Science.gov

Sample records for active radiation monitor

  1. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  2. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  3. Packet personal radiation monitor

    DOEpatents

    Phelps, James E.

    1989-01-01

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  4. Packet personal radiation monitor

    DOEpatents

    Phelps, J.E.

    1988-03-31

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  5. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  6. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  7. Miniature Tissue Equivalent Proportional Counter dosimeter for active personal radiation monitoring of astronauts

    NASA Astrophysics Data System (ADS)

    Watson Huber, Aubrey

    The accurate measurement of spaceflight crew radiation exposure is of utmost importance. If onboard instrumentation shows that the pre-determined limit for radiation exposure has been met or exceeded during a mission, that mission can be greatly affected by the implementation of precautionary measures, or, in more extreme cases, the crew's health being negatively affected. Large active regional monitors determine real-time radiation risks of the crew during spaceflight, while small passive personal badges detect individual astronaut total exposure levels upon their return to Earth. At present, there are no personal active radiation dosimeters that can assess the continuous radiation risk to individual astronauts during spaceflight. Personal active radiation devices would be ideal for current operations in low-Earth orbit (LEO), as well as upcoming extravehicular activities on the Moon, Mars, or other planetary bodies. This project focused on the miniaturization of the Tissue Equivalent Proportional Counters (TEPCs) presently being utilized on the International Space Station (ISS) and Space Shuttle, enabling them to become personal crew dosimeters. The miniaturized TEPC prototype design has dimensions of 7.6 x 10.1 x 2.54 cm (3 x 4 x 1 in). It is composed of a 3 x 4 array of 1.27 cm (0.5 in) spherical detectors for measurements equivalent to a 4.39 cm (1.73 in) spherical detector, with an additional standalone sphere of diameter 1.27 cm (0.5 in) for taking measurements in high-flux environments. The detector simulates a tissue-equivalent diameter of 2 microns, is sensitive to lineal energies of 0.3 -- 1000 keV/micron, and can measure charged particles and neutrons ranging from 0.01 -- 100 mGy/hr.

  8. Radiation Monitoring Equipment Dosimeter Experiment

    NASA Technical Reports Server (NTRS)

    Hardy, Kenneth A.; Golightly, Michael J.; Quam, William

    1992-01-01

    Spacecraft crews risk exposure to relatively high levels of ionizing radiation. This radiation may come from charged particles trapped in the Earth's magnetic fields, charged particles released by solar flare activity, galactic cosmic radiation, energetic photons and neutrons generated by interaction of these primary radiations with spacecraft and crew, and man-made sources (e.g., nuclear power generators). As missions are directed to higher radiation level orbits, viz., higher altitudes and inclinations, longer durations, and increased flight frequency, radiation exposure could well become a major factor for crew stay time and career lengths. To more accurately define the radiological exposure and risk to the crew, real-time radiation monitoring instrumentation, which is capable of identifying and measuring the various radiation components, must be flown. This presentation describes a radiation dosimeter instrument which was successfully flown on the Space Shuttle, the RME-3.

  9. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  10. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  11. PERSONAL RADIATION MONITOR

    DOEpatents

    Dilworth, R.H.; Borkowski, C.J.

    1961-12-26

    A transistorized, fountain pen type radiation monitor to be worn on the person is described. Radiation produces both light flashes in a small bulb and an audible warning tone, the frequency of both the tone and light flashes being proportional to radiation intensity. The device is powered by a battery and a blocking oscillator step-up power supply The oscillator frequency- is regulated to be proportional to the radiation intensity, to provide adequate power in high radiation fields, yet minimize battery drain at low operating intensities. (AEC)

  12. Audible radiation monitor

    DOEpatents

    Odell, Daniel M. C.

    1993-01-01

    A method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  13. Audible radiation monitor

    SciTech Connect

    Odell, D.M.C.

    1992-12-31

    This invention consists of a method and apparatus for monitoring ionizing radiation comprising radiation detectors in electrical connection with an isotopic analyzer and a device for producing chords to which each isotope is mapped so that the device produces a unique chord for each isotope. Preferably the chords are pleasing to the ear, except for chords representing unexpected isotopes, and are louder or softer depending on the level of radioactivity produced by each isotope, and musical instrument voices may be simulated in producing the chords as an aid to distinguishing similar-sounding chords. Because of the representation by chords, information regarding the level and composition of the radiation in an area can be conveyed to workers in that area more effectively and yet without distracting them.

  14. AREA RADIATION MONITOR

    DOEpatents

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  15. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  16. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  17. Influence of Extraterrestrial Radiation on Radiation Portal Monitors

    SciTech Connect

    Keller, Paul E.; Kouzes, Richard T.

    2009-06-01

    Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

  18. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  19. The LISA Pathfinder Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Wass, P. J.; Araújo, H.; Boatella, C.; Chmeissani, M.; Hajdas, W.; Lobo, A.; Puigdengoles, C.; Sumner, T.

    2006-11-01

    We present the concept, design and testing of the radiation monitor for LISA Pathfinder. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) will cause charging of the LISA Pathfinder test masses producing unwanted disturbances which could be significant during a large solar eruption. A radiation monitor on board LISA Pathfinder, using silicon PIN diodes as particle detectors, will measure the particle flux responsible for charging. It will also be able to record spectral information to identify solar energetic particle events. The design of the monitor was supported by Monte Carlo simulations which allow detailed predictions of the radiation monitor performance. We present these predictions as well as the results of high-energy proton tests carried out at the Paul Scherrer Institute, Switzerland. The tests show good agreement with our simulations and confirm the capability of the radiation monitor to perform well in the space environment, meeting all science requirements.

  20. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  1. Precision Environmental Radiation Monitoring System

    SciTech Connect

    Vladimir Popov, Pavel Degtiarenko

    2010-07-01

    A new precision low-level environmental radiation monitoring system has been developed and tested at Jefferson Lab. This system provides environmental radiation measurements with accuracy and stability of the order of 1 nGy/h in an hour, roughly corresponding to approximately 1% of the natural cosmic background at the sea level. Advanced electronic front-end has been designed and produced for use with the industry-standard High Pressure Ionization Chamber detector hardware. A new highly sensitive readout electronic circuit was designed to measure charge from the virtually suspended ionization chamber ion collecting electrode. New signal processing technique and dedicated data acquisition were tested together with the new readout. The designed system enabled data collection in a remote Linux-operated computer workstation, which was connected to the detectors using a standard telephone cable line. The data acquisition system algorithm is built around the continuously running 24-bit resolution 192 kHz data sampling analog to digital convertor. The major features of the design include: extremely low leakage current in the input circuit, true charge integrating mode operation, and relatively fast response to the intermediate radiation change. These features allow operating of the device as an environmental radiation monitor, at the perimeters of the radiation-generating installations in densely populated areas, like in other monitoring and security applications requiring high precision and long-term stability. Initial system evaluation results are presented.

  2. Biological monitoring of radiation exposure

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  3. MULTI-POINT RADIATION MONITOR

    SciTech Connect

    Hofstetter, K; Donna Beals, D; Ken Odell, K; Robert Eakle, R; Russell Huffman, R; Larry Harpring, L

    2006-05-12

    A unique radiation monitor has been developed for performing wide-area field surveys for radiation sources. This device integrates the real-time output of multiple radiation detectors into a hand-held personal computer (e.g., a PDA) containing an intuitive graphical user interface. An independent hardware module supplies high voltage to the detectors and contains a rapid sampling system for transferring the detector count rates through an interface to the PDA. The imbedded firmware can be changed for various applications using a programmable memory card. As presently configured, the instrument contains a series of Geiger-Mueller (GM) tubes in a flexible detector string. This linear array of multiple sensors can be used by US Coast Guard and Customs container inspection personnel to measure radiation intensity in stacks of transport containers where physical access is impeded.

  4. The Juno Radiation Monitoring (RM) Investigation

    NASA Astrophysics Data System (ADS)

    Becker, H. N.; Alexander, J. W.; Adriani, A.; Mura, A.; Cicchetti, A.; Noschese, R.; Jørgensen, J. L.; Denver, T.; Sushkova, J.; Jørgensen, A.; Benn, M.; Connerney, J. E. P.; Bolton, S. J.; Allison, J.; Watts, S.; Adumitroaie, V.; Manor-Chapman, E. A.; Daubar, I. J.; Lee, C.; Kang, S.; McAlpine, W. J.; Di Iorio, T.; Pasqui, C.; Barbis, A.; Lawton, P.; Spalsbury, L.; Loftin, S.; Sun, J.

    2017-03-01

    The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno's star cameras and science instruments at Jupiter. The investigation's objective is to profile Jupiter's >10 -MeV electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation's data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno's first science orbit, and how the measurements may be used to infer the external relativistic electron environment.

  5. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  6. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  7. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  8. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  9. 10 CFR 36.29 - Radiation monitors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation monitors. 36.29 Section 36.29 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.29 Radiation monitors. (a) Irradiators with automatic product...

  10. Computer-controlled radiation monitoring system

    SciTech Connect

    Homann, S.G.

    1994-09-27

    A computer-controlled radiation monitoring system was designed and installed at the Lawrence Livermore National Laboratory`s Multiuser Tandem Laboratory (10 MV tandem accelerator from High Voltage Engineering Corporation). The system continuously monitors the photon and neutron radiation environment associated with the facility and automatically suspends accelerator operation if preset radiation levels are exceeded. The system has proved reliable real-time radiation monitoring over the past five years, and has been a valuable tool for maintaining personnel exposure as low as reasonably achievable.

  11. A new analysis method using Bragg curve spectroscopy for a Multi-purpose Active-target Particle Telescope for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Losekamm, M. J.; Milde, M.; Pöschl, T.; Greenwald, D.; Paul, S.

    2017-02-01

    Traditional radiation detectors can either measure the total radiation dose omnidirectionally (dosimeters), or determine the incoming particles characteristics within a narrow field of view (spectrometers). Instantaneous measurements of anisotropic fluxes thus require several detectors, resulting in bulky setups. The Multi-purpose Active-target Particle Telescope (MAPT), employing a new detection principle, is designed to measure particle fluxes omnidirectionally and be simultaneously a dosimeter and spectrometer. It consists of an active core of scintillating fibers whose light output is measured by silicon photomultipliers, and fits into a cube with an edge length of 10 cm. It identifies particles using extended Bragg curve spectroscopy, with sensitivity to charged particles with kinetic energies above 25 MeV. MAPT's unique layout results in a geometrical acceptance of approximately 800 cm2 sr and an angular resolution of less than 6°, which can be improved by track-fitting procedures. In a beam test of a simplified prototype, the energy resolution was found to be less than 1 MeV for protons with energies between 30 and 70 MeV. Possible applications of MAPT include the monitoring of radiation environments in spacecraft and beam monitoring in medical facilities.

  12. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  13. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  14. Novel Silicon Devices for Radiation Therapy Monitoring

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara

    2016-02-01

    Modern radiotherapy techniques pose specific constraints in radiation-monitoring and dosimetry due to the occurrence of small radiation fields with high dose gradients, variation in space and time of the dose rate, variation in space and time of the beam energy spectrum. Novel devices coping with these strict conditions are needed. This paper reviews the most advanced technologies developed with silicon-based materials for clinical radiotherapy. Novel Si diodes as Pt-doped Si, epitaxial Si as well as thin devices have optimized performance, their response being independent of the accumulated dose, thus ensuring radiation tolerance and no need of recalibration. Monolithic devices based on segmented Si detectors can be easily tailored to optimize spatial resolution in the large active areas required in clinical radiotherapy. In particular, a monolithic device based on epitaxial p-type silicon, characterized by high spatial resolution and ability to directly measure temporal variations in dose modulation proved to be best viable solution for pre-treatment verifications in IMRT fields.

  15. REMOTE AREA RADIATION MONITORING (RARM) ALTERNATIVES ANALYSIS

    SciTech Connect

    NELSON RL

    2008-07-18

    The Remote Area Radiation Monitoring (RARM) system will be used to provide real-time radiation monitoring information to the operations personnel during tank retrieval and transfer operations. The primary focus of the system is to detect potential anomalous (waste leaks) or transient radiological conditions. This system will provide mobile, real-time radiological monitoring, data logging, and status at pre-selected strategic points along the waste transfer route during tank retrieval operations. The system will provide early detection and response capabilities for the Retrieval and Closure Operations organization and Radiological Control personnel.

  16. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  17. Modeling radiation conditions in orbits of projected system of small satellites for radiation monitoring

    NASA Astrophysics Data System (ADS)

    Panasyuk, M. I.; Podzolko, M. V.; Kovtyukh, A. S.; Osedlo, V. I.; Tulupov, V. I.; Yashin, I. V.

    2016-11-01

    Calculated estimates are presented for the accumulated radiation doses behind the shields of various thicknesses in the orbits of projected at Skobeltsyn Institute of Nuclear Physics, Moscow State University system of small satellites for radiation monitoring. The results are analyzed and compared with the calculation data for other actively exploited near-Earth orbits.

  18. Radiation Monitoring for the Masses.

    PubMed

    Wagner, Eric; Sorom, Rich; Wiles, Linda

    2016-01-01

    In response to the Fukushima-Daiichi incident, many commercial vendors have produced applications and equipment targeted at the average member of the public in order to enable them to make radiation measurements themselves at little to no cost. The authors have evaluated a small selection of these items in order to validate their performance when exposed to a calibrated 137Cs dose rate irradiator. The products fall into two primary categories: the first using the CMOS from the camera on ubiquitous smartphones and the second using an accessory that performs the radiation measurement. Presented here are the performance data of a selection and recommendations on how to interpret the produced values.

  19. Radiation monitoring container device (16-IML-1)

    NASA Technical Reports Server (NTRS)

    Nagaoka, S.

    1992-01-01

    In this experiment, layers of radiation detectors and biological specimens, bacterial spores (Bacillus subtillis), shrimp eggs (Altemia salina), and maize seeds (Zea mays) are sandwiched together in the Radiation Monitoring Container. The detectors, sheets of plastic materials, record the nuclear track of cosmic radiation. The dosimeter package contains conventional detectors made of materials such as lithium fluoride or magnesium-silica-terbium. The thermoluminescent materials (TLD) will, when moderately heated, emit luminescent photons linearly depending upon the dose of radiation received. The experiment, enclosed in a box-like container, is mounted on the aft end cone of the Spacelab, the area where the shielding is somewhat less than other locations.

  20. Space radiation environment monitoring onboard Chinese spacecrafts

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Xu, Ying; Zhang, Xianguo

    The space particle radiation can cause harsh hazards to spacecraft performance and lifetime. Numerous operational anomalies and several Chinese satellites failures have been attributed to radiation effects. The failure of FY-1 satellite, in 1991, increased awareness of space radiation effects and enhanced monitoring in situ. From then on, Space Environment Monitors (SEM) have been widely used in a great number of Chinese spacecrafts, such as SZ-4 manned spacecraft, FY-1, FY-3 sun-synchronous orbit satellites, FY-2 geo-synchronous orbit satellite, CE-1 lunar probe satellite, and so on. In particular, the SJ-4 and the SJ-5 satellites, which were used for special experiments of space radiation and theirs effects on spacecrafts, had been launched in 1990's. The sustained space radiation monitoring on LEO and GEO has accumulated a mass of data and can promote studies for empirical model of space radiation. In this article, monitoring at the Chinese spacecrafts from 1990's to the predictive future will be described, and cross-calibration of data and their typical results will be given.

  1. Radiation monitoring in interventional cardiology: a requirement

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Uruchurtu, E. S.

    2017-01-01

    The increasing of procedures using fluoroscopy in interventional cardiology procedures may increase medical and patients to levels of radiation that manifest in unintended outcomes. Such outcomes may include skin injury and cancer. The cardiologists and other staff members in interventional cardiology are usually working close to the area under examination and they receive the dose primarily from scattered radiation from the patient. Mexico does not have a formal policy for monitoring and recording the radiation dose delivered in hemodynamic establishments. Deterministic risk management can be improved by monitoring the radiation delivered from X-ray devices. The objective of this paper is to provide cardiologist, techniques, nurses, and all medical staff an information on DR levels, about X-ray risks and a simple a reliable method to control cumulative dose.

  2. Global nuclear radiation monitoring using plants

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Romero-Talamas, Carlos; Kostov, Dan; Wang, Wanpeng; Liu, Zhongchi; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.; Gu, Jerry; Choa, Fow-Sen

    2005-05-01

    Plants exhibit complex responses to changes in environmental conditions such as radiant heat flux, water quality, airborne pollutants, soil contents. We seek to utilize the natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to high-energy radiation - with the goal of monitoring natural plant responses for use as benchmarks for detection and dosimetry. For our study, we selected a plants cactus, Arabidopsis, Dwarf mango (pine), Euymus and Azela. We demonstrated that the ratio of Chlorophyll a to Chlorophyll b of the leaves has changed due to the exposure gradually come back to the normal stage after the radiation die. We used blue laser-induced blue fluorescence-emission spectra to characterize the pigment status of the trees. Upon blue laser excitation (400 nm) leaves show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm). Sample tree subjects were placed at a distance of 1m from NIST-certified 241AmBe neutron source (30 mCi), capable of producing a neutron field of about 13 mrem/h. This corresponds to an actual absorbed dose of ~ 1 mrad/h. Our results shows that all plants are sensitive to nuclear radiation and some take longer time to recover and take less. We can use their characteristics to do differential detection and extract nuclear activity information out of measurement results avoid false alarms produced environmental changes. Certainly the ultimate verification can be obtained from genetic information, which only need to be done when we have seen noticeable changes on plant optical spectra, mechanical strength and electrical characteristics.

  3. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  4. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    SciTech Connect

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  5. IEC standards for individual monitoring of ionising radiation.

    PubMed

    Voytchev, M; Ambrosi, P; Behrens, R; Chiaro, P

    2011-03-01

    This paper presents IEC/SC 45B 'Radiation protection instrumentation' and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

  6. IEC STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION

    SciTech Connect

    Voytchev, Miroslav; Ambrosi, P.; Behrens, R.; Chiaro Jr, Peter John

    2011-01-01

    This paper presents IEC/SC 45B Radiation protection instrumentation and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

  7. Background compensation for a radiation level monitor

    DOEpatents

    Keefe, D.J.

    1975-12-01

    Background compensation in a device such as a hand and foot monitor is provided by digital means using a scaler. With no radiation level test initiated, a scaler is down-counted from zero according to the background measured. With a radiation level test initiated, the scaler is up-counted from the previous down-count position according to the radiation emitted from the monitored object and an alarm is generated if, with the scaler having crossed zero in the positive going direction, a particular number is exceeded in a specific time period after initiation of the test. If the test is initiated while the scale is down-counting, the background count from the previous down- count stored in a memory is used as the initial starting point for the up-count.

  8. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    SciTech Connect

    Black, S. C.; Grossman, R. F.; Mullen, A. A.; Potter, G. D.; Smith, D. D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982.

  9. Utilisation of Thermal Radiation for Process Monitoring

    NASA Astrophysics Data System (ADS)

    Weberpals, Jan; Hermann, Tobias; Berger, Peter; Singpiel, Holger

    Particularly the automation of thermal material processing makes high demands on monitoring and controlling the resulting quality. A new promising approach is the utilisation of the emitted thermal radiation to get detailed information about temperature distributions and geometrical structures. Indeed, current laser systems with strong focusability exhibit a high innovation potential in many application ranges, for example the possibility of adjusting the welding depth to even small material thicknesses. However, the usability of these advantages is limited because the suitable process windows are considerably constricted at increased welding speed. Therefore, a reliable monitoring of thermal material processing is of vital importance.

  10. Onion skin as a radiation monitor

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the dry, outer skin of onion, red onion, garlic, and shallot were measured before and after irradiation. In all spectra only a single resonance (g = 2.00) was observed. The ESR signal intensity increased with absorbed dose, however, the radiation-induced signal decayed slowly with time. It was concluded that the outer skin of these foods are not suitable as a long-term postirradiation monitor.

  11. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Wilkins, Richard T. (Inventor); Hanratty, James J. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  12. Monitoring international nuclear activity

    SciTech Connect

    Firestone, R.B.

    2006-05-19

    The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

  13. Characteristics of the earth radiation budget experiment solar monitors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Barkstrom, Bruce R.; Cess, Robert D.

    1987-01-01

    The earth radiation budget experiment solar monitors, active cavity pyrheliometers, have been developed to measure every two weeks the total optical solar irradiance from the earth radiation budget satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 spacecraft platforms. In the unfiltered 0.2-50-micron wavelength broadband region, the monitors were used to obtain 1365 W/sq m as the mean value for the solar irradiance, with measurement precisions and accuracies approaching 0.1 and 0.2 percent, respectively. The design and characteristics of the solar monitors are presented along with the data reduction model. For the October 1984 through July 1985 period, the resulting ERBS and NOAA-9 solar irradiance values are intercompared.

  14. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    SciTech Connect

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  15. Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization

    NASA Astrophysics Data System (ADS)

    Daglis, I. A.; Bourdarie, S.; Khotyaintsev, Y.; Santolik, O.; Horne, R.; Mann, I.; Turner, D.

    2012-04-01

    We present the concept, objectives and expected impact of the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Loss and Energization) project, which is being implemented by a consortium of seven institutions (five European, one Canadian and one US) with support from the European Community's Seventh Framework Programme. The MAARBLE project employs multi-spacecraft monitoring of the geospace environment, complemented by ground-based monitoring, in order to analyze and assess the physical mechanisms leading to radiation belt particle energization and loss. Particular attention is paid to the role of ULF/VLF waves. A database containing properties of the waves is being created and will be made available to the scientific community. Based on the wave database, a statistical model of the wave activity dependent on the level of geomagnetic activity, solar wind forcing, and magnetospheric region will be developed. Multi-spacecraft particle measurements will be incorporated into data assimilation tools, leading to new understanding of the causal relationships between ULF/VLF waves and radiation belt dynamics. Data assimilation techniques have been proven as a valuable tool in the field of radiation belts, able to guide 'the best' estimate of the state of a complex system. (The members of the MAARBLE team are: I. A. Daglis, S. Bourdarie, Y. Khotyaintsev, O. Santolik, R. Horne, I. Mann, D. Turner, A. Anastasiadis, V. Angelopoulos, G. Balasis, E. Chatzichristou, C. Cully, M. Georgiou, S. Glauert, B. Grison, I. Kolmasova, D. Lazaro, E. Macusova, V. Maget, C. Papadimitriou, G. Ropokis, I. Sandberg, M. Usanova.)

  16. Network-Oriented Radiation Monitoring System (NORMS)

    SciTech Connect

    Rahmat Aryaeinejad; David F. Spencer

    2007-10-01

    We have developed a multi-functional pocket radiation monitoring system capable of detecting and storing gamma ray and neutron data and then sending the data through a wireless connection to a remote central facility upon request. The device has programmable alarm trigger levels that can be modified for specific applications. The device could be used as a stand-alone device or in conjunction with an array to cover a small or large area. The data is stored with a date/time stamp. The device may be remotely configured. Data can be transferred and viewed on a PDA via direct connection or wirelessly. Functional/bench tests have been completed successfully. The device detects low-level neutron and gamma sources within a shielded container in a radiation field of 10 uR/hr above the ambient background level.

  17. The LISA Pathfinder DMU and Radiation Monitor

    NASA Astrophysics Data System (ADS)

    Canizares, P.; Chmeissani, M.; Conchillo, A.; Diaz–Aguiló, M.; García-Berro, E.; Gesa, L.; Gibert, F.; Grimani, C.; Lloro, I.; Lobo, A.; Mateos, I.; Nofrarias, M.; Ramos-Castro, J.; Sanjuán, J.; Sopuerta, Carlos F.; Araújo, H. M.; Wass, P.

    2011-05-01

    The LISA Pathfinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper, we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.

  18. Radiation environment monitoring for manned missions to Mars.

    PubMed

    Benghin, V V; Petrov, V M

    2003-01-01

    In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given.

  19. Thailand radiation monitoring program: a preliminary result analysis of the country's background radiation.

    PubMed

    Krisanangkura, Piyawan; Udomsomporn, Suchin

    2014-08-01

    Environmental monitoring in the context of nuclear-related activities refers to the measurements of ambient gamma dose rates in the environment and radioactivity in air, water, soil etc. Since nuclear power programme in Thailand has not yet been in place, the environment surveillance programme in Thailand currently focuses on establishing 'baseline' environmental radiation levels and radioactivity for the purpose of establishing impacts of future possible sources such as nuclear accidents. The objective is to assure assessments concerning radiation safety for the environment and public. At present, Thailand's monitoring programme operates eight fixed monitoring stations installed in various regions of Thailand; four of which have been in operation since late 2010. The ambient gamma dose rate data are routinely collected from those four real-time monitoring stations starting from October 2010 to September 2011 as described in this study. Also, the radiation data from each station are statically analysed. This study found that the dose rate from the stations located in north and north-east of Thailand showed an apparent tendency towards a diurnal pattern. With these routine data, the average exposure dose rate was possible to estimate in Thailand. Additionally, the assessment of the equivalent dose from natural background radiation was estimated.

  20. Analysis of the TMI-2 dome radiation monitor

    SciTech Connect

    Murphy, M B; Mueller, G M; Jernigan, W C

    1985-08-01

    Questions have been raised regarding the accuracy of the in-containment radiation readings from the LOCA qualified, dome radiation monitor, HP-R-214 during the March 28, 1979 accident at the Three Mile Island Unit 2 Reactor. This report discusses the accuracy of the readings, gives the results of examining the radiation monitor itself, and estimates the radiation environment inside containment during the accident.

  1. U.S. Government shutdown degrades aviation radiation monitoring during solar radiation storm

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin

    2014-01-01

    The U.S. Government shutdown from 1 to 17 October 2013 significantly affected U.S. and global aviation radiation monitoring. The closure occurred just as a S2 radiation storm was in progress with an average dose rate of 20 μSv h-1. We estimate that during the radiation event period, one-half million passengers were flying in the affected zone and, of this population, four would have received sufficient dose to contract fatal cancer in their lifetimes. The radiation environment can be treated like any other risk-prone weather event, e.g., rain, snow, icing, clear air turbulence, convective weather, or volcanic ash, and should be made available to flight crews in a timely way across the entire air traffic management system. The shutdown highlighted the need for active operational monitoring of the global radiation environment. Aviation radiation risk mitigation steps are simple and straightforward, i.e., fly at a lower altitude and/or use a more equatorward route. Public tools and media methods are also needed from the space weather scientific and operational communities to provide this information in a timely and accessible manner to the flying public.

  2. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  3. Actively driven thermal radiation shield

    DOEpatents

    Madden, Norman W.; Cork, Christopher P.; Becker, John A.; Knapp, David A.

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  4. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  5. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  6. Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II

    NASA Technical Reports Server (NTRS)

    Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.

    2012-01-01

    The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

  7. Portable radiation monitor assures cleanup levels

    SciTech Connect

    Hasbach, A.

    1995-10-01

    Sevenson Environmental Services, Niagara Falls, NY, is a contractor at the EPA Superfund site at Montclair, NJ. Working with the Army Corps of Engineers, they are cleaning up radium waste left by a watch factory from the early 1900s. With the hazards of radium unknown at the time, radium in its many forms was spread throughout the region. As sand, it was used for concrete, as ash for packing material, and sometimes as landfill. When a hazardous site is found, Sevenson excavates the contaminated material and replaces it with clean fill. A Reuter-Stokes RSS-112 portable gamma monitoring system is used to ensure radiation is at sample background levels. Using a pressurized ionization chamber (PIC), the RSS-112 measures exposure rates from background to serious alarm levels over a wide energy range. Measurement takes place every five seconds. The portable system is 50% lighter than its predecessor and includes 300 point data storage, graphic display panel, 120-hour battery life between recharges, and RS-232 interface for downloading to a PC.

  8. [Emission of electromagnetic radiation from selected computer monitors].

    PubMed

    Zyss, T

    1995-01-01

    The emission of electromagnetic fields from computer monitors was analysed. The data were compared with the permissible exposure level. EM radiation of chromatic monitors is higher than that of monochromatic ones. The radiation of magnetic fraction is insignificant. Both electric and magnetic fractions of EM radiation, 50 cm away from the monitor, are very low and do not exceed permissible values. It was observed that screen filters were effective in suppressing EM emission only at a short (up to 30 cm) distance from the monitor. At a distance of 50 cm they proved to be ineffective. Metallic-net filters were more effective than glass filters in suppressing EM radiation. It seems that EM fields generated by computer monitors are not harmful to computer operators if the distance is kept in safe limits.

  9. TOWARDS A NOVEL MODULAR ARCHITECTURE FOR CERN RADIATION MONITORING.

    PubMed

    Boukabache, Hamza; Pangallo, Michel; Ducos, Gael; Cardines, Nicola; Bellotta, Antonio; Toner, Ciarán; Perrin, Daniel; Forkel-Wirth, Doris

    2016-11-30

    The European Organization for Nuclear Research (CERN) has the legal obligation to protect the public and the people working on its premises from any unjustified exposure to ionising radiation. In this context, radiation monitoring is one of the main concerns of the Radiation Protection Group. After 30 y of reliable service, the ARea CONtroller (ARCON) system is approaching the end of its lifecycle, which raises the need for new, more efficient radiation monitors with a high level of modularity to ensure better maintainability. Based on these two main principles, new detectors are currently being developed that will be capable of measuring very low dose rates down to 50 nSv h(-1), whilst being able to measure radiation over an extensive range of 8 decades without any auto scaling. To reach these performances, CERN Radiation MOnitoring Electronics (CROME), the new generation of CERN radiation monitors, is based on the versatile architecture that includes new read-out electronics developed by the Instrumentation and Logistics section of the CERN Radiation Protection Group as well as a reconfigurable system on chip capable of performing complex processing calculations. Beside the capabilities of CROME to continuously measure the ambient dose rate, the system generates radiation alarms, provides interlock signals, drives alarm display units through a fieldbus and provides long-term, permanent and reliable data logging. The measurement tests performed during the first phase of the development show very promising results that pave the way to the second phase: the certification.

  10. Radiation Monitoring at FGUP Atomflot and the Polyarninski Shipyard

    SciTech Connect

    Pomerville, J.; Griffith, A. G.; Moskowitz, P. D.; BNL; Endregard, M.; Sidhu, R. S.; Sundling, C-V.; Walderhaug, T.; Egorkin, A.; Kisselev, V.; Yanovskaya, N.; Tchernaenko, L.

    2003-02-26

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between military establishments of the Russian Federation, United States and Norway to reduce potential environmental threats from military installations and activities in the Arctic and enhancing the environmental security of all three countries. The goal of this project is to enhance the ability to effectively and safely perform radiological monitoring of objects at selected facilities for dismantlement of nuclear submarines and handling and disposition of spent nuclear fuel. Radiological monitoring is needed to protect workers at the sites engaged in dismantlement of nuclear submarines, the local public and the environment. This is to be accomplished by supply of radiation monitoring equipment and the installation of centralized radiological surveillance, the PICASSO Environmental Monitoring system developed by Institute for Energy Technology, Halden, Norway. The first site selected for th e installation of PICASSO will be at the FGUP Atomflot spent nuclear fuel pad site and liquid radioactive waste treatment facility. This will be followed by an installation of PICASSO at the Mobile Processing Facility at Polyarninski Shipyard. The implementation of the PICASSO system will be integrated with the other AMEC projects at both sites. Plans are being developed to implement the use of this system at most Russian Navy sites handling spent nuclear fuel. Dosimeters have been supplied by the US and with funds from Norway. This equipment will be used at the Polyarninski Shipyard.

  11. Monitoring active volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.

    1987-01-01

    One of the most spectacular, awesomely beautiful, and at times destructive displays of natural energy is an erupting volcano, belching fume and ash thousands of meters into the atmosphere and pouring out red-hot molten lava in fountains and streams. Countless eruptions in the geologic past have produced volcanic rocks that form much of the Earth's present surface. The gradual disintegration and weathering of these rocks have yielded some of the richest farmlands in the world, and these fertile soils play a significant role in sustaining our large and growing population. Were it not for volcanic activity, the Hawaiian Islands with their sugar cane and pineapple fields and magnificent landscapes and seascapes would not exist to support their residents and to charm their visitors. Yet, the actual eruptive processes are catastrophic and can claim life and property.

  12. 14. CLOSEUP OF RADIATION MONITORING EQUIPMENT ATTACHED TO FRAMEWORK. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CLOSE-UP OF RADIATION MONITORING EQUIPMENT ATTACHED TO FRAMEWORK. CAMERA FACING SKY. INEL PHOTO NUMBER 65-6175, TAKEN NOVEMBER 10, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  13. B190 computer controlled radiation monitoring and safety interlock system

    SciTech Connect

    Espinosa, D L; Fields, W F; Gittins, D E; Roberts, M L

    1998-08-01

    The Center for Accelerator Mass Spectrometry (CAMS) in the Earth and Environmental Sciences Directorate at Lawrence Livermore National Laboratory (LLNL) operates two accelerators and is in the process of installing two new additional accelerators in support of a variety of basic and applied measurement programs. To monitor the radiation environment in the facility in which these accelerators are located and to terminate accelerator operations if predetermined radiation levels are exceeded, an updated computer controlled radiation monitoring system has been installed. This new system also monitors various machine safety interlocks and again terminates accelerator operations if machine interlocks are broken. This new system replaces an older system that was originally installed in 1988. This paper describes the updated B190 computer controlled radiation monitoring and safety interlock system.

  14. Smarter radiation monitors for safeguards and security

    NASA Astrophysics Data System (ADS)

    Fehlau, P. E.; Pratt, J. C.; Markin, J. T.; Scurry, T., Jr.

    Versatile microprocessor systems permit more efficient, and more useful methods for monitoring nuclear materials. One such method is simple stepwise monitoring, which has variable alarm levels to expedite monitoring where extended monitoring periods are required. Another method, sequential probability ratio logic, tests data as it accumulates against two hypothesis - background, or background plus a transient diversion signal - and terminates monitoring as soon as a decision can be made that meets false alarm and detection confidence requirements. A third method, quntitative monitoring for personnel, calculates count ratios of high to low energy gamma ray regions to predict whether the material detected is a small quantity of bare material or a larger quantity of shielded material. Microprocessor system subprograms can assist in detector calibration and trouble shooting. Examples of subprograms are a variance analysis technique to set hias levels in plastic scintillators and a state of health routine for detecting malfunctions in digital circuit components.

  15. Summary Report on Beam and Radiation Generation, Monitoring and Control

    SciTech Connect

    Gordon, D. F.; Power, J. G.

    2009-01-22

    The discussions of the working group on beam and radiation generation, monitoring, and control (working group 6) at the 2008 advanced accelerator concepts workshop are summarized. The discussions concerned electron injectors, phase space manipulation, beam diagnostics, pulse train generation, intense beam physics, and radiation generation.

  16. Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors

    NASA Astrophysics Data System (ADS)

    Gubarev, F. A.; Trigub, M. V.; Klenovskii, M. S.; Li, Lin; Evtushenko, G. S.

    2016-01-01

    The paper presents a study of the effect of excitation conditions in a CuBr vapor brightness amplifier in a monostatic laser monitor on the radial non-uniformity of the radiation bearing the information about the object being visualized. A significant dependence of radial signal distribution on the concentrations of CuBr, HBr and pumping power has been demonstrated. In particular, an increase in CuBr vapor concentration causes the gain profile of the active medium to constrict and the axial gain to increase. The conditions for the most uniform radial distribution of the laser monitor signal are substantially different from those for the maximum radiated power. The paper demonstrates HBr doping to be usable as a tool to correct the non-uniformity of the radial distribution of laser monitor radiation. An addition of ~0.15 Torr HBr broadens and flattens the radiation profile, improving an important aspect of laser monitor image quality.

  17. PRD3000: A novel Personnel Radiation Detector with Radiation Exposure Monitoring

    SciTech Connect

    Fallu-Labruyere, A.; Micou, C.; Schulcz, F.; Fellinger, J.

    2015-07-01

    PRD3000{sup TM} is a novel Personal Radiation Detector (PRD) with personnel radiation dose exposure monitoring. It is intended for First Responders, Law Enforcement, Customs Inspectors protecting critical infrastructures for detecting unexpected radioactive sources, who also need real time Hp(10) dose equivalent information. Traditional PRD devices use scintillator materials instrumented through either a photomultiplier tube or a photodiode photodetector. While the former is bulky and sensitive to magnetic fields, the latter has to compromise radiation sensitivity and energy threshold given its current noise per unit of photo-detection surface. Recently, solid state photodetectors (SiPM), based on arrays of Geiger operated diodes, have emerged as a scalable digital photodetector for photon counting. Their strong breakdown voltage temperature dependence (on the order of tens of milli-volts per K) has however limited their use for portable instruments where strong temperature gradients can be experienced, and limited power is available to temperature stabilize. The PRD3000 is based on the industry standard DMC3000 active dosimeter that complies with IEC 61526 Ed. 3 and ANSI 42.20 for direct reading personal dose equivalent meters and active personnel radiation monitors. An extension module is based on a CsI(Tl) scintillator readout by a temperature compensated SiPM. Preliminary nuclear tests combined with a measured continuous operation in excess of 240 hours from a single AAA battery cell indicate that the PRD3000 complies with the IEC 62401 Ed.2 and ANSI 42.32 without sacrificing battery life time. We present a summary of the device test results, starting with performance stability over a temperature range of - 20 deg. C to 50 deg. C, false alarm rates and dynamic response time. (authors)

  18. The development of remote wireless radiation dose monitoring system

    SciTech Connect

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  19. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  20. Variable filtered photographic film as a radiation detector for environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Majid, Zafri Azran Abdul; Junet, Laila Kalidah; Hazali, Norazlanshah; Abdullah, Abdul Adam; Hanafiah, Megat Ahmad Kamal Megat

    2013-05-01

    Environmental radiation is an ionising radiation that present in the natural environment which mostly originates from cosmic rays and radionuclide agents in the environment. This may lead the population to be exposed to the radiation. Therefore, the environmental radiation needs to be observed cautiously to minimize the impact of radiation. However, there is no specific or proper monitoring device that provides an outdoor environmental radiation monitoring. Hence, a new outdoor environmental radiation monitoring device was developed. A photographic film has been chosen as a dosimeter. The purpose of this study was to prove the covered photographic film attached with variable filter can be used to develop environmental radiation monitoring device to detect the ionising radiation. The filter used was variable thickness of plastic, aluminium (Al) and lead (Pb). The result from the study showed that the mean optical density (OD) values for medium speed film are in the range 0.41 to 0.73, and for fast speed film the OD values are in the range 0.51 to 1.35. The OD values decreased when the filter was attached. This has proven that the photographic film can be used to detect radiation and fast speed film was more sensitive compared to medium speed film.

