a to Chlorophyll b of the leaves has changed due to the exposure gradually come back to the normal stage after the radiation die. We used blue laser-induced blue fluorescence-emission spectra to characterize the pigment status of the trees. Upon blue laser excitation (400 nm) leaves show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm). Sample tree subjects were placed at a distance of 1m from NIST-certified 241AmBe neutron source (30 mCi), capable of producing a neutron field of about 13 mrem/h. This corresponds to an actual absorbed dose of ~ 1 mrad/h. Our results shows that all plants are sensitive to nuclear radiation and some take longer time to recover and take less. We can use their characteristics to do differential detection and extract nuclear activity information out of measurement results avoid false alarms produced environmental changes. Certainly the ultimate verification can be obtained from genetic information, which only need to be done when we have seen noticeable changes on plant optical spectra, mechanical strength and electrical characteristics.

  5. In-situ monitoring of biologically active solar UV-B radiation: a new biosensor of vitamin D synthetic capacity

    NASA Astrophysics Data System (ADS)

    Terenetskaya, Irina P.; Gvozdovskyy, I. A.

    2001-06-01

    The new biosensor of vitamin D synthetic capacity of solar/artificial UV-B radiation is based on liquid crystal with provitamin D dopant. Nematic liquid crystals (LC-805, ZLI-1695) are converted into induced cholesteric phase using photosensitive steroid biomolecules of provitamin D3 (7- dehydrocholesterol). During UV exposure remarkable decrease in the number of the Cano-Grandjean stripes has been observed in the wedge-like cell as a result of UV initiated photoisomerization of provitamin D3 that changed helical twisting power of the dopant molecules.

  6. IEC STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION

    SciTech Connect

    Voytchev, Miroslav; Ambrosi, P.; Behrens, R.; Chiaro Jr, Peter John

    2011-01-01

    This paper presents IEC/SC 45B Radiation protection instrumentation and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

  7. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    SciTech Connect

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  8. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  9. Smarter radiation monitors for safeguards and security

    SciTech Connect

    Fehlau, P.E.; Pratt, J.C.; Markin, J.T.; Scurry, T. Jr.

    1983-01-01

    Radiation monitors for nuclear safeguards and security depend on internal control circuits to determine when diversion of special nuclear materials is taking place. Early monitors depended on analog circuits for this purpose, subsequently, digital logic controllers made better monitoring methods possible. Now, versatile microprocessor systems permit new, more efficient, and more useful monitoring methods. One such method is simple stepwise monitoring, which has variable alarm levels to expedite monitoring where extended monitoring periods are required. Another method, sequential probability ratio logic, tests data as it accumulates against two hypothesis - background, or background plus a transient diversion signal - and terminates monitoring as soon as a decision can be made that meets false-alarm and detection confidence requirements. A third method, quantitative monitoring for personnel, calculates count ratios of high- to low-energy gamma-ray regions to predict whether the material detected is a small quantity of bare material or a larger quantity of shielded material. In addition, microprocessor system subprograms can assist in detector calibration and trouble-shooting. Examples of subprograms are a variance analysis technique to set bias levels in plastic scintillators and a state-of-health routine for detecting malfunctions in digital circuit components.

  10. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  11. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Balasis, G.; Bourdarie, S.; Horne, R.; Khotyaintsev, Y.; Mann, I.; Santolik, O.; Turner, D.; Anastasiadis, A.; Georgiou, M.; Giannakis, O.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Angelopoulos, V.; Glauert, S.; Grison, B., Kersten T.; Kolmasova, I.; Lazaro, D.; Mella, M.; Ozeke, L.; Usanova, M.

    2013-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. The MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520.

  12. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1984

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  13. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1987

    EPA Science Inventory

    This report covers the routine radiation monitoring activities conducted by the Environmental Monitoring Systems Laboratory-Las Vegas in areas which may be affected by nuclear testing programs of the Department of Energy. This monitoring is conducted to document compliance with s...

  14. Onion skin as a radiation monitor

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the dry, outer skin of onion, red onion, garlic, and shallot were measured before and after irradiation. In all spectra only a single resonance (g = 2.00) was observed. The ESR signal intensity increased with absorbed dose, however, the radiation-induced signal decayed slowly with time. It was concluded that the outer skin of these foods are not suitable as a long-term postirradiation monitor.

  15. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1982

    EPA Science Inventory

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify tre...

  16. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  17. Autonomous Radiation Monitoring of Small Vessels

    SciTech Connect

    Fabris, Lorenzo; Hornback, Donald Eric

    2010-01-01

    Small private vessels are one avenue by which nuclear materials may be smuggled across international borders. While one can contemplate using the terrestrial approach of radiation portal monitors on the navigable waterways that lead to many ports, these systems are ill-suited to the problem. They require vehicles to pass at slow speeds between two closely-spaced radiation sensors, relying on the uniformity of vehicle sizes to space the detectors, and on proximity to link an individual vehicle to its radiation signature. In contrast to roadways where lanes segregate vehicles, and motion is well controlled by inspection booths; channels, inlets, and rivers present chaotic traffic patterns populated by vessels of all sizes. We have developed a unique solution to this problem based on our portal-less portal monitor instrument that is designed to handle free-flowing traffic on roadways with up to five-traffic lanes. The instrument uses a combination of visible-light and gamma-ray imaging to acquire and link radiation images to individual vehicles. It was recently tested in a maritime setting. In this paper we present the instrument, how it functions, and the results of the recent tests.

  18. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  19. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  20. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  1. Quality assurance of environmental gamma radiation monitoring in Slovenia.

    PubMed

    Stuhec, M; Zorko, B; Mitić, D; Miljanić, S; Ranogajec-Komor, M

    2006-01-01

    Environmental gamma radiation monitoring established in Slovenia consists of a network of multifunctional gamma monitors (MFMs) based on pairs of Geiger-Müller counters and a network of measuring sites with high-sensitive thermoluminiscence dosemeters. The measuring points are evenly spread across Slovenia, located at the meteorological stations and more densely on additional locations around the Krsko NPP. The MFM network has a 2-fold function with one sensor used for the purpose of early warning system in near surroundings of the NPP and the other, more sensitive, for natural radiation monitoring. The paper summarises activities to establish quality assurance of the environmental gamma radiation measurements in Slovenia, with a critical view of the results in comparison with the international standards and recommendations. While the results of linearity and energy dependence tests were satisfying, on-field intercomparison showed that the inherent signal of one of the monitors (MFM) has to be taken into account in the range of environmental background radiation. PMID:16410289

  2. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Bourdarie, S.; Khotyaintsev, Y.; Santolik, O.; Horne, R.; Mann, I.; Turner, D.; Anastasiadis, A.; Angelopoulos, V.; Balasis, G.; Chatzichristou, E.; Cully, C.; Georgiou, M.; Glauert, S.; Grison, B.; Kolmasova, I.; Lazaro, D.; Macusova, E.; Maget, V.; Papadimitriou, C.; Ropokis, G.; Sandberg, I.; Usanova, M.

    2012-09-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Furthermore, we will incorporate multi-spacecraft particle measurements into data assimilation tools, aiming at a new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven to be a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system.

  3. Radiation exposure monitoring in civil aircraft

    NASA Astrophysics Data System (ADS)

    Schrewe, Ulrich J.

    1999-02-01

    Based on the 1990 Recommendation of the ICRP (ICRP Publication 60, Pergamon Press, Oxford, 1991) a European Directive [Official J. Eur. Communities 19 (1996) L159, 1-114] commits the European Union (EU) member states to revise their national radiation protection laws by the year 2000 such that the exposure of aircrews to the increased cosmic radiation prevailing at aviation flight altitudes will be treated as occupational risks. A consequence will be that employers must assess the aircrew exposure. The ACREM (Air Crew Radiation Exposure Monitoring) research project intends to investigate practically methods for aircraft dose equivalent determination. The in-flight measurements were carried out on cargo aircraft. Field calibrations were performed using Tissue-Equivalent Proportional Counters (TEPC) as the reference instrument. Various monitors were used to investigate the spatial doserate distribution. The measured data were collated according to the different altitudes and geomagnetic latitudes. The results obtained from various in-flight measurements are reported and a concept for a future routine dose assessment for aircrew is proposed.

  4. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  5. Network-Oriented Radiation Monitoring System (NORMS)

    SciTech Connect

    Rahmat Aryaeinejad; David F. Spencer

    2007-10-01

    We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/bench tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.

  6. Radiation Exposure Monitoring and Information Transmittal System.

    2005-06-23

    Version 01 The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist U.S. Nuclear Regulatory Commission (NRC) licensees in meeting the reporting requirements of the Revised 10 CFR Parts 20.1001 through 20.2401 as outlined in Regulatory Guide 8.7, Rev.1, Instructions for Recording and Reporting Occupational Exposure Data. REMIT is a PC‑based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designedmore » to be user‑friendly and contains the full text of Regulatory Guide 8.7, Rev.1, on‑line as well as context‑sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5. REMIT allows the user to view the individual's exposure in relation to regulatory or administrative limits and will alert the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files. Additional information is available from the web page www.reirs.com.« less

  7. Radiation environment monitoring for manned missions to Mars.

    PubMed

    Benghin, V V; Petrov, V M

    2003-01-01

    In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given. PMID:12577916

  8. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  9. SLC energy spectrum monitor using synchrotron radiation

    SciTech Connect

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-04-01

    The SLAC Linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved Linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. the energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC Linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08%. The design considerations of this monitor are presented in this paper. A pair of these monitors is under construction with an installation date set for late summer 1986. 5 refs., 6 figs.

  10. Analysis of the TMI-2 dome radiation monitor

    SciTech Connect

    Murphy, M B; Mueller, G M; Jernigan, W C

    1985-08-01

    Questions have been raised regarding the accuracy of the in-containment radiation readings from the LOCA qualified, dome radiation monitor, HP-R-214 during the March 28, 1979 accident at the Three Mile Island Unit 2 Reactor. This report discusses the accuracy of the readings, gives the results of examining the radiation monitor itself, and estimates the radiation environment inside containment during the accident.

  11. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  12. The USDA Ultraviolet Radiation Monitoring Program.

    NASA Astrophysics Data System (ADS)

    Bigelow, D. S.; Slusser, J. R.; Beaubien, A. F.; Gibson, J. H.

    1998-04-01

    The U.S. Department of Agriculture's Ultraviolet (UV) Radiation Monitoring Program has been measuring UV radiation since 1994. The initial network of 12 stations employed broadband meters to measure UVB irradiance and included ancillary measurements of temperature, humidity, and irradiance at seven wavelengths in the visible produced by a Multi-Filter Rotating Shadowband Radiometer (MFRSR). Since that beginning the network has expanded to more than 20 stations and the broadband meters have been supplemented with a seven-wavelength Ultraviolet Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR). The network has been designed to include 30 stations, each with a full complement of instrumentation. Annual characterizations of the network's filter radiometers indicate that gradual shifts in instrument response are manageable but must be accounted for to achieve accurate and precise measurements of UV irradiance. The characterization and calibration of the filter instruments is discussed along with filter stability and instrument precision. Broadband instruments are shown to be quite stable and collocated instruments are shown to agree to within 2.3% for zenith angles less than 80° under all sky conditions. Preliminary investigations into the accuracy of the UV-MFRSR calibrated with the Langley method are presented and successful column ozone retrievals are demonstrated with the UV-MFRSR under clear skies.

  13. U.S. Government shutdown degrades aviation radiation monitoring during solar radiation storm

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin

    2014-01-01

    The U.S. Government shutdown from 1 to 17 October 2013 significantly affected U.S. and global aviation radiation monitoring. The closure occurred just as a S2 radiation storm was in progress with an average dose rate of 20 μSv h-1. We estimate that during the radiation event period, one-half million passengers were flying in the affected zone and, of this population, four would have received sufficient dose to contract fatal cancer in their lifetimes. The radiation environment can be treated like any other risk-prone weather event, e.g., rain, snow, icing, clear air turbulence, convective weather, or volcanic ash, and should be made available to flight crews in a timely way across the entire air traffic management system. The shutdown highlighted the need for active operational monitoring of the global radiation environment. Aviation radiation risk mitigation steps are simple and straightforward, i.e., fly at a lower altitude and/or use a more equatorward route. Public tools and media methods are also needed from the space weather scientific and operational communities to provide this information in a timely and accessible manner to the flying public.

  14. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  15. Portable radiation monitor assures cleanup levels

    SciTech Connect

    Hasbach, A.

    1995-10-01

    Sevenson Environmental Services, Niagara Falls, NY, is a contractor at the EPA Superfund site at Montclair, NJ. Working with the Army Corps of Engineers, they are cleaning up radium waste left by a watch factory from the early 1900s. With the hazards of radium unknown at the time, radium in its many forms was spread throughout the region. As sand, it was used for concrete, as ash for packing material, and sometimes as landfill. When a hazardous site is found, Sevenson excavates the contaminated material and replaces it with clean fill. A Reuter-Stokes RSS-112 portable gamma monitoring system is used to ensure radiation is at sample background levels. Using a pressurized ionization chamber (PIC), the RSS-112 measures exposure rates from background to serious alarm levels over a wide energy range. Measurement takes place every five seconds. The portable system is 50% lighter than its predecessor and includes 300 point data storage, graphic display panel, 120-hour battery life between recharges, and RS-232 interface for downloading to a PC.

  16. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  17. A PHANTOM FOR DETERMINATION OF CALIBRATION COEFFICIENTS AND MINIMUM DETECTABLE ACTIVITIES USING A DUAL-HEAD GAMMA CAMERA FOR INTERNAL CONTAMINATION MONITORING FOLLOWING RADIATION EMERGENCY SITUATIONS.

    PubMed

    Ören, Ünal; Andersson, Martin; Rääf, Christopher L; Mattsson, Sören

    2016-06-01

    The purpose of this study was to derive calibration coefficients (in terms of cps kBq(-1)) and minimum detectable activities, MDA, (in terms of kBq and corresponding dose rate) for the dual head gamma camera part of an SPECT/CT-instrument when used for in vivo internal contamination measurements in radiation emergency situations. A cylindrical-conical PMMA phantom with diameters in the range of 7-30 cm was developed in order to simulate different body parts and individuals of different sizes. A series of planar gamma camera investigations were conducted using an SPECT/CT modality with the collimators removed for (131)I and (137)Cs, radionuclides potentially associated with radiation emergencies. Energy windows of 337-391 and 490-690 keV were selected for (131)I and (137)Cs, respectively. The measurements show that the calibration coefficients for (137)Cs range from 10 to 19 cps kBq(-1) with MDA values in the range of 0.29-0.55 kBq for phantom diameters of 10-30 cm. The corresponding values for (131)I are 12-37 cps kBq(-1) with MDA values of 0.08-0.26 kBq. An internal dosimetry computer program was used for the estimation of minimum detectable dose rates. A thyroid uptake of 0.1 kBq (131)I (representing MDA) corresponds to an effective dose rate of 0.6 µSv d(-1) A (137)Cs source position representing the colon with an MDA of 0.55 kBq corresponds to an effective dose rate was 1 µSv y(-1) This method using a simple phantom for the determination of calibration coefficients, and MDA levels can be implemented within the emergency preparedness plans in hospitals with nuclear medicine departments. The derived data will help to quickly estimate the internal contamination of humans following radiation emergencies. PMID:26769903

  18. Anatahan Activity and Monitoring, 2005

    NASA Astrophysics Data System (ADS)

    Lockhart, A.; White, R.; Koyanagi, S.; Trusdell, F.; Kauahikaua, J.; Marso, J.; Ewert, J.

    2005-12-01

    Anatahan volcano began erupting in 2003 and continued with a second eruptive phase in 2004. In January 2005 the volcano began a sequence of eruptions and unrest that continues as of September 2005. The activity has been characterized by punctuated episodes of very steamy strombolian activity and vigorous ash emission. Some of the ash emissions have reached 50,000-foot elevations, with VOG and ash occasionally reaching the Philippines and southernmost Japan, over 1000 miles away. Vigorous ash emission has been almost continuous since June 2005. A M4.8 long-period earthquake (LP) occurred in mid-August, one of the largest LPs recorded on the planet in the last quarter-century. Real-time monitoring consisting of a few telemetered short-period seismometers and acoustic sensors has been severely hampered by ashfall on the small island. Monitoring efforts have been focused on the aircraft/ash hazard, with the goal of providing the FAA and airline industry with rapid notice of seismic signatures that may indicate ash columns rising to the altitude of airline traffic, or nominally above 20,000-30,000 ft.

  19. Design and development of a portable gamma radiation monitor

    NASA Astrophysics Data System (ADS)

    Munir, M.; Ahmad, N.; Sohail, S.; Naveed, R. A.; Rafiq, M. Q.; Khalid, M.

    2009-07-01

    A portable gamma radiation monitor has been designed and developed. The monitor can be used effectively in the dose range from 0.07 to 500 mGy/h due to gamma rays of energy greater than 65 keV. The monitor overestimated radiation doses and the uncertainty in the measured dose rate has been found to be ≤30%. The response of the monitor can be considered isotropic within an acceptable error of ±30%. Provision has also been added to use the monitor as an installed radiation monitor. In installed mode, it can be operated from a remote location up to 1 km and the timing history can be stored on a personal computer.

  20. Design and development of a portable gamma radiation monitor

    SciTech Connect

    Munir, M.; Khalid, M.; Ahmad, N.; Sohail, S.; Naveed, R. A.; Rafiq, M. Q.

    2009-07-15

    A portable gamma radiation monitor has been designed and developed. The monitor can be used effectively in the dose range from 0.07 to 500 mGy/h due to gamma rays of energy greater than 65 keV. The monitor overestimated radiation doses and the uncertainty in the measured dose rate has been found to be {<=}30%. The response of the monitor can be considered isotropic within an acceptable error of {+-}30%. Provision has also been added to use the monitor as an installed radiation monitor. In installed mode, it can be operated from a remote location up to 1 km and the timing history can be stored on a personal computer.

  1. Radiation Monitoring at FGUP Atomflot and the Polyarninski Shipyard

    SciTech Connect

    Pomerville, J.; Griffith, A. G.; Moskowitz, P. D.; BNL; Endregard, M.; Sidhu, R. S.; Sundling, C-V.; Walderhaug, T.; Egorkin, A.; Kisselev, V.; Yanovskaya, N.; Tchernaenko, L.

    2003-02-26

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between military establishments of the Russian Federation, United States and Norway to reduce potential environmental threats from military installations and activities in the Arctic and enhancing the environmental security of all three countries. The goal of this project is to enhance the ability to effectively and safely perform radiological monitoring of objects at selected facilities for dismantlement of nuclear submarines and handling and disposition of spent nuclear fuel. Radiological monitoring is needed to protect workers at the sites engaged in dismantlement of nuclear submarines, the local public and the environment. This is to be accomplished by supply of radiation monitoring equipment and the installation of centralized radiological surveillance, the PICASSO Environmental Monitoring system developed by Institute for Energy Technology, Halden, Norway. The first site selected for th e installation of PICASSO will be at the FGUP Atomflot spent nuclear fuel pad site and liquid radioactive waste treatment facility. This will be followed by an installation of PICASSO at the Mobile Processing Facility at Polyarninski Shipyard. The implementation of the PICASSO system will be integrated with the other AMEC projects at both sites. Plans are being developed to implement the use of this system at most Russian Navy sites handling spent nuclear fuel. Dosimeters have been supplied by the US and with funds from Norway. This equipment will be used at the Polyarninski Shipyard.

  2. Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors

    NASA Astrophysics Data System (ADS)

    Gubarev, F. A.; Trigub, M. V.; Klenovskii, M. S.; Li, Lin; Evtushenko, G. S.

    2016-01-01

    The paper presents a study of the effect of excitation conditions in a CuBr vapor brightness amplifier in a monostatic laser monitor on the radial non-uniformity of the radiation bearing the information about the object being visualized. A significant dependence of radial signal distribution on the concentrations of CuBr, HBr and pumping power has been demonstrated. In particular, an increase in CuBr vapor concentration causes the gain profile of the active medium to constrict and the axial gain to increase. The conditions for the most uniform radial distribution of the laser monitor signal are substantially different from those for the maximum radiated power. The paper demonstrates HBr doping to be usable as a tool to correct the non-uniformity of the radial distribution of laser monitor radiation. An addition of ~0.15 Torr HBr broadens and flattens the radiation profile, improving an important aspect of laser monitor image quality.

  3. SYNCHROTRON RADIATION MONITOR FOR NSLS BOOSTER.

    SciTech Connect

    PINAYEV, I.; SHAFTAN, T.

    2005-11-04

    NSLS booster diagnostics consisted of tune measurement system, system for turn-by-turn measurement on the electron beam, and beam intensity monitor, which is not absolutely calibrated. We present design and implementation of synchrotron light monitor for the booster, which expands diagnostics capabilities. The system allows to measure an orbit, beam sizes and coupling of the electron beam along the ramp.

  4. Summary Report on Beam and Radiation Generation, Monitoring and Control

    SciTech Connect

    Gordon, D. F.; Power, J. G.

    2009-01-22

    The discussions of the working group on beam and radiation generation, monitoring, and control (working group 6) at the 2008 advanced accelerator concepts workshop are summarized. The discussions concerned electron injectors, phase space manipulation, beam diagnostics, pulse train generation, intense beam physics, and radiation generation.

  5. The regeneration of polluted activated carbon by radiation techniques

    NASA Astrophysics Data System (ADS)

    Minghong, Wu; Borong, Bao; Ruimin, Zhou; Jinliang, Zhu; Longxin, Hu

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption

  6. Radiation damage to scintillator in the D0 luminosity monitor

    SciTech Connect

    Casey, Brendan; DeVaughan, Kayle; Enari, Yuji; Partridge, Richard; Yacoob, Sahal; /Northwestern U.

    2006-12-01

    We report the result of evaluating radiation damage to Bicron BC408 plastic scintillator used in the D0 Luminosity Monitor during Run IIa. The Luminosity Monitor provides pseudo-rapidity coverage over the range 2.7 < |{eta}| < 4.4, with the radiation dose in Run IIa estimated to be 0.5 MRad for the region closest to the beams. We find the light yield is degraded by 10-15% due to radiation damage by comparing new and old scintillator in four observables: (1) visual inspection, (2) optical transmittance, (3) response to the radioactive source of {sup 90}Sr and (4) light yield for cosmic rays.

  7. Multiphase monitoring by annihilation radiation coincidence mode

    NASA Astrophysics Data System (ADS)

    Vidal, A.; Viesti, G.; Osorio, C.; Pino, F.; Horvath, A.; Barros, H.; Caldogno, M.; Greaves, E. D.; Sajo-Bohus, L.

    2012-02-01

    A multiphase monitoring system employing nuclear techniques is reported, which is aimed to provide a rapid - decision tool in oilfield applications. Liquid phase time variation is monitored employing two large volume BaF2 detectors. The radioisotope source of 22Na is a positron emitter, therefore two antiparallel gammas are produced per decay, and phase flow in pipes is related to the count rate of gamma pulses in coincidence providing information on transient liquid phase during transport. Oil, gas, water fraction measurements were performed at a specialized test station assembled in our laboratory to model a wide range of field operating conditions. The time dependence of the mixed substances is monitored with the two most relevant hydrodynamic parameters, the density (type of the fluid) and the flow rate, in a LabView® environment. Performance of the monitoring system; its limitations and the possibility for further improvements are also provided.

  8. The radiation-tolerant x-ray monitor.

    PubMed

    Gott, Yu V; Stepanenko, M M

    2008-10-01

    A vacuum photoelectric detector (monitor) (VPD) designed for plasma tomography, megnetohydrodynamics monitoring, and imaging with the help of thermal x-ray radiation on the ITER facility is described. Laboratory experiments demonstrate that VPD has high sensitivity to thermal x rays and low sensitivity to hard gamma rays and neutrons. The results of tests of a prototype of this monitor on a (60)Co source of gamma rays, on nuclear reactor and its calibration using radiation from an x-ray tube, and tests of its serviceability on the T-10 facility are presented. PMID:19044585

  9. A wire scanning type position monitor for an undulator radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Ando, Masami; Xia, Shaojian; Shiwaku, Hideaki

    1995-02-01

    A scanning wire position monitor for insertion devices was designed and installed in an x-ray undulator beam line. It consists of a graphite wire, a copper mesh for electric shielding, and a motor-driven linear guide. The wire of the monitor was tested under the undulator radiation thermal load. It has been found that the signal level of the monitor was proportional to the radiation power density on the wire. Even when the wire crossed the beam during the x-ray experiment, no detectable influence on the experiment was observed.

  10. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  11. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  12. Perfluorinated polymer optical fiber for gamma radiation monitoring

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Mihai, L.; Sporea, D.; Negut, D.; Krebber, K.

    2016-05-01

    The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 +/- 0.2 dBm-1/kGy measured at 750 nm to 18.3 +/- 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.

  13. New generation of radiacs: small computerized multipurpose radiation monitors

    SciTech Connect

    Umbarger, C.J.; Bjarke, G.O.; Erkkila, B.H.; Trujillo, F.; Waechter, D.A.; Wolf, M.A.

    1982-01-01

    The Health Division at Los Alamos has developed a multipurpose radiation monitoring device that is computer-controlled, light weight (3 lb), includes multiple radiation detectors running simultaneously, and is simple to use. This multipurpose radiac is generic in nature and can use any of the standard radiation detectors such as NaI, /sup 3/He, LET proportional gas counters, solid state surface barrier detectors, etc. LCD displays indicate the various radiation parameters in both alphanumeric and graphics format. Internal batteries allow 100 hours of use.

  14. Variable filtered photographic film as a radiation detector for environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Majid, Zafri Azran Abdul; Junet, Laila Kalidah; Hazali, Norazlanshah; Abdullah, Abdul Adam; Hanafiah, Megat Ahmad Kamal Megat

    2013-05-01

    Environmental radiation is an ionising radiation that present in the natural environment which mostly originates from cosmic rays and radionuclide agents in the environment. This may lead the population to be exposed to the radiation. Therefore, the environmental radiation needs to be observed cautiously to minimize the impact of radiation. However, there is no specific or proper monitoring device that provides an outdoor environmental radiation monitoring. Hence, a new outdoor environmental radiation monitoring device was developed. A photographic film has been chosen as a dosimeter. The purpose of this study was to prove the covered photographic film attached with variable filter can be used to develop environmental radiation monitoring device to detect the ionising radiation. The filter used was variable thickness of plastic, aluminium (Al) and lead (Pb). The result from the study showed that the mean optical density (OD) values for medium speed film are in the range 0.41 to 0.73, and for fast speed film the OD values are in the range 0.51 to 1.35. The OD values decreased when the filter was attached. This has proven that the photographic film can be used to detect radiation and fast speed film was more sensitive compared to medium speed film.

  15. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... merchandising activities identified in this section shall be monitored in accordance with the instructions. (b) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  16. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... merchandising activities identified in this section shall be monitored in accordance with the instructions. (b) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with...) Recordkeeping activities. Elevator and merchandising recordkeeping activities subject to monitoring...

  17. Real-Time Monitoring of Active Landslides

    USGS Publications Warehouse

    Reid, Mark E.; LaHusen, Richard G.; Ellis, William L.

    1999-01-01

    Landslides threaten lives and property in every State in the Nation. To reduce the risk from active landslides, the U.S. Geological Survey (USGS) develops and uses real-time landslide monitoring systems. Monitoring can detect early indications of rapid, catastrophic movement. Up-to-the-minute or real-time monitoring provides immediate notification of landslide activity, potentially saving lives and property. Continuous information from real-time monitoring also provides a better understanding of landslide behavior, enabling engineers to create more effective designs for halting landslide movement.

  18. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L.

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  19. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.E.; Christy, C.E.; Heath, R.E.

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  20. Space activities and radiation protection of crew members

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Reiter, Thomas; Kehl, Marcel; Damann, M. D. Volker; Tognini, Michel

    Personnel working as crew in space-based activities e.g. professional astronauts and cosmo-nauts but also -to a certain extend-space flight participants ("space tourists"), demand health and safety considerations that have to include radiation protection measures. The radiation environment that a crew is exposed to during a space flight, differs significantly to that found on earth including commercial aviation, mainly due to the presence of heavy charged particles with great potential for biological damage. The exposure exceeds those routinely received by terrestrial radiation workers. A sequence of activities has to be conducted targeting to mitigate adverse effects of space radiation. Considerable information is available and applied through the joint efforts of the Space Agencies that are involved in the operations of the International Space Station, ISS. This presentation will give an introduction to the current measures for ra-diation monitoring and protection of astronauts of the European Space Agency (ESA). It will include information: on the radiation protection guidelines that shall ensure the proper imple-mentation and execution of radiation protection measures, the operational hardware used for radiation monitoring and personal dosimetry on ISS, as well as information about operational procedures that are applied.

  1. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Ford, P. G.; Bautz, M. W.; O'Dell, S. L.

    2013-04-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. The CCDs are vulnerable to radiation damage, particularly by soft protons in the Earth's radiation belts and from solar storms. The primary effect of this damage is to increase the charge-transfer inefficiency (CTI) of the 8 front-illuminated CCDs and decrease scientific performance. Soon after launch, the Chandra team implemented procedures to protect ACIS and remove the detector from the telescope focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. As Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. We report on the status of this flight software patch and explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  2. Radiation portal monitor system and method

    DOEpatents

    Morris, Christopher; Borozdin, Konstantin N.; Green, J. Andrew; Hogan, Gary E.; Makela, Mark F.; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Sossong, Michael J.

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  3. The radiation monitor cosmic X-ray experiment OSO-1

    NASA Technical Reports Server (NTRS)

    Randall, R. F.

    1973-01-01

    A comprehensive technical description is presented of the Radiation Monitor which is part of the GSFC cosmic X-ray experiment to be flown on the OSO-1 satellite. The theory of operation, fabrication and assembly, and cone angle determination are reported.

  4. EVOLUTION OF THE IEC AND EN STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION.

    PubMed

    Voytchev, M; Behrens, R; Ambrosi, P; Radev, R; Chiaro, P

    2016-09-01

    This article presents the evolution of the International Electrotechnical Commission (IEC) and the European standards for individual monitoring of ionising radiation issued, respectively, from the committees IEC/Sub Committee 45B and European Committee for Electro-technical Standardization/Technical Committee 45B 'Radiation protection instrumentation'. Standards for passive individual photon and beta dosimetry systems as well as those for active individual monitors are discussed. A neutron ambient dose equivalent (rate) meter standard and a technical report concerning the determination of uncertainty in measurement are also covered. PMID:26443545

  5. Calibration of radiation monitors at nuclear power plants. Final report

    SciTech Connect

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment.