  1. Calibration of the radiation monitor onboard Akebono using Geant4

    NASA Astrophysics Data System (ADS)

    Asai, Keiko; Takashima, Takeshi; Koi, Tatsumi; Nagai, Tsugunobu

    Natural high-energy electrons and protons (keV-MeV) in the space contaminate the data re-ciprocally. In order to calibrate the energy ranges and to remove data contamination on the radiation monitor (RDM) onboard the Japanese satellite, Akebono (EXOS-D), the detector is investigated using the Geant4 simulation toolkit of computational particle tracing. The semi-polar orbiting Akebono, launched in February 1989, is active now. This satellite has been observed the space environment at altitudes of several thousands km. The RDM instrument onboard Akebono monitors energetic particles in the Earth's radiation belt and gives important data accumulated for about two solar cycles. The data from RDM are for electrons in three energy channels of 0.3 MeV, protons in three energy channels of ¿ 30 MeV, and alpha particles in one energy channels of 15-45 MeV. The energy ranges are however based on information of about 20 years ago so that the data seem to include some errors actuary. In addition, these data include contamination of electrons and protons reciprocally. Actuary it is noticed that the electron data are contaminated by the solar protons but unknown quantitative amount of the contamination. Therefore we need data calibration in order to correct the energy ranges and to remove data contamination. The Geant4 simulation gives information of trajectories of incident and secondary particles whose are interacted with materials. We examine the RDM monitor using the Geant4 simulation. We find from the results that relativistic electrons of MeV behave quite complicatedly because of particle-material interaction in the instrument. The results indicate that efficiencies of detection and contamination are dependent on energy. This study compares the electron data from Akebono RDM with the simultaneous observation of CRRES and tries to lead the values of correction for each of the energy channels.

  2. Adaptable radiation monitoring system and method

    DOEpatents

    Archer, Daniel E.; Beauchamp, Brock R.; Mauger, G. Joseph; Nelson, Karl E.; Mercer, Michael B.; Pletcher, David C.; Riot, Vincent J.; Schek, James L.; Knapp, David A.

    2006-06-20

    A portable radioactive-material detection system capable of detecting radioactive sources moving at high speeds. The system has at least one radiation detector capable of detecting gamma-radiation and coupled to an MCA capable of collecting spectral data in very small time bins of less than about 150 msec. A computer processor is connected to the MCA for determining from the spectral data if a triggering event has occurred. Spectral data is stored on a data storage device, and a power source supplies power to the detection system. Various configurations of the detection system may be adaptably arranged for various radiation detection scenarios. In a preferred embodiment, the computer processor operates as a server which receives spectral data from other networked detection systems, and communicates the collected data to a central data reporting system.

  3. Perfluorinated polymer optical fiber for gamma radiation monitoring

    NASA Astrophysics Data System (ADS)

    Stajanca, P.; Mihai, L.; Sporea, D.; Negut, D.; Krebber, K.

    2016-05-01

    The sensitivity of low-loss perfluorinated polymer optical fiber (PF-POF) to gamma radiation is investigated for on-line radiation monitoring purposes. The radiation-induced attenuation (RIA) of a commercial PF-POF based on Cytop material is measured in the visible spectral region. The fiber RIA shows strong wavelength dependence with rapid increase towards the blue side of the spectrum. The wide range of radiation sensitivities is available via careful selection of appropriate monitoring wavelength. The accessible sensitivities span from 1.6 +/- 0.2 dBm-1/kGy measured at 750 nm to 18.3 +/- 0.7 dBm-1/kGy measured at 420 nm. The fairly high radiation sensitivity as well as its wide tunability makes the fiber a promising candidate for a broad range of applications.

  4. Environmental radiation exposure: Regulation, monitoring, and assessment

    SciTech Connect

    Chen, S.Y.; Yu, C.; Hong, K.J.

    1991-01-01

    Radioactive releases to the environment from nuclear facilities constitute a public health concern. Protecting the public from such releases can be achieved through the establishment and enforcement of regulatory standards. In the United States, numerous standards have been promulgated to regulate release control at nuclear facilities. Most recent standards are more restrictive than those in the past and require that radioactivity levels be as low as reasonably achievable (ALARA). Environmental monitoring programs and radiological dose assessment are means of ensuring compliance with regulations. Environmental monitoring programs provide empirical information on releases, such as the concentrations of released radioactivity in environmental media, while radiological dose assessment provides the analytical means of quantifying dose exposures for demonstrating compliance.

  5. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  6. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.E.; Christy, C.E.; Heath, R.E.

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  7. Radiation portal monitor system and method

    DOEpatents

    Morris, Christopher; Borozdin, Konstantin N.; Green, J. Andrew; Hogan, Gary E.; Makela, Mark F.; Priedhorsky, William C.; Saunders, Alexander; Schultz, Larry J.; Sossong, Michael J.

    2009-12-15

    A portal monitoring system has a cosmic ray charged particle tracker with a plurality of drift cells. The drift cells, which can be for example aluminum drift tubes, can be arranged at least above and below a volume to be scanned to thereby track incoming and outgoing charged particles, such as cosmic ray muons, whilst also detecting gamma rays. The system can selectively detect devices or materials, such as iron, lead, gold and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can also detect any radioactive sources occupying the volume from gamma rays emitted therefrom. If necessary, the drift tubes can be sealed to eliminate the need for a gas handling system. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.

  8. New techniques of low level environmental radiation monitoring at JLab

    SciTech Connect

    P. Degtiarenko, V. Popov

    2010-07-01

    We present the first long-term environmental radiation monitoring results obtained using the technique of pulse mode readout for the industry-standard Reuter-Stokes RSS-1013 argon-filled high pressure ionization chambers (HPIC). With novel designs for the front-end electronics readout and customized signal processing algorithms, we are capable of detecting individual events of gas ionization in the HPIC, caused by interactions of gammas and charged particles in the gas. The technique provides enough spectroscopic information to distinguish between several different types of environmental and man-made radiation. The technique also achieves a high degree of sensitivity and stability of the data, allowing long-term environmental radiation monitoring with unprecedented precision.

  9. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981

    SciTech Connect

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L.

    1982-08-01

    This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

  10. Anatahan Activity and Monitoring, 2005

    NASA Astrophysics Data System (ADS)

    Lockhart, A.; White, R.; Koyanagi, S.; Trusdell, F.; Kauahikaua, J.; Marso, J.; Ewert, J.

    2005-12-01

    Anatahan volcano began erupting in 2003 and continued with a second eruptive phase in 2004. In January 2005 the volcano began a sequence of eruptions and unrest that continues as of September 2005. The activity has been characterized by punctuated episodes of very steamy strombolian activity and vigorous ash emission. Some of the ash emissions have reached 50,000-foot elevations, with VOG and ash occasionally reaching the Philippines and southernmost Japan, over 1000 miles away. Vigorous ash emission has been almost continuous since June 2005. A M4.8 long-period earthquake (LP) occurred in mid-August, one of the largest LPs recorded on the planet in the last quarter-century. Real-time monitoring consisting of a few telemetered short-period seismometers and acoustic sensors has been severely hampered by ashfall on the small island. Monitoring efforts have been focused on the aircraft/ash hazard, with the goal of providing the FAA and airline industry with rapid notice of seismic signatures that may indicate ash columns rising to the altitude of airline traffic, or nominally above 20,000-30,000 ft.

  11. EVOLUTION OF THE IEC AND EN STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION.

    PubMed

    Voytchev, M; Behrens, R; Ambrosi, P; Radev, R; Chiaro, P

    2016-09-01

    This article presents the evolution of the International Electrotechnical Commission (IEC) and the European standards for individual monitoring of ionising radiation issued, respectively, from the committees IEC/Sub Committee 45B and European Committee for Electro-technical Standardization/Technical Committee 45B 'Radiation protection instrumentation'. Standards for passive individual photon and beta dosimetry systems as well as those for active individual monitors are discussed. A neutron ambient dose equivalent (rate) meter standard and a technical report concerning the determination of uncertainty in measurement are also covered.

  12. Radiation protection for manned space activities

    NASA Technical Reports Server (NTRS)

    Jordan, T. M.

    1983-01-01

    The Earth's natural radiation environment poses a hazard to manned space activities directly through biological effects and indirectly through effects on materials and electronics. The following standard practices are indicated that address: (1) environment models for all radiation species including uncertainties and temporal variations; (2) upper bound and nominal quality factors for biological radiation effects that include dose, dose rate, critical organ, and linear energy transfer variations; (3) particle transport and shielding methodology including system and man modeling and uncertainty analysis; (4) mission planning that includes active dosimetry, minimizes exposure during extravehicular activities, subjects every mission to a radiation review, and specifies operational procedures for forecasting, recognizing, and dealing with large solar flaes.

  13. Spectroscopic radiation imager for Internet-based safeguards and monitoring

    NASA Astrophysics Data System (ADS)

    Woodring, Mitchell; Souza, David; Honig, Larry; Squillante, Michael R.; Entine, Gerald

    1999-10-01

    Monitoring nuclear materials that is dangerously radioactive, remotely located, or difficult to access is a challenging task. The necessary research required to develop a system capable of remotely monitoring radioactive materials has been undertaken at Radiation Monitoring Devices, Inc. We report on a system utilizing a spectroscopic gamma-ray imager for real-time observation of sensitive nuclear materials over the Internet or dedicated networks. Research at RMD has produced a spectroscopic gamma-ray imager centered on a position-sensitive photomultiplier tube coupled to scintillation crystal and a coded aperture. A gamma-ray intensity pattern from the detector is stored and processed by a portable computer workstation and then mathematically corrected to yield the original radiation-source image. The pseudo-color, radiation-source image is overlaid on a co-registered video picture of the same area captured by a high-resolution charge-coupled device. The combined image is displayed as an accurate map of gamma-ray sources in the physical environment. Recent developments involve instrument control and data transmission through computer networks. Alarm triggers based on changes in the video image, the radiation image, the energy spectrum are under development. Work to remotely control alarm sensitivity and type, as well as the image update frequency, has also been examined.

  14. Radiation monitoring policy at the advanced light source

    SciTech Connect

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-02-04

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program.

  15. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    SciTech Connect

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.; MacKay, R. Jock

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtained from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance

  16. The CMS Beam Conditions and Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Castro, E.; Bacchetta, N.; Bell, A. J.; Dabrowski, A.; Guthoff, M.; Hall-Wilton, R.; Hempel, M.; Henschel, H.; Lange, W.; Lohmann, W.; Müller, S.; Novgorodova, O.; Pfeiffer, D.; Ryjov, V.; Stickland, D.; Schimdt, R.; Walsh, R.

    The Compact Muon Solenoid (CMS) is one of the two large, general purpose experiments situated at the LHC at CERN. As with all high energy physics experiments, knowledge of the beam conditions and luminosity is of vital importance. The Beam Conditions and Radiation Monitoring System (BRM) is installed in CMS to protect the detector and to provide feedback to LHC on beam conditions. It is composed of several sub-systems that measure the radiation level close to or inside all sub-detectors, monitor the beam halo conditions with different time resolution, support beam tuning and protect CMS in case of adverse beam conditions by firing a beam abort signal. This paper presents three of the BRM subsystems: the Fast Beam Conditions Monitor (BCM1F), which is designed for fast flux monitoring, measuring with nanosecond time resolution, both the beam halo and collision products; the Beam Scintillator Counters (BSC), that provide hit rates and time information of beam halo and collision products; and the Beam Conditions Monitors (BCM) used as a protection system that can trigger a beam dump when beam losses occur in order to prevent damage to the pixel and tracker detectors. A description of the systems and a characterization on the basis of data collected during LHC operation is presented.

  17. Radiation detectors as surveillance monitors for IAEA safeguards

    SciTech Connect

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  18. General Operational Procedure for Pedestrian Radiation Portal Monitors

    SciTech Connect

    Belooussov, Andrei V.

    2012-08-08

    This document outlines the basic conduct of operation (CONOPS) for a pedestrian radiation portal monitor (RPM), provided that the CONOPS is not facility or RPM specific and that it is based on a general understanding of a pedestrian RPM operation. The described CONOPS for a pedestrian RPM is defined by: (1) RPM design and operational characteristics, (2) type of pedestrian traffic, and (3) goal for RPM installation. Pedestrian RPMs normally are deployed for the continuous monitoring of individuals passing through point of control to detect the unauthorized traffic of radioactive/nuclear materials. RPMs generally are designed to detect gamma- and neutron-emitting materials.

  19. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  20. FPGA-based prototype of portable environmental radiation monitor

    SciTech Connect

    Benahmed, A.; Elkarch, H.

    2015-07-01

    This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time control and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)

  1. Radiation factors in space and a system for their monitoring.

    PubMed

    Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F

    1994-10-01

    The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.

  2. Radiation monitoring around United States nuclear test areas, calendar year 1989

    SciTech Connect

    Not Available

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

  3. Vehicle Radiation Monitoring Systems for Medical Waste Disposal - 12102

    SciTech Connect

    Kondrashov, Vladislav S.; Steranka, Steve A.

    2012-07-01

    Hospitals often declare their waste as being 'non-radioactive'; however this material often has excessive levels of radiation caused either by an accident or lack of control. To ensure the best possible protection against the accidental receipt of radioactive materials and as a safety precaution for their employees, waste-handling companies have installed large-scale radiation portal monitors at their weigh scales or entry gates of the incinerator plant, waste transfer station, and/or landfill. Large-volume plastic scintillator-based systems can be used to monitor radiation levels at entry points to companies handling medical waste. The recent and intensive field tests together with the thousands of accumulated hours of actual real-life vehicle scanning have proven that the plastic scintillation based system is an appropriate radiation control instrument for waste management companies. The Real-Time background compensation algorithm is flexible with automatic adjustable coefficients that will response to rapidly changing environmental and weather conditions maintaining the preset alarm threshold levels. The Dose Rate correction algorithms further enhance the system's ability to meet the stringent requirements of the waste industries need for Dose Rate measurements. (authors)

  4. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    SciTech Connect

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  5. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  6. Multiwavelength monitoring of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Urry, C. M.

    1993-01-01

    Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinay advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.

  7. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    SciTech Connect

    Not Available

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  8. The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

    NASA Astrophysics Data System (ADS)

    Goldsten, J. O.; Maurer, R. H.; Peplowski, P. N.; Holmes-Siedle, A. G.; Herrmann, C. C.; Mauk, B. H.

    2013-11-01

    An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA's Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ˜0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (˜10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (˜3000 fA/cm2) and provide sufficient sensitivity (˜0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

  9. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  10. Off-site environmental monitoring report: Radiation monitoring around United States Nuclear Test areas, Calendar year 1986

    SciTech Connect

    Patzer, R.G.; Fontana, C.A.; Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome', D.J.; Mullen, A.A.

    1987-05-01

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests; and protective actions in support of the nuclear testing program. These are conducted to document compliance with standards, to identify trends, and to provide information to the public. 28 refs., 37 figs., 30 tabs.

  11. Calibration of the active radiation detector for Spacelab-One

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  12. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  13. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  14. Interpretation of TEPC Measurements in Space Flights for Radiation Monitoring

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.

    2007-01-01

    For the proper interpretation of radiation data measured in space, the results of integrated radiation transport models were compared with the tissue equivalent proportional counter (TEPC) measurements. TEPC is a simple, time-dependent approach to radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Qave(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Qave(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. The deviation of y from LET is caused by energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. The response distribution functions of the wall-less and walled TEPCs were calculated from Monte-Carlo track simulations. Using an integrated space radiation model (which includes the transport codes HZETRN and BRYNTRN, and the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions from Monte-Carlo track simulations, we compared model calculations with the walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. Good agreement was found for Qave(y) between the model and measured spectra from past NASA missions. The Qave(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Qave(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Qave(y). The GCR values are decreasing with the shield thickness. Our analysis

  15. Rain-Induced Increase in Background Radiation Detected by Radiation Portal Monitors

    SciTech Connect

    Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler; Livesay, Jake

    2012-07-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.

  16. Rain-induced increase in background radiation detected by Radiation Portal Monitors.

    PubMed

    Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A

    2014-11-01

    A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed.

  17. Operational control of radiation conditions in Space Monitoring Data Center of Moscow State University

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Shugay, Yulia; Bobrovnikov, Sergey; Kuznetsov, Nikolay; Barinova, Vera; Myagkova, Irina; Panasyuk, Mikhail

    2016-07-01

    Space Monitoring Data Center (SMDC) of Moscow State University provides mission support for Russian satellites and give operational analysis of radiation conditions in space. SMDC Web-sites (http://smdc.sinp.msu.ru/ and http://swx.sinp.msu.ru/) give access to current data on the level of solar activity, geomagnetic and radiation state of Earth's magnetosphere and heliosphere in near-real time. For data analysis the models of space environment factors working online have been implemented. Interactive services allow one to retrieve and analyze data at a given time moment. Forecasting applications including solar wind parameters, geomagnetic and radiation condition forecasts have been developed. Radiation dose and SEE rate control are of particular importance in practical satellite operation. Satellites are always under the influence of high-energy particle fluxes during their orbital flight. The three main sources of particle fluxes: the Earth's radiation belts, the galactic cosmic rays, and the solar energetic particles (SEP), are taken into account by SMDC operational services to estimate the radiation dose caused by high-energy particles to a satellite at LEO orbits. ISO 15039 and AP8/AE8 physical models are used to estimate effects of galactic cosmic rays and radiation belt particle fluxes. Data of geosynchronous satellites (GOES or Electro-L1) allow to reconstruct the SEP fluxes spectra at a given low Earth orbit taking into account the geomagnetic cut-off depending on geomagnetic activity level.

  18. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    SciTech Connect

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history.

  19. Visits by Nuclear-Powered Warships to Australian Ports: Report on Radiation Monitoring During 1991

    DTIC Science & Technology

    1992-06-01

    the Leader of the Radiation Monitoring Group is always a radiation protection officer of Ansto . 13. The marine environmental monitoring program is a...no radionuclide was detected that would be characteristic of the radioactive waste associated with NPW operations. Training 30. Ansto provided...and HMAS MORETON personnel were used to assist Ansto in impiementing the monitoring program. CONCLUSIONS 31. The program of radiation monitoring and

  20. Citizen radiation monitoring program for the TMI area

    SciTech Connect

    Baratta, A.J.; Gricar, B.G.; Jester, W.A.

    1981-07-01

    The purpose of the program was to develop a system for citizens to independently measure radiation levels in and around their communities. This report describes the process by which the Program was developed and operated. It also presents the methods used to select and train the citizens in making and interpreting the measurements. The test procedures used to select the equipment for the program are described as are the results of the testing. Finally, the actual monitoring results are discussed along with the citizens' reactions to the program.

  1. Radiation-Triggered Surveillance for UF6 Monitoring

    SciTech Connect

    Curtis, Michael M.

    2015-12-01

    This paper recommends the use of radiation detectors, singly or in sets, to trigger surveillance cameras. Ideally, the cameras will monitor cylinders transiting the process area as well as the process area itself. The general process area will be surveyed to record how many cylinders have been attached and detached to the process between inspections. Rad-triggered cameras can dramatically reduce the quantity of recorded images, because the movement of personnel and equipment not involving UF6 cylinders will not generate a surveillance review file.

  2. Environmental radiation monitoring of low-level wastes by the State of Washington

    SciTech Connect

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1989-11-01

    The Washington State Department of Health, as the state`s regulatory agency for radiation, monitors several forms of low-level radioactive wastes. The monitoring is done to assess the potential impact on the environment and on public health. The emphasis of the monitoring program is placed on the solid and liquid wastes from defense activities on the Hanford Reservation, commercial wastes at the site located on leased land at Hanford and uranium mill tailings in Northeastern Washington. Although not classified as low-level waste, monitoring is also periodically conducted at selected landfills and sewage treatment facilities and other licensees, where radioactive wastes are known or suspected to be present. Environmental pathways associated with waste disposal are monitored independently, and/or in conjunction with the waste site operators to verify their results and evaluate their programs. The Department also participates in many site investigations conducted by site operators and other agencies, and conducts it`s own special investigations when deemed necessary. Past investigations and special projects have included allegations of adverse environmental impact of I-129, uranium in ground water, impacts of wastes on the agricultural industry, radioactivity in seeps into the Columbia River from waste sites, identifying lost waste sites at Hanford, differentiating groundwater contamination from defense versus commercial sources, and radioactivity in municipal landfills and sewers. The state`s environmental radiation monitoring program has identified and verified a number of environmental problems associated with radioactive waste disposal, but has, to date, identified no adverse offsite impacts to public health.

  3. Monitoring precipitation and lightning via changes in atmospheric gamma radiation

    SciTech Connect

    Greenfield, M.B.; Domondon, A.; Tsuchiya, S.; Tomiyama, G.

    2003-08-26

    Atmospheric {gamma}-radiation has been measured since 1999 and recently at three elevations 220m from the first site to ascertain position dependency and optimal elevation for observing {gamma}-rays from radon and radon-progeny found in precipitation. Radiation from time-independent and diurnal components was minimized in order to ascertain the reliability, accuracy and practicality of determining precipitation rates from correlated {gamma}-rates. Data taken with 4-12.9cm3 NaI detectors at elevations above ground of 9.91, 14.2, 15.7, and 21.4 m were fit with a model assuming a surface and/or volume deposition of radon progeny on/in water droplets during precipitation which predicts {gamma} -ray rates proportional to the 2/5 and/or 3/5 power of rain rates, respectively. With mostly surface deposition and age corrections for radon progeny, the correlation coefficients improved with elevation and reached a maximum at 0.95 around 20m. Atmospheric {gamma} radiation enables monitoring precipitation rates to 0.3 mm/h with time resolution limited only by counting statistics. High {gamma}-ray rates, decreasing with 40-minute half-life following lightning may be indirectly due to ions accelerated in electric field.

  4. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their

  5. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  6. Radiation Education Activities | RadTown USA | | US EPA

    EPA Pesticide Factsheets

    2017-03-28

    EPA's Radiation Education Activities are designed to help increase awareness and understanding of radiation concepts among middle and high school students. The activities introduce basic concepts of radiation, non-ionizing and ionizing radiation, radiation protection, radioactive atoms and radioactive decay.

  7. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  8. Design and qualification of the SEU/TD Radiation Monitor chip

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.

    1992-01-01

    This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.

  9. NASDA technician test real-time radiation monitoring device

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician from the National Space Development Agency of Japan (NASDA) tests the real-time radiation monitoring device on SPACEHAB at Kennedy Space Center in preparation for the STS-89 mission, slated to be the first Shuttle launch of 1998. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine-day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven-member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EDT from Launch Pad 39A.

  10. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  11. Monitoring the radiation dose to a multiprogrammable pacemaker during radical radiation therapy: A case report

    SciTech Connect

    Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P. )

    1990-11-01

    Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 months after completion of treatment. The relevant electrocardiograms (ECGs) are presented.

  12. Method for monitoring irradiated fuel using Cerenkov radiation

    DOEpatents

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  13. Moscow State University near-Earth radiation monitoring satellite system: current status and development

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail

    2016-07-01

    Radiation measurements using instruments have been designed and manufacturing in the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University and installed onboard different satellites,i.e. LEO -"Meteor", ISS, GPS - GLONASS, GEO - "Electro" are presented as a basis of radiation monitoring system for control of radiation condition with a goal for to decrease radiation risk of spacecraft's damage on different orbits. Development of this system including radiation measurements onboard "Lomonosov"(LEO) satellite will be presented as well together with future project of multispacecraft LEO system for radiation monitoring.

  14. Active-edge planar radiation sensors

    PubMed Central

    Kenney, C.J.; Segal, J.D.; Westbrook, E.; Parker, Sherwood; Hasi, J.; Da Via, C.; Watts, S.; Morse, J.

    2007-01-01

    Many systems in medicine, biology, high-energy physics, and astrophysics require large area radiation sensors. In most of these applications, minimizing the amount of dead area or dead material is crucial. We have developed a new type of silicon radiation sensor in which the device is active to within a few microns of the mechanical edge. Their perimeter is made by a plasma etcher rather than a diamond saw. Their edges can be defined and also passivated by growing, in an intermediate step, a field oxide on the side surfaces. In this paper, the basic architecture and results from a synchrotron beam test are presented. PMID:18185839

  15. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated

  16. A Cooperatively Controlled Robot for Ultrasound Monitoring of Radiation Therapy

    PubMed Central

    Tutkun Şen, H.; Lediju Bell, Muyinatu A.; Iordachita, Iulian; Wong, John; Kazanzides, Peter

    2016-01-01

    Image-guided radiation therapy (IGRT) involves two main procedures, performed in different rooms on different days: (1) treatment planning in the simulator room on the first day, and (2) radiotherapy in the linear accelerator room over multiple subsequent days. Both the simulator and the linear accelerator include CT imaging capabilities, which enables both treatment planning and reproducible patient setup, but does not provide good soft tissue contrast or allow monitoring of the target during treatment. We propose a cooperatively-controlled robot to reproducibly position an ultrasound (US) probe on the patient during simulation and treatment, thereby improving soft tissue visualization and allowing real-time monitoring of the target. A key goal of the robotic system is to produce consistent tissue deformations for both CT and US imaging, which simplifies registration of these two modalities. This paper presents the robotic system design and describes a novel control algorithm that employs virtual springs to implement guidance virtual fixtures during “hands on” cooperative control. PMID:26823988

  17. An inverse source location algorithm for radiation portal monitor applications

    SciTech Connect

    Miller, Karen A; Charlton, William S

    2010-01-01

    Radiation portal monitors are being deployed at border crossings throughout the world to prevent the smuggling of nuclear and radiological materials; however, a tension exists between security and the free-flow of commerce. Delays at ports-of-entry have major economic implications, so it is imperative to minimize portal monitor screening time. We have developed an algorithm to locate a radioactive source using a distributed array of detectors, specifically for use at border crossings. To locate the source, we formulated an optimization problem where the objective function describes the least-squares difference between the actual and predicted detector measurements. The predicted measurements are calculated by solving the 3-D deterministic neutron transport equation given an estimated source position. The source position is updated using the steepest descent method, where the gradient of the objective function with respect to the source position is calculated using adjoint transport calculations. If the objective function is smaller than the convergence criterion, then the source position has been identified. This paper presents the derivation of the underlying equations in the algorithm as well as several computational test cases used to characterize its accuracy.

  18. Nonlinear Ultrasonic Techniques to Monitor Radiation Damage in RPV and Internal Components

    SciTech Connect

    Jacobs, Laurence; Kim, Jin-Yeon; Qu, Jisnmin; Ramuhalli, Pradeep; Wall, Joe

    2015-11-02

    The objective of this research is to demonstrate that nonlinear ultrasonics (NLU) can be used to directly and quantitatively measure the remaining life in radiation damaged reactor pressure vessel (RPV) and internal components. Specific damage types to be monitored are irradiation embrittlement and irradiation assisted stress corrosion cracking (IASCC). Our vision is to develop a technique that allows operators to assess damage by making a limited number of NLU measurements in strategically selected critical reactor components during regularly scheduled outages. This measured data can then be used to determine the current condition of these key components, from which remaining useful life can be predicted. Methods to unambiguously characterize radiation related damage in reactor internals and RPVs remain elusive. NLU technology has demonstrated great potential to be used as a material sensor – a sensor that can continuously monitor a material’s damage state. The physical effect being monitored by NLU is the generation of higher harmonic frequencies in an initially monochromatic ultrasonic wave. The degree of nonlinearity is quantified with the acoustic nonlinearity parameter, β, which is an absolute, measurable material constant. Recent research has demonstrated that nonlinear ultrasound can be used to characterize material state and changes in microscale characteristics such as internal stress states, precipitate formation and dislocation densities. Radiation damage reduces the fracture toughness of RPV steels and internals, and can leave them susceptible to IASCC, which may in turn limit the lifetimes of some operating reactors. The ability to characterize radiation damage in the RPV and internals will enable nuclear operators to set operation time thresholds for vessels and prescribe and schedule replacement activities for core internals. Such a capability will allow a more clear definition of reactor safety margins. The research consists of three tasks: (1

  19. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  20. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    NASA Astrophysics Data System (ADS)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  1. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  2. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  3. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  4. Organic liquid scintillation detector shape and volume impact on radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Paff, Marc G.; Clarke, Shaun D.; Pozzi, Sara A.

    2016-07-01

    We have developed and tested a radiation portal monitor using organic liquid scintillation detectors. In order to optimize our system designs, neutron measurements were carried out with three organic liquid scintillation detectors of different shapes and sizes, along with a 3He radiation portal monitor (RPM) as a reference. The three liquids tested were a 7.62 cm diameter by 7.62 cm length cylindrical active volume organic liquid scintillation detector, a 12.7 cm diameter by 12.7 cm length cylindrical active volume organic liquid scintillation detector, and a 25 cm by 25 cm by 10 cm "paddle" shaped organic liquid scintillation detector. Background and Cf-252 neutron measurements were recorded to allow for a comparison of neutron intrinsic efficiencies as well as receiver operating characteristics (ROC) curves between detectors. The 12.7 cm diameter cylindrical active volume organic liquid scintillation detector exhibited the highest intrinsic neutron efficiency (54%) of all three liquid scintillators. An ROC curve analysis for a heavily moderated Cf-252 measurement showed that using the 12.7 cm diameter by 12.7 cm length cylindrical active volume Eljen EJ309 organic liquid scintillation detector would result in the fewest needed detector units in order to achieve a near 100% positive neutron alarm rate while maintaining a better than 1 in 10,000 false alarm rate on natural neutron background. A small number of organic liquid scintillation detectors could therefore be a valid alternative to 3He in some RPM applications.

  5. A phase-space beam position monitor for synchrotron radiation.

    PubMed

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-07-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam's position and angle, and thus infer the electron beam's position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement.

  6. Management and Analysis of Radiation Portal Monitor Data

    SciTech Connect

    Rowe, Nathan C; Alcala, Scott; Crye, Jason Michael; Lousteau, Angela L

    2014-01-01

    Oak Ridge National Laboratory (ORNL) receives, archives, and analyzes data from radiation portal monitors (RPMs). Over time the amount of data submitted for analysis has grown significantly, and in fiscal year 2013, ORNL received 545 gigabytes of data representing more than 230,000 RPM operating days. This data comes from more than 900 RPMs. ORNL extracts this data into a relational database, which is accessed through a custom software solution called the Desktop Analysis and Reporting Tool (DART). DART is used by data analysts to complete a monthly lane-by-lane review of RPM status. Recently ORNL has begun to extend its data analysis based on program-wide data processing in addition to the lane-by-lane review. Program-wide data processing includes the use of classification algorithms designed to identify RPMs with specific known issues and clustering algorithms intended to identify as-yet-unknown issues or new methods and measures for use in future classification algorithms. This paper provides an overview of the architecture used in the management of this data, performance aspects of the system, and additional requirements and methods used in moving toward an increased program-wide analysis paradigm.

  7. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  8. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  9. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  10. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  11. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF CHILDREN...

  12. Radiation From Solar Activity | Radiation Protection | US EPA

    EPA Pesticide Factsheets

    2016-05-18

    Solar flares, coronal mass ejections (CMEs) and geomagnetic storms from the sun can send extreme bursts of ionizing radiation and magnetic energy toward Earth. Some of this energy is in the form ionizing radiation and some of the energy is magnetic energy.

  13. Adaptive Multichannel Radiation Sensors for Plant Parameter Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Remmler, Paul; Schuhmann, Gudrun; Lausch, Angela; Merbach, Ines; Assing, Martin; Mollenhauer, Olaf; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    Nutrients such as nitrogen are playing a key role in the plant life cycle. They are much needed for chlorophyll production and other plant cell components. Therefore, the crop yield is strongly affected by plant nutrient status. Due to the spatial and temporal variability of soil characteristics or swaying agricultural inputs the plant development varies within a field. Thus, the determination of these fluctuations in the plant development is valuable for a detection of stress conditions and optimization of fertilisation due to its high environmental and economic impact. Plant parameters play crucial roles in plant growth estimation and prediction since they are used as indicators of plant performance. Especially indices derived out of remote sensing techniques provide quantitative information about agricultural crops instantaneously, and above all, non-destructively. Due to the specific absorption of certain plant pigments, a characteristic spectral signature can be seen in the visible and IR part of the electromagnetic spectrum, known as narrow-band peaks. In an analogous manner, the presence and concentration of different nutrients cause a characteristic spectral signature. To this end, an adequate remote sensing monitoring concept is needed, considering heterogeneity and dynamic of the plant population and economical aspects. This work will present the development and field investigations of an inexpensive multichannel radiation sensor to observe the incoming and reflected specific parts or rather distinct wavelengths of the solar light spectrum on the crop and facilitate the determination of different plant indices. Based on the selected sensor wavelengths, the sensing device allows the detection of specific parameters, e.g. plant vitality, chlorophyll content or nitrogen content. Besides the improvement of the sensor characteristic, the simple wavelength adaption, and the price-performance ratio, the achievement of appropriate energy efficiency as well as a

  14. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  15. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  16. Fibre-optic gamma-flux monitoring in a fission reactor by means of Cerenkov radiation

    NASA Astrophysics Data System (ADS)

    Brichard, B.; Fernandez, A. F.; Ooms, H.; Berghmans, F.

    2007-10-01

    We demonstrate the possibility of using Cerenkov radiation to monitor the reactor power and the high energy gamma-ray flux in a high neutron flux reactor. The system employs a radiation-resistant pure silica glass fibre to measure the Cerenkov radiation in the infrared region (800-1100 nm). A model is proposed to determine the order of magnitude of the gamma-ray flux from the measurement. The method and concept can be extended to the monitoring of low reactor powers if Cerenkov radiation is measured in the 450-500 nm region by means of hydrogen-treated fibres.

  17. The Atmospheric Radiation Monitoring (ARM) Education Program: An Integrated Approach

    NASA Astrophysics Data System (ADS)

    Barnes, F.; Marsh, L. K.; Springer, M.; Talus, C. E.; Haruta, A.; Kloesel, K.; Zak, B. D.; Clements, W. E.

    2001-12-01

    The Atmospheric Radiation Measurement (ARM) Education and Outreach program supports ARM Operations at all three CART sites (North Slope of Alaska, Tropical West Pacific, and Southern Great Plains) in ways that are relevant to the needs of the communities and regions that host the ARM program sites. The goal of the education and outreach program is to develop basic science awareness, critical thinking skills, and improve environmental science capacity building for communities, teachers and students in ARM host communities and regions. This year, the primary goal is to extend the existing program to cover all three sites and to coordinate activities among the sites. In order to achieve this goal, we: o Bring awareness of the ARM program to host communities through public education relevant to the culture of the region; o Aid capacity building and community involvement in developing and implementing ARM education at each site; o Promote a broader knowledge of regional and international climate concerns for teachers and students through integration of ARM education across sites; o Assist access to ARM data for educational programs as technical resources permit, and to provide real time research experiences for students; and o Increase the knowledge base for teachers and students in basic science and critical thinking skills using curriculum-based enrichment activities in climate, climate change, and climate change effects relevant to each region.

  18. [Experimental research on the electromagnetic radiation immunity of a kind of portable monitor].

    PubMed

    Yuan, Jun; Xiao, Dongping; Jian, Xin

    2010-11-01

    The paper is focused on a kind of portable monitor that is widely used in military hospitals. In order to study the electromagnetic radiation immunity of the monitor, the experiments of electromagnetic radiation caused by radio frequency continuous wave in reverberation chamber and by ultra wide band (UWB) electromagnetic pulse have been done. The study results show that UWB electromagnetic pulse interferes observably the operating state of the monitor. It should be paid high attention to take protective measures. The monitor tested has some electromagnetic immunity ability for radio frequency continuous wave radiation. The frequent abnormal phenomena are baseline drift and waveform distortion. The electromagnetic sensitivity of the monitor is related to the frequency of interference source. The monitor tested is most sensitive to the frequency of 390 MHz.

  19. Photocatalytic Active Radiation Measurements and Use

    NASA Technical Reports Server (NTRS)

    Davis, Bruce A.; Underwood, Lauren W.

    2011-01-01

    Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated

  20. Community Radiation Monitoring Program. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect

    Cooper, E.N.

    1993-05-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE); the US Environmental Protection Agency (EPA); the Desert Research Institute (DRI), a division of the University and Community College System of Nevada and the Nuclear Engineering Laboratory of the University of Utah (UNEL). The twelfth year of the program began in the fall of 1991, and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The program began as an outgrowth of activities that occurred during the Three Mile Island incident in 1979. The local interest and public participation that took place there were thought to be transferrable to the situation at the NTS, so, with adaptations, that methodology was implemented for this program. The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the existing EPA monitoring network, and has since expanded to 19 locations in Nevada, Utah and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with people in the potentially impacted area has been the hiring and training of local citizens as station managers and program representatives in those selected communities in the offsite area. These managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  1. Review of active radiation shielding developments

    NASA Astrophysics Data System (ADS)

    Battiston, Roberto

    The radiation risk due to ionizing particles is a critical issue for long duration manned space missions. The ionization losses in the materials of the spacecraft provide passive shielding effectively stopping low energy particles. However, the estimates of the material required to obtain an acceptable level of radiation result in a prohibitive mass. Active electromagnetic shields, which deflect the charged particles, have been considered as an alternative solution. During the last 10 years the interest in this area has grown. A study of active magnetic shielding based on high-temperature superconductors (HTS) was initiated in an ESA study in 2010, continued in the context of the NASA Innovative Advanced Concepts (NIAC) programs (2011-2014) as well as within a dedicated FP7 EU program, SR2S (2013-2015). The aim of these effort was to provide a realistic evaluation of the possibilities based on current technology levels as well extrapolating to reasonable technology advances expected during the next decade. The different configurations considered were assessed in terms of their technical feasibility and shielding efficiency. We present here a status report of the ongoing work and some preliminary results.

  2. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  3. [A monitor of the biomechanical cardiac activity].

    PubMed

    Masloboev, Iu P; Okhritskiĭ, A A; Prilutskiĭ, D A; Selishchev, S V

    2004-01-01

    A monitor of the biomechanical cardiac activity is described, which was elaborated on the basis of the accelerometer sensor and sigma-delta ADC for the purpose of registering the ballistocardiograms and seismocardiograms. The device ensures a non-stop signal recording for as long as 8 hours with the data being preserved in an inbuilt memory. Data are fed to the computer through the USB port. An algorithm is suggested for recordings processing by using the neuron-net technologies.

  4. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  5. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  6. Activity monitor accuracy in persons using canes.

    PubMed

    Wendland, Deborah Michael; Sprigle, Stephen H

    2012-01-01

    The StepWatch activity monitor has not been validated on multiple indoor and outdoor surfaces in a population using ambulation aids. The aims of this technical report are to report on strategies to configure the StepWatch activity monitor on subjects using a cane and to report the accuracy of both leg-mounted and cane-mounted StepWatch devices on people ambulating over different surfaces while using a cane. Sixteen subjects aged 67 to 85 yr (mean 75.6) who regularly use a cane for ambulation participated. StepWatch calibration was performed by adjusting sensitivity and cadence. Following calibration optimization, accuracy was tested on both the leg-mounted and cane-mounted devices on different surfaces, including linoleum, sidewalk, grass, ramp, and stairs. The leg-mounted device had an accuracy of 93.4% across all surfaces, while the cane-mounted device had an aggregate accuracy of 84.7% across all surfaces. Accuracy of the StepWatch on the stairs was significantly less accurate (p < 0.001) when comparing surfaces using repeated measures analysis of variance. When monitoring community mobility, placement of a StepWatch on a person and his/her ambulation aid can accurately document both activity and device use.

  7. A historical fluence analysis of the radiation environment of the Chandra X-ray Observatory and implications for continued radiation monitoring

    NASA Astrophysics Data System (ADS)

    DePasquale, J. M.; Plucinsky, P. P.; Schwartz, D. A.

    2006-06-01

    Now in operation for over 6 years, the Chandra X-ray Observatory (CXO) has sampled a variety of space environments. Its highly elliptical orbit, with a 63.5 hr period, regularly takes the spacecraft through the Earth's radiation belts, the magnetosphere, the magnetosheath and into the solar wind. Additionally, the CXO has weathered several severe solar storms during its time in orbit. Given the vulnerability of Chandra's Charge Coupled Devices (CCDs) to radiation damage from low energy protons, proper radiation management has been a prime concern of the Chandra team. A comprehensive approach utilizing scheduled radiation safing, in addition to both on-board autonomous radiation monitoring and manual intervention, has proved successful at managing further radiation damage. However, the future of autonomous radiation monitoring on-board the CXO faces a new challenge as the multi-layer insulation (MLI) on its radiation monitor, the Electron, Proton, Helium Instrument (EPHIN), continues to degrade, leading to elevated temperatures. Operating at higher temperatures, the data from some EPHIN channels can become noisy and unreliable for radiation monitoring. This paper explores the full implication of the loss of EPHIN to CXO radiation monitoring by evaluating the fluences the CXO experienced during 40 autonomous radiation safing events from 2000 through 2005 in various hypothetical scenarios which include the use of EPHIN in limited to no capacity as a radiation monitor. We also consider the possibility of replacing EPHIN with Chandra's High Resolution Camera (HRC) for radiation monitoring.

  8. Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring

    PubMed Central

    Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    control and optimization, and cumulative patient- and anatomy-specific radiation exposure monitoring. Conclusion: Large-scale anatomy-specific radiation exposure data repositories can be created with high fidelity from existing digital image archives by using open-source informatics tools. ©RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12111822/-/DC1 PMID:22668563

  9. Environmental radiation monitoring in the Chernobyl exclusion zone--history and results 25 years after.

    PubMed

    Bondarkov, Mikhail D; Oskolkov, Boris Ya; Gaschak, Sergey P; Kireev, Sergey I; Maksimenko, Andrey M; Proskura, Nikolai I; Jannik, G Timothy; Farfán, Eduardo B

    2011-10-01

    This paper describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status. The history of development of the radiation monitoring research in the ChEZ is described also. This paper addresses the characteristics of radiation monitoring in the ChEZ, its major goals and objectives, and changes in these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  10. ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONE - HISTORY AND RESULTS 25 YEARS AFTER

    SciTech Connect

    Farfan, E.; Jannik, T.

    2011-10-01

    This article describes results of the radiation environmental monitoring performed in the Chernobyl Exclusion Zone (ChEZ) during the period following the 1986 Chernobyl Nuclear Power Plant accident. This article presents a brief overview of five comprehensive reports generated under Contract No. DE-AC09-96SR18500 (Washington Savannah River Company LLC, Subcontract No. AC55559N, SOW No. ON8778) and summarizes characteristics of the ChEZ and its post-accident status and the history of development of the radiation monitoring research in the ChEZ is described. This article addresses characteristics of the radiation monitoring in the ChEZ, its major goals and objectives, and changes of these goals and objectives in the course of time, depending on the tasks associated with the phase of mitigation of the ChNPP accident consequences. The results of the radiation monitoring in the ChEZ during the last 25 years are also provided.

  11. Method and apparatus to monitor a beam of ionizing radiation

    DOEpatents

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  12. Broadband radiation modes: estimation and active control.

    PubMed

    Berkhoff, Arthur P

    2002-03-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Because these particular radiation modes are optimum in a broadband sense, they are termed broadband radiation modes. Methods are given to obtain these modes from measured data. The broadband radiation modes are used for the design of an actuator array in a feedback control system to reduce the sound power radiated from a plate. Three methods for the design of the actuator are compared, taking into account the reduction of radiated sound power in the controlled frequency range, but also the possible increase of radiated sound power in the uncontrolled frequency range.

  13. Community Radiation Monitoring Program; Annual report, October 1, 1990--September 30, 1991

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1992-06-01

    The Community Radiation Monitoring Program is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (U of U). This eleventh year of the program began in the summer of 1991 and the work continues as an integral part of the DOE-sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which the DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of those efforts. One of the primary methods used to improve the communication link with the potentially impacted area has been the hiring and training of local citizens as Managers and program representatives in 19 communities adjacent to and downwind from the NTS. These Managers, active science teachers wherever possible, have succeeded, through their training, experience, community standing, and effort, in becoming a very visible, able and valuable asset in this link.

  14. Community radiation monitoring program. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Cooper, E.N.

    1994-08-01

    The Community Radiation Monitoring Program (CRMP) is a cooperative effort between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), the Desert Research Institute (DRI), a division of the University and Community College System of Nevada, and the Nuclear Engineering Laboratory of the University of Utah (UUNEL). The thirteenth year of this program began in the fall of 1992, and the work continues as an integral part of the DOE--sponsored long-term offsite radiological monitoring effort that has been conducted by EPA and its predecessors since the inception of nuclear testing at the Nevada Test Site (NTS). The CRMP began by enhancing and centralizing environmental monitoring and sampling equipment at 15 communities in the then-existing EPA monitoring network around the NTS, and has since expanded to 19 locations in Nevada, Utah, and California. The primary objectives of this program are still to increase the understanding by the people who live in the area surrounding the NTS of the activities for which DOE is responsible, to enhance the performance of radiological sampling and monitoring, and to inform all concerned of the results of these efforts. One of the primary methods used to improve the communication link with the people in the potentially impacted area has been the hiring and training of local citizens as Station Managers and program representatives in those selected communities in the offsite area. These mangers, active science teachers wherever possible, have succeeded through their training, experience, community standing, and effort in becoming a very visible, able, and valuable asset in this link.

  15. Visits by Nuclear-Powered Warships to Australian Ports: Report on Radiation Monitoring During 1992

    DTIC Science & Technology

    1993-09-01

    Groups which consist of members from the Australian Nuclear Science and Technology Organisation ( ANSTO ), the Health and Environmental authorities of...different ports; however, the Leader of the Radiation Monitoring Group is always a radiation protection officer from ANSTO . 13. The marine environmental

  16. Visits by Nuclear Powered Warships to Australian Ports. Report on Radiation Monitoring During 1993

    DTIC Science & Technology

    1994-05-01

    Technology Organisation ( ANSTO ), the Health and Environmental authorities of the host State or Territory and the Royal Australian Navy (RAN) undertake the...always a radiation protection officer from ANSTO . 13. The marine environmental monitoring program is a joint undertaking by the Australian Radiation

  17. Summary report on beam and radiation generation, monitoring and control (working group 6).

    SciTech Connect

    Power, J. G.; Gordon, D. F.; High Energy Physics; Naval Research Lab.

    2009-01-01

    The discussions of the working group on beam and radiation generation, monitoring, and control (working group 6) at the 2008 advanced accelerator concepts workshop are summarized. The discussions concerned electron injectors, phase space manipulation, beam diagnostics, pulse train generation, intense beam physics, and radiation generation.

  18. Environmental Radiation Monitoring During Visits of Nuclear Powered Warships to Australian Ports

    DTIC Science & Technology

    1988-05-01

    through the Australian Nuclear Science and Technology Organisation ( ANSTO ), is to ensure that an appropriately qualified officer is available for each...monitoring equipment, * Radiation Monitoring Handbook for Visits by Nuclear Powered Warships to Australian Ports, ANSTO , 1985 L.ai 6 c. communication

  19. Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar

    SciTech Connect

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

    2008-02-13

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  20. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    SciTech Connect

    Parodi, Katia

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  1. Performance Evaluation of an Intelligent Sensor Platform for Radiation Monitoring Applications

    SciTech Connect

    Nakazawa, Dante; Herman, Cedric; Russ, Bill; Huckins, Robert

    2015-07-01

    Accurate, rugged, and reliable radiation detection systems are important for area and environmental monitoring applications. The desire for spectroscopic capability has increased in monitoring aspects of the nuclear fuel cycle to provide fast characterization of the radiation profile of a situation, such as the planned or unplanned release of material. The reduction or elimination of having to conduct sampling for laboratory analysis can result in significant cost savings for an industry, government agency, or regulatory body. A new system, comprised of a NaI:Tl scintillator and a G-M tube, has been designed and tested, taking into account the following end-user requirements: ease-of-use, capability to network and supervise multiple units, compact form factor, low power consumption, versatility, and stability. The detector sizes were selected to accommodate a dose rate up to 1 Sv/hr. Several algorithms and analysis routines have been developed to incorporate these key needs without sacrificing on accuracy, dynamic range, nuclide identification, and sensitivity. This presentation will introduce the major hardware and software components of the platform, as well as the user interface and data analysis workflow. Key features of the hardware include an environmentally robust housing, low power signal processing electronics, patented LED-based gain stabilization, and an embedded processor for unattended instrument management and data analysis. New and improved algorithms for determining scintillator gamma dose rates, total integrated dose, and nuclide identification will be introduced. The two detector elements were modeled with MCNP and validated experimentally. The results of the radiological testing shall be presented including energy resolution, throughput, dose response, and minimum detectable activities. The dose response has been evaluated in simulations and with measurements to ensure accurate response with respect to energy spectrum of the dose field and

  2. Reply to comment by Rainer Facius et al. on "U.S. Government shutdown degrades aviation radiation monitoring during solar radiation storm"

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Gersey, Brad; Wilkins, Richard; Mertens, Chris; Atwell, William; Bailey, Justin

    2014-05-01

    The premise of this comment perpetuates an unfortunate trend among some radiation researchers to minimize potential risks to human tissue from low-radiation sources. In fact, this discussion on the risk uncertainties of low-dose radiation further illustrates the need for more measurements and a program of active monitoring, especially when solar eruptive events can substantially elevate the radiation environment. This debate also highlights the context of a bigger problem; i.e., how do we as professionals act with due diligence to take the immense body of knowledge of space weather radiation effects on human tissue and distil it into ideas that regulatory agencies can use to maximize the safety of a population at risk. The focus of our article on radiation risks due to solar energetic particle events starts with our best assessment of risks and is based on the body of scientific knowledge while, at the same time, erring on the side of public safety. The uncertainty inherent in our assessment is accepted and described with this same philosophy in mind.

  3. Real-Time Patient Radiation Dose Monitoring System Used in a Large University Hospital.

    PubMed

    Kim, Jungsu; Yoon, Yongsu; Seo, Deoknam; Kwon, Soonmu; Shim, Jina; Kim, Jungmin

    2016-10-01

    Radiation dose monitoring in medical imaging examination areas is mandatory for the reduction of patient radiation exposure. Recently, dose monitoring techniques that use digital imaging and communications in medicine (DICOM) dose structured reports (SR) have been introduced. The present paper discusses the setup of a radiation dose monitoring system based on DICOM data from university hospitals in Korea. This system utilizes the radiation dose data-archiving method of standard DICOM dose SR combined with a DICOM modality performed procedure step (MPPS). The analysis of dose data based on a method utilizing DICOM tag information is proposed herein. This method supports the display of dose data from non-dosimeter-attached X-ray equipment. This system tracks data from 62 pieces of equipment to analyze digital radiographic, mammographic, mobile radiographic, CT, PET-CT, angiographic, and fluorographic modalities.

  4. LISA-PF radiation monitor performance during the evolution of SEP events for the monitoring of test-mass charging

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Ao, X.; Fabi, M.; Laurenza, M.; Li, G.; Lobo, A.; Mateos, I.; Storini, M.; Verkhoglyadova, O.; Zank, G. P.

    2014-02-01

    Cosmic rays of solar and galactic origin at energies >100 MeV/n charge and induce spurious forces on free-floating test masses on board interferometers devoted to gravitational wave detection in space. LISA Pathfinder (LISA-PF), the technology testing mission for eLISA/NGO, will carry radiation monitors for on board test-mass charging monitoring. We present here the results of a simulation of radiation monitor performance during the evolution of solar energetic particle (SEP) events of different intensity. This simulation was carried out with the Fluka Monte Carlo package by taking into account for the first time both energy and spatial distributions of solar protons for the SEP events of 23 February 1956, 15 November 1960 and 7 May 1978. Input data for the Monte Carlo simulations was inferred from neutron monitor measurements. Conversely, for the SEP event of 13 December 2006 observed by the PAMELA experiment in space, we used the proton pitch angle distribution (PAD) computed from the Particle Acceleration and Transport in the Heliosphere (PATH) code. We plan to adopt this approach at the time of LISA-PF data analysis in order to optimize the correlation between radiation monitor observations and test-mass charging. The results of this work can be extended to the future space interferometers and other space missions carrying instruments for SEP detection.

  5. DOE Radiation Exposure Monitoring System (REMS) Data Update

    SciTech Connect

    Rao, Nimi; Hagemeyer, Derek

    2012-05-05

    This slide show presents the 2011 draft data for DOE occupational radiation exposure.Clarification is given on Reporting Data regarding: reporting Total Organ Dose (TOD); reporting Total Skin Dose (TSD), and Total Extremity Dose (TExD) ; and Special individuals reporting.

  6. Nuclear Technology Series. Course 20: Radiation Monitoring Techniques (Radiochemical).

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  7. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  8. Radiation levels in cyclotron-radiochemistry facility measured by a novel comprehensive computerized monitoring system

    NASA Astrophysics Data System (ADS)

    Mishani, E.; Lifshits, N.; Osavistky, A.; Kaufman, J.; Ankry, N.; Tal, N.; Chisin, R.

    1999-04-01

    Radiation levels in a cyclotron-radiochemistry facility were measured during the production of commonly used PET radiopharmaceuticals by a comprehensive computerized monitoring system. The system consists of three major components: on-line radiation monitoring channels, an area control unit, and a gas waste management unit. During production the radiation levels were measured in the cyclotron vault, inside automatic chemistry production and research shielded cells, in the radiochemistry room, in the gas waste decay tank, in the chimney filters, and at the top of the cells chimney. Each detector was calibrated in a known radiation field, and a special detector dead time correction was performed in order to achieve detected signal-to-radiation linearity for the Geiger tubes located in the radiochemistry production and research cells. During production of C-11 and O-15 PET radiopharmaceuticals, high radiation levels were measured in the gas waste decay tank (240 and 80 mR/h, respectively). In contrast, the radiation levels at the chimney filters and at the top of the cells chimney did not exceed the International Atomic Energy Agency (IAEA) Drive Air Concentration (DAC) recommended for C-11 or O-15. During production of FDG, high radiation levels were measured at the chimney filters, however the radiation level at the top of the chimney (3.7 μCi/m 3) did not exceed the F-18 DAC recommendation (27 μCi/m 3). Low radiation levels of approximately 0.5-1 mR/h were measured in the radiochemistry room during production of PET radiopharmaceuticals. In the cyclotron vault, 2 min after bombardment the radiation levels at 2 m from the cyclotron decreased to 1-2 mR/h. The addition of a gas waste decay system to computerized monitoring channels located near each strategic point of the site allows for a comprehensive survey of the radiochemical processes.

  9. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    SciTech Connect

    Yussup, F. Ibrahim, M. M. Soh, S. C.; Hasim, H.; Haris, M. F.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-22

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  10. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-01

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  11. Sample size allocation for food item radiation monitoring and safety inspection.

    PubMed

    Seto, Mayumi; Uriu, Koichiro

    2015-03-01

    The objective of this study is to identify a procedure for determining sample size allocation for food radiation inspections of more than one food item to minimize the potential risk to consumers of internal radiation exposure. We consider a simplified case of food radiation monitoring and safety inspection in which a risk manager is required to monitor two food items, milk and spinach, in a contaminated area. Three protocols for food radiation monitoring with different sample size allocations were assessed by simulating random sampling and inspections of milk and spinach in a conceptual monitoring site. Distributions of (131)I and radiocesium concentrations were determined in reference to (131)I and radiocesium concentrations detected in Fukushima prefecture, Japan, for March and April 2011. The results of the simulations suggested that a protocol that allocates sample size to milk and spinach based on the estimation of (131)I and radiocesium concentrations using the apparent decay rate constants sequentially calculated from past monitoring data can most effectively minimize the potential risks of internal radiation exposure.

  12. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  13. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study

    PubMed Central

    Leuraud, Klervi; Richardson, David B; Cardis, Elisabeth; Daniels, Robert D; Gillies, Michael; O'Hagan, Jacqueline A; Hamra, Ghassan B; Haylock, Richard; Laurier, Dominique; Moissonnier, Monika; Schubauer-Berigan, Mary K; Thierry-Chef, Isabelle; Kesminiene, Ausrele

    2015-01-01

    Summary Background There is much uncertainty about the risks of leukaemia and lymphoma after repeated or protracted low-dose radiation exposure typical of occupational, environmental, and diagnostic medical settings. We quantified associations between protracted low-dose radiation exposures and leukaemia, lymphoma, and multiple myeloma mortality among radiation-monitored adults employed in France, the UK, and the USA. Methods We assembled a cohort of 308 297 radiation-monitored workers employed for at least 1 year by the Atomic Energy Commission, AREVA Nuclear Cycle, or the National Electricity Company in France, the Departments of Energy and Defence in the USA, and nuclear industry employers included in the National Registry for Radiation Workers in the UK. The cohort was followed up for a total of 8·22 million person-years. We ascertained deaths caused by leukaemia, lymphoma, and multiple myeloma. We used Poisson regression to quantify associations between estimated red bone marrow absorbed dose and leukaemia and lymphoma mortality. Findings Doses were accrued at very low rates (mean 1·1 mGy per year, SD 2·6). The excess relative risk of leukaemia mortality (excluding chronic lymphocytic leukaemia) was 2·96 per Gy (90% CI 1·17–5·21; lagged 2 years), most notably because of an association between radiation dose and mortality from chronic myeloid leukaemia (excess relative risk per Gy 10·45, 90% CI 4·48–19·65). Interpretation This study provides strong evidence of positive associations between protracted low-dose radiation exposure and leukaemia. Funding Centers for Disease Control and Prevention, Ministry of Health, Labour and Welfare of Japan, Institut de Radioprotection et de Sûreté Nucléaire, AREVA, Electricité de France, National Institute for Occupational Safety and Health, US Department of Energy, US Department of Health and Human Services, University of North Carolina, Public Health England. PMID:26436129

  14. Active chaotic excitation for bolted joint monitoring

    NASA Astrophysics Data System (ADS)

    Fasel, Timothy R.; Todd, Michael D.; Park, Gyuhae

    2006-03-01

    Recent research has shown that high frequency chaotic excitation and state space reconstruction may be used to identify incipient damage (loss of preload) in a bolted joint. In this study, a new experiment is undertaken with updated test equipment, including a piezostack actuator that allows for precise control of bolt preload. The excitation waveform is applied to a macro-fiber composite (MFC) patch that is bonded to the test structure and is sensed in an active manner using a second MFC patch. A novel prediction error algorithm, based on comparing filtered properties of the guided chaotic waves, is used to determine the damage state of a frame structure and is shown to be highly sensitive to small levels of bolt preload loss. The performance of the prediction error method is compared with standard structural health monitoring damage features that are based on time series analysis using auto-regressive (AR) models.

  15. Photoacoustic monitoring of tumor and normal tissue response to radiation

    PubMed Central

    Rich, Laurie J.; Seshadri, Mukund

    2016-01-01

    Hypoxia is a recognized characteristic of tumors that influences efficacy of radiotherapy (RT). Photoacoustic imaging (PAI) is a relatively new imaging technique that exploits the optical characteristics of hemoglobin to provide information on tissue oxygenation. In the present study, PAI based measures of tumor oxygen saturation (%sO2) were compared to oxygen-enhanced magnetic resonance imaging (MRI) measurements of longitudinal relaxation rate (R1 = 1/T1) and ex-vivo histology in patient derived xenograft (PDX) models of head and neck cancer. PAI was utilized to assess early changes (24 h) in %sO2 following RT and chemoRT (CRT) and to assess changes in salivary gland hemodynamics following radiation. A significant increase in tumor %sO2 and R1 was observed following oxygen inhalation. Good spatial correlation was observed between PAI, MRI and histology. An early increase in %sO2 after RT and CRT detected by PAI was associated with significant tumor growth inhibition. Twenty four hours after RT, PAI also detected loss of hemodynamic response to gustatory stimulation in murine salivary gland tissue suggestive of radiation-induced vascular damage. Our observations illustrate the utility of PAI in detecting tumor and normal tissue hemodynamic response to radiation in head and neck cancers. PMID:26883660

  16. Results from the first five years of radiation exposure monitoring aboard the ISS

    NASA Astrophysics Data System (ADS)

    Golightly, M.; Semones, E.; Shelfer, T.; Johnson, S.; Zapp, N.; Weyland, M.

    NASA uses a variety of radiation monitoring devices aboard the International Space Station as part of its space flight radiation health program. This operational monitoring system consists of passive dosimeters, internal and external charged particle telescopes, and a tissue equivalent proportional counter (TEPC). Sixteen passive dosimeters, each consisting of TLD-100, TLD-300, TLD-600, and TLD-700 chips in a small acrylic holder, are placed throughout the habitable volume of the ISS. The TEPC and internal charged particle telescopes are portable and can be relocated to multiple locations in the Lab Module or Service Module. The external charged particle telescopes are mounted to a fixed boom attached to the starboard truss. Passive dosimeters were used in eleven monitoring periods over the period 20 May 1999 to 04 May 2003. Over this period exposure rates from TLD-100 measurements ranged from 0.120-0.300 mGy/d. Exposure rates inside the habitable volume are non-uniform: exposures vary by a factor of ˜ 1.7 from minimum to maximum, with the greatest non-uniformity occurring in the Lab Module. Highest daily exposure rates are near the window in the Lab Module, inside the Joint Airlock, and the sleep stations inside the Service Module, while the lowest rates occur inside the polyethylene-lined Temporary Sleep Station in the Lab Module, adjacent to the port ``arm'' of Node 1, and the aft end of the Service Module. The minimum exposure rates as measured by the passive dosimeters occurred in the spring of 2002, very close to the solar F10.7 emission maximum (Feb 2002), and two years after the sunspot maximum (Apr 2000). Exposure rates have since gradually increased as the sun's activity transitions towards solar minimum conditions. Since 01 Jun 2002, dose rates measured by the IV-CPDS, estimated from the count rate in first detector of the telescope's stack, ranged from ˜ 0.170-0.390 mGy/d. The maximum measured dose rate occurred 28 Oct 2003 during the ``Halloween

  17. Monitoring radiation dose to the hands in nuclear medicine: location of dosemeters.

    PubMed

    Williams, E D; Laird, E E; Forster, E

    1987-07-01

    The relatively high radiation dose which can be received by the hands of staff in nuclear medicine departments means that in many departments it is necessary to monitor such doses. A convenient method is to use a TLD sachet in a plastic strip around a finger. This study was done to determine whether a dosemeter worn at the base of the middle finger was adequate to monitor the dose to the surface of the whole hand. Dosemeters were worn at the finger tips, finger base and palm of both hands, on two people while preparing and dispensing radio-pharmaceuticals, and two others while giving injections using syringe shields. The pattern of distribution of radiation does to the hands was similar for all workers and for both types of work. A single, convenient site (base of middle finger) may therefore be used for monitoring radiation dose to the hand.

  18. Monitoring sources of nuclear radiation in space 1985-1987 observations, revision

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Kurfess, J. D.; Messina, D. C.

    1989-05-01

    The gamma-ray spectrometer (GRS) on NASA's Solar Maximum Mission satellite (SMM) has been monitoring Soviet nuclear reactors in space since 1980 when it detected radiation from COSMOS 1176. Direct observations of gamma radiation were made within about 500 km when the RORSATS (Radar Ocean Reconnaissance Satellites) were not occulted by a significant amount of material in SMM. Indirect observations were also made up to distances in excess of a few thousand kilometers. These observations were made when positrons and electrons produced in the outer layers of the reactor powered spacecraft reached SMM after being stored in the Earth's magnetic field. Details are provided of SMM's observations of the four RORSATS launched in 1985 and 1986, and are compared with measurements made of the seven RORSATS detected from 1980 to 1984. The average intensities from all the eleven reactor-powered satellites are consistent with each other, after correcting for distance of separation. The observed increase in the rate of distant detections of positrons from 1980 to 1984 is due to the decreasing atmospheric density above a few hundred km in the transition from maximum to minimum solar activity. The rate did not change significantly between 1984 and 1986.

  19. Open-source radiation exposure extraction engine (RE3) for dose monitoring

    NASA Astrophysics Data System (ADS)

    Weisenthal, Samuel; Folio, Les; Derderian, Vana; Summers, Ronald M.; Yao, Jianhua

    2015-03-01

    Our goal was to investigate the feasibility of an open-source, PACS-integrated, DICOM header-based tool that automatically provides granular data for monitoring of CT radiation exposure. To do so, we constructed a radiation exposure extraction engine (RE3) that is seamlessly connected to the PACS using the digital imaging and communications in medicine (DICOM) toolkit (DCMTK) and runs on the fly within the workflow. We evaluated RE3's ability to determine the number of acquisitions and calculate the exposure metric dose length product (DLP) by comparing its output to the vendor dose pages. RE3 output closely correlated to the dose pages for both contiguously acquired exams (R2 =0.9987) and non-contiguously acquired exams (R2 =0.9994). RE3 is an open-source, automated radiation monitoring program to provide study-, series-, and slice-level radiation data.

  20. Modern Methods of Real-Time Gamma Radiation Monitoring for General Personal Protection

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Arshak, A.; Vaseashta, Ashok

    Real-time radiation detectors become an essential part of emergency personnel who may have to respond to unknown accidents, incidents or terrorist attacks, which could involve radioactive material. More and more ordinary citizens are interested in personal radiation protection as well. Reasons include lost sources, nuclear industrial accidents, nuclear or radiological terrorism and the possibility of nuclear weapons being used in a war. People want to have the ability to measure it for themselves and they want to be notified when the radiation levels are increased. To meet this demand, considerable research into new sensors is underway, including efforts to enhance the sensor performance through both the material properties and manufacturing technologies. Deep understanding of physical properties of the materials under the influence of radiation exposure is vital for the effective design of dosimeter devices. Detection of radiation is based on the fact that both the electrical and the optical properties of the materials undergo changes upon the exposure to ionizing radiation. It is believed that radiation causes structural defects. The influence of radiation depends on both the dose and the parameters of the films including their thickness: the degradation is more severe for the higher dose and the thinner films. This paper presents overview of modern methods of real-time gamma radiation monitoring for personal protection of radiation workers and general public and suggests further developments in this area.

  1. Individual monitoring for external radiation at accelerator facilities.

    PubMed

    Tanner, R J; Hager, L G

    2011-07-01

    Individual monitoring at accelerator facilities is discussed, within the framework set out by the International Commission on Radiological Protection and with reference to the implementation of the recommendations of that body within the European Basic Safety Standards. Legislation in other parts of the world may differ, but a worldwide perspective on this subject would be too exhaustive. The fields at accelerator facilities are contrasted in terms of particle type and energy with those encountered at more conventional sites within the nuclear fuel cycle, medical applications and general industry. The implications for individual monitoring are discussed in relation to the dose quantities for these accelerator fields and also with respect to the personal dosemeters options.

  2. On the role of radiation monitors on board LISA Pathfinder and future space interferometers

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Laurenza, M.; Lobo, A.; Mateos, I.; Storini, M.

    2012-05-01

    LISA (Laser Interferometer Space Antenna) and its precursor mission LISA Pathfinder (LISA-PF) will carry particle monitors for noise diagnostics. It was proposed to build and place radiation detectors on board the ASTROD missions as well. We present here a study of the solar energetic particle (SEP) events that the LISA-PF radiation monitors are able to detect above the galactic cosmic-ray (GCR) background predicted at the time of the mission data taking in 2015. In order to optimize the correlation between radiation monitor measurements and gravitational sensor test-mass charging, the energy threshold for particles traversing both detectors should be approximately the same. In LISA-PF, the radiation monitor particle energy cut-off was conservatively set at 75 MeV per nucleon (MeV/n) for protons and ion normal incidence, while the minimum energy of the same particles reaching the test masses is 100 MeV/n. We find that SEP events detectable on LISA-PF are characterized by peak fluxes and fluences at energies >75 MeV/n larger than about 45%, on average, with respect to those at energies >100 MeV/n. We conclude that for an accurate correlation between radiation monitor count rates and test-mass charging, it is mandatory to benefit from absolute flux measurements of both galactic and high-energy solar particles provided by experiments carrying magnetic spectrometers in space at the time of LISA-PF (PAMELA, AMS). On the other hand, the role of the radiation detectors on board LISA-PF is crucial allowing for SEP event onset and dynamics monitoring.

  3. RST (Robust Satellite Techniques) analysis for monitoring earth emitted radiation in seismically active area of California (US): a long term (2006-2011) analysis of GOES-W/IMAGER thermal data

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Armandi, B.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2014-12-01

    More than ten years of applications of the RST (Robust Satellite Techniques) methodology for monitoring earthquake prone area by using satellite TIR(Thermal InfraRed) data, have shown the ability of this approach to discern anomalous TIR signals possibly associated to seismic activity from normal fluctuations of Earth's thermal emission related to other causes independent on the earthquake occurrence. The RST approach was already tested in the case of tens of earthquakes occurred in different continents (Europe, Asia, America and Africa), in various geo-tectonic settings (compressive, extensional and transcurrent) and with a wide range of magnitudes (from 4.0 to 7.9), by analyzing time series of TIR images acquired by sensors on board of polar (like NOAA/AVHRR, EOS/MODIS) and geostationary satellites (like MFG/MVIRI, MSG/SEVIRI, GOES/IMAGER). In addition RST method has been independently tested by several researchers around the world as well as in the framework of several projects funded by different national space agencies (like the Italian ASI, the U.S. NASA and the German DLR) and recently during the EC-FP7 projectPRE-EARTHQUAKES (www.pre-earthquakes.org),which was devoted to study the earthquake precursors using satellite techniques. This paper will show the results of RST analysis on 6 years (2006-2011)of TIR satellite record collected by GOES-W/IMAGER over Southern part United State (California).Results will be discussed particularly in the prospective of an integrated approach devoted to systematically collectand analyze in real-time, independent observations for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  4. Proton Irradiation Facility and space radiation monitoring at the Paul Scherrer Institute.

    PubMed

    Hajdas, W; Zehnder, A; Adams, L; Buehler, P; Harboe-Sorensen, R; Daum, M; Nickson, R; Daly, E; Nieminen, P

    2001-01-01

    The Proton Irradiation Facility (PIF) has been designed and constructed, in cooperation between Paul Scherrer Institute (PSI) and European Space Agency (ESA), for terrestrial proton testing of components and materials for spacecraft. Emphasis has been given to generating realistic proton spectra encountered by space-flights at any potential orbit. The facility, designed in a user-friendly manner, can be readily adapted to the individual requirements of experimenters. It is available for general use serving also in testing of radiation monitors and for proton experiments in different scientific disciplines. The Radiation Environment Monitor REM has been developed for measurements of the spacecraft radiation conditions. Two instruments were launched into space, one into a Geo-stationary Transfer Orbit on board of the STRV-1b satellite and one into a Low Earth Orbit on the Russian MIR station. The next generation of monitors (SREMs--Standard REMs) is currently under development in partnership of ESA, PSI and Contraves-Space. They will operate both as minimum intrusive monitors, which provide radiation housekeeping data and alert the spacecraft when the radiation level crosses allowed limits and as small scientific devices measuring particle spectra and fluxes. Future missions as e.g. INTEGRAL, STRV-1c and PROBA will be equipped with new SREMs.

  5. Frequency and quality of radiation monitoring of construction workers at two gaseous diffusion plants.

    PubMed

    Bingham, Eula; Ringen, Knut; Dement, John; Cameron, Wilfrid; McGowan, William; Welch, Laura; Quinn, Patricia

    2006-09-01

    Construction workers were and are considered temporary workers at many construction sites. Since World War II, large numbers of construction workers were employed at U.S. Department of Energy nuclear weapons sites for periods ranging from a few days to over 30 years. These workers performed tasks during new construction and maintenance, repair, renovation, and demolition of existing facilities. Such tasks may involve emergency situations, and may entail opportunities for significant radiation exposures. This paper provides data from interviews with more than 750 construction workers at two gaseous diffusion plants (GDPs) at Paducah, Kentucky, and Portsmouth, Ohio regarding radiation monitoring practices. The aim was to determine the extent to which workers believed they were monitored during tasks involving potential radiation exposures. The adequacy of monitoring practices is important for two reasons: (a) Protecting workers from exposures: Construction workers were employed by sub-contractors, and may frequently been excluded from safety and health programs provided to permanent employees; and (b) Supporting claims for compensation: The Energy Employees Occupational Illness Compensation Program Act (EEOICPA) requires dose reconstruction of radiation exposures for most workers who file a claim regarding cancer. The use of monitoring data for radiation to qualify a worker means that there should be valid and complete monitoring during the work time at the various nuclear plants or workers may be unfairly denied compensation. The worker interviews from Paducah and Portsmouth were considered especially useful because these sites were designated as Special Exposure Cohorts (SECs) and the workers did not have to have a dose reconstruction to qualify for compensation for most cancers. Therefore, their responses were less likely to be affected by compensation concerns. Interview questions included asking for information regarding whether monitoring was performed, how

  6. Data Quality Objectives Supporting the Environmental Direct Radiation Monitoring Program for the INL Site

    SciTech Connect

    Lundell, J. F.; Magnuson, S. O.; Scherbinske, P.; Case, M. J.

    2015-07-01

    This document presents the development of the data quality objectives (DQOs) for the Idaho National Laboratory (INL) Environmental Direct Radiation Monitoring Program and follows the Environmental Protection Agency (EPA) DQO process (EPA 2006). This document also develops and presents the logic to determine the specific number of direct radiation monitoring locations around INL facilities on the desert west of Idaho Falls and in Idaho Falls, at locations bordering the INL Site, and in the surrounding regional area. The selection logic follows the guidance from the Department of Energy (DOE) (2015) for environmental surveillance of DOE facilities.

  7. Cytogenetic monitoring of nuclear workers occupationally exposed to ionising radiation.

    PubMed

    Gricienė, B; Slapšytė, G; Mierauskienė, J

    2014-06-01

    Chromosome aberration (CA) analysis using Giemsa techniques was performed in blood lymphocytes of 84 nuclear workers with cumulative doses of 1-632 mSv during employment periods of 1-25 y. The control group comprised 82 healthy male donors. An estimated CA frequency in the total radiation-exposed group was significantly higher when compared with the controls (2.27 vs. 1.76 CA/100 cells, p < 0.05). CA analyses revealed no significant differences between workers with external gamma radiation exposure and the controls (1.60 vs. 1.76 CA/100 cells, p > 0.05). However, significant increase in the total CA frequency was determined in workers with additional internal exposure (2.54 CA/100 cells, p < 0.05) and those with registered neutron doses (2.95 CA/100 cells, p < 0.01). No correlation was found between CA frequency and occupational exposure dose. Borderline significant correlation was found between duration of employment and total CA (r = 0.218, p = 0.046, Fig. 2) and chromosome-type aberration (r = 0.265, p = 0.015) frequency.

  8. New Advanced Source Identification Algorithm (ASIA-NEW) for radiation monitors with plastic detectors

    SciTech Connect

    Stavrov, Andrei; Yamamoto, Eugene

    2015-07-01

    Radiation Portal Monitors (RPM) with plastic detectors represent the main instruments used for primary border (customs) radiation control. RPM are widely used because they are simple, reliable, relatively inexpensive and have a high sensitivity. However, experience using the RPM in various countries has revealed the systems have some grave shortcomings. There is a dramatic decrease of the probability of detection of radioactive sources under high suppression of the natural gamma background (radiation control of heavy cargoes, containers and, especially, trains). NORM (Naturally Occurring Radioactive Material) existing in objects under control trigger the so-called 'nuisance alarms', requiring a secondary inspection for source verification. At a number of sites, the rate of such alarms is so high it significantly complicates the work of customs and border officers. This paper presents a brief description of new variant of algorithm ASIA-New (New Advanced Source Identification Algorithm), which was developed by the authors and based on some experimental test results. It also demonstrates results of different tests and the capability of a new system to overcome the shortcomings stated above. New electronics and ASIA-New enables RPM to detect radioactive sources under a high background suppression (tested at 15-30%) and to verify the detected NORM (KCl) and the artificial isotopes (Co-57, Ba-133 and other). New variant of ASIA is based on physical principles and does not require a lot of special tests to attain statistical data for its parameters. That is why this system can be easily installed into any RPM with plastic detectors. This algorithm was tested for 1,395 passages of different transports (cars, trucks and trailers) without radioactive sources. It also was tested for 4,015 passages of these transports with radioactive sources of different activity (Co-57, Ba-133, Cs-137, Co-60, Ra-226, Th-232) and these sources masked by NORM (K-40) as well. (authors)

  9. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  10. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  11. An Automatic Tremor Activity Monitoring System (TAMS)

    NASA Astrophysics Data System (ADS)

    Kao, H.; Thompson, P. J.; Rogers, G.; Dragert, H.; Spence, G.

    2006-12-01

    We have developed an algorithm that quantitatively characterizes the level of seismic tremors from recorded seismic waveforms. For each hour of waveform at a given station, the process begins with the calculation of scintillation index and moving average with various time lengths. The scintillation index (essentially the `normalized variance of intensity of the signal') is adapted from the studies of pulses in radio waves and is an efficient tool to identify the energy bursts of tremor signals. Both scintillation index and moving average values are fed into a series of logic gates to determine if tremor activity exists. This algorithm is implemented in the Tremor Activity Monitoring System (TAMS) to provide automatic early alerts for episodic tremor and slip (ETS) events in the northern Cascadia margin. Currently, TAMS retrieves the digital waveforms recorded during the previous day from the Canadian National Seismographic Network (CNSN) archive server at 1 AM every morning. The detecting process is repeated for all stations and hours to determine the level of tremor activity of the previous day. If a sufficient number of stations within a radius of 100 km are determined to have tremor patterns and coherent tremor arrivals can be found at more than 3 stations, TAMS automatically sends out alert emails to a list of subscribers with a figure summarizing the hours and locations of coherent tremors. TAMS outputs are very consistent with the work done by visual inspection, especially for major ETS events. It is straightforward to configure TAMS into a near-real-time system that can send out hourly (or shorter) reports if necessary.

  12. High-energy radiation from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek

    1994-01-01

    Two recent findings concerning high-energy radiation properties of active galactic nuclei -- discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars -- seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.

  13. Visits by Nuclear Powered Warships to Australian Ports; Report on Radiation Monitoring During 1986

    DTIC Science & Technology

    1988-01-01

    is undertaken by groups made up from the Australian Nuclear Science and Technical Organisation ( ANSTO ). the health and environmental authorities of...Monitoring Group is always a radiation protection officer of the ANSTO . 13. The marine environmental monitoring program is a joint undertaking by the...Centre and was manned continuously for the period of the visit. TRAINING 14. A refresher course was conducted in January by ANSTO staff for an RAN

  14. Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring

    NASA Astrophysics Data System (ADS)

    Watson, Mara Mae

    An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test

  15. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  16. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  17. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing.

  18. The Highly Miniaturised Radiation Monitor: Concept, Design and Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Bogdanova, Yulia; Irshad, Ranah; Griffin, Doug; Araujo, Henrique; Mitchell, Edward; Turchetta, Renato; Woodward, Simon; Velagapudi, Bindu; Menicucci, Alessandra; Daly, Eamonn

    2015-04-01

    The high energy plasma population, i.e. inside the radiation belts and within solar energetic particle events, is extremely damaging to satellite electronics and human health. Therefore monitoring, understanding of the physics behind and prediction of space radiation strength is a crucial aspect of space weather research and applications. In addition, the availability of good quality housekeeping data on the ionizing radiation environment in and around spacecraft systems is recognised as highly desirable for the efficient design and operation of spacecraft. Yet the engineering and economic costs of integrating such sensors into flight systems are a serious barrier to their widespread adoption. In light of this, the Highly Miniaturised Radiation Monitor (HMRM) has been developed by the Science and Technology Facilities Council and Imperial College London within the framework of an ESA technology development contract. The device is significantly smaller and lighter than current space technology with modest power requirements (1W) meaning that it has negligible impact on the spacecraft's overall resources. Furthermore, its simple electrical and data interfaces result in minimal integration costs. The HMRM is designed as a real-time radiation monitor with provides additional scientific data sets, such as reconstructed particle spectra of high-energy plasma population. The instrument energy coverage of 35 keV - 6 MeV for electrons and 600 keV - 500 MeV for protons makes the HMRM an ideal instrument to monitor and study the radiation environment of near-Earth space and to be widely used for space weather monitoring and research.