  6. Status of eye lens radiation dose monitoring in European hospitals.

    PubMed

    Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta

    2014-12-01

    A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers. PMID:25222935

  7. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  8. Upgrade of the ALICE TPC FEE online radiation monitoring system

    NASA Astrophysics Data System (ADS)

    RØed, K.; Alme, J.; Askeland, E.; David, E.; Gunji, T.; Helstrup, H.; Kiss, T.; Lippmann, C.; Rehman, A.; Röhrich, D.; Ullaland, K.; Velure, A.; Zhao, C.

    2015-12-01

    This paper presents the radiation monitoring system on the Readout Control Unit (RCU) of the the ALICE TPC Front End Electronics. In Run 1, Single Event Upsets (SEUs) in the configuration memory of an SRAM based FPGA were counted, and the results from different run periods with stable beam conditions are presented. For Run 2, a new RCU, the RCU2, has been designed in order to achieve higher data readout rates and increase radiation tolerance. The RCU2 also includes a new radiation monitor solution with increased sensitivity, which is based on counting the number of SEUs in dedicated SRAM memories. The paper presents this new solution together with the results from the targeted irradiation campaigns.

  9. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  10. RADIOFREQUENCY RADIATION: ACTIVITIES AND ISSUES

    EPA Science Inventory

    The question of human safety relative to exposure to RF radiation obviously predates the first ANSI guideline established in 1966, but no enforceable Federal standards or guidelines exist for RF radiation exposure; the ANSI guideline which was revised in 1982 is voluntary or advi...

  11. Radiation monitoring policy at the advanced light source

    SciTech Connect

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-02-04

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program.

  12. Spectroscopic radiation imager for Internet-based safeguards and monitoring

    NASA Astrophysics Data System (ADS)

    Woodring, Mitchell; Souza, David; Honig, Larry; Squillante, Michael R.; Entine, Gerald

    1999-10-01

    Monitoring nuclear materials that is dangerously radioactive, remotely located, or difficult to access is a challenging task. The necessary research required to develop a system capable of remotely monitoring radioactive materials has been undertaken at Radiation Monitoring Devices, Inc. We report on a system utilizing a spectroscopic gamma-ray imager for real-time observation of sensitive nuclear materials over the Internet or dedicated networks. Research at RMD has produced a spectroscopic gamma-ray imager centered on a position-sensitive photomultiplier tube coupled to scintillation crystal and a coded aperture. A gamma-ray intensity pattern from the detector is stored and processed by a portable computer workstation and then mathematically corrected to yield the original radiation-source image. The pseudo-color, radiation-source image is overlaid on a co-registered video picture of the same area captured by a high-resolution charge-coupled device. The combined image is displayed as an accurate map of gamma-ray sources in the physical environment. Recent developments involve instrument control and data transmission through computer networks. Alarm triggers based on changes in the video image, the radiation image, the energy spectrum are under development. Work to remotely control alarm sensitivity and type, as well as the image update frequency, has also been examined.

  13. High power beam profile monitor with optical transition radiation

    SciTech Connect

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-06-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 {mu}m, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/{gamma} is originated from a region of transverse dimension roughly {lambda}{gamma}; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 {mu}m beam sizes that are much smaller than the 3.2 mm {lambda}{gamma} limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 {mu}A of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy.

  14. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.; Christy, C.E.; Heath, R.E.

    1995-12-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used to measure soil and water with known uranium contamination levels, both in drums and in situ at depths up to 3 meters. For comparison purposes, measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics. This paper presents a description and the results of the field tests. The results were used to characterize the lower detection limits, precision and bias of the system, which allowed the DOE to judge the monitoring system`s ability to meet its long-term post-closure radiation monitoring needs. Based on the test results, the monitoring system has been redesigned for fabrication and testing in a potential Phase III of this program. If the DOE feels that this system can meet its needs and chooses to continue into Phase III of this program, this redesigned full scale prototype system will be built and tested for a period of approximately a year. Such a system can be used at a variety of radioactively contaminated sites.

  15. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  16. Cellular Stress Responses and Monitored Cellular Activities.

    PubMed

    Sawa, Teiji; Naito, Yoshifumi; Kato, Hideya; Amaya, Fumimasa

    2016-08-01

    To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field. PMID:26954943

  17. The CMS Beam Conditions and Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Castro, E.; Bacchetta, N.; Bell, A. J.; Dabrowski, A.; Guthoff, M.; Hall-Wilton, R.; Hempel, M.; Henschel, H.; Lange, W.; Lohmann, W.; Müller, S.; Novgorodova, O.; Pfeiffer, D.; Ryjov, V.; Stickland, D.; Schimdt, R.; Walsh, R.

    The Compact Muon Solenoid (CMS) is one of the two large, general purpose experiments situated at the LHC at CERN. As with all high energy physics experiments, knowledge of the beam conditions and luminosity is of vital importance. The Beam Conditions and Radiation Monitoring System (BRM) is installed in CMS to protect the detector and to provide feedback to LHC on beam conditions. It is composed of several sub-systems that measure the radiation level close to or inside all sub-detectors, monitor the beam halo conditions with different time resolution, support beam tuning and protect CMS in case of adverse beam conditions by firing a beam abort signal. This paper presents three of the BRM subsystems: the Fast Beam Conditions Monitor (BCM1F), which is designed for fast flux monitoring, measuring with nanosecond time resolution, both the beam halo and collision products; the Beam Scintillator Counters (BSC), that provide hit rates and time information of beam halo and collision products; and the Beam Conditions Monitors (BCM) used as a protection system that can trigger a beam dump when beam losses occur in order to prevent damage to the pixel and tracker detectors. A description of the systems and a characterization on the basis of data collected during LHC operation is presented.

  18. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    SciTech Connect

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance

  19. Radiation detectors as surveillance monitors for IAEA safeguards

    SciTech Connect

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  20. General Operational Procedure for Pedestrian Radiation Portal Monitors

    SciTech Connect

    Belooussov, Andrei V.

    2012-08-08

    This document outlines the basic conduct of operation (CONOPS) for a pedestrian radiation portal monitor (RPM), provided that the CONOPS is not facility or RPM specific and that it is based on a general understanding of a pedestrian RPM operation. The described CONOPS for a pedestrian RPM is defined by: (1) RPM design and operational characteristics, (2) type of pedestrian traffic, and (3) goal for RPM installation. Pedestrian RPMs normally are deployed for the continuous monitoring of individuals passing through point of control to detect the unauthorized traffic of radioactive/nuclear materials. RPMs generally are designed to detect gamma- and neutron-emitting materials.

  1. Radiation monitoring around United States nuclear test areas, calendar year 1989

    SciTech Connect

    Not Available

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

  2. Active Acoustic Monitoring of Aquatic Life.

    PubMed

    Stein, Peter J; Edson, Patrick

    2016-01-01

    Active acoustic monitoring (AAM) can be used to study the behavioral response of marine life and to mitigate harm during high-danger anthropogenic activities. This has been done in fish studies for many decades, and there are now case studies in which AAM has been used for marine mammal monitoring as well. This includes monitoring where the ranges, AAM frequency of operation, and species are such that the AAM operation is completely outside the hearing range of the animals. However, it also includes AAM operations within the hearing range of marine life, although this does not necessarily that imply AAM is not a suitable tool. It is just not always possible to have a sufficient detection and tracking range and operate at a frequency outside the marine life hearing range. Likely, the best and most important application of AAM is when the anthropogenic activity to be conducted is temporary and presents a clear danger to aquatic life. PMID:26611075

  3. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  4. Results from radiation monitoring equipment experiment on STS-8

    NASA Astrophysics Data System (ADS)

    Madonna, R. G.; Amico, R. L.; Brown, V. L.; Kidd, V. R.

    1984-07-01

    The results from the Radiation Equipment Monitoring (RME) experiment, flown onboard STS-8 are presented and discussed. The RME consists of the HRM-III gamma ray counter and PRM neutron/proton dosimeter. The gamma ray data agree wtih data from previous flights. Large increases in count rates are observed when the Orbiter is in the South Atlantic Anomaly. Neutron/proton dosage is consistent with NASA predictions for STS-8.

  5. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  6. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  7. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1990-10-01

    DOE Order 5820.2A requires that low-level waste (LLW) disposal sites active on or after September 1988 and all transuranic (TRU) waste storage sites be monitored periodically to assure that radioactive contamination does not escape from the waste sites and pose a threat to the public or to the environment. This plan describes such a monitoring program for the active LLW disposal sites in SWSA 6 and the TRU waste storage sites in SWSA 5 North. 14 refs., 8 figs.

  8. Active galaxies and radiative heating.

    PubMed

    Ostriker, Jeremiah P; Ciotti, Luca

    2005-03-15

    There is abundant evidence that heating processes in the central regions of elliptical galaxies have both prevented large-scale cooling flows and assisted in the expulsion of metal rich gas. We now know that each such spheroidal system harbours in its core a massive black hole weighing ca. 0.13% of the mass in stars and also know that energy was emitted by each of these black holes with an efficiency exceeding 10% of its rest mass. Since, if only 0.5% of that radiant energy were intercepted by the ambient gas, its thermal state would be drastically altered, it is worth examining in detail the interaction between the out-flowing radiation and the equilibrium or inflowing gas. On the basis of detailed hydrodynamic computations we find that relaxation oscillations are to be expected with the radiative feedback quite capable of regulating both the growth of the central black hole and also the density and thermal state of the gas in the galaxy. Mechanical input of energy by jets may assist or dominate over these radiative effects. We propose specific observational tests to identify systems which have experienced strong bursts of radiative heating from their central black holes. PMID:15681285

  9. A theoretical approach to calibrate radiation portal monitor (RPM) systems.

    PubMed

    Nafee, Sherif S; Abbas, Mahmoud I

    2008-10-01

    Radiation portal monitor (RPM) systems are widely used at international border crossings, where they are applied to the task of detecting nuclear devices, special nuclear material, and radiation dispersal device materials that could appear at borders. The requirements and constraints on RPM systems deployed at high-volume border crossings are significantly different from those at weapons facilities or steel recycling plants, the former being required to rapidly detect localized sources of radiation with a very high detection probability and low false-alarm rate, while screening all of the traffic without impeding the flow of commerce [Chambers, W.H., Atwater, H.F., Fehlau, P.E., Hastings, R.D., Henry, C.N., Kunz, W.E., Sampson, T.E., Whittlesey, T.H., Worth, G.M., 1974. Portal Monitor for Diversion Safeguards. LA-5681, Los Alamos Scientific Laboratory, Los Alamos, NM]. In the present work, compact analytical formulae are derived and used to calibrate two RPM systems with isotropic radiating sources: (i) polyvinyltoluene (PVT) or plastic and (ii) thallium-doped crystalline sodium iodide, NaI(Tl), gamma-ray detector materials. The calculated efficiencies are compared to measured values reported in the literatures, showing very good agreement. PMID:18486482

  10. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    SciTech Connect

    Kondrashov, Vladislav S.; Steranka, Steve A.

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  11. Measurement of Larval Activity in the Drosophila Activity Monitor

    PubMed Central

    McParland, Aidan L.; Follansbee, Taylor L.; Ganter, Geoffrey K.

    2016-01-01

    Drosophila larvae are used in many behavioral studies, yet a simple device for measuring basic parameters of larval activity has not been available. This protocol repurposes an instrument often used to measure adult activity, the TriKinetics Drosophila activity monitor (MB5 Multi-Beam Activity Monitor) to study larval activity. The instrument can monitor the movements of animals in 16 individual 8 cm glass assay tubes, using 17 infrared detection beams per tube. Logging software automatically saves data to a computer, recording parameters such as number of moves, times sensors were triggered, and animals’ positions within the tubes. The data can then be analyzed to represent overall locomotion and/or position preference as well as other measurements. All data are easily accessible and compatible with basic graphing and data manipulation software. This protocol will discuss how to use the apparatus, how to operate the software and how to run a larval activity assay from start to finish. PMID:25993121

  12. Smart measurement system for an environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Wanno; Kim, Hee-Reyoung; Chung, Kun-Ho; Kim, Eun-Han; Cho, Young Hyun; Choi, Geun Sik; Lee, Chang Woo

    2007-08-01

    A smart measurement system for an on-line gamma monitoring has been developed to overcome the problems of a conventional system which cannot automatically restore the previous-lost data of several posts by a radio telemetry. It is similar to the conventional system except for a new electronic circuit board and an integrated operation program. The new electronic circuit board is able to store the radiation data with a time tag of 6 or more months if the recording interval time is 10 s. The operation program automatically sends the time correction command to the six monitoring posts for a daily synchronization between the monitoring posts and the central control computer as a Korean mean time. The previous-lost radiation data for 6 or more months could be restored by using two components with the functions of a time tag and a daily synchronization without any additional equipment. It was tested for more than 1 year, from which the test results, the data collection rate was dramatically improved without any tedious manual work, which was almost about 100% for 1 year. The smart measurement system has been applied for an effective gamma monitoring around the nuclear facilities at KAERI since it was developed and tested in 2003.

  13. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  14. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  15. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  16. Long Wavelength Monitoring of Protein Kinase Activity

    PubMed Central

    Oien, Nathan P.; Nguyen, Luong T.; Jernigan, Finith E.; Priestman, Melanie A.

    2014-01-01

    A family of long wavelength protein kinase fluorescent reporters is described in which the probing wavelength is pre-programmed using readily available fluorophores. These agents can assess protein kinase activity within the optical window of tissue, as exemplified by monitoring endogenous cAMP-dependent protein kinase activity (1) in erythrocyte lysates and (2) in intact erythrocytes using a light-activatable reporter. PMID:24604833

  17. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  18. The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Goldsten, J. O.; Maurer, R. H.; Peplowski, P. N.; Holmes-Siedle, A. G.; Herrmann, C. C.; Mauk, B. H.

    2013-11-01

    An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA's Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ˜0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (˜10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (˜3000 fA/cm2) and provide sufficient sensitivity (˜0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

  19. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  20. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  1. Education and training issues in individual monitoring of ionising radiation.

    PubMed

    Dimitriou, P; Kamenopoulou, V

    2011-03-01

    The present article deals with the education and training (E&T) issues of individual monitoring (IM) of ionising radiation, based on the requirements provided by the Basic Safety Standards Euratom Directive and the European Commission Technical Recommendations for IM of external radiation. The structure and the objectives of E&T programmes addressed to the staff of dosimetry services, in order to allow the recognition and ensure the continuity of expertise are discussed. The necessity for the establishment of a national strategy for building competence in IM through information, education, training and retraining programmes, addressed to the individually monitored personnel is underlined. The train the trainers' concept is recognised as being an important tool for optimising resources and transferring the skills necessary for building competence. The conditions under which an efficient train the trainers' approach can be established are discussed. Examples of curricula concerning the key persons involved in the provision of E&T in occupational radiation protection are also given. PMID:21131663

  2. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  3. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  4. Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.

    2007-01-01

    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis

  5. Summary Report of Working Group 5: Beam and Radiation Generation, Monitoring, and Control

    NASA Astrophysics Data System (ADS)

    Church, Mike; Kim, Kiyong

    2010-11-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  6. Summary report of working group 5: Beam and radiation generation, monitoring, and control

    SciTech Connect

    Church, Mike; Kim, Ki-Yong; /Maryland U.

    2010-01-01

    This paper summarizes the activities and presentations of Working Group 5 of the Advanced Accelerator Concepts Workshop held at Annapolis, Maryland in June 2010. Working Group 5 touched on a broad range of topics in the fields of beam and radiation generation and their monitoring and control. These topics were not comprehensively covered in this Workshop, but rather the Working Group concentrated on specific new developments and recent investigations. The Working Group divided its sessions into four broad categories: cathodes and electron guns, radiation generation, beam diagnostics, and beam control and dynamics. This summary is divided into the same structure.

  7. Operational control of radiation conditions in Space Monitoring Data Center of Moscow State University

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Shugay, Yulia; Bobrovnikov, Sergey; Kuznetsov, Nikolay; Barinova, Vera; Myagkova, Irina; Panasyuk, Mikhail

    2016-07-01

    Space Monitoring Data Center (SMDC) of Moscow State University provides mission support for Russian satellites and give operational analysis of radiation conditions in space. SMDC Web-sites (http://smdc.sinp.msu.ru/ and http://swx.sinp.msu.ru/) give access to current data on the level of solar activity, geomagnetic and radiation state of Earth's magnetosphere and heliosphere in near-real time. For data analysis the models of space environment factors working online have been implemented. Interactive services allow one to retrieve and analyze data at a given time moment. Forecasting applications including solar wind parameters, geomagnetic and radiation condition forecasts have been developed. Radiation dose and SEE rate control are of particular importance in practical satellite operation. Satellites are always under the influence of high-energy particle fluxes during their orbital flight. The three main sources of particle fluxes: the Earth's radiation belts, the galactic cosmic rays, and the solar energetic particles (SEP), are taken into account by SMDC operational services to estimate the radiation dose caused by high-energy particles to a satellite at LEO orbits. ISO 15039 and AP8/AE8 physical models are used to estimate effects of galactic cosmic rays and radiation belt particle fluxes. Data of geosynchronous satellites (GOES or Electro-L1) allow to reconstruct the SEP fluxes spectra at a given low Earth orbit taking into account the geomagnetic cut-off depending on geomagnetic activity level.

  8. Radiated Emission of Breath Monitoring System Based on UWB Pulses in Spacecraft Modules

    NASA Astrophysics Data System (ADS)

    Russo, P.; Mariani Primiani, V.; De Leo, A.; Cerri, G.

    2012-05-01

    The paper describes some EMC aspects related to a UWB radar for monitoring astronauts breathing activity. Compliance to EMC space standards forces some design aspects, in particular the peak voltage and the pulse waveform. Moreover some simulations were carried out to consider realistic operating condition. In the first case the interference towards a victim wifi circuit was analyzed, in the second case the effect of the environment on the radiated pulse was studied.

  9. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  10. Response of radiation monitoring labels to gamma rays and electrons

    NASA Astrophysics Data System (ADS)

    Rahim, F. Abdel; Miller, A.; McLaughlin, W. L.

    Many kinds of coated or impregnated reflecting papers change color or become colored by large radiation doses. Such papers or "labels" do not generally supply dosimetry information, but may give useful inventory information, namely a visual indication of whether or not an industrial product or location has been irradiated to high doses. Among labels available worldwide, a few are suitable for indicating absorbed dose regions of slightly less than 10 4 Gy (< 1 Mrad), and some are intended for monitoring high dose ranges (i.e., sterilization dose levels of > 10 4 Gy or > 1 Mrad), and in some cases even up to very high dose regions (˜10 5 to 10 6 Gy or ˜10 to 100 Mrad). Only one labels which is expected to be commercially available, was studied for lower dose levels, 10 1-10 3 Gy (1-100 krad), namely one based on polymerization of diacetylene. Tests of stability, sensitivity of ambient light, and differences in dose rate and radiation type (gamma rays and electron beams) were made on 15 kinds of labels. The results show that, for many types of indicators, diverse effects may give misleading conclusions unless countermeasures are taken. For example, some of the most commonly used labels, which contain dyes that indicate changes of pH due to release of halogen from halogenated substrates, have limited shelf life and must be protected from extreme environmental conditions. Some also show a marked rate dependence of response. Readings of color reflection optical densities on labels or long paper strips permit somewhat more precise discrimination of dose levels, and may sometimes be useful for monitoring differences in local dose distributions or area monitoring of radiation damage probabilities around particle accelerators or large radionuclide sources.

  11. Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors

    SciTech Connect

    Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler; Livesay, Jake

    2012-07-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

  12. Monitoring radiation exposure to medical personnel during percutaneous nephrolithotomy

    SciTech Connect

    Lowe, F.C.; Auster, M.; Beck, T.J.; Chang, R.; Marshall, F.F.

    1986-09-01

    To ascertain radiation exposure to medical personnel during percutaneous nephrolithotomy, lithium fluoride thermoluminescent dosimeters (TLDs) were utilized for the radiographic monitoring of 7 consecutive patients. Average fluoroscopy time per procedure was 27.8 minutes of which 15.1 minutes were for nephrostomy tube insertion and 12.7 minutes were for calculi extraction. The 2 radiologists received 4.5 and 5.1 mrad per procedure, while the 2 urologists received 2.5 and 3.7 mrad. All other ancillary personnel received less than 2.1 mrad per procedure except the anesthesiologists whose mean exposure was 4.7 mrad. By taking appropriate precautions and using the proper equipment, percutaneous nephrolithotomy can be performed with a low level of radiation exposure for all involved physicians and personnel.

  13. Environmental radiation monitoring of low-level wastes by the State of Washington

    SciTech Connect

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1989-11-01

    The Washington State Department of Health, as the state`s regulatory agency for radiation, monitors several forms of low-level radioactive wastes. The monitoring is done to assess the potential impact on the environment and on public health. The emphasis of the monitoring program is placed on the solid and liquid wastes from defense activities on the Hanford Reservation, commercial wastes at the site located on leased land at Hanford and uranium mill tailings in Northeastern Washington. Although not classified as low-level waste, monitoring is also periodically conducted at selected landfills and sewage treatment facilities and other licensees, where radioactive wastes are known or suspected to be present. Environmental pathways associated with waste disposal are monitored independently, and/or in conjunction with the waste site operators to verify their results and evaluate their programs. The Department also participates in many site investigations conducted by site operators and other agencies, and conducts it`s own special investigations when deemed necessary. Past investigations and special projects have included allegations of adverse environmental impact of I-129, uranium in ground water, impacts of wastes on the agricultural industry, radioactivity in seeps into the Columbia River from waste sites, identifying lost waste sites at Hanford, differentiating groundwater contamination from defense versus commercial sources, and radioactivity in municipal landfills and sewers. The state`s environmental radiation monitoring program has identified and verified a number of environmental problems associated with radioactive waste disposal, but has, to date, identified no adverse offsite impacts to public health.

  14. Radiation-Triggered Surveillance for UF6 Monitoring

    SciTech Connect

    Curtis, Michael M.

    2015-12-01

    This paper recommends the use of radiation detectors, singly or in sets, to trigger surveillance cameras. Ideally, the cameras will monitor cylinders transiting the process area as well as the process area itself. The general process area will be surveyed to record how many cylinders have been attached and detached to the process between inspections. Rad-triggered cameras can dramatically reduce the quantity of recorded images, because the movement of personnel and equipment not involving UF6 cylinders will not generate a surveillance review file.

  15. Citizen radiation monitoring program for the TMI area

    SciTech Connect

    Baratta, A.J.; Gricar, B.G.; Jester, W.A.

    1981-07-01

    The purpose of the program was to develop a system for citizens to independently measure radiation levels in and around their communities. This report describes the process by which the Program was developed and operated. It also presents the methods used to select and train the citizens in making and interpreting the measurements. The test procedures used to select the equipment for the program are described as are the results of the testing. Finally, the actual monitoring results are discussed along with the citizens' reactions to the program.

  16. Design and characterisation of a highly miniaturised radiation monitor HMRM

    NASA Astrophysics Data System (ADS)

    Guerrini, N.; Turchetta, R.; Griffin, D.; Morse, T.; Morse, A.; Poyntz-Wright, O.; Woodward, S.; Daly, E.; Menicucci, A.; Araujo, H.; Mitchell, E.

    2013-12-01

    Reliable data on the ionising radiation environment is regarded as very important to ensure an efficient design and operation of spacecraft. Here we present a novel Highly Miniaturised Radiation Monitor (HMRM) that aims to greatly reduce costs and complexity of radiation detectors. At the core of the current design is a CMOS Image Sensor. Size and mass are considerably reduced thanks to this approach and there is also scope for a reduction in power consumption. This makes the HMRM much easier to integrate on a spacecraft. The innovative architecture of the proposed radiation monitor will also make particle identification possible. The image sensor is based on a 50 by 51 pixel array. The selected pixel is a 4T, to reduce the noise. The array is read out in snapshot mode at a frame-rate of 10,000 fps. Biasing currents and voltages are generated on-chip to reduce the number of signals required to control the sensor. The sensor is designed to work on a large range of temperatures, from -40 °C to +80 °C; hence a temperature sensor has been integrated. The digital output data is obtained with a three-bit column parallel ADC with programmable thresholds. An analogue readout has been also designed to characterise and debug the ASIC. In this following paper we also want to present the results obtained from the measurements on the prototype. Preliminary PTC plots show a gain of 60 μV/e- with CDS and a noise of 17 e- rms, which includes the noise from the external board.

  17. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  18. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  19. Activity monitor accuracy in persons using canes.

    PubMed

    Wendland, Deborah Michael; Sprigle, Stephen H

    2012-01-01

    The StepWatch activity monitor has not been validated on multiple indoor and outdoor surfaces in a population using ambulation aids. The aims of this technical report are to report on strategies to configure the StepWatch activity monitor on subjects using a cane and to report the accuracy of both leg-mounted and cane-mounted StepWatch devices on people ambulating over different surfaces while using a cane. Sixteen subjects aged 67 to 85 yr (mean 75.6) who regularly use a cane for ambulation participated. StepWatch calibration was performed by adjusting sensitivity and cadence. Following calibration optimization, accuracy was tested on both the leg-mounted and cane-mounted devices on different surfaces, including linoleum, sidewalk, grass, ramp, and stairs. The leg-mounted device had an accuracy of 93.4% across all surfaces, while the cane-mounted device had an aggregate accuracy of 84.7% across all surfaces. Accuracy of the StepWatch on the stairs was significantly less accurate (p < 0.001) when comparing surfaces using repeated measures analysis of variance. When monitoring community mobility, placement of a StepWatch on a person and his/her ambulation aid can accurately document both activity and device use. PMID:23341318

  20. 78 FR 64030 - Monitoring Criteria and Methods To Calculate Occupational Radiation Doses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... monitoring and calculating occupational radiation doses. On December 4, 2007 (72 FR 68043), the NRC revised... COMMISSION Monitoring Criteria and Methods To Calculate Occupational Radiation Doses AGENCY: Nuclear... Criteria and Methods to Calculate Occupational Radiation Doses.'' This guide describes methods that the...

  1. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  2. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  3. Occupational radiation monitoring at a large medical center in Japan.

    PubMed

    ALMasri, Hussein Y; Kakinohana, Yasumasa; Yogi, Tadashi

    2014-07-01

    Occupational radiation dose monitoring is a method of ensuring that radiation levels are within the regulatory limits. Our objective in this study was to evaluate the radiation doses experienced by personnel at a radiology facility between 2001 and 2010. Overall, 2418 annual dose records for workers who were categorized into four occupational groups were analyzed. The groups included: (1) radiologists, (2) radiologic technologists, (3) nurses, and (4) other workers, who belong to other hospital departments, but who participate partially in some radiologic procedures. The dose distribution was found to be skewed, with 76 % of personnel having received no measurable doses and almost 2 % having received doses of more than 2 mSv. The weighted-average annual doses ranged from 0.13 to 0.57, 0.9 to 2.12, 0.01 to 0.19, and 0.01 to 0.09 mSv for the radiologists, radiologic technologists, nurses, and the other workers, respectively. The radiologic technologists received the highest radiation exposure among the four groups. It was found that the average annual doses were decreasing over time for the radiologists, radiologic technologists, and others, whereas they were increasing for the nurses. Nurses play an important role in assisting radiologists and patients during various radiologic procedures, which might have increased their average annual dose. During the 10-year period of this study, there was no incidence of a dose exceeding the annual dose limit of 20 mSv. Furthermore, there was no detectable neutron exposure. PMID:24570292

  4. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  5. NRC TLD Direct Radiation Monitoring Network: Volume 15, No. 1. Progress report, January--March 1995

    SciTech Connect

    Struckmeyer, R.

    1995-05-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the first quarter of 1995.

  6. NRC TLD direct radiation monitoring network: Progress report, April--June 1997. Volume 17, Number 2

    SciTech Connect

    Struckmeyer, R.

    1997-09-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the second quarter of 1997.

  7. NRC TLD Direct Radiation Monitoring Network. Progress report, July--September 1993: Volume 13, No. 3

    SciTech Connect

    Struckmeyer, R.

    1993-11-01

    This report provides the status and results of the NRC Thermoluminescent Dosimeter (TLD) Direct Radiation Monitoring Network. It presents the radiation levels measured in the vicinity of NRC licensed facilities throughout the country for the third quarter of 1993.

  8. Intelligent mirror monitor and controller for synchrotron radiation beam lines

    SciTech Connect

    Xu, X.L.; Yang, J.

    1983-01-01

    A microprocessor-based, stand-alone mirror monitor and control system has been developed for synchrotron radiation beam lines. The operational requirements for mirror position and tilt angle, including the parameters for controlling the number of steps, direction, speed and acceleration of the driving motors, may be programmed into EPROMS. The instruction sequence to carry out critical motions will be stored in a program buffer. A manual control knob is also provided to fine tune the mirror position if desired. A synchronization scheme for the height and tilt motions maintains a fixed mirror angle during insertion. Absolute height and tilt angle are displayed. Electronic (or programmable) tilt angle limits are provided to protect against damage from misalignment of high power beams such as focussed wiggler beams. A description of mirror drives with a schematic diagram is presented. Although the controller is made for mirror movers, it can be used in other applications where multiple stepping motors perform complex synchronized motions.

  9. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  10. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  11. Standardisation of radiation portal monitor controls and readouts.

    PubMed

    Tinker, M

    2010-10-01

    There is an urgent need to standardise the numbering configuration of radiation portal monitor sensing panels. Currently, manufacturers use conflicting numbering schemes that may confuse operators of these varied systems. There is a similar problem encountered with the varied choices of coloured indicator lights and coloured print lines designated for gamma and neutron alarms. In addition, second-party software that changes the alarm colour scheme may also have been installed. Furthermore, no provision exists for the colour blind or to provide work stations with only black ink on alarm printouts. These inconsistencies and confusing set-ups could inadvertently cause a misinterpretation of the alarm, resulting in the potential release of a radiological hazard into a sovereign country. These issues are discussed, and a proposed solution is offered. PMID:20858682

  12. Standardisation of radiation portal monitor controls and readouts

    SciTech Connect

    Tinker, Michael R.

    2010-10-01

    There is an urgent need to standardise the numbering configuration of radiation portal monitor sensing panels. Currently, manufacturers use conflicting numbering schemes that may confuse operators of these varied systems. There is a similar problem encountered with the varied choices of colored indicator lights and colored print lines designated for gamma and neutron alarms. In addition, second-party software that changes the alarm color scheme may also have been installed. Furthermore, no provision exists for the color blind or to provide work stations with only black ink on alarm printouts. These inconsistencies and confusing setups could inadvertently cause a misinterpretation of the alarm, resulting in the potential release of a radiological hazard into a sovereign country. These issues are discussed, and a proposed solution is offered.

  13. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions,...

  14. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions,...

  15. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions,...

  16. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions,...

  17. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions,...

  18. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated

  19. Radiation Monitoring at Mars -- Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Turner, R.; Atwell, W.

    We present the current status of efforts to monitor the radiation environment at Mars using instruments aboard the 2001 Mars Odyssey spacecraft. For most of 2002 and 2003, the MARIE instrument successfully recorded energetic charged particles from the nearly-constant Galactic Cosmic Radiation (GCR) and from intermittent Solar Particle Events (SPEs). In late October 2003, communication with MARIE was lost during an extremely intense SPE. Troubleshooting attempts continued without success through mid-December, at which time efforts were suspended in order to eliminate any possible risk to Odyssey during its period of operation as a relay for the Spirit and Opportunity rovers. In Spring 2004, efforts to revive MARIE will resume, with an uncertain outcome; if the instrument cannot be restored to operation, it is expected that the MARIE team will extend ongoing collaborations with Odyssey scientists from the GRS and HEND teams to make use of the capabilities of those instruments. Specifically, the GRS gamma crystal and the HEND scintillation block are both sensitive to energetic charged particles. These capabilities are, in both cases, peripheral to the main purpose of the detector, and so neither one yields detailed data on charged particles. However, each provides a charged-particle count rate, and these are of considerable value as they allow for the determination of the intensity of SPEs and -- when studied over long periods of time -- may show the expected variation in the flux of GCR particles, which is related to the solar cycle.

  20. Method for monitoring irradiated fuel using Cerenkov radiation

    DOEpatents

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  1. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  2. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  3. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  4. Moscow State University near-Earth radiation monitoring satellite system: current status and development

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail

    2016-07-01

    Radiation measurements using instruments have been designed and manufacturing in the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University and installed onboard different satellites,i.e. LEO -"Meteor", ISS, GPS - GLONASS, GEO - "Electro" are presented as a basis of radiation monitoring system for control of radiation condition with a goal for to decrease radiation risk of spacecraft's damage on different orbits. Development of this system including radiation measurements onboard "Lomonosov"(LEO) satellite will be presented as well together with future project of multispacecraft LEO system for radiation monitoring.

  5. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  6. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  7. Accelerometer based calf muscle pump activity monitoring.

    PubMed

    O'Donovan, Karol J; O'Keeffe, Derek T; Grace, Pierce A; Lyons, Gerard M

    2005-10-01

    Long distance travel is associated with increased risk of deep vein thrombosis (DVT). There is an increased risk of travel related DVT in passengers with a predisposition to thrombosis. Assisting blood circulation in the lower limb will reduce the risk of DVT. Leg exercises are recommended as a DVT preventative measure while flying but this fails to account for a passenger who is distracted by in flight entertainment or who falls asleep for an extended period. A method for monitoring calf muscle pump activity using accelerometers has been developed and evaluated. The proposed technique could be used to alert the traveller that there is a need to exercise their calf muscle, thus reducing the risk of DVT. PMID:16139770

  8. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  9. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  10. Radiation Detection for Active Interrogation of HEU

    SciTech Connect

    Mihalczo, J.T.

    2004-12-09

    This report briefly describes the neutrons and gamma rays emitted by active interrogation of HEU, briefly discusses measurement methods, briefly discusses sources and detectors relevant to detection of shielded HEU in Sealand containers, and lists the measurement possibilities for the various sources. All but one of the measurement methods detect radiation emitted by induced fission in the HEU; the exception utilizes nuclear resonance fluorescence. The brief descriptions are supplemented by references. This report presents some active interrogation possibilities but the status of understanding is not advanced enough to select particular methods. Additional research is needed to evaluate these possibilities.

  11. Environmental radiation real-time monitoring system permanently installed near Qinshan Nuclear Power Plant.

    PubMed

    Ding, M; Sheng, P; Zhi, Z

    1996-03-01

    An environmental radiation real-time monitoring system with high pressure ionization chamber was developed. It has been installed permanently in the vicinity of Qinshan Nuclear Power Plant, the first built in mainland China. The system consists of four basic components: environmental radiation monitors; data communication network; a data processing center; and a remote terminal computer situated in Hangzhou. It has provided five million readings of environmental radiation levels as of January 1993. PMID:8609035

  12. Management and Analysis of Radiation Portal Monitor Data

    SciTech Connect

    Rowe, Nathan C; Alcala, Scott; Crye, Jason Michael; Lousteau, Angela L

    2014-01-01

    Oak Ridge National Laboratory (ORNL) receives, archives, and analyzes data from radiation portal monitors (RPMs). Over time the amount of data submitted for analysis has grown significantly, and in fiscal year 2013, ORNL received 545 gigabytes of data representing more than 230,000 RPM operating days. This data comes from more than 900 RPMs. ORNL extracts this data into a relational database, which is accessed through a custom software solution called the Desktop Analysis and Reporting Tool (DART). DART is used by data analysts to complete a monthly lane-by-lane review of RPM status. Recently ORNL has begun to extend its data analysis based on program-wide data processing in addition to the lane-by-lane review. Program-wide data processing includes the use of classification algorithms designed to identify RPMs with specific known issues and clustering algorithms intended to identify as-yet-unknown issues or new methods and measures for use in future classification algorithms. This paper provides an overview of the architecture used in the management of this data, performance aspects of the system, and additional requirements and methods used in moving toward an increased program-wide analysis paradigm.

  13. Compact fluorescent lamp phosphors in accidental radiation monitoring.

    PubMed

    Murthy, K V R; Pallavi, S P; Ghildiyal, Rahul; Parmar, Manish C; Patel, Y S; Ravi Kumar, V; Sai Prasad, A S; Natarajan, V; Page, A G

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A (90)Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO(4): Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. PMID:16816401

  14. The new EC technical recommendations for monitoring individuals occupationally exposed to external radiation.

    PubMed

    Alves, J G; Ambrosi, P; Bartlett, D T; Currivan, L; van Dijk, J W E; Fantuzzi, E; Kamenopoulou, V

    2011-03-01

    The purpose of the European Commission technical recommendations (TR) for monitoring individuals occupationally exposed to external radiation is to provide guidance on those aspects of the implementation of the European Union Parliament and Council Directives directly related to individual monitoring of external radiation, and to encourage harmonisation thereof. They are mainly aimed at the management and staff of IM services but also at manufacturers, laboratories supplying type-testing services, national authorities trying to harmonise approval procedures, and government bodies to harmonise regulations and guidance. The TR main topics are: objectives and aims of IM for external radiation; dosimetry concepts; accuracy requirements; calibration, type testing and performance testing; approval procedures; quality assurance and quality control; and dose record keeping. Attention is paid to particular aspects, such as wide energy ranges for the use of personal dosemeters, pulsed fields and non-charged particle equilibrium; and use of active personal dosemeters. The TR give proposals towards achieving harmonisation in IM and the eventual mutual recognition of services and of dose results. PMID:20959338

  15. GdBr3: CE in a glass wafer as a nuclear radiation monitor.

    PubMed

    Kang, Zhitao; Rosson, Robert; Barta, M Brooke; Nadler, Jason; Wagner, Brent; Kahn, Bernd

    2013-05-01

    A glass wafer that contains cerium-activated gadolinium-based scintillator has been tested as a nuclear radiation monitor. The detector is prepared by mixing powdered gadolinium and cerium (3+) bromides with alumina, silica, and lithium fluoride, melting the mixture at 1,400°C, and then quenching and annealing the glass. The resulting clear glass matrix emits stimulated blue light that can be collected by a conventional photomultiplier tube. Spectral analysis of radionuclides with this detector shows the energy peaks for alpha particles, the energy continuum for beta particles, the Compton continuum and full-energy peaks for gamma rays, and an energy continuum with specific reaction-product peaks for neutrons. Energy resolution for the 5.5-MeV alpha particle and 0.662-MeV gamma-ray peaks is about 20%. This resolution, although threefold poorer than for single-crystal NaI(Tl) scintillators, contributes to radionuclide identification and quantification. Application of this detector to radiation monitoring is proposed, as well as approaches for improving light collection and energy resolution that will facilitate radionuclide identification and monitoring, especially for alpha particles, beta particles, and low-energy gamma rays. PMID:23532079

  16. Community Radiation Monitoring Program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect

    Cooper, E.N.

    1993-05-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  17. Infiltration rate measurement by active perfluorocarbon monitoring

    SciTech Connect

    Menzies, K.T.; Pong, C.M.; Randel, M.A. )

    1987-01-01

    The rate of air infiltration in homes and buildings is a significant factor affecting the magnitude of human exposure to air pollutants in the indoor environment. Several techniques have been utilized for the determination of air infiltration. These include building pressurization and tracer analysis, e.g., SF/sub 6/. Dietz and Cote at Brookhaven National Laboratory (BNL) have developed a simple, steady-state tracer kit that can be utilized by homeowners. This kit includes a source(s) of perfluorocarbon, i.e., perfluoromethylcyclohexane (PMCH) or perfluorodimethylcyclohexane (PDCH), and a passive sampling tube containing Ambersorb XE-347. Typically, the sampling tube is deployed for several days and then returned to a laboratory for analysis by thermal desorption/gas chromatography/electron capture detection. The authors developed an alternative sampling and analysis technique for PMCH/PDCH in homes. In order to facilitate monitoring of short-term infiltration rates (i.e., less than one day) they developed an active sorbent sampling method and solvent desorption/gas chromatography/electron capture detection analytical method. The method is based on the collection of PMCH on charcoal. The method validation, which is discussed in this article, includes analytical method development, selection of a solid sorbent, determination of desorption efficiency, analysis of breakthrough, testing of storage stability, and assessment of precision and accuracy in both the laboratory and field environment.

  18. Ahead with Cairo. Monitoring country activities.

    PubMed

    Danguilan, M; Wainer, J; Widyantoro, N; Capoor, I; Huq, N; Ashino, Y; Sadasivam, B; Le Thi Nham Tuyet

    1995-04-01

    In the aftermath of the 1994 UN Conference on Population and Development (ICPD) in Cairo, countries are proceeding with their implementation of the plan of action adopted at the conference. A brief description is given of some actions taken by specific countries toward plan implementation. In the Philippines meetings were held immediately after the conference in October on the implications for the Management, Family Planning, and Nongovernmental Organizations programs. The issues of concern were identified as the need for regular consultative meetings among relevant agencies, consultations with women's groups, and a responsive adolescents program. In Australia the program thrust was to focus on the implications for immigration. Monitoring of the plans of action will be undertaken by nongovernmental organizations (NGOs). In Malaysia committees are preparing a program of action suitable for implementation in Malaysia. A regional women's NGO organized a forum on the implications of ICPD for women's reproductive health, women's rights, and empowerment in Malaysia. In Vietnam, press conferences are used to communicate conference results. An NGO translated relevant ICPD materials into Vietnamese. In Indonesia, several ministries convened meetings among donors, NGOs, women's groups, and experts. In India, the government held a national conference. One view was that population issues should be discussed in the context of gender equality and empowerment of women. Another issue was the importance of placing reproductive health in the larger context of health and primary health services. Health personnel at all levels were considered in need of sensitization on gender issues. Problems such as anemia have not been successfully addressed in existing programs. The government agreed to remove in phases target driven programs and the sterilization emphasis. In Bangladesh, a national committee was formed, and NGOs are actively distributing information. In Japan, the Family Planning

  19. Active Seismic Monitoring for Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Artamonova, M.; Korneev, V.

    2005-12-01

    Earthquake prediction remains high priority issue for disaster prevention. Study of the M6.0 2004 Parkfield and M7.0 1989 Loma Prieta strike-slip earthquakes on the San Andreas Fault (SAF) reveal seismicity peaks in the surrounding crust several months prior to the main events. Earthquakes directly within the SAF zone were intentionally excluded from the analysis because they manifest stress-release processes rather than stress accumulation. The observed increase in seismicity is interpreted as a signature of the increasing stress level in the surrounding crust, while the peak that occurs several months prior to the main event and the subsequent decrease in seismicity are attributed to damage-induced softening processes. Furthermore, in both cases there is a distinctive zone of low seismic activity that surrounds the epicentral region in the pre-event period. The increase of seismicity in the crust surrounding a potential future event and the development of a low-seismicity epicentral zone can be regarded as promising precursory information that could help signal the arrival of large earthquakes. We modeled the seismicity precursor phenomena using finite-element 2D model capable to replicate non-linear breaking of elastic rock. The distinctive seismicity peak was observed for a model simulating SAF properties at Park field. Such peaks are likely to be a good mid-term precursors allowing to declare alerts several months before earthquakes and pointing on their epicenter regions. The short tern alerts require use of active sources and their proper placement in order to monitor the developments of rock softening processes.

  20. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  1. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  2. MONITORING ENVIRONMENTAL RADIATION IN THE UNITED STATES(RADNET)

    EPA Science Inventory

    Operate a national network of sampling stations that regularly submit environmental samples of air, precipitation, milk, and drinking water; analyze all samples for radiation at the laboratory; and report data to the public and the radiation protection community. During national...

  3. A Canadian View of Monitoring Activities

    ERIC Educational Resources Information Center

    Inhaber, Herbert

    1975-01-01

    A Canadian scientist discusses his country's environmental monitoring programs (by parameter and medium), points out their strengths and weaknesses, and indicates some possible directions for future efforts in the field of environmental monitoring at both the national and international level. (BT)

  4. Photocatalytic Active Radiation Measurements and Use

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  5. Gamma-Ray Signatures for State-Of-Health Analysis and Monitoring of Widely-Arrayed Radiation Portal Monitor Systems

    SciTech Connect

    Woodring, Mitchell L.; Ely, James H.; Angel, Linda K.; Wright, Ingrid H.; Eslinger, Melany A.; Pospical, A. Jill; Ellis, John E.

    2008-05-15

    Pacific Northwest National Laboratory (PNNL) has deployed a large array of radiation portal monitors for the Department of Homeland Security U.S. Customs and Border Protection. These portal monitors scan incoming vehicles crossing the U.S. border and shipping containers leaving international ports for radioactive material via gamma-ray and neutron detection. Data produced and captured by these systems are recorded for every vehicle related to radiation signature, sensor/system status, and local background, as well as a host of other variables. Within the Radiation Portal Monitor Project at PNNL, state-of-health observation and analysis for the whole RPM system using these data to determine functionality and performance is being developed. (PIET-43741-TM-492)

  6. Review of active radiation shielding developments

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    The radiation risk due to ionizing particles is a critical issue for long duration manned space missions. The ionization losses in the materials of the spacecraft provide passive shielding effectively stopping low energy particles. However, the estimates of the material required to obtain an acceptable level of radiation result in a prohibitive mass. Active electromagnetic shields, which deflect the charged particles, have been considered as an alternative solution. During the last 10 years the interest in this area has grown. A study of active magnetic shielding based on high-temperature superconductors (HTS) was initiated in an ESA study in 2010, continued in the context of the NASA Innovative Advanced Concepts (NIAC) programs (2011-2014) as well as within a dedicated FP7 EU program, SR2S (2013-2015). The aim of these effort was to provide a realistic evaluation of the possibilities based on current technology levels as well extrapolating to reasonable technology advances expected during the next decade. The different configurations considered were assessed in terms of their technical feasibility and shielding efficiency. We present here a status report of the ongoing work and some preliminary results.

  7. The relevance of particle flux monitors in accelerator-based activation analysis

    SciTech Connect

    Segebade, Chr.; Maimaitimin, M.; Sun Zaijing

    2013-04-19

    One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

  8. The relevance of particle flux monitors in accelerator-based activation analysis

    NASA Astrophysics Data System (ADS)

    Segebade, Chr.; Maimaitimin, M.; Zaijing, Sun

    2013-04-01

    One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

  9. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    SciTech Connect

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  10. OTP for 244-U radiation monitoring system. Revision 1

    SciTech Connect

    Erhart, M.F.

    1995-03-13

    This Operability Test Procedure (OTP) will be used to ensure the operability of the beta/gamma alarms for the Continuous Air Monitoring System installed in 244-U DCRT (Double Containment Receiver Tank). The complete system consists of two subsystems: one for Exhaust Stack Monitoring and one for Annulus Monitoring. Completion of this OTP will provide the necessary verification for the operability of the Exhaust Stack and Annulus Monitoring Systems, and for determining the operability of the Receiver Vessel 244-U. This OTP may be performed in conjunction with or following the vendor`s Site Acceptance Test Procedure of Continuous Air Monitoring System for 244-U DCRT.

  11. Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Cooper, E.N.

    1994-08-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.

  12. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  13. Community Radiation Monitoring Program; Annual report, October 1, 1990--September 30, 1991

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1992-06-01

    The Community Radiation Monitoring Program is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (U of U). This eleventh year of the program began in the summer of 1991 and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which the DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of those efforts. One of the primary methods used to improve the communication link with the potentially impacted area has been the hiring and training of local citizens as Managers and program representatives in 19 communities adjacent to and downwind from the NTS. These Managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  14. Active sites environmental monitoring Program - Program Plan: Revision 2

    SciTech Connect

    Morrissey, C.M.; Hicks, D.S.; Ashwood, T.L.; Cunningham, G.R.

    1994-05-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of active low-level-waste (LLW) and transuranic (TRU) waste facilities at Oak Ridge National Laboratory (ORNL). Several changes have recently occurred in regard to the sites that are currently used for waste storage and disposal. These changes require a second set of revisions to the ASEMP program plan. This document incorporates those revisions. This program plan presents the organization and procedures for monitoring the active sites. The program plan also provides internal reporting levels to guide the evaluation of monitoring results.

  15. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 800.216 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance...

  16. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 800.216 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance...

  17. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 800.216 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance...

  18. Instructional physical activity monitor video in english and spanish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  19. ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER

    SciTech Connect

    Farfan, E.; Jannik, T.

    2011-10-01

    This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  20. 105KE Basin Area Radiation Monitor System (ARMS) Acceptance Test Procedure

    SciTech Connect

    KINKEL, C.C.

    1999-12-14

    This procedure is intended for the Area Radiation Monitoring System, ARMS, that is replacing the existing Programmable Input-Output Processing System, PIOPS, radiation monitoring system in the 105KE basin. The new system will be referred to as the 105KE ARMS, 105KE Area Radiation Monitoring System. This ATP will ensure calibration integrity of the 105KE radiation detector loops. Also, this ATP will test and document the display, printing, alarm output, alarm acknowledgement, upscale check, and security functions. This ATP test is to be performed after completion of the 105KE ARMS installation. The alarm outputs of the 105KE ARMS will be connected to the basin detector alarms, basin annunciator system, and security Alarm Monitoring System, AMS, located in the 200 area Central Alarm Station (CAS).

  1. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  2. Update on nutrition monitoring activities in the United States.

    PubMed

    Kuczmarski, M F; Moshfegh, A; Briefel, R

    1994-07-01

    This article provides an overview of planned and proposed nutrition monitoring activities of the National Nutrition Monitoring and Related Research (NNMRR) Program. Key provisions of the NNMRR Act of 1990 are described, including the roles and responsibilities of the Interagency Board of Nutrition Monitoring and Related Research (IBNMRR) and the National Nutrition Monitoring Advisory Council and the development of the Ten-Year Comprehensive Plan. The Plan, which was developed under the guidance of the IBNMRR and reviewed by the National Nutrition Monitoring Advisory Council, is the basis for planning and coordinating the monitoring activities of 22 federal agencies. Also discussed are the resources generated from nutrition monitoring activities, from publications to conferences, that are available to dietitians and nutritionists. Professionals view the scientific reports that describe the nutritional status of the US population and the directories of federal and state monitoring activities as valuable resources. Suggestions from users of nutrition monitoring data related to their information and research needs have been extremely helpful to federal agencies in the development of future monitoring publications and the Ten-Year Comprehensive Plan. Continued communication between dietitians and the federal agencies responsible for the NNMRR Program is important. PMID:8021417

  3. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  4. Method and apparatus to monitor a beam of ionizing radiation

    SciTech Connect

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  5. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    SciTech Connect

    Middleton, E.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on a study to quantify the reflectance anisotropy of the photosynthetically active radiation (PAR) for grasslands. PAR falls in the wavelength range 0.4 to 0.7[mu]m. The study looks at the variation of PAR with illumination and vegetative canopy conditions. It uses bidirectional reflectance distribution function data, and measures of anisotropy derived from reflectance factor and reflectance fraction data to aid in the analysis. The data used for this analysis came from an intense effort mounted to measure diurnal changes in the anisotropy of surface reflectance from prairie grassland as a function of the vegetative canopy.

  6. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  7. A historical fluence analysis of the radiation environment of the Chandra X-ray Observatory and implications for continued radiation monitoring

    NASA Astrophysics Data System (ADS)

    DePasquale, J. M.; Plucinsky, P. P.; Schwartz, D. A.

    2006-06-01

    Now in operation for over 6 years, the Chandra X-ray Observatory (CXO) has sampled a variety of space environments. Its highly elliptical orbit, with a 63.5 hr period, regularly takes the spacecraft through the Earth's radiation belts, the magnetosphere, the magnetosheath and into the solar wind. Additionally, the CXO has weathered several severe solar storms during its time in orbit. Given the vulnerability of Chandra's Charge Coupled Devices (CCDs) to radiation damage from low energy protons, proper radiation management has been a prime concern of the Chandra team. A comprehensive approach utilizing scheduled radiation safing, in addition to both on-board autonomous radiation monitoring and manual intervention, has proved successful at managing further radiation damage. However, the future of autonomous radiation monitoring on-board the CXO faces a new challenge as the multi-layer insulation (MLI) on its radiation monitor, the Electron, Proton, Helium Instrument (EPHIN), continues to degrade, leading to elevated temperatures. Operating at higher temperatures, the data from some EPHIN channels can become noisy and unreliable for radiation monitoring. This paper explores the full implication of the loss of EPHIN to CXO radiation monitoring by evaluating the fluences the CXO experienced during 40 autonomous radiation safing events from 2000 through 2005 in various hypothetical scenarios which include the use of EPHIN in limited to no capacity as a radiation monitor. We also consider the possibility of replacing EPHIN with Chandra's High Resolution Camera (HRC) for radiation monitoring.

  8. Operational radiation monitoring in near-Earth space based on the system of multiple small satellites

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Brilkov, I. A.; Vlasova, N. A.; Kalegaev, V. V.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2015-11-01

    The operational monitoring of radiation conditions in different orbits in near-Earth space is crucial for ensuring the radiation safety of space flights. The intensity of ionizing radiation fluxes in near-Earth space varies within several orders of magnitude. Therefore, existing averaged empirical models cannot always be used to estimate specific radiation conditions in orbits. The forecast of solar cosmic rays is even less reliable. This paper presents a version of the global system of radiation monitoring in near-Earth space based on the system of multiple small satellites. The considered system of satellites with identical radiometric equipment will provide operational information on the fluxes of electrons and protons of Earth radiation belts and solar cosmic rays, which will make it possible to create 3D pictures of the distribution of particle fluxes in real time.

  9. The Response of Radiation Portal Monitors to Medical Radionuclides at Border Crossings

    SciTech Connect

    Kouzes, Richard T.; Siciliano, Edward R.

    2006-05-01

    Radio-pharmaceuticals are found at detectable levels in about one in 2600 Americans. Such individuals are thus commonly found at border crossings where equipment exists for radiation detection, and the resulting alarms must be handled by cognizant officials. A total of approximately 14.4 million medical procedures using radionuclides were performed in the U.S. during 2001. Of this total number of procedures during 2001, approximately 14.2 million were diagnostic procedures and 0.2 million were therapeutic procedures. Although there were over 45 different commercially-available products used in over 75 different types of procedures, 17 isotopes comprise the complete set of active ingredients in the commercially available radiopharmaceuticals in the U.S. Of these, 12 are customarily administered to outpatients, and 9 of these produce energetic photons. At 91.5%, the isotope 99mTc is the one most likely administered by an overwhelming margin. This paper reports on various impacts of radiopharmaceuticals observed at border crossings. Calculations were performed to simulate the photon response of portal radiation monitors to these types of sources. It is shown that at any time, about one in 2600 Americans carries a detectable radiation burden. (PIET-43741-TM-326)

  10. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  11. Effects of computer monitor-emitted radiation on oxidant/antioxidant balance in cornea and lens from rats

    PubMed Central

    Namuslu, Mehmet; Devrim, Erdinç; Durak, İlker

    2009-01-01

    Purpose This study aims to investigate the possible effects of computer monitor-emitted radiation on the oxidant/antioxidant balance in corneal and lens tissues and to observe any protective effects of vitamin C (vit C). Methods Four groups (PC monitor, PC monitor plus vitamin C, vitamin C, and control) each consisting of ten Wistar rats were studied. The study lasted for three weeks. Vitamin C was administered in oral doses of 250 mg/kg/day. The computer and computer plus vitamin C groups were exposed to computer monitors while the other groups were not. Malondialdehyde (MDA) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities were measured in corneal and lens tissues of the rats. Results In corneal tissue, MDA levels and CAT activity were found to increase in the computer group compared with the control group. In the computer plus vitamin C group, MDA level, SOD, and GSH-Px activities were higher and CAT activity lower than those in the computer and control groups. Regarding lens tissue, in the computer group, MDA levels and GSH-Px activity were found to increase, as compared to the control and computer plus vitamin C groups, and SOD activity was higher than that of the control group. In the computer plus vitamin C group, SOD activity was found to be higher and CAT activity to be lower than those in the control group. Conclusion The results of this study suggest that computer-monitor radiation leads to oxidative stress in the corneal and lens tissues, and that vitamin C may prevent oxidative effects in the lens. PMID:19960068

  12. Summary report on beam and radiation generation, monitoring and control (working group 6).

    SciTech Connect

    Power, J. G.; Gordon, D. F.; High Energy Physics; Naval Research Lab.

    2009-01-01

    The discussions of the working group on beam and radiation generation, monitoring, and control (working group 6) at the 2008 advanced accelerator concepts workshop are summarized. The discussions concerned electron injectors, phase space manipulation, beam diagnostics, pulse train generation, intense beam physics, and radiation generation.

  13. LISA-PF radiation monitor performance during the evolution of SEP events for the monitoring of test-mass charging

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Ao, X.; Fabi, M.; Laurenza, M.; Li, G.; Lobo, A.; Mateos, I.; Storini, M.; Verkhoglyadova, O.; Zank, G. P.

    2014-02-01

    Cosmic rays of solar and galactic origin at energies >100 MeV/n charge and induce spurious forces on free-floating test masses on board interferometers devoted to gravitational wave detection in space. LISA Pathfinder (LISA-PF), the technology testing mission for eLISA/NGO, will carry radiation monitors for on board test-mass charging monitoring. We present here the results of a simulation of radiation monitor performance during the evolution of solar energetic particle (SEP) events of different intensity. This simulation was carried out with the Fluka Monte Carlo package by taking into account for the first time both energy and spatial distributions of solar protons for the SEP events of 23 February 1956, 15 November 1960 and 7 May 1978. Input data for the Monte Carlo simulations was inferred from neutron monitor measurements. Conversely, for the SEP event of 13 December 2006 observed by the PAMELA experiment in space, we used the proton pitch angle distribution (PAD) computed from the Particle Acceleration and Transport in the Heliosphere (PATH) code. We plan to adopt this approach at the time of LISA-PF data analysis in order to optimize the correlation between radiation monitor observations and test-mass charging. The results of this work can be extended to the future space interferometers and other space missions carrying instruments for SEP detection.

  14. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring.

    PubMed

    Parodi, Katia

    2015-12-01

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  15. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    SciTech Connect

    Parodi, Katia

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  16. A comparative radiation study at ALBA synchrotron facility between Monte Carlo modeling and radiation monitors dosimetry measurements

    NASA Astrophysics Data System (ADS)

    Devienne, A.; Aymerich, N.; García-Fusté, M. J.; Queralt, X.

    2015-11-01

    ALBA is the Spanish synchrotron facility formed with a 3 GeV electron synchrotron accelerator generating bright beams of synchrotron radiation, located in Cerdanyola del Vallès (Spain). The aim of this work is to study the origin of the radiation produced inside and outside the optical hutch of BOREAS beamline, an experimental station dedicated to study the resonant absorption and scattering of the photons. The objective is to characterize the radiation at the beamline, evaluating in particular the solid bremsstrahlung component of the radiation. The results are obtained after comparing radiation monitors detectors data with Monte Carlo modeling (FLUKA), giving the characteristics of the shielding required to consider the outside of the hutch as a public zone.

  17. RST (Robust Satellite Techniques) analysis for monitoring earth emitted radiation in seismically active area of California (US): a long term (2006-2011) analysis of GOES-W/IMAGER thermal data

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Armandi, B.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2014-12-01

    More than ten years of applications of the RST (Robust Satellite Techniques) methodology for monitoring earthquake prone area by using satellite TIR(Thermal InfraRed) data, have shown the ability of this approach to discern anomalous TIR signals possibly associated to seismic activity from normal fluctuations of Earth's thermal emission related to other causes independent on the earthquake occurrence. The RST approach was already tested in the case of tens of earthquakes occurred in different continents (Europe, Asia, America and Africa), in various geo-tectonic settings (compressive, extensional and transcurrent) and with a wide range of magnitudes (from 4.0 to 7.9), by analyzing time series of TIR images acquired by sensors on board of polar (like NOAA/AVHRR, EOS/MODIS) and geostationary satellites (like MFG/MVIRI, MSG/SEVIRI, GOES/IMAGER). In addition RST method has been independently tested by several researchers around the world as well as in the framework of several projects funded by different national space agencies (like the Italian ASI, the U.S. NASA and the German DLR) and recently during the EC-FP7 projectPRE-EARTHQUAKES (www.pre-earthquakes.org),which was devoted to study the earthquake precursors using satellite techniques. This paper will show the results of RST analysis on 6 years (2006-2011)of TIR satellite record collected by GOES-W/IMAGER over Southern part United State (California).Results will be discussed particularly in the prospective of an integrated approach devoted to systematically collectand analyze in real-time, independent observations for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  18. European activities in radiation protection in medicine.

    PubMed

    Simeonov, Georgi

    2015-07-01

    The recently published Council Directive 2013/59/Euratom ('new European Basic Safety Standards', EU BSS) modernises and consolidates the European radiation protection legislation by taking into account the latest scientific knowledge, technological progress and experience with implementing the current legislation and by merging five existing Directives into a single piece of legislation. The new European BSS repeal previous European legislation on which the national systems for radiation protection in medicine of the 28 European Union (EU) Member States are based, including the 96/29/Euratom 'BSS' and the 97/43/Euratom 'Medical Exposure' Directives. While most of the elements of the previous legislation have been kept, there are several legal changes that will have important influence over the regulation and practice in the field all over Europe-these include, among others: (i) strengthening the implementation of the justification principle and expanding it to medically exposed asymptomatic individuals, (ii) more attention to interventional radiology, (iii) new requirements for dose recording and reporting, (iv) increased role of the medical physics expert in imaging, (v) new set of requirements for preventing and following up on accidents and (vi) new set of requirements for procedures where radiological equipment is used on people for non-medical purposes (non-medical imaging exposure). The EU Member States have to enforce the new EU BSS before January 2018 and bring into force the laws, regulations and administrative provisions necessary to comply with it. The European Commission has certain legal obligations and powers to verify the compliance of the national measures with the EU laws and, wherever necessary, issue recommendations to, or open infringement cases against, national governments. In order to ensure timely and coordinated implementation of the new European legal requirements for radiation protection, the Commission is launching several actions

  19. Longitudinal profile monitors using Coherent Smith-Purcell radiation

    NASA Astrophysics Data System (ADS)

    Andrews, H. L.; Bakkali Taheri, F.; Barros, J.; Bartolini, R.; Cassinari, L.; Clarke, C.; Le Corre, S.; Delerue, N.; Doucas, G.; Fuster-Martinez, N.; Konoplev, I.; Labat, M.; Perry, C.; Reichold, A.; Stevenson, S.; Vieille Grosjean, M.