  19. A System for Monitoring Posture and Physical Activity Using Accelerometers

    DTIC Science & Technology

    2007-11-02

    Abstract- Accelerometers can be used to monitor physical activity in the home over prolonged periods. We describe a novel system for...processing schema in which these parameters are extracted is described. Keywords - physical activity , accelerometers, congestive heart failure, chronic...When monitoring the condition of patients with neurodegenerative or chronic diseases, a knowledge of their body movement and physical activity

  20. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    SciTech Connect

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  1. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    NASA Astrophysics Data System (ADS)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  2. Earth Radiation Array (ERA). [for climate research and earth radiation budget monitoring

    NASA Technical Reports Server (NTRS)

    Hoffman, James W.; Grush, Ronald C.; Arking, Albert

    1989-01-01

    The NASA's Earth Radiation Array (ERA), which is currently being developed to provide calibrated radiation measurements from various areas of the earth for at least 11 years, i.e., one solar cycle, contains a mosaic array of detectors which measures the outgoing radiation of the earth in all directions without the need for mechanical scanning. The angular measurements obtained by the ERA over set intervals of time will be integrated to produce total reflected and emitted flux values from each of the target areas. The ERA is designed as a relatively small instrument (less than 1-cu-m volume and 100-kg mass), which can be included in the payload complement of many different satellites. The key requirement of the ERA is the ability to operate for up to 11 years continuously and without failure.

  3. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  4. Operational radiation protection for astronauts and cosmonauts and correlated activities of ESA Medical Operations

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas; Reitz, Guenther; Facius, Rainer; Fuglesang, Christer; Reiter, Thomas; Damann, Volker; Tognini, Michel

    2010-04-01

    Since the early times of human spaceflight radiation has been, besides the influence of microgravity on the human body, recognized as a main health concern to astronauts and cosmonauts. The radiation environment that the crew experiences during spaceflight differs significantly to that found on earth due to particles of greater potential for biological damage. Highly energetic charged particles, such as protons, helium nuclei ("alpha particles") and heavier ions up to iron, originating from several sources, as well as protons and electrons trapped in the Earth's radiation belts, are the main contributors. The exposure that the crew receives during a spaceflight significantly exceeds exposures routinely received by terrestrial radiation workers. The European Space Agency's (ESA) Astronaut Center (EAC) in Cologne, Germany, is home of the European Astronaut Corps. Part of the EAC is the Crew Medical Support Office (CMSO or HSF-AM) responsible for ensuring the health and well-being of the European Astronauts. A sequence of activities is conducted to protect astronauts and cosmonauts health, including those aiming to mitigate adverse effects of space radiation. All health related activities are part of a multinational Medical Operations (MedOps) concept, which is executed by the different Space Agencies participating in the human spaceflight program of the International Space Station (ISS). This article will give an introduction to the current measures used for radiation monitoring and protection of astronauts and cosmonauts. The operational guidelines that shall ensure proper implementation and execution of those radiation protection measures will be addressed. Operational hardware for passive and active radiation monitoring and for personal dosimetry, as well as the operational procedures that are applied, are described.

  5. Operating a Microwave Radiation Detection Monitor. Module 10. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on operating a microwave radiation detection monitor. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) testing the…

  6. A simple convenient biological dosimeter for monitoring solar UV-B radiation

    SciTech Connect

    Wang, T.C. )

    1991-05-31

    The use of dry Bacillus subtilis spores as a biological dosimeter for the monitoring of solar UV-B (290-330 nm) radiation was described. Our field tests had supported the utility of this dosimeter as a reproducible and reliable sunlight dosimeter.

  7. Accuracy of soil water content estimates from gamma radiation monitoring data

    NASA Astrophysics Data System (ADS)

    Mao, Jie; Huisman, Johan Alexander; Reemt Bogena, Heye; Vereecken, Harry

    2016-04-01

    Terrestrial gamma radiation is known to be sensitive to soil water content, and could be promising for soil water content determination because of the availability of continental-scale gamma radiation monitoring networks. However, the accuracy of soil water content estimates that can be obtained from this type of data is currently unknown. Therefore, the aim of this study is to assess the accuracy of soil water content estimates from measured time series of gamma radiation. For this, four gamma radiation monitoring stations were each equipped with four soil water content sensors at 5 and 15 cm depth to provide reference soil water content measurements. The contributions of terrestrial radiation and secondary cosmic radiation were separated from the total amount of measured gamma radiation by assuming that the long-term contribution of secondary cosmic radiation was constant, and that variations were related to changes in air pressure and incoming neutrons. In addition, precipitation effects related to atmospheric washout of radon progenies to the ground that cause an increase of gamma radiation were considered by excluding time periods with precipitation and time periods less than three hours after precipitation. The estimated terrestrial gamma radiation was related to soil water content using an exponential function with two fit parameters. For daily soil water content estimates, the goodness of fit ranged from R2= 0.21 to 0.48 and the RMSE ranged from 0.048 to 0.117 m3m-3. The accuracy of the soil water content estimates improved considerably when a weekly resolution was used (RMSE ranged from 0.029 to 0.084 m3m-3). Overall, these results indicate that gamma radiation monitoring data can be used to obtain useful soil water content information. The remaining differences between measured and estimated soil water content can at least partly be explained by the fact that the terrestrial gamma radiation is strongly determined by the upper few centimeters of the soil

  8. Novel real-time cell analysis platform for the dynamic monitoring of ionizing radiation effects on human tumor cell lines and primary fibroblasts.

    PubMed

    Mán, Imola; Szebeni, Gábor J; Plangár, Imola; Szabó, Emilia R; Tőkés, Tünde; Szabó, Zoltán; Nagy, Zoltán; Fekete, Gábor; Fajka-Boja, Roberta; Puskás, László G; Hideghéty, Katalin; Hackler, László

    2015-09-01

    Translational research in radiation oncology is important for the detection of adverse radiation effects, cellular responses, and radiation modifications, and may help to improve the outcome of radiation therapy in patients with cancer. The present study aimed to optimize and validate a real‑time label‑free assay for the dynamic monitoring of cellular responses to ionizing radiation. The xCELLigence system is an impedance‑based platform that provides continuous information on alterations in cell size, shape, adhesion, proliferation, and survival. In the present study, various malignant human primary fibroblast cells (U251, GBM2, MCF7, A549, HT‑29) were exposed to 0, 5 and 10 Gy of Cobalt60 radiation. As well as the xCELLigence system, cell survival and proliferation was evaluated using the following conventional end‑point cell‑based methods: Clonogenic, MTS, and lactate dehydrogenase assays, and apoptosis was detected by fluorescence‑activated cell sorting. The effects of ionizing radiation were detected for each cell line using impedance monitoring. The real‑time data correlated with the colony forming assay results. At low cell densities (1,000‑2,000 cells/well) the impedance‑based method was more accurate at monitoring dose‑dependent changes in the malignant human primary fibroblast cell lines, as compared with the end‑point assays. The results of the present study demonstrated that the xCELLigence system may be a reliable and rapid diagnostic method for the monitoring of dynamic cell behavior following radiation. In addition, the xCELLigence system may be used to investigate the cellular mechanisms underlying the radiation response, as well as the time‑dependent effects of radiation on cell proliferation and viability.

  9. Actual and Potential Radiation Exposures in Digital Radiology: Analysis of Cumulative Data, Implications to Worker Classification and Occupational Exposure Monitoring.

    PubMed

    Kortesniemi, Mika; Siiskonen, Teemu; Kelaranta, Anna; Lappalainen, Kimmo

    2016-04-21

    Radiation worker categorization and exposure monitoring are principal functions of occupational radiation safety. The aim of this study was to use the actual occupational exposure data in a large university hospital to estimate the frequency and magnitude of potential exposures in radiology. The additional aim was to propose a revised categorization and exposure monitoring practice based on the potential exposures. The cumulative probability distribution was calculated from the normalized integral of the probability density function fitted to the exposure data. Conformity of the probabilistic model was checked against 16 years of national monitoring data. The estimated probabilities to exceed annual effective dose limits of 1 mSv, 6 mSv and 20 mSv were 1:1000, 1:20 000 and 1:200 000, respectively. Thus, it is very unlikely that the class A categorization limit of 6 mSv could be exceeded, even in interventional procedures, with modern equipment and appropriate working methods. Therefore, all workers in diagnostic and interventional radiology could be systematically categorized into class B. Furthermore, current personal monitoring practice could be replaced by use of active personal dosemeters that offer more effective and flexible means to optimize working methods.

  10. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming.

    PubMed

    Li, Heng-Hong; Wang, Yi-Wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D; Fornace, Albert J

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.

  11. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    SciTech Connect

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.; Seregin, Vladimir A.; Akhromeev, Sergey V.; Lucyanec, Anatoly I.; Glinsky, Mark L.; Glagolev, Andrey V.

    2012-07-01

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areas of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at the

  12. Monitoring exposure to atomic bomb radiation by somatic mutation

    SciTech Connect

    Akiyama, Mitoshi; Kyoizumi, Seishi; Kusunoki, Yoichiro

    1996-05-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. 27 refs., 2 figs.

  13. Monitoring exposure to atomic bomb radiation by somatic mutation.

    PubMed Central

    Akiyama, M; Kyoizumi, S; Kusunoki, Y; Hirai, Y; Tanabe, K; Cologne, J B

    1996-01-01

    Atomic bomb survivors are a population suitable for studying the relationship between somatic mutation and cancer risk because their exposure doses are relatively well known and their dose responses in terms of cancer risk have also been thoroughly studied. An analysis has been made of erythrocyte glycophorin A (GPA) gene mutations in 1,226 atomic bomb survivors in Hiroshima and Nagasaki. The GPA mutation frequency (Mf) increased slightly but significantly with age at the time of measurement and with the number of cigarettes smoked. After adjustment for the effect of smoking, the Mf was significantly higher in males than in females and higher in Hiroshima than in Nagasaki. All of these characteristics of the background GPA Mf were in accord with those of solid tumor incidence obtained from an earlier epidemiological study of A-bomb survivors. Analysis of the dose effect on Mf revealed the doubling dose to be about 1.20 Sv and the minimum dose for detection of a significant increase to be about 0.24 Sv. No significant dose effect for difference in sex, city, or age at the time of bombing was observed. Interestingly, the doubling dose for the GPA Mf approximated that for solid cancer incidence (1.59 Sv). And the minimum dose for detection was not inconsistent with the data for solid cancer incidence. The dose effect was significantly higher in those diagnosed with cancer before or after measurement than in those without a history of cancer. These findings are consistent with the hypothesis that somatic mutations are the main cause of excess cancer risk from radiation exposure. PMID:8781371

  14. Monitoring of Solar Radiation Intensity using Wireless Sensor Network for Plant Growing

    NASA Astrophysics Data System (ADS)

    Siregar, B.; Fadli, F.; Andayani, U.; Harahap, LA; Fahmi, F.

    2017-01-01

    Abstract— Plant growth is highly depending on the sunlight, if the consumption of sunlight is enough, it will grow well. The plant will be green because of its chlorophyll and it can perform photosynthesis at maximum; but if the plants get less sunlight, it will make the plants be yellowing. Radiation is electromagnetic waves that are good for plants, so-called visible light. In the electromagnetic wave spectrum the best wavelength range from 400-700 nm for the plant. A monitoring of sun intensity is needed in order to obtain sufficient solar radiation consumption and provide notification if there is a high radiation. In this study, several sensors and devices were combined such as photosynthetic solar radiation sensors, GSM / GPRS and waspmote as a main board or a microcontroller. The test was carried out on at least three occasions; the system has a stable radiation in the morning with an average of 505.51 micrometers. IN this study, we have successfully developed a monitoring tools for solar radiation intensity applied on plant growth by using wireless sensor network.

  15. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    NASA Astrophysics Data System (ADS)

    Tsiligiannis, G.; Dilillo, L.; Bosio, A.; Girard, P.; Pravossoudovitch, S.; Todri, A.; Virazel, A.; Mekki, J.; Brugger, M.; Wrobel, F.; Saigne, F.

    2014-05-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for monitoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of particles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shielded areas. By using stability estimation methods and presenting experimental data, we prove that this device is proper to be used for such a purpose.

  16. Micro Penning Trap for Continuous Magnetic Field Monitoring in High Radiation Environments

    NASA Astrophysics Data System (ADS)

    Latorre, Javiera; Bollen, Georg; Gulyuz, Kerim; Ringle, Ryan; Bado, Philippe; Dugan, Mark; Lebit Team; Translume Collaboration

    2016-09-01

    As new facilities for rare isotope beams, like FRIB at MSU, are constructed, there is a need for new instrumentation to monitor magnetic fields in beam magnets that can withstand the higher radiation level. Currently NMR probes, the instruments used extensively to monitor magnetic fields, do not have a long lifespans in radiation-high environments. Therefore, a radiation-hard replacement is needed. We propose to use Penning trap mass spectrometry techniques to make high precision magnetic field measurements. Our Penning microtrap will be radiation resistant as all of the vital electronics will be at a safe distance from the radiation. The trap itself is made from materials not subject to radiation damage. Penning trap mass spectrometers can determine the magnetic field by measuring the cyclotron frequency of an ion with a known mass and charge. This principle is used on the Low Energy Beam Ion Trap (LEBIT) minitrap at NSCL which is the foundation for the microtrap. We have partnered with Translume, who specialize in glass micro-fabrication, to develop a microtrap in fused-silica glass. A microtrap is finished and ready for testing at NSCL with all of the electronic and hardware components setup. DOE Phase II SBIR Award No. DE-SC0011313, NSF Award Number 1062410 REU in Physics, NSF under Grant No. PHY-1102511.

  17. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar J.; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald E.; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modeling and the development of solar energy techniques. Measurements cover the downward solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an altitude range between about 200 m a.s.l (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, utilizing manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations, using the methodology specified by the Guide to the Expression of Uncertainty in Measurement indicates that relative accuracies range from 1.5 to 2.9 % for large signals (global, direct: 1000 W m-2, diffuse: 500 W m-2) and from 1.7 to 23 % (or 0.9 to 11.5 W m-2) for small signals (50 W m-2) (expanded uncertainties corresponding to the 95 % confidence level). If the directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) are corrected, this expanded uncertainty reduces to 1.4 to 2.8 % for large signals and to 1.7 to 5.2 % (or 0.9-2.6 W m-2) for small signals. Thus, for large signals of global and diffuse radiation, BSRN target accuracies are met or nearly met (missed by less than 0.2 percentage points, pps) for 70 % of the ARAD measurements after this correction. For small signals of direct radiation, BSRN targets are achieved at two sites and nearly met (also missed by less than 0.2 pps) at the other sites. For small signals of global and diffuse radiation, targets are achieved

  18. Radiation Internal Monitoring by In Vivo Scanning in Operation Tomodachi

    DTIC Science & Technology

    2013-08-01

    EPD), the USAF and USN thermoluminescent dosimeter (TLD), and the USA optically stimulated luminescent (OSL) dosimeter. The USA, USN, and USAF all...Appendix H is an example of the Navy’s guidance for documenting the distribution of personal thermoluminescent dosimeters for OT activities

  19. NRC TLD Direct Radiation Monitoring Network. Volume 15, No. 4: Quarterly progress report, October--December 1995

    SciTech Connect

    Struckmeyer, R.

    1996-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1995. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  20. Scientific goals achievable with radiation monitor measurements on board gravitational wave interferometers in space

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Lobo, A.; Mateos, I.

    2012-06-01

    Cosmic rays and energetic solar particles constitute one of the most important sources of noise for future gravitational wave detectors in space. Radiation monitors were designed for the LISA Pathfinder (LISA-PF) mission. Similar devices were proposed to be placed on board LISA and ASTROD. These detectors are needed to monitor the flux of energetic particles penetrating mission spacecraft and inertial sensors. However, in addition to this primary use, radiation monitors on board space interferometers will carry out the first multipoint observation of solar energetic particles (SEPs) at small and large heliolongitude intervals and at very different distances from Earth with minor normalization errors. We illustrate the scientific goals that can be achieved in solar physics and space weather studies with these detectors. A comparison with present and future missions devoted to solar physics is presented.

  1. Effects of Microwave Radiation on Neuronal Activity

    DTIC Science & Technology

    1991-10-01

    oligodendrocytes, ependymal cells , microglia) do not survive under our culture conditions. The pyramidal cells are positively stained with antibody to...at 16 Hz. Continuous exposure to radio- frequency radiation for 4 consecutive days led to the development of a cell number density gradient. The...greater number of cells occurred in the center of the culture plate which was directly in the field as opposed to the more peripheral areas of the plate

  2. Deformation Monitoring of AN Active Fault

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A.

    2015-12-01

    The discovery of low frequency earthquakes, slow slip events and other deformation phenomena, new for geophysics, change our understanding of how the energy accumulated in the Earth's crust do release. The new geophysical data make one revise the underlying mechanism of geomechanical processes taking place in fault zones. Conditions for generating different slip modes are still unclear. The most vital question is whether a certain slip mode is intrinsic for a fault or may be controlled by external factors. This work presents the results of two and a half year deformation monitoring of a discontinuity in the zone of the Main Sayanskiy Fault. Main Sayanskiy Fault is right-lateral strike-slip fault. Observations were performed in the tunnel of Talaya seismic station (TLY), Irkutsk region, Russia. Measurements were carried out 70 m away from the entrance of the tunnel, the thickness of overlying rock was about 30 m. Inductive sensors of displacement were mounted at the both sides of a discontinuity, which recorded three components of relative fault side displacement with the accuracy of 0.2 mcm. Temperature variation inside the tunnel didn't exceed 0.5oC during the all period of observations. Important information about deformation properties of an active fault was obtained. A pronounced seasonality of deformation characteristics of discontinuity is observed in the investigated segment of rock. A great number of slow slip events with durations from several hours to several weeks were registered. Besides that alterations of fault deformation characteristics before the megathrust earthquake M9.0 Tohoku Oki 11 March 2011 and reaction to the event itself were detected. The work was supported by the Russian Science Foundation (grant no. 14-17-00719).

  3. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System.

    PubMed

    Balan, Mugur C; Damian, Mihai; Jäntschi, Lorentz

    2008-02-19

    The paper presents a solar radiation monitoring system, using two scientificpyranometers and an on-line computer home-made data acquisition system. The firstpyranometer measures the global solar radiation and the other one, which is shaded,measure the diffuse radiation. The values of total and diffuse solar radiation arecontinuously stored into a database on a server. Original software was created for dataacquisition and interrogation of the created system. The server application acquires the datafrom pyranometers and stores it into a database with a baud rate of one record at 50seconds. The client-server application queries the database and provides descriptivestatistics. A web interface allow to any user to define the including criteria and to obtainthe results. In terms of results, the system is able to provide direct, diffuse and totalradiation intensities as time series. Our client-server application computes also derivateheats. The ability of the system to evaluate the local solar energy potential is highlighted.

  4. Geophysical Mapping and Monitoring of Active Planets (GMAP)

    NASA Astrophysics Data System (ADS)

    McGovern, P. J.; Goossens, S. J.; Lemoine, F. G.

    2017-02-01

    Recent findings require a strongly upward revision of volcano-tectonic activity rate estimates for Venus and Mars. We propose a program of Geophysical Mapping and Monitoring of Active Planets (GMAP) including seismology, gravimetry, InSAR, and GPS.

  5. Instructional physical activity monitor video in english and spanish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  6. Optical Spectroscopy and Multivariate Analysis for Biodosimetry and Monitoring of Radiation Injury to the Skin

    SciTech Connect

    Levitskaia, Tatiana G.; Bryan, Samuel A.; Creim, Jeffrey A.; Curry, Terry L.; Luders, Teresa; Thrall, Karla D.; Peterson, James M.

    2012-08-01

    In the event of an intentional or accidental release of ionizing radiation in a densely populated area, timely assessment and triage of the general population for the radiation exposure is critical. In particular, a significant number of the victims may sustain cutaneous radiation injury, which increases the mortality and worsens the overall prognosis of the victims suffered from combined thermal/mechanical and radiation trauma. Diagnosis of the cutaneous radiation injury is challenging, and established methods largely rely on visual manifestations, presence of the skin contamination, and a high degree of recall by the victim. Availability of a high throughput non-invasive in vivo biodosimetry tool for assessment of the radiation exposure of the skin is of particular importance for the timely diagnosis of the cutaneous injury. In the reported investigation, we have tested the potential of an optical reflectance spectroscopy for the evaluation of the radiation injury to the skin. This is technically attractive because optical spectroscopy relies on well-established and routinely used for various applications instrumentation, one example being pulse oximetry which uses selected wavelengths for the quantification of the blood oxygenation. Our method relies on a broad spectral region ranging from the locally absorbed, shallow-penetrating ultraviolet and visible (250 to 800 nm) to more deeply penetrating near-Infrared (800 – 1600 nm) light for the monitoring of multiple physiological changes in the skin upon irradiation. Chemometrics is a multivariate methodology that allows the information from entire spectral region to be used to generate predictive regression models. In this report we demonstrate that simple spectroscopic method, such as the optical reflectance spectroscopy, in combination with multivariate data analysis, offers the promise of rapid and non-invasive in vivo diagnosis and monitoring of the cutaneous radiation exposure, and is able accurately predict

  7. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  8. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs.

  9. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  10. Gamma radiation monitoring at the Eastern North Atlantic (ENA), Graciosa Island ARM facility

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Miranda, Pedro; Azevedo, Eduardo B.; Nitschke, Kim

    2016-04-01

    Continuous monitoring of gamma radiation is often performed in nuclear facilities and industrial environments as a way to control the ambient radioactivity and give warning of potential accidents. However, gamma radiation is also ubiquitous in the natural environment. The main sources are i) cosmic radiation from space, including secondary radiation from the interaction with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232) and their decay products (e.g. Radium, Ra-226) , and iii) airborne Radon gas (Rn-222), which is the dominant source of natural environmental radioactivity. The temporal variability of this natural radiation background needs to be well understood and quantified in order to discriminate non-natural sources of radiation in the environment and artificial radionuclides contamination. To this end, continuous gamma radiation monitoring is being performed at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM), established and supported by the Department of Energy (DOE) of the United States of America with the collaboration of the local government and University of the Azores. The site is unique for the study of the natural radioactivity background on one hand due to the remote oceanic geographical location, in the middle of the North Atlantic Ocean and clear of direct continental influence, and on the other hand because of the comprehensive dataset of atmospheric parameters that is available for enhancing the interpretation of the radiation measurements, as a result of the vast array of very detailed and high-quality atmospheric measurements performed at the ARM-ENA facility. Gamma radiation in the range 475 KeV to 3000 KeV is measured continuously with a 3" x 3" NaI(Tl) scintillator. The campaign started started in May 2015, with gamma

  11. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  12. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    PubMed

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.

  13. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, Marc; Baumgartner, Dietmar; Obleitner, Friedrich; Bichler, Christoph; Foelsche, Ulrich; Pietsch, Helga; Rieder, Harald; Weihs, Philipp; Geyer, Florian; Haiden, Thomas; Schöner, Wolfgang

    2016-04-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The contribution outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  14. The Austrian radiation monitoring network ARAD - best practice and added value

    NASA Astrophysics Data System (ADS)

    Olefs, M.; Baumgartner, D. J.; Obleitner, F.; Bichler, C.; Foelsche, U.; Pietsch, H.; Rieder, H. E.; Weihs, P.; Geyer, F.; Haiden, T.; Schöner, W.

    2015-10-01

    The Austrian RADiation monitoring network (ARAD) has been established to advance the national climate monitoring and to support satellite retrieval, atmospheric modelling and solar energy techniques development. Measurements cover the downwelling solar and thermal infrared radiation using instruments according to Baseline Surface Radiation Network (BSRN) standards. A unique feature of ARAD is its vertical dimension of five stations, covering an air column between about 200 m a.s.l. (Vienna) and 3100 m a.s.l. (BSRN site Sonnblick). The paper outlines the aims and scopes of ARAD, its measurement and calibration standards, methods, strategies and station locations. ARAD network operation uses innovative data processing for quality assurance and quality control, applying manual and automated control algorithms. A combined uncertainty estimate for the broadband shortwave radiation fluxes at all five ARAD stations indicates that accuracies range from 1.5 to 23 %. If a directional response error of the pyranometers and the temperature response of the instruments and the data acquisition system (DAQ) is corrected, this expanded uncertainty reduces to 1.4 to 5.2 %. Thus, for large signals (global: 1000 W m-2, diffuse: 500 W m-2) BSRN target accuracies are met or closely met for 70 % of valid measurements at the ARAD stations after this correction. For small signals (50 W m-2), the targets are not achieved as a result of uncertainties associated with the DAQ or the instrument sensitivities. Additional accuracy gains can be achieved in future by additional measurements and corrections. However, for the measurement of direct solar radiation improved instrument accuracy is needed. ARAD could serve as a powerful example for establishing state-of-the-art radiation monitoring at the national level with a multiple-purpose approach. Instrumentation, guidelines and tools (such as the data quality control) developed within ARAD are best practices which could be adopted in other

  15. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors.

    PubMed

    Mortazavi, Smj; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, Ar

    2014-09-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test). To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  16. Monitoring proton radiation therapy with in-room PET imaging.

    PubMed

    Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R; El Fakhri, Georges

    2011-07-07

    We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of (15)O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.

  17. Monitoring Radiation on Commercial Flights: An Interview With Captain Ian Getley

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2009-11-01

    Ian Getley has logged more than 18,000 hours on Boeing 747s during his 29 years—20 as a captain—as a pilot with Qantas Airways. In 2008, he received a Ph.D. for his space weather research from the University of New South Wales, in Australia. Here Getley describes his experience measuring cosmic and solar particle radiation on commercial aircraft and his recent work developing a new radiation monitor that will allow pilots to respond in flight to solar events.

  18. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  19. Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) Groups in

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities of the Organic Crystal Growth Facility (OCGF) and Radiation Monitoring Container Device (RMCD) groups in the SL POCC during the IML-1 mission.

  20. Overview of Nonintercepting Beam-Size Monitoring with Optical Diffraction Radiation

    SciTech Connect

    Lumpkin, Alex H.

    2010-11-04

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  1. Overview of nonintercepting beam-size monitoring with optical diffraction radiation

    SciTech Connect

    Lumpkin, Alex H.; /Fermilab

    2010-08-01

    The initial demonstrations over the last several years of the use of optical diffraction radiation (ODR) as nonintercepting electron-beam-parameter monitors are reviewed. Developments in both far-field imaging and near-field imaging are addressed for ODR generated by a metal plane with a slit aperture, a single metal plane, and two-plane interferences. Polarization effects and sensitivities to beam size, divergence, and position will be discussed as well as a proposed path towards monitoring 10-micron beam sizes at 25 GeV.

  2. Application of the TLD albedo technique for monitoring and interpretation of neutron stray radiation fields

    NASA Astrophysics Data System (ADS)

    Piesch, E.; Burgkhardt, B.

    1980-09-01

    A single sphere albedo technique with TLD 600/TLD 700 detectors has been applied in neutron monitoring to calibrate albedo dosimeters and to interpret neutron stray radiation fields in terms of neutron dose equivalent separated for the energy groups below 0.4 eV, 0.4-10 keV and 10 keV-10 MeV, and Eeff for fast neutrons. The paper describes the technique for field and personnel monitoring under the aspect of an on-line computer program for data recording and processing.

  3. Radiation protection in radiologic technology: Apathy versus active involvement

    SciTech Connect

    Franz, K.H.

    1982-11-01

    The lack of active participation in radiation protection is a serious problem in Radiologic Technology today. Underlying the problem is professional apathy. An overview of the historical changes, as well as various recent developments in radiology, accentuate the importance of necessary changes in technologists' attitudes and activities. 22 references.

  4. Monitoring the critical radiation exposure pathways at a BWR nuclear power station.

    PubMed

    Golden, J C; Chandrasekaran, E S; Kahn, B

    1982-06-01

    Iodine-131 in milk and gamma radiation from radionuclides in air in the environment of a 3-unit nuclear power station were measured at the levels predicted for airborne effluent. These measurements were part of a modified environmental radiological monitoring program to confirm the population doses computed from radionuclide release rates and environmental transfer models. The limits of detection were lowered relative to conventional monitoring programs by analyzing 21 L samples of milk for 131I and by determining external gamma radiation with a system that combined use of thermoluminescent dosimeters, pressurized ionization chambers, and NaI(T1) survey meters. For monitoring periods slightly longer than 6 months, during a time when fallout from atmospheric nuclear tests contributed very little, the average measured 131I concentration in milk was 0.1 pCi/L for cows on a nearby pasture and 0.02 pCi/L for cows at a more distant control location, compared to predicted values of 0.07 and 0.02 pCi/L, respectively; the average radiation exposure from airborne radionuclides measured at 16 nearby dosimeter locations was 7 mR, compared to the average of predicted values of 4 mR.

  5. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  6. Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground

    SciTech Connect

    Ebinger, M.H.; Hansen, W.R.

    1994-05-11

    This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

  7. Activity Monitors Help Users Get Optimum Sun Exposure

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Goddard scientist Shahid Aslam was investigating alternative methods for measuring extreme ultraviolet radiation on the Solar Dynamics Observatory when he hit upon semiconductors that measured wavelengths pertinent to human health. As a result, he and a partner established College Park, Maryland-based Sensor Sensor LLC and developed UVA+B SunFriend, a wrist monitor that lets people know when they've received their optimal amounts of sunlight for the day.

  8. The radiation dose-regulated AND gate genetic circuit, a novel targeted and real-time monitoring strategy for cancer gene therapy.

    PubMed

    Ding, M; Zhang, E; He, R; Wang, X; Li, R; Wang, W; Yi, Q

    2012-06-01

    The AND gate functions such that when all inputs are activated the downstream gene will be transcribed and it is off otherwise. To accomplish optimal and targeted gene therapy in solid tumor patients, we have constructed an AND gate genetic circuit and investigated whether it could be activated by low-dose radiation in vitro and in vivo. The enhancement green fluorescent protein (EGFP) expression in different tumor cells transfected with control vector plxsn-EGFP confirmed that 2 Gy of radiation and 1% O(2) for 3 h could activate our AND gate. Besides, the obvious different levels of EGFP expression between 2 and 6 Gy of radiation demonstrated that the AND gate could be regulated by radiation doses. Additionally, through EGFP expression and the codistribution of p53 and HIF-1α in xenografts, we illustrated the targeted activation property of the AND gate and real-time monitoring to hypoxic districts in vivo. Moreover, significant growth inhibition and cell cycle arrest in vitro and apoptosis-inducing effects in vitro and in vivo proved that the AND gate induced ideal antitumor effects. In conclusion, the radiation dose-regulated AND gate genetic circuit could not only effectively monitor the therapeutic process in real-time but also induce ideal antitumor efficacy, and can be further exploited for personal therapy in clinical tumor patients.

  9. Radiation, temperature, and vacuum effects on piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Postolache, Cristian; Tudose, Mihai

    2016-03-01

    The effect of radiation, temperature, and vacuum (RTV) on piezoelectric wafer active sensors (PWASs) is discussed. This study is relevant for extending structural health monitoring (SHM) methods to space vehicle applications that are likely to be subjected to harsh environmental conditions such as extreme temperatures (hot and cold), cosmic radiation, and interplanetary vacuums. This study contains both theoretical and experimental investigations with the use of electromechanical impedance spectroscopy (EMIS). In the theoretical part, analytical models of circular PWAS resonators were used to derive analytical expressions for the temperature sensitivities of EMIS resonance and antiresonance behavior. Closed-form expressions for frequency and peak values at resonance and antiresonance were derived as functions of the coefficients of thermal expansion, {α }1, {α }2, {α }3; the Poisson ratio, ν and its sensitivity, \\partial ν /\\partial T; the relative compliance gradient (\\partial {s}11E/\\partial T)/{s}11E; and the Bessel function root, z and its sensitivity, \\partial z/\\partial T. In the experimental part, tests were conducted to subject the PWAS transducers to RTV conditions. In one set of experiments, several RTV exposure, cycles were applied with EMIS signatures recorded at the beginning and after each of the repeated cycles. In another set of experiments, PWAS transducers were subjected to various temperatures and the EMIS signatures were recorded at each temperature after stabilization. The processing of measured EMIS data from the first set of experiments revealed that the resonance and antiresonance frequencies changed by less than 1% due to RTV exposure, whereas the resonance and antiresonance amplitudes changed by around 15%. After processing an individual set of EMIS data from the second set of experiments, it was determined that the relative temperature sensitivity of the antiresonance frequency ({f}{{AR}}/{f}{{AR}}) is approximately 63.1× {10

  10. Continuous electromagnetic radiation monitoring in the environment: analysis of the results in Greece.

    PubMed

    Manassas, Athanasios; Boursianis, Achilles; Samaras, Theodoros; Sahalos, John N

    2012-09-01

    Non-ionising radiation-monitoring networks were initiated as a result of the public concerns about the potential health effects from telecommunication emissions. In the present study, the data acquired from such networks in Greece are used to assess the changes in the outdoor electromagnetic environment with respect to location and time. The study shows that there is a statistically significant difference between the urban (median electric field: 1.1 V m(-1)) and the rural (median electric field: 0.3 V m(-1)) installations of monitoring units and also shows that there is a median diurnal variation (daily maximum to minimum) of 20.2 and 33.8 % for the broadcasting and mobile telecommunication emissions, respectively. Moreover, there is a difference in the electric field between daytime and night, but not between morning and afternoon. The results are in line with previously published data from spot measurements, monitoring networks and personal exposimeter studies performed in several European countries.

  11. Multi-strip silicon sensors for beam array monitoring in micro-beam radiation therapy.

    PubMed

    Alagoz, E; Brauer-Krisch, E; Bravin, A; Cornelius, I; Fournier, P; Hansen, T E; Kok, A; Lerch, M; Monakhov, E; Morse, J; Pacifico, N; Petasecca, M; Povoli, M; Requard, H; Rozenfeld, A D; Salome, M; Sandaker, H; Stugu, B

    2016-12-01

    We present here the latest results from tests performed at the ESRF ID17 and ID21 beamlines for the characterization of novel beam monitors for Microbeam Radiation Therapy (MRT), which is currently being implemented at ID17. MRT aims at treating solid tumors by exploiting an array of evenly spaced microbeams, having an energy spectrum distributed between 27 and 600keV and peaking at 100keV. Given the high instantaneous dose delivered (up to 20kGy/s), the position and the intensity of the microbeams has to be precisely and instantly monitored. For this purpose, we developed dedicated silicon microstrip beam monitors. We have successfully characterized them, both with a microbeam array at ID17, and a submicron scanning beam at ID21. We present here the latest results obtained in recent tests along with an outlook on future developments.

  12. Measurements of backscattered radiation from Therac-20 collimator and trimmer jaws into beam monitor chamber

    SciTech Connect

    Kubo, H.; Lo, K.K.

    1989-03-01

    The field size dependent photon output is known to be influenced by the existence of backscattered radiation (BSR) generated in the collimator or trimmer jaws of a linear accelerator. This paper describes the results of measurements made to study the existence of such backscatter by simulating the geometry of the treatment head of a Therac-20 linear accelerator. The machine's monitor chamber, flattening filter, and collimator jaws were simulated by another real monitor chamber, a 1-cm thick lead sheet and 2.5-cm thick low-melting-point alloy divergent blocks, respectively. BSR from the simulated collimator jaws (SCJ) was measured with the simulated monitor chamber (SMC) as a function of the openings of the SCJ and as a function of distance between SMC and SCJ. The present results demonstrate the presence of BSR in an 18-MV photon beam from a Therac-20 linear accelerator.

  13. Measurements of backscattered radiation from Therac-20 collimator and trimmer jaws into beam monitor chamber.

    PubMed

    Kubo, H; Lo, K K

    1989-01-01

    The field size dependent photon output is known to be influenced by the existence of backscattered radiation (BSR) generated in the collimator or trimmer jaws of a linear accelerator. This paper describes the results of measurements made to study the existence of such backscatter by simulating the geometry of the treatment head of a Therac-20 linear accelerator. The machine's monitor chamber, flattening filter, and collimator jaws were simulated by another real monitor chamber, a 1-cm thick lead sheet and 2.5-cm thick low-melting-point alloy divergent blocks, respectively. BSR from the simulated collimator jaws (SCJ) was measured with the simulated monitor chamber (SMC) as a function of the openings of the SCJ and as a function of distance between SMC and SCJ. The present results demonstrate the presence of BSR in an 18-MV photon beam from a Therac-20 linear accelerator.

  14. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  15. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  16. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    NASA Astrophysics Data System (ADS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-02-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  17. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  18. Preliminary Results on Design and Implementation of a Solar Radiation Monitoring System

    PubMed Central

    Balan, Mugur C.; Damian, Mihai; Jäntschi, Lorentz

    2008-01-01

    The paper presents a solar radiation monitoring system, using two scientific pyranometers and an on-line computer home-made data acquisition system. The first pyranometer measures the global solar radiation and the other one, which is shaded, measure the diffuse radiation. The values of total and diffuse solar radiation are continuously stored into a database on a server. Original software was created for data acquisition and interrogation of the created system. The server application acquires the data from pyranometers and stores it into a database with a baud rate of one record at 50 seconds. The client-server application queries the database and provides descriptive statistics. A web interface allow to any user to define the including criteria and to obtain the results. In terms of results, the system is able to provide direct, diffuse and total radiation intensities as time series. Our client-server application computes also derivate heats. The ability of the system to evaluate the local solar energy potential is highlighted. PMID:27879746

  19. Photocardiography: a novel method for monitoring cardiac activity in fish.

    PubMed

    Yoshida, Masayuki; Hirano, Ruriko; Shima, Takao

    2009-05-01

    A non-invasive technique to monitor cardiac activity in small fish, such as goldfish, zebrafish, and medaka, is needed. In the present study, we developed photocardiography (PCG), a non-invasive optical method, to record cardiac activity in small fish. The method monitors changes in near-infrared light transmission through the heart using a phototransistor located outside the body. With this technique, heartbeats in fish of various sizes (14-218 mm) were stably recorded. PCG was applied to monitor the heartbeat during fear-related classical heart rate conditioning in goldfish wherein an electrical shock was used as an unconditioned stimulus. The heartbeats were continuously monitored, even when the beat coincided with the electrical shock, showing that PCG is robust even in an electrically noisy environment. This technique is particularly useful when monitoring the heartbeats of fish of small size or in the presence of ambient electrical noise, conditions in which the use of conventional electrocardiography (ECG) is difficult.

  20. Citizen Monitoring during Hazards: The Case of Fukushima Radiation after the 2011 Japanese Earthquake

    NASA Astrophysics Data System (ADS)

    Hultquist, C.; Cervone, G.

    2015-12-01

    Citizen-led movements producing scientific environmental information are increasingly common during hazards. After the Japanese earthquake-triggered tsunami in 2011, the government produced airborne remote sensing data of the radiation levels after the Fukushima nuclear reactor failures. Advances in technology enabled citizens to monitor radiation by innovative mobile devices built from components bought on the Internet. The citizen-led Safecast project measured on-ground levels of radiation in the Fukushima prefecture which total 14 million entries to date in Japan. This non-authoritative citizen science collection recorded radiation levels at specific coordinates and times is available online, yet the reliability and validity of the data had not been assessed. The nuclear incident provided a case for assessment with comparable dimensions of citizen science and authoritative data. To perform a comparison of the datasets, standardization was required. The sensors were calibrated scientifically but collected using different units of measure. Radiation decays over time so temporal interpolation was necessary for comparison of measurements as being the same time frame. Finally, the GPS located points were selected within the overlapping spatial extent of 500 meters. This study spatially analyzes and statistically compares citizen-volunteered and government-generated radiation data. Quantitative measures are used to assess the similarity and difference in the datasets. Radiation measurements from the same geographic extents show similar spatial variations which suggests that citizen science data can be comparable with government-generated measurements. Validation of Safecast demonstrates that we can infer scientific data from unstructured and not vested data. Citizen science can provide real-time data for situational awareness which is crucial for decision making during disasters. This project provides a methodology for comparing datasets of radiological measurements

  1. Construction monitoring activities in the ESF starter tunnel

    SciTech Connect

    Pott, J.; Carlisle, S.

    1994-05-01

    In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

  2. Envitonmental monitoring and radiation protection in Škocjan Caves, Slovenia

    NASA Astrophysics Data System (ADS)

    Debevec Gerjeviè, V.; Jovanovič, P.

    2012-04-01

    Škocjan Caves were listed as UNESCO World Heritage Sites in 1986, due to their exceptional significance for cultural and natural heritage. Park Škocjan Caves is located in South Eastern part of Slovenia. It was established with aim of conserving and protecting exceptional geomorphological, geological and hydrological outstanding features, rare and endangered plant and animal species, paleontological and archaeological sites, ethnological and architectural characteristics and cultural landscape and for the purpose of ensuring opportunities for suitable development, by the National Assembly of the Republic of Slovenia in 1996. Park Škocjan Caves established monitoring that includes caves microclimate parameters: humidity, CO2, wind flow and radon concentration and daughter products. The approach in managing the working place with natural background radiation is complex. Monitoring of Radon has been functioning for more than ten years now. Presentation will show the dynamic observed in the different parts of the caves, related to radon daughter products and other microclimatic data. Relation of background radiation to carrying capacity will be explained. Implementing the Slovene legislation in the field of radiation protection, we are obligated to perform special measurements in the caves and also having our guides and workers in the caves regularly examined according to established procedure. The medical exams are performed at Institution of Occupational Safety, Ljubljana in order to monitor the influence of Radon to the workers in the cave. The equivalent dose for each employed person is also established on regular basis and it is part of medical survey of workers in the caves. A system of education of the staff working in the caves in the field of radiation protection will be presented as well.

  3. Bigelow Expandable Activity Module (BEAM) Monitoring System

    NASA Technical Reports Server (NTRS)

    Wells, Nathan

    2017-01-01

    What is Bigelow Expandable Activity Module (BEAM)? The Bigelow Expandable Activity Module (BEAM) is an expandable habitat technology demonstration on ISS; increase human-rated inflatable structure Technology Readiness Level (TRL) to level 9. NASA managed ISS payload project in partnership with Bigelow Aerospace. Launched to ISS on Space X 8 (April 8th, 2016). Fully expanded on May 28th, 2016. Jeff Williams/Exp. 48 Commander first entered BEAM on June 5th, 2016.

  4. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    DOEpatents

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  5. Responses of selected neutron monitors to cosmic radiation at aviation altitudes.

    PubMed

    Yasuda, Hiroshi; Yajima, Kazuaki; Sato, Tatsuhiko; Takada, Masashi; Nakamura, Takashi

    2009-06-01

    Cosmic radiation exposure of aircraft crew, which is generally evaluated by numerical simulations, should be verified by measurements. From the perspective of radiological protection, the most contributing radiation component at aviation altitude is neutrons. Measurements of cosmic neutrons, however, are difficult in a civilian aircraft because of the limitations of space and electricity; a small, battery-operated dosimeter is required whereas larger-size instruments are generally used to detect neutrons with a broad range of energy. We thus examined the applicability of relatively new transportable neutron monitors for use in an aircraft. They are (1) a conventional rem meter with a polyethylene moderator (NCN1), (2) an extended energy-range rem meter with a tungsten-powder mixed moderator (WENDI-II), and (3) a recoil-proton scintillation rem meter (PRESCILA). These monitors were installed onto the racks of a business jet aircraft that flew two times near Japan. Observed data were compared to model calculations using a PHITS-based Analytical Radiation Model in the Atmosphere (PARMA). Excellent agreement between measured and calculated values was found for the WENDI-II. The NCN1 showed approximately half of predicted values, which were lower than those expected from its response function. The observations made with PRESCILA showed much higher than expected values; which is attributable to the presence of cosmic-ray protons and muons. These results indicate that careful attention must be paid to the dosimetric properties of a detector employed for verification of cosmic neutron dose.

  6. Energy Spread Monitoring for the JLAB Experimental Program: Synchrotron Light Interferometers, Optical Transition Radiation Monitors and Wire Scanners

    SciTech Connect

    Arne Freyberger; Yu-Chiu Chao; Pavel Chevtsov; Anthony Day; William Hicks; Michele Joyce; Jean-Claude Denard

    2004-05-01

    The hypernuclear physics program at JLAB requires an electron beam with small transverse size (sigma {approx} 100 {micro}m) and an upper limit on the RMS energy spread of delta E / E < 3 x 10{sup -}5. To measure and monitor these parameters, a beam size and energy spread measurement system has been created. The system consists of a set of wire scanners, Optical Transition Radiation (OTR) detectors, and Synchrotron Light Interferometers (SLI). The energy spread is measured via a set of wire scans performed at specific locations in the transport line, which is an invasive process. During physics operation the energy spread is monitored continuously with the OTR and/or the SLI. These devices are noninvasive [or nearly non-invasive in the case of OTR] and operate over a very wide range of beam energies (1.6 GeV) and currents ({approx}100 {micro}A down to few {micro}A). All components of this system are automated in an EPICS accelerator control environment. The paper presents our operational experience with the beam size and energy spread measurement system and its maintenance.

  7. Determination of activity of 51Cr on gamma radiation measurements

    NASA Astrophysics Data System (ADS)

    Gorbachev, V. V.; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A.

    2017-01-01

    A method of determining the activity of intensive distributed -sources on the measurement of the continuous spectrum of radiation, for example the internal bremsstrahlung, is developed. The recurrent formula for reconstructing of a continuous spectrum, registered in a Ge detector, at distorting it in the detector. The method of precise measurements of the spectrum of 51Cr internal bremsstrahlung using two point sources of low activity is described.

  8. Induction of gene expression as a monitor of exposure to ionizing radiation.

    PubMed

    Amundson, S A; Bittner, M; Meltzer, P; Trent, J; Fornace, A J

    2001-11-01

    The complex molecular responses to genotoxic stress are mediated by a variety of regulatory pathways. The transcription factor TP53 plays a central role in the cellular response to DNA-damaging agents such as ionizing radiation, but other pathways also play important roles. In addition, differences in radiation quality, such as the exposure to high-LET radiation that occurs during space travel, may influence the pattern of responses. The premise is developed that stress gene responses can be employed as molecular markers for radiation exposure using a combination of informatics and functional genomics approaches. Published studies from our laboratory have already demonstrated such transcriptional responses with doses of gamma rays as low as 2 cGy, and in peripheral blood lymphocytes (PBLs) irradiated ex vivo with doses as low as 20 cGy. We have also found several genes elevated in vivo 24 h after whole-body irradiation of mice with 20 cGy. Such studies should provide insight into the molecular responses to physiologically relevant doses, which cannot necessarily be extrapolated from high-dose studies. In addition, ongoing experiments are identifying large numbers of potential biomarkers using microarray hybridization and various irradiation protocols including expression at different times after exposure to low- and high-LET radiation. Computation-intensive informatics analysis methods are also being developed for management of the complex gene expression profiles resulting from these experiments. With further development of these approaches, it may be feasible to monitor changes in gene expression after low-dose radiation exposure and other physiological stresses that may be encountered during manned space flight, such as the planned mission to Mars.

  9. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  10. The AMSAT-OSCAR-40 High Elliptical Orbit Radiation Environment Monitoring Payload - First Flight Results

    NASA Astrophysics Data System (ADS)

    Sweeting, Martin, , Sir

    Over the last decade, Surrey's micro-satellites have provided continuous monitoring of the proton and heavy-ion environment encountered in low-Earth orbit (LEO), through the use of a series of silicon PIN-diode-based particle detectors, starting with the UK Defence Evaluation Research Agency's (DERA's) Cosmic-Radiation Environment and Dosimetry (CREDO) payload, flown on-board UoSAT-3 in 1990, followed in 1992 by the Cosmic-Ray Experiment (CRE), developed at the Surrey Space Centre under a micro-satellite Technology Transfer (TT) programme operated between Surrey Satellite Technology Ltd. (SSTL) and the Korea Advanced Institute of Science and Technology (KAIST), and flown on the resulting KITSAT-1 micro-satellite. The CRE was flown again in 1993 on-board the PoSAT- 1 micro-satellite, developed under a similar TT programme operated between SSTL and Portugal. The results from all of these instruments have given a great deal of information on the nature of the low-Earth orbit (LEO) ionising radiation environment, and in the case of the PoSAT-1 CRE, continue to do so. However, to obtain a more complete "picture" of the magnetosphere, it is necessary to orbit instruments much further out in space An opportunity to do this arose in 1994 when amateur radio satellite groups (AMSAT) proposed launching a small (600 kg) communications satellite into highly elliptical orbit. This satellite, called AMSAT-OSCAR-40 (AO-40), was launched by Ariane 5 rocket on 16th November 2000, initially into a geostationary transfer orbit (GTO). The satellite has subsequently been manoeuvred into a highly elliptical, 1070 km x 58,700 km, 6.8o inclination orbit, and thus it affords the opportunity to observe the proton and heavy-ion environment through a large cross-section of Earth's magnetosphere. AO-40 carries a version of the CRE, which has been slightly modified in terms of interfaces and packaging to fit that particular satellite bus. However the particle detecting element is essentially

  11. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  12. Radiation doses resulting from variations in spent fuel/waste management systems without Monitored Retrievable Storage

    SciTech Connect

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1987-02-01

    This paper presents results of analyses of radiological dose impacts on the public and the workers of nine potential transportation-related changes in the operation of a hypothetical high-level waste management system that does not include a Monitored Retrievable Storage (MRS) facility. The analyses were performed for the US Department of Energy (DOE) to determine if some of the benefits proposed for the improved performance waste management system (one with an MRS facility) could also benefit the authorized system (one without an MRS facility). The study showed that most of the alternatives evaluated would reduce the radiation doses to the public and the workers. Of the alternatives evaluated, the primary means for reducing these radiation doses is to increase the capacity of the transportation casks.

  13. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  14. Active control of radiated pressure of a submarine hull

    NASA Astrophysics Data System (ADS)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  15. Monolithic active pixel radiation detector with shielding techniques

    DOEpatents

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  16. A New Quantum Sensor for Measuring Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Johnson, D.; Thomas, T.; Heinicke, D.; Peterson, R.; Morgan, P.; McDermitt, D. K.; Burba, G. G.

    2015-12-01

    A quantum sensor measures photosynthetically active radiation (PAR, in μmol of photons m-2 s-1) in the 400 nm to 700 nm waveband. Plants utilize this radiation to drive photosynthesis, though individual plant responses to incident radiation may vary within this range. The new quantum sensor (model LI-190R, LI-COR Biosciences, Lincoln, NE), with an optical filter and silicon photodiode detector housed in a cosine-corrected head, is designed to provide a better response to incident radiation across the 400-700 nm range. The new design is expected to significantly improve spectral response due to uniformity across the PAR waveband, but particularly in the wavebands from 520 nm to 600 nm and 665 nm to 680 nm, and sharp cutoffs in the regions below and above the PAR waveband. Special care was taken to make sure that PAR sensor would not substantially respond to incident radiation above the 700 nm threshold because this can lead to errors when performing measurements in environments with a large proportion of near-infrared radiation, such as canopy understory. The physical housing of the sensor is designed to be weather-resistant, to effectively shed precipitation, provide protection at high temperature and high humidity conditions, and has a cosine-corrected response to 82° zenith angle. The latter is particularly important when measuring incident radiation at low elevation angles, diffuse light, or low light conditions. This presentation describes the principles of the new design, and shows the performance results from field experiments and laboratory tests.

  17. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev

  18. RADIATION MONITOR CONTAINING TWO CONCENTRIC IONIZATION CHAMBERS AND MEANS FOR INSULATING THE SEPARATE CHAMBERS

    DOEpatents

    Braestrup, C.B.; Mooney, R.T.

    1964-01-21

    This invention relates to a portable radiation monitor containing two concentric ionization chambers which permit the use of standard charging and reading devices. It is particularly adapted as a personnel x-ray dosimeter and to this end comprises a small thin walled, cylindrical conductor forming an inner energy dependent chamber, a small thin walled, cylindrical conductor forming an outer energy independent chamber, and polymeric insulation means which insulates said chambers from each other and holds the chambers together with exposed connections in a simple, trouble-free, and compact assembly substantially without variation in directional response. (AEC)

  19. Acute radiation effects on cutaneous microvasculature: evaluation with a laser Doppler perfusion monitor

    SciTech Connect

    Amols, H.I.; Goffman, T.E.; Komaki, R.; Cox, J.D.

    1988-11-01

    Laser Doppler perfusion monitoring is a noninvasive technique for measuring blood flow in epidermal microvasculature that makes use of the frequency shift of light reflected from red blood cells. Measurements in patients undergoing radiation therapy show increases in blood flow of ten to 25 times baseline at doses above 50 Gy, and increases are observed with doses as low as 2 Gy. Follow-up measurements show rapid decreases in flow levels after completion of therapy, but levels remain elevated even at 1 year.

  20. Persistence of endometrial activity after radiation therapy for cervical carcinoma

    SciTech Connect

    Barnhill, D.; Heller, P.; Dames, J.; Hoskins, W.; Gallup, D.; Park, R.

    1985-12-01

    Radiation therapy is a proved treatment for cervical carcinoma; however, it destroys ovarian function and has been thought to ablate the endometrium. Estrogen replacement therapy is often prescribed for patients with cervical carcinoma after radiation therapy. A review of records of six teaching hospitals revealed 16 patients who had endometrial sampling for uterine bleeding after standard radiation therapy for cervical carcinoma. Fifteen patients underwent dilatation and curettage, and one patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy when a dilatation and curettage was unsuccessful. Six patients had fibrosis and inflammation of the endometrial cavity, seven had proliferative endometrium, one had cystic hyperplasia, one had atypical adenomatous hyperplasia, and one had adenocarcinoma. Although the number of patients who have an active endometrium after radiation therapy for cervical carcinoma is not known, this report demonstrates that proliferative endometrium may persist, and these patients may develop endometrial hyperplasia or adenocarcinoma. Studies have indicated that patients with normal endometrial glands have an increased risk of developing endometrial adenocarcinoma if they are treated with unopposed estrogen. Patients who have had radiation therapy for cervical carcinoma should be treated with estrogen and a progestational agent to avoid endometrial stimulation from unopposed estrogen therapy.

  1. Development of a synchrotron radiation beam monitor for the Integrable Optics Test Accelerator

    SciTech Connect

    Scarpelli, Andrea

    2016-01-01

    Nonlinear integrable optics applied to beam dynamics may mitigate multi-particle instabilities, but proof of principle experiments have never been carried out. The Integrable Optics Test Accelerator (IOTA) is an electron and proton storage ring currently being built at Fermilab, which addresses tests of nonlinear lattice elements in a real machine in addition to experiments on optical stochastic cooling and on the single-electron wave function. These experiments require an outstanding control over the lattice parameters, achievable with fast and precise beam monitoring systems. This work describes the steps for designing and building a beam monitor for IOTA based on synchrotron radiation, able to measure intensity, position and transverse cross-section beam.

  2. Monte Carlo based calibration of an air monitoring system for gamma and beta+ radiation.

    PubMed

    Sarnelli, A; Negrini, M; D'Errico, V; Bianchini, D; Strigari, L; Mezzenga, E; Menghi, E; Marcocci, F; Benassi, M

    2015-11-01

    Marinelli beaker systems are used to monitor the activity of radioactive samples. These systems are usually calibrated with water solutions and the determination of the activity in gases requires correction coefficients accounting for the different mass-thickness of the sample. For beta+ radionuclides the different distribution of the positrons annihilation points should be also considered. In this work a Monte Carlo simulation based on Geant4 is used to compute correction coefficients for the measurement of the activity of air samples.

  3. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  4. Radiation dosimetry measurements with real time radiation monitoring device (RRMD)-II in Space Shuttle STS-79.

    PubMed

    Sakaguchi, T; Doke, T; Hayashi, T; Kikuchi, J; Hasebe, N; Kashiwagi, T; Takashima, T; Takahashi, K; Nakano, T; Nagaoka, S; Takahashi, S; Yamanaka, H; Yamaguchi, K; Badhwar, G D

    1997-12-01

    The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.

  5. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    SciTech Connect

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-10-15

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis.

  6. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    NASA Astrophysics Data System (ADS)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  7. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  8. Radiation Monitoring System in Service Module of International Space Station. Eight Years of Functioning

    NASA Astrophysics Data System (ADS)

    Benghin, Victor; Petrov, Vladislav; Panasyuk, Mikhail; Volkov, Aleksey; Nikolaev, Igor; Nechaev, Oleg; Lishnevskii, Andrey; Tel, Mikhail

    Radiation monitoring system (RMS) installed on board the Russian module (RM) of the In-ternational Space Station (ISS) is an important part of radiation safety system of a spacecraft. RMS function practically continuously beginning from 1 August 2001 year. Integration the RMS with other systems of RM permits to transmit measured values to the Earth by the telemetry and to reflect the radiation environment data directly to crew by the personal com-puter. There is a possibility to correct the RMS software directly on board the ISS. It permits improve greatly a confidence, reliability and validity of an information obtaining. The report presents the data about the equipment functioning and results of dose rate measurements during the period from the August of 2001 up to the August of 2009 both for normal radiation environ-ment and during solar particle events (SPE). Comparison of an absorbed dose rate measured by the detectors located in various points of the RM showed that difference of doses measured in low and high shielded areas of the RM at undisturbed radiation conditions is notably stable and not exceeds a factor of 2. At the same time during the disturbances caused by SPE it can reach of 30. This fact confirms the efficiency of a crew passage in the high-shielded area for decreasing SCR dose. Comparison data obtained with the RMS silicon detectors with the R-16 ionizing chamber data showed that for equal shielding conditions the measured values coincide with accuracy rather then 20On the whole the dose rate dynamics for various solar cycle periods and during the SPE demonstrates reasonably high regularity of crewmembers dose. But it is clear that onboard and personal dosimetric control is necessary for implementation of ALARA principle and minimization of the crewmembers personal doses.

  9. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading of vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.

  10. Hybrid radiation background monitoring in operational control and forecasting of environmental contamination by nuclear power station discharges

    SciTech Connect

    Ermeev, I.S.; Eremenko, V.A.; Makarov, Y.A.; Matueev, V.V.; Zhernov, V.S.

    1986-05-01

    Rapid developments in nuclear power have stimulated research on monitoring and forecasting environmental radiation pollution (ERP), and in particular the amounts, compositions, and distributions of radionuclides in the environment. A conceptual model is presented for hybrid environmental radiation pollution monitoring. When there is an emergency, the model operates in a fashion most closely corresponding to the actual meteorological conditions, and the ERP data given by the model enable one to distinguish changes due to the man-made component from random fluctuations in the natural background. The measurement system in general includes mobile and stationary data-acquisition facilities linked by wire or radio to the central point. The system also accumulates and stores data on the radiation environment, which are edited on the basis of radioactive, chemical, and other transformations. The purpose of hybrid monitoring is ultimately to analyze trends in order to detect elevated discharges and thus to output data to the regional monitoring system.

  11. The use of an active controlled enclosure to attenuate sound radiation from a heavy radiator

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Yang, Tiejun; Zhu, Minggang; Pan, Jie

    2017-03-01

    Active structural acoustical control usually experiences difficulty in the control of heavy sources or sources where direct applications of control forces are not practical. To overcome this difficulty, an active controlled enclosure, which forms a cavity with both flexible and open boundary, is employed. This configuration permits indirect implementation of active control in which the control inputs can be applied to subsidiary structures other than the sources. To determine the control effectiveness of the configuration, the vibro-acoustic behavior of the system, which consists of a top plate with an open, a sound cavity and a source panel, is investigated in this paper. A complete mathematical model of the system is formulated involving modified Fourier series formulations and the governing equations are solved using the Rayleigh-Ritz method. The coupling mechanisms of a partly opened cavity and a plate are analysed in terms of modal responses and directivity patterns. Furthermore, to attenuate sound power radiated from both the top panel and the open, two strategies are studied: minimizing the total radiated power and the cancellation of volume velocity. Moreover, three control configurations are compared, using a point force on the control panel (structural control), using a sound source in the cavity (acoustical control) and applying hybrid structural-acoustical control. In addition, the effects of boundary condition of the control panel on the sound radiation and control performance are discussed.

  12. Active magnetic radiation shielding system analysis and key technologies.

    PubMed

    Washburn, S A; Blattnig, S R; Singleterry, R C; Westover, S C

    2015-01-01

    Many active magnetic shielding designs have been proposed in order to reduce the radiation exposure received by astronauts on long duration, deep space missions. While these designs are promising, they pose significant engineering challenges. This work presents a survey of the major systems required for such unconfined magnetic field design, allowing the identification of key technologies for future development. Basic mass calculations are developed for each system and are used to determine the resulting galactic cosmic radiation exposure for a generic solenoid design, using a range of magnetic field strength and thickness values, allowing some of the basic characteristics of such a design to be observed. This study focuses on a solenoid shaped, active magnetic shield design; however, many of the principles discussed are applicable regardless of the exact design configuration, particularly the key technologies cited.

  13. Radiation Exposure Monitoring and Information Transmittal (REMIT) system. User`s manual

    SciTech Connect

    Cale, R.; Clark, T.; Dixson, R.; Hagemeyer, D.

    1993-06-01

    The Radiation Exposure Monitoring and Information Transmittal (REMIT) system is designed to assist US Nuclear Regulatory Commission (NRC)licensees in meeting the reporting requirements of the revised 10 CFR 20 and in agreement with the guidance contained in R.G. 8.7, Rev. 1, ``Instructions for Recording and Reporting Occupational Exposure Data.`` REMIT is a personal computer (PC) based menu driven system that facilitates the manipulation of data base files to record and report radiation exposure information. REMIT is designed to be user-friendly and contains the full text of R. G. 8.7, Rev. 1, on-line as well as context-sensitive help throughout the program. The user can enter data directly from NRC Forms 4 or 5, REMIT allows the user to view the individual`s exposure in relation to regulatory or administrative limits and alerts the user to exposures in excess of these limits. The system also provides for the calculation and summation of dose from intakes and the determination of the dose to the maximally exposed extremity for the monitoring year. REMIT can produce NRC Forms 4 and 5 in paper and electronic format and can import/export data from ASCII and data base files.

  14. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    NASA Technical Reports Server (NTRS)

    Middleton, Elizabeth M.

    1992-01-01

    Quantifying the vegetative surface's reflectance anisotropy was an important part of the First ISLSCP Field Experiment, as its major objectives focused on retrieval of surface parameters from satellite-derived reflectances. The explicit remote measurements for approximating the bidirectional reflectance distribution function (BRDF) of photosynthetically active radiation had not been previously undertaken. In this paper the proper expression of reflectance for BRDFs for retrieval of canopy parameters is assessed.

  15. Individual Radiation Protection Monitoring in the Marshall Islands: Utrok Atoll (2003-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Tibon, S; Chee, L

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet

  16. EarthScope Content Module for IRIS Active Earth Monitor

    NASA Astrophysics Data System (ADS)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  17. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  18. Personal Active Dosimeter for Space: the Light Observer for Radiation Environment (LORE) project

    NASA Astrophysics Data System (ADS)

    Narici, Livio

    Long permanence in space outside the protections of the Earth magnetic shield and atmosphere (during long journeys, and on the Moon or/and Mars) requires a careful monitoring of absorbed doses by each astronaut. This is of paramount importance for transient and cumulative effects mostly due to Solar Particle Events. Alarming features and the possibility of monitoring absorbed dose also discriminating the kind of incoming radiation will be needed. Stemming from our large experience in detector building, in modelling, in designing of the supporting electronic, from our payloads flown on satellites, MIR Station and ISS (Nina, Mita, SilEye, SilEye2, Alteino, Pamela, ALTEA) we are developping a personal active dosimeter with alarming and wireless features. The goal is a small object able to measure charged and neutral ionizing radiation (the possibility to insert a miniaturized gamma detector will be investigated) The device will feature portability (cigarette-box dimensions, rechargeable batteries), sensitivity to ions (H to above Fe), to hard X-rays, and possibly to gamma with the ability to detect and count neutrons. Flash memories should contain pre loaded tables and the real Time code to perform the real time operations and risk thresholds so to activate an alarm if/when needed. Whenever in range, the device will connect wirelessly to the main computer and send there the raw and pre-analyzed data for a complete monitoring and possible more sophisticated analyses. The two major novelties and challenges in this project are the miniaturization of the device, including the firmware, and the definition of the transfer function and of its uncertainties, linking measured data with real flux data. This will require the proper balancing among size, radiation discrimination ability and uncertainty minimization.

  19. Monitoring seismic wave speed by an active seismic source

    NASA Astrophysics Data System (ADS)

    Yokoyama, K.; Kawakata, H.; Doi, I.; Okubo, M.; Saiga, A.

    2012-12-01

    Decreases in elastic wave speed around cracked zones prior to faulting in rock fracture experiments have been reported (e.g., Yukutake, 1989; Yoshimitsu et al., 2009). These decreases in wave speed have been considered to be associated with crack and fault growth based on non-destructive observation using X-ray CT scan (Kawakata et al., 1999). Meanwhile, there were some reports on the decreases in seismic wave speed along paths that cross the hypocentral area in periods including some large earthquakes. Uchida et al. (2002) analyzed seismic waveform with explosive sources before and after the 1998 northern Iwate prefecture earthquake, and they showed that the decrease in seismic wave speed approximately 0.1-0.9 % by the earthquake occurrence. Justin et al. (2007) reported the reduction in seismic wave speed accompanied with the 2003 Tokachi oki earthquake around the rupture area by using the four repeating earthquakes that occurred before and after the 2003 Tokachi oki earthquake. However, seismograms of explosive sources or repeating earthquakes are hard to be frequently recorded, which makes the time intervals of estimated seismic wave speed be too long to distinguish preseismic changes from coseismic and post seismic changes. In order to monitor crustal structures and detecting the variation of rock properties in the crust, a kind of active seismic source systems ACROSS (Accurately Controlled Routinely Operated Signal System) has been developed(e.g., Kunitomo and Kumazawa, 2004). We used the controlled seismic source ACROSS, which installed at the Tono mine, Gifu prefecture, central Japan and has been routinely operated by Tono Geoscience center of JAEA (Japan Atomic Energy Agency), automatically. Frequency modulated seismic waves are continuously radiated from approximately 10-20 Hz by eccentric rotation of the source. In order to investigate the stability of ACROSS signals, we used seismograms recorded at the 110m depth of Shobasama observing site, which is

  20. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  1. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a...

  2. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section 884.2730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... the clinic. The HUAM system comprises a tocotransducer, an at-home recorder, a modem, and a...

  3. Radiation monitoring systems as a tool for assessment of accidental releases at the Chernobyl and Fukushima NPPs

    NASA Astrophysics Data System (ADS)

    Shershakov, Vjacheslav; Bulgakov, Vladimir

    2013-04-01

    The experience gained during mitigation of the consequences of the accidents at the Chernobyl and Fukushima NPPs has shown that what makes different the decision-making in case of nuclear accidents is that the greatest benefit from decision-making can be achieved in the early phase of an accident. Support to such process can be provided only by a real-time decision-making support system. In case of a nuclear accident the analysis of the situation and decision-making is not feasible without an operational radiation monitoring system, international data exchange and automated data processing, and the use of computerized decision-making support systems. With this in mind, in the framework of different international programs on the Chernobyl-related issues numerous projects were undertaken to study and develop a set of methods, algorithms and programs providing effective support to emergency response decision-making, starting from accident occurrence to decision-making regarding countermeasures to mitigate effects of radioactive contamination of the environment. The presentation focuses results of the analysis of radiation monitoring data and, on this basis, refining or, for many short-lived radionuclides, reconstructing the source term, modeling dispersion of radioactivity in the environment and assessing its impacts. The obtained results allowed adding and refining the existing estimates and in some cases reconstructing doses for the public on the territories contaminated as a result of the Chernobyl accident. The activities were implemented in two stages. In the first stage, several scenarios for dispersion of Chernobyl-related radioactivity were developed. For each scenario cesium-137 dispersion was estimated and these estimates were compared with measurement data. In the second stage, the scenario which showed the best agreement of calculations and measurements was used for modeling the dispersion of iodine-131and other short-lived radionuclides. The described

  4. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Arelong, E; Langinbelik, S

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Rongelap Atoll (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance

  5. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    SciTech Connect

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

    2006-01-17

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental

  6. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    SciTech Connect

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-07-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1{sup -/-} knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor {beta}1 (TGF-{beta}1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1{sup -/-} mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  7. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  8. Monitoring cell concentration and activity by multiple excitation fluorometry.

    PubMed

    Li, J K; Asali, E C; Humphrey, A E; Horvath, J J

    1991-01-01

    Four key cellular metabolic fluorophores--tryptophan, pyridoxine, NAD(P)H, and riboflavin--were monitored on-line by a multiple excitation fluorometric system (MEFS) and a modified SLM 8000C scanning spectrofluorometer in three model yeast fermentation systems--bakers' yeast growing on glucose, Candida utilis growing on ethanol, and Saccharomyces cerevisiae RTY110/pRB58 growing on glucose. The measured fluorescence signals were compared with cell concentration, protein concentration, and cellular activity. The results indicate that the behavior and fluorescence intensity of various fluorophores differ in the various fermentation systems. Tryptophan fluorescence is the best signal for the monitoring of cell concentration in bakers' yeast and C. utilis fermentations. Pyridoxine fluoresce is the best signal for the monitoring of cell concentration in the S. cerevisiae RTY110/pRB58 fermentation. In bakers' yeast fermentations the pyridoxine fluorescence signal can be used to monitor cellular activity. The NAD(P)H fluorescence signal is a good indicator of cellular activity in the C. utilis fermentation. For this fermentation NAD(P)H fluorescence can be used to control ethanol feeding in a fed-batch process.

  9. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites

    SciTech Connect

    2013-11-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

  10. Limited activity monitoring in toddlers with autism spectrum disorder.

    PubMed

    Shic, Frederick; Bradshaw, Jessica; Klin, Ami; Scassellati, Brian; Chawarska, Katarzyna

    2011-03-22

    This study used eye-tracking to examine how 20-month-old toddlers with autism spectrum disorder (ASD) (n=28), typical development (TD) (n=34), and non-autistic developmental delays (DD) (n=16) monitored the activities occurring in a context of an adult-child play interaction. Toddlers with ASD, in comparison to control groups, showed less attention to the activities of others and focused more on background objects (e.g., toys). In addition, while all groups spent the same time overall looking at people, toddlers with ASD looked less at people's heads and more at their bodies. In ASD, these patterns were associated with cognitive deficits and greater autism severity. These results suggest that the monitoring of the social activities of others is disrupted early in the developmental progression of autism, limiting future avenues for observational learning.

  11. Monitoring and evaluating school nutrition and physical activity policies.

    PubMed

    Taylor, Jennifer P; McKenna, Mary L; Butler, Gregory P

    2010-01-01

    Given the increase in the number of Canadian jurisdictions with school nutrition and/or physical activity policies, there is a need to assess the effectiveness of such policies. The objectives of this paper are to 1) provide an overview of key issues in monitoring and evaluating school nutrition and physical activity policies in Canada and 2) identify areas for further research needed to strengthen the evidence base and inform the development of effective approaches to monitoring and evaluation. Evaluation indicators, data sources and existing tools for evaluating nutrition and physical activity are reviewed. This paper has underscored the importance of identifying common indicators and approaches, using a comprehensive approach based on the WHO framework and ensuring that research capacity and funding is in place to facilitate high-quality evaluation efforts in the future.

  12. Recent Developments in Active and Passive Distributed Temperature Sensing for Soil Moisture Monitoring

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Dong, J.; Hoes, O.; Van De Giesen, N.; Sayde, C.; Ochsner, T. E.; Selker, J. S.

    2015-12-01

    In this presentation we will review recent developments in both active and passive Distributed Temperature Sensing (DTS) for soil moisture monitoring. DTS involves using fiber-optic cables to measure temperature at sub-meter resolution along cables up to several kilometers in length. Soil thermal properties depend on soil moisture. Hence, temperature variations either in response to externally-applied heating (active) or the response to net radiation (passive) can be monitored and used to infer soil moisture. DTS occupies a unique measurement niche, potentially providing soil moisture information at sub-meter resolution over extents on the order of km at sub-daily time steps. It complements observations from point sensors to other innovative measurement techniques like cosmic ray neutron detection methods and GPS reflectometry. DTS is being developed as a tool for the validation of soil moisture observations from remote sensing and for hydrological field investigations. Here, we will discuss both technological and theoretical advances in active and passive DTS for soil moisture monitoring. We will present data from new installations in the Netherlands and the USA to illustrate recent developments. In particular, we will focus on the value of combining temperature observations from DTS with physical models using data assimilation. In addition to yielding improved soil moisture and temperature profile estimates, recent research has shown the potential to also derive information on the soil thermal and hydraulic properties. We will conclude by outlining the current challenges, with particular emphasis on combining active and passive DTS.

  13. A radiation belt monitor for the High Energy Transient Experiment Satellite

    NASA Technical Reports Server (NTRS)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  14. New method of proportional counter feedback biasing for wide-range radiation dose-rate monitors

    SciTech Connect

    Kopp, M.K.; Valentine, K.H.; Guerrant, G.C.; Manning, F.W.

    1984-01-01

    A prototypic wide-range radiation dose-rate monitor for civil defense applications has been developed and tested. The specified dose-rate range (0 to 500 R/h) was displayed on a single readout scale by using feedback-controlled biasing of a proportional counter. This new method is based on controlling the avalanche multiplication factor (gas gain) of the counter by varying its bias voltage in response to its measured output current (i.e., detected dose rate). The counter output current varies between 0 and 1.5 nA in a quasi-logarithmic response to dose rates between 0 and 500 R/h. The corresponding values of gas gain and bias voltage range from 1 to 300 and 200 to 1900 V respectively.

  15. Quantification of the Deterrent Effect of Radiation Portal Monitors Using a Decision Theory Model

    SciTech Connect

    Heasler, Patrick G.; Wood, Thomas W.

    2005-04-28

    Operation of radiation portal monitors (RPMs) can be modeled as a two-person game, with the RPM operator attempting to detect any nuclear weapon passing through the portal, while the opponent tries to pass it through undetected. A key element in the defender's decision strategy is the detection algorithm he employs, while a key element of the opponent's strategy is the threat density he employs. This article constructs a game-theoretic formulation for RPM operation and calculates the ''best'' strategy for each player, called the Minimax strategy. This solution allows one to quantify the deterrent effect that the inspection system has on the opponent--that is, the reduction in threat density due to use of the system.

  16. On the optimisation of the use of 3He in radiation portal monitors

    NASA Astrophysics Data System (ADS)

    Tomanin, Alice; Peerani, Paolo; Janssens-Maenhout, Greet

    2013-02-01

    Radiation Portal Monitors (RPMs) are used to detect illicit trafficking of nuclear or other radioactive material concealed in vehicles, cargo containers or people at strategic check points, such as borders, seaports and airports. Most of them include neutron detectors for the interception of potential plutonium smuggling. The most common technology used for neutron detection in RPMs is based on 3He proportional counters. The recent severe shortage of this rare and expensive gas has created a problem of capacity for manufacturers to provide enough detectors to satisfy the market demand. In this paper we analyse the design of typical commercial RPMs and try to optimise the detector parameters in order either to maximise the efficiency using the same amount of 3He or minimise the amount of gas needed to reach the same detection performance: by reducing the volume or gas pressure in an optimised design.

  17. Environmental Radiation Monitoring at NBS/NIST From 1960 Through 2000

    PubMed Central

    Hobbs, Thomas G.

    2001-01-01

    The program for monitoring the environment in and about the site of the National Bureau of Standards, now the National Institute of Standards and Technology, at its Gaithersburg, Maryland location began in 1960. The program includes measurements of radiation fields at the fence line of the site and of radionuclides in samples of soil, water, and biota taken within and around the site. A variety of instruments and equipment, processes and procedures, and measurement devices has been employed. To date, no measurement from the routine program has exhibited any result that could be attributed to any effluent or other effect of the radiological work conducted at the site; that includes the NIST Research Reactor, the now defunct Linear Electron Accelerator (LINAC) and other accelerators, radiochemistry, and sealed source operations. PMID:27500047

  18. The value to the anaesthetist of monitoring cerebral activity.

    PubMed

    Langford, R M; Thomsen, C E

    1994-03-01

    The administration rate of general anaesthetic drugs is at present guided by clinical experience, and indirect indicators such as haemodynamic parameters. In the presence of muscle relaxants most of the clinical signs of inadequate anaesthesia are lost and accidental awareness may occur. A number of monitoring modalities, primarily based on analysis of the electroencephalogram (EEG), have been proposed for measurement of the anaesthetic depth. Moreover intraoperative cerebral monitoring may also provide the anaesthetist with early warning of cerebral ischaemia, or information on specific neurological pathways. To facilitate this, it is essential to combine analysis of the spontaneous EEG with recording of evoked potentials, to assess both cortical and subcortical activity/events. None of the reviewed methods, however promising, can alone meet all of the requirements for intraoperative monitoring of cerebral function. We suggest that the future direction should be to integrate several modalities in a single device, to provide valuable new information, upon which to base clinical management decisions.

  19. Towards a Long-Term Strategy for Voluntary-Based Internal Radiation Contamination Monitoring: A Population-Level Analysis of Monitoring Prevalence and Factors Associated with Monitoring Participation Behavior in Fukushima, Japan.