    2014-03-01

    Coherent Smith-Purcell radiation has the potential of providing information on the longitudinal profile of an electron bunch. The E-203 experiment at the FACET User Facility measures bunch profiles from the SLAC linac in the hundreds of femtoseconds range and the SPESO collaboration at Synchrotron SOLEIL is planning to make an accurate 2D map of the Coherent Smith-Purcell Radiation emission.

  20. Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar

    SciTech Connect

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

    2008-02-13

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  1. NRC TLD direct radiation monitoring network: Volume 15, No. 3. Progress report, July--September 1995

    SciTech Connect

    Struckmeyer, R.

    1995-12-01

    The US Nuclear Regulatory Commission (NRC) Direct Radiation Monitoring Network is operated by the NRC in cooperation with participating states to provide continuous measurement of the ambient radiation levels around licensed NRC facilities, primarily power reactors. Ambient radiation levels result from naturally occurring radionuclides present in the soil, cosmic radiation constantly bombarding the earth from outer space, and the contribution, if any, from the monitored facilities and other man-made sources. The Network is intended to measure radiation levels during routine facility operations and to establish background radiation levels used to assess the radiological impact of an unusual condition, such as an accident. This report presents the radiation levels measured around all facilities in the Network for the third quarter of 1995. A complete listing of the site facilities monitored is included. In some instances, two power reactor facilities are monitored by the same set of dosimeters (e.g., Kewaunee and Point Beach). All radiation measurements are made using small, passive detectors called therinoluminescent dosimeters (TLDs), which provide a quantitative measurement of the radiation levels in the area in which they are placed. Each site is monitored by arranging approximately 40 to 50 TLD stations in two concentric rings extending to about five miles from the facility. All TLD stations are outside the site boundary of the facility. A complete description of the program can be found in NUREG-0837, Volume 2, Number 4. A similar description can also be found in the fourth quarter report of each subsequent year. The National Institute of Standards and Technology (formerly the National Bureau of Standards) has performed an independent study of the following characteristics of the NRC dosimetry system; energy response, angular dependence, temperature and humidity sensitivity, fading, light dependence, self-irradiation, and reproducibility.

  2. Reply to comment by Rainer Facius et al. on "U.S. Government shutdown degrades aviation radiation monitoring during solar radiation storm"

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin

    2014-05-01

    The premise of this comment perpetuates an unfortunate trend among some radiation researchers to minimize potential risks to human tissue from low-radiation sources. In fact, this discussion on the risk uncertainties of low-dose radiation further illustrates the need for more measurements and a program of active monitoring, especially when solar eruptive events can substantially elevate the radiation environment. This debate also highlights the context of a bigger problem; i.e., how do we as professionals act with due diligence to take the immense body of knowledge of space weather radiation effects on human tissue and distil it into ideas that regulatory agencies can use to maximize the safety of a population at risk. The focus of our article on radiation risks due to solar energetic particle events starts with our best assessment of risks and is based on the body of scientific knowledge while, at the same time, erring on the side of public safety. The uncertainty inherent in our assessment is accepted and described with this same philosophy in mind.

  3. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  5. Radiation exposure induces inflammasome pathway activation in immune cells.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Ishikawa, Shizu; Lederer, Madeline R; Wanke-Jellinek, Lorenz; Lederer, James A

    2015-02-01

    Radiation exposure induces cell and tissue damage, causing local and systemic inflammatory responses. Because the inflammasome pathway is triggered by cell death and danger-associated molecular patterns, we hypothesized that the inflammasome may signal acute and chronic immune responses to radiation. Using a mouse radiation model, we show that radiation induces a dose-dependent increase in inflammasome activation in macrophages, dendritic cells, NK cells, T cells, and B cells as judged by cleaved caspase-1 detection in cells. Time course analysis showed the appearance of cleaved caspase-1 in cells by day 1 and sustained expression until day 7 after radiation. Also, cells showing inflammasome activation coexpressed the cell surface apoptosis marker annexin V. The role of caspase-1 as a trigger for hematopoietic cell losses after radiation was studied in caspase-1(-/-) mice. We found less radiation-induced cell apoptosis and immune cell loss in caspase-1(-/-) mice than in control mice. Next, we tested whether uric acid might mediate inflammasome activation in cells by treating mice with allopurinol and discovered that allopurinol treatment completely blocked caspase-1 activation in cells. Finally, we demonstrate that radiation-induced caspase-1 activation occurs by a Nod-like receptor family protein 3-independent mechanism because radiation-exposed Nlrp3(-/-) mice showed caspase-1 activation profiles that were indistinguishable from those of wild-type mice. In summary, our data demonstrate that inflammasome activation occurs in many immune cell types following radiation exposure and that allopurinol prevented radiation-induced inflammasome activation. These results suggest that targeting the inflammasome may help control radiation-induced inflammation. PMID:25539818

  6. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Solid state microdosimeter for radiation monitoring in spacecraft and avionics

    SciTech Connect

    Roth, D.R.; McNulty, P.J.; Beauvais, W.J.; Reed, R.A. . Dept. of Physics and Astronomy); Stassinopoulos, E.G. )

    1994-12-01

    An instrument is described which is designed to characterize the complex radiation environments inside spacecraft and airplanes in terms of the risk of SEEs in the present and planned microelectronic systems and in terms of the risk to flight crews and passengers.

  8. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  9. Construction monitoring activities in the ESF starter tunnel

    SciTech Connect

    Pott, J.; Carlisle, S.

    1994-05-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

  10. ASSESSMENT OF PHYSICAL ACTIVITY USING WEARABLE MONITORS: RECOMMENDATIONS FOR MONITOR CALIBRATION AND USE IN THE FIELD

    PubMed Central

    Freedson, Patty; Bowles, Heather R.; Troiano, Richard; Haskell, William

    2011-01-01

    This paper provides recommendations for the use of wearable monitors for assessing physical activity. We have provided recommendations for measurement researchers, end users, and developers of activity monitors. We discuss new horizons and future directions in the field of objective measurement of physical activity and present challenges that remain for the future. These recommendations are based on the proceedings from the workshop, “Objective Measurement of Physical Activity: Best Practices & Future Direction,” July 20-21, 2009, and also on data and information presented since the workshop. PMID:22157769

  11. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-01

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  12. [Remote monitoring of active implantable medical device].

    PubMed

    Zhang, Yujing

    2013-09-01

    Active implantable medical device develops rapidly in recent years. The clinical demands and current application are introduced, the technical trends are discussed, and the safety risks are analyzed in this paper. PMID:24409793

  13. The NOAA Integrated Surface Irradiance Study (ISIS) - A new surface radiation monitoring program

    SciTech Connect

    Hicks, B.B.; DeLuisi, J.J.

    1996-12-01

    This paper describes a new radiation monitoring program, the Integrated Surface Irradiance Study (ISIS), that builds upon and takes over from earlier NOAA networks monitoring components of solar radiation [both the visible component (SOLRAD) and the shortwave component that causes sunburn, UV-B] across the continental United States. ISIS is implemented in two levels. Level 1 addresses incoming radiation only, and level 2 addresses the surface radiation balance. Level 2 also constitutes the SURFRAD (Surface Radiation) program of the NOAA Office of Global Programs, specifically intended to provide radiation data to support large-scale hydrologic studies that will be conducted under the Global Energy and Water Cycle Experiment. Eventually, it is planned for level 2 sites to monitor all components of the surface energy balance. Both levels of ISIS will eventually measure both visible and UV radiation components. At present, there are nine sites that are considered to be at ISIS level 1 standard and an additional four level 2 SURFRAD sites. A 10th level 1 site will be in operation soon. Plans call for an increase in the number of sites of both kinds, up to about 15 ISIS sites, of which 6 will be at the SURFRAD level. 20 refs., 2 figs., 1 tab.

  14. Activity Monitors Help Users Get Optimum Sun Exposure

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  15. Photoacoustic monitoring of tumor and normal tissue response to radiation

    PubMed Central

    Rich, Laurie J.; Seshadri, Mukund

    2016-01-01

    Hypoxia is a recognized characteristic of tumors that influences efficacy of radiotherapy (RT). Photoacoustic imaging (PAI) is a relatively new imaging technique that exploits the optical characteristics of hemoglobin to provide information on tissue oxygenation. In the present study, PAI based measures of tumor oxygen saturation (%sO2) were compared to oxygen-enhanced magnetic resonance imaging (MRI) measurements of longitudinal relaxation rate (R1 = 1/T1) and ex-vivo histology in patient derived xenograft (PDX) models of head and neck cancer. PAI was utilized to assess early changes (24 h) in %sO2 following RT and chemoRT (CRT) and to assess changes in salivary gland hemodynamics following radiation. A significant increase in tumor %sO2 and R1 was observed following oxygen inhalation. Good spatial correlation was observed between PAI, MRI and histology. An early increase in %sO2 after RT and CRT detected by PAI was associated with significant tumor growth inhibition. Twenty four hours after RT, PAI also detected loss of hemodynamic response to gustatory stimulation in murine salivary gland tissue suggestive of radiation-induced vascular damage. Our observations illustrate the utility of PAI in detecting tumor and normal tissue hemodynamic response to radiation in head and neck cancers. PMID:26883660

  16. Active radiation hardening technology for fiber-optic source

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Suo, Xinxin; Yang, Mingwei

    2013-09-01

    We demonstrated an active radiation hardening technology for fiber optic source developed for high performance fiber optic gyroscope. The radiation characteristic of erbium-doped fiber was studied experimentally. The radiation induced attenuation (RIA) at 980nm pump light was identified to be the main reason for the degradation and there was photo-bleaching effect in EDF too. A variable parameters control technology was proposed and taken to keep the 980nm and 1550nm light energy stable and high stability and radiation-resistance fiber source with gauss profile spectrum was realized .The source can stand against more than 50 krad (Si) total radiation dose.

  17. Monitoring of onboard aircraft exposure to cosmic radiation: May December 2005

    NASA Astrophysics Data System (ADS)

    Spurný, F.; Ploc, O.; Jadrníčková, I.; Turek, K.; Dachev, T.; Gelev, M.

    Onboard aircraft exposure to cosmic radiation has been monitored during the period May December 2005. Mobile Dosimetry Unit (MDU) Si-spectrodosimeter has been used as an active measuring equipment, it has been installed onboard of an A310 300 aircraft. Some passive detectors were placed on the body of MDU. Three types of thermoluminescent detectors (TLD) were used as well as track etch detectors (TEDs). TEDs were treated both as a neutron dosimeter and as a spectrometer of linear energy transfer. Available navigation data permitted us also to calculate onboard exposure during more than 400 individual flights. MDU established and calculated data for each individual flight are compared and analyzed, from the data conclusions as to aircrew exposure are outlined. Particular attention is devoted to the influence of:geomagnetic characteristics and flight altitude on the calculated and MDU-Liulin measured dosimetry characteristic of onboard radiation field;some solar events (Forbush decreases) registered by MDU-Liulin on the level of aircraft crew exposure during monitoring period. Integral data on the exposure due to non-neutron and neutron-like component obtained on the base of MDU and calculated data are compared with the data obtained by TLDs and TEDs, respectively. Total effective dose during the period mentioned (494 flights and 2940 h between taking offs and landings) was found to be about 11 12 mSv for. Results obtained by means of different approaches are analyzed and discussed, it was found that in general good agreement of all data sets could be stated.

  18. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  19. Open-source radiation exposure extraction engine (RE3) for dose monitoring

    NASA Astrophysics Data System (ADS)

    Weisenthal, Samuel; Folio, Les; Derderian, Vana; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Our goal was to investigate the feasibility of an open-source, PACS-integrated, DICOM header-based tool that automatically provides granular data for monitoring of CT radiation exposure. To do so, we constructed a radiation exposure extraction engine (RE3) that is seamlessly connected to the PACS using the digital imaging and communications in medicine (DICOM) toolkit (DCMTK) and runs on the fly within the workflow. We evaluated RE3's ability to determine the number of acquisitions and calculate the exposure metric dose length product (DLP) by comparing its output to the vendor dose pages. RE3 output closely correlated to the dose pages for both contiguously acquired exams (R2 =0.9987) and non-contiguously acquired exams (R2 =0.9994). RE3 is an open-source, automated radiation monitoring program to provide study-, series-, and slice-level radiation data.

  20. TH-C-17A-09: Direct Visualization and Monitoring of Medical Radiation Beams in Air

    SciTech Connect

    Fahimian, B; Ceballos, A; Turkcan, S; Kapp, D; Pratx, G

    2014-06-15

    Purpose: Radiation therapy errors are rare but potentially catastrophic. Recent fatal incidents could have been avoided by utilizing real-time methods of monitoring delivery of radiation during treatment. However, few existing methods are practical enough to be used routinely. The study presents the first experimental demonstration of a novel non-perturbing method of monitoring radiation therapy through the phenomena of air scintillation. Methods: Monitoring of radiation delivery was devised by leveraging the phenomena of nitrogen excitation in air by ionizing radiation. The excitation induced weak luminescence in the 300–400 nm range, a process called air scintillation. An electron-multiplication charge-coupled device camera (f/0.95 lens; 440 nm shortpass) was set-up in a clinical treatment vault and was used to capture air scintillation images of kilovoltage and megavoltage beams. Monte Carlo simulations were performed to determine the correlation of radiation dose to air scintillation. Results: Megavoltage beams from a Varian Clinac 21EX and kilovoltage beams from an orthovoltage unit (50 kVp, 30 mA) were visualized with a relatively short exposure time (10 s). Cherenkov luminescence produced in a plastic transparent phantom did not interfere with detection of air scintillation. The image intensity displayed an inverse intensity falloff (r{sup 2} = 0.89) along the central axis and was proportional to dose rate (r{sup 2} = 0.9998). As beam energy increased, the divergence of the imaged beam decreased. Last, air scintillation was visualized during a simulated total skin irradiation electron treatment. Conclusion: Air scintillation can be clinically detected to monitor a radiation beam in an inexpensive and non-perturbing manner. This new method is advantageous in monitoring for gross delivery and uniquely capable of wide area in a single acquisition, such as the case for online verification of total body / skin / lymphoid irradiation treatments.

  1. Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring

    NASA Astrophysics Data System (ADS)

    Watson, Mara Mae

    An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test

  2. Construction monitoring activities in the Yucca Mountain ESF Starter Tunnel

    SciTech Connect

    Pott, J.; Costin, L.S.; Brechtel, C.E

    1993-12-31

    An underground test facility known as the Exploratory Studies Facility (ESF) is planned as part of the characterization of a site for a potential high-level nuclear waste repository at Yucca Mountain, NV. The first part of the ESF that will be constructed is the North Ramp Starter Tunnel (NRST), which will provide a facility for launching the tunnel-boring machine to be used in the construction of the ESF. Geotechnical monitoring activities are planned for the NRST to provide for the collection of data to confirm design concepts and to enhance safety during construction. This paper describes the activities to be conducted and their objectives. The construction monitoring activities are part of a study defined in the In Situ Design Verification Study Plan. The objectives of this study are to (1) monitor and observe the long-term behavior of openings in a range of ground conditions in the repository host rock, and (2) to observe and evaluate the construction of the ESF with respect to implications for repository construction and performance. Initiating geotechnical monitoring activities in the NRST will allow geotechnical data required to confirm adequate design, construction and long term performance to be collected from the very beginning of underground construction. In addition, the planned monitoring is consistent with standard practice for assuring quality and safety during similar rock excavation for civil construction. The geotechnical monitoring activities addressed by this experiment plan are grouped into three tasks: (1) evaluation of mining methods, (2) monitoring of ground support systems and (3) monitoring drift stability. A general description of each of the tasks is presented below.

  3. Frequency and quality of radiation monitoring of construction workers at two gaseous diffusion plants.

    PubMed

    Bingham, Eula; Ringen, Knut; Dement, John; Cameron, Wilfrid; McGowan, William; Welch, Laura; Quinn, Patricia

    2006-09-01

    Construction workers were and are considered temporary workers at many construction sites. Since World War II, large numbers of construction workers were employed at U.S. Department of Energy nuclear weapons sites for periods ranging from a few days to over 30 years. These workers performed tasks during new construction and maintenance, repair, renovation, and demolition of existing facilities. Such tasks may involve emergency situations, and may entail opportunities for significant radiation exposures. This paper provides data from interviews with more than 750 construction workers at two gaseous diffusion plants (GDPs) at Paducah, Kentucky, and Portsmouth, Ohio regarding radiation monitoring practices. The aim was to determine the extent to which workers believed they were monitored during tasks involving potential radiation exposures. The adequacy of monitoring practices is important for two reasons: (a) Protecting workers from exposures: Construction workers were employed by sub-contractors, and may frequently been excluded from safety and health programs provided to permanent employees; and (b) Supporting claims for compensation: The Energy Employees Occupational Illness Compensation Program Act (EEOICPA) requires dose reconstruction of radiation exposures for most workers who file a claim regarding cancer. The use of monitoring data for radiation to qualify a worker means that there should be valid and complete monitoring during the work time at the various nuclear plants or workers may be unfairly denied compensation. The worker interviews from Paducah and Portsmouth were considered especially useful because these sites were designated as Special Exposure Cohorts (SECs) and the workers did not have to have a dose reconstruction to qualify for compensation for most cancers. Therefore, their responses were less likely to be affected by compensation concerns. Interview questions included asking for information regarding whether monitoring was performed, how

  4. Many-functional dosimeter for monitoring and measuring of radiation in space and ecology research

    NASA Astrophysics Data System (ADS)

    Elizarov, S. V.; Mineev, Yu. V.; Trofimov, P. N.

    1995-02-01

    The principles of construction of the many-function dosimeter on the base of the semiconductor detectors with large area are given. It is shown that an applying of two or more semiconductor detectors with different thickness allows the simultaneous and individual detection of the fluxes and spectra for alpha, beta, and gamma radiations. In difference from the spectrometers which are used today for monitoring, the proposed one together with the obtaining of the absorbed dose for every radiation type, gives the possibility to determine the energy spectrum of alpha, beta, gamma radiation and the maintenance of radon, to determine the type of radiation and its isotope structure and other radiation characteristics. The new principles of the detecting devices construction are used, modern electronic devices and microprocessor are applied for increasing the speed and stability, and for extending the obtainable radiation range. This device can be applied for monitoring of the charged and neutral radiation along a satellite route, and also for detection of radiation inside a spacecraft.

  5. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study

    PubMed Central

    Leuraud, Klervi; Richardson, David B; Cardis, Elisabeth; Daniels, Robert D; Gillies, Michael; O'Hagan, Jacqueline A; Hamra, Ghassan B; Haylock, Richard; Laurier, Dominique; Moissonnier, Monika; Schubauer-Berigan, Mary K; Thierry-Chef, Isabelle; Kesminiene, Ausrele

    2015-01-01

    Summary Background There is much uncertainty about the risks of leukaemia and lymphoma after repeated or protracted low-dose radiation exposure typical of occupational, environmental, and diagnostic medical settings. We quantified associations between protracted low-dose radiation exposures and leukaemia, lymphoma, and multiple myeloma mortality among radiation-monitored adults employed in France, the UK, and the USA. Methods We assembled a cohort of 308 297 radiation-monitored workers employed for at least 1 year by the Atomic Energy Commission, AREVA Nuclear Cycle, or the National Electricity Company in France, the Departments of Energy and Defence in the USA, and nuclear industry employers included in the National Registry for Radiation Workers in the UK. The cohort was followed up for a total of 8·22 million person-years. We ascertained deaths caused by leukaemia, lymphoma, and multiple myeloma. We used Poisson regression to quantify associations between estimated red bone marrow absorbed dose and leukaemia and lymphoma mortality. Findings Doses were accrued at very low rates (mean 1·1 mGy per year, SD 2·6). The excess relative risk of leukaemia mortality (excluding chronic lymphocytic leukaemia) was 2·96 per Gy (90% CI 1·17–5·21; lagged 2 years), most notably because of an association between radiation dose and mortality from chronic myeloid leukaemia (excess relative risk per Gy 10·45, 90% CI 4·48–19·65). Interpretation This study provides strong evidence of positive associations between protracted low-dose radiation exposure and leukaemia. Funding Centers for Disease Control and Prevention, Ministry of Health, Labour and Welfare of Japan, Institut de Radioprotection et de Sûreté Nucléaire, AREVA, Electricité de France, National Institute for Occupational Safety and Health, US Department of Energy, US Department of Health and Human Services, University of North Carolina, Public Health England. PMID:26436129

  6. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  7. Proton Irradiation Facility and space radiation monitoring at the Paul Scherrer Institute.

    PubMed

    Hajdas, W; Zehnder, A; Adams, L; Buehler, P; Harboe-Sorensen, R; Daum, M; Nickson, R; Daly, E; Nieminen, P

    2001-01-01

    The Proton Irradiation Facility (PIF) has been designed and constructed, in cooperation between Paul Scherrer Institute (PSI) and European Space Agency (ESA), for terrestrial proton testing of components and materials for spacecraft. Emphasis has been given to generating realistic proton spectra encountered by space-flights at any potential orbit. The facility, designed in a user-friendly manner, can be readily adapted to the individual requirements of experimenters. It is available for general use serving also in testing of radiation monitors and for proton experiments in different scientific disciplines. The Radiation Environment Monitor REM has been developed for measurements of the spacecraft radiation conditions. Two instruments were launched into space, one into a Geo-stationary Transfer Orbit on board of the STRV-1b satellite and one into a Low Earth Orbit on the Russian MIR station. The next generation of monitors (SREMs--Standard REMs) is currently under development in partnership of ESA, PSI and Contraves-Space. They will operate both as minimum intrusive monitors, which provide radiation housekeeping data and alert the spacecraft when the radiation level crosses allowed limits and as small scientific devices measuring particle spectra and fluxes. Future missions as e.g. INTEGRAL, STRV-1c and PROBA will be equipped with new SREMs. PMID:11770526

  8. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  9. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  10. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  11. Active Sites Environmental Monitoring Program FY 1996 annual report

    SciTech Connect

    Morrissey, C.M.; Marshall, D.S.; Cunningham, G.R.

    1997-11-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1995 through September 1996. The Radioactive Solid Waste Operations Group (RSWOG) of the Waste Management and Remedial Action Division (WMRAD) and the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) established ASEMP in 1989. The purpose of the program is to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 North as required by Chapters 2 and 3 of US Department of Energy Order 5820.2A.

  12. OFF-SITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1986

    EPA Science Inventory

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiatio...

  13. Instrumented Shoes for Real-Time Activity Monitoring Applications.

    PubMed

    Moufawad El Achkar, Christopher; Lenoble-Hoskovec, Constanze; Major, Kristof; Paraschiv-Ionescu, Anisoara; Büla, Christophe; Aminian, Kamiar

    2016-01-01

    Activity monitoring in daily life is gaining momentum as a health assessment tool, especially in older adults and at-risk populations. Several research-based and commercial systems have been proposed with varying performances in classification accuracy. Configurations with many sensors are generally accurate but cumbersome, whereas single sensors tend to have lower accuracies. To this end, we propose an instrumented shoes system capable of accurate activity classification and gait analysis that contains sensors located entirely at the level of the shoes. One challenge in daily activity monitoring is providing punctual and subject-tailored feedback to improve mobility. Therefore, the instrumented shoe system was equipped with a Bluetooth® module to transmit data to a smartphone and perform detailed activity profiling of the monitored subjects. The potential applications of such a system are numerous in mobility and fall risk-assessment as well as in fall prevention. PMID:27332298

  14. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. PMID:25070873

  15. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fiorito, R.; Shkvarunets, A.; Castronovo, D.; Cornacchia, M.; Di Mitri, S.; Kishek, R.; Tschalaer, C.; Veronese, M.

    2014-12-01

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, divergences, emittances, Twiss parameters and energy spread of a relativistic electron beam. The beam is externally focused to a waist at the first bend and the OSR generated there can be used to measure the rms beam size. Subsequent pairs of bends produce far field OSR interferences (OSRI) whose visibility depends on the beam energy spread and the angular divergence. Under proper conditions, one of these two effects will dominate the OSRI visibility from a particular pair of bends and can be used to diagnose the dominant effect. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters to: (1) provide a sufficient number of OSR interferences to allow a measurement of the fringe visibility; (2) minimize the effect of coherent synchrotron radiation and space charge forces on the particles motion; and (3) minimize the effect of compression on the bunch length as the beam passes through the chicane. A design for the chicane has been produced for application to the FERMI free electron laser facility and by extension to similar high brightness linear accelerators. Such a diagnostic promises to greatly improve control of the electron beam optics with a noninvasive measurement of beam parameters and allow on-line optics matching and feedback.

  16. Active Sites Environmental Monitoring Program. FY 1993: Annual report

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.; Marsh, J.D.

    1994-08-01

    This report continues a series of annual and semiannual reports that present the results of the Active Sites Environmental Monitoring Program (ASEMP) monitoring activities. The report details monitoring data for fiscal year (FY) 1993 and is divided into three major areas: SWSA 6 [including tumulus pads, Interim Waste Management Facility (IWMF), and other sites], the low-level Liquid-Waste Solidification Project (LWSP), and TRU-waste storage facilities in SWSA 5 N. The detailed monitoring methodology is described in the second revision of the ASEMP program plan. This report also presents a summary of the methodology used to gather data for each major area along with the results obtained during FY 1993.

  17. Modern Methods of Real-Time Gamma Radiation Monitoring for General Personal Protection

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Arshak, A.; Vaseashta, Ashok

    Real-time radiation detectors become an essential part of emergency personnel who may have to respond to unknown accidents, incidents or terrorist attacks, which could involve radioactive material. More and more ordinary citizens are interested in personal radiation protection as well. Reasons include lost sources, nuclear industrial accidents, nuclear or radiological terrorism and the possibility of nuclear weapons being used in a war. People want to have the ability to measure it for themselves and they want to be notified when the radiation levels are increased. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the sensor performance through both the material properties and manufacturing technologies. Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper presents overview of modern methods of real-time gamma radiation monitoring for personal protection of radiation workers and general public and suggests further developments in this area.

  18. Radiation safety at accelerator facilities NCRP activities

    NASA Astrophysics Data System (ADS)

    Kase, Kenneth R.

    1997-02-01

    The National Council on Radiation Protection and Measurements (NCRP) has issued 13 reports, dating back to 1949, giving guidance and recommendations for radiation protection at accelerator facilities. There are six current reports on the topics of neutron radiation; facility and shielding design; alarms and access control systems; and equipment design, performance, and use. Scientific Committee 46 (SC 46) is currently overseeing the development of two reports that will provide up-to-date guidance for the design of medical accelerator facilities and shielding. SC 46 has also proposed that a report be written to provide guidance for the design and shielding of industrial accelerator and large irradiator facilities. This paper describes the status and contents of these reports.

  19. Dashboard applications to monitor experiment activities at sites

    NASA Astrophysics Data System (ADS)

    Andreeva, Julia; Belforte, Stefano; Boehm, Max; Casajus, Adrian; Flix, Josep; Gaidioz, Benjamin; Grigoras, Costin; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Rocha, Ricardo; Saiz, Pablo; Santinelli, Roberto; Sidorova, Irina; Sciabà, Andrea; Tsaregorodtsev, Andrei

    2010-04-01

    In the framework of a distributed computing environment, such as WLCG, monitoring has a key role in order to keep under control activities going on in sites located in different countries and involving people based in many different sites. To be able to cope with such a large scale heterogeneous infrastructure, it is necessary to have monitoring tools providing a complete and reliable view of the overall performance of the sites. Moreover, the structure of a monitoring system critically depends on the object to monitor and on the users it is addressed to. In this article we will describe two different monitoring systems both aimed to monitor activities and services provided in the WLCG framework, but designed in order to meet the requirements of different users: Site Status Board has an overall view of the services available in all the sites supporting an experiment, whereas Siteview provides a complete view of all the activities going on at a site, for all the experiments supported by the site.

  20. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    NASA Astrophysics Data System (ADS)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  1. Nondestructive monitoring of aircraft composites using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Balbekin, Nikolay S.; Novoselov, Evgenii V.; Pavlov, Pavel V.; Bespalov, Victor G.; Petrov, Nikolay V.

    2015-03-01

    In this paper we consider using the terahertz (THz) time domain spectroscopy (TDS) for non destructive testing and determining the chemical composition of the vanes and rotor-blade spars. A versatile terahertz spectrometer for reflection and transmission has been used for experiments. We consider the features of measured terahertz signal in temporal and spectral domains during propagation through and reflecting from various defects in investigated objects, such as voids and foliation. We discuss requirements are applicable to the setup and are necessary to produce an image of these defects, such as signal-to-noise ratio and a method for registration THz radiation. Obtained results indicated the prospects of the THz TDS method for the inspection of defects and determination of the particularities of chemical composition of aircraft parts.

  2. Monitoring system for testing the radiation hardness of a KINTEX-7 FPGA

    NASA Astrophysics Data System (ADS)

    Cojocariu, L. N.; Placinta, V. M.; Dumitru, L.

    2016-03-01

    A much more efficient Ring Imaging Cherenkov sub-detector system will be rebuilt in the second long shutdown of Large Hadron Collider for the LHCb experiment. Radiation-hard electronic components together with Commercial Off-The-Shelf ones will be used in the new Cherenkov photon detection system architecture. An irradiation program was foreseen to determine the radiation tolerance for the new electronic devices, including a Field Programmable Gate Array from KINTEX-7 family of XILINX. An automated test bench for online monitoring of the XC7K70T KINTEX-7 device operation in radiation conditions was designed and implemented by the LHCb Romanian group.

  3. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  4. The Highly Miniaturised Radiation Monitor: Concept, Design and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Bogdanova, Yulia; Irshad, Ranah; Griffin, Doug; Araujo, Henrique; Mitchell, Edward; Turchetta, Renato; Woodward, Simon; Velagapudi, Bindu; Menicucci, Alessandra; Daly, Eamonn

    2015-04-01

    The high energy plasma population, i.e. inside the radiation belts and within solar energetic particle events, is extremely damaging to satellite electronics and human health. Therefore monitoring, understanding of the physics behind and prediction of space radiation strength is a crucial aspect of space weather research and applications. In addition, the availability of good quality housekeeping data on the ionizing radiation environment in and around spacecraft systems is recognised as highly desirable for the efficient design and operation of spacecraft. Yet the engineering and economic costs of integrating such sensors into flight systems are a serious barrier to their widespread adoption. In light of this, the Highly Miniaturised Radiation Monitor (HMRM) has been developed by the Science and Technology Facilities Council and Imperial College London within the framework of an ESA technology development contract. The device is significantly smaller and lighter than current space technology with modest power requirements (1W) meaning that it has negligible impact on the spacecraft's overall resources. Furthermore, its simple electrical and data interfaces result in minimal integration costs. The HMRM is designed as a real-time radiation monitor with provides additional scientific data sets, such as reconstructed particle spectra of high-energy plasma population. The instrument energy coverage of 35 keV - 6 MeV for electrons and 600 keV - 500 MeV for protons makes the HMRM an ideal instrument to monitor and study the radiation environment of near-Earth space and to be widely used for space weather monitoring and research.