    PubMed

    Nomura, Shuhei; Tsubokura, Masaharu; Ozaki, Akihiko; Murakami, Michio; Hodgson, Susan; Blangiardo, Marta; Nishikawa, Yoshitaka; Morita, Tomohiro; Oikawa, Tomoyoshi

    2017-04-09

    Following Japan's 2011 Fukushima nuclear incident, we assessed voluntary-based monitoring behavior in Minamisoma City-located 10-40 km from the Fukushima nuclear plant-to inform future monitoring strategies. The monitoring in Minamisoma included occasional free of charge internal-radiation-exposure measurements. Out of around 70,000 individuals residing in the city before the incident, a total of 45,788 residents (female: 52.1%) aged ≥21 were evaluated. The monitoring prevalence in 2011-2012 was only 30.2%, and this decreased to 17.9% in 2013-2014. Regression analyses were performed to estimate factors associated with the monitoring prevalence and participation behavior. The results show that, in comparison with the age cohort of 21-30 years, the cohort of 71-80 and ≥81 years demonstrated significantly lower monitoring prevalence; female residents had higher monitoring prevalence than male residents; those who were living in evacuation zones at the time of the incident had higher monitoring prevalence than those who lived outside any of the evacuation zones; for those living outside Fukushima and neighboring Prefectures post-incident monitoring prevalence decreased significantly in 2013-2014. Our findings inform the discussion on the concepts of radiation risk perception and accessibility to monitoring and societal decision-making regarding the maintenance of the monitoring program with low monitoring prevalence. We also stress the possibility that the monitoring can work both to check that internal contamination levels are within acceptable limits, and as a risk communication tool, alleviating individuals' concern and anxiety over radiation contamination.

  20. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  1. p38 mitogen-activated protein kinase activation by ultraviolet A radiation in human dermal fibroblasts.

    PubMed

    Le Panse, Rozen; Dubertret, Louis; Coulomb, Bernard

    2003-08-01

    UVA radiation penetrates deeply into the skin reaching both the epidermis and the dermis. We thus investigated the effects of naturally occurring doses of UVA radiation on mitogen-activated protein kinase (MAPK) activities in human dermal fibroblasts. We demonstrated that UVA selectively activates p38 MAPK with no effect on extracellular-regulated kinases (ERK1-ERK2) or JNK-SAPK (cJun NH2-terminal kinase-stress-activated protein kinase) activities. We then investigated the signaling pathway used by UVA to activate p38 MAPK. L-Histidine and sodium azide had an inhibitory effect on UVA activation of p38 MAPK, pointing to a role of singlet oxygen in transduction of the UVA effect. Afterward, using prolonged cell treatments with growth factors to desensitize their signaling pathways or suramin to block growth factor receptors, we demonstrated that UVA signaling pathways shared elements with growth factor signaling pathways. In addition, using emetine (a translation inhibitor altering ribosome functioning) we detected the involvement of ribotoxic stress in p38 MAPK activation by UVA. Our observations suggest that p38 activation by UVA in dermal fibroblasts involves singlet oxygen-dependent activation of ligand-receptor signaling pathways or ribotoxic stress mechanism (or both). Despite the activation of these two distinct signaling mechanisms, the selective activation of p38 MAPK suggests a critical role of this kinase in the effects of UVA radiation.

  2. Stanford Synchrotron Radiation Laboratory activity report for 1987

    SciTech Connect

    Robinson, S.; Cantwell, K.

    1988-12-31

    During 1987, SSRL achieved many significant advances and reached several major milestones utilizing both SPEAR and PEP as synchrotron radiation sources as described in this report. Perhaps the following two are worthy of particular mention: (1) SPEAR reached an all time high of 4,190 delivered user-shifts during calendar year 1987, highlights of the many scientific results are given; (2) during a 12 day run in December of 1987, PEP was operated in a low emittance mode (calculated emittance 6.4 nanometer-radians) at 7.1 GeV with currents up to 33 mA. A second undulator beam line on PEP was commissioned during this run and used to record many spectra showing the extremely high brightness of the radiation. PEP is now by far the highest brightness synchrotron radiation source in the world. The report is divided into the following sections: (1) laboratory operations; (2) accelerator physics programs; (3) experimental facilities; (4) engineering division; (5) conferences and workshops; (6) SSRL organization; (7) experimental progress reports; (8) active proposals; (9) SSRL experiments and proposals by institution; and (10) SSRL publications.

  3. Demonstration of a vapor density monitoring system using UV radiation generated from quasi-phasematched SHG waveguide devices

    SciTech Connect

    Galanti, S.A.; Berzins, L.V.; Brown, J.B.; Tamosaitis, R.S.; Bortz, M.L.; Day, T.; Fejer, M.M.; Wang, W.

    1996-01-29

    Many industrial applications require non-intrusive diagnostics for process monitoring and control. One example is the physical vapor deposition of titanium alloys. In this paper we present a system based on laser absorption spectroscopy for monitoring titanium vapor. Appropriate transitions for monitoring high rate vaporization of titanium require extension of available IR diode technology to the UV. The heart of this vapor density monitoring system is the 390nm radiation generated from quasi-phase matched interactions within periodically poled waveguides. In this paper, key system components of a UV laser absorption spectroscopy based system specific for titanium density monitoring are described. Analysis is presented showing the minimum power levels necessary from the ultraviolet laser source. Performance data for prototype systems using second harmonic generation (SHG) waveguide technology is presented. Application of this technology to other alloy density monitoring systems is discussed.

  4. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications

    PubMed Central

    Park, Hye Min; Joo, Koan Sik

    2016-01-01

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm3 Ce-doped Gd–Al–Ga–garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for 133Ba at 0.356 MeV, 22Na at 0.511 MeV, 137Cs at 0.662 MeV, and 60Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm2. PMID:27338392

  5. Timepix-based radiation environment monitor measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Stoffle, Nicholas; Pinsky, Lawrence; Kroupa, Martin; Hoang, Son; Idarraga, John; Amberboy, Clif; Rios, Ryan; Hauss, Jessica; Keller, John; Bahadori, Amir; Semones, Edward; Turecek, Daniel; Jakubek, Jan; Vykydal, Zdenek; Pospisil, Stanislav

    2015-05-01

    A number of small, single element radiation detectors, employing the CERN-based Medipix2 Collaboration's Timepix Application Specific Integrated Circuit (ASIC) coupled to a specially modified version of the USB-Lite interface for that ASIC provided by the Institute for Experimental and Applied Physics (IEAP) at the Czech Technical University in Prague, have been developed at the University of Houston and NASA Johnson Space Center. These detectors, officially designated by NASA as Radiation Environment Monitors (REMs), were deployed aboard the International Space Station in late 2012. Six REM units are currently operating on Station Support Computers (SSCs) and returning data on a daily basis. The associated data acquisition software on the SSCs provides both automated data collection and transfer, as well as algorithms to handle adjustment of acquisition rates and recovery and restart of the acquisition software. A suite of ground software analysis tools has been developed to allow rapid analysis of the data and provides a ROOT-based framework for extending data analysis capabilities.

  6. Development and Performance Characteristics of Personal Gamma Spectrometer for Radiation Monitoring Applications.

    PubMed

    Park, Hye Min; Joo, Koan Sik

    2016-06-21

    In this study, a personal gamma (γ) spectrometer was developed for use in applications in various fields, such as homeland security and environmental radiation monitoring systems. The prototype consisted of a 3 × 3 × 20 mm³ Ce-doped Gd-Al-Ga-garnet (Ce:GAGG) crystal that was coupled to a Si photomultiplier (SiPM) to measure γ radiation. The γ spectrometer could be accessed remotely via a mobile device. At room temperature, the implemented Ce:GAGG-SiPM spectrometer achieved energy resolutions of 13.5%, 6.9%, 5.8%, and 2.3% for (133)Ba at 0.356 MeV, (22)Na at 0.511 MeV, (137)Cs at 0.662 MeV, and (60)Co at 1.33 MeV, respectively. It consumed only about 2.7 W of power, had a mass of just 340 g (including the battery), and measured only 5.0 × 7.0 cm².

  7. A screening model for depleted uranium testing using environmental radiation monitoring data

    SciTech Connect

    Dunfrund, F.L.; Ebinger, M.H.; Hansen, W.R.

    1996-06-01

    Information from an ecological risk assessment of depleted uranium test areas at Yuma Proving Ground (YPG) was used to update the required environmental radiation monitoring (ERM) plan. Data to be collected for the ERM can also be used to evaluate the potential for adverse radiological and toxicological effects to terrestrial reptiles and mammals in the affected areas. We developed a spreadsheet-based screening model that incorporates the ERM data and associated uncertainties. The purpose of the model is to provide a conservative estimate of radiological exposure of terrestrial, biota to DU using the ERM data. The uncertainty in the estimate is also predicted so that the variation in the radiological exposure can be used in assessing potential adverse effects from DU testing. Toxicological effects are evaluated as well as radiological effects in the same program using the same data. Our presentation shows an example data set, model calculations, and the report of expected radiation dose rates and probable kidney burdens of select mammals and reptiles. The model can also be used in an inverse mode to calculate the soil concentration required to give either a radiological dose that would produce a potential adverse effect such as fatal cancer or a toxicological dose that would result in nephrotoxic effects in mammals.

  8. Community Radiation Monitoring Program annual report, October 1, 1989--September 30, 1990

    SciTech Connect

    Cooper, E.N.; McArthur, R.D.

    1991-07-01

    The events of FY 1990 indicate that another successful year in the evolution of the Community Radiation Monitoring Program is in the books. The agencies and organizations involved in the program have developed a sound and viable working relationship, and it appears that the major objectives, primarily dispelling some of the concerns over weapons testing and radiation on the part of the public, are being effectively addressed. The program is certainly a dynamic operation, growing and changing to meet perceived needs and goals as more experience is gained through our work. The change in focus on our public outreach efforts will lead us to contacts with more students and schools, service clubs and special interest groups in the future, and will refine, and hopefully improve, our communication with the public. If that can be accomplished, plus perhaps influencing a few more students to stay in school and even grow up to be scientists, engineers and better citizens, we will be closer to having achieved our goals. It is important to note that the success of the program has occurred only because the people involved, from the Department of Energy, the Environmental Protection Agency, the Desert Research Institute, the University of Utah and the Station Managers and Alternates work well and hard together. Our extended family'' is doing a good job. 9 refs., 1 fig., 3 tabs.

  9. Inflammatory bowel diseases activity in patients undergoing pelvic radiation therapy

    PubMed Central

    Seisen, Thomas; Klotz, Caroline; Mazeron, Renaud; Maroun, Pierre; Petit, Claire; Deutsch, Eric; Bossi, Alberto; Haie-Meder, Christine; Chargari, Cyrus; Blanchard, Pierre

    2017-01-01

    Background Few studies with contradictory results have been published on the safety of pelvic radiation therapy (RT) in patients with inflammatory bowel disease (IBD). Methods From 1989 to 2015, a single center retrospective analysis was performed including all IBD patients who received pelvic external beam radiation therapy (EBRT) or brachytherapy (BT) for a pelvic malignancy. Treatment characteristics, IBD activity and gastrointestinal (GI) toxicity were examined. Results Overall, 28 patients with Crohn’s disease (CD) (n=13) or ulcerative colitis (n=15) were included in the present study. Median follow-up time after irradiation was 5.9 years. Regarding IBD activity, only one and two patients experienced a severe episode within and after 6 months of follow-up, respectively. Grade 3/4 acute GI toxicity occurred in 3 (11%) patients, whereas one (3.6%) patient experienced late grade 3/4 GI toxicity. Only patients with rectal IBD location (P=0.016) or low body mass index (BMI) (P=0.012) experienced more severe IBD activity within or after 6 months following RT, respectively. Conclusions We report an acceptable tolerance of RT in IBD patients with pelvic malignancies. Specifically, a low risk of uncontrolled flare-up was observed. PMID:28280621

  10. Active Sites Environmental Monitoring Program: Program plan. Revision 1

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  11. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    NASA Astrophysics Data System (ADS)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  12. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    NASA Technical Reports Server (NTRS)

    Baker, James R., Jr.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaIglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This proposal seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the sensor/actuators. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as the exposure to radiation or infectious agents. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), magnetic particles and metals, and imaging agents. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. These molecules would also be able to administer therapeutics in response to the needs of the astronaut, and act as actuators to remotely manipulate an astronaut as necessary to ensure their safety. The reporting will be accomplished either through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation, or through functional MRI. These nanosensors coupled to NEMS devices could facilitate the success and increase the safety of extended space flight.

  13. Toward Active Monitoring of Piping Using Ultrasonic Guided Waves

    SciTech Connect

    Park, Joon-Soo; Kim, Young H.; Song, Sung-Jin; Kim, Jae-Hee; Eom, Heung-Seop; Im, Kwang-Hee

    2004-02-26

    Piping in nuclear power plants is exposed to severe environmental conditions so that it is very susceptible to failure caused by the growth of defects. Thus, it is necessary to have thorough inspection of piping in order to detect defects before failure. Unfortunately, however, inspection of piping in nuclear power plants is not easy in practice because of its long length as well as the radioactive environment. To take care of this difficulty, a research endeavor to develop techniques to monitor piping in nuclear power plants continuously and actively using ultrasonic guided wave is currently undertaken. This paper reports initial results of our endeavor including design of an ultrasonic array system for active monitoring of piping.

  14. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  15. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  16. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  17. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  18. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  19. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  20. Modeling of ultrasonic and terahertz radiations in defective tiles for condition monitoring of thermal protection systems

    NASA Astrophysics Data System (ADS)

    Kabiri Rahani, Ehsan

    Condition based monitoring of Thermal Protection Systems (TPS) is necessary for safe operations of space shuttles when quick turn-around time is desired. In the current research Terahertz radiation (T-ray) has been used to detect mechanical and heat induced damages in TPS tiles. Voids and cracks inside the foam tile are denoted as mechanical damage while property changes due to long and short term exposures of tiles to high heat are denoted as heat induced damage. Ultrasonic waves cannot detect cracks and voids inside the tile because the tile material (silica foam) has high attenuation for ultrasonic energy. Instead, electromagnetic terahertz radiation can easily penetrate into the foam material and detect the internal voids although this electromagnetic radiation finds it difficult to detect delaminations between the foam tile and the substrate plate. Thus these two technologies are complementary to each other for TPS inspection. Ultrasonic and T-ray field modeling in free and mounted tiles with different types of mechanical and thermal damages has been the focus of this research. Shortcomings and limitations of FEM method in modeling 3D problems especially at high-frequencies has been discussed and a newly developed semi-analytical technique called Distributed Point Source Method (DPSM) has been used for this purpose. A FORTRAN code called DPSM3D has been developed to model both ultrasonic and electromagnetic problems using the conventional DPSM method. This code is designed in a general form capable of modeling a variety of geometries. DPSM has been extended from ultrasonic applications to electromagnetic to model THz Gaussian beams, multilayered dielectrics and Gaussian beam-scatterer interaction problems. Since the conventional DPSM has some drawbacks, to overcome it two modification methods called G-DPSM and ESM have been proposed. The conventional DPSM in the past was only capable of solving time harmonic (frequency domain) problems. Time history was

  1. Aperiodic arrays of active nanopillars for radiation engineering

    NASA Astrophysics Data System (ADS)

    Lawrence, Nate; Trevino, Jacob; Dal Negro, Luca

    2012-06-01

    We engineer aperiodic nanostructures for enhanced omnidirectional light extraction and coupling of 1.55 μm radiation to distinctive optical resonances carrying of orbital angular momentum (OAM) using light emitting Si-based materials. By systematically studying nanopillar arrays with varying pillar separations and increasing degree of rotational symmetry in Fourier space, we show that omnidirectional extraction is achieved with circularly symmetric Fourier space, leading to best light emission enhancement from planar devices such as LEDs or lasers. To demonstrate the potential of active aperiodic structures with azimuthally isotropic k-space, we fabricate nanopillar arrays of erbium doped silicon-rich nitride using electron beam lithography and reactive ion etching. Experimental results obtained using leaky-mode photoluminescence spectroscopy prove over 10 times extraction enhancement at 1.55 μm from aperiodic golden angle spirals (GA spirals), in good agreement with design based on analytical Bragg scattering and finite difference time domain calculations. In addition, by imaging Er radiation in direct and reciprocal space, we demonstrate that GA spiral arrays support angularly isotropic emission patterns and distinctive optical resonances with a well-defined azimuthal structure carrying OAM. These findings offer unique opportunities for the engineering of novel active structures that leverage isotropic emission patterns and structured light for secure optical communication, sensing, imaging, and light sources on a Si platform.

  2. Photosynthetically active radiation and its relationship with global solar radiation in Central China.

    PubMed

    Wang, Lunche; Gong, Wei; Ma, Yingying; Hu, Bo; Zhang, Miao

    2014-08-01

    Photosynthetically active radiation (PAR) and other solar components were observed for a period of 3 years at Wuhan, China to determine for the first time the temporal variability of PAR fraction [PAR/G (G here stands for global solar radiation)] and its dependence on different sky conditions in Central China. PAR, G and PAR/G showed similar seasonal features that peaked in summer and reached their lowest values in winter. The seasonal PAR/G ranged from 1.70 E MJ(-1) (winter) to 2.01 E MJ(-1) (summer) with an annual mean value of 1.89 E MJ(-1). Hourly values of PAR/G increased from 1.78 to 2.11 E MJ(-1) on average as sky conditions changed from clear to cloudy. Monthly mean hourly PAR/G revealed a diurnal variation, with highest values observed around sunrise and sunset, slightly higher PAR fractions were also found around noon for most months. The effect of daylength on PAR/G was also studied and no significant impact was found. Three models were developed to estimate PAR from G. These models consisted of atmospheric parameters that were found to cause substantial changes of PAR/G, such as sky clearness, brightness, path length and the sky clearness index. The estimations obtained from different models were very close to the measured values with maximum relative errors below 8 % (hourly values) in Wuhan. The models were not only tested at seven radiation stations in Central China, but also verified in six stations with different climates in China. The models were found to estimate PAR accurately from commonly available G data in Central China; however, the results also implied that the models need to be modified to account for local climatic conditions when applied to the whole country.

  3. Human psychophysiological activity monitoring methods using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Zyczkowski, M.; Uzieblo-Zyczkowska, B.

    2010-10-01

    The paper presents the concept of fiber optic sensor system for human psycho-physical activity detection. A fiber optic sensor that utilizes optical phase interferometry or intensity in modalmetric to monitor a patient's vital signs such as respiration cardiac activity, blood pressure and body's physical movements. The sensor, which is non-invasive, comprises an optical fiber interferometer that includes an optical fiber proximately situated to the patient so that time varying acusto-mechanical signals from the patient are coupled into the optical fiber. The system can be implemented in embodiments ranging form a low cost in-home to a high end product for in hospital use.

  4. Activation of Protease Activated Receptor 2 by Exogenous Agonist Exacerbates Early Radiation Injury in Rat Intestine

    SciTech Connect

    Wang Junru; Boerma, Marjan; Kulkarni, Ashwini; Hollenberg, Morley D.; Hauer-Jensen, Martin

    2010-07-15

    Purpose: Protease-activated receptor-2 (PAR{sub 2}) is highly expressed throughout the gut and regulates the inflammatory, mitogenic, fibroproliferative, and nociceptive responses to injury. PAR{sub 2} is strikingly upregulated and exhibits increased activation in response to intestinal irradiation. We examined the mechanistic significance of radiation enteropathy development by assessing the effect of exogenous PAR{sub 2} activation. Methods and Materials: Rat small bowel was exposed to localized single-dose radiation (16.5 Gy). The PAR{sub 2} agonist (2-furoyl-LIGRLO-NH{sub 2}) or vehicle was injected intraperitoneally daily for 3 days before irradiation (before), for 7 days after irradiation (after), or both 3 days before and 7 days after irradiation (before-after). Early and delayed radiation enteropathy was assessed at 2 and 26 weeks after irradiation using quantitative histologic examination, morphometry, and immunohistochemical analysis. Results: The PAR{sub 2} agonist did not elicit changes in the unirradiated (shielded) intestine. In contrast, in the irradiated intestine procured 2 weeks after irradiation, administration of the PAR{sub 2} agonist was associated with more severe mucosal injury and increased intestinal wall thickness in all three treatment groups (p <.05) compared with the vehicle-treated controls. The PAR{sub 2} agonist also exacerbated the radiation injury score, serosal thickening, and mucosal inflammation (p <.05) in the before and before-after groups. The short-term exogenous activation of PAR{sub 2} did not affect radiation-induced intestinal injury at 26 weeks. Conclusion: The results of the present study support a role for PAR{sub 2} activation in the pathogenesis of early radiation-induced intestinal injury. Pharmacologic PAR{sub 2} antagonists might have the potential to reduce the intestinal side effects of radiotherapy and/or as countermeasures in radiologic accidents or terrorism scenarios.

  5. In-vessel activation monitors in JET: Progress in modeling

    SciTech Connect

    Bonheure, Georges; Lengar, I.; Syme, B.; Popovichev, S.; Arnold, Dirk; Laubenstein, Matthias

    2008-10-15

    Activation studies were performed in JET with new in-vessel activation monitors. Though primarily dedicated to R and D in the challenging issue of lost {alpha} diagnostics for ITER, which is being addressed at JET with several techniques, these monitors provide for both neutron and charged particle fluences. A set of samples with different orientation with respect to the magnetic field is transported inside the torus by means of a manipulator arm (in contrast with the conventional JET activation system with pneumatic transport system). In this case, radionuclides with longer half-life were selected and ultralow background gamma-ray measurements were needed. The irradiation was closer to the plasma and this potentially reduces the neutron scattering problem. This approach could also be of interest for ITER, where the calibration methods have yet to be developed. The MCNP neutron transport model for JET was modified to include the activation probe and so provide calculations to help assess the new data. The neutron induced activity on the samples are well reproduced by the calculations.

  6. 2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites

    SciTech Connect

    None, None

    2014-03-01

    This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

  7. Advanced Performance Modeling with Combined Passive and Active Monitoring

    SciTech Connect

    Dovrolis, Constantine; Sim, Alex

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performance information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.

  8. The use of artificial neural networks in PVT-based radiation portal monitors

    SciTech Connect

    Kangas, Lars J.; Keller, Paul E.; Siciliano, Edward R.; Kouzes, Richard T.; Ely, James H.

    2008-03-21

    Polyvinyl toluene (PVT) based gamma-ray scintillation detectors are cost effective for use in radiation portal monitors (RPMs) applied to screening for illicit radioactive materials at international border crossings. While PVT detectors provide good sensitivity in detecting the presence of radioactive materials, they provide poor spectral resolution, limiting their ability to identify the isotopic content of the source of radiation. Thus using only total-spectrum or gross-count alarm algorithms, PVT-based RPMs cannot distinguish innocent materials that contain low-levels of normally occurring radioactivity from special nuclear materials of concern. To reduce the number of “nuisance” alarms produced in PVT-based RPMs by innocent materials, algorithms that analyze spectra from PVT detectors must be optimized to make use of the limited information contained in their energy spectra. This paper discusses how artificial neural networks (ANNs) can be used in such an analysis. The objective was to reduce the nuisance/false alarm probability while maintaining high detection probabilities, thus allowing gross count alarm thresholds to be raised without loss of performance and sensitivity to radioactive materials of interest. The spectra used in this study were obtained from actual PVT-based RPM data, and included cases where simulated spectra were inserted into the measured spectra. This paper also includes an analysis of spectral channel importance and shows evaluations of two methods used to rebin energy spectra into smaller sets. The results show that ANNs can be used with RPMs to reduce nuisance alarms. The algorithms described can be used in analyzing PVT spectra, and potentially sodium iodide spectra.

  9. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1985-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a Landsat MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95 percent of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50 percent of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73 percent of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  10. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  11. Spectral estimators of absorbed photosynthetically active radiation in corn canopies

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Daughtry, C. S. T.; Bauer, M. E.

    1984-01-01

    Most models of crop growth and yield require an estimate of canopy leaf area index (LAI) or absorption of radiation. Relationships between photosynthetically active radiation (PAR) absorbed by corn canopies and the spectral reflectance of the canopies were investigated. Reflectance factor data were acquired with a LANDSAT MSS band radiometer. From planting to silking, the three spectrally predicted vegetation indices examined were associated with more than 95% of the variability in absorbed PAR. The relationships developed between absorbed PAR and the three indices were evaluated with reflectance factor data acquired from corn canopies planted in 1979 through 1982. Seasonal cumulations of measured LAI and each of the three indices were associated with greater than 50% of the variation in final grain yields from the test years. Seasonal cumulations of daily absorbed PAR were associated with up to 73% of the variation in final grain yields. Absorbed PAR, cumulated through the growing season, is a better indicator of yield than cumulated leaf area index. Absorbed PAR may be estimated reliably from spectral reflectance data of crop canopies.

  12. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  13. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  14. Design considerations in an active medical product safety monitoring system.

    PubMed

    Gagne, Joshua J; Fireman, Bruce; Ryan, Patrick B; Maclure, Malcolm; Gerhard, Tobias; Toh, Sengwee; Rassen, Jeremy A; Nelson, Jennifer C; Schneeweiss, Sebastian

    2012-01-01

    Active medical product monitoring systems, such as the Sentinel System, will utilize electronic healthcare data captured during routine health care. Safety signals that arise from these data may be spurious because of chance or bias, particularly confounding bias, given the observational nature of the data. Applying appropriate monitoring designs can filter out many false-positive and false-negative associations from the outset. Designs can be classified by whether they produce estimates based on between-person or within-person comparisons. In deciding which approach is more suitable for a given monitoring scenario, stakeholders must consider the characteristics of the monitored product, characteristics of the health outcome of interest (HOI), and characteristics of the potential link between these. Specifically, three factors drive design decisions: (i) strength of within-person and between-person confounding; (ii) whether circumstances exist that may predispose to misclassification of exposure or misclassification of the timing of the HOI; and (iii) whether the exposure of interest is predominantly transient or sustained. Additional design considerations include whether to focus on new users, the availability of appropriate active comparators, the presence of an exposure time trend, and the measure of association of interest. When the key assumptions of self-controlled designs are fulfilled (i.e., lack of within-person, time-varying confounding; abrupt HOI onset; and transient exposure), within-person comparisons are preferred because they inherently avoid confounding by fixed factors. The cohort approach generally is preferred in other situations and particularly when timing of exposure or outcome is uncertain because cohort approaches are less vulnerable to biases resulting from misclassification.

  15. Lab-Based Measurement of Remediation Techniques for Radiation Portal Monitors (Initial Report)

    SciTech Connect

    Livesay, Jake; Guzzardo, Tyler; Lousteau, Angela L

    2012-02-01

    Radiation Portal Monitors (RPM) deployed by the Second Line of Defense (SLD) are known to be sensitive to the natural environmental radioactive background. There are several techniques used to mitigate the effects of background on the monitors, but since the installation environments can vary significantly from one another the need for a standardized, systematic, study of remediation techniques was proposed and carried out. This study is not meant to serve as the absolute last word on the subject. The data collected are, however, intelligible and useful. Some compromises were made, each of which will be described in detail. The hope of this initial report is to familiarize the SLD science teams with ORNL's effort to model the effect of various remediation techniques on simple, static backgrounds. This study provides a good start toward benchmarking the model, and each additional increment of data will serve to make the model more robust. The scope of this initial study is limited to a few basic cases. Its purpose is to prove the utility of lab-based study of remediation techniques and serve as a standard data set for future use. This importance of this first step of standardization will become obvious when science teams are working in parallel on issues of remediation; having a common starting point will do away with one category of difference, thereby making easier the task of determining the sources of disagreement. Further measurements will augment this data set, allowing for further constraint of the universe of possible situations. As will be discussed in the 'Going Forward' section, more data will be included in the final report of this work. Of particular interest will be the data taken with the official TSA lead collimators, which will provide more direct results for comparison with installation data.

  16. Neutron radiation tolerance of Au-activated silicon

    NASA Technical Reports Server (NTRS)

    Joyner, W. T.

    1987-01-01

    Double injection devices prepared by the introduction of deep traps, using the Au activation method have been found to tolerate gamma irradiation into the Gigarad (Si) region without significant degradation of operating characteristics. Silicon double injection devices, using deep levels creacted by Au diffusion, can tolerate fast neutron irradiation up to 10 to the 15th n/sq cm. Significant parameter degradation occurs at 10 to the 16th n/sq cm. However, since the actual doping of the basic material begins to change as a result of the transmutation of silicon into phosphorus for neutron fluences greater than 10 to the 17th/sq cm, the radiation tolerance of these devices is approaching the limit possible for any device based on initially doped silicon.

  17. Radiation damage/activity calculation for CSNS target station

    NASA Astrophysics Data System (ADS)

    Yin, W.; Liang, T. J.; Yu, Q. Z.; Jia, X. J.

    2010-03-01

    The radiation damages have been performed for Chinese spallation neutron source (CSNS) target center components that relies on Monte Carlo simulation code MCNPX. During the calculation, Bertini intranuclear cascade model, three level-density formulation GCCI, and multistage pre-equilibrium model MPM on which are provided within MCNPX are employed. We calculate the displacement per atom (DPA) and afterheat of the tungsten target, the stainless steel target vessel window and the aluminum alloy moderator vessel. As a hundred kW-level source, these spallation center components have the lifetime more than 5 year. We also give the activity for the T0 chopper of the beam line HIPD to get the primary data for making out a maintenance scenario.

  18. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  19. Monitoring Heparin Therapy with the Activated Partial Thromboplastin Time

    PubMed Central

    Stuart, R. K.; Michel, A.

    1971-01-01

    Difficulties associated with the whole blood clotting time (W.B.C.T.) as a method of monitoring heparin therapy have led to the investigation of the activated partial thromboplastin time (A.P.T.T.) as an alternative. The conclusion is reached that the latter procedure possesses several advantages. Using the method described and a citrate-preserved blood sample collected just prior to the administration of the next serial dose of heparin, the suggested therapeutic duration of the A.P.T.T. is 70 seconds or twice the mean control value. A practical range for this method is 60 to 70 seconds. PMID:5557913

  20. Monitoring rice farming activities in the Mekong Delta region

    NASA Astrophysics Data System (ADS)

    Nguyen, S. T.; Chen, C. F.; Chen, C. R.; Chiang, S. H.; Chang, L. Y.; Khin, L. V.

    2015-12-01

    Half of the world's population depends on rice for survival. Rice agriculture thus plays an important role in the developing world's economy. Vietnam is one of the largest rice producers and suppliers on earth and more than 80% of the exported rice was produced from the Mekong Delta region, which is situated in the southwestern Vietnam and encompasses approximately 40,000 km2. Changes in climate conditions could likely trigger the increase of insect populations and rice diseases, causing the potential loss of rice yields. Monitoring rice-farming activities through crop phenology detection can provide policymakers with timely strategies to mitigate possible impacts on the potential yield as well as rice grain exports to ensure food security for the region. The main objective of this study is to develop a logistic-based algorithm to investigate rice sowing and harvesting activities from the multi-temporal Moderate Resolution Imaging Spectroradiometer (MODIS)-Landsat fusion data. We processed the data for two main cropping seasons (i.e., winter-spring and summer-autumn seasons) through a three-step procedure: (1) MODIS-Landsat data fusion, (2) construction of the time-series enhanced vegetation index 2 (EVI2) data, (3) rice crop phenology detection. The EVI2 data derived from the fusion results between MODIS and Landsat data were compared with that of Landsat data indicated close correlation between the two datasets (R2 = 0.93). The time-series EVI2 data were processed using the double logistic method to detect the progress of sowing and harvesting activities in the region. The comparisons between the estimated sowing and harvesting dates and the field survey data revealed the root mean squared error (RMSE) values of 8.4 and 5.5 days for the winter-spring crop and 9.4 and 12.8 days for the summer-autumn crop, respectively. This study demonstrates the effectiveness of the double logistic-based algorithm for rice crop monitoring from temporal MODIS-Landsat fusion data

  1. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  2. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  3. MO-D-213-01: Workflow Monitoring for a High Volume Radiation Oncology Center

    SciTech Connect

    Laub, S; Dunn, M; Galbreath, G; Gans, S; Pankuch, M

    2015-06-15

    Purpose: Implement a center wide communication system that increases interdepartmental transparency and accountability while decreasing redundant work and treatment delays by actively monitoring treatment planning workflow. Methods: Intake Management System (IMS), a program developed by ProCure Treatment Centers Inc., is a multi-function database that stores treatment planning process information. It was devised to work with the oncology information system (Mosaiq) to streamline interdepartmental workflow.Each step in the treatment planning process is visually represented and timelines for completion of individual tasks are established within the software. The currently active step of each patient’s planning process is highlighted either red or green according to whether the initially allocated amount of time has passed for the given process. This information is displayed as a Treatment Planning Process Monitor (TPPM), which is shown on screens in the relevant departments throughout the center. This display also includes the individuals who are responsible for each task.IMS is driven by Mosaiq’s quality checklist (QCL) functionality. Each step in the workflow is initiated by a Mosaiq user sending the responsible party a QCL assignment. IMS is connected to Mosaiq and the sending or completing of a QCL updates the associated field in the TPPM to the appropriate status. Results: Approximately one patient a week is identified during the workflow process as needing to have his/her treatment start date modified or resources re-allocated to address the most urgent cases. Being able to identify a realistic timeline for planning each patient and having multiple departments communicate their limitations and time constraints allows for quality plans to be developed and implemented without overburdening any one department. Conclusion: Monitoring the progression of the treatment planning process has increased transparency between departments, which enables efficient

  4. An integral quality monitoring system for real-time verification of intensity modulated radiation therapy

    SciTech Connect

    Islam, Mohammad K.; Norrlinger, Bernhard D.; Smale, Jason R.; Heaton, Robert K.; Galbraith, Duncan; Fan, Cary; Jaffray, David A.

    2009-12-15

    Purpose: To develop an independent and on-line beam monitoring system, which can validate the accuracy of segment-by-segment energy fluence delivery for each treatment field. The system is also intended to be utilized for pretreatment dosimetric quality assurance of intensity modulated radiation therapy (IMRT), on-line image-guided adaptive radiation therapy, and volumetric modulated arc therapy. Methods: The system, referred to as the integral quality monitor (IQM), utilizes an area integrating energy fluence monitoring sensor (AIMS) positioned between the final beam shaping device [i.e., multileaf collimator (MLC)] and the patient. The prototype AIMS consists of a novel spatially sensitive large area ionization chamber with a gradient along the direction of the MLC motion. The signal from the AIMS provides a simple output for each beam segment, which is compared in real time to the expected value. The prototype ionization chamber, with a physical area of 22x22 cm{sup 2}, has been constructed out of aluminum with the electrode separations varying linearly from 2 to 20 mm. A calculation method has been developed to predict AIMS signals based on an elementwise integration technique, which takes into account various predetermined factors, including the spatial response function of the chamber, MLC characteristics, beam transmission through the secondary jaws, and field size factors. The influence of the ionization chamber on the beam has been evaluated in terms of transmission, surface dose, beam profiles, and depth dose. The sensitivity of the system was tested by introducing small deviations in leaf positions. A small set of IMRT fields for prostate and head and neck plans was used to evaluate the system. The ionization chamber and the data acquisition software systems were interfaced to two different types of linear accelerators: Elekta Synergy and Varian iX. Results: For a 10x10 cm{sup 2} field, the chamber attenuates the beam intensity by 7% and 5% for 6 and 18

  5. Apparatus having reduced background for measuring radiation activity in aerosol particles

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Oritz, Carlos A.; Marlow, William H.

    1992-01-01

    Apparatus having reduced background for measuring radiation activity in aerosol particles. A continuous air monitoring sampler is described for use in detecting the presence of alpha-emitting aerosol particles. An inlet fractionating screen has been demonstrated to remove about 95% of freshly formed radon progeny from the aerosol sample, and approximately 33% of partially aged progeny. Addition of an electrical condenser and a modified dichotomous virtual impactor are expected to produce considerable improvement in these numbers, the goal being to enrich the transuranic (TRU) fraction of the aerosols. This offers the possibility of improving the signal-to-noise ratio for the detected alpha-particle energy spectrum in the region of interest for detecting TRU materials associated with aerosols, thereby enhancing the performance of background-compensation algorithms for improving the quality of alarm signals intended to warn personnel of potentially harmful quantities of TRU materials in the ambient air.

  6. A new tool for radiation exposure calculations in aircraft flights during disturbed solar activity periods

    NASA Astrophysics Data System (ADS)

    Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen

    2016-04-01

    Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.

  7. Cellular monitoring of the nuclear factor kappaB pathway for assessment of space environmental radiation.

    PubMed

    Baumstark-Khan, Christa; Hellweg, Christine E; Arenz, Andrea; Meier, Matthias M

    2005-10-01

    A screening assay for the detection of NF-kappaB-dependent gene induction using the destabilized variant of the reporter protein enhanced green fluorescent protein (d2EGFP) is used for assessing the biological effects of accelerated heavy ions as a model of space environmental radiation conditions. The time course of d2EGFP expression and therefore of activation of NF-kappaB-dependent gene expression was measured after treatment with TNFA or after heavy-ion exposure using flow cytometry. The reported experiments clearly show that accelerated argon ions (95 MeV/nucleon, LET 230 keV/microm) induce the NF-kappaB pathway at low particle densities (1-2 particle hits per nucleus), which result in as few as 5-50 induced DSBs per cell.

  8. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  9. A process activity monitor for AOS/VS

    NASA Technical Reports Server (NTRS)

    Mckosky, R. A.; Lindley, S. W.; Chapman, J. S.

    1986-01-01

    With the ever increasing concern for computer security, users of computer systems are becoming more sensitive to unauthorized access. One of the initial security concerns for the Shuttle Management Information System was the problem of users leaving their workstations unattended while still connected to the system. This common habit was a concern for two reasons: it ties up resources unnecessarily and it opens the way for unauthorized access to the system. The Data General MV/10000 does not come equipped with an automatic time-out option on interactive peripherals. The purpose of this memorandum is to describe a system which monitors process activity on the system and disconnects those users who show no activity for some time quantum.

  10. Stanford Synchrotron Radiation Laboratory. Activity report for 1988

    SciTech Connect

    Cantwell, K.

    1996-01-01

    For SSRL operations, 1988 was a year of stark contrasts. The first extended PEP parasitic running since the construction of our two beam lines on that storage ring took place in November and December. Four experiments discussed below, were performed and detailed operational procedures which allowed synchrotron radiation an high energy users to coexist were established. SSRL anticipates that there will be significant amounts of beam time when PEP is run again for high energy physics. On the other hand, activity on SPEAR consisted of brief parasitic running on the VUV lines in December when the ring was operated at 1.85 GeV for colliding beam experiments. There was no dedicated SPEAR running throughout the entire calendar year. This is the first time since dedicated SPEAR operation was initiated in 1980 that there was no such running. The decision was motivated by both cost and performance factors, as discussed in Section 1 of this report. Fortunately, SLAC and SSRL have reached an agreement on SPEAR and PEP dedicated time charges which eliminates the cost volatility which was so important in the cancellation of the June-July dedicated SPEAR run. As discussed in Section 2, the 3 GeV SPEAR injector construction is proceeding on budget and on schedule. The injector will overcome the difficulties associated with the SLC-era constraint of only two injections per day. SSR and SLAC have also embarked on a program to upgrade SPEAR to achieve high reliability and performance. As a consequence, SSRL`s users may anticipate a highly effective SPEAR by 1991, at the latest. At that time, SPEAR is expected to be fully dedicated to synchrotron radiation research and operated by SSRL. Also contained in this report is a discussion of the improvements to SSRL`s experimental facilities and highlights of the experiments of the past year.