  5. Development of an alpha/beta/gamma detector for radiation monitoring

    SciTech Connect

    Yamamoto, Seiichi; Hatazawa, Jun

    2011-11-15

    For radiation monitoring at the site of nuclear power plant accidents such as Fukushima Daiichi, radiation detectors not only for gamma photons but also for alpha and beta particles are needed because some nuclear fission products emit beta particles and gamma photons and some nuclear fuels contain plutonium that emits alpha particles. We developed a radiation detector that can simultaneously monitor alpha and beta particles and gamma photons for radiation monitoring. The detector consists of three-layered scintillators optically coupled to each other and coupled to a photomultiplier tube. The first layer, which is made of a thin plastic scintillator (decay time: 2.4 ns), detects alpha particles. The second layer, which is made of a thin Gd{sub 2}SiO{sub 5} (GSO) scintillator with 1.5 mol.% Ce (decay time: 35 ns), detects beta particles. The third layer made of a thin GSO scintillator with 0.4 mol.% Ce (decay time: 70 ns) detects gamma photons. By using pulse shape discrimination, the count rates of these layers can be separated. With individual irradiation of alpha and beta particles and gamma photons, the count rate of the first layer represented the alpha particles, the second layer represented the beta particles, and the third layer represented the gamma photons. Even with simultaneous irradiation of the alpha and beta particles and the gamma photons, these three types of radiation can be individually monitored using correction for the gamma detection efficiency of the second and third layers. Our developed alpha, beta, and gamma detector is simple and will be useful for radiation monitoring, especially at nuclear power plant accident sites or other applications where the simultaneous measurements of alpha and beta particles and gamma photons are required.

  6. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  7. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-01

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  8. Design of an Optical Diffraction Radiation Beam Size Monitor at SLAC FETB

    SciTech Connect

    Fukui, Yasuo; Cline, D.; Zhou, F.; Tobiyama, M.; Urakawa, J.; Bolton, P.R.; Ross, M.C.; Hamatsu, R.; Karataev, P.V.; Muto, T.; Aryshev, A.S.; Naumenko, G.A.; Potylitsyn, A.P.; /UCLA /KEK, Tsukuba /SLAC /Tokyo Metropolitan U., Math. Dept. /Tomsk Polytechnic U.

    2008-03-17

    We design a single bunch transverse beam size monitor which will be tested to measure the 28.5 GeV electron/positron beam at the SLAC FFTB beam line. The beam size monitor uses the CCD images of the interference pattern of the optical diffraction radiation from two slit edges which are placed close to the beam path. In this method, destruction of the accelerated electron/positron beam bunches due to the beam size monitoring is negligible, which is vital to the operation of the Linear Collider project.

  9. A fast coherent synchrotron radiation monitor for the bunch length of the short CEBAF bunches

    NASA Astrophysics Data System (ADS)

    Wang, D. X.; Krafft, G. A.; Price, E.; Wood, P.; Porterfield, D.; Crowe, T.

    1996-04-01

    A novel bunch length monitor for short (down to subpicosecond) electron bunches has been developed in a collaboration between CEBAF and the University of Virginia (UVA), using coherent synchrotron radiation (CSR) detection techniques. The monitor employs a state of the art ``narrowband'' GaAs Schottky whisker diode developed by the UVA group, and has the following features: it is non-invasive, compact, and low cost, it has fast rise time, low noise, high sensitivity, and it operates at room temperature. In this paper, the design parameters and performance of the monitor and selected measurement results will be presented.

  10. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  11. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  12. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  13. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev

  14. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  15. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  16. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  17. OFFSITE ENVIRONMENTAL MONITORING REPORT: RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1980

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory in Las Vegas continued its Offsite Radiological Safety Program for the Nevada Test Site (NTS) and other sites of past underground nuclear tests. For each test, the Laboratory provided airborne ...

  18. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    SciTech Connect

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.; Seregin, Vladimir A.; Akhromeev, Sergey V.; Lucyanec, Anatoly I.; Glinsky, Mark L.; Glagolev, Andrey V.

    2012-07-01

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areas of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at the

  19. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  20. Monitoring exposure to atomic bomb radiation by somatic mutation

    SciTech Connect

    Akiyama, Mitoshi; Kyoizumi, Seishi; Kusunoki, Yoichiro

    1996-05-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. 27 refs., 2 figs.

  1. Monitoring exposure to atomic bomb radiation by somatic mutation.

    PubMed

    Akiyama, M; Kyoizumi, S; Kusunoki, Y; Hirai, Y; Tanabe, K; Cologne, J B

    1996-05-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. PMID:8781371

  2. Development of a customized radiation monitor for livestock screening.

    PubMed

    Erchinger, J; Marianno, C; Herring, A

    2015-05-01

    The monitoring and decontamination of livestock has been an emerging topic in emergency response planning in recent years. Under the National Response Framework, the U.S. Department of Agriculture is tasked with providing support to the states during a radiological incident for the "assessment, control, and decontamination of contaminated animals, including companion animals, livestock, poultry, and wildlife." While there are currently no protocols in place on a national level for coordinated animal response, working groups have been developing a command structure and task force procedures, and some states have issued their own guidelines. A customized Bovine Screening Portal was manufactured and tested at Texas A&M University to investigate the operational capabilities in detecting, identifying, and localizing external contamination on livestock. An array of six sodium iodide detectors attached to power-over-Ethernet Multi-Channel Analyzers was used to collect time-stamped count rates, and spectral data were collected as a heifer was led past the detector panel. A 1.85 × 10(5) Bq 137Cs source was placed in four locations on a heifer, which was led through a cattle chute adjacent to the detector panel. The trials were repeated walking the heifer through a walkway with detectors hung on cattle pens lining a walkway. The Bovine Screening Portal observed increased count rates (>10σ) from the 1.85 × 10(5) Bq 137Cs source in live time. The identification capabilities with the intuitive software interface of the BSP are consistent with the requirements of a detection system for radiological emergency management of livestock. PMID:25811146

  3. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  4. Accuracy of soil water content estimates from gamma radiation monitoring data

    NASA Astrophysics Data System (ADS)

    Mao, Jie; Huisman, Johan Alexander; Reemt Bogena, Heye; Vereecken, Harry

    2016-04-01

    Terrestrial gamma radiation is known to be sensitive to soil water content, and could be promising for soil water content determination because of the availability of continental-scale gamma radiation monitoring networks. However, the accuracy of soil water content estimates that can be obtained from this type of data is currently unknown. Therefore, the aim of this study is to assess the accuracy of soil water content estimates from measured time series of gamma radiation. For this, four gamma radiation monitoring stations were each equipped with four soil water content sensors at 5 and 15 cm depth to provide reference soil water content measurements. The contributions of terrestrial radiation and secondary cosmic radiation were separated from the total amount of measured gamma radiation by assuming that the long-term contribution of secondary cosmic radiation was constant, and that variations were related to changes in air pressure and incoming neutrons. In addition, precipitation effects related to atmospheric washout of radon progenies to the ground that cause an increase of gamma radiation were considered by excluding time periods with precipitation and time periods less than three hours after precipitation. The estimated terrestrial gamma radiation was related to soil water content using an exponential function with two fit parameters. For daily soil water content estimates, the goodness of fit ranged from R2= 0.21 to 0.48 and the RMSE ranged from 0.048 to 0.117 m3m‑3. The accuracy of the soil water content estimates improved considerably when a weekly resolution was used (RMSE ranged from 0.029 to 0.084 m3m‑3). Overall, these results indicate that gamma radiation monitoring data can be used to obtain useful soil water content information. The remaining differences between measured and estimated soil water content can at least partly be explained by the fact that the terrestrial gamma radiation is strongly determined by the upper few centimeters of the

  5. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar J.; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald E.; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modeling and the development of solar energy techniques. Measurements cover the downward solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an altitude range between about 200 m a.s.l (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, utilizing manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations, using the methodology specified by the Guide to the Expression of Uncertainty in Measurement indicates that relative accuracies range from 1.5 to 2.9 % for large signals (global, direct: 1000 W m-2, diffuse: 500 W m-2) and from 1.7 to 23 % (or 0.9 to 11.5 W m-2) for small signals (50 W m-2) (expanded uncertainties corresponding to the 95 % confidence level). If the directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) are corrected, this expanded uncertainty reduces to 1.4 to 2.8 % for large signals and to 1.7 to 5.2 % (or 0.9-2.6 W m-2) for small signals. Thus, for large signals of global and diffuse radiation, BSRN target accuracies are met or nearly met (missed by less than 0.2 percentage points, pps) for 70 % of the ARAD measurements after this correction. For small signals of direct radiation, BSRN targets are achieved at two sites and nearly met (also missed by less than 0.2 pps) at the other sites. For small signals of global and diffuse radiation, targets are achieved

  6. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    NASA Astrophysics Data System (ADS)

    Tsiligiannis, G.; Dilillo, L.; Bosio, A.; Girard, P.; Pravossoudovitch, S.; Todri, A.; Virazel, A.; Mekki, J.; Brugger, M.; Wrobel, F.; Saigne, F.

    2014-05-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for monitoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of particles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shielded areas. By using stability estimation methods and presenting experimental data, we prove that this device is proper to be used for such a purpose.

  7. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  8. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  9. Monitoring of onboard Aircraft Exposure to Cosmic Radiation: May - December 2005

    NASA Astrophysics Data System (ADS)

    Spurny, F.; Ploc, O.; Jadrinková, I.; Turek, K.; Dachev, T.; Gelev, M.

    Onboard aircraft exposure to cosmic radiation has been monitored in the period May -- December 2005 MDU Si-spectrometer-dosimeter has been used as an active measuring equipment it has been installed onboard of an A310-300 aircraft Together with it also some passive detectors were placed on the body of MDU Three types of thermoluminescent detectors TLD were used as well as track etch detectors TEDs TEDs were treated both as a neutron dosimeter and as a spectrometer of linear energy transfer Available navigation data permitted us also to calculate onboard exposure during more than 400 individual flights MDU established and calculated data for each individual flight are compared and analyzed conclusions following from that for aircraft crew exposure are outlined Integral data on the exposure due to non-neutron and neutron-like component obtained on the base of MDU and calculated data are compared with the data obtained by TLD s and TED s respectively Results obtained are analyzed and discussed

  10. Optical Spectroscopy and Multivariate Analysis for Biodosimetry and Monitoring of Radiation Injury to the Skin

    SciTech Connect

    Levitskaia, Tatiana G.; Bryan, Samuel A.; Creim, Jeffrey A.; Curry, Terry L.; Luders, Teresa; Thrall, Karla D.; Peterson, James M.

    2012-08-01

    In the event of an intentional or accidental release of ionizing radiation in a densely populated area, timely assessment and triage of the general population for the radiation exposure is critical. In particular, a significant number of the victims may sustain cutaneous radiation injury, which increases the mortality and worsens the overall prognosis of the victims suffered from combined thermal/mechanical and radiation trauma. Diagnosis of the cutaneous radiation injury is challenging, and established methods largely rely on visual manifestations, presence of the skin contamination, and a high degree of recall by the victim. Availability of a high throughput non-invasive in vivo biodosimetry tool for assessment of the radiation exposure of the skin is of particular importance for the timely diagnosis of the cutaneous injury. In the reported investigation, we have tested the potential of an optical reflectance spectroscopy for the evaluation of the radiation injury to the skin. This is technically attractive because optical spectroscopy relies on well-established and routinely used for various applications instrumentation, one example being pulse oximetry which uses selected wavelengths for the quantification of the blood oxygenation. Our method relies on a broad spectral region ranging from the locally absorbed, shallow-penetrating ultraviolet and visible (250 to 800 nm) to more deeply penetrating near-Infrared (800 – 1600 nm) light for the monitoring of multiple physiological changes in the skin upon irradiation. Chemometrics is a multivariate methodology that allows the information from entire spectral region to be used to generate predictive regression models. In this report we demonstrate that simple spectroscopic method, such as the optical reflectance spectroscopy, in combination with multivariate data analysis, offers the promise of rapid and non-invasive in vivo diagnosis and monitoring of the cutaneous radiation exposure, and is able accurately predict

  11. Size variation monitoring of an extended thermal radiation source by chromatic filtering

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Jung; Kim, Min-Suk; Kim, Kwang-Suk

    1998-07-01

    Size variation monitoring of an extended thermal radiation source with single-element detectors is reported. The extended thermal radiation source is imaged on an aperture and the transmitted spectroscopic signals are measured with single-element detectors. The chromatic aberration introduced in the imaging optics causes the detector field of view to vary due to the wavelength. Therefore, the spectroscopic signals obtained from several single-element detectors with dichromatic mirrors and band-pass filters can provide information on size variation as well as intensity of the extended thermal radiation source. This chromatic filtering was applied to size variation monitoring of a molten pool in pulsed Nd:YAG laser welding. The size variation can be monitored during the cooling process with a time interval of up to 50 μs and the moment when the size of the molten pool becomes the same as that of the focused laser spot can be determined with an accuracy of 0.1 ms. Furthermore, the intermediate stable state of a molten pool was detected and its pulse-to-pulse size variation can be applied to weld process monitoring.

  12. Radiation-induced insulator discharge pulses in the CRRES Internal Discharge Monitor satellite experiment. [Combined Release and Radiation Effects Satellite

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.; Robinson, P. A., Jr.; Holman, E. G.

    1991-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The IDM is flying on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples include G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. The IDM results indicate the rate at which insulator pulses occur. Pulsing began on the seventh orbit. The maximum pulse rate occurred near orbit 600 when over 50 pulses occurred. The average pulse rate is approximately two per orbit, but nearly half of the first 600 orbits experienced no pulses. The pulse rate per unit flux of high energy electrons has not changed dramatically over the first ten months in space. These pulse rates are in agreement with laboratory experience on shorter time scales. Several of the samples have never pulsed. IDM pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on CRRES.

  13. Monitoring proton radiation therapy with in-room PET imaging

    PubMed Central

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R; El Fakhri, Georges

    2011-01-01

    Purpose We used a mobile PET scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Methods and materials Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 minutes during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. Results The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 min to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. Conclusions In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary. PMID:21677366

  14. CMS dashboard for monitoring of the user analysis activities

    NASA Astrophysics Data System (ADS)

    Karavakis, Edward; Andreeva, Julia; Maier, Gerhild; Khan, Akram

    2012-12-01

    The CMS Virtual Organisation (VO) uses various fully distributed job submission methods and execution backends. The CMS jobs are processed on several middleware platforms such as the gLite, the ARC and the OSG. Up to 200,000 CMS jobs are submitted daily to the Worldwide LHC Computing Grid (WLCG) infrastructure and this number is steadily growing. These mentioned factors increase the complexity of the monitoring of the user analysis activities within the CMS VO. Reliable monitoring is an aspect of particular importance; it is a vital factor for the overall improvement of the quality of the CMS VO infrastructure.

  15. Monitoring G protein activation in cells with BRET

    PubMed Central

    Masuho, Ikuo; Martemyanov, Kirill A.; Lambert, Nevin A.

    2016-01-01

    Summary Live-cell assays based on fluorescence and luminescence are now indispensable tools for the study of G protein signaling. Assays based on fluorescence and bioluminescence resonance energy transfer (FRET and BRET) have been particularly valuable for monitoring changes in second messengers, protein-protein interactions, and protein conformation. Here we describe a BRET assay that monitors the release of free Gβγ dimers after activation of heterotrimers containing Gα subunits from all four G protein subfamilies. This assay provides useful kinetic and pharmacological information with reasonably high throughput using standard laboratory equipment. PMID:26260597

  16. Fluorine gettering by activated charcoal in a radiation environment

    SciTech Connect

    Felker, L.K.; Toth, L.M.

    1988-10-01

    Activated charcoal has been shown to be an effective gettering agent for the fluorine gas that is liberated in a radiation environment. Even though activated charcoal is a commonly used getter, little is known about the radiation stability of the fluorine-charcoal product. This work has shown that not only is the product stable in high gamma radiation fields, but also that radiation enhances the capacity of the charcoal for the fluorine. The most useful application of this work is with the Molten Salt Reactor Experiment (MSRE) fuel salt because the radioactive components (fission products and actinides) cause radiolytic damage to the solid LiF-BeF/sub 2/-ZrF/sub 4/-UF/sub 4/ (64.5, 30.3, 5.0, 0.13 mol %, respectively) resulting in the liberation of fluorine gas. This work has also demonstrated that the maximum damage to the fuel salt by approx.3 /times/ 10/sup 7/ R/h gamma radiation is approximately 2%, at which point the rate of recombination of fluorine with active metal sites within the salt lattice equals the rate of fluorine generation. The enhanced reactivity of the activated charcoal and radiation stability of the product ensures that the gettered fluorine will stay sequestered in the charcoal.

  17. Gamma radiation monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Miranda, Pedro; Azevedo, Eduardo B.; Nitschke, Kim

    2016-04-01

    Continuous monitoring of gamma radiation is often performed in nuclear facilities and industrial environments as a way to control the ambient radioactivity and give warning of potential accidents. However, gamma radiation is also ubiquitous in the natural environment. The main sources are i) cosmic radiation from space, including secondary radiation from the interaction with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232) and their decay products (e.g. Radium, Ra-226) , and iii) airborne Radon gas (Rn-222), which is the dominant source of natural environmental radioactivity. The temporal variability of this natural radiation background needs to be well understood and quantified in order to discriminate non-natural sources of radiation in the environment and artificial radionuclides contamination. To this end, continuous gamma radiation monitoring is being performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The site is unique for the study of the natural radioactivity background on one hand due to the remote oceanic geographical location, in the middle of the North Atlantic Ocean and clear of direct continental influence, and on the other hand because of the comprehensive dataset of atmospheric parameters that is available for enhancing the interpretation of the radiation measurements, as a result of the vast array of very detailed and high-quality atmospheric measurements performed at the ARM-ENA facility. Gamma radiation in the range 475 KeV to 3000 KeV is measured continuously with a 3" x 3" NaI(Tl) scintillator. The campaign started started in May 2015, with gamma

  18. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The contribution outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m‑2, diffuse: 500 W m‑2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m‑2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in

  19. Monitoring Ionizing Radiation Exposure for Cardiotoxic Effects of Breast Cancer Treatment.

    PubMed

    Murtagh, Gillian; Yu, Zoe; Harrold, Emily; Cooke, Jennie; Keegan, Niamh; Fukuda, Shota; Addetia, Karima; Kim, Jeong Hwan; Spencer, Kirk T; Takeuchi, Masaaki; Kennedy, John; Ward, R Parker; Patel, Amit R; Lang, Roberto M; DeCara, Jeanne M

    2016-05-15

    Serial assessments of left ventricular ejection fraction (LVEF) are customary in patients with breast cancer receiving trastuzumab. Radionuclide angiography (RNA) is often used; however, a typical monitoring schedule could include 5 scans in a year. We evaluated the proportion of imaging-related ionizing radiation attributable to RNA in 115 patients with breast cancer, from 3 medical centers in the United States, Ireland, and Japan, who completed 12 months of trastuzumab treatment. Estimated radiation dose (ERD) was used to calculate exposure associated with imaging procedures spanning the 18 months before and after trastuzumab therapy. In addition, 20 cardiologists and oncologists from participating centers were surveyed for their opinions regarding the contribution of RNA to overall radiation exposure during trastuzumab treatment. When RNA was used to monitor LVEF, the mean ERD from imaging was substantial (34 ± 24.3 mSv), with the majority attributable solely to RNA (24.7 ± 14.8 mSv, 72.6%). Actual ERD associated with RNA in this population differed significantly from the perception in surveyed cardiologists and oncologists; 70% of respondents believed that RNA typically accounted for 0% to 20% of overall radiation exposure from imaging; RNA actually accounted for more than 70% of ERD. In conclusion, RNA was used to monitor LVEF in most patients in this cohort during and after trastuzumab therapy. This significantly increased ERD and accounted for a greater proportion of radiation than that perceived by surveyed physicians. ERD should be taken into account when choosing a method of LVEF surveillance. Alternative techniques that do not use radiation should be strongly considered. PMID:27040573

  20. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, M.; Baumgartner, D. J.; Obleitner, F.; Bichler, C.; Foelsche, U.; Pietsch, H.; Rieder, H. E.; Weihs, P.; Geyer, F.; Haiden, T.; Schöner, W.

    2015-10-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  1. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    PubMed

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures. PMID:20824303

  2. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  3. Monitoring Radiation on Commercial Flights: An Interview With Captain Ian Getley

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2009-11-01

    Ian Getley has logged more than 18,000 hours on Boeing 747s during his 29 years—20 as a captain—as a pilot with Qantas Airways. In 2008, he received a Ph.D. for his space weather research from the University of New South Wales, in Australia. Here Getley describes his experience measuring cosmic and solar particle radiation on commercial aircraft and his recent work developing a new radiation monitor that will allow pilots to respond in flight to solar events.

  4. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  5. Application of the TLD albedo technique for monitoring and interpretation of neutron stray radiation fields

    NASA Astrophysics Data System (ADS)

    Piesch, E.; Burgkhardt, B.

    1980-09-01

    A single sphere albedo technique with TLD 600/TLD 700 detectors has been applied in neutron monitoring to calibrate albedo dosimeters and to interpret neutron stray radiation fields in terms of neutron dose equivalent separated for the energy groups below 0.4 eV, 0.4-10 keV and 10 keV-10 MeV, and Eeff for fast neutrons. The paper describes the technique for field and personnel monitoring under the aspect of an on-line computer program for data recording and processing.

  6. Use of radiation detectors in remote monitoring for containment and surveillance

    SciTech Connect

    Dupree, S.A.; Ross, M.; Bonino, A.; Lucero, R.; Hasimoto, Yu

    1998-07-01

    Radiation detectors have been included in several remote monitoring field trial systems to date. The present study considers detectors at Embalse, Argentina, and Oarai, Japan. At Embalse four gamma detectors have been operating in the instrumentation tubes of spent fuel storage silos for up to three years. Except for minor fluctuations, three of the detectors have operated normally. One of the detectors appears never to have operated correctly. At Oarai two gamma detectors have been monitoring a spent-fuel transfer hatch for over 18 months. These detectors have operated normally throughout the period, although one shows occasional noise spikes.

  7. Overview of nonintercepting beam-size monitoring with optical diffraction radiation

    SciTech Connect

    Lumpkin, Alex H.; /Fermilab

    2010-08-01

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  8. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  9. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  10. Development of radiation hard electron monitor RADEM for ESA JUICE mission

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Desorgher, Laurent; Goncalves, Patricia; Pinto, Costa; Marques, Arlindo; Maehlum, Gunnar; Meier, Dirk

    2015-04-01

    Future mission of ESA to Jupiter - JUICE - will be equipped with a new radiation monitoring instrument RADEM. The main purpose is characterizing of the highly dynamic and hazardous although rather weakly known particle environment of the giant planet. RADEM performance must be tailored with numerous constraints and severe risks put on the instrument and its detection system. The first objective is precise spectroscopy of electrons and protons over more than two energy orders i.e. up to 40 MeV and 250 MeV respectively. It requires an exact identification of particles and supreme suppression of the background. Measurements should in addition provide dynamic maps of particle directionality and be very accurate even for extremely high particle fluxes. Further goals cover detection of heavy ions with their LET and determination of the radiation dose and dose rate absorbed by the spacecraft. Constrains and risks are given by limitations put on the monitor mass, volume and power and by radiation damage hazards imposed on its materials, electronic components and detection sensors. Additional challenge is in required instrument operational longevity. The design of RADEM is supported by extensive modeling and Monte Carlo simulations based on present knowledge of the Jupiter radiation environment. Deeper level of optimization requires taking into account the whole spacecraft with all its modules and structures. For entire detection system of RADEM the Si-sensors equipped with structures minimizing radiation damage are chosen. They have individual design features in accordance to their specific functionality such as pitch angle measurements with the directionality detector or energy spectroscopy with the telescope. Detected signals are processed using specially designed low power, radiation hard ASIC responsible for both analogue and digital branches. Initial results based on the previous ASIC version as well as data from studies of the detector radiation damage already exist

  11. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  12. High Frequency Monitoring of the Aigion Fault Activity

    NASA Astrophysics Data System (ADS)

    Cornet, Francois; Bourouis, Seid

    2013-04-01

    In 2007, a high frequency monitoring system was deployed in the 1000 m deep AIG10 well that intersects the Aigion fault at a depth of 760 m. This active 15 km long fault is located on the south shore of the Corinth rift, some 40 km east from Patras, in western central Greece. The borehole intersects quaternary sediments down to 495 m, then cretaceous and tertiary heavily tectonized deposits from the Pindos nappe. Below the fault encountered at 760 m, the borehole remains within karstic limestone of the Gavrovo Tripolitza nappe. The monitoring system involved two geophones located some 15 m above the fault, and two hydrophones located respectively at depths equal to 500 m and 250 m. The frequency domain for the data acquisition system ranged from a few Hz to 2500 Hz. The seismic velocity structure close to the borehole was determined through both sonic logs and vertical seismic profiles. This monitoring system has been active during slightly over six months and has recorded signals from microseismic events that occurred in the rift, the location of which was determined thanks to the local 11 stations, three components, short period (2 Hz), monitoring system. In addition, the borehole monitoring system has recorded more than 1000 events not identified with the regional network. Events were precisely correlated with pressure variations associated with two human interventions. These extremely low magnitude events occurred at distances that reached at least up to 1500 m from the well. They were associated, some ten days later, with some local rift activity. A tentative model is proposed that associates local short slip instabilities in the upper part of the fault close to the well, with a longer duration pore pressure diffusion process. Results demonstrate that the Aigion fault is continuously creeping down to a depth at least equal to 5 km but probably deeper.

  13. Electrical Impedance Spectroscopy as Electrical Biopsy for Monitoring Radiation Sequelae of Intestine in Rats

    PubMed Central

    Chao, Pei-Ju; Huang, Eng-Yen; Cheng, Kuo-Sheng; Huang, Yu-Jie

    2013-01-01

    Electrical impedance is one of the most frequently used parameters for characterizing material properties. The resistive and capacitive characteristics of tissue may be revealed by electrical impedance spectroscopy (EIS) as electrical biopsy. This technique could be used to monitor the sequelae after irradiation. In this study, rat intestinal tissues after irradiation were assessed by EIS system based on commercially available integrated circuits. The EIS results were fitted to a resistor-capacitor circuit model to determine the electrical properties of the tissue. The variations in the electrical characteristics of the tissue were compared to radiation injury score (RIS) by morphological and histological findings. The electrical properties, based on receiver operation curve (ROC) analysis, strongly reflected the histological changes with excellent diagnosis performance. The results of this study suggest that electrical biopsy reflects histological changes after irradiation. This approach may significantly augment the evaluation of tissue after irradiation. It could provide rapid results for decision making in monitoring radiation sequelae prospectively. PMID:24093111

  14. Monitoring human factor risk characteristics at nuclear legacy sites in northwest Russia in support of radiation safety regulation.

    PubMed

    Scheblanov, V Y; Sneve, M K; Bobrov, A F

    2012-12-01

    This paper describes research aimed at improving regulatory supervision of radiation safety during work associated with the management of spent nuclear fuel and radioactive waste at legacy sites in northwest Russia through timely identification of employees presenting unfavourable human factor risk characteristics. The legacy sites of interest include sites of temporary storage now operated by SevRAO on behalf of Rosatom. The sites were previously operational bases for servicing nuclear powered submarines and are now subject to major remediation activities. These activities include hazardous operations for recovery of spent nuclear fuel and radioactive waste from sub-optimal storage conditions. The paper describes the results of analysis of methods, procedures, techniques and informational issues leading to the development of an expert-diagnostic information system for monitoring of workers involved in carrying out the most hazardous operations. The system serves as a tool for human factor and professional reliability risk monitoring and has been tested in practical working environments and implemented as part of regulatory supervision. The work has been carried out by the Burnasyan Federal Medical Biophysical Center, within the framework of the regulatory cooperation programme between the Federal Medical-Biological Agency of Russia and the Norwegian Radiation Protection Authority. PMID:23186692

  15. Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground

    SciTech Connect

    Ebinger, M.H.; Hansen, W.R.

    1994-05-11

    This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

  16. The prototype of a detector for monitoring the cosmic radiation neutron flux on ground

    SciTech Connect

    Lelis Goncalez, Odair; Federico, Claudio Antonio; Mendes Prado, Adriane Cristina; Galhardo Vaz, Rafael; Tizziani Pazzianotto, Mauricio

    2013-05-06

    This work presents a comparison between the results of experimental tests and Monte Carlo simulations of the efficiency of a detector prototype for on-ground monitoring the cosmic radiation neutron flux. The experimental tests were made using one conventional {sup 241}Am-Be neutron source in several incidence angles and the results were compared to that ones obtained with a Monte Carlo simulation made with MCNPX Code.

  17. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Postolache, Cristian; Tudose, Mihai

    2016-03-01

    The effect of radiation, temperature, and vacuum (RTV) on piezoelectric wafer active sensors (PWASs) is discussed. This study is relevant for extending structural health monitoring (SHM) methods to space vehicle applications that are likely to be subjected to harsh environmental conditions such as extreme temperatures (hot and cold), cosmic radiation, and interplanetary vacuums. This study contains both theoretical and experimental investigations with the use of electromechanical impedance spectroscopy (EMIS). In the theoretical part, analytical models of circular PWAS resonators were used to derive analytical expressions for the temperature sensitivities of EMIS resonance and antiresonance behavior. Closed-form expressions for frequency and peak values at resonance and antiresonance were derived as functions of the coefficients of thermal expansion, {α }1, {α }2, {α }3; the Poisson ratio, ν and its sensitivity, \\partial ν /\\partial T; the relative compliance gradient (\\partial {s}11E/\\partial T)/{s}11E; and the Bessel function root, z and its sensitivity, \\partial z/\\partial T. In the experimental part, tests were conducted to subject the PWAS transducers to RTV conditions. In one set of experiments, several RTV exposure, cycles were applied with EMIS signatures recorded at the beginning and after each of the repeated cycles. In another set of experiments, PWAS transducers were subjected to various temperatures and the EMIS signatures were recorded at each temperature after stabilization. The processing of measured EMIS data from the first set of experiments revealed that the resonance and antiresonance frequencies changed by less than 1% due to RTV exposure, whereas the resonance and antiresonance amplitudes changed by around 15%. After processing an individual set of EMIS data from the second set of experiments, it was determined that the relative temperature sensitivity of the antiresonance frequency ({f}{{AR}}/{f}{{AR}}) is approximately 63.1× {10

  18. Active sites environmental monitoring program. Annual report FY 1992

    SciTech Connect

    Morrissey, C.M.; Ashwood, T.L.; Hicks, D.S.