  11. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  12. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  13. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    PubMed

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  14. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    SciTech Connect

    Stewart, B; Kanal, K; Dickinson, R; Zamora, D

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structured Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides

  15. Evaluation of activity monitors in manual wheelchair users with paraplegia

    PubMed Central

    Hiremath, Shivayogi V.; Ding, Dan

    2011-01-01

    Objective The aim of this study was to evaluate the performance of SenseWear® (SW) and RT3 activity monitors (AMs) in estimating energy expenditure (EE) in manual wheelchair users (MWUs) with paraplegia for a variety of physical activities. Methods Twenty-four subjects completed four activities including resting, wheelchair propulsion, arm-ergometry exercise, and deskwork. The criterion EE was measured by a K4b2 portable metabolic cart. The EE estimated by the SW and RT3 were compared with the criterion EE by the absolute differences and absolute percentage errors. Intraclass correlations and the Bland and Altman plots were also used to assess the agreements between the two AMs and the metabolic cart. Correlations between the criterion EE and the estimated EE and sensors data from the AMs were evaluated. Results The EE estimation errors for the AMs varied from 24.4 to 125.8% for the SW and from 22.0 to 52.8% for the RT3. The intraclass correlation coefficients (ICCs) between the criterion EE and the EE estimated by the two AMs for each activity and all activities as a whole were considered poor with all the ICCs smaller than 0.75. Except for deskwork, the EE from the SW was more correlated to the criterion EE than the EE from the RT3. Conclusion The results indicate that neither of the AMs is an appropriate tool for quantifying physical activity in MWUs with paraplegia. However, the accuracy of EE estimation could be potentially improved by building new regression models based on wheelchair-related activities. PMID:21528634

  16. Photosynthetically active radiation (PAR) x ultraviolet radiation (UV) interact to initiate solar injury in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunburn or solar injury (SI) in apple is associated with high temperature, high visible light and ultraviolet radiation (UV). Fruit surface temperature (FST) thresholds for SI related disorders have been developed but there are no thresholds established for solar radiation. The objectives of the s...

  17. Clinical value of monitoring eosinophil activity in asthma.

    PubMed Central

    Koller, D Y; Herouy, Y; Götz, M; Hagel, E; Urbanek, R; Eichler, I

    1995-01-01

    To evaluate the use of eosinophil cationic protein (ECP) in monitoring disease activity in childhood asthma, serum ECP in 175 asthmatic children was assessed. Forty five patients with cystic fibrosis, 23 with lower respiratory tract infections (LRTI), and 87 healthy children were used as controls. Serum ECP concentrations (34.3 micrograms/l v 9.8 micrograms/l) were significantly higher in children with bronchial asthma than in healthy control subjects. In symptomatic patients with asthma serum ECP concentrations were increased compared with those from asymptomatic patients (40.2 micrograms/l v 14.4 micrograms/l), irrespective of treatment modalities (that is steroids, beta 2 agonists, or sodium cromoglycate). Moreover, atopy and infection appeared to be factors enhancing eosinophil activity in bronchial asthma as measured by serum ECP (58.4 micrograms/l v 36.8 micrograms/l and 68.8 micrograms/l v 42.2 micrograms/l, respectively). In a longitudinal trial, antiasthmatic treatment modalities (that is steroids) reduced serum ECP within four weeks (42.2 micrograms/l v 19.0 micrograms/l). In conclusion, the data indicate that (1) eosinophils also play a central part in childhood asthma; (2) serum concentrations of ECP in children with bronchial asthma are related to the disease severity and may thus be used for monitoring inflammation in childhood asthma; (3) eosinophil activity appears to be enhanced by atopy and infection; and (4) longitudinal measurements of serum ECP concentrations may be useful for optimising anti-inflammatory treatment in children with bronchial asthma. PMID:8554357

  18. Cable aging and condition monitoring of radiation resistant nano-dielectrics in advanced reactor applications

    SciTech Connect

    Duckworth, Robert C; Aytug, Tolga; Paranthaman, Mariappan Parans; Kidder, Michelle; Polyzos, Georgios; Leonard, Keith J

    2015-01-01

    Cross-linked polyethylene (XLPE) nanocomposites have been developed in an effort to improve cable insulation lifetime to serve in both instrument cables and auxiliary power systems in advanced reactor applications as well as to provide an alternative for new or retro-fit cable insulation installations. Nano-dielectrics composed of different weight percentages of MgO & SiO2 have been subjected to radiation at accumulated doses approaching 20 MRad and thermal aging temperatures exceeding 100 C. Depending on the composition, the performance of the nanodielectric insulation was influenced, both positively and negatively, when quantified with respect to its electrical and mechanical properties. For virgin unradiated or thermally aged samples, XLPE nanocomposites with 1wt.% SiO2 showed improvement in breakdown strength and reduction in its dissipation factor when compared to pure undoped XLPE, while XLPE 3wt.% SiO2 resulted in lower breakdown strength. When aged in air at 120 C, retention of electrical breakdown strength and dissipation factor was observed for XLPE 3wt.% MgO nanocomposites. Irrespective of the nanoparticle species, XLPE nanocomposites that were gamma irradiated up to the accumulated dose of 18 MRad showed a significant drop in breakdown strength especially for particle concentrations greater than 3 wt.%. Additional attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy measurements suggest changes in the structure of the XLPE SiO2 nanocomposites associated with the interaction of silicon and oxygen. Discussion on the relevance of property changes with respect to cable aging and condition monitoring is presented.

  19. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    SciTech Connect

    Carozzo, Simone; Schardt, Dieter; Narici, Livio; Combs, Stephanie E.; Debus, Jürgen; Sannita, Walter G.

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  20. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Astrophysics Data System (ADS)

    Plaza-Rosado, Heriberto

    1991-09-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  1. Naturally induced secondary radiation in interplanetary space: Preliminary analyses for gamma radiation and radioisotope production from thermal neutron activation

    NASA Technical Reports Server (NTRS)

    Plaza-Rosado, Heriberto

    1991-01-01

    Thermal neutron activation analyses were carried out for various space systems components to determine gamma radiation dose rates and food radiation contamination levels. The space systems components selected were those for which previous radiation studies existed. These include manned space vehicle radiation shielding, liquid hydrogen propellant tanks for a Mars mission, and a food supply used as space vehicle radiation shielding. The computational method used is based on the fast neutron distribution generated by the BRYNTRN and HZETRN transport codes for Galactic Cosmic Rays (GCR) at solar minimum conditions and intense solar flares in space systems components. The gamma dose rates for soft tissue are calculated for water and aluminum space vehicle slab shields considering volumetric source self-attenuation and exponential buildup factors. In the case of the lunar habitat with regolith shielding, a completely exposed spherical habitat was assumed for mathematical convenience and conservative calculations. Activation analysis of the food supply used as radiation shielding is presented for four selected nutrients: potassium, calcium, sodium, and phosphorus. Radioactive isotopes that could represent a health hazard if ingested are identified and their concentrations are identified. For nutrients soluble in water, it was found that all induced radioactivity was below the accepted maximum permissible concentrations.

  2. Offsite radiation doses summarized from Hanford environmental monitoring reports for the years 1957-1984. [Contains glossary

    SciTech Connect

    Soldat, J.K.; Price, K.R.; McCormack, W.D.

    1986-02-01

    Since 1957, evaluations of offsite impacts from each year of operation have been summarized in publicly available, annual environmental reports. These evaluations included estimates of potential radiation exposure to members of the public, either in terms of percentages of the then permissible limits or in terms of radiation dose. The estimated potential radiation doses to maximally exposed individuals from each year of Hanford operations are summarized in a series of tables and figures. The applicable standard for radiation dose to an individual for whom the maximum exposure was estimated is also shown. Although the estimates address potential radiation doses to the public from each year of operations at Hanford between 1957 and 1984, their sum will not produce an accurate estimate of doses accumulated over this time period. The estimates were the best evaluations available at the time to assess potential dose from the current year of operation as well as from any radionuclides still present in the environment from previous years of operation. There was a constant striving for improved evaluation of the potential radiation doses received by members of the public, and as a result the methods and assumptions used to estimate doses were periodically modified to add new pathways of exposure and to increase the accuracy of the dose calculations. Three conclusions were reached from this review: radiation doses reported for the years 1957 through 1984 for the maximum individual did not exceed the applicable dose standards; radiation doses reported over the past 27 years are not additive because of the changing and inconsistent methods used; and results from environmental monitoring and the associated dose calculations reported over the 27 years from 1957 through 1984 do not suggest a significant dose contribution from the buildup in the environment of radioactive materials associated with Hanford operations.

  3. A comparison of emerging gamma detector technologies for airborne radiation monitoring

    NASA Astrophysics Data System (ADS)

    Bell, S. J.; Aitken-Smith, P.; Beeke, S.; Collins, S. M.; Regan, P. H.; Shearman, R.

    2016-10-01

    This paper presents a comparison of new and emerging gamma detector technologies that have the potential to improve in-situ dose and radioactivity-in-air measurements for national monitoring networks. Five detectors were chosen for investigation; LaBr3(Ce), CeBr3, SiPM-CsI(Tl), Cd(Zn)Te and electromechanically-cooled HPGe. These detectors represent the full range of the price-performance matrix. Comparisons have been made of energy resolution, detection efficiency and minimum detectable activity by exposing each detector to a mixed radionuclide source drop-deposited across a filter. Other factors, such as internal radioactivity, linearity, size and cost have also been considered.

  4. Radiation protection, radioactive waste management and site monitoring at the nuclear scientific experimental and educational centre IRT-Sofia at INRNE-BAS.

    PubMed

    Mladenov, Al; Stankov, D; Nonova, Tz; Krezhov, K

    2014-11-01

    This article identifies important components and describes the safe practices in implementing radiation protection and radioactive waste management programmes, and in their optimisation at the Nuclear Scientific Experimental and Educational Centre with research reactor IRT at INRNE-BAS. It covers the instrumentation and personal protective equipment and organisational issues related to the continuous site monitoring. The reactor is under major reconstruction and the measures applied to radiation monitoring of environment and working area focused on restricting the radiation exposure of the staff as well as compliance with international good practices related to the environmental and public radiation safety requirements are also addressed.

  5. IDEEA activity monitor: validity of activity recognition for lying, reclining, sitting and standing.

    PubMed

    Jiang, Yuyu; Larson, Janet L

    2013-03-01

    Recent evidence demonstrates the independent negative effects of sedentary behavior on health, but there are few objective measures of sedentary behavior. Most instruments measure physical activity and are not validated as measures of sedentary behavior. The purpose of this study was to evaluate the validity of the IDEEA system's measures of sedentary and low-intensity physical activities: lying, reclining, sitting and standing. Thirty subjects, 14 men and 16 women, aged 23 to 77 years, body mass index (BMI) between 18 to 34 kg/m(2), participated in the study. IDEEA measures were compared to direct observation for 27 activities: 10 lying in bed, 3 lying on a sofa, 1 reclining in a lawn chair, 10 sitting and 3 standing. Two measures are reported, the percentage of activities accurately identified and the percentage of monitored time that was accurately labeled by the IDEEA system for all subjects. A total of 91.6% of all observed activities were accurately identified and 92.4% of the total monitored time was accurately labeled. The IDEEA system did not accurately differentiate between lying and reclining so the two activities were combined for calculating accuracy. Using this approach the IDEEA system accurately identified 96% of sitting activities for a total of 97% of the monitored sitting time, 99% and 99% for standing, 87% and 88% for lying in bed, 87% and 88% for lying on the sofa, and 83% and 83% for reclining on a lawn chair. We conclude that the IDEEA system accurately recognizes sitting and standing positions, but it is less accurate in identifying lying and reclining positions. We recommend combining the lying and reclining activities to improve accuracy. The IDEEA system enables researchers to monitor lying, reclining, sitting and standing with a reasonable level of accuracy and has the potential to advance the science of sedentary behaviors and low-intensity physical activities.

  6. Single-Molecule Electronic Monitoring of DNA Polymerase Activity

    NASA Astrophysics Data System (ADS)

    Marushchak, Denys O.; Pugliese, Kaitlin M.; Turvey, Mackenzie W.; Choi, Yongki; Gul, O. Tolga; Olsen, Tivoli J.; Rajapakse, Arith J.; Weiss, Gregory A.; Collins, Philip G.

    Single-molecule techniques can reveal new spatial and kinetic details of the conformational changes occurring during enzymatic catalysis. Here, we investigate the activity of DNA polymerases using an electronic single-molecule technique based on carbon nanotube transistors. Single molecules of the Klenow fragment (KF) of polymerase I were conjugated to the transistors and then monitored via fluctuations in electrical conductance. Continuous, long-term monitoring recorded single KF molecules incorporating up to 10,000 new bases into single-stranded DNA templates. The duration of individual incorporation events was invariant across all analog and native nucleotides, indicating that the precise structure of different base pairs has no impact on the timing of incorporation. Despite similar timings, however, the signal magnitudes generated by certain analogs reveal alternate conformational states that do not occur with native nucleotides. The differences induced by these analogs suggest that the electronic technique is sensing KF's O-helix as it tests the stability of nascent base pairs.

  7. High Energy Radiation Induced Activation of COX-2 and MMP-9 is Mediated by NF-kappaB

    NASA Astrophysics Data System (ADS)

    Rolle, G.; Munyu, S.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.

    2010-04-01

    Space radiation is a known carcinogen, and astronauts are exposed to high-energy radiation. In this study, we demonstrate that high-energy radiation activates cylooxygenase-2 and matrix metalloproteinase-9 through the NF-kB pathway.

  8. Wireless and chip-less passive radiation sensors for high dose monitoring

    SciTech Connect

    Debourg, E.; Aubert, H.; Pons, P.; Augustyniak, I.; Knapkiewicz, P.; Dziuban, J.; Matusiak, M.; Olszacki, M.

    2015-07-01

    The safety of nuclear infrastructures may involve the monitoring of many parameters in harsh environments (high radiation level, high temperature, high pressure,..). If technological solutions exist for transducers part in such environments, the electronic part used in reader is not appropriate and still a challenging task. Well-known solutions to remove the electronic part from the harsh environment consist of connecting the transducer and the reader by long electrical wires or performing ex situ remote sensing. However wires may practically be difficult to implement while ex situ measurements are not compatible with on line monitoring. Wireless and passive sensors working in harsh environments could be an appropriate solution for the remote sensing of critical parameters. Passive sensors without electronics in the sensing unit are available (e.g., SAW sensors) but they suffer from short reading range (typically lower than 10 meters). In order to overcome this range limitation a new class of electromagnetic transducers was developed in the mid-2000's. The operating principle is based on the modification of the properties of high-frequency (>> 1 GHz) passive electromagnetic devices by the quantity to be measured. Based on this principle a wide range of sensing properties can be addressed and a large number of materials can be chosen. Moreover the use of high frequency allows reducing the size of the sensor elements (antenna, transducer) and enhancing the immunity to multi-path. Several principles of RF transducers have been already validated by LAAS-CNRS (e;g; pressure, temperature, stress) as well as radar-based solution for the wireless long-range sensors interrogation. The sensor dosimeter exploit here the known property of Hydrogen-Pressure Dosimeters (HPD) for which the polymer material dehydrogenates under nuclear irradiation. The transducer principle is described. The irradiation will generate the out-gazing (hydrogen) of the polymer inside a micro

  9. A New Active Space Radiation Instruments for the International Space Station, A-DREAMS

    NASA Astrophysics Data System (ADS)

    Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Kobayashi, Shingo

    For future space experiments in the International Space Station (ISS) or other satellites, radiation detectors, A-DREAMS (Active Dosimeter for Radiation Environment and Astronautic Monitoring in Space), using single or multiple silicon semi-conductor detectors have been developed. The first version of the detectors were produced and calibrated with particle accelerators. National Institute of Radiological Sciences has a medical heavy ion accelerator (HIMAC) for cancer therapy and a cyclotron accelerator. The detector was irradiated with high energy heavy ions and protons in HIMAC and the cyclotron and calibrated the energy resolution and linearity for deposited energies of these particles. We are planned to be going to use the new instrument in an international project, the new MATROSHKA experiment which is directed by members in the Institute of Bio-Medical Problem (IBMP) in Russia and German Space Center (DLR) in Germany. In the project, the dose distribution in human torso phantom will be investigated for several months in the ISS. For the project, a new type of the instruments is under development in NIRS and the current situation will be reported in this paper.

  10. PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation

    NASA Astrophysics Data System (ADS)

    Barnard, H. R.; Findley, M. C.

    2013-12-01

    Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.

  11. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and {gt} 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  12. An experimental search for gamma radiation associated with thunderstorm activity

    SciTech Connect

    Fryberger, D.

    1992-11-01

    This experiment is a repeat of an earlier experiment, but with more sensitive apparatus and in a location with a higher incidence of thunderstorm activity. The earlier experiment was undertaken by Ashby and Whitehead to investigate the theory that ball lightning might be associated with the annihilation of small amounts of antimatter, and it yielded some very interesting but inconclusive results. In the course of about 12 months of data taking, four high rate bursts of gamma radiation were detected. These events lasted a few seconds and had many thousands of counts (16500, 5000, 3700, and [gt] 7700. Unfortunately, the association of these gamma ray bursts with thunderstorms or ball lightning was not clearly established, although one of the bursts did occur during a local thunderstorm in rough coincidence with a lightning bolt striking a flagpole about 100 yards from the gamma ray detection crystals. A pulse height spectrum taken for this burst (no spectrum was taken for the other three) exhibited a significant peak, well above background, the energy of which appeared to be compatible with the 511 keV positron annihilation line. While the peak could not be unambiguously attributed to positron annihilation, this certainly appeared to be the most likely source.

  13. Estimation of photosynthetically active radiation absorbed at the surface

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Moreau, Louis; Cihlar, Josef

    1997-12-01

    This paper presents a validation and application of an algorithm by Li and Moreau [1996] for retrieving photosynthetically active radiation (PAR) absorbed at the surface (APARSFC). APARSFC is a key input to estimating PAR absorbed by the green canopy during photosynthesis. Extensive ground-based and space-borne observations collected during the BOREAS experiment in 1994 were processed, colocated, and analyzed. They include downwelling and upwelling PAR observed at three flux towers, aerosol optical depth from ground-based photometers, and satellite reflectance measurements at the top of the atmosphere. The effects of three-dimensional clouds, aerosols, and bidirectional dependence on the retrieval of APARSFC were examined. While the algorithm is simple and has only three input parameters, the comparison between observed and estimated APARSFC shows a small bias error (<10 W m-2) and moderate random error (36 W m-2 for clear, 61 W m-2 for cloudy). Temporal and/or spatial mismatch between satellite and surface observations is a major cause of the random error, especially when broken clouds are present. The algorithm was subsequently employed to map the distribution of monthly mean APARSFC over the 1000×1000 km2 BOREAS region. Considerable spatial variation is found due to variable cloudiness, forest fires, and nonuniform surface albedo.

  14. Effect of a fluid layer on the sound radiation of a plate and its active control

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Pan, Jie; Yang, Tiejun

    2015-11-01

    In this paper, a baffled plate facing a layer of fluid is used to investigate the effects of the radiating environment on the plate's sound radiation and its active control. By varying the thickness of the fluid layer, different radiation environments are presented to the plate, resulting in a variation in the efficiencies and shapes of the radiation modes of the plate. As the design of feed-forward control of the radiated sound power and of feedback control of the vibration velocity or volume velocity is limited by the properties of the secondary control path (an open-loop frequency response function), the performance of the control system may be deteriorated if a controller optimally designed for one radiation environment is used for a different environment. The effects of radiation environment on the properties of the secondary control path and performance of active control are investigated.

  15. Design, Synthesis, and Monitoring of Light-Activated Motorized Nanomachines

    NASA Astrophysics Data System (ADS)

    Chiang, Pinn-Tsong

    Our group has developed a family of single molecules termed nanocars, which are aimed at performing controllable motion on surfaces. In this work, a series of light-activated motorized nanomachines incorporated with a MHz frequency light-activated unidirectional rotary motor were designed and synthesized. We hope the light-activated motor can serve as the powering unit for the nanomachines, and perform controllable translational motion on surfaces or in solution. A series of motorized nanovehicles intended for scanning tunneling microscopy (STM) imaging were designed and synthesized. A p-carborane-wheeled motorized nanocar was synthesized and monitored by STM. Single-molecule imaging was accomplished on a Cu(111) surface. However, further manipulations did lead to motor induced lateral motion. We attributed this result to the strong molecule-surface interactions between the p-carborane-wheeled nanocar and the Cu(111) surface and possible energy transfer between the rotary motor and the Cu(111) surface. To fine-tune the molecule-surface interactions, an adamantane-wheeled motorized nanocar and a three-wheel nanoroadster were designed and synthesized. In addition, the STM substrates will be varied and different combinations of molecule-surface interactions will be studied. As a complimentary imaging method to STM, single-molecule fluorescence microscopy (SMFM) also provides single-molecule level resolution. Unlike STM experiment requires ultra-high vacuum and conductive substrate, SMFM experiment is conducted at ambient conditions and uses non-conductive substrate. This imaging method allows us to study another category of molecule-surface interactions. We plan to design a fluorescent motorized nanocar that is suitable for SMFM studies. However, both the motor and fluorophore are photochemically active molecules. In proximity, some undesired energy transfer or interference could occur. A cyanine 5- (cy5-) tagged motorized nanocar incorporated with the MHz motor was

  16. Multi-level continuous active source seismic monitoring (ML-CASSM): Application to shallow hydrofracture monitoring

    NASA Astrophysics Data System (ADS)

    Ajo Franklin, J. B.; Daley, T. M.; Butler-Veytia, B.; Peterson, J.; Gasperikova, E.; Hubbard, S. S.

    2010-12-01

    Induced subsurface processes occur over a wide variety of time scales ranging from seconds (e.g. fracture initiation) to days (e.g. unsteady multiphase flow) and weeks (e.g. induced mineral precipitation). Active source seismic monitoring has the potential to dynamically characterize such alterations and allow estimation of spatially localized rates. However, even optimal timelapse seismic surveys have limited temporal resolution due to both the time required to acquire a survey and the cost of continuous field deployment of instruments and personnel. Traditional timelapse surveys are also limited by experimental repeatability due to a variety of factors including geometry replication and near-surface conditions. Recent research has demonstrated the value of semi-permanently deployed seismic systems with fixed sources and receivers for use in monitoring a variety of processes including near-surface stress changes (Silver et.al. 2007), subsurface movement of supercritical CO2 (Daley et.al. 2007), and preseismic velocity changes in fault regions (Niu et. al. 2008). This strategy, referred to as continuous active source seismic monitoring (CASSM), allows both precise quantification of traveltime changes on the order of 1.1 x 10-7 s and temporal sampling on the order of minutes. However, as previously deployed, CASSM often sacrifices spatial resolution for temporal resolution with previous experiments including only a single source level. We present results from the first deployment of CASSM with a large number of source levels under automated control. Our system is capable of autonomously acquiring full tomographic datasets (10 sources, 72 receivers) in 3 minutes without human intervention, thus allowing active source seismic imaging (rather than monitoring) of processes with short durations. Because no sources or receivers are moved in the acquisition process, signal repeatability is excellent and subtle waveform changes can be interpreted with increased confidence

  17. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; VanSuetendael, N. J.; Snyder, S. J.; Clements, J. S.

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  18. Use of Small Fluorescent Molecules to Monitor Channel Activity

    NASA Astrophysics Data System (ADS)

    Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley

    2001-03-01

    The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.

  19. Automatic Video System for Continues Monitoring of the Meteor Activity

    NASA Astrophysics Data System (ADS)

    Koten, Pavel; Fliegel, Karel; Vítek, Stanislav; Páta, Petr

    2011-05-01

    In this paper we present current progress in development of new observational instruments for the double station video experiment. The Meteor Automatic Imager and Analyser (MAIA) system is based on digital monochrome camera JAI CM-040 and well proved image intensifier XX1332. Both the observations as well as the data processing will be fully automatic. We are expecting the recorded data of better quality and both spatial and time resolution in comparison with currently used analogue system. The main goal of the MAIA project is to monitor activity of the meteor showers and sporadic meteor each night for the period of at least 3 years. First version of the system was already assembled and has been intensively tested in the optical laboratory. Optical properties were measured and the result confirmed our expectations according to image quality and resolution. First night sky observation was already carried out.

  20. Aerial monitoring in active mud volcano by UAV technique

    NASA Astrophysics Data System (ADS)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  1. Broadband seismic monitoring of active volcanoes using deterministic and stochastic approaches

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Nakano, M.; Maeda, T.; Yepes, H.; Palacios, P.; Ruiz, M. C.; Arrais, S.; Vaca, M.; Molina, I.; Yamashina, T.

    2009-12-01

    We systematically used two approaches to analyze broadband seismic signals observed at active volcanoes: one is waveform inversion of very-long-period (VLP) signals in the frequency domain assuming possible source mechanisms; the other is a source location method of long-period (LP) and tremor using their amplitudes. The deterministic approach of the waveform inversion is useful to constrain the source mechanism and location, but is basically only applicable to VLP signals with periods longer than a few seconds. The source location method uses seismic amplitudes corrected for site amplifications and assumes isotropic radiation of S waves. This assumption of isotropic radiation is apparently inconsistent with the hypothesis of crack geometry at the LP source. Using the source location method, we estimated the best-fit source location of a VLP/LP event at Cotopaxi using a frequency band of 7-12 Hz and Q = 60. This location was close to the best-fit source location determined by waveform inversion of the VLP/LP event using a VLP band of 5-12.5 s. The waveform inversion indicated that a crack mechanism better explained the VLP signals than an isotropic mechanism. These results indicated that isotropic radiation is not inherent to the source and only appears at high frequencies. We also obtained a best-fit location of an explosion event at Tungurahua when using a frequency band of 5-10 Hz and Q = 60. This frequency band and Q value also yielded reasonable locations for the sources of tremor signals associated with lahars and pyroclastic flows at Tungurahua. The isotropic radiation assumption may be valid in a high frequency range in which the path effect caused by the scattering of seismic waves results in an isotropic radiation pattern of S waves. The source location method may be categorized as a stochastic approach based on the nature of scattering waves. We further applied the waveform inversion to VLP signals observed at only two stations during a volcanic crisis

  2. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments.

  3. Imaging of nuclear factor κB activation induced by ionizing radiation in human embryonic kidney (HEK) cells.

    PubMed

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine E; Reitz, Günther

    2014-08-01

    Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. Nuclear factor kappa B (NF-κB) is one of the most important transcription factors that respond to changes in the environment of a mammalian cell. NF-κB plays a key role not only in inflammation and immune regulation but also in cellular radiation response. In response to DNA damage, NF-κB might inhibit apoptosis and promote carcinogenesis. Our previous studies showed that ionizing radiation is very effective in inducing biological damages. Therefore, it is important to understand the radiation-induced NF-κB signaling cascade. The current study aims to improve existing mammalian cell-based reporter assays for NF-κB activation by the use of DD-tdTomato which is a destabilized variant of red fluorescent protein tdTomato. It is demonstrated that exposure of recombinant human embryonic kidney cells (HEK/293 transfected with a reporter constructs containing NF-κB binding sites in its promoter) to ionizing radiation induces NF-κB-dependent DD-tdTomato expression. Using this reporter assays, NF-κB signaling in mammalian cells was monitored by flow cytometry and fluorescence microscopy. Activation of NF-κB by the canonical pathway was found to be quicker than by the genotoxin- and stress-induced pathway. X-rays activate NF-κB in HEK cells in a dose-dependent manner, and the extent of NF-κB activation is higher as compared to camptothecin.

  4. Low Dose Gamma Radiation Monitoring Through TiO{sub 2} Doped Lead Phthalocyanine (Pb-Pc) Based Schottky Device

    SciTech Connect

    Janu, Yojana; Gautam, Anil; Kumar, Manish; Prasad, Narottam; Deol, Y. S.; Roy, M. S.

    2008-04-23

    The concept of Organic thin film based solid-state dosimeters is relatively new and more effective. The organic conductor based solid-state dosimeter provides a mean for low cost, ease to fabricate and sensitive radiation sensor which can be employed as pocket dosimeter for army personals getting exposed to nuclear radiation while working in the radioactive environment This concept is being utilized here for monitoring the effect of nuclear radiation on our organic material based sandwiched devices. In the present communication, lead Phthalocyanine (PbPc) doped with TiO{sub 2} (5% by weight) is developed into the form of thin film structure. The developed ITO/PbPc: TiO{sub 2}/Ag Schottky device structure was characterized in terms of change in its electrical and optical properties before and after exposure to radiation Exposure to radiation imparts an accelerated decrease in forward bias current and capacitance characteristics reveal a linear relationship between dose v/s current behavior which supports its suitability as pocket dosimeter for the dose ranging from 50 mR to 800 mR.

  5. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    PubMed

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P < 0.05). UV radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P < 0.05) in reconstituted infant formula. Significant effects of UV radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis.

  6. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  7. Development of a long-term post-closure radiation monitor: Phase 2, Topical report, March 1994--July 1995

    SciTech Connect

    Reed, S.E.

    1995-07-01

    The long-term monitoring of a hazardous waste site for migration of radionuclides requires installation of radiation sensors at a large number of subsurface locations. The concept under development employs a passive in-ground measurement probe which contains a scintillator coupled to an optical lightguide. The overall goal of the Long-Term Post-Closure Radiation Monitor System (LPRMS) development program is to configure a long-term radiation monitor using commercially available, demonstrated components to the largest extent possible. The development program is planned as a three phase program spanning a total time of 53 months. The problems to be solved during Phase 1 were primarily those associated with selection of the most appropriate components (scintillator, coupling optics, optical fiber, and opto-electronics) to maximize the signal reaching the detectors and thereby minimizing the integration time required to obtain a reliable measure of radiation. Phase 2 (the current Phase) encompassed the fabrication and testing of the prototype LPRMS probe at a contaminated DOE site, the Fernald Environmental Management Project, in southwestern Ohio. Uranium isotopes are the primary contaminants of concern at this site. The single probe and opto-electronic device were used to made measurements in-situ at relatively shallow subsurface depths. The end objective of Phase 2 was the design of a full-scale prototype system which incorporates all the features expected to be necessary on a commercial system, including 50 meter depth of measurement, multiplexing of multiple probes, and remote transmission of data. This full-scale prototype will be fabricated and field tested for 12 months during Phase 3, and a commercial design will be developed based upon the data gathered and experience gained during the entire program.

  8. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  9. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  10. The VANILLA sensor as a beam monitoring device for X-ray radiation therapy.

    PubMed

    Velthuis, J J; Hugtenburg, R P; Cussans, D; Perry, M; Hall, C; Stevens, P; Lawrence, H; McKenzie, A

    2014-01-01

    Cancer treatments such as intensity-modulated radiotherapy (IMRT) require increasingly complex methods to verify the accuracy and precision of the treatment delivery. In vivo dosimetry based on measurements made in an electronic portal imaging device (EPID) has been demonstrated. The distorting effect of the patient anatomy on the beam intensity means it is difficult to separate changes in patient anatomy from changes in the beam intensity profile. Alternatively, upstream detectors scatter and attenuate the beam, changing the energy spectrum of the beam, and generate contaminant radiation such as electrons. We used the VANILLA device, a Monolithic Active Pixel Sensor (MAPS), to measure the 2D beam profile of a 6 MV X-ray beam at Bristol Hospital in real-time in an upstream position to the patient without clinically significant disturbance of the beam (0.1% attenuation). MAPSs can be made very thin (~20 μm) with still a very good signal-to-noise performance. The VANILLA can reconstruct the collimated beam edge with approximately 64 μm precision.

  11. TOMS as a monitor of the ultraviolet radiation environment: Applications to photobiology

    NASA Technical Reports Server (NTRS)

    Frederick, John E.

    1987-01-01

    The flux of biologically relevant ultraviolet radiation that reaches the surface of the Earth varies with the ozone amount, surface reflectivity, and cloudcover. The Total Ozone Mapping Spectrometer (TOMS) provides information relevant to all three items. A recent application of satellite-based ozone measurements has been to develop climatologies of the biologically significant UV-B radiation reaching the Earth's surface. A growing body of research suggests that UV-B radiation tends to suppress the immune system of laboratory mice. At tropical latitudes, it is likely that parasitical diseases develop most readily in people who have experienced immune system suppression from UV-B exposure. The computed distribution of surface radiation combined with information on disease incidence may clarify the role of UV-B as a suppressor of the human immune system. TOMS used in conjunction with radiative transfer calculations can provide information of relevance in photobiology.

  12. Using VHF Lightning Observations to Monitor Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Krehbiel, P. R.; Rison, W.; Edens, H. E.

    2011-12-01

    Lightning is an integral part of explosive volcanic eruptions and volcanic lightning measurements are a useful tool for volcano monitoring. VHF measurements of volcanic lightning can be made remotely, at distances of up to 100 km. A strategically placed network of 6 or more VHF ground stations could locate lightning in eruption columns from several regional volcanoes, and a minimum of two stations could be used to monitor a single volcano. Such a network would be particularly useful for detection or confirmation of explosive activity in situations where volcanoes are remotely located, and thus lack visual observations, or are not well instrumented with seismic networks. Furthermore, clouds are fully transparent to VHF signals, making lightning detection possible even when weather obscures visual observations. Recent VHF observations of volcanic lightning at Augustine Volcano (Alaska, USA, 2006), Redoubt Volcano (Alaska, USA, 2009) and Eyjafjallajökull (Iceland, 2010) have shown that two basic types of VHF signals are observed during volcanic eruptions, one of which is unique to volcanic activity. The unique signal, referred to as a 'continual RF' signal, was caused by very high rates of small 'vent discharges' occurring directly above the vent in the eruption column and was unlike any observations of lightning in meteorological thunderstorms. Vent discharges were observed to begin immediately following an explosive eruption. The second type of signal is from conventional lightning discharges, such as upward directed 'near-vent lightning' and isolated 'plume lightning.' Near-vent lightning was observed to begin 1-2 minutes following the onset of an explosive eruption while plume lightning began 4 or more minutes after the onset. At Redoubt the plume lightning occurred at such high rates that it rivaled lightning rates of supercell thunderstorms on the Great Plains of the United States. While both types of lightning signals can be used as indicators that explosive

  13. Performance of a coincidence based blood activity monitor

    SciTech Connect

    Moses, W.W.

    1989-12-01

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per {mu}Ci/ml, and has a paralyzing dead time of 1.2 {mu}s, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for {sup 18}F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs.

  14. Smart helmet: Monitoring brain, cardiac and respiratory activity.

    PubMed

    von Rosenberg, Wilhelm; Chanwimalueang, Theerasak; Goverdovsky, Valentin; Mandic, Danilo P

    2015-01-01

    The timing of the assessment of the injuries following a road-traffic accident involving motorcyclists is absolutely crucial, particularly in the events with head trauma. Standard apparatus for monitoring cardiac activity is usually attached to the limbs or the torso, while the brain function is routinely measured with a separate unit connected to the head-mounted sensors. In stark contrast to these, we propose an integrated system which incorporates the two functionalities inside an ordinary motorcycle helmet. Multiple fabric electrodes were mounted inside the helmet at positions featuring good contact with the skin at different sections of the head. The experimental results demonstrate that the R-peaks (and therefore the heart rate) can be reliably extracted from potentials measured with electrodes on the mastoids and the lower jaw, while the electrodes on the forehead enable the observation of neural signals. We conclude that various vital sings and brain activity can be readily recorded from the inside of a helmet in a comfortable and inconspicuous way, requiring only a negligible setup effort.

  15. Active Learning Framework for Non-Intrusive Load Monitoring: Preprint

    SciTech Connect

    Jin, Xin

    2016-05-16

    Non-Intrusive Load Monitoring (NILM) is a set of techniques that estimate the electricity usage of individual appliances from power measurements taken at a limited number of locations in a building. One of the key challenges in NILM is having too much data without class labels yet being unable to label the data manually for cost or time constraints. This paper presents an active learning framework that helps existing NILM techniques to overcome this challenge. Active learning is an advanced machine learning method that interactively queries a user for the class label information. Unlike most existing NILM systems that heuristically request user inputs, the proposed method only needs minimally sufficient information from a user to build a compact and yet highly representative load signature library. Initial results indicate the proposed method can reduce the user inputs by up to 90% while still achieving similar disaggregation performance compared to a heuristic method. Thus, the proposed method can substantially reduce the burden on the user, improve the performance of a NILM system with limited user inputs, and overcome the key market barriers to the wide adoption of NILM technologies.

  16. Radiation protection guidance for activities in low-Earth orbit.

    PubMed

    Townsend, L W; Fry, R J M

    2002-01-01

    Scientific Committee 75 (SC 75) of the National Council on Radiation Protection and Measurements (NCRP) was assembled for the purpose of providing guidance to NASA concerning radiation protection in low-Earth orbit. The report of SC 75 was published in December 2000 as NCRP Report No. 132. In this presentation an overview of the findings and recommendations of the committee report will be presented.

  17. Targeted Proteomics Approaches To Monitor Microbial Activity In Basalt Aquifer

    NASA Astrophysics Data System (ADS)

    Paszczynski, A. J.; Paidisetti, R.

    2007-12-01

    Microorganisms play a major role in biogeochemical cycles of the Earth. Information regarding microbial community composition can be very useful for environmental monitoring since the short generation times of microorganisms allows them to respond rapidly to changing environmental conditions. Microbial mediated attenuation of toxic chemicals offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. Current knowledge regarding the structure and functional activities of microbial communities is limited, but more information is being acquired every day through many genomic- and proteomic- based methods. As of today, only a small fraction of the Earth's microorganisms has been cultured, and so most of the information regarding the biodegradation and therapeutic potentials of these uncultured microorganisms remains unknown. Sequence analysis of DNA and/or RNA has been used for identifying specific microorganisms, to study the community composition, and to monitor gene expression providing limited information about metabolic state of given microbial system. Proteomic studies can reveal information regarding the real-time metabolic state of the microbial communities thereby aiding in understanding their interaction with the environment. In research described here the involvement of microbial communities in the degradation of anthropogenic contaminants such as trichloroethylene (TCE) was studied using mass spectrometry-based proteomics. The co- metabolic degradation of TCE in the groundwater of the Snake River Plain Aquifer at the Test Area North (TAN) site of Idaho National Laboratory (INL) was monitored by the characterization of peptide sequences of enzymes such as methane monooxygenases (MMOs). MMOs, expressed by methanotrophic bacteria are involved in the oxidation of methane and non-specific co-metabolic oxidation of TCE. We developed a time- course cell lysis method to release proteins from complex microbial

  18. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    SciTech Connect

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu; Boyer, Arthur; Liu, Fei

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  19. Biological monitoring of non-thermal effects of mobile phone radiation: recent approaches and challenges.