    1994-04-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) at ORNL from October 1991 through September 1992. Solid Waste Operations and the Environmental Sciences Division established ASEMP in 1989 to provide early detection and performance monitoring at active low-level waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by Chapter 2 and 3 of US Department of Energy Order 5820.2A. The Interim Waste Management Facility (IWMF) began operation in December 1991. Monitoring results from the tumulus and IWMF disposal pads continue to indicate that no LLW is leaching from the storage vaults. Storm water falling on the IWMF active pad was collected and transported to the Process Waste Treatment Plant while operators awaited approval of the National Pollutant Discharge Elimination System (NPDES) permit. Several of the recent samples collected from the active IWMF pad had pH levels above the NPDES limit of 9.0 because of alkali leached from the concrete. The increase in gross beta activity has been slight; only 1 of the 21 samples collected contained activity above the 5.0 Bq/L action level. Automated sample-collection and flow-measurement equipment has been installed at IWMF and is being tested. The flume designed to electronically measure flow from the IWMF pads and underpads is too large to be of practical value for measuring most flows at this site. Modification of this system will be necessary. A CO{sub 2} bubbler system designed to reduce the pH of water from the pads is being tested at IWMF.

  19. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1981

    EPA Science Inventory

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry a...

  20. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  1. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  2. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  3. Glance traceability - Web system for equipment traceability and radiation monitoring for the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Évora, L. H. R. A.; Molina-Pérez, J.; Pommès, K.; Galvão, K. K.; Maidantchik, C.

    2010-04-01

    During the operation, maintenance, and dismantling periods of the ATLAS Experiment, the traceability of all detector equipment must be guaranteed for logistic and safety matters. The running of the Large Hadron Collider will expose the ATLAS detector to radiation. Therefore, CERN must follow specific regulations from both the French and Swiss authorities for equipment removal, transport, repair, and disposal. GLANCE Traceability, implemented in C++ and Java/Java3D, has been developed to fulfill the requirements. The system registers and associates each equipment part to either a functional position in the detector or a zone outside the underground area through a 3D graphical user interface. Radiation control of the equipment is performed using a radiation monitor connected to the system: the local background gets stored and the threshold is automatically calculated. The system classifies the equipment as non radioactive if its radiation dose does not exceed that limit value. History for both location traceability and radiation measurements is ensured, as well as simultaneous management of multiples equipment. The software is fully operational, being used by the Radiation Protection Experts of ATLAS and trained users since the first beam of the LHC. Initially developed for the ATLAS detector, the flexibility of the system has allowed its adaptation for the LHCb detector.

  4. Active Monitoring With The Use Of Seismic Vibrators: Experimental Systems And The Results Of Works

    NASA Astrophysics Data System (ADS)

    Kovalevsky, V.; Alekseev, A.; Glinsky, B.; Khairetdinov, M.; Seleznev, V.; Emanov, A.; Soloviev, V.

    2004-12-01

    Active methods of geophysical monitoring with the use of powerful seismic vibrators play an important role in the investigation of changes in the medium's stressed-deformed state in seismic prone zones for problems of seismic hazard prediction. In the last three decades, this scientific direction has been actively developed at institutes of Siberian Branch of Russian Academy of Sciences. In this period, experimental systems for the active monitoring of the medium, which include powerful vibrational sources with computer control systems, mobile specialized complexes for the precision recording of vibrational seismic signals, and data processing systems have been created. A review of various constructions of resonant vibrational seismic sources with a vibrational force of 100 tons in the frequency range from 5 to 15 Hz and the principles of creation of precision computer control systems and low-frequency three-component recording systems VIRS-M, VIRS-K, and ROSA is presented. A method for the active monitoring of the medium with the use of wideband sweep signals and narrow-band harmonic signals radiated by seismic vibrators has been developed. To determine the sensitivity of the active monitoring system, some experiments to detect the influence of the Earth's crust tidal deformations (of the order of 10-7) on seismic wave velocities have been performed. A 100-ton seismic vibrator and recording systems were located at a distance of 356 km. The radiation sessions of harmonic and sweep signals were repeated every 3 hours during 8 days. This made it possible to construct the time series of variations in the amplitudes and phases of the signals and wave arrival times. Both 12-hour and 24-hour periodicities correlated with the earth's tides were distinguished in the spectrum of variations of the recorded signals. The experiment has shown that the active monitoring system makes it possible to detect relative variations of the seismic wave velocities of the order of 10

  5. Recent Developments in Active and Passive Distributed Temperature Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Dong, J.; Hoes, O.; Van De Giesen, N.; Sayde, C.; Ochsner, T. E.; Selker, J. S.

    2015-12-01

    In this presentation we will review recent developments in both active and passive Distributed Temperature Sensing (DTS) for soil moisture monitoring. DTS involves using fiber-optic cables to measure temperature at sub-meter resolution along cables up to several kilometers in length. Soil thermal properties depend on soil moisture. Hence, temperature variations either in response to externally-applied heating (active) or the response to net radiation (passive) can be monitored and used to infer soil moisture. DTS occupies a unique measurement niche, potentially providing soil moisture information at sub-meter resolution over extents on the order of km at sub-daily time steps. It complements observations from point sensors to other innovative measurement techniques like cosmic ray neutron detection methods and GPS reflectometry. DTS is being developed as a tool for the validation of soil moisture observations from remote sensing and for hydrological field investigations. Here, we will discuss both technological and theoretical advances in active and passive DTS for soil moisture monitoring. We will present data from new installations in the Netherlands and the USA to illustrate recent developments. In particular, we will focus on the value of combining temperature observations from DTS with physical models using data assimilation. In addition to yielding improved soil moisture and temperature profile estimates, recent research has shown the potential to also derive information on the soil thermal and hydraulic properties. We will conclude by outlining the current challenges, with particular emphasis on combining active and passive DTS.

  6. REM-RED Cosmic Radiation Monitoring Experiment On-Board the REXUS-17 Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Zabori, B.; Gerecs, A.; Hurtonyne Gyovai, A.; Benyei, D.; Naczi, F.; Hurtony, T.

    2015-09-01

    The cosmic radiation field is not well known up to the altitude of the lower orbiting spacecrafts. There are several ways to measure the cosmic radiation in this altitude; however it is not easy to apply them to a sounding rocket. The easiest way is to use Geiger-Muller (GM) counters to quantify the radiation level. The REMRED rocket experiment performed measurements with active radiation instruments (GM counters) in order to quantify the cosmic radiation field from the Earth's surface up to the maximum altitude of the REXUS rocket (about 90 km). The flight of the REM-RED experiment was carried out on the 1 7th of March 201 5 from the ESRANGE Space Center on-board the REXUS-17 student mission sounding rocket.

  7. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  8. Design and Implementation of a Radiation Portal Monitor Multi-Lane Simulator

    SciTech Connect

    McKinnon, Archibald D.; Bass, Robert B.; Elder, Matthew S.; Johnson, Michelle Lynn

    2009-10-24

    Abstract - Deploying radiation portal monitors (RPMs) at U.S. ports of entry requires an understanding of an RPM system’s performance at sites with a large number of RPMs. This paper describes an RPM Multi-Lane Simulator that has been designed and implemented to simulate vehicle traffic at these sites. The Simulator’s flexible architecture simulates vehicle traffic with its associated radiation profiles and emulates each RPM’s radiation sensor panels. The RPM vendor’s embedded control computer firmware and supervisory software are left unchanged, thereby enabling hardware-in-the-loop testing of RPM system performance in configurations that exceed what is experienced in the field. The Simulator has proven to be a valuable and cost effective performance testing tool used by both Pacific Northwest National Laboratory and U.S. Customs and Border Protection systems integration and testing staff.

  9. Integrated active sensor system for real time vibration monitoring

    NASA Astrophysics Data System (ADS)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  10. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  11. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  12. Practical Approaches to Prescribing Physical Activity and Monitoring Exercise Intensity.

    PubMed

    Reed, Jennifer L; Pipe, Andrew L

    2016-04-01

    Regular physical activity helps to prevent heart disease, and reduces the risk of first or subsequent cardiovascular events. It is recommended that Canadian adults accumulate at least 150 minutes of moderate- to vigorous-intensity aerobic exercise per week, in bouts of 10 minutes or more, and perform muscle- and bone-strengthening activities at least 2 days per week. Individual exercise prescriptions can be developed using the frequency, intensity, time, and type principles. Increasing evidence suggests that high-intensity interval training is efficacious for a broad spectrum of heart health outcomes. Several practical approaches to prescribing and monitoring exercise intensity exist including: heart rate monitoring, the Borg rating of perceived exertion scale, the Talk Test, and, motion sensors. The Borg rating of perceived exertion scale matches a numerical value to an individual's perception of effort, and can also be used to estimate heart rate. The Talk Test, the level at which simple conversation is possible, can be used to monitor desired levels of moderate- to vigorous-intensity exercise. Motion sensors can provide users with practical and useful exercise training information to aid in meeting current exercise recommendations. These approaches can be used by the public, exercise scientists, and clinicians to easily and effectively guide physical activity in a variety of settings. PMID:26897182

  13. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  14. The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology.

    PubMed

    Cournane, S; Sheehy, N; Cooke, J

    2014-06-01

    Benford's law is an empirical observation which predicts the expected frequency of digits in naturally occurring datasets spanning multiple orders of magnitude, with the law having been most successfully applied as an audit tool in accountancy. This study investigated the sensitivity of the technique in identifying system output changes using simulated changes in interventional radiology Dose-Area-Product (DAP) data, with any deviations from Benford's distribution identified using z-statistics. The radiation output for interventional radiology X-ray equipment is monitored annually during quality control testing; however, for a considerable portion of the year an increased output of the system, potentially caused by engineering adjustments or spontaneous system faults may go unnoticed, leading to a potential increase in the radiation dose to patients. In normal operation recorded examination radiation outputs vary over multiple orders of magnitude rendering the application of normal statistics ineffective for detecting systematic changes in the output. In this work, the annual DAP datasets complied with Benford's first order law for first, second and combinations of the first and second digits. Further, a continuous 'rolling' second order technique was devised for trending simulated changes over shorter timescales. This distribution analysis, the first employment of the method for radiation output trending, detected significant changes simulated on the original data, proving the technique useful in this case. The potential is demonstrated for implementation of this novel analysis for monitoring and identifying change in suitable datasets for the purpose of system process control. PMID:24321401

  15. Gas-Monitor Detector for Intense and Pulsed VUV/EUV Free-Electron Laser Radiation

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Bobashev, S. V.; Feldhaus, J.; Gerth, Ch.; Gottwald, A.; Hahn, U.; Kroth, U.; Richter, M.; Shmaenok, L. A.; Steeg, B.; Tiedtke, K.; Treusch, R.

    2004-05-01

    In the framework of current developments of new powerful VUV and EUV radiation sources, like VUV free-electron-lasers or EUV plasma sources for 13-nm lithography, we developed a gas-monitor detector in order to measure the photon flux of highly intense and extremely pulsed VUV and EUV radiation in absolute terms. The device is based on atomic photoionization of a rare gas at low particle density. Therefore, it is free of degradation and almost transparent, which allows the detector to be used as a continuously working beam-intensity monitor. The extended dynamic range of the detector allowed its calibration with relative standard uncertainties of 4% in the Radiometry Laboratory of the Physikalisch-Technische Bundesanstalt at the electron-storage ring BESSY II in Berlin using spectrally dispersed synchrotron radiation at low photon intensities and its utilization for absolute photon flux measurements of high power sources. In the present contribution, we describe the design of the detector and its application for the characterization of VUV free-electron-laser radiation at the TESLA test facility in Hamburg. By first pulse resolved measurements, a peak power of more than 100 MW at a wavelength of 87 nm was detected.

  16. IN SITU PRECISE ANGLE MONITORING ON SYNCHROTRON RADIATION MONOCHROMATOR BY USE OF PENCIL BEAM INTERFEROMETER.

    SciTech Connect

    QIAN,S.TAKACS,P.DONG,Q.HULBERT,S.

    2003-08-25

    Monochromator is a very important and precise instrument used in beam lines at synchrotron radiation facilities. We need to know if there is actual thermal distortion on gratings resulting in the degradation of the monochromator resolution. We need to know the characteristics of the grating rotation. It is possible to make a simple but precise in-situ distortion monitoring and rotation angle test of the grating by use of a precise pencil beam angle monitor. We have made preliminary measurements on a monochrometer grating of an undulator beam line X1B at Brookhaven National Laboratory. We monitored a small amount of angle variation on the grating. We detected 1.7 {micro}rad backlash (P-V) of the grating controlling system.

  17. International project on individual monitoring and radiation exposure levels in interventional cardiology.

    PubMed

    Padovani, R; Le Heron, J; Cruz-Suarez, R; Duran, A; Lefaure, C; Miller, D L; Sim, H K; Vano, E; Rehani, M; Czarwinski, R

    2011-03-01

    Within the Information System on Occupational Exposure in Medicine, Industry and Research (ISEMIR), a new International Atomic Energy Agency initiative, a Working Group on interventional cardiology, aims to assess staff radiation protection (RP) levels and to propose an international database of occupational exposures. A survey of regulatory bodies (RBs) has provided information at the country level on RP practice in interventional cardiology (IC). Concerning requirements for wearing personal dosemeters, only 57 % of the RB specifies the number and position of dosemeters for staff monitoring. Less than 40 % of the RBs could provide occupational doses. Reported annual median effective dose values (often <0.5 mSv) were lower than expected considering validated data from facility-specific studies, indicating that compliance with continuous individual monitoring is often not achieved in IC. A true assessment of annual personnel doses in IC will never be realised unless a knowledge of monitoring compliance is incorporated into the analysis. PMID:21051431

  18. Radiation-pressure-supported obscuring tori around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pier, Edward A.; Krolik, Julian H.

    1992-01-01

    Radiation pressure acting on dust grains can support the vertical thickness of the obscuring tori believed to exist in active galactic nuclei. Using the results of 2D radiation transfer calculations, we evaluate the radiation force acting on these tori. We find that on the inner edge of the torus the radiation force is about 350 l(E) times the gravitational force of the nucleus, where l(E) is the Eddington ratio. Beyond a few torus heights from the inner edge, the radiation force is negligible with respect to gravity. However, between these two extremes lies a region of considerable size where the ratio of radiation force to gravity is nearly constant and can be of order unity for l(E) about 0.1. If the distribution of material within the torus is sufficiently lumpy, there is a significant time-varying component to the radiation force. This drives the random motions of the constituent clouds, thickening the torus at lower values of l(E).

  19. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ˜ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ˜ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  20. Radiation-driven Outflows from and Radiative Support in Dusty Tori of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.

    2016-07-01

    Substantial evidence points to dusty, geometrically thick tori obscuring the central engines of active galactic nuclei (AGNs), but so far no mechanism satisfactorily explains why cool dust in the torus remains in a puffy geometry. Near-Eddington infrared (IR) and ultraviolet (UV) luminosities coupled with high dust opacities at these frequencies suggest that radiation pressure on dust can play a significant role in shaping the torus. To explore the possible effects of radiation pressure, we perform three-dimensional radiative hydrodynamics simulations of an initially smooth torus. Our code solves the hydrodynamics equations, the time-dependent multi–angle group IR radiative transfer (RT) equation, and the time-independent UV RT equation. We find a highly dynamic situation. IR radiation is anisotropic, leaving primarily through the central hole. The torus inner surface exhibits a break in axisymmetry under the influence of radiation and differential rotation; clumping follows. In addition, UV radiation pressure on dust launches a strong wind along the inner surface; when scaled to realistic AGN parameters, this outflow travels at ∼ 5000 {(M/{10}7{M}ȯ )}1/4 {[{L}{UV}/(0.1{L}{{E}})]}1/4 {km} {{{s}}}-1 and carries ∼ 0.1 {(M/{10}7{M}ȯ )}3/4 {[{L}{UV}/(0.1{L}{{E}})]}3/4 M ⊙ yr‑1, where M, {L}{UV}, and {L}{{E}} are the mass, UV luminosity, and Eddington luminosity of the central object respectively.

  1. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships. PMID:26471275

  2. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors, and Wire Scanners

    SciTech Connect

    Chao, Y.-C.; Chevtsov, P.; Day, A.; Freyberger, A. P.; Hicks, R.; Joyce, M.; Denard, J.-C.

    2004-11-10

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size ({sigma} {approx} 100 {mu}m) and an upper limit on the RMS energy spread of ({delta}E/E) < 3 x 10{sup -5}. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are non-invasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1-6 GeV) and currents ({approx}100 {mu}A down to few {mu}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  3. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  4. Envitonmental monitoring and radiation protection in Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjeviè, V.; Jovanovič, P.

    2012-04-01

    Škocjan Caves were listed as UNESCO World Heritage Sites in 1986, due to their exceptional significance for cultural and natural heritage. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data. Relation of background radiation to carrying capacity will be explained. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. A system of education of the staff working in the caves in the field of radiation protection will be presented as well.

  5. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    PubMed Central

    Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz

    2008-01-01

    The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted.

  6. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  7. Landslide Activity Monitoring with the Help of Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Peterman, V.

    2015-08-01

    This paper presents a practical example of a landslide monitoring through the use of a UAV - tracking and monitoring the movements of the Potoska Planina landslide located above the village of Koroska Bela in the western Karavanke Mountains in north-western Slovenia. Past geological research in this area indicated slope landmass movement of more than 10 cm per year. However, much larger movements have been detected since - significant enough to be observed photogrammetrically with the help of a UAV. With the intention to assess the dynamics of the landslide we have established a system of periodic observations carried out twice per year - in mid-spring and mid-autumn. This paper offers an activity summary along with the presentation of data acquisition, data processing and results.

  8. Monitoring tectal neuronal activities and motor behavior in zebrafish larvae.

    PubMed

    Sumbre, Germán; Poo, Mu-Ming

    2013-09-01

    To understand how visuomotor behaviors are controlled by the nervous system, it is necessary to monitor the activity of large populations of neurons with single-cell resolution over a large area of the brain in a relatively simple, behaving organism. The zebrafish larva, a small lower vertebrate with transparent skin, serves as an excellent model for this purpose. Immediately after the larva hatches, it needs to catch prey and avoid predators. This strong evolutionary pressure leads to the rapid development of functional sensory systems, particularly vision. By 5 d postfertilization (dpf), tectal cells show distinct visually evoked patterns of activation, and the larvae are able to perform a variety of visuomotor behaviors. During the early larval stage, zebrafish breathe mainly through the skin and can be restrained under the microscope using a drop of low-melting-point agarose, without the use of anesthetics. Moreover, the transparency of the skin, the small diameter of the neurons (4-5 µm), and the high-neuronal density enable the use of in vivo noninvasive imaging techniques to monitor neuronal activities of up to ∼500 cells within the central nervous system, still with single-cell resolution. This article describes a method for simultaneously monitoring spontaneous and visually evoked activities of large populations of neurons in the optic tectum of the zebrafish larva, using a synthetic calcium dye (Oregon Green BAPTA-1 AM) and a conventional confocal or two-photon scanning fluorescence microscope, together with a method for measuring the tail motor behavior of the head-immobilized zebrafish larva. PMID:24003199

  9. Computation of Radiation Dose at Aircraft Altitudes from Analysis of Cosmic Ray Neutron Monitor Data

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    Relativistic solar proton events GLEs those events with protons having sufficient kinetic energy to initiate a nuclear cascade in the atmosphere can make a contribution to radiation dose at aircraft altitudes We show that it is possible to obtain proper estimates of the expected radiation dose at aircraft altitudes from the analysis of ground-level neutron monitor data Assuming a nominal GLE spectrum the radiation dose at 40 000 feet during a 100 increase at polar latitudes will be in the range of 5 to 10 micro Sieverts per hour depending on the spectral slope An analysis of the large GLE s that have occurred during the past two solar cycles shows that there have been no events where the hourly averaged radiation dose at 40 000 feet would have exceeded 20 micro Sieverts per hour In the past improper GLE analysis was used to estimate the radiation dose at aircraft altitudes The old values derived for the early GLE s resulted in the prediction of high dose rates that persist today as urban legends and contribute to the public concept that the radiation dose at aircraft altitudes is dangerous We demonstrate that modern analytical techniques result in computed radiation doses during high-energy solar cosmic ray events that are orders of magnitude lower than those obtained by the old techniques We show that the use of the old technique of using straight line power law spectra to extrapolate the flux derived at 1 GeV results in order of magnitude errors when these flux values are extrapolated to lower energies and used to

  10. Citizen Monitoring during Hazards: The Case of Fukushima Radiation after the 2011 Japanese Earthquake

    NASA Astrophysics Data System (ADS)

    Hultquist, C.; Cervone, G.

    2015-12-01

    Citizen-led movements producing scientific environmental information are increasingly common during hazards. After the Japanese earthquake-triggered tsunami in 2011, the government produced airborne remote sensing data of the radiation levels after the Fukushima nuclear reactor failures. Advances in technology enabled citizens to monitor radiation by innovative mobile devices built from components bought on the Internet. The citizen-led Safecast project measured on-ground levels of radiation in the Fukushima prefecture which total 14 million entries to date in Japan. This non-authoritative citizen science collection recorded radiation levels at specific coordinates and times is available online, yet the reliability and validity of the data had not been assessed. The nuclear incident provided a case for assessment with comparable dimensions of citizen science and authoritative data. To perform a comparison of the datasets, standardization was required. The sensors were calibrated scientifically but collected using different units of measure. Radiation decays over time so temporal interpolation was necessary for comparison of measurements as being the same time frame. Finally, the GPS located points were selected within the overlapping spatial extent of 500 meters. This study spatially analyzes and statistically compares citizen-volunteered and government-generated radiation data. Quantitative measures are used to assess the similarity and difference in the datasets. Radiation measurements from the same geographic extents show similar spatial variations which suggests that citizen science data can be comparable with government-generated measurements. Validation of Safecast demonstrates that we can infer scientific data from unstructured and not vested data. Citizen science can provide real-time data for situational awareness which is crucial for decision making during disasters. This project provides a methodology for comparing datasets of radiological measurements

  11. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  12. CARER: Efficient Dynamic Sensing for Continuous Activity Monitoring

    PubMed Central

    Au, Lawrence K.; Bui, Alex A.T.; Batalin, Maxim A.; Xu, Xiaoyu; Kaiser, William J.

    2016-01-01

    Advancement in wireless health sensor systems has triggered rapidly expanding research in continuous activity monitoring for chronic disease management or promotion and assessment of physical rehabilitation. Wireless motion sensing is increasingly important in treatments where remote collection of sensor measurements can provide an in-field objective evaluation of physical activity patterns. The well-known challenge of limited operating lifetime of energy-constrained wireless health sensor systems continues to present a primary limitation for these applications. This paper introduces CARER, a software system that supports a novel algorithm that exploits knowledge of context and dynamically schedules sensor measurement episodes within an energy consumption budget while ensuring classification accuracy. The sensor selection algorithm in the CARER system is based on Partially Observable Markov Decision Process (POMDP). The parameters for the POMDP algorithm can be obtained through standard maximum likelihood estimation. Sensor data are also collected from multiple locations of the subjects body, providing estimation of an individual's daily activity patterns. PMID:22254783

  13. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose. PMID:19430218

  14. Design of an irradiation facility with a real-time radiation effects monitoring capability

    NASA Astrophysics Data System (ADS)

    Braisted, J.; Schneider, E.; O'Kelly, S.; van der Hoeven, C.

    2011-12-01

    An in-core irradiation facility for radiation effects testing with a real-time monitoring capability has been designed for the 1.1 MW TRIGA Mark II research reactor at The University of Texas at Austin. The facility is larger than any currently available non-central location in a TRIGA, supporting testing of larger electronic components as well as other in-core irradiation applications requiring significant volume such as isotope production or neutron transmutation doping of silicon. This article presents the layout and characterization of the large in-core irradiation facility and the real-time electronics performance monitoring capability it is designed to support. To demonstrate this capability, an experimental campaign was conducted where the real-time current transfer ratio for 4N25 general-purpose optocouplers was obtained from in-situ voltage measurements. The resultant radiation effects data - current transfer ratio as a function of neutron and gamma dose - was seen to be repeatable and exceptionally finely resolved. Therefore, the real-time capability at UT TRIGA appears competitive with other effects characterization facilities in terms of number and size of testable samples while additionally offering a novel real-time, in-core monitoring capability.

  15. Improved Performance of Energy Window Ratio Criteria Obtained Using Multiple Windows at Radiation Portal Monitoring Sites

    SciTech Connect

    Weier, Dennis R.; Lopresti, Charles A.; Ely, James H.; Bates, Derrick J.; Kouzes, Richard T.

    2006-06-07

    Radiation portal monitors are being used to detect radioactive target materials in vehicles transporting cargo. As vehicles pass through the portal monitors, they generate count profiles over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory, in support of U.S. Customs and Border Protection (CBP) and U.S. Domestic Nuclear Detection Office (DNDO) under the U.S. Department of Homeland Security (DHS), has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations. Energy window criteria have been shown to increase sensitivity to certain types of target radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. First generation equipment had only two-window capability, and while energy windowing for such systems was shown to be useful for detecting certain types of sources, it was subsequently found that improved performance could be obtained with more windows. Second generation equipment instead has more windows and can thus support additional energy window criteria which can be shown to be sensitive to a wider set of target sources. Detection likelihoods are generated for various sources and energy window criteria, as well as for gross count decision criteria, based on computer simulated injections of sources into archived vehicle profiles. (PIET-43741-TM-534)

  16. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    SciTech Connect

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  17. Wireless design of a multisensor system for physical activity monitoring.

    PubMed

    Mo, Lingfei; Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John W; Freedson, Patty S

    2012-11-01

    Real-time monitoring of human physical activity (PA) is important for assessing the intensity of activity and exposure to environmental pollutions. A wireless wearable multisenor integrated measurement system (WIMS) has been designed for real-time measurement of the energy expenditure and breathing volume of human subjects under free-living conditions. To address challenges posted by the limited battery life and data synchronization requirement among multiple sensors in the system, the ZigBee communication platform has been explored for energy-efficient design. Two algorithms have been developed (multiData packaging and slot-data-synchronization) and coded into a microcontroller (MCU)-based sensor circuitry for real-time control of wireless data communication. Experiments have shown that the design enables continued operation of the wearable system for up to 68 h, with the maximum error for data synchronization among the various sensor nodes (SNs) being less than 24 ms. Experiment under free-living conditions have shown that the WIMS is able to correctly recognize the activity intensity level 86% of the time. The results demonstrate the effectiveness of the energy-efficient wireless design for human PA monitoring. PMID:23086196

  18. Passive and Active Sensing Technologies for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  19. Radiation processing in india-current R & D activities

    NASA Astrophysics Data System (ADS)

    Majali, A. B.; Sabharwal, S.

    1995-09-01

    Radiation processing is an area of vigorous activity in today's India. With the indigenous expertise in Co source and irradiator technology, potentially promising applications such as sustained drug delivery systems, vulcanization of natural rubber latex (RVNRL), and degradation of polytetrafluoroethylene (PTFE) are presently investigated. Over the last four years, technologies for RVNRL and PTFE degradation have been scaled upto pilot scale operations, while radiation polymerized polymer systems have been developed for controlled release of certain drugs. With the commissioning of the 2 MeV EB machine in late 1988, a few EB based processes have also been commercially exploited. The paper briefly reviews these and presents the significant results obtained.

  20. The AMSAT-OSCAR-40 High Elliptical Orbit Radiation Environment Monitoring Payload - First Flight Results

    NASA Astrophysics Data System (ADS)

    Sweeting, Martin, , Sir

    Over the last decade, Surrey's micro-satellites have provided continuous monitoring of the proton and heavy-ion environment encountered in low-Earth orbit (LEO), through the use of a series of silicon PIN-diode-based particle detectors, starting with the UK Defence Evaluation Research Agency's (DERA's) Cosmic-Radiation Environment and Dosimetry (CREDO) payload, flown on-board UoSAT-3 in 1990, followed in 1992 by the Cosmic-Ray Experiment (CRE), developed at the Surrey Space Centre under a micro-satellite Technology Transfer (TT) programme operated between Surrey Satellite Technology Ltd. (SSTL) and the Korea Advanced Institute of Science and Technology (KAIST), and flown on the resulting KITSAT-1 micro-satellite. The CRE was flown again in 1993 on-board the PoSAT- 1 micro-satellite, developed under a similar TT programme operated between SSTL and Portugal. The results from all of these instruments have given a great deal of information on the nature of the low-Earth orbit (LEO) ionising radiation environment, and in the case of the PoSAT-1 CRE, continue to do so. However, to obtain a more complete "picture" of the magnetosphere, it is necessary to orbit instruments much further out in space An opportunity to do this arose in 1994 when amateur radio satellite groups (AMSAT) proposed launching a small (600 kg) communications satellite into highly elliptical orbit. This satellite, called AMSAT-OSCAR-40 (AO-40), was launched by Ariane 5 rocket on 16th November 2000, initially into a geostationary transfer orbit (GTO). The satellite has subsequently been manoeuvred into a highly elliptical, 1070 km x 58,700 km, 6.8o inclination orbit, and thus it affords the opportunity to observe the proton and heavy-ion environment through a large cross-section of Earth's magnetosphere. AO-40 carries a version of the CRE, which has been slightly modified in terms of interfaces and packaging to fit that particular satellite bus. However the particle detecting element is essentially

  1. High NOTCH activity induces radiation resistance in non small cell lung cancer

    PubMed Central

    Habets, Roger; Span, Paul; Dubois, Ludwig; Paesmans, Kim; Kattenbeld, Bo; Cleutjens, Jack; Groot, Arjan J.; Schuurbiers, Olga C.J.; Lambin, Philippe; Bussink, Jan; Vooijs, Marc

    2016-01-01

    Background and purpose Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. Materials and methods NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. Results Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. Conclusions We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy. PMID:23891097

  2. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  3. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  4. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  5. Step activity monitoring in lumbar stenosis patients undergoing decompressive surgery

    PubMed Central

    Schubert, Tim; Winter, Corinna; Brandes, Mirko; Hackenberg, Lars; Wassmann, Hansdetlef; Liem, Dennis; Rosenbaum, Dieter; Bullmann, Viola

    2010-01-01

    Symptomatic degenerative central lumbar spinal stenosis (LSS) is a frequent indication for decompressive spinal surgery, to reduce spinal claudication. No data are as yet available on the effect of surgery on the level of activity measured with objective long-term monitoring. The aim of this prospective, controlled study was to objectively quantify the level of activity in central LSS patients before and after surgery, using a continuous measurement device. The objective data were correlated with subjective clinical results and the radiographic degree of stenosis. Forty-seven patients with central LSS and typical spinal claudication scheduled for surgery were included. The level of activity (number of gait cycles) was quantified for 7 consecutive days using the StepWatch Activity Monitor (SAM). Visual analogue scales (VAS) for back and leg pain, Oswestry disability index and Roland–Morris score were used to assess the patients’ clinical status. The patients were investigated before surgery and 3 and 12 months after surgery. In addition, the radiographic extent of central LSS was measured digitally on preoperative magnetic resonance imaging or computed tomography. The following results were found preoperatively: 3,578 gait cycles/day, VAS for back pain 5.7 and for leg pain 6.5. Three months after surgery, the patients showed improvement: 4,145 gait cycles/day, VAS for back pain 4.0 and for leg pain 3.0. Twelve months after surgery, the improvement continued: 4,335 gait cycles/day, VAS for back pain 4.1 and for leg pain 3.3. The clinical results and SAM results showed significant improvement when preoperative data were compared with data 3 and 12 months after surgery. The results 12 months after surgery did not differ significantly from those 3 months after surgery. The level of activity correlated significantly with the degree of leg pain. The mean cross-sectional area of the spinal canal at the central LSS was 94 mm2. The radiographic results did not

  6. Active thermal extraction of near-field thermal radiation

    NASA Astrophysics Data System (ADS)

    Ding, D.; Kim, T.; Minnich, A. J.

    2016-02-01

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at subwavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far field. Our study demonstrates an approach to manipulate thermal radiation that could find applications in thermal management.

  7. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  8. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  9. Improved technique for monitoring electrocardiograms during exposure to radio-frequency radiation

    SciTech Connect

    Watkinson, W.P.; Gordon, C.J.

    1986-01-01

    Studies were conducted which examined the effects of radio frequency (RF) radiation on heart rate (HR), deep body temperature (TEMP), and electrocardiographic (ECG) waveform parameters in anesthetized rats. One group of animals was exposed to two power levels of continuous wave RF radiation averaging 1.0 and 7.4 W/kg at a frequency of 600 MHz. A second group of animals, treated identically but not exposed to RF radiation, served as a control. The electrodes used to monitor the ECG during RF exposure were fabricated using carbon-loaded Teflon wire, a semiconductor material that does not perturb the RF field. Analyses of the ECG were conducted using a recently developed computer-assisted procedure which quantitates HR and waveform intervals over 25-40 individual ECG complexes. There were no artifacts or arrhythmias in the ECGs of the animals exposed to RF radiation. There was a significant linear correlation between HR and TEMP in the RF-exposed group which was not present in the control group.

  10. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  11. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator.

    PubMed

    Lee, Hyun Cheol; Shin, Wook-Geun; Park, Hyo Jun; Yoo, Do Hyun; Choi, Chang-Il; Park, Chang-Su; Kim, Hong-Suk; Min, Chul Hee

    2016-01-01

    To prevent illicit tracking of radionuclides, radiation portal monitor (RPM) systems employing plastic scintillators have been used in ports and airports. However, their poor energy resolution makes the discrimination of radioactive material inaccurate. In this study, an energy weight algorithm was validated to determine (133)Ba, (22)Na, (137)Cs, and (60)Co by using a plastic scintillator. The Compton edges of energy spectra were converted to peaks based on the algorithm. The peaks have a maximum error of 6% towards the theoretical Compton edge. PMID:26516988

  12. Persistence of endometrial activity after radiation therapy for cervical carcinoma

    SciTech Connect

    Barnhill, D.; Heller, P.; Dames, J.; Hoskins, W.; Gallup, D.; Park, R.

    1985-12-01

    Radiation therapy is a proved treatment for cervical carcinoma; however, it destroys ovarian function and has been thought to ablate the endometrium. Estrogen replacement therapy is often prescribed for patients with cervical carcinoma after radiation therapy. A review of records of six teaching hospitals revealed 16 patients who had endometrial sampling for uterine bleeding after standard radiation therapy for cervical carcinoma. Fifteen patients underwent dilatation and curettage, and one patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy when a dilatation and curettage was unsuccessful. Six patients had fibrosis and inflammation of the endometrial cavity, seven had proliferative endometrium, one had cystic hyperplasia, one had atypical adenomatous hyperplasia, and one had adenocarcinoma. Although the number of patients who have an active endometrium after radiation therapy for cervical carcinoma is not known, this report demonstrates that proliferative endometrium may persist, and these patients may develop endometrial hyperplasia or adenocarcinoma. Studies have indicated that patients with normal endometrial glands have an increased risk of developing endometrial adenocarcinoma if they are treated with unopposed estrogen. Patients who have had radiation therapy for cervical carcinoma should be treated with estrogen and a progestational agent to avoid endometrial stimulation from unopposed estrogen therapy.

  13. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  14. Space Weather Monitoring and Forecasting Activity in NICT

    NASA Astrophysics Data System (ADS)

    Nagatsuma, Tsutomu; Watari, Shinichi; T. Murata, Ken

    Disturbances of Space environment around the Earth (geospace) is controlled by the activity of the Sun and the solar wind. Disturbances in geospace sometimes cause serious problems to satellites, astronauts, and telecommunications. To minimize the effect of the problems, space weather forecasting is necessary. In Japan, NICT (National Institute of Information and Communications Technology) is in charge of space weather forecasting services as a regional warning center of International Space Environment Service. With help of geospace environment data exchanging among the international cooperation, NICT operates daily space weather forecast service every day to provide information on nowcasts and forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. For prompt reporting of space weather information, we also conduct our original observation networks from the Sun to the upper atmosphere: Hiraiso solar observatory, domestic ionosonde networks, magnetometer & HF radar observations in far-east Siberia and Alaska, and south-east Asia low-latitude ionospheric network (SEALION). ACE (Advanced Composition Explorer) and STEREO (Solar TErrestrial RElations Observatory) real-time beacon data are received using our antenna facilities to monitor the solar and solar wind conditions in near real-time. Our current activities and future perspective of space weather monitoring and forecasting will be introduced in this report.

  15. Monitoring human and vehicle activities using airborne video

    NASA Astrophysics Data System (ADS)

    Cutler, Ross; Shekhar, Chandra S.; Burns, B.; Chellappa, Rama; Bolles, Robert C.; Davis, Larry S.

    2000-05-01

    Ongoing work in Activity Monitoring (AM) for the Airborne Video Surveillance (AVS) project is described. The goal for AM is to recognize activities of interest involving humans and vehicles using airborne video. AM consists of three major components: (1) moving object detection, tracking, and classification; (2) image to site-model registration; (3) activity recognition. Detecting and tracking humans and vehicles form airborne video is a challenging problem due to image noise, low GSD, poor contrast, motion parallax, motion blur, and camera blur, and camera jitter. We use frame-to- frame affine-warping stabilization and temporally integrated intensity differences to detect independent motion. Moving objects are initially tracked using nearest-neighbor correspondence, followed by a greedy method that favors long track lengths and assumes locally constant velocity. Object classification is based on object size, velocity, and periodicity of motion. Site-model registration uses GPS information and camera/airplane orientations to provide an initial geolocation with +/- 100m accuracy at an elevation of 1000m. A semi-automatic procedure is utilized to improve the accuracy to +/- 5m. The activity recognition component uses the geolocated tracked objects and the site-model to detect pre-specified activities, such as people entering a forbidden area and a group of vehicles leaving a staging area.

  16. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  17. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  18. Active sensors for health monitoring of aging aerospace structures

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk

    2000-06-01

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  19. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    NASA Astrophysics Data System (ADS)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  20. Active magnetic radiation shielding system analysis and key technologies

    NASA Astrophysics Data System (ADS)

    Washburn, S. A.; Blattnig, S. R.; Singleterry, R. C.; Westover, S. C.

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  1. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited. PMID:26177618

  2. Evaluation of activity monitors in manual wheelchair users with paraplegia

    PubMed Central

    Hiremath, Shivayogi V.; Ding, Dan

    2011-01-01

    Objective The aim of this study was to evaluate the performance of SenseWear® (SW) and RT3 activity monitors (AMs) in estimating energy expenditure (EE) in manual wheelchair users (MWUs) with paraplegia for a variety of physical activities. Methods Twenty-four subjects completed four activities including resting, wheelchair propulsion, arm-ergometry exercise, and deskwork. The criterion EE was measured by a K4b2 portable metabolic cart. The EE estimated by the SW and RT3 were compared with the criterion EE by the absolute differences and absolute percentage errors. Intraclass correlations and the Bland and Altman plots were also used to assess the agreements between the two AMs and the metabolic cart. Correlations between the criterion EE and the estimated EE and sensors data from the AMs were evaluated. Results The EE estimation errors for the AMs varied from 24.4 to 125.8% for the SW and from 22.0 to 52.8% for the RT3. The intraclass correlation coefficients (ICCs) between the criterion EE and the EE estimated by the two AMs for each activity and all activities as a whole were considered poor with all the ICCs smaller than 0.75. Except for deskwork, the EE from the SW was more correlated to the criterion EE than the EE from the RT3. Conclusion The results indicate that neither of the AMs is an appropriate tool for quantifying physical activity in MWUs with paraplegia. However, the accuracy of EE estimation could be potentially improved by building new regression models based on wheelchair-related activities. PMID:21528634

  3. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  4. Asymmetric thoracic metaiodobenzylguanidine (MIBG) activity due to prior radiation therapy.

    PubMed

    Bai, Xia; Yang, Hua; Zhuang, Hongming

    2015-06-01

    A 5-year-old patient suffered Horner syndrome, which was caused by a neuroblastoma in the left apex of the lung shown on the initial I-MIBG scan. After the surgical resection and external radiation to the left lung field, a follow-up I-MIBG scan revealed significantly less MIBG activity in the left upper chest compared to the contralateral right upper chest. PMID:25742240

  5. Personal Active Dosimeter for Space: the Light Observer for Radiation Environment (LORE) project

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    Long permanence in space outside the protections of the Earth magnetic shield and atmosphere (during long journeys, and on the Moon or/and Mars) requires a careful monitoring of absorbed doses by each astronaut. This is of paramount importance for transient and cumulative effects mostly due to Solar Particle Events. Alarming features and the possibility of monitoring absorbed dose also discriminating the kind of incoming radiation will be needed. Stemming from our large experience in detector building, in modelling, in designing of the supporting electronic, from our payloads flown on satellites, MIR Station and ISS (Nina, Mita, SilEye, SilEye2, Alteino, Pamela, ALTEA) we are developping a personal active dosimeter with alarming and wireless features. The goal is a small object able to measure charged and neutral ionizing radiation (the possibility to insert a miniaturized gamma detector will be investigated) The device will feature portability (cigarette-box dimensions, rechargeable batteries), sensitivity to ions (H to above Fe), to hard X-rays, and possibly to gamma with the ability to detect and count neutrons. Flash memories should contain pre loaded tables and the real Time code to perform the real time operations and risk thresholds so to activate an alarm if/when needed. Whenever in range, the device will connect wirelessly to the main computer and send there the raw and pre-analyzed data for a complete monitoring and possible more sophisticated analyses. The two major novelties and challenges in this project are the miniaturization of the device, including the firmware, and the definition of the transfer function and of its uncertainties, linking measured data with real flux data. This will require the proper balancing among size, radiation discrimination ability and uncertainty minimization.

  6. Radiation Monitoring System in Service Module of International Space Station. Eight Years of Functioning

    NASA Astrophysics Data System (ADS)

    Benghin, Victor; Petrov, Vladislav; Panasyuk, Mikhail; Volkov, Aleksey; Nikolaev, Igor; Nechaev, Oleg; Lishnevskii, Andrey; Tel, Mikhail

    Radiation monitoring system (RMS) installed on board the Russian module (RM) of the In-ternational Space Station (ISS) is an important part of radiation safety system of a spacecraft. RMS function practically continuously beginning from 1 August 2001 year. Integration the RMS with other systems of RM permits to transmit measured values to the Earth by the telemetry and to reflect the radiation environment data directly to crew by the personal com-puter. There is a possibility to correct the RMS software directly on board the ISS. It permits improve greatly a confidence, reliability and validity of an information obtaining. The report presents the data about the equipment functioning and results of dose rate measurements during the period from the August of 2001 up to the August of 2009 both for normal radiation environ-ment and during solar particle events (SPE). Comparison of an absorbed dose rate measured by the detectors located in various points of the RM showed that difference of doses measured in low and high shielded areas of the RM at undisturbed radiation conditions is notably stable and not exceeds a factor of 2. At the same time during the disturbances caused by SPE it can reach of 30. This fact confirms the efficiency of a crew passage in the high-shielded area for decreasing SCR dose. Comparison data obtained with the RMS silicon detectors with the R-16 ionizing chamber data showed that for equal shielding conditions the measured values coincide with accuracy rather then 20On the whole the dose rate dynamics for various solar cycle periods and during the SPE demonstrates reasonably high regularity of crewmembers dose. But it is clear that onboard and personal dosimetric control is necessary for implementation of ALARA principle and minimization of the crewmembers personal doses.

  7. Radiation Exposure Monitoring and Information Transmittal (REMIT) system. User`s manual

    SciTech Connect

    Cale, R.; Clark, T.; Dixson, R.; Hagemeyer, D.

    1993-06-01

    The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist US Nuclear Regulatory Commission (NRC)licensees in meeting the reporting requirements of the revised 10 CFR 20 and in agreement with the guidance contained in R.G. 8.7, Rev. 1, ``Instructions for Recording and Reporting Occupational Exposure Data.`` REMIT is a personal computer (PC) based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of R. G. 8.7, Rev. 1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5, REMIT allows the user to view the individual`s exposure in relation to regulatory or administrative limits and alerts the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files.

  8. System for monitoring UV radiation level in phototherapy cabins in Poland

    PubMed Central

    Narbutt, Joanna; Pawlaczyk, Mariola; Sysa-Jędrzejowska, Anna; Sobolewski, Piotr; Rajewska-Więch, Bonawentura; Lesiak, Aleksandra

    2014-01-01

    Introduction Ultraviolet phototherapy (UVP) is widely used in dermatological practice for the treatment of various skin diseases. Numerous studies support its beneficial curing effectiveness; however, overexposure to ultraviolet radiation can cause adverse health effects, such as sunburn reaction, erythema response, cataract, skin aging, etc. For these reasons, it is of special importance to monitor performance of UVP cabins using a calibration system to evaluate the UV doses incident upon the patient. Material and methods A mechanized cabin control system (CCS) is proposed. It consists of radiometers with a wide and narrow field of view to estimate the body irradiation and to identify malfunctioning cabin tubes. Quality control and quality assurance procedures are developed to keep high accuracy of the calibration procedure. The CCS has been used in the examination of two different types of UVP cabins routinely working in Poland. Results It allows precise calculation of UV doses and spatial variability of UV radiance inside the cabin, thus providing uncertainties of the doses assigned by medical staff. The CCS could potentially serve as a primary standard for monitoring various UVP cabins working in Poland. Conclusions The methodology developed to quantify UV doses in UVP cabins may be easily extended to any UV radiation source. PMID:25624865

  9. Radiation dosimetry measurements with real time radiation monitoring device (RRMD)-II in Space Shuttle STS-79

    NASA Technical Reports Server (NTRS)

    Sakaguchi, T.; Doke, T.; Hayashi, T.; Kikuchi, J.; Hasebe, N.; Kashiwagi, T.; Takashima, T.; Takahashi, K.; Nakano, T.; Nagaoka, S.; Takahashi, S.; Yamanaka, H.; Yamaguchi, K.; Badhwar, G. D.

    1997-01-01

    The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.

  10. Individual Radiation Protection Monitoring in the Marshall Islands: Utrok Atoll (2003-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Tibon, S; Chee, L

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet

  11. Monitoring Satellite-derived Surface Solar Radiation with Near Real Time Reference Data

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Laszlo, I.; Liu, H.

    2015-12-01

    Geostationary satellite observations of the Earth are increasingly made more frequent. For example, Himawari-8 of Japanese Meteorological Agency takes images of the planet every 10 minutes in multiple bands. Similarly, the GOES-R satellite of the US National Oceanic and Atmospheric Administration (NOAA) will make observations every 5 to 15 minutes. Products, like shortwave (solar) radiation budget at the surface, derived from these observations have or will have similar rapid refresh rates. Routine, near-real time assessment of the quality of these products ideally requires the availability of near-real time reference data. Such near-real time data has recently become available from the NOAA Surface Radiation Budget Network (SURFRAD). These data are disseminated every 15 minutes. However, in contrast to non-real-time data with fully quality control, which have a latency of 24 hours or more, the near-real time data have less quality control applied to them in order to achieve low latency. To assess applicability of this near-real time SURFRAD data for the evaluation satellite products we are using them experimentally to evaluate the quality of Downward Shortwave Radiation at the surface (DSR) retrieved operationally every hour from GOES and made available in the Geostationary Surface and Insolation Product (GSIP) . Metrics (accuracy and precision) are computed to characterize the level of agreement between satellite retrievals and the near-real time reference data. These metrics are then compared with metrics from the evaluation with the non-real time, fully quality controlled reference. The comparison shows that monitoring of DSR with near-real time data is not very different from monitoring it with non-real time data and so DSR retrievals can be evaluated hourly or shorter times depending on reference data availability.

  12. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  13. Monte Carlo based calibration of an air monitoring system for gamma and beta+ radiation.

    PubMed

    Sarnelli, A; Negrini, M; D'Errico, V; Bianchini, D; Strigari, L; Mezzenga, E; Menghi, E; Marcocci, F; Benassi, M

    2015-11-01

    Marinelli beaker systems are used to monitor the activity of radioactive samples. These systems are usually calibrated with water solutions and the determination of the activity in gases requires correction coefficients accounting for the different mass-thickness of the sample. For beta+ radionuclides the different distribution of the positrons annihilation points should be also considered. In this work a Monte Carlo simulation based on Geant4 is used to compute correction coefficients for the measurement of the activity of air samples. PMID:26356044

  14. Aspects of harmonisation of individual monitoring for external radiation in Europe: conclusions of a EURADOS action.

    PubMed

    Kamenopoulou, V; van Dijk, J W E; Ambrosi, P; Bolognese-Milsztajn, T; Castellani, C M; Currivan, L; Falk, R; Fantuzzi, E; Figel, M; Alves, J Garcia; Ginjaume, M; Janzekovic, H; Kluszczynski, D; Lopez, M A; Luszik-Bhadra, M; Olko, P; Roed, H; Stadtmann, H; Vanhavere, F; Vartiainen, E; Wahl, W; Weeks, A; Wernli, C

    2006-01-01

    Following the publication of the EU Council Directive 96/29, EURADOS coordinated two working groups (WGs) for promoting the process of harmonisation on individual monitoring of occupationally exposed persons in Europe. An overview of the major findings of the second WG is presented. Information on the technical and quality standards and on the accreditation and approval procedures has been compiled. The catalogue of dosimetric services has been updated and extended. An overview of national regulations and standards for protection from radon and other natural sources in workplaces has been made, attempting to combine the results from individual monitoring for external, internal and workplace monitoring. A first status description of the active personal dosemeters, including legislative and technical information, and their implementation has been made. The importance of practical factors on the uncertainty in the dose measurement has been estimated. Even if a big progress has been made towards harmonisation, there is still work to be done. PMID:16581923

  15. An active control strategy for achieving weak radiator structures

    SciTech Connect

    Naghshineh, K. . Acoustics and Radar Technology Lab.); Koopmann, G.H. . Center for Acoustics and Vibration)

    1994-01-01

    A general control strategy is presented for active suppression of total radiated sound power from harmonically excited structures based on the measurement of their response. Using the measured response of the structure together with knowledge of its structural mobility, and equivalent primary excitation force is found at discrete points along the structure. Using this equivalent primary force and performing a quadratic optimization of the power radiated form the structure, a set of control forces is found at selected points on the structure that results in minimum radiated sound power. A numerical example of this strategy is presented for a simply supported beam in a rigid baffle excited by a harmonic plane wave incident at an oblique angle. A comparison of the response of the beam with and without control forces shows a large reduction in the controlled response displacement magnitude. In addition, as the result of the action of the control forces, the magnitude of the wave number spectrum of the beam's response in the supersonic region is decreased substantially. The effect of the number and location of the actuators on reductions in sound power level is also studied. The actuators located at the anti-nodes of structural modes within the supersonic region together with those located near boundaries are found to be the most effective in controlling the radiation of sound from a structure.

  16. Active Extraction of Near-field Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Kim, Taeyong; Minnich, Austin

    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at sub-wavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active radiative cooling (ARC) scheme to extract these modes to the far-field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far-field. We also provide further insights into our ARC scheme by applying the theoretical framework used for laser cooling of solids (LCS) to ARC. We show that LCS and ARC can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ARC. Using this framework, we examine the predictions of the formalism for LCS and ARC using realistic parameters and find that ARC can achieve higher efficiency and extracted power over a wide range of conditions. Our study demonstrates a new approach to manipulate near-field thermal radiation for thermal management.

  17. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  18. Monitoring system for a synthesizer at SPring-8 synchrotron radiation facility and obtained results

    NASA Astrophysics Data System (ADS)

    Kawashima, Y.; Ego, H.; Hara, M.; Ohashi, Y.; Ohshima, T.; Takao, M.; Takashima, T.

    2013-02-01

    Beam orbit distortion in all dispersive sections was observed in the SPring-8 storage ring during beam commissioning. In order to confirm the stability of the radio frequency (RF) synthesizer, a monitoring system was developed. The system consists of a frequency counter referenced to a global positioning system (GPS) receiver. With this system, the output of the synthesizer, which uses an external 10 MHz-Rubidium atomic clock with the time accuracy of Δt/t=10-12, is correctly monitored with 11 digits absolute accuracy, verifying that the synthesizer works well. Measurement of the circumference of the SPring-8 storage ring reveals the effect of tidal forces and seasonal temperature variations on beam orbit. To maintain the center axis of photon radiation in experimental beam lines, a beam energy correction is carried out. The frequency of the RF synthesizer is changed every 5 min with 10-digit accuracy. This corresponds to an energy accuracy of ΔE/E=1.16×10-6. The monitoring system for the synthesizer and obtained results are described.

  19. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  20. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  1. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling.

    PubMed

    Teichmann, Daniel; Foussier, Jérôme; Jia, Jing; Leonhardt, Steffen; Walter, Marian

    2013-08-01

    In this paper, the method of noncontact monitoring of cardiorespiratory activity by electromagnetic coupling with human tissue is investigated. Two measurement modalities were joined: an inductive coupling sensor based on magnetic eddy current induction and a capacitive coupling sensor based on displacement current induction. The system's sensitivity to electric tissue properties and its dependence on motion are analyzed theoretically as well as experimentally for the inductive and capacitive coupling path. The potential of both coupling methods to assess respiration and pulse without contact and a minimum of thoracic wall motion was verified by laboratory experiments. The demonstrator was embedded in a chair to enable recording from the back part of the thorax. PMID:23475330

  2. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  3. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  4. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  5. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  6. Fast calcium sensor proteins for monitoring neural activity

    PubMed Central

    Badura, Aleksandra; Sun, Xiaonan Richard; Giovannucci, Andrea; Lynch, Laura A.; Wang, Samuel S.-H.

    2014-01-01

    Abstract. A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca2+ and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum in vivo. Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection. PMID:25558464

  7. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization.

    PubMed

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. PMID:25770423

  8. Multi-level continuous active source seismic monitoring (ML-CASSM): Application to shallow hydrofracture monitoring

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Butler-Veytia, B.; Peterson, J.; Gasperikova, E.; Hubbard, S. S.

    2010-12-01

    Induced subsurface processes occur over a wide variety of time scales ranging from seconds (e.g. fracture initiation) to days (e.g. unsteady multiphase flow) and weeks (e.g. induced mineral precipitation). Active source seismic monitoring has the potential to dynamically characterize such alterations and allow estimation of spatially localized rates. However, even optimal timelapse seismic surveys have limited temporal resolution due to both the time required to acquire a survey and the cost of continuous field deployment of instruments and personnel. Traditional timelapse surveys are also limited by experimental repeatability due to a variety of factors including geometry replication and near-surface conditions. Recent research has demonstrated the value of semi-permanently deployed seismic systems with fixed sources and receivers for use in monitoring a variety of processes including near-surface stress changes (Silver et.al. 2007), subsurface movement of supercritical CO2 (Daley et.al. 2007), and preseismic velocity changes in fault regions (Niu et. al. 2008). This strategy, referred to as continuous active source seismic monitoring (CASSM), allows both precise quantification of traveltime changes on the order of 1.1 x 10-7 s and temporal sampling on the order of minutes. However, as previously deployed, CASSM often sacrifices spatial resolution for temporal resolution with previous experiments including only a single source level. We present results from the first deployment of CASSM with a large number of source levels under automated control. Our system is capable of autonomously acquiring full tomographic datasets (10 sources, 72 receivers) in 3 minutes without human intervention, thus allowing active source seismic imaging (rather than monitoring) of processes with short durations. Because no sources or receivers are moved in the acquisition process, signal repeatability is excellent and subtle waveform changes can be interpreted with increased confidence

  9. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental

  10. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Arelong, E; Langinbelik, S

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Rongelap Atoll (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance

  11. Radiation monitoring systems as a tool for assessment of accidental releases at the Chernobyl and Fukushima NPPs

    NASA Astrophysics Data System (ADS)

    Shershakov, Vjacheslav; Bulgakov, Vladimir

    2013-04-01

    The experience gained during mitigation of the consequences of the accidents at the Chernobyl and Fukushima NPPs has shown that what makes different the decision-making in case of nuclear accidents is that the greatest benefit from decision-making can be achieved in the early phase of an accident. Support to such process can be provided only by a real-time decision-making support system. In case of a nuclear accident the analysis of the situation and decision-making is not feasible without an operational radiation monitoring system, international data exchange and automated data processing, and the use of computerized decision-making support systems. With this in mind, in the framework of different international programs on the Chernobyl-related issues numerous projects were undertaken to study and develop a set of methods, algorithms and programs providing effective support to emergency response decision-making, starting from accident occurrence to decision-making regarding countermeasures to mitigate effects of radioactive contamination of the environment. The presentation focuses results of the analysis of radiation monitoring data and, on this basis, refining or, for many short-lived radionuclides, reconstructing the source term, modeling dispersion of radioactivity in the environment and assessing its impacts. The obtained results allowed adding and refining the existing estimates and in some cases reconstructing doses for the public on the territories contaminated as a result of the Chernobyl accident. The activities were implemented in two stages. In the first stage, several scenarios for dispersion of Chernobyl-related radioactivity were developed. For each scenario cesium-137 dispersion was estimated and these estimates were compared with measurement data. In the second stage, the scenario which showed the best agreement of calculations and measurements was used for modeling the dispersion of iodine-131and other short-lived radionuclides. The described

  12. Panel Endorses Active Monitoring for Low-Risk Prostate Cancer

    Cancer.gov

    An independent panel convened this week by NIH has concluded that many men with localized, low-risk prostate cancer should be closely monitored, permitting treatment to be delayed until warranted by disease progression. However, monitoring strategies—such

  13. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  14. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    SciTech Connect

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  15. Evaluation of flammable gas monitoring options for waste tank intrusive activities

    SciTech Connect

    Shultz, M.V.

    1996-09-03

    This calc note documents an evaluation of three options for monitoring hydrogen during waste tank intrusive activities. The three options are (1) one Combustible Gas Monitor with an operator monitoring the readout, (2) two CGMs with separate operators monitoring each gas monitor, and (3) one CGM with audible alarm, no dedicated operator monitoring readout. A comparison of the failure probabilities of the three options is provided. This Calculation Note supports the Flammable Gas Analysis for TWRS FSAR and BIO. This document is not to be used as the sole basis to authorize activities or to change authorization, safety or design bases.

  16. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  17. Demonstration of a vapor density monitoring system using UV radiation generated from quasi-phasematched SHG waveguide devices

    SciTech Connect

    Galanti, S.A.; Berzins, L.V.; Brown, J.B.; Tamosaitis, R.S.; Bortz, M.L.; Day, T.; Fejer, M.M.; Wang, W.

    1996-01-29

    Many industrial applications require non-intrusive diagnostics for process monitoring and control. One example is the physical vapor deposition of titanium alloys. In this paper we present a system based on laser absorption spectroscopy for monitoring titanium vapor. Appropriate transitions for monitoring high rate vaporization of titanium require extension of available IR diode technology to the UV. The heart of this vapor density monitoring system is the 390nm radiation generated from quasi-phase matched interactions within periodically poled waveguides. In this paper, key system components of a UV laser absorption spectroscopy based system specific for titanium density monitoring are described. Analysis is presented showing the minimum power levels necessary from the ultraviolet laser source. Performance data for prototype systems using second harmonic generation (SHG) waveguide technology is presented. Application of this technology to other alloy density monitoring systems is discussed.

  18. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  19. Environmental Radiation Monitoring at NBS/NIST From 1960 Through 2000.

    PubMed

    Hobbs, T G

    2001-01-01

    The program for monitoring the environment in and about the site of the National Bureau of Standards, now the National Institute of Standards and Technology, at its Gaithersburg, Maryland location began in 1960. The program includes measurements of radiation fields at the fence line of the site and of radionuclides in samples of soil, water, and biota taken within and around the site. A variety of instruments and equipment, processes and procedures, and measurement devices has been employed. To date, no measurement from the routine program has exhibited any result that could be attributed to any effluent or other effect of the radiological work conducted at the site; that includes the NIST Research Reactor, the now defunct Linear Electron Accelerator (LINAC) and other accelerators, radiochemistry, and sealed source operations. PMID:27500047

  20. On the optimisation of the use of 3He in radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Tomanin, Alice; Peerani, Paolo; Janssens-Maenhout, Greet

    2013-02-01

    Radiation Portal Monitors (RPMs) are used to detect illicit trafficking of nuclear or other radioactive material concealed in vehicles, cargo containers or people at strategic check points, such as borders, seaports and airports. Most of them include neutron detectors for the interception of potential plutonium smuggling. The most common technology used for neutron detection in RPMs is based on 3He proportional counters. The recent severe shortage of this rare and expensive gas has created a problem of capacity for manufacturers to provide enough detectors to satisfy the market demand. In this paper we analyse the design of typical commercial RPMs and try to optimise the detector parameters in order either to maximise the efficiency using the same amount of 3He or minimise the amount of gas needed to reach the same detection performance: by reducing the volume or gas pressure in an optimised design.

  1. Environmental Radiation Monitoring at NBS/NIST From 1960 Through 2000

    PubMed Central

    Hobbs, Thomas G.