    PubMed

    Gaestel, Matthias

    2010-08-01

    This review describes recent developments in analysing the influence of radio-frequency electromagnetic fields (RF-EMFs ) on biological systems by monitoring the cellular stress response as well as overall gene expression. Recent data on the initiation and modulation of the classical cellular stress response by RF-EMFs, comprising expression of heat shock proteins and stimulation of stress-activated protein kinases, are summarised and evaluated. Since isothermic RF-EMF exposure is assumed rather than proven there are clear limitations in using the stress response to describe non-thermal effects of RF-EMFs. In particular, further experiments are needed to characterise better the threshold of the thermal heat shock response and the homogeneity of the cellular response in the whole sample for each biological system used. Before then, it is proposed that the absence of the classical stress response can define isothermal experimental conditions and qualifies other biological effects of RF-EMFs detected under these conditions to be of non-thermal origin. To minimise the probability that by making this assumption valuable insights into the nature of biological effects of RF-EMFs could be lost, proteotoxic non-thermal RF-EMF effects should also be monitored by measuring activities of labile intracellular enzymes and/or levels of their metabolites before the threshold for the heat shock response is reached. In addition, non-thermal induction of the stress response via promoter elements distinct from the heat shock element (HSE) should be analysed using HSE-mutated heat shock promoter reporter constructs. Screening for non-thermal RF-EMF effects in the absence of a classical stress response should be performed by transcriptomics and proteomics. Recent approaches demonstrate that due to their high-throughput characteristics, these methods inherently generate false positive results and require statistical evaluation based on quantitative expression analysis from a sufficient

  20. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-03-04

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1(-/-) mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  1. Monitoring of the outer radiation belt with GLONASS - the mid-altitude earth-symmetric multi-satellite constellation: experience and findings

    NASA Astrophysics Data System (ADS)

    Pavlov, Nikolai; Tulupov, Vladimir

    The project consists in the use of several satellites from the 24-birds GLONASS constellation for routine radiation monitoring in the orbit. Rather simple and almost identical particle sensors are used. Lowest reachable L is 4; presented period - 6.5 recent years. Time profiles with pure relativistic-electron component and solar protons are shown and identified. Very low fluxes of all types were observed in 2009. Besides 2009, only slight-to-moderate deviations from the model AE8 we saw in the entire period. Remarkable precision of the satellite positioning in orbit and symmetry of the orbit allow us easily keep watch of the (a)symmetry of the outer radiation belt and thereby, maybe, of this property of geomagnetic field; quasi-static spatial and sometimes even temporal variations are shown and discussed. Also we compare our data with those from GOES, RBSP/VAP and with the field models. High-intensity electron fluxes were found on the declining phase of the solar-activity cycle; similar GOES data are known to have a wide peak at the same phase too. We analyze the situation and investigate if GLONASS electrons behave like the GOES ones or they tend to shift their peak closer to the sunspot numbers' one. General pros and cons of the use of the GLONASS orbit/constellation for the magnetospheric research/monitoring are discussed.

  2. Radiative transfer and radiative driving of outflows in active galactic nuclei and starbursts

    NASA Astrophysics Data System (ADS)

    Novak, G. S.; Ostriker, J. P.; Ciotti, L.

    2012-12-01

    To facilitate the study of black hole fuelling, star formation and feedback in galaxies, we outline a method for treating the radial forces on interstellar gas due to absorption of photons by dust grains. The method gives the correct behaviour in all of the relevant limits [dominated by the central point source; dominated by the distributed isotropic source; optically thin; optically thick to ultraviolet (UV)/optical; optically thick to infrared (IR)] and reasonably interpolates between the limits when necessary. The method is explicitly energy conserving so that UV/optical photons that are absorbed are not lost, but are rather redistributed to the IR where they may scatter out of the galaxy. We implement the radiative transfer algorithm in a two-dimensional hydrodynamical code designed to study feedback processes in the context of early-type galaxies. We find that the dynamics and final state of simulations are measurably but only moderately affected by radiative forces on dust, even when assumptions about the dust-to-gas ratio are varied from zero to a value appropriate for the Milky Way. In simulations with high gas densities designed to mimic ultraluminous IR galaxies with a star formation rate of several hundred solar masses per year, dust makes a more substantial contribution to the dynamics and outcome of the simulation. We find that, despite the large opacity of dust to UV radiation, the momentum input to the flow from radiation very rarely exceeds L/c due to two factors: the low opacity of dust to the re-radiated IR and the tendency for dust to be destroyed by sputtering in hot gas environments. We also develop a simplification of our radiative transfer algorithm that respects the essential physics but is much easier to implement and requires a fraction of the computational cost.

  3. Geophysical Monitoring of Microbial Activity within a Wetland Soil

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Zhang, C.; Ntarlagiannis, D.; Slater, L.; Yee, N.

    2007-05-01

    We performed Induced Polarization (IP) and Self Potential (SP) measurements to record the geoelectrical signatures of microbial activity within a wetland soil. The experiment was conducted in laboratory, utilizing an open flow column set up. Soil samples from Kearny Marsh (KM), a shallow water wetland, were collected and stored at 4o Celsius prior to the start of the experiment. Two columns were dry packed with a mix of KM soil and sterile Ottawa sand (50% by weight). One column was sterilized and used as a control while the other column retained the biologically active soil sample. Both columns were saturated with a minimal salts medium capable of supporting microbial life; after saturation, a steady flow rate of one pore volume per day was maintained throughout the experiment. Ambient temperature and pressure changes (at the inflow and outflow of each column) were continuously monitored throughout the experiment. Common geochemical parameters, such as Eh, pH, and fluid conductivity were measured at the inflow and outflow of each column at regular intervals. IP and SP responses were continuously recorded on both columns utilizing a series of electrodes along the column length; additionally for the SP measurements we used a reference electrode at the inflow tube. Strong SP anomalies were observed for all the locations along the active column. Black visible mineral precipitant also formed in the active column. The observed precipitation coincided with the times that SP anomalies developed at each electrode position. These responses are associated with microbial induced sulfide mineralization. We interpret the SP signal as the result of redox processes associated with this mineralization driven by gradients in ionic concentration and mobility within the column, similar to a galvanic cell mechanism. IP measurements show no correlation with these visual and SP responses. Destructive analysis of the samples followed the termination of the experiment. Scanning electron

  4. Apparatus And Method For Osl-Based, Remote Radiation Monitoring And Spectrometry

    DOEpatents

    Miller, Steven D.; Smith, Leon Eric; Skorpik, James R.

    2006-03-07

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  5. Apparatus and method for OSL-based, remote radiation monitoring and spectrometry

    SciTech Connect

    Smith, Leon Eric; Miller, Steven D.; Bowyer, Theodore W.

    2008-05-20

    Compact, OSL-based devices for long-term, unattended radiation detection and spectroscopy are provided. In addition, a method for extracting spectroscopic information from these devices is taught. The devices can comprise OSL pixels and at least one radiation filter surrounding at least a portion of the OSL pixels. The filter can modulate an incident radiation flux. The devices can further comprise a light source and a detector, both proximally located to the OSL pixels, as well as a power source and a wireless communication device, each operably connected to the light source and the detector. Power consumption of the device ranges from ultra-low to zero. The OSL pixels can retain data regarding incident radiation events as trapped charges. The data can be extracted wirelessly or manually. The method for extracting spectroscopic data comprises optically stimulating the exposed OSL pixels, detecting a readout luminescence, and reconstructing an incident-energy spectrum from the luminescence.

  6. Monitoring of 60Co radiation-source parameters by optoelectronic instrumentation

    NASA Astrophysics Data System (ADS)

    Medved Rogina, Branka; Vojnovic, Bozidar D.

    1995-10-01

    Problems of measurement of the radiation dose level and determining the position of the 60Co radiation source rods are discussed. The continuous gamma ray source 60Co is used for various scientific and industrial, food and medical, irradiation applications with doses up to 104 Gy. For a radiation sensor the PCS optical fiber could be used. By radiation effects testing PCS fiber is found to have adequate sensitivity in the visible range up to 1.47 multiplied by 10-1 dB/kmGy at high exposure, up to 103 Gy 60Co ionizing source irradiation. The position of the source rods is determined relative to the safety position, by the sensor linked with source position using a mechanical transmission system. The digital position sensor based on the optoelectronic impulse source is developed, with accuracy plus or minus 1 mm for the whole vertical position change of the source and great exploitation resistance particularly to vibrations.

  7. Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring

    PubMed Central

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A.; Basu, Ananda; Kudva, Yogish C.

    2013-01-01

    Abstract Background In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. Subjects and Methods In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Results Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40–45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35–40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Conclusions Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose–insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts. PMID

  8. Longitudinal study of radiation exposure in computed tomography with an in-house developed dose monitoring system

    NASA Astrophysics Data System (ADS)

    Renger, Bernhard; Rummeny, Ernst J.; Noël, Peter B.

    2013-03-01

    During the last decades, the reduction of radiation exposure especially in diagnostic computed tomography is one of the most explored topics. In the same time, it seems challenging to quantify the long-term clinical dose reduction with regard to new hardware as well as software solutions. To overcome this challenge, we developed a Dose Monitoring System (DMS), which collects information from PACS, RIS, MPPS and structured reports. The integration of all sources overcomes the weaknesses of single systems. To gather all possible information, we integrated an optical character recognition system to extract, for example, information from the CT-dose-report. All collected data are transferred to a database for further evaluation, e.g., for calculations of effective as well as organ doses. The DMS provides a single database for tracking all essential study and patient specific information across different modality as well as different vendors. As an initial study, we longitudinally investigated the dose reduction in CT examination when employing a noise-suppressing reconstruction algorithm. For this examination type a significant long-term reduction in radiation exposure is reported, when comparing to a CT-system with standard reconstruction. In summary our DMS tool not only enables us to track radiation exposure on daily bases but further enables to analyses the long term effect of new dose saving strategies. In the future the statistical analyses of all retrospective data, which are available in a modern imaging department, will provide a unique overview of advances in reduction of radiation exposure.

  9. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  10. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  11. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  12. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  13. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... August 30, 1999 Other Monitoring Requirements § 62.15275 How do I monitor the injection rate of activated carbon? If your municipal waste combustion unit uses activated carbon to control dioxins/furans...

  14. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  15. A Radiation-Triggered Surveillance System for UF6 Cylinder Monitoring

    SciTech Connect

    Curtis, Michael M.; Myjak, Mitchell J.

    2016-09-23

    This report provides background information and representative scenarios for testing a prototype radiation-triggered surveillance system at an operating facility that handles uranium hexafluoride (UF6) cylinders. The safeguards objective is to trigger cameras using radiation, or radiation and motion, rather than motion alone, to reduce significantly the number of image files generated by a motion-triggered system. The authors recommend the use of radiation-triggered surveillance at all facilities where cylinder paths are heavily traversed by personnel. The International Atomic Energy Agency (IAEA) has begun using surveillance cameras in the feed and withdrawal areas of gas centrifuge enrichment plants (GCEPs). The cameras generate imagery using elapsed time or motion, but this creates problems in areas occupied 24/7 by personnel. Either motion-or-interval-based triggering generates thousands of review files over the course of a month. Since inspectors must review the files to verify operator material-flow-declarations, a plethora of files significantly extends the review process. The primary advantage of radiation-triggered surveillance is the opportunity to obtain full-time cylinder throughput verification versus what presently amounts to part-time verification. Cost savings should be substantial, as the IAEA presently uses frequent unannounced inspections to verify cylinder-throughput declarations. The use of radiation-triggered surveillance allows the IAEA to implement less frequent unannounced inspections for the purpose of flow verification, but its principal advantage is significantly shorter and more effective inspector video reviews.

  16. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  17. Apollo Director Phillips Monitors Apollo 11 Pre-Launch Activities

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the Kennedy Space Flight Center (KSC) control room, Apollo Program Director Lieutenant General Samuel C. Phillips monitors pre-launch activities for Apollo 11. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Laser activated nanothermolysis of leukemia cells monitored by photothermal microscopy

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Shnip, Alexander; Zheltov, George; Potapnev, Michail; Savitsky, Valeriy; Klimovich, Olga; Oraevsky, Alexander

    2005-04-01

    We are developing new diagnostic and therapeutic technologies for leukemia based on selective targeting of leukemia cells with gold nanoparticles and thermomechanical destruction of the tumor cells with laser-induced microbubbles. Clusters of spherical gold nanoparticles that have strong optical absorption of laser pulses at 532 nm served as nucleation sites of vapor microbubbles. The nanoparticles were targeted selectively to leukemia cells using leukemia-specific surface receptors and a set of two monoclonal antibodies. Application of a primary myeloid-specific antibody to tumor cells followed by targeting the cells with 30-nm nanoparticles conjugated with a secondary antibody (IgG) resulted in formation of nanoparticulate clusters due to aggregation of IgGs. Formation of clusters resulted in substantial decrease of the damage threshold for target cells. The results encourage development of Laser Activated Nanothermolysis as a Cell Elimination Therapy (LANCET) for leukemia. The proposed technology can be applied separately or in combination with chemotherapy for killing leukemia cells without damage to other blood cells. Potential applications include initial reduction of concentration of leukemia cells in blood prior to chemotherapy and treatment of residual tumor cells after the chemotherapy. Laser-induced bubbles in individual cells and cell damage were monitored by analyzing profile of photothermal response signals over the entire cell after irradiation with a single 10-ns long laser pulse. Photothermal microscopy was utilized for imaging formation of microbubbles around nanoparticulate clusters.

  19. Cooperative wireless network control based health and activity monitoring system.

    PubMed

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  20. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  1. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  2. Validation of Heat Shock Protein 70 as a Tumor-Specific Biomarker for Monitoring the Outcome of Radiation Therapy in Tumor Mouse Models

    SciTech Connect

    Bayer, Christine; Liebhardt, Michael E.; Schmid, Thomas E.; Trajkovic-Arsic, Marija; Hube, Kathrin; Specht, Hanno M.; Schilling, Daniela; Gehrmann, Mathias; Stangl, Stefan; Siveke, Jens T.; Wilkens, Jan J.; Multhoff, Gabriele

    2014-03-01

    Purpose: Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. Methods and Materials: Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm{sup 3}) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk to 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. Results: sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm{sup 3} to 0.66 cm{sup 3} was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. Conclusion: We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.

  3. Radiation tolerance of CMOS monolithic active pixel sensors with self-biased pixels

    NASA Astrophysics Data System (ADS)

    Deveaux, M.; Amar-Youcef, S.; Besson, A.; Claus, G.; Colledani, C.; Dorokhov, M.; Dritsa, C.; Dulinski, W.; Fröhlich, I.; Goffe, M.; Grandjean, D.; Heini, S.; Himmi, A.; Hu, C.; Jaaskelainen, K.; Müntz, C.; Shabetai, A.; Stroth, J.; Szelezniak, M.; Valin, I.; Winter, M.

    2010-12-01

    CMOS monolithic active pixel sensors (MAPS) are proposed as a technology for various vertex detectors in nuclear and particle physics. We discuss the mechanisms of ionizing radiation damage on MAPS hosting the dead time free, so-called self bias pixel. Moreover, we introduce radiation hardened sensor designs which allow operating detectors after exposing them to irradiation doses above 1 Mrad.

  4. Cadence Feedback With ECE PEDO to Monitor Physical Activity Intensity

    PubMed Central

    Ardic, Fusun; Göcer, Esra

    2016-01-01

    Abstract The purpose of this study was to examine the monitoring capabilities of the equipment for clever exercise pedometer (ECE PEDO) that provides audible feedback when the person exceeds the upper and lower limits of the target step numbers per minute and to compare step counts with Yamax SW-200 (YX200) as the criterion pedometer. A total of 30 adult volunteers (15 males and 15 females) were classified as normal weight (n = 10), overweight (n = 10), and obese (n = 10). After the submaximal exercise test on a treadmill, the moderate intensity for walking was determined by using YX200 pedometer and then the number of steps taken in a minute was measured. Lower and upper limits of steps per minute (cadence) were recorded in ECE PEDO providing audible feedback when the person's walking speed gets out of the limits. Volunteers walked for 30 minutes in the individual step count range by attaching the ECE PEDO and YX200 pedometer on both sides of the waist belt in the same session. Step counts of the volunteers were recorded. Wilcoxon, Spearman correlation, and Bland–Altman analyses were performed to show the relationship and agreement between the results of 2 devices. Subjects took an average of 3511 ± 426 and 3493 ± 399 steps during 30 minutes with ECE PEDO and criterion pedometer, respectively. About 3500 steps taken by ECE PEDO reflected that this pedometer has capability of identifying steps per minute to meet moderate intensity of physical activity. There was a strong correlation between step counts of both devices (P < 0.001, r = 0.96). Correlations across all three BMI categories and both sex remained consistently high ranging from 0.92 to 0.95. There was a high level of agreement between the ECE PEDO and YX200 pedometer in the Bland–Altman analysis. Although both devices showed a strong similarity in counting steps, the ECE PEDO provides monitoring of intensity such that a person can walk in a specified time with a

  5. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  6. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  7. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  8. Changes in biologically active ultraviolet radiation reaching the Earth's surface.

    PubMed

    McKenzie, Richard L; Björn, Lars Olof; Bais, Alkiviadis; Ilyasad, Mohammad

    2003-01-01

    Since publication of the 1998 UNEP Assessment, there has been continued rapid expansion of the literature on UV-B radiation. Many measurements have demonstrated the inverse relationship between column ozone amount and UV radiation, and in a few cases long-term increases due to ozone decreases have been identified. The quantity, quality and availability of ground-based UV measurements relevant to assessing the environmental impacts of ozone changes continue to improve. Recent studies have contributed to delineating regional and temporal differences due to aerosols, clouds, and ozone. Improvements in radiative transfer modelling capability now enable more accurate characterization of clouds, snow-cover, and topographical effects. A standardized scale for reporting UV to the public has gained wide acceptance. There has been increased use of satellite data to estimate geographic variability and trends in UV. Progress has been made in assessing the utility of satellite retrievals of UV radiation by comparison with measurements at the Earth's surface. Global climatologies of UV radiation are now available on the Internet. Anthropogenic aerosols play a more important role in attenuating UV irradiances than has been assumed previously, and this will have implications for the accuracy of UV retrievals from satellite data. Progress has been made inferring historical levels of UV radiation using measurements of ozone (from satellites or from ground-based networks) in conjunction with measurements of total solar radiation obtained from extensive meteorological networks. We cannot yet be sure whether global ozone has reached a minimum. Atmospheric chlorine concentrations are beginning to decrease. However, bromine concentrations are still increasing. While these halogen concentrations remain high, the ozone layer remains vulnerable to further depletion from events such as volcanic eruptions that inject material into the stratosphere. Interactions between global warming and

  9. Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model.

    PubMed

    Kong, Bo; Vigil, R Dennis

    2014-04-01

    A numerical method for simulating the spectral light distribution in algal photobioreactors is developed by adapting the discrete ordinate method for solving the radiative transport equation. The technique, which was developed for two and three spatial dimensions, provides a detailed accounting for light absorption and scattering by algae in the culture medium. In particular, the optical properties of the algal cells and the radiative properties of the turbid culture medium were calculated using a method based on Mie theory and that makes use of information concerning algal pigmentation, shape, and size distribution. The model was validated using a small cylindrical bioreactor, and subsequently simulations were carried out for an annular photobioreactor configuration. It is shown that even in this relatively simple geometry, nontrivial photon flux distributions arise that cannot be predicted by one-dimensional models.

  10. Measurement of activity in older adults: reliability and validity of the Step Activity Monitor.

    PubMed

    Resnick, B; Nahm, E S; Orwig, D; Zimmerman, S S; Magaziner, J

    2001-01-01

    The purpose of this study was to test the reliability and validity of the Step Activity Monitor (SAM) when used with older adults. A total of 30 subjects with a mean age of 86 +/- 6.1 participated in the study. Sixty one-minute walks were measured with the SAM, and two observers visually counted steps. Four participants wore the SAM for 6 to 48 hours and maintained activity diaries. The intraclass correlation for the SAM recordings was R = .84. There was an overall step counting accuracy of 96%. The diaries supported the SAM data for those who wore the SAM for extended periods. The SAM is an easy to use, comfortable, valid, and reliable measure of activity in older adults and particularly may be useful to triangulate measurement of activity in these individuals.

  11. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    NASA Technical Reports Server (NTRS)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  12. Radiation Measurements Laboratory (RML) calibration and assessment of the ATR SPING-3 stack effluent monitor

    SciTech Connect

    Koeppen, L.D.; Rogers, J.W.; Simpson, O.D.

    1983-12-01

    An evaluation, calibration and assessment of the Eberline SPING-3 ATR stack effluent monitor was conducted. This unit which monitors particulate, iodine and noble gas effluents was producing abnormal results following the initial installation and operational testing. The purposes of this work were to find the causes of the abnormal results and correct them if possible; check the calibrations and adjust them if necessary; and to provide a better in-depth understanding of what the unit is monitoring and how well it performs under this application. Results have shown that there were some problems associated with the unit as initially installed and tested. These problems have been identified and suggested alternatives shown, the monitor was found to be applicable to some extent under the current conditions. The calibrations have been checked and adjustments made. More operation testing and evaluation is needed to assess how well this works under a variety of ATR operating conditions. 2 references, 10 figures, 3 tables. (ACR)

  13. Visits by Nuclear Powered Warships to Australian Ports: Report on Radiation Monitoring During 1990

    DTIC Science & Technology

    1991-06-01

    Australian Nuclear Science and Technical Organisation ( ANSTO ), the Health and Environmental authorities of the host State and the Royal Australian Navy (RAN...officer of the ANSTO . 13. The marine environmental monitoring program is a joint undertaking by the Commonwealth Department of Community Services and...May 1990 ANSTO provided training in warship monitoring techniques for eleven personnel. eight from HMAS STIRLING and three from HMAS COONAWARRA NT. HMAS

  14. Studies of atmosphere radio-sounding for monitoring of radiation environments around nuclear power plants

    NASA Astrophysics Data System (ADS)

    Boyarchuk, Kirill; Karelin, Alexander; Tumanov, Mikhail

    2014-05-01

    The nuclear power plants practically do not discharge to the atmosphere any products causing significant radioactive contaminations. However, during the years of the nuclear power industry, some large accidents occurred at the nuclear objects, and that caused enormous environmental contamination. Among the most significant accidents are: thermal explosion of a reservoir with high-level wastes at the Mayak enterprise in the South Ural region, near the town of Kyshtym, in the end of September 1957; accident at the nuclear power plant in Windscale, UK, in October 1957; accident at the Three-Mile Island, USA, in 1979; accident at the Chernobyl power plant in April 1986. In March of 2011, a large earthquake and the following tsunami caused the largest nuclear catastrophe of XXI century, the accident at the Fucushima-1 power plant. The last accident highlighted the need to review seriously the safety issues at the active power plants and to develop the new effective methods for remote detection and control over radioactive environmental contamination and over general geophysical situation in the areas. The main influence of the fission products on the environment is its ionisation, and therefore various detectable biological and physical processes that are caused by ions. Presence of an ionisation source within the area under study may cause significant changes of absolute humidity and, that is especially important, changes of the chemical potential of atmosphere vapours indicating presence of charged condensation centres. These effects may cause anomalies in the IR radiation emitted from the Earth surface and jumps in the chemical potentials of water vapours that may be observed by means of the satellite remote sensing by specialized equipment (works by Dimitar Ouzounov, Sergey Pulinets, e.a.). In the current study, the theoretical description is presented from positions of the molecular-kinetic condensation theory that shows significant changes of the absolute and

  15. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results: IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.

  16. Using luminescent materials as the active element for radiation sensors

    NASA Astrophysics Data System (ADS)

    Hollerman, William A.; Fontenot, Ross S.; Williams, Stephen; Miller, John

    2016-05-01

    Ionizing radiation poses a significant challenge for Earth-based defense applications as well as human and/or robotic space missions. Practical sensors based on luminescence will depend heavily upon research investigating the resistance of these materials to ionizing radiation and the ability to anneal or self-heal from damage caused by such radiation. In 1951, Birks and Black showed experimentally that the luminescent efficiency of anthracene bombarded by alphas varies with total fluence (N) as (I/I0) = 1/(1 + AN), where I is the luminescence yield, I0 is the initial yield, and A is a constant. The half brightness (N1/2) is defined as the fluence that reduce the emission light yield to half and is equal to is the inverse of A. Broser and Kallmann developed a similar relationship to the Birks and Black equation for inorganic phosphors irradiated using alpha particles. From 1990 to the present, we found that the Birks and Black relation describes the reduction in light emission yield for every tested luminescent material except lead phosphate glass due to proton irradiation. These results indicate that radiation produced quenching centers compete with emission for absorbed energy. The purpose of this paper is to present results from research completed in this area over the last few years. Particular emphasis will be placed on recent measurements made on new materials such as europium tetrakis dibenzoylmethide triethylammonium (EuD4TEA). Results have shown that EuD4TEA with its relatively small N1/2 might be a good candidate for use as a personal proton fluence sensor.

  17. Radiation Monitoring using an Unmanned Helicopter in the Evacuation Zone Set up by the Fukushima Daiichi NPP Accident.

    NASA Astrophysics Data System (ADS)

    Torii, Tatsuo; Sanada, Yukihisa; Nishizawa, Yukiyasu; Kondo, Atsuya; Shoji, Yasunori; ikeda, Kazutaka

    2013-04-01

    By the nuclear accident of the Fukushima Daiichi Nuclear Power Plant (NPP) caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. In recent years, technologies for an unmanned helicopter have been developed and applied to natural disasters. In expectation of the application of the unmanned helicopter to airborne radiation monitoring, we had developed a radiation monitoring system using an autonomous unmanned helicopter (AUH). Then, we measured the ambient dose-rate at the height of 1-m above the ground and the soil deposition of radioactive cesium (Cs-134, Cs-137) by using the AUH system in the evacuation zone of residents around the NPP. Here, we report on the measurement technique and the result. As a result measured around a river at 10-km away from the NPP, high contaminated areas compared with the circumstance are detected along the dry riverbed. It was seemed that it had flowed along the river from highly contaminated areas in the upper stream.

  18. Configuration studies for active electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.

    2013-07-01

    Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. Space crews traveling aboard interplanetary spacecraft will be exposed to a constant flux of galactic cosmic rays (GCR), as well as intense fluxes of charged particles during solar particle events (SPEs). A recent report (Tripathi et al., Adv. Space Res. 42 (2008) 1043-1049), had explored the feasibility of using electrostatic shielding in concert with the state-of-the-art materials shielding technologies. Here we continue to extend the electrostatic shielding strategy and quantitatively examine a different configuration based on multiple toroidal rings. Our results show that SPE radiation can almost be eliminated by these electrostatic configurations. Also, penetration probabilities for novel structures such as toroidal rings are shown to be substantially reduced as compared to the simpler all-sphere geometries. More interestingly, the dimensions and aspect ratio of the toroidal rings could be altered and optimized to achieve an even higher degree of radiation protection.

  19. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  20. State monitoring activities related to Pfiesteria-like organisms.

    PubMed

    Magnien, R E

    2001-10-01

    In response to potential threats to human health and fish populations, six states along the east coast of the United States initiated monitoring programs related to Pfiesteria-like organisms in 1998. These actions were taken in the wake of toxic outbreaks of Pfiesteria piscicida Steidinger & Burkholder in Maryland during 1997 and previous outbreaks in North Carolina. The monitoring programs have two major purposes. The first, rapid response, is to ensure public safety by responding immediately to conditions that may indicate the presence of Pfiesteria or related organisms in a toxic state. The second, comprehensive assessment, is to provide a more complete understanding of where Pfiesteria-like organisms may become a threat, to understand what factors may stimulate their growth and toxicity, and to evaluate the impacts of these organisms upon fish and other aquatic life. In states where human health studies are being conducted, the data from both types of monitoring are used to provide information on environmental exposure. The three elements included in each monitoring program are identification of Pfiesteria-like organisms, water quality measurements, and assessments of fish health. Identification of Pfiesteria-like organisms is a particularly difficult element of the monitoring programs, as these small species cannot be definitively identified using light microscopy; newly applied molecular techniques, however, are starting to provide alternatives to traditional methods. State monitoring programs also offer many opportunities for collaborations with research initiatives targeting both environmental and human health issues related to Pfiesteria-like organisms.

  1. State monitoring activities related to Pfiesteria-like organisms.

    PubMed Central

    Magnien, R E

    2001-01-01

    In response to potential threats to human health and fish populations, six states along the east coast of the United States initiated monitoring programs related to Pfiesteria-like organisms in 1998. These actions were taken in the wake of toxic outbreaks of Pfiesteria piscicida Steidinger & Burkholder in Maryland during 1997 and previous outbreaks in North Carolina. The monitoring programs have two major purposes. The first, rapid response, is to ensure public safety by responding immediately to conditions that may indicate the presence of Pfiesteria or related organisms in a toxic state. The second, comprehensive assessment, is to provide a more complete understanding of where Pfiesteria-like organisms may become a threat, to understand what factors may stimulate their growth and toxicity, and to evaluate the impacts of these organisms upon fish and other aquatic life. In states where human health studies are being conducted, the data from both types of monitoring are used to provide information on environmental exposure. The three elements included in each monitoring program are identification of Pfiesteria-like organisms, water quality measurements, and assessments of fish health. Identification of Pfiesteria-like organisms is a particularly difficult element of the monitoring programs, as these small species cannot be definitively identified using light microscopy; newly applied molecular techniques, however, are starting to provide alternatives to traditional methods. State monitoring programs also offer many opportunities for collaborations with research initiatives targeting both environmental and human health issues related to Pfiesteria-like organisms. PMID:11677180

  2. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  3. Engineering of radiation of optically active molecules with chiral nano-meta-particles

    NASA Astrophysics Data System (ADS)

    Klimov, V. V.; Guzatov, D. V.; Ducloy, M.

    2012-02-01

    The radiation of an optically active (chiral) molecule placed near a chiral nanosphere is investigated. The optimal conditions for engineering of radiation of optically active (chiral) molecules with the help of chiral nanoparticles are derived. It is shown that for this purpose, the substance of the chiral particle must have both ɛ and μ negative (double negative material (DNG)) or negative μ and positive ɛ (μ negative material (MNG)). Our results pave the way to an effective engineering of radiation of "left" and "right" molecules and to creating pure optical devices for separation of drugs enantiomers.

  4. Interaction of Ionizing Radiation, Genetically Active Chemicals, and Radiofrequency Radiation in Human and Rodent Cells

    DTIC Science & Technology

    1990-12-01

    proflavin , a drug known to intercalate with DNA. Again, when cells were exposed simultaneously to RFR SAR = 40.8- + 13.4 (SD) W/kg or 40 W/kg at power...densities of 87 or 65 mW/cm ), no effect of the RFR on the proflavin induced mutagenicity was observed (Meltz et al., 1990). SCE Induction Previously...Meltz ML, Eagan P, and Erwin DN (1990). Proflavin and Microwave Radiation: Absence of a Mutagenic Interaction. Bioelectromagnetics 11:149-157. Ciaravino

  5. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    SciTech Connect

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-11-15

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  6. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy

    PubMed Central

    Yohan, Darren; Kim, Anthony; Korpela, Elina; Liu, Stanley; Niu, Carolyn; Wilson, Brian C; Chin, Lee CL

    2014-01-01

    Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents – prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation – confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation. PMID:24876997

  7. Evaluation of new cosmic radiation monitors designed for aircrew exposure assessment

    NASA Astrophysics Data System (ADS)

    Getley, I. L.; Bennett, L. G. I.; Lewis, B. J.; Bennett, B.; Dyer, C. S.; Hands, A. D. P.; Duldig, M. L.

    2010-01-01

    With the development of next generation aircraft designs capable of ultralong-range flight and extended flight endurance, new experimental dosimetry equipment has been specifically designed to enable aircrew to monitor and respond to airborne alerts of potential doses that exceed recommended limits. The new QinetiQ QDOS/Rayhound monitor and designer-specific Liulin 4SA both provide real-time monitoring and readout with both audible and visual alert functions. The potential advantage to pilots and airlines is a more rational response to an alert by minimizing the altitude descent and time at lower levels in response to a significant event. This not only protects passengers and crew from solar particle events but provides a "greener" option to fuel burn at lower altitudes when events have abated. Thus, it will allow the crew to determine safer optimum flight levels during and after the event. These monitors were flown on numerous high- and low-latitude flights in combination with a "Hawk" tissue equivalent proportional counter acting as the reference instrument as it measured the total ambient dose equivalent H*(10). An FH 41B Eberline monitor and bubble detectors were also used in the comparison.

  8. Effects of natural radiation, photosynthetically active radiation and artificial ultraviolet radiation-B on the chloroplast organization and metabolism of Porphyra acanthophora var. brasiliensis (Rhodophyta, Bangiales).

    PubMed

    Bouzon, Zenilda L; Chow, Fungyi; Zitta, Carmen S; dos Santos, Rodrigo W; Ouriques, Luciane C; Felix, Marthiellen R de L; Osorio, Luz K P; Gouveia, Claudiane; Martins, Roberta de Paula; Latini, Alexandra; Ramlov, Fernanda; Maraschin, Marcelo; Schmidt, Eder C

    2012-12-01

    We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 μmol photons m-2 s-1 and PAR + UVBR at 0.35 W m-2 for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.

  9. [Influence of ionizing radiation on activity of enzymes of antioxidant defense of Paecilomyces lilaclvus (Thom) Samson].

    PubMed

    Tuhaĭ, T I

    2011-01-01

    The level of activity of antioxidant protection enzymes (superoxide dismutase, catalase and peroxidase) under exposure to ionizing radiation and without it in strain Paecilomyces lilacinus, showing radioadaptive properties, and in control one has been investigated. It has been established that the researched strains are characterized by the high level activity of superoxide dismutase (200-800 AU/mg protein), extracellular and intracellular catalase (0.02-40 mmol min(-1) mg(-1) protein) and peroxidase (0.2-4 mmol min(-1) mg(-1) protein). Ionizing radiation was the inducer of significant changes in antioxidant enzyme activity of the control strain (from the lack of influence to the change of activity by an order) and showed considerably less influence on their activity in the strain, showing radioadaptive properties (the activity changes by 40-50%). The complex response of antioxidant enzymes in investigated strains under the exposure to ionizing radiation has been revealed.

  10. MVIRI/SEVIRI TOA Radiation Datasets within the Climate Monitoring SAF

    NASA Astrophysics Data System (ADS)

    Urbain, Manon; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Velazquez Blazquez, Almudena; Moreels, Johan

    2016-04-01

    Within CM SAF, Interim Climate Data Records (ICDR) of Top-Of-Atmosphere (TOA) radiation products from the Geostationary Earth Radiation Budget (GERB) instruments on the Meteosat Second Generation (MSG) satellites have been released in 2013. These datasets (referred to as CM-113 and CM-115, resp. for shortwave (SW) and longwave (LW) radiation) are based on the instantaneous TOA fluxes from the GERB Edition-1 dataset. They cover the time period 2004-2011. Extending these datasets backward in the past is not possible as no GERB instruments were available on the Meteosat First Generation (MFG) satellites. As an alternative, it is proposed to rely on the Meteosat Visible and InfraRed Imager (MVIRI - from 1982 until 2004) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI - from 2004 onward) to generate a long Thematic Climate Data Record (TCDR) from Meteosat instruments. Combining MVIRI and SEVIRI allows an unprecedented temporal (30 minutes / 15 minutes) and spatial (2.5 km / 3 km) resolution compared to the Clouds and the Earth's Radiant Energy System (CERES) products. This is a step forward as it helps to increase the knowledge of the diurnal cycle and the small-scale spatial variations of radiation. The MVIRI/SEVIRI datasets (referred to as CM-23311 and CM-23341, resp. for SW and LW radiation) will provide daily and monthly averaged TOA Reflected Solar (TRS) and Emitted Thermal (TET) radiation in "all-sky" conditions (no clear-sky conditions for this first version of the datasets), as well as monthly averaged of the hourly integrated values. The SEVIRI Solar Channels Calibration (SSCC) and the operational calibration have been used resp. for the SW and LW channels. For MFG, it is foreseen to replace the latter by the EUMETSAT/GSICS recalibration of MVIRI using HIRS. The CERES TRMM angular dependency models have been used to compute TRS fluxes while theoretical models have been used for TET fluxes. The CM-23311 and CM-23341 datasets will cover a 32 years

  11. Radiation dose monitoring in a breast cancer patient with a pacemaker: a case report.

    PubMed

    Nibhanupudy, J R; de Jesus, M A; Fujita, M; Goldson, A L

    2001-01-01

    A pacemaker-bearing patient with left-sided breast cancer was treated with adjuvant external beam radiation therapy to the intact breast. She was treated via tangential fields and a single anterior supraclavicular field using 6-MV x-rays. The pacemaker, originally in the treatment field, was removed and a new one placed 4 cm outside the radiation field prior to treatment. Silicon diode chamber Keithley-Farmer type 0.6 cc ionization chamber, and lithium fluoride (LiF) (TLD) chips were used to measure, in vivo, the dose to the pacemaker. From all the fields treated, total dose to the pacemaker was 164 cGy by diode measurements, 182 cGy by ionization chamber measurements, and 171 cGy by TLD measurements. The pacemaker functioned normally throughout the course of treatment.

  12. ADVANCED MR IMAGING METHODS FOR PLANNING AND MONITORING RADIATION THERAPY IN PATIENTS WITH HIGH GRADE GLIOMA

    PubMed Central

    Lupo, Janine M.; Nelson, Sarah J.

    2016-01-01

    This review explores how the integration of advanced imaging methods with high quality anatomic images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion, perfusion, and susceptibility weighted MR imaging in conjunction with MR spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast enhancing or T2 lesion alone and have a significant impact on targeting resection, planning radiation, and assessing treatment effectiveness. In the long-term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiation-induced vascular injury in otherwise normal appearing brain tissue. PMID:25219809

  13. Development of an optical transition radiation detector for profile monitoring of antiproton and proton beams at FNAL

    SciTech Connect

    Scarpine, V.E.; Lindenmeyer, C.W.; Tassotto, G.R.; Lumpkin, A.H.; /Argonne

    2005-05-01

    Optical transition radiation (OTR) detectors are being developed at Fermi National Accelerator Laboratory (FNAL) as part of the collider Run II upgrade program and as part of the NuMI primary beam line. These detectors are designed to measure 150 GeV antiprotons as well as 120 GeV proton beams over a large range of intensities. Design and development of an OTR detector capable of measuring beam in both directions down to beam intensities of {approx}5e9 particles for nominal beam sizes are presented. Applications of these OTR detectors as an on-line emittance monitor for both antiproton transfers and reverse-injected protons, as a Tevatron injection profile monitor, and as a high-intensity beam profile monitor for NuMI are discussed. In addition, different types of OTR foils are being evaluated for operation over the intensity range of {approx}5e9 to 5e13 particles per pulse, and these are described.

  14. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling

    SciTech Connect

    Petrie, T.W.; Childs, P.W.

    1998-06-01

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

  15. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    NASA Technical Reports Server (NTRS)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  16. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration

    PubMed Central

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation. PMID:26697408

  17. Radiation Measurements Performed with Active Detectors Relevant for Human Space Exploration.

    PubMed

    Narici, Livio; Berger, Thomas; Matthiä, Daniel; Reitz, Günther

    2015-01-01

    A reliable radiation risk assessment in space is a mandatory step for the development of countermeasures and long-duration mission planning in human spaceflight. Research in radiobiology provides information about possible risks linked to radiation. In addition, for a meaningful risk evaluation, the radiation exposure has to be assessed to a sufficient level of accuracy. Consequently, both the radiation models predicting the risks and the measurements used to validate such models must have an equivalent precision. Corresponding measurements can be performed both with passive and active devices. The former is easier to handle, cheaper, lighter, and smaller but they measure neither the time dependence of the radiation environment nor some of the details useful for a comprehensive radiation risk assessment. Active detectors provide most of these details and have been extensively used in the International Space Station. To easily access such an amount of data, a single point access is becoming essential. This review presents an ongoing work on the development of a tool that allows obtaining information about all relevant measurements performed with active detectors providing reliable inputs for radiation model validation.

  18. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  19. RadNet Map Interface for Near-Real-Time Radiation Monitoring Data

    EPA Pesticide Factsheets

    RadNet is a national network of monitoring stations that regularly collect air, precipitation, drinking water, and milk samples for analysis of radioactivity. The RadNet network, which has stations in each state, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents.

  20. Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)

    DOE Data Explorer

    Wilcox, S.; Andreas, A.

    2007-05-02

    A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.