    2001-01-01

    The program for monitoring the environment in and about the site of the National Bureau of Standards, now the National Institute of Standards and Technology, at its Gaithersburg, Maryland location began in 1960. The program includes measurements of radiation fields at the fence line of the site and of radionuclides in samples of soil, water, and biota taken within and around the site. A variety of instruments and equipment, processes and procedures, and measurement devices has been employed. To date, no measurement from the routine program has exhibited any result that could be attributed to any effluent or other effect of the radiological work conducted at the site; that includes the NIST Research Reactor, the now defunct Linear Electron Accelerator (LINAC) and other accelerators, radiochemistry, and sealed source operations. PMID:27500047

  2. Ten years of monitoring the occupational radiation exposure in Bosnia and Herzegovina.

    PubMed

    Basić, B; Beganović, A; Samek, D; Skopljak-Beganović, A; Gazdić-Santić, M

    2010-01-01

    Monitoring of occupationally exposed persons in Bosnia and Herzegovina started in 1960s and it was interrupted in 1992. Dosimetry service resumed in 1999 when the International Atomic Energy Agency provided Harshaw 4500 TLD-reader and the first set of TLDs for the Radiation Protection Centre (RPC) of the Institute of Public Health of the Federation of Bosnia and Herzegovina. In January 2009, the RPC covered 1279 professionals with personal dosimetry, which is more than 70 % of all radiation workers in the country. Most of the TLD users work in medical institutions. In period 1999-2003 RPC provided 984 workers with dosemeters. In the next 5 y period (2004-2008), the number of persons covered by dosimetry increased by an average of 51 %. The mean and collective effective dose in the period 1999-2003 were 1.55 mSv and 1.54 personSv, respectively. In the period 2004-2008, the mean doses changed by 1 % on average, but the collective effective dose increased by 53 % for all practices. Mean and collective effective dose were 1.57 mSv and 2.34 personSv, respectively. The highest personal doses are associated with industrial radiography, than exposures in nuclear medicine. Radiology plays a significant role in collective dose only, whereas other exposures are low. Results correspond to results found in the literature. New practices in industry and medicine emphasise the need for more personal dosemeters, as well as specialised dosemeters for extremities monitoring, etc. PMID:20150230

  3. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  4. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  5. Auto-focus control and weld process monitoring of laser welding using chromatic filtering of thermal radiation

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Jung; Baik, Sung-Hoon; Kim, Min Seok; Chung, Chin-Man

    1998-08-01

    The thermal radiation from a weld pool is focused on an aperture and the transmitted thermal radiation is monitored at two wavelengths with high-speed single-element detectors. Due to the chromatic aberration introduced in the focusing optics, the transmittance curve of thermal radiation varies by the wavelength. Likewise, the detector field of view varies by the wavelength. Owing to this difference in the transmittance and in the field of view, the local variation in a weld pool can be monitored by processing the two spectroscopic signals from two detectors. In this paper, the algorithms to monitor the weld pool size and the focus shift are presented and the performances of weld pool size monitoring and auto-focus control are shown for a pulsed Nd:YAG laser welding. The size variation monitoring has been applied to the weld depth and weld defects monitoring. The effects of laser power change and weld defects on the weld pool size variation are also shown.

  6. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  7. Thin silicon strip detectors for beam monitoring in Micro-beam Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Povoli, M.; Alagoz, E.; Bravin, A.; Cornelius, I.; Bräuer-Krisch, E.; Fournier, P.; Hansen, T. E.; Kok, A.; Lerch, M.; Monakhov, E.; Morse, J.; Petasecca, M.; Requardt, H.; Rosenfeld, A. B.; Röhrich, D.; Sandaker, H.; Salomé, M.; Stugu, B.

    2015-11-01

    Microbeam Radiation Therapy (MRT) is an emerging cancer treatment that is currently being developed at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. This technique uses a highly collimated and fractionated X-ray beam array with extremely high dose rate and very small divergence, to benefit from the dose-volume effect, thus sparing healthy tissue. In case of any beam anomalies and system malfunctions, special safety measures must be installed, such as an emergency safety shutter that requires continuous monitoring of the beam intensity profile. Within the 3DMiMic project, a novel silicon strip detector that can tackle the special features of MRT, such as the extremely high spatial resolution and dose rate, has been developed to be part of the safety shutter system. The first prototypes have been successfully fabricated, and experiments aimed to demonstrate their suitability for this unique application have been performed. Design, fabrication and the experimental results as well as any identified inadequacies for future optimisation are reported and discussed in this paper.

  8. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  9. Synchrotron radiation X-ray fluorescence analysis of trace elements in Nerium oleander for pollution monitoring

    NASA Astrophysics Data System (ADS)

    de Jesus, E. F. O.; Simabuco, S. M.; dos Anjos, M. J.; Lopes, R. T.

    2000-07-01

    This works describes the use of synchrotron radiation fluorescence analysis as a technique for monitoring trace elements in bio-indicators for environmental pollution control. The analyses were performed on leaves of Nerium oleander collected in streets with different levels of traffic flow in Rio de Janeiro, Brazil, with one sample from a rural zone. The leaves were collected from adult trees in December and April. The measurement was made with a white beam of synchrotron radiation calibrated with thin samples from MicroMatter. The results indicate that some metals such as Ti, V, Fe and Zn have major content in samples that were collected in places with a high traffic flow, even in the leaves that have been washed. The levels of Mn, Co, Cu and Ni did not show significant differences between the samples. The Pb level also did not vary significantly. This was expected because in Brazil gasoline without Pb has been used for many years. The results seem to indicate that the leaves from Nerium oleander absorb metals from the atmosphere and may be used as an environmental indicator.

  10. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-01-01

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm³ Ce-doped Gd-Al-Ga-garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for (133)Ba at 0.356 MeV, (22)Na at 0.511 MeV, (137)Cs at 0.662 MeV, and (60)Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm². PMID:27338392

  11. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications

    PubMed Central

    Park, Hye Min; Joo, Koan Sik

    2016-01-01

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm3 Ce-doped Gd–Al–Ga–garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for 133Ba at 0.356 MeV, 22Na at 0.511 MeV, 137Cs at 0.662 MeV, and 60Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm2. PMID:27338392

  12. Community Radiation Monitoring Program annual report, October 1, 1989--September 30, 1990

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1991-07-01

    The events of FY 1990 indicate that another successful year in the evolution of the Community Radiation Monitoring Program is in the books. The agencies and organizations involved in the program have developed a sound and viable working relationship, and it appears that the major objectives, primarily dispelling some of the concerns over weapons testing and radiation on the part of the public, are being effectively addressed. The program is certainly a dynamic operation, growing and changing to meet perceived needs and goals as more experience is gained through our work. The change in focus on our public outreach efforts will lead us to contacts with more students and schools, service clubs and special interest groups in the future, and will refine, and hopefully improve, our communication with the public. If that can be accomplished, plus perhaps influencing a few more students to stay in school and even grow up to be scientists, engineers and better citizens, we will be closer to having achieved our goals. It is important to note that the success of the program has occurred only because the people involved, from the Department of Energy, the Environmental Protection Agency, the Desert Research Institute, the University of Utah and the Station Managers and Alternates work well and hard together. Our extended family'' is doing a good job. 9 refs., 1 fig., 3 tabs.

  13. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R., Jr.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaIglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.

  14. Monitoring of atmospheric gamma radiation and radon observations of rainfall events in southeast of Brazil

    NASA Astrophysics Data System (ADS)

    Martin, I. M.; Alves, M. A.; Gomes, M. P.

    2013-05-01

    It is well known that we live in an environment that is under the influence of radioactivity. Radioactive elements in Earth's crust, cosmic rays, and anthropogenic sources contribute to the radiation of different types (alpha, beta, gamma and X-rays) that can be measured. An interesting phenomenon associated with environmental radioactivity is radon washout wherein the radon gas that is produced by the decay of natural radioactive elements and released into the atmosphere is concentrated near ground by falling rain. Rain drops trap radon in their interior and transport this radioactive gas to the surface. In this study, we describe the monitoring of the localized and temporary increase in the natural radioactivity caused by radon washout using a 3"x 3" NaI(Tl) scintillator. Variations in the radioactivity were correlated with changes in meteorological conditions. We observed that even though rainfall is a main factor in the increase of natural radioactivity near ground, other factors such as the presence of fog and winds play an important role in the concentration and dispersion of radon. Because of the low cost of our experimental set up, we believe that this is an experiment that could easily be conducted in most universities and could also be used to monitor environmental radioactivity levels.

  15. A Novel Biological Dosimetry Method for Monitoring Occupational Radiation Exposure in Diagnostic and Therapeutic Wards: From Radiation Dosimetry to Biological Effects

    PubMed Central

    Heydarheydari, S.; Haghparast, A.; Eivazi, M.T.

    2016-01-01

    Background and Objective Professional radiation workers are occupationally exposed to long-term low levels of ionizing radiation. Occupational health hazards from radiation exposure, in a large occupational segment of the population, are of special concern. Biological dosimetry can be performed in addition to physical dosimetry with the aim of individual dose assessment and biological effects. Methods In this biodosimetry study, some hematological parameters have been examined in 40 exposed and 40 control subjects who were matched by gender, age and occupational records (±3 years) in Kermanshah hospitals in Iran (2013-2014). The occupational radiation dose was measured by personal dosimetry device (film badges). The data was analyzed using SPSS V.20 and statistical tests such as two-sided Student’s t-test. Results Exposed subjects had a median exposure of 0.68±1.58 mSv/year by film badge dosimetry. Radiation workers with at least a 10-year record showed lower values of Mean Hemoglobin (Hb) and Mean Corpuscular Volume (MCV) compared to the control group (p<0.05). The mean value of Red Blood Cells (RBCs) in personnel working in Radiology departments seemed to show decrease in comparison with other radiation workers. Conclusion Although the radiation absorbed doses were below the permissible limits based on the ICRP, this study showed the role of low-level chronic exposure in decreasing Hb and MCV in the blood of radiation workers with at least 10 years records. Therefore, the findings from the present study suggest that monitoring of hematological parameters of radiation workers can be useful as biological dosimeter, and also the exposed medical personnel should carefully follow the radiation protection instructions and radiation exposure should be minimized as possible. PMID:27026951

  16. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    NASA Astrophysics Data System (ADS)

    Jégou, F.; Godin-Beekman, S.; Corrêa, M. P.; Brogniez, C.; Auriol, F.; Peuch, V. H.; Haeffelin, M.; Pazmino, A.; Saiag, P.; Goutail, F.; Mahé, E.

    2011-06-01

    In order to test the validity of ultraviolet index (UVI) satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2), the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE), and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models) together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2) and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  17. Validity of satellite measurements used for the monitoring of UV radiation risk on health

    NASA Astrophysics Data System (ADS)

    Jégou, F.; Godin-Beekman, S.; Corrêa, M. P.; Brogniez, C.; Auriol, F.; Peuch, V. H.; Haeffelin, M.; Pazmino, A.; Saiag, P.; Goutail, F.; Mahé, E.

    2011-12-01

    In order to test the validity of ultraviolet index (UVI) satellite products and UVI model simulations for general public information, intercomparison involving three satellite instruments (SCIAMACHY, OMI and GOME-2), the Chemistry and Transport Model, Modélisation de la Chimie Atmosphérique Grande Echelle (MOCAGE), and ground-based instruments was performed in 2008 and 2009. The intercomparison highlighted a systematic high bias of ~1 UVI in the OMI clear-sky products compared to the SCIAMACHY and TUV model clear-sky products. The OMI and GOME-2 all-sky products are close to the ground-based observations with a low 6 % positive bias, comparable to the results found during the satellite validation campaigns. This result shows that OMI and GOME-2 all-sky products are well appropriate to evaluate the UV-risk on health. The study has pointed out the difficulty to take into account either in the retrieval algorithms or in the models, the large spatial and temporal cloud modification effect on UV radiation. This factor is crucial to provide good quality UV information. OMI and GOME-2 show a realistic UV variability as a function of the cloud cover. Nevertheless these satellite products do not sufficiently take into account the radiation reflected by clouds. MOCAGE numerical forecasts show good results during periods with low cloud covers, but are actually not adequate for overcast conditions; this is why Météo-France currently uses human-expertised cloudiness (rather than direct outputs from Numerical Prediction Models) together with MOCAGE clear-sky UV indices for its operational forecasts. From now on, the UV monitoring could be done using free satellite products (OMI, GOME-2) and operational forecast for general public by using modelling, as long as cloud forecasts and the parametrisation of the impact of cloudiness on UV radiation are adequate.

  18. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  19. Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring

    PubMed Central

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A.; Basu, Ananda; Kudva, Yogish C.

    2013-01-01

    Abstract Background In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. Subjects and Methods In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Results Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40–45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35–40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Conclusions Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose–insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts. PMID

  20. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  1. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  2. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques. PMID:27304296

  3. Monitoring the biological activity of abdominal aortic aneurysms Beyond Ultrasound.

    PubMed

    Forsythe, Rachael O; Newby, David E; Robson, Jennifer M J

    2016-06-01

    Abdominal aortic aneurysms (AAAs) are an important cause of morbidity and, when ruptured, are associated with >80% mortality. Current management decisions are based on assessment of aneurysm diameter by abdominal ultrasound. However, AAA growth is non-linear and rupture can occur at small diameters or may never occur in those with large AAAs. There is a need to develop better imaging biomarkers that can identify the potential risk of rupture independent of the aneurysm diameter. Key pathobiological processes of AAA progression and rupture include neovascularisation, necrotic inflammation, microcalcification and proteolytic degradation of the extracellular matrix. These processes represent key targets for emerging imaging techniques and may confer an increased risk of expansion or rupture over and above the known patient-related risk factors. Magnetic resonance imaging, using ultrasmall superparamagnetic particles of iron oxide, can identify and track hotspots of macrophage activity. Positron emission tomography, using a variety of targeted tracers, can detect areas of inflammation, angiogenesis, hypoxia and microcalcification. By going beyond the simple monitoring of diameter expansion using ultrasound, these cellular and molecular imaging techniques may have the potential to allow improved prediction of expansion or rupture and to better guide elective surgical intervention. PMID:26879242

  4. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  5. Monitoring the biological activity of abdominal aortic aneurysms Beyond Ultrasound

    PubMed Central

    Forsythe, Rachael O; Newby, David E; Robson, Jennifer M J

    2016-01-01

    Abdominal aortic aneurysms (AAAs) are an important cause of morbidity and, when ruptured, are associated with >80% mortality. Current management decisions are based on assessment of aneurysm diameter by abdominal ultrasound. However, AAA growth is non-linear and rupture can occur at small diameters or may never occur in those with large AAAs. There is a need to develop better imaging biomarkers that can identify the potential risk of rupture independent of the aneurysm diameter. Key pathobiological processes of AAA progression and rupture include neovascularisation, necrotic inflammation, microcalcification and proteolytic degradation of the extracellular matrix. These processes represent key targets for emerging imaging techniques and may confer an increased risk of expansion or rupture over and above the known patient-related risk factors. Magnetic resonance imaging, using ultrasmall superparamagnetic particles of iron oxide, can identify and track hotspots of macrophage activity. Positron emission tomography, using a variety of targeted tracers, can detect areas of inflammation, angiogenesis, hypoxia and microcalcification. By going beyond the simple monitoring of diameter expansion using ultrasound, these cellular and molecular imaging techniques may have the potential to allow improved prediction of expansion or rupture and to better guide elective surgical intervention. PMID:26879242

  6. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication. PMID:27562484

  7. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  8. [Monitoring winter wheat population dynamics using an active crop sensor].

    PubMed

    Wu, Jun-Hua; Yue, Shan-Chao; Hou, Peng; Meng, Qing-Feng; Cui, Zhen-Ling; Li, Fei; Chen, Xin-Ping

    2011-02-01

    Tiller density plays an important role in attaining optimum grain yield and applying topdressing N in winter wheat. However, the traditional approach based on determining tiller density is time-consuming and labor-intensive. As technology advances, remote sensing might provide an opportunity in eliminating this7 problem. In the present paper, an N rate experiment and a variety-seeding and sowing dates experiment were conducted in Quzhou County, Hebei Province in 2008/2009 to develop the models to predict the amount of winter wheat tillers. Positive linear relationships between vegetation indices and tillers were observed across growth stages (R2, 0.25-0.64 for NDVI; 0.26-0.65 for RVI). The validation results indicated that the prediction using NDVI had the higher coefficient of determination (R2, 0.54-0.64), the lower root mean square error (RMSE, 260-350 tillers m(-2)) and relative error (RE, 16.3%-23.0%) at early growth stages of winter wheat. We conclude that active GreenSeeker sensor is a promising tool for timely monitoring of winter wheat tiller density. PMID:21510421

  9. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.

    2009-12-01

    We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis

  10. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  11. ACTIGRAPH AND ACTICAL PHYSICAL ACTIVITY MONITORS: A PEEK UNDER THE HOOD

    PubMed Central

    John, Dinesh; Freedson, Patty

    2011-01-01

    Since the 1980s, accelerometer-based activity monitors have been used by researchers to quantify physical activity. The technology of these monitors has continuously evolved. For example, changes have been made to monitor hardware (type of sensor [e.g., piezoelectric, piezoresistive, capacitive]) and output format (counts vs. raw signal). Commonly used activity monitors belong to the ActiGraph and the Actical families This article presents information on several electro-mechanical aspects of these commonly used activity monitors. The majority of the article focuses on the evolution of the ActiGraph activity monitor by describing the differences among the 7164, the GT1M, and the GT3X models. This is followed by brief descriptions of the influences of device firmware and monitor calibration status. We also describe the Actical, but the discussion is short because this device has not undergone any major changes since it was first introduced. This paper may help researchers gain a better understanding of the functioning of activity monitors. For example, a common misconception among physical activity researchers is that the ActiGraph GT1M and GT3X are piezoelectric sensor-based monitors. Thus, this information may also help researchers to describe these monitors more accurately in scientific publications. PMID:22157779

  12. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  13. Modeling of ultrasonic and terahertz radiations in defective tiles for condition monitoring of thermal protection systems

    NASA Astrophysics Data System (ADS)

    Kabiri Rahani, Ehsan

    Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was

  14. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  15. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  16. Design, construction, and use of a shipping case for radioactive sources used in the calibration of portal monitors in the radiation portal monitoring project

    SciTech Connect

    Lepel, Elwood A.; Hensley, Walter K.

    2009-12-01

    Pacific Northwest National Laboratory is working with US Customs and Border Protection to assist in the installation of radiation portal monitors. We need to provide radioactive sources – both gamma- and neutron-emitting – to ports of entry where the monitors are being installed. The monitors must be calibrated to verify proper operation and detection sensitivity. We designed a portable source-shipping case using numerical modeling to predict the neutron dose rate at the case’s surface. The shipping case including radioactive sources meets the DOT requirements for “limited quantity.” Over 300 shipments, domestic and international, were made in FY2008 using this type of shipping case.

  17. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  18. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  19. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  20. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  1. Photosynthetically active radiation and its relationship with global solar radiation in Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Ma, Yingying; Hu, Bo; Zhang, Miao

    2014-08-01

    Photosynthetically active radiation (PAR) and other solar components were observed for a period of 3 years at Wuhan, China to determine for the first time the temporal variability of PAR fraction [PAR/G (G here stands for global solar radiation)] and its dependence on different sky conditions in Central China. PAR, G and PAR/G showed similar seasonal features that peaked in summer and reached their lowest values in winter. The seasonal PAR/G ranged from 1.70 E MJ(-1) (winter) to 2.01 E MJ(-1) (summer) with an annual mean value of 1.89 E MJ(-1). Hourly values of PAR/G increased from 1.78 to 2.11 E MJ(-1) on average as sky conditions changed from clear to cloudy. Monthly mean hourly PAR/G revealed a diurnal variation, with highest values observed around sunrise and sunset, slightly higher PAR fractions were also found around noon for most months. The effect of daylength on PAR/G was also studied and no significant impact was found. Three models were developed to estimate PAR from G. These models consisted of atmospheric parameters that were found to cause substantial changes of PAR/G, such as sky clearness, brightness, path length and the sky clearness index. The estimations obtained from different models were very close to the measured values with maximum relative errors below 8 % (hourly values) in Wuhan. The models were not only tested at seven radiation stations in Central China, but also verified in six stations with different climates in China. The models were found to estimate PAR accurately from commonly available G data in Central China; however, the results also implied that the models need to be modified to account for local climatic conditions when applied to the whole country. PMID:23780493

  2. The radiation hardness of silica optical fiber used in the LED-fiber monitor of BLM and BESIII EMC

    NASA Astrophysics Data System (ADS)

    Xue, Zhen; Hu, Tao; Fang, Jian; Xu, Zi-Zong; Wang, Xiao-Lian; Lü, Jun-Guang; Zhou, Li; Cai, Xiao; Yu, Bo-Xiang; Wang, Zhi-Gang; Sun, Li-Jun; Sun, Xi-Lei; Zhang, Ai-Wu

    2012-02-01

    LED-fiber system has been used to monitor BLM and BESIII EMC. A radiation hard silica optical fiber is essential for its stability and reliability. Three types of silica optical fibers, silicone-clad silica optical fiber with high OH - content (SeCS), silica-clad silica optical fiber with low OH - content (SCSL) and silica-clad silica opical fiber with high OH - content (SCSH) were studied. In the experiment, 12 groups of fiber samples were irradiated by 60Co and 3 groups of fiber samples were irradiated by BEPCII background radiation. Radiation hardness: the radiation hardness of SCSH is best and meets the radiation hardness requirement for LED-fiber monitor of BLM and BESIII EMC. The transmission of SeCS and SCSH decreased to around 80% under the 60Co-irradiation of 5 Gy and 10 Gy, respectively. The radiation hardness of SeCS is worst because of its silicone cladding. Recovery characteristics: 60Co-irradiated by the same doses, there were both more annealable and more permanent color centers formed in SeCS than SCSL, and for the same kind of fibers, as long as the irradiated doses are under a certain amount (for example, less than 5 Gy for SeCS), the higher the doses, both the more annealable and the more permanent color centers are formed.

  3. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    SciTech Connect

    Livesay, Jake; Guzzardo, Tyler; Lousteau, Angela L

    2012-02-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  4. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  5. Intercepted photosynthetically active radiation estimated by spectral reflectance

    NASA Technical Reports Server (NTRS)

    Hatfield, J. L.; Asrar, G.; Kanemasu, E. T.

    1984-01-01

    Interception of photosynthetically active radiation (PAR) was evaluated relative to greenness and normalized difference (MSS (7-5)/(7+5) for five planting dates of wheat for 1978-79 and 1979-80 at Phoenix, Arizona. Intercepted PAR was calculated from leaf area index and stage of growth. Linear relatinships were found with greeness and normalized difference with separate relatinships describing growth and senescence of the crop. Normalized difference was significantly better than greenness for all planting dates. For the leaf area growth portion of the season the relation between PAR interception and normalized difference was the same over years and planting dates. For the leaf senescence phase the relationships showed more variability due to the lack of data on light interception in sparse and senescing canopies. Normalized difference could be used to estimate PAR interception throughout a growing season.

  6. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  7. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  8. Reliability and Validity of Canada's Physical Activity Monitor for Assessing Trends.

    ERIC Educational Resources Information Center

    Craig, Cora L.; Russell, Storm J.; Cameron, Christine

    2002-01-01

    Assessed the reliability and criterion validity of the Physical Activity Monitor, a telephone-interview adaptation of the Minnesota Leisure Time Physical Activity Questionnaire (MLTPAQ), for assessing trends in the Canadian population. Interviews with Canadian adults and comparisons of the Monitor against the Campbell's Survey of Well-Being…

  9. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  10. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  11. Comparison of Orbicularis Oculi Muscle Activity during Computer Work with Single and Dual Monitors

    PubMed Central

    Yoo, Won-gyu

    2014-01-01

    [Purpose] This study compared the orbicularis oculi muscle activity during computer work with single and dual monitors. [Subjects] Ten computer workers 22–27 years of age were included in this study. [Methods] Subjects performed computer work with single or dual monitors, and the activity of the right orbicularis oculi muscle was measured with a MP150 system. [Results] The muscle activity of the orbicularis oculi under condition 1 was significantly decreased compared with that under conditions 2 or 3. The muscle activity of the orbicularis oculi under condition 3 was significantly increased compared with that under condition 2. [Conclusion] The present study found that the use of dual monitors increased orbicularis oculi activity; therefore, to decrease eye fatigue in computer users, computer workstations that use either a single monitor, or identical monitors from the same manufacturer in a dual setup, are recommended. PMID:25435706

  12. A Cs2LiYCl6:Ce-based advanced radiation monitoring device

    NASA Astrophysics Data System (ADS)

    Budden, B. S.; Stonehill, L. C.; Dallmann, N.; Baginski, M. J.; Best, D. J.; Smith, M. B.; Graham, S. A.; Dathy, C.; Frank, J. M.; McClish, M.

    2015-06-01

    Cs2LiYCl6:Ce3+ (CLYC) scintillator has gained recent interest because of its ability to perform simultaneous gamma spectroscopy and thermal neutron detection. Discrimination between the two incident particle types owes to the fundamentally unique emission waveforms, a consequence of the interaction and subsequent scintillation mechanisms within the crystal. Due to this dual-mode detector capability, CLYC was selected for the development of an Advanced Radiation Monitoring Device (ARMD), a compact handheld instrument for radioisotope identification and localization. ARMD consists of four 1 in.-right cylindrical CLYC crystals, custom readout electronics including a suitable multi-window application specific integrated circuit (ASIC), battery pack, proprietary software, and Android-based tablet for high-level analysis and display. We herein describe the motivation of the work and engineering design of the unit, and we explain the software embedded in the core module and for radioisotope analysis. We report an operational range of tens of keV to 8.5 MeV with approximately 5.3% gamma energy resolution at 662 keV, thermal neutron detection efficiency of 10%, battery lifetime of up to 10 h, manageable rates of 20 kHz; further, we describe in greater detail time to identify specific gamma source setups.

  13. [Evaluation of an Experimental Production Wireless Dose Monitoring System for Radiation Exposure Management of Medical Staff].

    PubMed

    Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung

    2015-08-01

    Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics. PMID:26289982

  14. Resonance Raman Spectroscopy for In-Situ Monitoring of Radiation Damage

    SciTech Connect

    Meents, A.; Owen, R. L.; Schneider, R.; Pradervand, C.; Schulze-Briese, C.; Murgida, D.; Hildebrandt, P.; Bohler, P

    2007-01-19

    Radiation induced damage of metal centres in proteins is a severe problem in X-ray structure determination. Photoreduction can lead to erroneous structural implications, and in the worst cases cause structure solution to fail. Resonance Raman (RR) spectroscopy is well suited in-situ monitoring of X-ray induced photoreduction. However the laser excitation needed for RR can itself cause photoreduction of the metal centres. In the present study myoglobin and rubredoxin crystals were used as model systems to assess the feasibility of using RR for this application. It is shown that at least 10-15 RR spectra per crystal can be recorded at low laser power before severe photoreduction occurs. Furthermore it is possible to collect good quality RR spectra from cryocooled protein crystals with exposure times of only a few seconds. Following extended laser illumination photoreduction is observed through the formation and decay of spectral bands as a function of dose. The experimental setup planned for integration into the SLS protein crystallography beamlines is also described. This setup should also prove to be very useful for other experimental techniques at synchrotrons where X-ray photoreduction is a problem e.g. X-ray absorption spectroscopy.

  15. On the usefulness of portal monitor unit subtraction in radiation therapy

    NASA Astrophysics Data System (ADS)

    Kuperman, Vadim Y.; Lubich, Leslie M.

    2003-08-01

    In order to avoid additional dose to patients caused by portal imaging with megavoltage x-rays, portal monitor units (MUs) are frequently subtracted from the actual treatment MUs. This study examines the usefulness of portal MU subtraction in radiation therapy. For 11 prostate cancer patients treated with 23 MV photons, dose to prostate due to portal filming with 6 MV photons was determined. In all 11 patients subtraction of portal MU values from the actual treatment MUs resulted in a small underdosing of the prostate with an average treatment error of -0.5%. Portal filming without MU subtraction would cause small overdosing of the prostate with an average treatment error of 1.2%. The results of this study indicate that the benefits of portal MU subtraction are in doubt if (a) the energy of treatment x-rays is much higher than that of the portal x-rays and/or (b) when radiotherapy is performed with physical wedges. Based on the obtained results, we argue against unconditional use of the portal MU subtraction method to eliminate the dose from portal imaging.

  16. Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi nuclear power plant

    NASA Astrophysics Data System (ADS)

    Sanada, Yukihisa; Kondo, Atsuya; Sugita, Takeshi; Nishizawa, Yukiyasu; Yuuki, Youichi; Ikeda, Kazutaka; Shoji, Yasunori; Torii, Tatsuo

    2014-11-01

    The Great East Japan Earthquake that occurred on 11 March 2011 generated a series of large tsunami waves that caused serious damage to the Fukushima Daiichi nuclear power plant, following which a large amount of radioactive material was discharged from the nuclear power plant into the environment. In recent years, technologies for unmanned helicopters have been developed and applied in various fields. In expectation of the application of unmanned helicopters in airborne radiation monitoring, in this study we developed a radiation monitoring system for aerial use. We then measured the radiation level by using unmanned helicopters in areas where the soil had been contaminated by radioactive caesium emitted from the nuclear power plant to evaluate the ambient dose rate distribution around the site. We found that in dry riverbeds near the nuclear power plant, the dose rate was higher than that in the surrounding areas. The results of our measurements show that radiation monitoring using this system was useful in measuring radioactivity in contaminated areas.

  17. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  18. Design and operation of a whole-body monitoring system for the Goiania radiation accident

    SciTech Connect

    Oliveira, C.A.; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. )

    1991-01-01

    With as many individuals involved in the Goiania 137Cs accident who had high levels of internal contamination, it was necessary to improvise a whole-body counter installation in loco. The in-vivo counting system was located in a 4.0 X 3.5 X 3.5-m room, where seven layers of 2-mm lead sheets with dimensions of 2.0 m X 1.0 m were overlaid on the floor at loci that were equidistant from the walls. A 20-cm diameter NaI (Tl) detector was installed at a height of 2.05 m above the floor at the center of the room. The detector was shielded and collimated with 5 cm of lead. The enormous amounts of activity in the subjects required the detector to be positioned at a height of 2.05 m. Subjects were required to wear disposable clothing and lie on a reclining, fiberglass chair. Counting time for the subjects was 2 min (live-time). The minimum detectable 137Cs activity for this counting time was 7.3 kBq* (0.05 significance level). Besides the accident victims, all individuals who had direct or indirect contact with contaminated people or areas were also monitored. More than 300 people of both sexes, with ages varying from a few months to 72 y, were measured for whole-body radioactivity. The observed activities ranged from less than the minimum detectable activity (MDA) to 59 MBq.

  19. Embedded ultrasonic transducers for active and passive concrete monitoring.

    PubMed

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer's axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  20. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928